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The following slide contains spoilers!

In this lecture we discuss first order optimization over manifolds of
distributions

We optimize functionals defined over statistical manifolds by means of
(stochastic) natural gradient descent

We focus on discrete statistical models in the exponential family, even if
most of the discussion applies also to the continuous case
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Motivation

The main motivation is stochastic optimization, i.e., randomized search
methods which introduce randomness into the search process

In particular we are interested in model-based optimization, i.e., a broad
family of algorithms which employ statistical models to guide the search
for the optimum of a function

Model-based algorithms often generate minimizing sequences of
probability distributions in a statistical model
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Some Notation

◾ f(x) ∶ Ω→ R the objective function

◾ Ω a finite search search space

◾ p(x) a probability distribution over the sample space Ω

◾ p0 the uniform distribution over Ω

◾ ∆ the probability simplex

◾ M = {p(x;ξ) ∶ ξ ∈ Ξ} ⊂∆ a parametrized statistical model

◾ ξ a parameter vector for p
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Stochastic Relaxation

Consider the minimization problem

(P) min
x∈Ω

f(x)

Let F (p) = Ep[f], we look for the minimum of f by optimizing the
Stochastic Relaxation (SR) of f

(SR) inf
p∈M

F (p)
[Remark] We take inf, since in general M may not be closed

We get candidate solutions for P by sampling optimal solutions of the SR

We introduce a chart ξ over M = {p(x;ξ) ∶ ξ ∈ Ξ}, let F (ξ) = Eξ[f], we
have a parametric representation (in coordinates) of the SR

(SR) inf
ξ∈Ξ

F (ξ)
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A Few Remarks

We move the search to the space of probability distributions, from a
discrete optimization problem over Ω to a continuous optimization
problem over M

In the parametric representation of F , the parameters ξ become the new
variables of the SR

Since ξ ∈ Ξ , we may have a constrained formulation of the SR

[Disclaimer] The SR does not provide lower bounds for P, indeed

min
x∈Ω

f(x) ≤ F (p) ≤max
x∈Ω

f(x)
Let M =∆, minx∈Ω f(x) =minp∈∆F (p)
More in general, forM ⊂∆, minx∈Ω f(x) ≤ infp∈MF (p)
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Closure of M

We denote with M the topological closure of M, i.e., M together with
the limits of (weakly convergent) sequences of distributions in M

Moreover, we supposeM is compact so that by the extreme value
theorem F (p) attains its infimum overM
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Equivalence of P and SR

Let us denote the optimal solutions

◾ x∗ ∈ Ω∗ = argmin x∈Ω f(x)
◾ p∗ ∈ P ∗ = argmin p∈MF (p)

The SR is equivalent to P if p∗(x∗) = 1, i.e., the probability of sampling
optimal solutions of P from optimal solutions of SR is equal to 1

In other words, there must exists a sequence {pt} in M such that

lim
t→∞

pt(x∗) = 1
A sufficient condition for the equivalence of SR and P is that all Dirac
distribution δx are included inM
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“Why are we doing this?”

Let us clarify some points

◾ Let k be the cardinality of Ω, to parametrize ∆ we need k − 1
parameters

◾ Minimizing F (p) with p ∈∆ is as computationally expensive as an
exhaustive search

And so, why going from Ω toM?

◾ In practice we restrict the search to some lower-dimensional model

◾ The equivalence of P and SR can be easily guaranteed by low
dimensional models

◾ We can develop efficient blackbox optimization algorithms

◾ It is possible to identify (e.g., learn) submodels for which “nice”
properties hold (e.g., gradient descent converges to global optimum)
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Which Model to Choose?

[Remark] The landscape of F (p) depends on the choice ofM, i.e., the
number of local minima of F (p) depends on M

Often it is convenient to work with graphical models

◾ There exists an interpretation of the model in terms of conditional
independence assumptions among variables

◾ We can define hierarchical structures and control model dimension

◾ There is a strong literature about estimation, sampling, learning, ...

In the following we work (mainly) with exponential families
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The Gibbs or Boltzmann Distribution

◾ The Gibbs distribution is the one-dimensional exponential family

p(x;β) = e−βf(x)

Eq[e−βf(x)]q(x), β > 0

◾ f(x) the energy function
◾ β the inverse temperature
◾ q(x) the reference measure

◾ The set of distributions is not weakly closed
◾ Suppose f(x) ≥ 0 and f(x) = 0 for some x ∈ Ω, but not everywhere

lim
β→0

e−βf(x) = q(x) lim
β→0

Eq[e−βf(x)] = 1
lim
β→∞

e−βf(x) =

⎧⎪⎪⎨⎪⎪⎩
q(x) if f(x) = 0,
0 otherwise

lim
β→∞

Eq[e−βf(x)] =∑
Ω∗
q(x)
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Closure of the Gibbs Distribution

lim
β→0

p(x;β) = q(x)
lim
β→∞

p(x;β) = q(x)∑Ω∗ q(x)
The Gibbs distribution is in principle an optimal choice for the SR, indeed

◾ The limit for β →∞ has support over the minima of f , and in
particular for q(x) = p0, it is the uniform distribution δΩ∗

◾ Since
∇F (β) = −Varβ(f) < 0

F (β) decreases monotonically as β →∞

◾ The Gibbs distribution satisfies the principle of maximum entropy

However, evaluating the partition function is computationally infeasible
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Pseudo-Boolean Optimization

In the following we restrict to Ω = {+1,−1}n, and we use the harmonic
encoding {+1,−1} for a binary variable

−10 = +1 − 11 = −1

A pseudo-Boolean function f is a real-valued mapping

f(x) ∶ Ω = {+1,−1}n → R

Any f can be expanded uniquely as a square free polynomial

f(x) = ∑
α∈L

cαx
α,

by employing a multi-index notation. Let L = {0,1}n, then
α = (α1, . . . , αn) ∈ L uniquely identifies the monomial xα by

α↦
n∏
i=1

xαi

i

The degree of the monomials represents the order of the interactions in f
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Monomial Representation of PS Functions

Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, where ⊗ denotes the Kronecker product and

A1
= [

0 1

+ +1 +1
− +1 −1

]
let a = (f(x))x∈Ω, we have Anc = a, with c = (cα)α∈L and c = 2−nAna

[Example] In case of two variables x = (x1, x2), we have

f(x) = c0 + c1x1 + c2x2 + c12x1x2
x1 x2 f(x)
+1 +1 a++
+1 −1 a+−
−1 +1 a−+
−1 −1 a−−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
1

4
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

00 10 01 11

++ +1 +1 +1 +1
+− +1 +1 −1 −1
−+ +1 −1 +1 −1
−− +1 −1 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a++
a+−
a−+
a−−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The Independence Model

Let M1 be the independence model for X = (X1, . . . ,Xn)
M1 = {p ∶ p(x) = n∏

i=1

pi(xi)}
with marginal probabilities pi(xi) = P(Xi = xi)
We parametrize M1 using ±1 Bernoulli distributions for Xi

p(x;µ) = n∏
i=1

µ
(1+x)/2
i (1 − µi)(1−x)/2

=

n∏
i=1

(2µixi − xi + 1) /2
with µ = (µ1, . . . , µn) ∈ [0,1]n and

µi = P(Xi = +1)
1 − µi = P(Xi = −1)
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Marginal Parameters for the Independence Model

δ01 δ11

δ10δ00

µ2

µ1

M1 is a n-dimensional manifold embedded in the 2n − 1 dimensional
probability simplex ∆
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Stochastic Relaxation: Who?

The SR can be solved in different ways

◾ Sampling, Selection and Estimation paradigm (EDAs, Larrañaga and
Lozano, 2002, CE method, Rubinstein, 1997)

◾ Fitness Modeling (DEUM, Shakya et al., 2005)
◾ Covariance Matrix Adaptation (CMA-ES, Hansen et al., 2001)

◾ GAs (Holland, 1975), ACO (Dorigo, 1992), ESs (Rechenberg, 1960)

◾ Boltzmann distribution and Gibbs sampler (Geman and Geman,
1984)

◾ Simulated Annealing and Boltzmann Machines (Aarts and Korst,
1989)

◾ Method of the Moments (SDP, Meziat et al., 2001)
◾ LP relaxation in pseudo-Boolean optimization (Boros and Hammer,

2001)

◾ ...and many others
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Gradient Descent

In the following we will focus on gradient descent techniques of the form

ξt+1 = ξt − λ∇F (ξ), λ > 0

In particular we refer to gradient-based algorithms such as

◾ Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES),
Hansen et al., 2001

◾ Natural Evolutionary Strategies (NES), Wierstra et al., 2008
◾ Stochastic Natural Gradient Descent (SNGD), M. et al., 2011
◾ Information Geometry Optimization (IGO), Arnold et al., 2011
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A Toy Example

Let n = 2, Ω = {−1,+1}2, we want to minimize

f(x) = x1 + 2x2 + 3x1x2
x1 x2 f(x)
+1 +1 6
+1 −1 −4
−1 +1 −2
−1 −1 0

−+

−−

++

+−

The gradient flow is the solution of the following differential equation

ξ̇ = ∇F (ξ),
where we set the step size λ → ǫ

We are interested in studying gradient flows for different parameterization
and different statistical models
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Gradient Flows on the Independence Model

F (µ) = ∑
x∈Ω

f(x)p1(x1)p2(x2) = −4µ1 − 2µ2 + 12µ1µ2
∇F (µ) = (−4 + 12µ2,−2 + 12µ1)T

Gradient flow in µ
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Gradient vector in µ, λ = 0.025
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∇F (η) does not convergence to (local) optima, a projection over the
hyperplanes given by the constraints is required
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Natural Parameters for the Independence Model

If we restrict to positive probabilities p > 0, we can represent the interior
of the independence model as the exponential family

p(x;θ) = exp{ n∑
i=1

θixi − ψ(θ)}
where ψ(θ) = lnZ(θ) is the log partition function

The natural parameters of the independence modelM1 represented by an
exponential family are θ = (θ1, . . . , θn) ∈ Rn, with

pi(xi) = eθixi

eθi + e−θi

The mapping between marginal probabilities and natural parameters is
one-to-one for p > 0

θi = (ln(µi) − ln(1 − µi)) /2 µi =
eθi

eθi + e−θi
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Gradient Flows on the Independence Model

F (θ) = (−4eθ1−θ2 − 2e−θ1+θ2 + 6eθ1+θ2)/Z(θ)
∇F (θ) = Eθ[f(X − Eθ[X])] = Covθ(f,X)

Gradient flow in θ
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Gradient vectors in θ, λ = 0.15
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In the θ parameters, ∇F (θ) vanishes over the plateaux
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Gradient Flows on the Independence Model

Marginal probabilities µ
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Natural parameters θ
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Gradient flows ∇F (ξ) depend on the parameterization

In the η parameters, ∇F (η) does not convergence to the expected
distribution δx∗ over an optimum
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Summary of the Intro

◾ Iterative algorithm generate sequences of distributions which can be
compared to the gradient flow of F (ξ)

◾ The choice of the model and of the parameterization play a role in
terms of appearance of local minima

◾ Euclidean geometry does not appear to be the proper geometry for
statistical models

We need a more general mathematical framework able to deal with
non-Euclidean geometries
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The Exponential Family

In the following, we consider models in the exponential family E

p(x,θ) = exp(m∑
i=1

θiTi(x) − ψ(θ))
◾ sufficient statistics T = (T1(x), . . . , Tm(x))
◾ natural parameters θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm

◾ log-partition function ψ(θ)
Several statistical models belong to the exponential family, both in the
continuous and discrete case, among them

◾ the independence model

◾ the Gibbs distribution

◾ Markov random fields

◾ multivariate Gaussians
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Markov Random Fields

[Recall] The monomials {xα},α ∈ L, define a basis for f

By choosing a subset of {xα} as sufficient statistics, we can identify a
low-dimensional exponential family parametrized by θ

p(x;θ) = exp⎛⎝ ∑
α∈M⊂L0

θαx
α − ψ(θ)⎞⎠, L0 = L ∖ {0}

Such models are known as

◾ log-liner models
◾ Markov random fields
◾ Boltzmann machines

There exists a statistical interpretation for the topology of the model

◾ The absence of edges in an undirected graphical model implies
conditional independence among variables

◾ Joint probability distributions factorize over the cliques of the graph
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Hierarchical Markov Random Fields, n = 4

In some cases it may be convenient to work with hierarchical models

A hierarchical model has the property that if xα is a sufficient statistic of
the exponential family then all {xβ ∶ β ∈ L ∖ {0} ∧β → α}, must be
sufficient statistics as well, where → is the bitwise implication operator

X3X2X1 X4

X13X12 X14 X23 X24 X34

X123 X124 X134 X234

X1234
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Dual Parameterization for the Exponential Family

p(x;θ) = exp(m∑
i=1

θiTi(x) − ψ(θ))
◾ Exponential families admit a dual parametrization to the natural

parameters, given by the expectation parameters with η = Eθ[T ]
◾ Let ϕ(η) be the negative entropy of p, then θ and η are connected

by the Legendre transform

ψ(θ) + ϕ(η) − ⟨θ,η⟩ = 0
◾ Variable transformations are given by

η = ∇θψ(θ) = (∇ηϕ)−1(θ)
θ = ∇ηϕ(η) = (∇θψ)−1(η)
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Variable Transformations

[Recall] Let An = A1 ⊗ . . .⊗A1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, where ⊗ denotes the Kronecker product

A probability distribution p ∈∆ requires 2n parameters ρ = (p(x))x∈Ω to
be uniquely identified, with constraints 0 ≤ ρx ≤ 1 and ∑x∈Ω ρx = 1

The expectation parameters η = (ηα),α ∈ L, provide an equivalent
parameterization for p, and since p(x) is a pseudo-Boolean function
itself, we have

ρ = 2−nAnη η = Anρ

Positivity constraints and the fact that probabilities sum to one, give us
η0 = 1 and Anη ≥ 0.

The natural parameters θ = (θα), α ∈ L, can be obtained from raw
probabilities, with the constraint θ0 = − logEθ[exp∑α∈L∖{0} θαx

α]
lnρ = 2−nAnθ θ = An lnρ

= − ( )L. Malagò, Applications of IG to CO, 26 Sep 2014
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Mixed Parametrization for Markov Random Fields

An exponential familyM given by the sufficient statistics {xα},α ∈M ,
identifies a submanifold in ∆, parametrized by θ = ((θ)α∈M ;0)
By the one-to-one correspondence between η and θ,M can be
parametrized by η = (ηα∈M ;η∗α∉M), where in general η∗α∉M ≠ 0

However, the η∗α∉M parameters are not free and it can be proved they are
given by implicit polynomial algebraic equations in ηα∈M

Due to the duality between θ and η, we can employ a mixed
parametrization forM and parametrize the model as (ηα∈M ;0)
[Remark] The study of statistical models using tools from computational
algebra is called Algebraic Statistics (Pistone et al., 2000)
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Algebraic Statistics: Invariants in ρ and η

[Example] Let n = 2, we consider the independence model parametrized
by (θ1, θ2; 0), with θ12 = 0

The same model can be parametrized by (η1, η2; 0), we show η12 = η1η2

Since θ = An lnρ, by imposing θ12 = 0 we have

lnρ++ + lnρ−− = lnρ+− + lnρ−+

ρ++ρ−− = ρ+−ρ−+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ++
ρ+−
ρ−+
ρ−−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
1

4
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

00 10 01 11

++ +1 +1 +1 +1
+− +1 +1 −1 −1
−+ +1 −1 +1 −1
−− +1 −1 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

η1
η2
η12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1 + η1 + η2 + η12)(1 − η1 − η2 + η12) = (1 + η1 − η2 − η12)(1 − η1 + η2 − η12)

η12 = η1η2
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Marginal Polytope

The range of the expectation parameters η = Eθ[T ] identifies a polytope
M in R

m called the marginal polytope

The marginal polytope can be obtained as the convex hull of T (Ω), there
T is the vector of sufficient statistics of the model

[Example] Let n = 2, T = (x1, x1x2)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x1x2

++ −1 +1
+− +1 −1
−+ +1 +1
−− −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Convex hull of

(+1,+1)(+1,−1)(−1,−1)(−1,+1)
L. Malagò, Applications of IG to CO, 26 Sep 2014
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Marginal Polytope

The marginal polytope corresponds to the domain for the η parameters in
the SR

◾ For the independence model M = [−1,1]n
◾ For the saturated model M =∆

◾ In the other cases, things can get very “nasty”, indeed the number of
its faces can grow more than exponentially in n

[Example] Let n = 3, consider the exponential model with sufficient
statistics given by {x1, x2, x3, x12, x23, x13}
then the number of hyperplanes of M is 16

L. Malagò, Applications of IG to CO, 26 Sep 2014
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Information Geometry

The geometry of statistical models is not Euclidean

We need tools from differential geometry to define notions such as
tangent vectors, shortest paths and distances between distributions

Information Geometry (IG) consists of the study of statistical models as
manifolds of distributions endowed with the Fisher information metric
(Amari 1982, 2001)
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Characterization of the Tangent Space of E

Over the manifold of distributions we can introduce an affine chart in p
such that any density q is locally represented w.r.t. to the reference
measure p by q

p
− 1

The tangent space at each point p is defined by

Tp = {v ∶ Ep[v] = 0}
Consider a curve p(θ) such that p(0) = p, then ṗ

p
∈ Tp

In a moving coordinate system, tangent (velocity) vectors in Tp(θ) to the
curve are given by logarithmic derivative

ṗ(θ)
p(θ) = d

dθ
log p(θ)

L. Malagò, Applications of IG to CO, 26 Sep 2014
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Characterization of the Tangent Space of E

The one dimensional model

p(θ) = exp{θT − ψ(θ)}
is a curve in the manifold, with tangent (velocity) vector

ṗ(θ)
p(θ) = T − d

dθ
ψ(θ)

On the other side, given a vector field, at each p we have a vector U(p)
tangent to some curve, then we obtain the differential equation

d

dθ
log p(θ) = U(p),

whose solutions are one-dimensional models in ∆

L. Malagò, Applications of IG to CO, 26 Sep 2014
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Natural Gradient

Let (M, I) be a statistical manifold endowed with a metric I = [gij], and
let F (p) ∶ M ↦ R be a smooth function

For each vector field U over M, the natural gradient of ∇̃F (p), i.e., the
direction of steepest descent of F (p) is the unique vector that satisfies

g(∇̃F,U) = DU F,

where DU F is the directional derivative of F in the direction U

Given a coordinate system ξ forM we have

∇̃F (ξ) = n∑
i=1

n∑
j=1

gij
∂F

∂ξi

∂

∂ξj
= I(ξ)−1∇F (ξ)

[Remark] There is only one (natural) gradient given by the geometry ofM

We use ∇̃F (ξ) to distinguish the natural gradient from the vanilla
gradient ∇F (ξ), i.e., the vector of partial derivatives of F w. r. t. ξ
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Geometry of the Exponential Family

In case of a finite sample space Ω, we have

p(x;θ) = exp(m∑
i=1

θiTi(x) −ψ(θ)) θ ∈ Rm

and

Tθ = {v ∶ v = k∑
i=1

ai(Ti(x) −Eθ[Ti]), ai ∈ R}
Since ∇F (θ) = Covθ(f,T ), if f ∈ Tp, the steepest direction is given by
f − Eθ[f], otherwise we take the projection f̂ of f onto Tp

f̂ =
m∑
i=1

âi(Ti(x) −Eθ[Ti]),
and obtain f̂ by solving a system of linear equations
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Geometry of Statistical Models

Since f − f̂ is orthogonal to Tp

Eθ[(f − f̂θ)(T − Eθ[T ])] = Covθ(f − f̂θ, T ) = 0,
from which we obtain, for i = 1, . . . ,m

Covθ(f,Ti) = Covθ(f̂θ, Ti) = m∑
j=1

âj Covθ(Tj , Ti)
As the Hessian matrix of ψ(θ) is invertible, we have

â = [Covθ(Ti, Tj)]−1Covθ(f,T ) = I(θ)−1∇F (θ)
In case f ∈ Span{T1, . . . , Tm}, then f̂θ = f

By taking the projection of f onto Tp, we obtained the natural gradient
∇̃F , i.e., the gradient evaluated w.r.t. the Fisher information metric I

L. Malagò, Applications of IG to CO, 26 Sep 2014
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The Big Picture

If f ∉ Tp, the projection f̂ may vanish, and local minima may appear
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Vanilla vs Natural Gradient: η, λ = 0.05

Vanilla gradient ∇F (η)
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In both cases there exist two basins of attraction, however ∇̃F (η)
convergences to δx distributions, which are local optima for F (η) and
where ∇̃F (δx) = 0
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Vanilla vs Natural Gradient: θ, λ = 0.15

Vanilla gradient ∇F (θ)
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In both cases there exist two basins of attraction, however in the natural
parameters ∇̃F (θ) “speeds up” over the plateaux
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Vanilla vs Natural Gradient

Expectation parameters η
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Vanilla gradient ∇F vs Natural gradient ∇̃F

The natural gradient flow is invariant to parameterization
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Stochastic Natural Gradient Descent

In the exponential family, the natural gradient descent updating rule reads

θt+1
= θt − λI(θ)−1∇F (θ), λ > 0

Unfortunately, exact gradients cannot be computed efficiently

◾ in general the partition function must be evaluated

◾ or a change of parametrization from θ to η is required

However, due to the properties of the exponential family, natural gradient
can be evaluated by means of covariances

∇F (θ) = Covθ(f,T ) I(θ) = Covθ(T ,T )
As a consequence, stochastic natural gradient can be estimated by
replacing exact gradients with empirical estimates, so that

θt+1
= θt − λĈovθt(T ,T )−1Ĉovθt(f,T ), λ > 0
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Stochastic Natural Gradient Descent

We can now move from gradient flows to iterative algorithms that
discretize the flow

A naïve SNGD (M. et al., 2011) implements the following pseudo-code

0 t = 0,θt = 0

1 Start with an initial random sample Pt

2 Evaluate f for each x ∈ Pt

3 (Subsample Pt)

4 θt+1 = θt − λĈovθ(T ,T )−1Ĉovθ(f,T )
5 Sample from p(x;θt+1)
6 Repeat 2-5 until convergence

Sampling from p(x;θt+1) can be done using the Gibbs sampler or other
sampling algorithms, for instance exploiting special conditional structure
and properties of p
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Gibbs Sampler with Cooling Scheme

Input: θ,N ▷ natural parameters, sample size
Optional: P0, T0 ▷ pool of samples, initial temperature
1: function GibbsSampler(θ,N,P0 , T0)
2: P ← ∅
3: t← 1

4: repeat

5: x← Random(P0) ▷ random point if P0 = ∅
6: T ← T0 ▷ initial temp, T = 1 default value
7: repeat

8: i← Random({1, . . . , n}) ▷ random variable
9: x∖i ← (x1, . . . , xi−1, xi+1, . . . , xn)
10: pi(xi∣x∖i;θ) =

1

1+exp{2T−1xi∑α∈Mi
θα∖ix

α∖i}

11: xi ←
⎧⎪⎪
⎨
⎪⎪⎩

+1, with Pi(Xi = 1∣X∖i = x∖i;θ)

−1, otherwise

12: T ← CoolingScheme(T ) ▷ decrease T
13: until StoppingCriteria()
14: P ← P ∪ {x} ▷ add new point
15: t← t + 1
16: until t = N

17: return P

18: end function
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Convergence of the Natural Gradient Flows

Theorem 1 (M. et al., FOGA 2011)

If the sufficient statistics {xα} of the exponential family

p(x;θ) = exp⎛⎝ ∑
α∈M⊂L0

θαx
α − ψ(θ)⎞⎠

form a basis for
f(x) = ∑

α∈I

cαx
α

i.e., I ∖ {0} ⊂M , then the natural gradient flows from every distribution p
in the exponential family converge to the global optimum of the SR
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Natural Gradient and Fitness Modeling

Theorem 2 (M. et al., CEC 2013)

If the sufficient statistics {xα} of the exponential family

p(x;θ) = exp⎛⎝ ∑
α∈M⊂L0

θαx
α − ψ(θ)⎞⎠

are centered in θ, i.e., Eθ[xα] = 0 for every α ∈M , then the least squares
estimator âN of the regression model

f̂(x) = ∑
α∈M⊂L0

aαx
α

estimated from a random sample P i. i. d.∼ p(x;θ) converges to the natural
gradient ∇̃F (θ), as N →∞
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Natural Gradient and Fitness Modeling

Proof. Let A be the design matrix, e.g.,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x1x2 . . .

+−−++− +1 −1 −1 . . .

−−+++− −1 −1 +1 . . .

++−+−+ +1 +1 +1 . . .

⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The least squares estimator reads

âN = (A⊺A)−1A⊺y
= [ 1

N
∑
x∈P

xαxβ]−1 ( 1

N
∑
x∈P

f(x)xα)
= [Ĉov(xα,xβ) + Ê[xα]Ê[xβ]]−1 (Ĉov(f,xα) + Ê[f]Ê[xα])
= [Ĉov(xα,xβ)]−1 (Ĉov(f,xα))
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Model selection and Model Selection

The previous theorem determines a relationship between linear regression
in machine learning and stochastic gradient estimation in optimization

◾ Natural gradient estimation can be solved by linear regression

◾ Stochastic natural gradient performs fitness modeling

◾ Model selection can be performed by subset selection during linear
regression

Forward subset selection-style algorithms can be employed to
simultaneously perform model selection and gradient estimation

1 Start with no sufficient statistics in the model

2 Choose among a set of candidates variables the one that improves
the model the most

3 Evaluate the new residual vector f − f̂

4 Repeat 2-3 until RSS is less then a threshold or the maximum
number of variables is reached
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Choice of M in the SR

The choice of the statistical modelM determines the landscape of F

To remove the local minima of F over M, we can add higher-order
interactions xα to the model

[Example] In our toy example, with

f(x) = x1 + 2x2 + 3x1x2
we can remove the critical point of ∇̃F inM1 by adding the sufficient
statistic X12 to the independence model and obtain

{X1,X2}⇒ {X1,X2,X12}
The independence model is a submanifold of the new (saturated) model:
a distribution p in the independence model has the parameters associated
to higher-order interactions set to 0

(θ1, θ2,0)⇒ (θ1, θ2, θ12)
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Variable transformation (Cucci et al., 2012)

An equivalent approach to change the landscape of F is based on
variables transformation: we fix the model over a set of new variables
y = (y1, . . . , yn) ∈ Ω obtained from x

For instance, consider the mapping τij ∶ Ω→ Ω ∶ x↦ y with

yk =

⎧⎪⎪⎨⎪⎪⎩
xkxj if k = i

xk otherwise

A large class of transformations can be obtained by concatenating simple
τij transformations

Mapping y back to x is easy, since τij = τ
−1
ij

Learning a transformation of x which simplifies the landscape of F for a
fixed M over y is equivalent to finding a good model for x
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Variables transformation for the independence model

[Example] Let us apply the transformation τ12 to x = (x1, x2)
y1 = x1x2

y2 = x2

and consider the independence model over y

p(y;ζ) = exp{ζ1y1 + ζ2y2 − ψ(ζ)}
By representing the independence model for the y variables as a model
for x in the probability simple ∆, we obtain the exponential model

p(x;ζ) = exp{ζ2x2 + ζ1x1x2 −ψ(ζ)}
which can be expressed in θ by renaming the variables

p(x;θ) = exp{θ2x2 + θ12x1x2 − ψ(θ)}
The independence models for x and y correspond to different models in ∆
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Back to the Toy Example: Submanifolds in ∆

Independence model: θ = (θ1, θ2,0)

p(x;θ) = exp{θ1x1 + θ2x2 −ψ(θ)}

δ
(+1,+1)

δ
(−1,−1)

δ
(−1,+1)

δ
(+1,−1)

Exponential family: θ = (0, θ2, θ12)

p(x;θ) = exp{θ2x2 + θ12x1x2 −ψ(θ)}

δ
(+1,+1)

δ
(−1,−1)

δ
(−1,+1)

δ
(+1,−1)

The lines represented in blue, together with all vertices of ∆, correspond
to the distributions in the intersection of the closures of the models
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Back to the Toy Example: Gradient Fields

Let f(x) = x1 + 2x2 + 3x1x2
Independence model: θ = (θ1, θ2,0)

p(x;θ) = exp{θ1x1 + θ2x2 −ψ(θ)}
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Exponential family: θ = (0, θ2, θ12)

p(x;θ) = exp{θ2x2 + θ12x1x2 −ψ(θ)}
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The dashed lines represent the intersection of the two models in ∆

In the new model there are no critical points for ∇̃F
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Back to the Toy Example: Gradient Flows

Let f(x) = x1 + 2x2 + 3x1x2
Independence model: θ = (θ1, θ2,0)

p(x;θ) = exp{θ1x1 + θ2x2 −ψ(θ)}
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Exponential family: θ = (0, θ2, θ12)

p(x;θ) = exp{θ2x2 + θ12x1x2 −ψ(θ)}
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Vanilla gradient ∇F vs Natural gradient ∇̃F
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Linear Programming Relaxation

◾ A standard method to solve pseudo-Boolean optimization is
linearization (see Boros and Hammer, 2001 for a survey)

◾ Every monomial xα in f is replaced by a new binary variable zα

◾ The problem is translated into a continuous linear problem by
relaxing integer constraints for z, i.e.,

(P) argmin ∑
α∈I

cαx
α ⇒ (LP) argmin ∑

α∈I

cαzα

s.t. xi ∈ {+1,−1} s.t. zα ∈ [+1,−1]
◾ The problem becomes linear, but additional constraints are required

to link the z = (xα),α ∈ L variables to the x = (x1, . . . , xn) variables

zα =
n∏
i=1

zαi

i = ∏
{i∶αi=1}

zi
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Linear Programming Relaxation

◾ The new constraints are nonlinear, but can be modeled by linear
inequalities (see Buchheim and Rinaldi, 2007, for a review)

◾ [Remark] For xi ∈ {0,1} a standard linearization is given by

zα ≤ zi ∀i ∶ αi = 1 zα ≥ ∑
i∶αi=1

zi − ∣∣α∣∣1 + 1
◾ As n increases, the LP relaxation requires a good (tight) half-space

representation of the marginal polytope M

Theorem 3 (M. et al., DISCML 2009)

The LP relaxation in the new variables z corresponds to the SR in η

F (θ) = Eθ [∑
α∈L

cαx
α] = ∑

α∈L

cαEθ[xα]→ F (η) = ∑
α∈L

cαηα = ∑
α∈L

cαzα

Solving the LP relaxation we obtain a lower bound for the SR since it is
usually defined over an approximation of the marginal polytope M
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Back to the Toy Example

The landscape of F (η) changes according to f and the choice ofM

[Example] Natural gradient flows in the η are given by

η̇1 = (1 − η21)(a1 + a12η2)
η̇2 = (1 − η22)(a2 + a12η1)

WefixM as the independencemodel and study the flows for differenta12

The natural gradient vanishes over

◾ the vertices of the marginal polytope M

◾ c = (−a2/a12,−a1/a12)T
The nature of the critical points can be determined by studying the
eigenvalues of the Hessian

M = [−2η1(a1 + a12η2) a12(1 − η21)
a12(1 − η22) −2η2(a2 + a12η1)]
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Back to the Toy Example: Critical Points

The solutions of the differential equations associated to the flows can be
studied for every value of η, even outside of M, where points do not
represent distributions, since positivity constraints are violated

Let v ∈ {−1,+1}2 be a vertex of M, the eigenvalues of H are

λ1 = −2v1(a12v2 + a1)
λ2 = −2v2(a12v1 + a2)

According to the signs of λ1 and λ2, each vertex can be either a stable
node (SN), an unstable node (UN) or a saddle point (SP)

For c = (−a2/a12,−a1/a12)T
λ1,2 = ±

√(a212 − a22)(a212 − a21)/a212
Follows that c is saddle point for(∣a12∣ ≥ ∣a1∣∧ ∣a12∣ ≥ ∣a2∣)∨ (∣a12∣ ≤ ∣a1∣∧ ∣a12∣ ≤ ∣a2∣), in the other cases, it
is center (C)
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Back to the Toy Example: Bifurcation Diagram

We can interpret ∣a12∣ as the
strength of the interaction
among x1 and x2

For ∣a12∣ ≠ 0, c is a saddle
point in the shaded regions,
where there exist

◾ strong interactions,∣a12∣ > ∣a1∣ ∧ ∣a12∣ > ∣a2∣,
i.e. c ∈M

◾ weak interactions,∣a12∣ < ∣a1∣ ∧ ∣a12∣ < ∣a2∣,
i.e., c ∉M

In the remaining cases c is a
center

Projection of the bifurcation diagram
(η1, η2, a12) over (η1, η2) for arbitrary a1, a2

and 0 ≤ a12 < ∞
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The coordinates of c depends on a12, c is a SP
on the dashed lines and a C on the dotted line;
for a12 →∞, c converges to the center of M
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over (η1, η2) for fixed a12
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Back to the Toy Example (M. et al., 2014)

Natural Gradient Flows over (η1, η2) for fixed a12
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