
H8 C COMPILER

Programming
Guide

COMMAND LINE VERSION

§ 0 Preface 1/10/96, 4:16 pm1

ii

ICCH8C–1

COPYRIGHT NOTICE

© Copyright 1996 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice
and does not represent a commitment on any part of IAR Systems.
While the information contained herein is assumed to be accurate, IAR
Systems assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

C-SPY is a trademark of IAR Systems. MS-DOS is a trademark of
Microsoft Corp.

All other product names are trademarks or registered trademarks of
their respective owners.

First edition: October 1996
Part no: ICCH8C–1

This documentation was produced by Human-Computer Interface.

§ 0 Preface 1/10/96, 4:17 pm2

iii

ICCH8C–1

WELCOME Welcome to the H8 C Compiler Programming Guide.

This guide provides reference information about the IAR Systems
C␣ Compiler for the Hitachi H8 Series microprocessors.

Before reading this guide we recommend you refer to the Quickstart
Card, or the chapter Installation and documentation route map, for
information about installing the IAR Systems tools and an overview of
the documentation.

Refer to the H8 Command Line Interface Guide for general information
about running the IAR Systems tools from the command line, and a
simple tutorial to illustrate how to use them.

For information about programming with the H8 Assembler refer to the
H8 Assembler, Linker, and Librarian Programming Guide.

If your product includes the optional H8 C-SPY debugger refer to the
H8 C-SPY User Guide for information about debugging with C-SPY.

ABOUT THIS GUIDE This guide consists of the following chapters:

Installation and documentation route map explains how to install and
run the IAR Systems tools, and gives an overview of the documentation
supplied with them.

The Introduction provides a brief summary of the H8 C Compiler’s
features.

The Tutorial illustrates how you might use the C compiler to develop a
series of typical programs, and illustrates some of the compiler’s most
important features. It also describes a typical development cycle using
the C compiler.

C compiler options summary explains how to set the C compiler options,
and gives a summary of them.

C compiler options reference gives information about each C compiler
option.

Configuration then describes how to configure the C compiler for
different requirements.

Data representation describes how the compiler represents each of the
C␣ data types and gives recommendations for efficient coding.

PREFACE

§ 0 Preface 1/10/96, 4:17 pm3

iv

ICCH8C–1

General C library definitions gives an introduction to the C library
functions, and summarizes them according to header file.

C library functions reference then gives reference information about each
library function.

Language extensions summarizes the extended keywords, #pragma
keywords, predefined symbols, and intrinsic functions specific to the
H8 C Compiler.

Extended keyword reference then gives reference information about each
of the extended keywords.

#pragma directive reference gives reference information about the
#pragma keywords.

Predefined symbols reference gives reference information about the
predefined symbols.

Intrinsic function reference gives reference information about the
intrinsic functions.

Assembly language interface describes the interface between C programs
and assembly language routines.

Segment reference gives reference information about the C compiler’s use
of segments.

K&R and ANSI C language definitions describes the differences between
the K&R description of the C language and the ANSI standard.

Diagnostics lists the compiler warning and error messages.

ASSUMPTIONS

This guide assumes that you already have a working knowledge of the
following:

◆ The H8 Series processor you are using.

◆ The C programming language.

◆ MS-DOS or UNIX, depending on your host system.

This guide does not attempt to describe the C language itself. For a
description of the C language, The C Programming Language by
Kernighan and Richie is recommended, of which the latest edition also
covers ANSI C.

PREFACE

§ 0 Preface 1/10/96, 4:17 pm4

v

ICCH8C–1

CONVENTIONS

This guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type as
part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, dialog
boxes, and windows that appear on the screen.

reference A cross-reference to another part of this guide, or to
another guide.

In this guide K&R is used as an abbreviation for The C Programming
Language by Kernighan and Richie.

PREFACE

§ 0 Preface 1/10/96, 4:17 pm5

vi

ICCH8C–1

PREFACE

§ 0 Preface 1/10/96, 4:17 pm6

vii

ICCH8C–1

CONTENTS

INSTALLATION AND DOCUMENTATION ROUTE MAP 1
Command line versions 1
Windows Workbench versions 2
UNIX versions 3
Documentation route map 4

INTRODUCTION . 5
C compiler 5

TUTORIAL . 7
Typical development cycle 8
Getting started 9
Creating a program 10
Extending the program 22
Adding an interrupt handler 27

C COMPILER OPTIONS SUMMARY 31
Setting C compiler options 31
Options summary 32

C COMPILER OPTIONS REFERENCE 35
Code generation 35
Debug 44
#define 45
List 46
#undef 52
Include 53
Target 54
Miscellaneous 55

CONFIGURATION. 61
Introduction .61
Processor group 62
XLINK command file 62
Run-time library 63
Memory model 64
Floating-point precision 64

§ 0 Preface 1/10/96, 4:17 pm7

viii

ICCH8C–1

CONTENTS

Stack size 65
Input and output 66
Register I/O 69
Heap size 69
Initialization 69

DATA REPRESENTATION . 73
Data types 73
Pointers 76
Efficient coding 77

GENERAL C LIBRARY DEFINITIONS 79
Introduction 79

C LIBRARY FUNCTIONS REFERENCE 87

LANGUAGE EXTENSIONS . 157
Introduction 157
Extended keywords summary 157
#pragma directive summary 158
Predefined symbols summary 159
Intrinsic function summary 160
Other extensions 162

EXTENDED KEYWORD REFERENCE 163

#PRAGMA DIRECTIVE REFERENCE 175

PREDEFINED SYMBOLS REFERENCE 189

INTRINSIC FUNCTION REFERENCE 193

ASSEMBLY LANGUAGE INTERFACE 207
Creating a shell 207
Calling convention 208
Calling assembly routines

from C 210

SEGMENT REFERENCE . 211

§ 0 Preface 1/10/96, 4:17 pm8

ix

ICCH8C–1

CONTENTS

K&R AND ANSI C LANGUAGE DEFINITIONS. 219
Introduction 219
Definitions 219

DIAGNOSTICS . 225
Compilation error messages 227
Compilation warning

messages 243

INDEX . 253

§ 0 Preface 1/10/96, 4:17 pm9

x

ICCH8C–1

CONTENTS

§ 0 Preface 1/10/96, 4:17 pm10

1

ICCH8C–1

INSTALLATION AND
DOCUMENTATION ROUTE
MAP
This chapter explains how to install and run the command line and
Windows Workbench versions of the IAR products, and gives an
overview of the user guides supplied with them.

Please note that some products only exist in a command line version,
and that the information may differ slightly depending on the product
or platform you are using.

This section describes how to install and run the command line
versions of the IAR Systems tools.

WHAT YOU NEED

◆ DOS 4.x or later. This product is also compatible with a DOS
window running under Windows 95, Windows NT 3.51 or later, or
Windows 3.1x.

◆ At least 10 Mbytes of free disk space.

◆ A minimum of 4 Mbytes of RAM available for the IAR applications.

INSTALLATION

1 Insert the first installation disk.

2 At the MS-DOS prompt type:

a:\install R

3 Follow the instructions on the screen.

When the installation is complete:

4 Make the following changes to your autoexec.bat file:

Add the paths to the IAR Systems executable and user interface
files to the PATH variable; for example:

PATH=c:\dos;c:\utils;c:\iar\exe;c:\iar\ui;

COMMAND LINE
VERSIONS

§ 1 Routemap 1/10/96, 4:17 pm1

INSTALLATION AND DOCUMENTATION ROUTE MAP

2

ICCH8C–1

Define environment variables C_INCLUDE and XLINK_DFLTDIR
specifying the paths to the inc and lib directories; for example:

set C_INCLUDE=c:\iar\inc\
set XLINK_DFLTDIR=c:\iar\lib\

5 Reboot your computer for the changes to take effect.

6 Read the Read-Me file, named product.doc, for any information
not included in the guides.

RUNNING THE TOOLS

Type the appropriate command at the MS-DOS prompt.

For more information refer to the chapter Getting started in the
Command Line Interface Guide.

This section explains how to install and run the Embedded Workbench.

WHAT YOU NEED

◆ Windows 95, Windows NT 3.51 or later, or Windows 3.1x.

◆ Up to 15 Mbytes of free disk space for the Embedded Workbench.

◆ A minimum of 4 Mbytes of RAM for the IAR applications.

If you are using C-SPY you should install the Workbench before C-SPY.

INSTALLING FROM WINDOWS 95 OR NT 4.0

1 Insert the first installation disk.

2 Click the Start button in the taskbar, then click Settings and
Control Panel.

3 Double-click the Add/Remove Programs icon in the Control
Panel folder.

4 Click Install, then follow the instructions on the screen.

RUNNING FROM WINDOWS 95 OR NT 4.0

1 Click the Start button in the taskbar, then click Programs and
IAR Embedded Workbench.

2 Click IAR Embedded Workbench.

WINDOWS
WORKBENCH VERSIONS

§ 1 Routemap 1/10/96, 4:17 pm2

Note - HWB
This section refers to the IAR Windows workbench and NOT the Hitachi Workbench (HWB).

INSTALLATION AND DOCUMENTATION ROUTE MAP

3

ICCH8C–1

INSTALLING FROM WINDOWS␣ 3.1x OR NT 3.51

1 Insert the first installation disk.

2 Double-click the File Manager icon in the Main program group.

3 Click the a disk icon in the File Manager toolbar.

4 Double-click the setup.exe icon, then follow the instructions on the
screen.

RUNNING FROM WINDOWS 3.1X OR NT 3.51

1 Go to the Program Manager and double-click the IAR Embedded
Workbench icon.

RUNNING C-SPY

Either:

1 Start C-SPY in the same way as you start the Embedded Workbench
(see above).

Or:

1 Choose Debugger from the Embedded Workbench Project menu.

UNIX VERSIONS This section describes how to install and run the UNIX versions of the
IAR Systems tools.

WHAT YOU NEED

◆ HP9000/700 workstation with HP-UX 9.x (minimum), or a
Sun 4/SPARC workstation with SunOS 4.x (minimum) or
Solaris␣ 2.x (minimum).

INSTALLATION

Follow the instructions provided with the media.

RUNNING THE TOOLS

Type the appropriate command at the UNIX prompt. For more
information refer to the chapter Getting started in the Command Line
Interface Guide.

§ 1 Routemap 1/10/96, 4:17 pm3

INSTALLATION AND DOCUMENTATION ROUTE MAP

4

ICCH8C–1

Do not delete this story... there are
two index entries here...
route map
documentation route map

COMMAND LINE
VERSION

WINDOWS WORKBENCH
VERSION

QuickStart Card
To install the tools and run the

Embedded Workbench. QS

C Compiler Programming Guide
To learn about writing programs with
the IAR Systems C Compiler, and for
reference information about the
compiler options and C language.

Assembler, Linker, and
Librarian Programming Guide
To learn about using the IAR
Systems assembler, linker, and
librarian, and for reference
information about these tools.

C-SPY User Guide, Windows
Workbench Version

To learn about debugging
with C-SPY for Windows,

and for C-SPY reference.

C-SPY User Guide,
Command Line Version
To learn about debugging
with the command line
version of C-SPY, and for
C-SPY reference.

Windows Workbench
Interface Guide

To get started with using
the Embedded Workbench,

and for Embedded
Workbench reference.

Command Line Interface
Guide and Utilities Guide
To get started with using the
command line, and for
information about the environ-
ment variables and utilities.

QuickStart Card
To install the tools and run the DOS
or UNIX versions.

DOCUMENTATION
ROUTE MAP

§ 1 Routemap 1/10/96, 4:17 pm4

5

ICCH8C–1

INTRODUCTION
This guide describes the IAR Systems H8 C Compiler, and provides
information about running it from the command line.

C COMPILER The IAR Systems C Compiler for the H8 family of microprocessors
offers the standard features of the C language, plus many extensions
designed to take advantage of the H8-specific facilities. The compiler is
supplied with the IAR Systems Assembler for the H8, with which it is
integrated, and shares linker and librarian manager tools.

It provides the following features:

LANGUAGE FACILITIES

◆ Conformance to the ANSI specification.

◆ Standard library of functions applicable to embedded systems, with
source optionally available.

◆ IEEE-compatible floating-point arithmetic.

◆ Powerful extensions for H8-specific features, including efficient
I/O.

◆ Linkage of user code with assembly routines.

◆ Long identifiers – up to 255 significant characters.

PERFORMANCE

◆ Fast compilation.

◆ Memory-based design which avoids temporary files or overlays.

◆ Rigorous type checking at compile time.

◆ Rigorous module interface type checking at link time.

◆ LINT-like checking of program source.

§ 2 Introduction 1/10/96, 4:17 pm5

INTRODUCTION

6

ICCH8C–1

CODE GENERATION

◆ Selectable optimization for code speed or size.

◆ Comprehensive output options, including relocatable binary, ASM,
ASM+C, XREF, etc.

◆ Easy-to-understand error and warning messages.

◆ Compatibility with the C-SPY high-level debugger.

TARGET SUPPORT

◆ Small and large memory models.

◆ Flexible variable allocation.

◆ Interrupt functions requiring no assembly language.

◆ A #pragma directive to maintain portability while using processor-
specific extensions.

§ 2 Introduction 1/10/96, 4:17 pm6

7

ICCH8C–1

TUTORIAL
This chapter illustrates how you might use the H8 C Compiler to
develop a series of typical programs, and illustrates some of the C
compiler’s most important features:

Before reading this chapter you should:

◆ Have installed the C compiler software; see the QuickStart Card or
the chapter Installation and documentation route map.

◆ Be familiar with the architecture and instruction set of the H8
processor. For more information see the manufacturer’s data book.

It is also recommended that you complete the introductory tutorial in
the H8 Command Line Interface Guide, to familiarize yourself with the
interface you are using.

Summary of tutorial files
The following table summarizes the tutorial files used in this chapter:

File What it demonstrates

tutor1 Compiling and running a simple C program.

tutor2 Using serial I/O.

tutor3 Interrupt handling.

RUNNING THE EXAMPLE PROGRAMS

This tutorial shows how to run the example programs using the
optional C-SPY simulator.

You can also run the examples on a target system with an EPROM
emulator and debugger. In this case you will first need to configure the
I/O routines.

Alternatively, you may still follow this tutorial by examining the list
files created. The .lst and .map files show which areas of memory to
monitor.

§ 3 Tutorial 1/10/96, 4:17 pm7

TUTORIAL

8

ICCH8C–1

Development will normally follow the cycle illustrated below:

Create a new
project

Create C source
program

Start

Configure to suit the
target system

Test

Put code into PROM

Errors?

OK

Compile with chosen
memory model

Link with linker
command file

Transfer to debugger,
simulator, or emulator

Edit C source
program

The following tutorial follows this cycle.

TYPICAL
DEVELOPMENT CYCLE

§ 3 Tutorial 1/10/96, 4:18 pm8

TUTORIAL

9

ICCH8C–1

The first step in developing a project using the C compiler is to decide
on an appropriate configuration to suit your target system.

CONFIGURING TO SUIT THE TARGET SYSTEM

Our tutorial programs contain only a small amount of code, and so only
require the small memory model. We will use the chip option -v0,
which generates code for the H8/300H processor.

Each project needs an XLINK command file containing details of the
target system’s memory map.

Choosing the linker command file
A suitable linker command file for the small memory model,
lnkh8hs.xcl, is provided in the icch8 subdirectory.

Examine lnkh8hs.xcl using a suitable text editor, such as the MS-DOS
edit editor.

The file first contains the following XLINK command to define the CPU
type as H8/300H small mode (-ms):

-ch8

It then contains a series of -Z commands to define the segments used by
the compiler. The key segments are as follows:

Segment type Segment names Address range

CODE INTVEC, IFLIST, FLIST 0x00 to OxFF

CODE CDATA0, CDATA1, RCODE 0x0100 to 0xBFFF
CODE, CDATA2, CDATA3
CONST, CSTR, CCSTR

DATA IDATA0, UDATA0 0xFF00 to 0xFF0F

DATA IDATA1, UDATA1, IDATA2 0xC000 to 0xFEFF
IDATA3, UDATA2, UDATA3
ECSTR, WCSTR, TEMP

DATA CSTACK After DATA, size
0x200

DATA NO_INIT START-END

BIT BITVARS 0xFB00 bit O to
0xFF80 bit 7

GETTING STARTED

§ 3 Tutorial 1/10/96, 4:18 pm9

TUTORIAL

10

ICCH8C–1

The file defines the routines to be used for printf, sprintf, scanf,
and sscanf.

Finally it contains the following line to load the appropriate C library:

clh8hs

See Run-time library, page 63, for details of the different C libraries
provided.

Note that these definitions are not permanent: they can be altered later
on to suit your project if the original choice proves to be incorrect, or
less than optimal.

For detailed information on configuring to suit the target memory, see
Memory location, page 64. For detailed information on choosing stack
size, see Stack size, page 65.

CREATING A NEW PROJECT

The first step is to create a new project for the tutorial programs.

It is a good idea to keep all the files for a particular project in one
directory, separate from other projects and the system files.

The tutorial files are installed in the icch8 directory. Select this
directory by entering the command:

cd c:\iar\icch8 R

During this tutorial you will work in this directory, so that the files you
create will reside here.

CREATING A PROGRAM The first tutorial demonstrates how to compile, link, and run a program.

ENTERING THE PROGRAM

The first program is a simple program using only standard C facilities. It
repeatedly calls a function that increments a variable:

#include <stdio.h>
int call_count;
unsigned char my_char;
const char con_char='a';

void do_foreground_process(void)

§ 3 Tutorial 1/10/96, 4:18 pm10

TUTORIAL

11

ICCH8C–1

{
 call_count++;
 putchar(my_char);
}

void main(void)
{
 int my_int=0;
 call_count=0;
 my_char=con_char;
 while (my_int<100)
 {
 do_foreground_process();
 my_int++;
 }
}

Enter the program using any standard text editor, such as the MS-DOS
edit editor, and save it in a file called tutor1.c. Alternatively, a copy is
provided in the C compiler files directory.

You now have a source file which is ready to compile.

COMPILING THE PROGRAM

To compile the program enter the command:

icch8 tutor1 -v0 -ms -r -L -e -q -I\iar\inc R

There are several compile options used here:

Option Description

-v0 Selects the H8/300H processor.

-ms Selects the small memory model.

-r Allows the code to be debugged with C-SPY.

-L Creates a list file.

-e Enables extended commands (not needed in this tutorial).

-q Includes assembler code with C in the listing.

-I Specifies the pathname for include files.

§ 3 Tutorial 1/10/96, 4:18 pm11

TUTORIAL

12

ICCH8C–1

This creates an object module called tutor1.r37 and a list file called
tutor1.lst.

Viewing the listing
Examine the list file produced and see how the variables are assigned to
different segments.

##

#

IAR H8 C-Compiler Vx.xx

Front End Vx.xx

Global Optimizer Vx.xx

#

Target option = H8

Memory model = small

Source file = tutor1.c

List file = tutor1.lst

Object file = tutor1.r37

Command line = tutor1 -v0 -ms -r -L -q

#

(c) Copyright IAR Systems 1996

##

 \ 0000 NAME tutor1(16)

 \ 0000 RSEG CODE(1)

 \ 0000 RSEG CONST(1)

 \ 0000 RSEG UDATA1(1)

 \ 0000 PUBLIC call_count

 \ 0000 PUBLIC con_char

 \ 0000 PUBLIC do_foreground_process

 \ 0000 PUBLIC main

 \ 0000 PUBLIC my_char

 \ 0000 EXTERN putchar

 \ 0000 EXTERN ?CLH8HS_0_90_L00

 \ 0000 RSEG CODE

 \ 0000 do_foreground_process:

 1 #include <stdio.h>

 2 int call_count;

 3 unsigned char my_char;

 4 const char con_char='a';

 5

 6 void do_foreground_process(void)

§ 3 Tutorial 1/10/96, 4:18 pm12

TUTORIAL

13

ICCH8C–1

 7 {

 8 call_count++;

 \ 0000 6B0E0000 MOV.W @call_count,E6

 \ 0004 791E0001 ADD.W #1,E6

 \ 0008 6B8E0000 MOV.W E6,@call_count

 9 putchar(my_char);

 \ 000C 6A0E0002 MOV.B @my_char,R6L

 \ 0010 1756 EXTU.W R6

 \ 0012 5E000000 JSR @putchar

 10 }

 \ 0016 5470 RTS

 \ 0018 main:

 11

 12 void main(void)

 13 {

 14 int my_int=0;

 \ 0018 1988 SUB.W E0,E0

 15 call_count=0;

 \ 001A 19EE SUB.W E6,E6

 \ 001C 6B8E0000 MOV.W E6,@call_count

 16 my_char=con_char;

 \ 0020 6A0E0000 MOV.B @con_char,R6L

 \ 0024 6A8E0002 MOV.B R6L,@my_char

 \ 0028 ?0001: ; [WHILE_CONTINUE] 2:1

 17 while (my_int<100)

 \ 0028 79280064 CMP.W #100,E0

 \ 002C 4C0A BGE ?0000

 \ 002E ?0002: ; [IF_TRUE] 3:1

 18 {

 19 do_foreground_process();

 \ 002E 5E000000 JSR @do_foreground_process

 20 my_int++;

 \ 0032 79180001 ADD.W #1,E0

 21 }

 22 }

 \ 0036 40F0 BT ?0001

 \ 0038 ?0000: ; [WHILE_BREAK] 4:1

 \ 0038 5470 RTS

 \ 0000 RSEG CONST

 \ 0000 con_char:

 \ 0000 61 DC.B 'a'

§ 3 Tutorial 1/10/96, 4:18 pm13

TUTORIAL

14

ICCH8C–1

 \ 0000 RSEG UDATA1

 \ 0000 call_count:

 \ 0002 DS.B 2

 \ 0002 my_char:

 \ 0003 DS.B 1

 \ 0003 END

Errors: none

Warnings: none

Code size: 58

Constant size: 1

Static variable size: 3

LINKING THE PROGRAM

To link the object file with the appropriate library module to produce
code that can be executed by the C-SPY debugger, enter the command:

xlink tutor1 -f lnkh8hs -r -x -l tutor1.map R

The -f option specifies your XLINK command file lnkh8hs, and the
-r option allows the code to be debugged with C-SPY.

The -x creates a map file and the -l filename gives the name of
the␣ file.

The result of linking is a code file called aout.a37 and a map file called
tutor1.map.

Viewing the map file
Examine the map file to see how the segment definitions and code were
placed into their physical addresses. The main points of the map file are
shown on the following listing:

§ 3 Tutorial 1/10/96, 4:18 pm14

TUTORIAL

15

ICCH8C–1

##

#

IAR Universal Linker Vx.xx

#

Target CPU = h8

List file = tutor1.map

Output file 1 = aout.d37

Output format = debug

Command line = tutor1 -f lnkh8hs (-ch8

-Z(CODE)INTVEC,IFLIST,FLIST=0-FF

-Z(CODE)CDATA0,CDATA1,RCODE,CODE,CDATA2,CDATA3,

CONST,CSTR,CCSTR=100-BFFF

-Z(DATA)IDATA0,UDATA0=FF00-FF0F

-Z(DATA)IDATA1,UDATA1,IDATA2,IDATA3,UDATA2,

UDATA3,ECSTR,WCSTR,TEMP,CSTACK+200=C000-FAFF

-Z(BIT)BITVARS=0-3FF

-e_medium_write=_formatted_write

-e_medium_read=_formatted_read clh8hs -FMOTOROLA)

-r -x -l tutor1.map

#

(c) Copyright IAR Systems 1996

##

 **

 * *

 * CROSS REFERENCE *

 * *

 **

 Program entry at : 0100 Relocatable, from module : CSTARTUP

 **

 * *

 * MODULE MAP *

 * *

 **

Command line
Equivalent command line.

Included XCL file
Commands included in the linker

command file.

Program entry
Shows the address of the program entry

point.

Module map
Information about each module that was

loaded as part of the program.

§ 3 Tutorial 1/10/96, 4:18 pm15

TUTORIAL

16

ICCH8C–1

 FILE NAME : tutor1.r37

 PROGRAM MODULE, NAME : tutor1

 SEGMENTS IN THE MODULE

 ======================

CODE

 Relative segment, address : 0172 - 01AB

 ENTRIES ADDRESS REF BY MODULE

 do_foreground_process 0172 Not referred to

 main 018A CSTARTUP

 LOCALS ADDRESS

 ?0001 019A

 ?0002 01A0

 ?0000 01AA

CONST

 Relative segment, address : 01B0 - 01B0

 ENTRIES ADDRESS REF BY MODULE

 con_char 01B0 Not referred to

UDATA1

 Relative segment, address : C000 - C002

 ENTRIES ADDRESS REF BY MODULE

 call_count C000 Not referred to

 my_char C002 Not referred to

 FILE NAME : clh8hs.r37

 LIBRARY MODULE, NAME : putchar

 SEGMENTS IN THE MODULE

 ======================

CODE

 Relative segment, address : 01AC - 01AD

 ENTRIES ADDRESS REF BY MODULE

 putchar 01AC tutor1

 LIBRARY MODULE, NAME : ?LIB_VERSION_L00

File name
Shows the name of the file from which

modules were linked.

Module
Type and name.

Segments in the module
A list of the segments in the specified
module, with information about each

segment.

Next file

Entries
Global symbols declared within the

segment.

§ 3 Tutorial 1/10/96, 4:18 pm16

TUTORIAL

17

ICCH8C–1

 SEGMENTS IN THE MODULE

 ======================

RCODE

 Relative segment, address : Not in use

 ENTRIES ADDRESS REF BY MODULE

 ?CLH8HS_0_90_L00 0100 tutor1

 PROGRAM MODULE, NAME : CSTARTUP

 SEGMENTS IN THE MODULE

 ======================

CODE

 Relative segment, address : Not in use

CCSTR

 Relative segment, address : Not in use

TEMP

 Relative segment, address : Not in use

ECSTR

 Relative segment, address : Not in use

CONST

 Relative segment, address : Not in use

CSTR

 Relative segment, address : Not in use

CDATA3

 Relative segment, address : Not in use

CDATA2

 Relative segment, address : Not in use

CDATA1

 Relative segment, address : Not in use

CDATA0

 Relative segment, address : Not in use

§ 3 Tutorial 1/10/96, 4:18 pm17

TUTORIAL

18

ICCH8C–1

IDATA3

 Relative segment, address : Not in use

IDATA2

 Relative segment, address : Not in use

IDATA1

 Relative segment, address : Not in use

IDATA0

 Relative segment, address : Not in use

UDATA3

 Relative segment, address : Not in use

UDATA2

 Relative segment, address : Not in use

UDATA1

 Relative segment, address : Not in use

UDATA0

 Relative segment, address : Not in use

RCODE

 Relative segment, address : 0100 - 0171

CSTACK

 Relative segment, address : Not in use

INTVEC

 Common segment, address : 0000 - 0007

 LIBRARY MODULE, NAME : exitNext module
Information about the next module in the

current file.

§ 3 Tutorial 1/10/96, 4:18 pm18

TUTORIAL

19

ICCH8C–1

 SEGMENTS IN THE MODULE

 ======================

CODE

 Relative segment, address : 01AE - 01AF

 ENTRIES ADDRESS REF BY MODULE

 ?C_EXIT 01AE Not referred to

 exit 01AE CSTARTUP

 **

 * *

 * SEGMENTS IN DUMP ORDER *

 * *

 **

 SEGMENT START ADDRESS END ADDRESS TYPE ORG P/N ALIGN

 ======= ============= =========== ==== === === =====

BITVARS Not in use dse stc pos 0

INTVEC 0000 - 0007 com stc pos 1

IFLIST Not in use dse flt pos 0

FLIST Not in use dse flt pos 0

CDATA0 Not in use rel stc pos 1

CDATA1 Not in use rel flt pos 1

RCODE 0100 - 0171 rel flt pos 1

CODE 0172 - 01AF rel flt pos 1

CDATA2 Not in use rel flt pos 1

CDATA3 Not in use rel flt pos 1

CONST 01B0 - 01B1 rel flt pos 1

CSTR Not in use rel flt pos 1

CCSTR Not in use rel flt pos 1

IDATA0 Not in use rel stc pos 1

UDATA0 Not in use rel flt pos 1

IDATA1 Not in use rel stc pos 1

UDATA1 C000 - C003 rel flt pos 1

IDATA2 Not in use rel flt pos 1

IDATA3 Not in use rel flt pos 1

UDATA2 Not in use rel flt pos 1

UDATA3 Not in use rel flt pos 1

ECSTR Not in use rel flt pos 1

WCSTR Not in use dse flt pos 0

TEMP Not in use rel flt pos 1

CSTACK C004 - C203 rel flt pos 1

Segments in dump order
Lists all the segments that make up the

program, in the order linked.

§ 3 Tutorial 1/10/96, 4:18 pm19

TUTORIAL

20

ICCH8C–1

 **

 * *

 * END OF CROSS REFERENCE *

 * *

 **

Errors: none

Warnings: none

Notice that, although the link file specified the address for all segments,
many of the segments were not used. The most important information
about segments is at the end, where their address and range is given.

Several entry points were described that do not appear in the original
C␣ code. The entry for ?C_EXIT is from the CSTARTUP module. The
putchar entry is from the library file.

RUNNING THE PROGRAM

To run the program using C-SPY enter the command:

csh8 aout -v0 R

Open the Memory window by typing:

MEMORY 0 R

This displays the current contents of memory from address 0, where the
data memory variables are located.

Then enter the command:

STEP R

Repeat this until the line reading do_foreground_process(); is
highlighted.

You should see a C-SPY display similar to this:

§ 3 Tutorial 1/10/96, 4:18 pm20

TUTORIAL

21

ICCH8C–1

Now inspect the value of the variable call_count by entering:

call_count R

C-SPY should display 0, since the variable has been initialized but not
yet incremented.

Now, enter the command:

STEP R

This displays the current contents of memory from address 0 (where
the data memory variables are located). The next step executes the
current line and moves to the next line in the loop. Now examine the
variable again by entering:

call_count R

C-SPY should display 1, showing that the variable has been incremented
by do_foreground_process();. The memory contents at address 0001
will be incremented in the Memory window.

Enter:

LEVEL R
STEP R

The assembler code for the C program is displayed and the steps are by
assembler lines, rather than by C lines. Note that the address of the code
is based on the specification in the linker command file.

§ 3 Tutorial 1/10/96, 4:18 pm21

TUTORIAL

22

ICCH8C–1

Enter:

LEVEL R
STEP 11 R

This returns to C level and steps through 11 instructions.

You can modify variables or memory contents while you are debugging.
For example, enter:

EXPR my_char='c' R
STEP 11 R

Since my_char is not modified within the loop, the subroutine uses the
new value.

To quit from C-SPY, enter the command:

QUIT R

MODIFYING THE COMPILE AND LINK OPTIONS

Different compile or link options will produce similar output but with
different memory locations. Some options will be explained in the other
tutorials, but you may be interested in trying the following examples:

◆ Use the Large (-ml) memory model option instead of the Small
(-ms) option for compiling. See where variables have been placed by
examining the map file.

◆ Edit the link file to match the change to the large memory model by
changing the library loaded to clh8hl.

We shall now extend the program to access the serial I/O channel built
in to the H8/3003H microprocessor. The resultant program accepts
input from serial port number 0 and stores the characters in a buffer.
This serial program demonstrates using the #pragma directive and
header files.

The following is a complete listing of the program. Enter it into a
suitable text editor and save it as tutor2.c. Alternatively, a copy is
provided in the icch8 subdirectory:

EXTENDING THE
PROGRAM

§ 3 Tutorial 1/10/96, 4:18 pm22

TUTORIAL

23

ICCH8C–1

/* Enable use of extended keywords */
#pragma language=extended

/* Include sfr definitions for IO registers */
#include <ioh83003.h>

sfr scio_ssr = 0xFFFFFFB4; /* Define SFR */
bit RxReady = scio_ssr.6; /* Define bit variable */

/* Mode register bits */
#define CommsMethod (0) /* 8 bit UART mode */
#define ClockSelect (0) /* With internal clock */

/* Main clock divider rate */
#define ClockDivider (32) /* Gives 9600 baud with

 10MHz processor */

/* Control register bits */
#define ClockRate (0) /* Processor clock */
#define EnableRx (0x10)

#define buffsize 0xC0
char buffer[buffsize];
short buffindex = 0;
short call_count = 0;

/****************************
 * Start of Code *
 ****************************/

/*
 * character_ready(void)
 *
 * Return: 0 if no character available
 * != 0 if charcter now in data register
 */
short character_ready(void)
{
 return RxReady;
}

§ 3 Tutorial 1/10/96, 4:18 pm23

TUTORIAL

24

ICCH8C–1

/*
 * read_char(void)
 *
 * Character reader:
 * poll status register until ready, return data.
*/

char read_character(void)
{
 /* Wait for receive data */
 while (!character_ready())
 ;

 /* Return low 8 bits of receive register */
 return SCI0_RDR;
}

void do_foreground_process(void)
{
 /* Just increment a variable */
 call_count++;
}

void main(void)
{

 /* Initialize comms channel */
 /* Start with mode register */
 SCI0_SMR = CommsMethod + ClockRate;
 SCI0_SCR = ClockSelect + EnableRx;

 /* Now the baud rate */
 SCI0_BRR = ClockDivider;

 /* Now loop forever, taking input when ready */
 while (1)
 {
 if (character_ready())
 {
 buffer[buffindex++] = read_character();

§ 3 Tutorial 1/10/96, 4:18 pm24

TUTORIAL

25

ICCH8C–1

 /* Full buffer? */
 if (buffindex == buffsize)
 buffindex = 0; /* Simple processing:

 discard data! */
 }
 do_foreground_process();
 }
}

The first lines of the program are:

/* Enable use of extended keywords */
#pragma language=extended

By default, extended keywords are not available so you must include
this directive before attempting to use any. The #pragma directive is
described in the chapter #pragma directive reference.

The next lines of code are:

/* Include sfr definitions for IO registers */
#include <ioh83003.h>

The file ioh83003.h includes definitions for all I/O registers for the
H8/3003H processor version.

COMPILING AND LINKING THE SERIAL PROGRAM

Compile and link the program with a small memory model and a
standard link file as follows:

icch8 tutor2 -v0 -ms -r -L -e -q -I\iar\inc R
xlink tutor2 -f lnkh8hs -r R

RUNNING THE SERIAL PROGRAM

This program will require a special hardware environment to run
properly, but we can examine the code with C-SPY. As before, to run the
program, enter:

csh8 aout -v0 R

In C-SPY enter the command:

STEP R

and repeat this until the program reaches the line:

if (character_ready ())

§ 3 Tutorial 1/10/96, 4:18 pm25

TUTORIAL

26

ICCH8C–1

On a real target with serial input port number 0 connected to a
transmitter, a received character would set the ‘byte received’ flag in
bit 0 of the RxReady register and be transferred to the SCI0_RDR
register. To simulate the reception of a byte with value 42 first set the
‘byte received’ flag by entering:

RxReady=1 R

and then set the SCI0_RDR register to 42:

SC10_RDR=42 R

Now enter:

STEP R

repeatedly until the program has received the byte, and stored it in the
buffer; ie until the program has passed the line:

buffer[buffindex++]=read_character();

The real serial port would clear its ‘byte received’ flag when the received
byte was read. To simulate this clear the flag directly by entering:

RxReady=0 R

At this point, the received byte should have been transferred into the
buffer at the bufferindex position, and bufferindex should have
been advanced by one. To verify this, examine the first byte in the
buffer by entering:

buffer[0] R

C-SPY should display 42, the value of the received byte.

Now examine the buffer index by entering:

buffindex R

C-SPY should display the value 1, showing that the buffer index has
advanced from 0.

Finally quit from C-SPY by entering:

QUIT R

§ 3 Tutorial 1/10/96, 4:18 pm26

TUTORIAL

27

ICCH8C–1

We shall now modify the first tutorial program by adding an interrupt
handler. The H8 C Compiler lets you write interrupt handlers directly
in C using the interrupt keyword. The interrupt we will handle is the
serial interrupt.

The following is a complete listing of the interrupt program. The
program is provided in the sample tutorials as tutor3.c.

#pragma language=extended

#include <ioh83003.h>
#include <inh8.h>

/* Channel 0 */
#define MA_SMR0_SCI 0x00 /* Constant for Serial

 Mode Register */
#define MA_SCR0_SCI 0xF0 /* Constant for Serial

 Control Register */
#define MA_BRR0_SCI 0x33 /* Constant for Serial

 Baudrate Register */

unsigned char my_char;
int call_count;

interrupt [SCI_RXI0] void MA_IntHandler_RXI0_SCI(void)
{

 /* Read character */
 my_char = SCI0_RDR;

 SCI0_SSR &= ~0x40; /* RDRF is cleared */

 return;

}

void do_foreground_process (void)
{
 call_count++;
}

void main (void)

ADDING AN
INTERRUPT HANDLER

§ 3 Tutorial 1/10/96, 4:18 pm27

TUTORIAL

28

ICCH8C–1

{
 unsigned long ii;

 /*--- Initialize SCI Channel 0 ---*/
 SCI0_SCR = 0; /* Clear TE and RE bits */
 SCI0_SMR = MA_SMR0_SCI;
 SCI0_BRR = MA_BRR0_SCI;

 /*--- wait at least one bit time before RE & TE may
 be set ---*/
 for (ii = 0; ii < 100000L;)
 {
 ii++;
 }
 SCI0_SCR = MA_SCR0_SCI & ~0x80; /* TIE interrupt

disabled */

 /* enable_interrupt */
 set_interrupt_mask (0);
 /* now loop forever, taking input when ready */
 while (1)
 {
 do_foreground_process ();
 }
}

The I/O include file must be present to define the H8/300H I/O
registers, and the intrinsic include file must be present to define the
enable_interrupt function:

/* enable use of extended keywords */
#pragma language=extended

/* include sfr definitions for IO registers */
#include <ioh83003.h>
#include <inh8.h>

The interrupt function itself is defined by the following lines:

interrupt [SCI_RXI0] void MA_IntHandler_RXI0_SCI(void)
{

§ 3 Tutorial 1/10/96, 4:18 pm28

TUTORIAL

29

ICCH8C–1

 /* Read character */
 my_char = SCI0_RDR;

 SCI0_SSR &= ~0x40; /* RDRF is cleared */

 return;

}

The action of this program is to output a character to port 1, making it
easy to identify the event.

The interrupt keyword is described in the chapter Extended keyword
reference.

COMPILING AND LINKING THE PROGRAM

Compile and link the program as before:

icch8 tutor3 -v0 -ms -r -L -e -q -I\iar\inc R
xlink tutor3 -f lnkh8hs -r R

VIEWING THE INTERRUPT PROGRAM

Note that this program needs hardware to run properly, but we can
examine the code with C-SPY. As before, to run the program, enter:

csh8 -v0 aout R

followed by:

STEP R
LEVEL R

C-SPY does not simulate interrupts, but you can use the LEVEL
command to examine the assembly code produced. Alternatively,
examine the list file output on a printed copy.

§ 3 Tutorial 1/10/96, 4:18 pm29

TUTORIAL

30

ICCH8C–1§ 3 Tutorial 1/10/96, 4:18 pm30

31

ICCH8C–1

C COMPILER OPTIONS
SUMMARY
This chapter explains how to set the C compiler options from the
command line.

The options are divided into the following sections:

Code generation #undef
Debug Include
#define Target
List Miscellaneous

For full reference about each option refer to the following chapter,
C␣ compiler options reference.

To set C compiler options you include them on the command line after
the icch8 command, either before or after the source filename. For
example, when compiling the source prog, to generate a listing to the
default listing filename (prog.lst):

icch8 prog -L R

Some options accept a filename, included after the option letter with a
separating space. For example, to generate a listing to the file list.lst:

icch8 prog -l list.lst R

Some other options accept a string that is not a filename. This is
included after the option letter, but without a space. For example, to
generate a listing to the default filename but in the subdirectory list:

icch8 prog -Llist R

Generally, the order of options on the command line, both relative to
each other and to the source filename, is not significant. The exception
is that the order in which two or more -I options are used is significant.

Options can also be specified in the QCCH8 environment variable. The
compiler automatically appends the value of this variable to every
command line, so it provides a convenient method of specifying options
that are required for every compilation.

SETTING C COMPILER
OPTIONS

§ 4 Options summary 1/10/96, 4:19 pm31

C COMPILER OPTIONS SUMMARY

32

ICCH8C–1

OPTIONS SUMMARY The following is a summary of all the compiler options. For a full
description of any option, see under the option’s category name in the
next chapter, C compiler options reference.

Option Description Section

-Aprefix Assembly output to prefixed List
filename.

-a filename Assembly output to named file. List

-b Make object a library module. Miscellaneous

-C Nested comments. Code generation

-c Char is signed char. Code generation

-Dsymb[xx] Defined symbols. #define

-d Static allocation of locals. Code generation

-e Language extensions. Code generation

-F Form-feed after function. List

-ffilename Extend the command line. Miscellaneous

-G Open standard input as source. Miscellaneous

-g Global strict type check. Code generation

-gA Flag old-style functions. Code generation

-gO No type info. in obj. code. Code generation

-Hname Set object module name. Miscellaneous

-Iprefix Include paths. Include

-i Add #include file lines. List

-K // comments. Code generation

-L[prefix] List to prefixed source name. List

-l filename List to named file. List

-m[sl] Memory model. Target

-Nprefix Preprocessor to prefixed List
filename.

-n filename Preprocessor to named file. List

§ 4 Options summary 1/10/96, 4:19 pm32

C COMPILER OPTIONS SUMMARY

33

ICCH8C–1

Option Description Section

-Oprefix Set object filename prefix. Miscellaneous

-o filename Set object filename. Miscellaneous

-P Generate PROMable code. Miscellaneous

-pnn Lines/page. List

-q Insert mnemonics. List

-Rname Set code segment name. Miscellaneous

-r[012][i][n] Generate debug information. Debug

-S Set silent operation. Miscellaneous

-s[0–9] Optimize for speed. Code generation

-T Active lines only. List

-tn Tab spacing. List

-Usymb Undefine symbol. #undef

-ui Run-time library function calls. Code generation

-umn Interrupt disable max time. Code generation

-vn Chip option. Target

-Wnn Stack optimization limit. Code generation

-w Disable warnings. Code generation

-X List C declarations. List

-x[DFT2] Cross reference. List

-y Writable strings. Code generation

-z[0–9] Optimize for size. Code generation

-2 64-bit floating point. Target

§ 4 Options summary 1/10/96, 4:19 pm33

C COMPILER OPTIONS SUMMARY

34

ICCH8C–1§ 4 Options summary 1/10/96, 4:19 pm34

35

ICCH8C–1

C COMPILER OPTIONS
REFERENCE
This chapter gives detailed information on each of the H8 C␣ Compiler
options, divided into functional categories.

CODE GENERATION The code generation options determine the interpretation of the source
program and the generation of object code.

-C Nested comments.

-c Char is signed char.

-d Static allocation of locals.

-e Language extensions.

-g Global strict type check.

-gA Flag old-style functions.

-gO No type information in object code.

-K // comments.

-s[0–9] Optimize for speed.

-ui Run-time library function calls.

-umn Interrupt disable max time.

-Wnn Stack optimization limit.

-w Disable warnings.

-y Writable strings.

-z[0–9] Optimize for size.

§ 5 Options ref 1/10/96, 4:19 pm35

C COMPILER OPTIONS REFERENCE

36

ICCH8C–1

NESTED COMMENTS (-C)

Syntax: -C

Enables nested comments.

Normally, the compiler treats nested comments as a fault and issues a
warning when it encounters one, resulting for example from a failure to
close a comment. If you want to use nested comments, for example to
comment-out sections of code that include comments, use the Nested
comments (-C) option to disable this warning.

CHAR IS SIGNED CHAR (-c)

Syntax: -c

Makes the char type equivalent to signed char.

Normally, the compiler interprets the char type as unsigned char. To
make the compiler interpret the char type as signed char instead, for
example for compatibility with a different compiler, use this option.

Note: the run-time library is compiled without the Char is signed char
(-c) option, so if you use this option for your program and enable type
checking with the Global strict type check (-g) or Generate debug
information (-r) options, you may get type mismatch warnings from
the linker.

STATIC ALLOCATION OF LOCAL VARIABLES (-d)

Syntax: -d

Causes the compiler to allocate static memory for local variables.

Normally the compiler allocates local variables on the stack.

LANGUAGE EXTENSIONS (-e)

Syntax: -e

Enables target dependent extensions to the C language.

Normally, language extensions are disabled to preserve compatibility. If
you are using language extensions in the source, you must enable them
by including this option.

For details of language extensions, see the chapter Language extensions.

§ 5 Options ref 1/10/96, 4:19 pm36

C COMPILER OPTIONS REFERENCE

37

ICCH8C–1

GLOBAL STRICT TYPE CHECK (-g)

Syntax: -g[A][O]

Enable checking of type information throughout the source.

There is a class of conditions in the source that indicate possible
programming faults but which for compatibility the compiler and linker
normally ignore. To cause the compiler and linker to issue a warning
each time they encounter such a condition, use the Global strict type
check (-g) option.

FLAG OLD-STYLE FUNCTIONS (-gA)

Syntax: -gA

Normally, the Global strict type check (-g) option does not warn of
old-style K&R functions. To enable such warnings, use the Flag old-
style functions (-gA) option.

NO TYPE INFORMATION IN OBJECT CODE (-gO)

Syntax: -gO

Normally, the Global strict type check (-g) option includes type
information in the object module, increasing its size and link time,
allowing the linker to issue type check warnings. To exclude this
information, avoiding this increase in size and link time but inhibiting
linker type check warnings, use the No type information in object
code (-gO) option.

When linking multiple modules, note that objects in a module compiled
without type information, that is without any -g option or with a -g
option with O modifier, are considered typeless. Hence there will never
be any warning of a type mismatch from a declaration from a module
compiled without type information, even if the module with a
corresponding declaration has been compiled with type information.

The conditions checked by the Global strict type check (-g) option
are:

◆ Calls to undeclared functions.

◆ Undeclared K&R formal parameters.

◆ Missing return values in non-void functions.

§ 5 Options ref 1/10/96, 4:19 pm37

C COMPILER OPTIONS REFERENCE

38

ICCH8C–1

◆ Unreferenced local or formal parameters.

◆ Unreferenced goto labels.

◆ Unreachable code.

◆ Unmatching or varying parameters to K&R functions.

◆ #undef on unknown symbols.

◆ Valid but ambiguous initializers.

◆ Constant array indexing out of range.

Examples
The following examples illustrate each of these types of error.

Calls to undeclared functions
Program:

void my_fun(void) { }
int main(void)
{
 my_func(); /* mis-spelt my_fun gives undeclared

function warning */
 return 0;
}

Error:

my_func(); /* mis-spelt my_fun gives undeclared
function warning */

--------^
"undecfn.c",5 Warning[23]: Undeclared function
'my_func'; assumed "extern" "int"

Undeclared K&R formal parameters
Program:

int my_fun(parameter) /* type of parameter not declared
*/

{
 return parameter+1;
}

Error:

int my_fun(parameter) /* type of parameter not declared
*/

§ 5 Options ref 1/10/96, 4:19 pm38

C COMPILER OPTIONS REFERENCE

39

ICCH8C–1

---------------------^
"undecfp.c",1 Warning[9]: Undeclared function parameter
'parameter'; assumed "int"

Missing return values in non-void functions
Program:

int my_fun(void)
{
 /* ... function body ... */
}

Error:

}
^
"noreturn.c",4 Warning[22]: Non-void function: explicit
"return" <expression>; expected

Unreferenced local or formal parameters
Program:

void my_fun(int parameter) /* unreferenced formal
parameter */

{
 int localvar; /* unreferenced local

variable */
 /* exit without reference to either variable */
}

Error:

}
^
"unrefpar.c",6 Warning[33]: Local or formal 'localvar'
was never referenced
"unrefpar.c",6 Warning[33]: Local or formal 'parameter'
was never referenced

Unreferenced goto labels
Program:

int main(void)
{
 /* ... function body ... */
 exit: /* unreferenced label */

§ 5 Options ref 1/10/96, 4:19 pm39

C COMPILER OPTIONS REFERENCE

40

ICCH8C–1

 return 0;
}

Error:

}
^
"unreflab.c",7 Warning[13]: Unreferenced label 'exit'

Unreachable code
Program:

#include <stdio.h>
int main(void)
{
 goto exit;
 puts("This code is unreachable");
 exit:
 return 0;
}

Error:

 puts("This code is unreachable");
------^
"unreach.c",7 Warning[20]: Unreachable statement(s)

Unmatching or varying parameters to K&R functions
Program:

int my_fun(len,str)
int len;
char *str;
{
 str[0]='a' ;
 return len;
}
char buffer[99] ;
int main(void)
{
 my_fun(buffer,99) ; /* wrong order of parameters */
 my_fun(99) ; /* missing parameter */
 return 0 ;
}

§ 5 Options ref 1/10/96, 4:19 pm40

C COMPILER OPTIONS REFERENCE

41

ICCH8C–1

Error:

my_fun(buffer,99) ; /* wrong order of parameters */
--------------^
"varyparm.c",14 Warning[26]: Inconsistent use of K&R
function - changing type of parameter
my_fun(buffer,99) ; /* wrong order of parameters */
-----------------^
"varyparm.c",14 Warning[26]: Inconsistent use of K&R
function - changing type of parameter
my_fun(99) ; /* missing parameter */
----------^
"varyparm.c",15 Warning[25]: Inconsistent use of K&R
function - varying number of parameters

#undef on unknown symbols
Program:

#define my_macro 99
/* Misspelt name gives a warning that the symbol is
unknown */
#undef my_macor
int main(void)
{
 return 0;
}

Error:

#undef my_macor
--------------^
"hundef.c",4 Warning[2]: Macro 'my_macor' is already
#undef

Valid but ambiguous initializers
Program:

typedef struct t1 {int f1; int f2;} type1;
typedef struct t2 {int f3; type1 f4; type1 f5;} type2;
typedef struct t3 {int f6; type2 f7; int f8;} type3;
type3 example = {99, {42,1,2}, 37} ;

Error:

type3 example = {99, {42,1,2}, 37} ;
-----------------------------------^

§ 5 Options ref 1/10/96, 4:19 pm41

C COMPILER OPTIONS REFERENCE

42

ICCH8C–1

"ambigini.c",4 Warning[12]: Incompletely bracketed
initializer

Constant array indexing out of range
Program:

char buffer[99] ;
int main(void)
{
 \buffer[500] = 'a' ; /* Constant index out of range */
 return 0;
}

Error:

\buffer[500] = 'a' ; /* Constant index out of range */
-----------^
"arrindex.c",5 Warning[28]: Constant [index] outside
array bounds

// COMMENTS (-K)

Syntax: -K

Enables comments in C++ style, that is, comments introduced by // and
extending to the end of the line.

Normally for compatibility the compiler does not accept C++ style
comments. If your source includes C++ style comments, you must use
the // comments (-K) option for them to be accepted.

OPTIMIZE FOR SPEED (-s)

Syntax: -s[0–9]

Causes the compiler to optimize the code for maximum execution speed.

Normally the compiler optimizes for maximum speed at level 3 (see
below). You can change the level of optimization using the -s option as
follows:

Modifier Level

0 No optimization.

1–3 Fully debuggable.

§ 5 Options ref 1/10/96, 4:19 pm42

C COMPILER OPTIONS REFERENCE

43

ICCH8C–1

Modifier Level

4–6 Some constructs not debuggable.

7–9 Full optimization.

RUN-TIME LIBRARY FUNCTION CALLS (-ui)

Syntax: -ui

Changes the default setting for run-time library calls, as follows:

Memory model Default -ui

Small tiny_func near_func

Large far_func tiny_func

INTERRUPT DISABLE MAX TIME (-um)

Syntax: -umn

Specifies the maximum time, in cycles, for which interrupts can be
disabled.

STACK OPTIMIZATION LIMIT (-W)

Syntax: -Wnn

The number of clean-ups of the stack is reduced by specifying stack
optimization with the -W option. For example, by specifying -W50, the
compiler is instructed to allow 50 bytes of garbage on the stack before
triggering stack clean-up. The default setting is -W0, ie no stack
optimization.

DISABLE WARNINGS (-w)

Syntax: -w

Disables compiler warning messages.

Normally, the compiler issues standard warning messages, and any
additional warning messages enabled with the Global strict type
check (-g) option. To disable all warning messages, you use the
Disable warnings (-w) option.

§ 5 Options ref 1/10/96, 4:19 pm43

C COMPILER OPTIONS REFERENCE

44

ICCH8C–1

WRITABLE STRINGS (-y)

Syntax: -y

Causes the compiler to compile string literals as writable variables.

Normally, string literals are compiled as read-only. If you want to be
able to write to string literals, you use the Writable strings (-y)
option, causing strings to be compiled as writable variables.

Note that arrays initialized with strings (ie char c[] = "string") are
always compiled as initialized variables, and are not affected by the
Writable strings (-y) option.

OPTIMIZE FOR SIZE (-z)

Syntax: -z[0–9]

Causes the compiler to optimize the code for minimum size.

Normally, the compiler optimizes for minimum size at level 3 (see
below). You can change the level of optimization as follows:

Modifier Level

0 No optimization.

1–3 Fully debuggable.

4–6 Some constructs not debuggable.

7–9 Full optimization.

DEBUG The Debug options determine the level of debugging information
included in the object code.

-r[012][i][n] Generate debug information.

GENERATE DEBUG INFORMATION (-r)

Syntax: -r[012][i][n]

Causes the compiler to include additional information required by
C-SPY and other symbolic debuggers in the object modules.

§ 5 Options ref 1/10/96, 4:19 pm44

C COMPILER OPTIONS REFERENCE

45

ICCH8C–1

Normally the compiler does not include debugging information, for code
efficiency. To make code debuggable with C-SPY, you simply include the
option with no modifiers.

To make code debuggable with other debuggers, you select one or more
options, as follows:

Option Command line

Add #include file information. i

Suppress source in object code. n

Code added to statements. 0, 1, 2

Normally the Generate debug information (-r) option does not
include #include file debugging information, because this is usually of
little interest, and most debuggers other than C-SPY do not support
debugging inside #include files well. If you want to debug inside
#include files, for example if the #include files contain function
definitions rather than the more usual function declarations, you use
the i modifier. A side effect is that source line records contain the global
(=total) line count which can affect source line displays in some
debuggers other than C-SPY.

The Generate debug information (-r) option usually includes C
source lines in the object file, so they can be displayed during debugging.
If you want to suppress this to reduce the size of the object file, you use
the n modifier.

For most other debuggers that do not include specific information on
how to use IAR Systems C Compilers, you should use the -rn option.

#define The #define option allows you to define symbols for use by the
C␣ compiler.

-D Defined symbols.

DEFINED SYMBOLS (-D)

Syntax: -Dsymb[xx]

Defines a symbol with the name symb and the value xx. If no value is
specified, 1 is used.

§ 5 Options ref 1/10/96, 4:19 pm45

C COMPILER OPTIONS REFERENCE

46

ICCH8C–1

Defined symbols (-D) has the same effect as a #define statement at
the top of the source file.

-Dsymb is equivalent to #define symb

The Defined symbols (-D) option is useful for specifying a value or
choice that would otherwise be specified in the source file more
conveniently on the command line. For example, you could arrange your
source to produce either the test or production version of your program
depending on whether the symbol testver was defined. To do this you
would use include sections such as:

#ifdef testver
... ; additional code lines

for test version only
#endif

Then, you would select the version required in the command line as
follows:

production version: icch8 prog R

test version: icch8 prog -Dtestver R

LIST The List options determine whether a listing is produced, and the
information included in the listing.

-Aprefix Assembly output to prefixed filename.

-a filename Assembly output to named file.

-F Form-feed after function.

-i Add #include file lines.

-L[prefix] List to prefixed source name.

-l filename List to named file.

-Nprefix Preprocessor to prefixed filename.

-n filename Preprocessor to named file.

-pnn Lines/page.

-q Insert mnemonics.

-T Active lines only.

§ 5 Options ref 1/10/96, 4:19 pm46

C COMPILER OPTIONS REFERENCE

47

ICCH8C–1

-tn Tab spacing.

-X List C declarations.

-x[DFT2] Cross reference.

ASSEMBLY OUTPUT TO PREFIXED FILENAME (-A)

Syntax: -Aprefix

Generates assembler source to prefix source.s37.

By default the compiler does not generate an assembler source. To send
assembler source to the file with the same name as the source leafname
but with the extension .s37, use -A without an argument. For example:

icch8 prog -A R

generates an assembly source to the file prog.s37.

To send assembler source to the same filename but in a different
directory, use the -A option with the directory as the argument. For
example:

icch8 prog -Aasm\ R

generates an assembly source in the file asm\prog.s37.

The assembler source may be assembled by the H8 Assembler.

If the -l or -L option is also used, the C source lines are included in the
assembly source file as comments.

The -A option may not be used at the same time as the -a option.

ASSEMBLY OUTPUT TO NAMED FILE (-a)

Syntax: -a filename

Generates assembler source to filename.s37.

By default the compiler does not generate an assembler source. This
option generates an assembler source to the named file.

The filename consists of a leafname optionally preceded by a pathname
and optionally followed by an extension. If no extension is given, the
target-specific assembler source extension is used.

The assembler source may be assembled by the H8 Assembler.

§ 5 Options ref 1/10/96, 4:19 pm47

C COMPILER OPTIONS REFERENCE

48

ICCH8C–1

If the -l or -L option is also used, the C source lines are included in the
assembly source file as comments.

This option may not be used at the same time as -A.

FORM-FEED AFTER FUNCTION (-F)

Syntax: -F

Generates a form-feed after each listed function in the assembly listing.

Normally, the listing simply starts each function on the next line. To
cause each function to appear at the top of a new page, you would
include this option.

Form-feeds are never generated for functions that are not listed, for
example, as in #include files.

ADD #INCLUDE FILE LINES (-i)

Syntax: -i

Causes the listing to include #include files.

Normally the listing does not include #include files, since they usually
contain only header information that would waste space in the listing.
To include #include files, for example because they include function
definitions or preprocessed lines, you include the Add #include file
lines (-i) option.

LIST TO PREFIXED SOURCE NAME (-L)

Syntax: -L[prefix]

Generate a listing to the file with the same name as the source but with
extension .lst, prefixed by the argument if any.

Normally, the compiler does not generate a listing. To simply generate a
listing, you use the -L option without a prefix. For example, to generate
a listing in the file prog.lst, you use:

icch8 prog -L R

To generate a listing to a different directory, you use the -L option
followed by the directory name. For example, to generate a listing on the
corresponding filename in the directory \list:

icch8 prog -Llist\ R

§ 5 Options ref 1/10/96, 4:19 pm48

C COMPILER OPTIONS REFERENCE

49

ICCH8C–1

This sends the file to list\prog.lst rather than the default prog.lst.

-L may not be used at the same time as -l.

LIST TO NAMED FILE (-l)

Syntax: -l filename

Generates a listing to the named file with the default extension .lst.

Normally, the compiler does not generate a listing. To generate a listing
to a named file, you use the -l option. For example, to generate a listing
to the file list.lst, use:

icch8 prog -l list R

More often you do not need to specify a particular filename, in which
case you can use the -L option instead.

This option may not be used at the same time as the -L option.

PREPROCESSOR TO PREFIXED FILENAME (-N)

Syntax: -Nprefix

Generates preprocessor output to prefix source.i.

By default the compiler does not generate preprocessor output. To send
preprocessor output to the file with the same name as the source
leafname but with the extension .i, use the -N without an argument.
For example:

icch8 prog -N R

generates preprocessor output to the file prog.i.

To send preprocessor output to the same filename but in a different
directory, use the -N option with the directory as the argument. For
example:

icch8 prog -Npreproc\ R

generates an assembly source in the file preproc\prog.i.

The -N option may not be used at the same time as the -n option.

§ 5 Options ref 1/10/96, 4:19 pm49

C COMPILER OPTIONS REFERENCE

50

ICCH8C–1

PREPROCESSOR TO NAMED FILE (-n)

Syntax: -n filename

Generates preprocessor output to filename.i.

By default the compiler does not generate preprocessor output. This
option generates preprocessor output to the named file.

The filename consists of a leafname optionally preceded by a pathname
and optionally followed by an extension. If no extension is given, the
extension .i is used.

This option may not be used at the same time as -N.

LINES/PAGE (-p)

Syntax: -pnn

Causes the listing to be formatted into pages, and specifies the number
of lines per page in the range 10 to 150.

Normally, the listing is not formatted into pages. To format it into pages
with a form feed at every page, you use the Lines/page (-p) option. For
example, for a printer with 50 lines per page:

icch8 prog -p50 R

INSERT MNEMONICS (-q)

Syntax: -q

Includes generated assembly lines in the listing.

Normally, the compiler does not include the generated assembly lines in
the listing. If you want these to be included, for example to be able to
check the efficiency of code generated by a particular statement, you use
the Insert mnemonics (-q) option.

Note that this option is only available if a listing is specified.

See also options -a, -A, -l, and -L.

§ 5 Options ref 1/10/96, 4:19 pm50

C COMPILER OPTIONS REFERENCE

51

ICCH8C–1

ACTIVE LINES ONLY (-T)

Syntax: -T

Causes the compiler to list only active source lines.

Normally the compiler lists all source lines. To save listing space by
eliminating inactive lines, such as those in false #if structures, you use
the Active lines only (-T) option.

TAB SPACING (-t)

Syntax: -tn

Set the number of character positions per tab stop to n, which must be
in the range 2 to 9.

Normally, the listing is formatted with a tab spacing of 8 characters. If
you want a different tab spacing, you set it with the Tab spacing (-t)
option.

LIST C DECLARATIONS (-X)

Syntax: -X

Displays an English description of each C declaration in the file.

To obtain English descriptions of the C declarations, for example to aid
the investigation of error messages, you use the List C declarations
(-X) option.

For example, the declaration:

void (* signal(int __sig, void (* func) ())) (int);

gives the description:

Identifier: signal
storage class: extern
 [func_attr:0220] prototyped near_func function returning
 [attribute:0120] near - near_func code pointer to
 [func_attr:0220] prototyped near_func function
 returning
 [attribute:0120] near - void
 and having following parameter(s):
 storage class: auto
 [attribute:0120] near - int

§ 5 Options ref 1/10/96, 4:19 pm51

C COMPILER OPTIONS REFERENCE

52

ICCH8C–1

 and having following parameter(s):
 storage class: auto
 [attribute:0120] near - int
 storage class: auto
 [attribute:0120] near - near_func code pointer to
 [func_attr:0220] near_func function returning
 [attribute:0120] near - void

CROSS REFERENCE (-x)

Syntax: -x[DFT2]

Includes a cross-reference list in the listing.

Normally, the compiler does not include global symbols in the listing.
To include at the end of the listing a list of all variable objects, and all
functions, #define statements, enum statements, and typedef
statements that are referenced, you use the Cross reference (-x)
option with no modifiers.

When you select Cross reference the following options become
available:

Command line Option

D Show unreferenced #defines.

T Show unreferenced typedefs and enum constants.

F Show unreferenced functions.

2 Dual line spacing.

#undef The #undef option allows you to undefine predefined symbols.

-Usymb Undefine symbol.

UNDEFINE SYMBOL (-U)

Syntax: -Usymb

Removes the definition of the named symbol.

Normally, the compiler provides various pre-defined symbols. If you
want to remove one of these, for example to avoid a conflict with a

§ 5 Options ref 1/10/96, 4:19 pm52

C COMPILER OPTIONS REFERENCE

53

ICCH8C–1

symbol of your own with the same name, you use the Undefine
symbol (-U) option.

For a list of the predefined symbols, see the chapter Predefined symbols
reference.

For example, to remove the symbol __VER__, use:

icch8 prog -U__VER__ R

INCLUDE The Include option allows you to define the include path for the C
compiler.

-Iprefix Include paths.

INCLUDE PATHS (-I)

Syntax: -Iprefix

Adds a prefix to the list of #include file prefixes.

Normally, the compiler searches for include files only in the source
directory (if the filename is enclosed in quotes as opposed to angle
brackets), the C_INCLUDE paths, and finally the current directory. If you
have placed #include files in some other directory, you must use the
Include paths (-I) option to inform the compiler of that directory.

For example:

icch8 prog -I\mylib\ R

Note that the compiler simply adds the -I prefix onto the start of the
include filename, so it is important to include the final backslash if
necessary.

There is no limit to the number of -I options allowed on a single
command line. When many -I options are used, to avoid the command
line exceeding the operating system’s limit, you would use a command
file; see the -f option.

Note: the full description of the compiler’s #include file search
procedure is as follows:

When the compiler encounters an include file name in angle brackets
such as:

#include <stdio.h>

§ 5 Options ref 1/10/96, 4:19 pm53

C COMPILER OPTIONS REFERENCE

54

ICCH8C–1

it performs the following search sequence:

◆ The filename prefixed by each successive -I prefix.

◆ The filename prefixed by each successive path in the C_INCLUDE
environment variable if any.

◆ The filename alone.

When the compiler encounters an include file name in double quotes
such as:

#include "vars.h"

it searches the filename prefixed by the source file path, and then
performs the sequence as for angle-bracketed filenames.

TARGET The Target options specify the processor and memory model for the
assembler and C compiler.

-m[sl] Memory model.

-vn Chip option.

-2 64-bit floating point.

MEMORY MODEL (-m)

Syntax: -m[sl]

Selects the memory model for which the code is to be generated, as
follows:

Option Command line

Small (default) s

Large l

The memory model determines the maximum size of code and
maximum size of data normally available.

Normally, the compiler generates code for the small memory model. If
you want code for the large memory model, you use the -ml option.

The -ms option is provided for consistency, and though not necessary,
you may use it to make clear you are using the small memory model.

§ 5 Options ref 1/10/96, 4:19 pm54

C COMPILER OPTIONS REFERENCE

55

ICCH8C–1

CHIP OPTION (-v)

Syntax: -vn

Selects the processor version as follows:

Option Description

-v0 H8/300H (default)

-v1 H8S/2200

-v2 H8S/2600

If no Chip option (-v) option is specified, the C compiler uses -v0 by
default.

Note that changing the processor group causes different code to be
generated. For information about the addressing supported by each
processor group see Memory model, page 64.

64-BIT FLOATING POINT (-2)

Syntax: -2

Selects 64-bit IEEE floating point format for doubles and long doubles.

Normally the compiler uses 32-bit precision for doubles and long
doubles.

MISCELLANEOUS The following additional option is available from the command line.

-b Make object a library module.

-ffilename Extend the command line.

-G Open standard input as source.

-Hname Set object module name.

-Oprefix Set object filename prefix.

-o filename Set object filename.

-P Generate PROMable code.

-Rname Set code segment name.

-S Set silent operation.

§ 5 Options ref 1/10/96, 4:19 pm55

C COMPILER OPTIONS REFERENCE

56

ICCH8C–1

MAKE OBJECT A LIBRARY MODULE (-b)

Syntax: -b

Causes the object file to be a library module rather than a program
module.

The compiler normally produces a program module ready for linking
with XLINK. If instead you want a library module for inclusion in a
library with XLIB, you use the -b option.

EXTEND THE COMMAND LINE (-f)

Syntax: -ffilename

Reads command line options from the named file, with the default
extension .xcl.

Normally, the compiler accepts command parameters only from the
command line itself and the QCCH8 environment variable. To make long
command lines more manageable, and to avoid any operating system
command line length limit, you use the -f option to specify a command
file, from which the compiler reads command line items as if they had
been entered at the position of the option.

In the command file, you format the items exactly as if they were on the
command line itself, except that you may use multiple lines since the
newline character acts just as a space or tab character.

For example, you could replace the command line:

icch8 prog -r -L -Dtestver "-Dusername=John Smith"
-Duserid=463760 R

with

icch8 prog -r -L -Dtestver -fuserinfo R

and the file userinfo.xcl containing:

"-Dusername=John Smith"
-Duserid=463760

§ 5 Options ref 1/10/96, 4:19 pm56

C COMPILER OPTIONS REFERENCE

57

ICCH8C–1

OPEN STANDARD INPUT AS SOURCE (-G)

Syntax: -G

Opens the standard input as source, instead of reading source from a
file.

Normally, the compiler reads source from the file named on the
command line. If you wish it to read source instead from the standard
input (normally the keyboard), you use the -G option and omit the
source filename.

The source filename is set to stdin.c.

SET OBJECT MODULE NAME (-H)

Syntax: -Hname

Normally, the internal name of the object module is the name of the
source file, without directory name or extension. To set the object
module name explicitly, you use the -H option, for example:

icch8 prog -Hmain R

This is particularly useful when several modules have the same
filename, since normally the resulting duplicate module name would
cause a linker error. An example is when the source file is a temporary
file generated by a preprocessor. The following (in which %1 is an
operating system variable containing the name of the source file) will
give duplicate name errors from the linker:

preproc %1.c temp.c ; preprocess source, generating
temp.c

icch8 temp.c ; module name is always 'temp'

To avoid this, use -H to retain the original name:

preproc %1.c temp.c ; preprocess source, generating
temp.c

icch8 temp.c -H%1 ; use original source name as
module name

§ 5 Options ref 1/10/96, 4:19 pm57

C COMPILER OPTIONS REFERENCE

58

ICCH8C–1

SET OBJECT FILENAME PREFIX (-O)

Syntax: -Oprefix

Sets the prefix to be used on the filename of the object.

Normally (and unless the -o option is used) the object is stored with the
filename corresponding to the source filename, but with the extension
.r37. To store the object in a different directory, you use the -O option.

For example, to store the object in the \obj directory, use:

icch8 prog -O\obj\ R

The -O option may not be used at the same time as the -o option.

SET OBJECT FILENAME (-o)

Syntax: -o filename

Set the filename in which the object module will be stored. The
filename consists of an optional pathname, obligatory leafname, and
optional extension (default .r37).

Normally the compiler stores the object code in a file whose name is:

◆ The prefix specified by -o, plus

◆ The leafname of the source, plus

◆ The extension .r37.

To store the object in a different filename, you use the -o option. For
example, to store it in the file obj.32, you would use:

icch8 prog -o prog R

If instead you want to store the object with the corresponding filename
but in a different directory, use the -O option.

The -o option may not be used at the same time as the -O option.

§ 5 Options ref 1/10/96, 4:19 pm58

C COMPILER OPTIONS REFERENCE

59

ICCH8C–1

GENERATE PROMABLE CODE (-P)

Syntax: -P

Causes the compiler to generate code suitable for running in read-only
memory (PROM).

This option is included for compatibility with other IAR compilers, but
in the H8 C Compiler is always active.

SET CODE SEGMENT NAME (-R)

Syntax: -Rname

Sets the name of the code segment.

Normally, the compiler places executable code in the segment named
CODE which, by default, the linker places at a variable address. If you
want to be able to specify an explicit address for the code, you use the
-R option to specify a special code segment name which you can then
assign to a fixed address in the linker command file.

SET SILENT OPERATION (-S)

Syntax: -S

Causes the compiler to operate without sending unnecessary messages
to standard output (normally the screen).

Normally the compiler issues introductory messages and a final
statistics report. To inhibit this output, you use the -S option. This does
not affect the display of error and warning messages.

§ 5 Options ref 1/10/96, 4:19 pm59

C COMPILER OPTIONS REFERENCE

60

ICCH8C–1§ 5 Options ref 1/10/96, 4:19 pm60

61

ICCH8C–1

CONFIGURATION
This chapter describes how to configure the C compiler for different
requirements.

INTRODUCTION Systems based on the H8 microprocessor can vary considerably in their
use of ROM and RAM, and in their stack requirements. They also differ
in their need for libraries. The memory model and link options specify:

◆ The ROM areas: used for functions, constants, and initial values.

◆ The RAM areas: used for stack and variables.

Each feature of the environment or usage is handled by one or more
configurable elements of the compiler packages, as follows:

Feature Configurable element See page

Processor group Compiler option, 62
XLINK command file
(including run-time
library).

Memory model Compiler option, 64
XLINK option
(including run-time
library).

Floating-point precision Compiler option, XLINK 64
command file.

putchar and getchar functions Run-time library module. 66

printf/scanf facilities XLINK command file. 67, 68

Heap size Heap library module. 69

Hardware/memory initialization __low_level_init 69
 module.

The following sections describe each of the above features. Note that
many of the configuration procedures involve editing the standard files,
and you may want to make copies of the originals before beginning.

§ 6 Configuration 1/10/96, 4:19 pm61

CONFIGURATION

62

ICCH8C–1

PROCESSOR GROUP The H8 Series of microprocessors has many variants, which the H8
C Compiler divides into three groups.

SPECIFYING THE PROCESSOR GROUP

Your program may only use one processor group at a time, and the same
processor group must be used by all user modules and all library
modules.

To specify the processor group to the compiler when a user module is
compiled, you use one of the following target options:

Option Description

-v0 H8/300H (default)

-v1 H8S/2200

-v2 H8S/2600

For example, to compile myprog for use on the H8S/2200 use the
command:

icch8 myprog -v1 R

XLINK COMMAND FILE To create an XLINK command file for a particular project you should
first copy the appropriate supplied template from c:\iar\icch8. The
supplied templates, covering each available memory model of each chip
option, are as follows.

Options H8/300H (-v0) H8S (-v1 or -v2)

Small memory (-ms) lnkh8hs.xcl lnkh8ss.xcl

Large memory (-ml) lnkh8hl.xcl lnkh8sl.xcl

You should then modify this file, as described within the file, to specify
the details of the target system’s memory map.

§ 6 Configuration 1/10/96, 4:19 pm62

CONFIGURATION

63

ICCH8C–1

RUN-TIME LIBRARY Each template file refers to its appropriate library modules so you will
not normally need to specify the library module itself.

The following library modules are supplied:

Options H8/300H (-v0) H8S (-v1 or -v2)

Small memory, 32-bit clh8hs.r37 clh8ss.r37
doubles (-ms)

Small memory, 64-bit clh8hsd.r37 clh8ssd.r37
doubles (-ms, -2)

Large memory, 32-bit clh8hl.r37 clh8sl.r37
doubles (-ml)

Large memory, 64-bit clh8hld.r37 clh8sld.r37
doubles (-ml, -2)

Predefined special function registers (SFRs) and interrupt routines are
given in the following header files:

Description H8/300H and H8S

Source header for inh8.h
intrinsic functions

Source header for iccbutl.h
use by printf

Source header for internal iccext.h
library definitions

Source header for ioh8xxx.h
I/O addresses and
interrupt vectors

These files are provided in the icch8 subdirectory.

§ 6 Configuration 1/10/96, 4:19 pm63

CONFIGURATION

64

ICCH8C–1

MEMORY MODEL The H8 C Compiler supports the following memory models:

Processor mode Memory model Program memory Data memory Default func call Default data pointer

Normal Small (-ms) <64 Kbytes <64 Kbytes near_func near

Advanced Large (-ml) <16 Mbytes <4 Gbytes far_func far

The default is the small memory model.

MEMORY LOCATION

You need to specify to XLINK your hardware environment’s address
ranges for ROM and RAM. You would normally do this in your copy of
the XLINK command file template.

For details of specifying the memory address ranges, see the contents of
the XLINK command file template and the XLINK section of the H8
Assembler, Linker, and Librarian Programming Guide.

NON-VOLATILE RAM

The compiler supports the declaration of variables that are to reside in
non-volatile RAM through the no_init type modifier and the memory
#pragma. The compiler places such variables in the separate segment
NO_INIT, which you should assign to the address range of the non-
volatile RAM of the hardware environment. The run-time system does
not initialize these variables.

To assign the NO_INIT segment to the address of the non-volatile RAM,
you need to modify the XLINK command file. For details of assigning a
segment to a given address, see the XLINK section of the H8 Assembler,
Linker, and Librarian Programming Guide.

By default, floating-point numbers of type double are represented in
IEEE 4-byte format, equivalent to float. You can specify the -2 option
to make double use IEEE 8-byte format.

All modules in a program must use the same precision of double.
Notably, this includes the run-time library modules; see Run-time
library, page 63. For details of the representation of floating-point
numbers, see Data representation, page 73.

FLOATING-POINT
PRECISION

§ 6 Configuration 1/10/96, 4:19 pm64

CONFIGURATION

65

ICCH8C–1

STACK SIZE The compiler uses a stack for a variety of user program operations, and
the required stack size depends heavily on the details of these
operations. If the given stack size is too small, the stack will normally be
allowed to overwrite variable storage resulting in likely program failure.
If the given stack size is too large, RAM will be wasted.

ESTIMATING THE REQUIRED STACK SIZE

The stack is used for the following:

◆ Storing local variables and parameters.

◆ Storing temporary results in expressions.

◆ Storing temporary values in run-time library routines.

◆ Saving the return address of function calls.

◆ Saving the processor state during interrupts.

The total required stack size is the worst case total of the required sizes
for each of the above.

CONTROLLING STACK USAGE

The amount of stack that is used for temporary results and for
transferring parameters can be controlled by the stack optimize option
-W. It sets a limit for the amount of garbage that is allowed on the stack.
The space that is allocated for parameters, for instance, becomes garbage
when returning from a function. If the stack space is sufficient, a
sensible setting of the -W option will reduce the number of stack clean-
ups required, eg after function calls. By doing so, the produced code gets
both faster and smaller.

If no stack optimization is specified, the default setting -W0 is used,
which means that no stack clean-ups are postponed.

CHANGING THE STACK SIZE

The default stack size is set to 512 (200h) bytes in the linker command
files, with the expression CSTACK+200 in the linker command:

-Z(DATA)CSTACK+200

To change the stack size edit the linker command file and replace 200
by the size of the stack you want to use.

§ 6 Configuration 1/10/96, 4:19 pm65

CONFIGURATION

66

ICCH8C–1

INPUT AND OUTPUT PUTCHAR AND GETCHAR

The functions putchar and getchar are the fundamental functions
through which C performs all character-based I/O. For any character-
based I/O to be available, you must provide definitions for these two
functions using whatever facilities the hardware environment provides.

The starting-point for creating new I/O routines is the files
c:\iar\icch8\putchar.c and c:\iar\icch8\getchar.c.

Customizing putchar
The procedure for creating a customized version of putchar is as follows:

◆ Make the required additions to the source putchar.c, and save it
back under the same name (or create your own routine using
putchar.c as a model). The code below uses memory-mapped I/O
to write to an LCD display.

#include <stdio.h>
int putchar(int outchar)
{
 unsigned char *LCD_IO;
 LCD_IO= (unsigned char *) 0x8000;
 * LCD_IO=outchar;
 return(outchar);
}

◆ Compile the modified putchar using the appropriate processor
option. For example, if your program uses the small memory model
and the H8/300H, compile putchar.c with the command:

icch8 putchar -v0 -b R

This will create an optimized replacement object module file named
putchar.r37.

◆ Add the new putchar module to the appropriate run-time library
module, replacing the original. For example, to add the new
putchar module to the standard small-memory-model library, use
the command:

xlib R
def-cpu h8 R
rep-mod putchar clh8hs R
exit R

§ 6 Configuration 1/10/96, 4:19 pm66

CONFIGURATION

67

ICCH8C–1

The library module clh8hs will now have the modified putchar
instead of the original. (Be sure to save your original clh8hs.r37
file before you overwrite the putchar module.)

Note that XLINK allows you to test the modified module before
installing it in the library by using the -A option. Place the following
lines into your .xcl link file:

-A putchar
clh8hs

This causes your version of putchar.r37 to load instead of the one in
the clh8hs library. See the H8 Assembler, Linker, and Librarian
Programming Guide. Note that putchar serves as the low-level part of
the printf function.

Customizing getchar
The low-level I/O function getchar is supplied as two C files,
getchar.c and llget.c.

PRINTF AND SPRINTF

The printf and sprintf functions use a common formatter called
_formatted_write. The ANSI standard version of _formatted_write
is very large, and provides facilities not required in many applications.
To reduce the memory consumption the following two alternative
smaller versions are also provided in the standard C library:

_medium_write
As for _formatted_write, except that floating-point numbers are not
supported. Any attempt to use a %f, %g, %G, %e, and %E specifier will
produce the error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write.

_small_write
As for _medium_write, except that it supports only the %%, %d, %o, %c,
%s and %x specifiers for int objects, and does not support field width
and precision arguments. The size of _small_write is 10–15% of the
size of _formatted_write.

The default version is _small_write.

§ 6 Configuration 1/10/96, 4:19 pm67

CONFIGURATION

68

ICCH8C–1

SELECTING THE WRITE FORMATTER VERSION

The selection of a write formatter is made in the XLINK control file.
The default selection, _small_write, is made by the line:

-e_small_write=_formatted_write

To select the full ANSI version, remove this line.

To select _medium_write, replace this line with:

-e_medium_write=_formatted_write

REDUCED PRINTF

For many applications sprintf is not required, and even printf with
_small_write provides more facilities than are justified by the memory
consumed. Alternatively, a custom output routine may be required to
support particular formatting needs and/or non-standard output
devices.

For such applications, a highly reduced version of the entire printf
function (without sprintf) is supplied in source form in the file
intwri.c. This file can be modified to your requirements and the
compiled module inserted into the library in place of the original using
the procedure described for putchar above.

SCANF AND SSCANF

In a similar way to the printf and sprintf functions, scanf and
sscanf use a common formatter called _formatted_read. The ANSI
standard version of _formatted_read is very large, and provides
facilities that are not required in many applications. To reduce the
memory consumption, an alternative smaller version is also provided in
the standard C library.

_medium_read
As for _formatted_read, except that no floating-point numbers are
supported. _medium_read is considerably smaller than
_formatted_read.

The default version is _medium_read.

§ 6 Configuration 1/10/96, 4:19 pm68

CONFIGURATION

69

ICCH8C–1

SELECTING THE READ FORMATTER VERSION

The selection of a read formatter is made in the XLINK control file. The
default selection, _medium_read, is made by the line:

-e_medium_read=_formatted_read

To select the full ANSI version, remove this line.

REGISTER I/O A program may access the H8 I/O system using the memory-mapped
internal special-function registers (SFRs).

All operators that apply to integral types except the unary & (address)
operator may be applied to SFR registers. Predefined define declarations
for the H8 family are supplied; see Run-time library, page 63.

HEAP SIZE If the library functions malloc or calloc are used in the program, the
C compiler creates a heap of memory from which their allocations are
made. The default heap size is 2000 bytes.

The procedure for changing the heap size is described in the file
heap.c.

INITIALIZATION On processor reset, execution passes to a run-time system routine called
CSTARTUP, which normally performs the following:

◆ Initializes the stack pointer.

◆ Initializes C file-level and static variables.

◆ Sets the CPU mode.

◆ Calls the user program function main.

CSTARTUP is also responsible for receiving and retaining control if the
user program exits, whether through exit or abort.

VARIABLE AND I/O INITIALIZATION

In some applications you may want to initialize I/O registers, or omit
the default initialization of data segments performed by CSTARTUP.

§ 6 Configuration 1/10/96, 4:19 pm69

CONFIGURATION

70

ICCH8C–1

You can do this by providing a customized version of the routine
__low_level_init, which is called from CSTARTUP before the data
segments are initialized.

The value returned by __low_level_init determines whether data
segments are initialized. The run-time library includes a dummy version
of __low_level_init that simply returns 1, to cause CSTARTUP to
initialize data segments.

The source of __low_level_init is provided in the file lowinit.c, by
default located in the icch8 directory. To perform your own I/O
initializations, create a version of this routine containing the necessary
code to do the initializations. If you also want to disable the
initialization of data segments, make the routine return 0. Compile the
customized routine and link it with the rest of your code.

MODIFYING CSTARTUP

If you want to modify CSTARTUP itself you will need to reassemble
CSTARTUP with options which match your selected compilation options.

The overall procedure for assembling an appropriate copy of CSTARTUP
is as follows:

◆ Make any required modifications to the assembler source of
CSTARTUP, supplied by default in the file
c:\iar\icch8\cstartup.s37, and save it under the same name.

◆ Assemble CSTARTUP using options that match your selected
compilation options, as follows:

Compilation option Assembler option

-vn -vn

-mx -mx

For example, if you have compiled for the H8/300H (-v0) and large
memory model (-ml), you must assemble with the command:

ah8 cstartup -v0 -ml

This will create an object module file named cstartup.r37.

§ 6 Configuration 1/10/96, 4:20 pm70

CONFIGURATION

71

ICCH8C–1

You should then use the following commands in the linker command
file to make XLINK use the CSTARTUP module you have defined instead
of the one in library:

-A cstartup
-C library

§ 6 Configuration 1/10/96, 4:20 pm71

CONFIGURATION

72

ICCH8C–1§ 6 Configuration 1/10/96, 4:20 pm72

73

ICCH8C–1

DATA REPRESENTATION
This chapter describes how the H8 C Compiler represents each of the C
data types, and gives recommendations for efficient coding.

DATA TYPES The H8 C Compiler supports all ANSI C basic elements. Variables are
stored with the least significant part located at the low memory address.

The following table gives the size and range of each C data type:

Data type Bytes Range Notes

sfr 1 0 to 255 See the chapter
sfrp 2 0 to 65535 Extended keyword

reference.

bit 0 to 1

char (by default) 1 0 to 255 Equivalent to
unsigned char

char (using -c option) 1 -128 to 127 Equivalent to signed
char

signed char 1 -128 to 127

unsigned char 1 0 to 255

short, int 2 -215 to 215-1 -32768 to 32767

unsigned short, 2 0 to 216-1 0 to 65535
unsigned int

long 4 -231 to 231-1 -2147483648 to
2147483647

unsigned long 4 0 to 232-1 0 to 4294967295

pointer 1 to 4 See the chapter
Extended keyword
reference.

float 4 ± 1.18E-38 to
± 3.39E+38

§ 7 Data representation 1/10/96, 4:20 pm73

DATA REPRESENTATION

74

ICCH8C–1

Data type Bytes Range Notes

double, long double 4 ± 1.18E-38 to
± 3.39E+38
(same as float)

double, long double 8 ± 2.23E-308 to
(using -2 option) ± 1.79E+308

ENUM TYPE

The enum keyword creates each object with the shortest integer type
(char, short, int, or long) required to contain its value.

CHAR TYPE

The char type is, by default, unsigned in the compiler, but the Char is
signed char (-c) option allows you to make it signed. Note, however,
that the library is compiled with char types as unsigned.

FLOATING POINT

Floating-point values are represented by either 4 or 8 byte numbers in
standard IEEE format. Floating-point values below the smallest limit
will be regarded as zero, and overflow gives undefined results.

The data types double and long double are normally equivalent to the
float data type (4 bytes), but can be represented in an 8-byte double-
precision format using the -2 option.

4-byte floating-point format
The memory layout of 4-byte floating-point numbers is:

2330 22 031

S Exponent Mantissa

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

Zero is represented by 4 bytes of zeros.

The precision of the float operators (+, -, *, and /) is approximately
7␣ decimal digits.

§ 7 Data representation 1/10/96, 4:20 pm74

DATA REPRESENTATION

75

ICCH8C–1

8-byte floating-point format
The memory layout of 8-byte floating-point numbers is:

5262 51 063

S Exponent Mantissa

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

Zero is represented by 8 bytes of zeros.

The precision of the long double operators (+, -, *, and /) is
approximately 16 decimal digits.

SPECIAL FUNCTION REGISTER VARIABLES

Special Function Register (sfr) variables allow a symbolic name to be
associated with an address. They can be located anywhere in the 32-bit
address space. They should be specified using full 32-bit sign-extended
addresses, even in the small memory model. For example, an sfr at
address 0xFFFF80 in -v0 must be specified as 0xFFFFFF80. This is done
in the ioxxx.h include files.

If you want to access bits in the sfr or sfrp using the bit_no notation
they must reside in one of the areas:

0x00000000 to 0x0FFFFFFF or 0xF0000000 to 0xFFFFFFFF.

This is only a restriction in the -v1 -ml mode, and is due to the
compiler implementation.

BITFIELDS

Bitfield unions and structures are extensions to ANSI C integer
bitfields.

Bitfields in expressions will have the same data type as the base type
(signed or unsigned char, short, int, or long).

By default bitfield variables are packed in elements of the specified type
starting at the LSB position. Alternatively the bitfield packing can be
reversed with the #pragma bitfields=reversed directive.

§ 7 Data representation 1/10/96, 4:20 pm75

DATA REPRESENTATION

76

ICCH8C–1

POINTERS This section describes the H8 C Compiler’s use of code pointers and
data pointers.

CODE POINTERS

The code pointers are:

Keyword Storage in bytes Restrictions

tiny_func 1 May only point via the exception
vector table.

near_func 2 Only in small memory model (-ms).

far_func 4 Only in large memory model (-ml).

The tiny_func pointer
A tiny_func pointer points to an exception vector. A tiny_func
function call is to the address stored in the vector.

A function called by the tiny_func mechanism results in an indirect
reference via the exception vector table. A tiny_func pointer may
therefore only reference tiny_func functions.

The near_func pointer
The near_func pointer can only be used in the small memory model,
and can access functions that is in the segment from 0x0 to 0xFFFF.

The far_func pointer
The far_func pointer can only be used in the large memory model, and
gives unrestricted access to all functions.

Which of these pointer types is used as the default is determined by the
memory model; see Memory model, page 64.

DATA POINTERS

The IAR C Compiler uses four different pointer types for data, ranging
from the most efficient to the widest addressing range.

§ 7 Data representation 1/10/96, 4:20 pm76

DATA REPRESENTATION

77

ICCH8C–1

The data pointer types are:

Keyword Storage in bytes Restrictions

tiny 1 May only point into the tiny
addressable area 0xFFFFFF00 to
0xFFFFFFFF.

near 2 -ms: none.
-ml: may only point into the near
addressable area 0xFFFF8000 to
0x00007FFF.

far 4 The referenced object must reside
entirely in one 64 Kbyte segment.

huge 4 No restrictions.

Data in the short-addressable area can be accessed by tiny pointers.
The benefit of tiny pointers is that they only require a single byte of
storage.

The far pointer takes advantage of the fact that only the lower two
bytes (the offset part) need to be considered in address arithmetic, but
since the actual addressing uses four bytes, objects which are accessed
through far pointers must reside entirely in one 64 Kbyte segment. In
particular, this means that the object must not be larger than 64 Kbytes
in size.

The huge pointer gives unrestricted access to all addresses.

Which of these pointer types is used as the default is determined by the
memory model; see Memory model, page 64.

EFFICIENT CODING It is important to appreciate the H8 architecture in order to avoid the
use of inefficient language constructs. The following is a list of
recommendations on how best to use the H8 C Compiler.

◆ Sensible use of the memory attributes (see the chapter Extended
keyword reference) can enhance both speed and code size in critical
applications.

§ 7 Data representation 1/10/96, 4:20 pm77

DATA REPRESENTATION

78

ICCH8C–1

◆ Bitfield types should be used only to conserve data memory space as
they execute slowly on the H8. Use a bit mask on unsigned char or
unsigned int instead of bitfields. If you must use bitfields, use
unsigned for efficiency. Note, however, that char bitfields with one-
bit bitfields are very efficient.

◆ Scalar variables that are not used outside their module should be
declared as static, as this improves the possibility of temporarily
keeping them in a register.

◆ Use as short data types as possible.

◆ Use unsigned data types, when possible. Sometimes unsigned
operations execute more efficiently than the signed counterparts.
This especially applies to division and modulo.

◆ Use ANSI prototypes. Function calls to ANSI functions are
performed more efficiently than K&R-style functions; see the
chapter K&R and ANSI C language definitions.

◆ Put static data in tiny and near address space as much as possible.

§ 7 Data representation 1/10/96, 4:20 pm78

79

ICCH8C–1

GENERAL C LIBRARY
DEFINITIONS
This chapter gives an introduction to the C library functions, and
summarizes them according to header file.

INTRODUCTION The IAR C Compiler provides most of the important C library
definitions that apply to PROM-based embedded systems. These are of
three types:

◆ Standard C library definitions, for user programs. These are
documented in this chapter.

◆ CSTARTUP, the single program module containing the start-up code.

◆ Intrinsic functions, allowing low-level use of H8S features.

LIBRARY OBJECT FILES

You must select the appropriate library object file for your chosen
memory model and floating-point precision. See Run-time library,
page␣ 63, for more information. The linker includes only those routines
that are required (directly or indirectly) by the user’s program.

Most of the library definitions can be used without modification, that is,
directly from the library object files supplied. There are some I/O-
oriented routines (such as putchar and getchar) that you may need to
customize for your target application.

The library object files are supplied having been compiled with the Flag
old-style functions (-gA) option.

§ 8 Definitions 1/10/96, 4:20 pm79

GENERAL C LIBRARY DEFINITIONS

80

ICCH8C–1

HEADER FILES

The user program gains access to library definitions through header
files, which it incorporates using the #include directive. To avoid
wasting time at compilation, the definitions are divided into a number
of different header files each covering a particular functional area,
letting you include just those that are required.

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail
during execution, or generate error or warning messages at compile
time or link time.

LIBRARY DEFINITIONS SUMMARY

This section lists the header files and summarizes the functions
included in each. Header files may additionally contain target-specific
definitions – these are documented in the chapter Language extensions.

CHARACTER HANDLING – ctype.h

isalnum int isalnum(int c) Letter or digit equality.

isalpha int isalpha(int c) Letter equality.

iscntrl int iscntrl(int c) Control code equality.

isdigit int isdigit(int c) Digit equality.

isgraph int isgraph(int c) Printable non-space character
equality.

islower int islower(int c) Lower case equality.

isprint int isprint(int c) Printable character equality.

ispunct int ispunct(int c) Punctuation character equality.

isspace int isspace(int c) White-space character equality.

isupper int isupper(int c) Upper case equality.

isxdigit int isxdigit(int c) Hex digit equality.

tolower int tolower(int c) Converts to lower case.

toupper int toupper(int c) Converts to upper case.

§ 8 Definitions 1/10/96, 4:20 pm80

GENERAL C LIBRARY DEFINITIONS

81

ICCH8C–1

LOW-LEVEL ROUTINES – icclbutl.h

_formatted_read int _formatted_read (const Reads formatted data.
char **line, const char
**format, va_list ap)

_formatted_write int _formatted_write (const Formats and writes data.
char* format, void outputf
(char, void *), void *sp,
va_list ap)

_medium_read int _formatted_read (const Reads formatted data
char **line, const char excluding floating-point
**format, va_list ap) numbers.

_medium_write int _formatted_write (const Writes formatted data
char* format, void outputf excluding floating-point
(char, void *), void *sp, numbers.
va_list ap)

_small_write int _formatted_write (const Small formatted data
char* format, void outputf write routine.
(char, void *), void *sp,
va_list ap)

MATHEMATICS – math.h

acos double acos(double arg) Arc cosine.

asin double asin(double arg) Arc sine.

atan double atan(double arg) Arc tangent.

atan2 double atan2(double arg1, Arc tangent with quadrant.
double arg2)

ceil double ceil(double arg) Smallest integer greater than or
equal to arg.

cos double cos(double arg) Cosine.

cosh double cosh(double arg) Hyperbolic cosine.

exp double exp(double arg) Exponential.

exp10 double exp10(double arg) Ten to the power of.

§ 8 Definitions 1/10/96, 4:20 pm81

GENERAL C LIBRARY DEFINITIONS

82

ICCH8C–1

fabs double fabs(double arg) Double-precision floating-point
absolute.

floor double floor(double arg) Largest integer less than or equal.

fmod double fmod(double arg1, Floating-point remainder.
double arg2)

frexp double frexp(double arg1, Splits a floating-point number
int *arg2) into two parts.

ldexp double ldexp(double arg1, Multiply by power of two.
int arg2)

log double log(double arg) Natural logarithm.

log10 double log10(double arg) Base-10 logarithm.

modf double modf(double value, Fractional and integer parts.
double *iptr)

pow double pow(double arg1, Raises to the power.
double arg2)

sin double sin(double arg) Sine.

sinh double sinh(double arg) Hyperbolic sine.

sqrt double sqrt(double arg) Square root.

tan double tan(double x) Tangent.

tanh double tanh(double arg) Hyperbolic tangent.

NON-LOCAL JUMPS – setjmp.h

longjmp void longjmp(jmp_buf env, Long jump.
int val)

setjmp int setjmp(jmp_buf env) Sets up a jump return point.

VARIABLE ARGUMENTS – stdarg.h

va_arg type va_arg(va_list ap, Next argument in function call.
mode)

va_end void va_end(va_list ap) Ends reading function call
arguments.

va_list char *va_list[1] Argument list type.

§ 8 Definitions 1/10/96, 4:20 pm82

GENERAL C LIBRARY DEFINITIONS

83

ICCH8C–1

va_start void va_start(va_list ap, Starts reading function call
parmN) arguments.

INPUT/OUTPUT – stdio.h

getchar int getchar(void) Gets character.

gets char *gets(char *s) Gets string.

printf int printf(const char Writes formatted data.
*format, ...)

putchar int putchar(int value) Puts character.

puts int puts(const char *s) Puts string.

scanf int scanf(const char Reads formatted data.
*format, ...)

sprintf int sprintf(char *s, const Writes formatted data to a string.
char *format,)

sscanf int sscanf(const char *s, Reads formatted data from a
const char *format, ...) string.

GENERAL UTILITIES – stdlib.h

abort void abort(void) Terminates the program
abnormally.

abs int abs(int j) Absolute value.

atof double atof(const char Converts ASCII to double.
*nptr)

atoi int atoi(const char *nptr) Converts ASCII to int.

atol long atol(const char *nptr) Converts ASCII to long int.

bsearch void *bsearch(const void Makes a generic search in an
*key, const void *base, array.
size_t nmemb, size_t size,
int (*compare) (const void
*_key, const void *_base));

calloc void *calloc(size_t nelem, Allocates memory for an array of
size_t elsize) objects.

§ 8 Definitions 1/10/96, 4:20 pm83

GENERAL C LIBRARY DEFINITIONS

84

ICCH8C–1

div div_t div(int numer, Divide.
int denom)

exit void exit(int status) Terminates the program.

free void free(void *ptr) Frees memory.

labs long int labs(long int j) Long absolute.

ldiv ldiv_t ldiv(long int numer, Long division.
long int denom)

malloc void *malloc(size_t size) Allocates memory.

qsort void qsort(const void *base, Makes a generic sort of an array.
size_t nmemb, size_t size,
int (*compare) (const void
*_key, const void *_base));

rand int rand(void) Random number.

realloc void *realloc(void *ptr, Reallocates memory.
size_t size)

srand void srand(unsigned int Sets random number sequence.
seed)

strtod double strtod(const char Converts a string to double.
*nptr, char **endptr)

strtol long int strtol(const char Converts a string to a long integer.
*nptr, char **endptr, int
base)

strtoul unsigned long int strtoul Converts a string to an unsigned
(const char *nptr, char long integer.
**endptr, base int)

STRING HANDLING – string.h

memchr void *memchr(const void *s, Searches for a character in
int c, size_t n) memory.

memcmp int memcmp(const void *s1, Compares memory.
const void *s2, size_t n)

memcpy void *memcpy(void *s1, Copies memory.
const void *s2, size_t n)

§ 8 Definitions 1/10/96, 4:20 pm84

GENERAL C LIBRARY DEFINITIONS

85

ICCH8C–1

memmove void *memmove(void *s1, Moves memory.
const void *s2, size_t n)

memset void *memset(void *s, int c, Sets memory.
size_t n)

strcat char *strcat(char *s1, Concatenates strings.
const char *s2)

strchr char *strchr(const char *s, Searches for a character in a
int c) string.

strcmp int strcmp(const char *s1, Compares two strings.
const char *s2)

strcoll int strcoll(const char *s1, Compares strings.
const char *s2)

strcpy char *strcpy(char *s1, const Copies string.
char *s2)

strcspn size_t strcspn(const char Spans excluded characters in
*s1, const char *s2) string.

strerror char *strerror(int errnum) Gives an error message string.

strlen size_t strlen(const char *s) String length.

strncat char *strncat(char *s1, Concatenates a specified number
const char *s2, size_t n) of characters with a string.

strncmp int strncmp(const char *s1, Compares a specified number of
const char *s2, size_t n) characters with a string.

strncpy char *strncpy(char *s1, Copies a specified number of
const char *s2, size_t n) characters from a string.

strpbrk char *strpbrk(const char Finds any one of specified
*s1, const char *s2) characters in a string.

strrchr char *strrchr(const char *s, Finds character from right of
int c) string.

strspn size_t strspn(const char Spans characters in a string.
*s1, const char *s2)

strstr char *strstr(const char *s1, Searches for a substring.
const char *s2)

§ 8 Definitions 1/10/96, 4:20 pm85

GENERAL C LIBRARY DEFINITIONS

86

ICCH8C–1

strtok char *strtok(char *s1, const Breaks a string into tokens.
char *s2)

strxfrm size_t strxfrm(char *s1, Transforms a string and returns
const char *s2, size_t n) the length.

COMMON DEFINITIONS – stddef.h

No functions (various definitions including size_t, NULL, ptrdiff_t,
offsetof, etc).

INTEGRAL TYPES – limits.h

No functions (various limits and sizes of integral types).

FLOATING-POINT TYPES – float.h

No functions (various limits and sizes of floating-point types).

ERRORS – errno.h

No functions (various error return values).

ASSERT – assert.h

assert void assert(int expression) Checks an expression.

§ 8 Definitions 1/10/96, 4:20 pm86

87

ICCH8C–1

FUNCTION NAME

The name of the C library function.

HEADER FILENAME

The function header filename.

BRIEF DESCRIPTION

A brief summary of the function.

C LIBRARY FUNCTIONS
REFERENCE
This section gives an alphabetical list of the C library functions, with
a␣ full description of their operation, and the options available for
each␣ one.

The format of each function description is as follows:

Brief description

Declaration

Parameters

Return value

Description

Examples

Function name Header filename

atoi stdlib.h

Converts ASCII to int.

DECLARATION

int atoi(const char *nptr)

PARAMETERS

nptr A pointer to a string containing a number in ASCII
form.

RETURN VALUE

The int number found in the string.

DESCRIPTION

Converts the ASCII string pointed to by nptr to an integer, skipping
white space and terminating upon reaching any unrecognized character.

EXAMPLES

“ -3K” gives -3

“6” gives 6

“149” gives 149

§ 9 Functions ref 1/10/96, 4:21 pm87

88

ICCH8C–1

DECLARATION

The C library declaration.

PARAMETERS

Details of each parameter in the declaration.

RETURN VALUE

The value, if any, returned by the function.

DESCRIPTION

A detailed description covering the function’s most general use. This
includes information about what the function is useful for, and a
discussion of any special conditions and common pitfalls.

EXAMPLES

One or more examples illustrating the function’s use.

abort stdlib.h

Terminates the program abnormally.

DECLARATION

void abort(void)

PARAMETERS

None.

RETURN VALUE

None.

DESCRIPTION

Terminates the program abnormally and does not return to the caller.
This function calls the exit function, and by default the entry for this
resides in CSTARTUP.

abort

§ 9 Functions ref 1/10/96, 4:21 pm88

89

ICCH8C–1

abs stdlib.h

Absolute value.

DECLARATION

int abs(int j)

PARAMETERS

j An int value.

RETURN VALUE

An int having the absolute value of j.

DESCRIPTION

Computes the absolute value of j.

acos math.h

Arc cosine.

DECLARATION

double acos(double arg)

PARAMETERS

arg A double in the range [-1,+1].

RETURN VALUE

The double arc cosine of arg, in the range [0,pi].

DESCRIPTION

Computes the principal value in radians of the arc cosine of arg.

abs

§ 9 Functions ref 1/10/96, 4:21 pm89

90

ICCH8C–1

asin math.h

Arc sine.

DECLARATION

double asin(double arg)

PARAMETERS

arg A double in the range [-1,+1].

RETURN VALUE

The double arc sine of arg, in the range [-pi/2,+pi/2].

DESCRIPTION

Computes the principal value in radians of the arc sine of arg.

assert assert.h

Checks an expression.

DECLARATION

void assert (int expression)

PARAMETERS

expression An expression to be checked.

RETURN VALUE

None.

DESCRIPTION

This is a macro that checks an expression. If it is false it prints a
message to stderr and calls abort.

The message has the following format:

File name; line num # Assertion failure "expression"

asin

§ 9 Functions ref 1/10/96, 4:21 pm90

91

ICCH8C–1

To ignore assert calls put a #define NDEBUG statement before the
#include <assert.h> statement.

atan math.h

Arc tangent.

DECLARATION

double atan(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

The double arc tangent of arg, in the range [-pi/2,pi/2].

DESCRIPTION

Computes the arc tangent of arg.

atan2 math.h

Arc tangent with quadrant.

DECLARATION

double atan2(double arg1, double arg2)

PARAMETERS

arg1 A double value.

arg2 A double value.

RETURN VALUE

The double arc tangent of arg1/arg2, in the range [-pi,pi].

atan

§ 9 Functions ref 1/10/96, 4:21 pm91

92

ICCH8C–1

DESCRIPTION

Computes the arc tangent of arg1/arg2, using the signs of both
arguments to determine the quadrant of the return value.

atof stdlib.h

Converts ASCII to double.

DECLARATION

double atof(const char *nptr)

PARAMETERS

nptr A pointer to a string containing a number in ASCII
form.

RETURN VALUE

The double number found in the string.

DESCRIPTION

Converts the string pointed to by nptr to a double-precision floating-
point number, skipping white space and terminating upon reaching any
unrecognized character.

EXAMPLES

" -3K" gives -3.00

".0006" gives 0.0006

"1e-4" gives 0.0001

atoi stdlib.h

Converts ASCII to int.

DECLARATION

int atoi(const char *nptr)

atof

§ 9 Functions ref 1/10/96, 4:21 pm92

93

ICCH8C–1

PARAMETERS

nptr A pointer to a string containing a number in ASCII
form.

RETURN VALUE

The int number found in the string.

DESCRIPTION

Converts the ASCII string pointed to by nptr to an integer, skipping
white space and terminating upon reaching any unrecognized character.

EXAMPLES

" -3K" gives -3

"6" gives 6

"149" gives 149

atol stdlib.h

Converts ASCII to long int.

DECLARATION

long atol(const char *nptr)

PARAMETERS

nptr A pointer to a string containing a number in ASCII
form.

RETURN VALUE

The long number found in the string.

DESCRIPTION

Converts the number found in the ASCII string pointed to by nptr to a
long integer value, skipping white space and terminating upon reaching
any unrecognized character.

atol

§ 9 Functions ref 1/10/96, 4:21 pm93

94

ICCH8C–1

EXAMPLES

" -3K" gives -3

"6" gives 6

"149" gives 149

bsearch stdlib.h

Makes a generic search in an array.

DECLARATION

void *bsearch(const void *key, const void *base, size_t
nmemb, size_t size, int (*compare) (const void *_key,
const void *_base));

PARAMETERS

key Pointer to the searched for object.

base Pointer to the array to search.

nmemb Dimension of the array pointed to by base.

size Size of the array elements.

compare The comparison function which takes two arguments
and returns:

<0 (negative value) if _key is less than _base.
0 if _key equals _base.
>0 (positive value) if _key is greater than _base.

RETURN VALUE

Result Value

Successful A pointer to the element of the array that matches the key.

Unsuccessful Null.

DESCRIPTION

Searches an array of nmemb objects, pointed to by base, for an element
that matches the object pointed to by key.

bsearch

§ 9 Functions ref 1/10/96, 4:21 pm94

95

ICCH8C–1

calloc stdlib.h

Allocates memory for an array of objects.

DECLARATION

void *calloc(size_t nelem, size_t elsize)

PARAMETERS

nelem The number of objects.

elsize A value of type size_t specifying the size of each
object.

RETURN VALUE

Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Zero if there is no memory block of the required size or
greater available.

DESCRIPTION

Allocates a memory block for an array of objects of the given size. To
ensure portability, the size is not given in absolute units of memory
such as bytes, but in terms of a size or sizes returned by the sizeof
function.

The availability of memory depends on the default heap size.

ceil math.h

Smallest integer greater than or equal to arg.

DECLARATION

double ceil(double arg)

PARAMETERS

arg A double value.

calloc

§ 9 Functions ref 1/10/96, 4:21 pm95

96

ICCH8C–1

RETURN VALUE

A double having the smallest integral value greater than or equal to
arg.

DESCRIPTION

Computes the smallest integral value greater than or equal to arg.

cos math.h

Cosine.

DECLARATION

double cos(double arg)

PARAMETERS

arg A double value in radians.

RETURN VALUE

The double cosine of arg.

DESCRIPTION

Computes the cosine of arg radians.

cosh math.h

Hyperbolic cosine.

DECLARATION

double cosh(double arg)

PARAMETERS

arg A double value in radians.

cos

§ 9 Functions ref 1/10/96, 4:21 pm96

97

ICCH8C–1

RETURN VALUE

The double hyperbolic cosine of arg.

DESCRIPTION

Computes the hyperbolic cosine of arg radians.

div stdlib.h

Divide.

DECLARATION

div_t div(int numer, int denom)

PARAMETERS

numer The int numerator.

demon The int denominator.

RETURN VALUE

A structure of type div_t holding the quotient and remainder results of
the division.

DESCRIPTION

Divides the numerator numer by the denominator denom. The type
div_t is defined in stdlib.h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quot * denom + rem == numer

div

§ 9 Functions ref 1/10/96, 4:21 pm97

98

ICCH8C–1

exit stdlib.h

Terminates the program.

DECLARATION

void exit(int status)

PARAMETERS

status An int status value.

RETURN VALUE

None.

DESCRIPTION

Terminates the program normally. This function does not return to the
caller. This function entry resides by default in CSTARTUP.

exp math.h

Exponential.

DECLARATION

double exp(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

A double with the value of the exponential function of arg.

DESCRIPTION

Computes the exponential function of arg; ie earg.

exit

§ 9 Functions ref 1/10/96, 4:21 pm98

99

ICCH8C–1

exp10 math.h

Exponential.

DECLARATION

double exp10(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

A double with the value of ten to the power of arg.

DESCRIPTION

Computes ten to the power of arg; ie 10arg.

fabs math.h

Double-precision floating-point absolute.

DECLARATION

double fabs(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

The double absolute value of arg.

DESCRIPTION

Computes the absolute value of the floating-point number arg.

exp10

§ 9 Functions ref 1/10/96, 4:21 pm99

100

ICCH8C–1

floor math.h

Largest integer less than or equal.

DECLARATION

double floor(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

A double with the value of the largest integer less than or equal to arg.

DESCRIPTION

Computes the largest integral value less than or equal to arg.

fmod math.h

Floating-point remainder.

DECLARATION

double fmod(double arg1, double arg2)

PARAMETERS

arg1 The double numerator.

arg2 The double denominator.

RETURN VALUE

The double remainder of the division arg1/arg2.

DESCRIPTION

Computes the remainder of arg1/arg2, ie the value arg1-i*arg2, for
some integer i such that, if arg2 is non-zero, the result has the same
sign as arg1 and magnitude less than the magnitude of arg2.

floor

§ 9 Functions ref 1/10/96, 4:21 pm100

101

ICCH8C–1

free stdlib.h

Frees memory.

DECLARATION

void free(void *ptr)

PARAMETERS

ptr A pointer to a memory block previously allocated by
malloc, calloc, or realloc.

RETURN VALUE

None.

DESCRIPTION

Frees the memory used by the object pointed to by ptr. ptr must earlier
have been assigned a value from malloc, calloc, or realloc.

frexp math.h

Splits a floating-point number into two parts.

DECLARATION

double frexp(double arg1, int *arg2)

PARAMETERS

arg1 Floating-point number to be split.

arg2 Pointer to an integer to contain the exponent of arg1.

RETURN VALUE

The double mantissa of arg1, in the range 0.5 to 1.0.

DESCRIPTION

Splits the floating-point number arg1 into an exponent stored in *arg2,
and a mantissa which is returned as the value of the function.

free

§ 9 Functions ref 1/10/96, 4:21 pm101

102

ICCH8C–1

The values are as follows:

mantissa * 2exponent = value

getchar stdio.h

Gets character.

DECLARATION

int getchar(void)

PARAMETERS

None.

RETURN VALUE

An int with the ASCII value of the next character from the standard
input stream.

DESCRIPTION

Gets the next character from the standard input stream.

You should customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
getchar.c.

gets stdio.h

Gets string.

DECLARATION

char *gets(char *s)

PARAMETERS

s A pointer to the string that is to receive the input.

getchar

§ 9 Functions ref 1/10/96, 4:21 pm102

103

ICCH8C–1

RETURN VALUE

Result Value

Successful A pointer equal to s.

Unsuccessful Null.

DESCRIPTION

Gets the next string from standard input and places it in the string
pointed to. The string is terminated by end of line or end of file. The
end-of-line character is replaced by zero.

This function calls getchar, which must be adapted for the particular
target hardware configuration.

isalnum ctype.h

Letter or digit equality.

DECLARATION

int isalnum(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a letter or digit, else zero.

DESCRIPTION

Tests whether a character is a letter or digit.

isalnum

§ 9 Functions ref 1/10/96, 4:21 pm103

104

ICCH8C–1

isalpha ctype.h

Letter equality.

DECLARATION

int isalpha(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is letter, else zero.

DESCRIPTION

Tests whether a character is a letter.

iscntrl ctype.h

Control code equality.

DECLARATION

int iscntrl(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a control code, else zero.

DESCRIPTION

Tests whether a character is a control character.

isalpha

§ 9 Functions ref 1/10/96, 4:21 pm104

105

ICCH8C–1

isdigit ctype.h

Digit equality.

DECLARATION

int isdigit(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a digit, else zero.

DESCRIPTION

Tests whether a character is a decimal digit.

isgraph ctype.h

Printable non-space character equality.

DECLARATION

int isgraph(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a printable character other than space,
else zero.

DESCRIPTION

Tests whether a character is a printable character other than space.

isdigit

§ 9 Functions ref 1/10/96, 4:21 pm105

106

ICCH8C–1

islower ctype.h

Lower case equality.

DECLARATION

int islower(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is lower case, else zero.

DESCRIPTION

Tests whether a character is a lower case letter.

isprint ctype.h

Printable character equality.

DECLARATION

int isprint(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a printable character, including space,
else zero.

DESCRIPTION

Tests whether a character is a printable character, including space.

islower

§ 9 Functions ref 1/10/96, 4:21 pm106

107

ICCH8C–1

ispunct ctype.h

Punctuation character equality.

DECLARATION

int ispunct(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is printable character other than space,
digit, or letter, else zero.

DESCRIPTION

Tests whether a character is a printable character other than space,
digit, or letter.

isspace ctype.h

White-space character equality.

DECLARATION

int isspace (int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a white-space character, else zero.

ispunct

§ 9 Functions ref 1/10/96, 4:21 pm107

108

ICCH8C–1

DESCRIPTION

Tests whether a character is a white-space character, that is, one of the
following:

Character Symbol

Space ' '

Formfeed \f

Newline \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

isupper ctype.h

Upper case equality.

DECLARATION

int isupper(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is upper case, else zero.

DESCRIPTION

Tests whether a character is an upper case letter.

isupper

§ 9 Functions ref 1/10/96, 4:21 pm108

109

ICCH8C–1

isxdigit ctype.h

Hex digit equality.

DECLARATION

int isxdigit(int c)

PARAMETERS

c An int representing a character.

RETURN VALUE

An int which is non-zero if c is a digit in upper or lower case, else zero.

DESCRIPTION

Tests whether the character is a hexadecimal digit in upper or lower
case, that is, one of 0–9, a–f, or A–F.

labs stdlib.h

Long absolute.

DECLARATION

long int labs(long int j)

PARAMETERS

j A long int value.

RETURN VALUE

The long int absolute value of j.

DESCRIPTION

Computes the absolute value of the long integer j.

isxdigit

§ 9 Functions ref 1/10/96, 4:21 pm109

110

ICCH8C–1

ldexp math.h

Multiply by power of two.

DECLARATION

double ldexp(double arg1,int arg2)

PARAMETERS

arg1 The double multiplier value.

arg2 The int power value.

RETURN VALUE

The double value of arg1 multiplied by two raised to the power of
arg2.

DESCRIPTION

Computes the value of the floating-point number multiplied by 2 raised
to a power.

ldiv stdlib.h

Long division

DECLARATION

ldiv_t ldiv(long int numer, long int denom)

PARAMETERS

numer The long int numerator.

denom The long int denominator.

RETURN VALUE

A struct of type ldiv_t holding the quotient and remainder of the
division.

ldexp

§ 9 Functions ref 1/10/96, 4:21 pm110

111

ICCH8C–1

DESCRIPTION

Divides the numerator numer by the denominator denom. The type
ldiv_t is defined in stdlib.h.

If the division is inexact, the quotient is the integer of lesser magnitude
that is the nearest to the algebraic quotient. The results are defined such
that:

quot * denom + rem == numer

log math.h

Natural logarithm.

DECLARATION

double log(double arg)

PARAMETERS

arg A double value.

RETURN VALUE

The double natural logarithm of arg.

DESCRIPTION

Computes the natural logarithm of a number.

log10 math.h

Base-10 logarithm.

DECLARATION

double log10(double arg)

PARAMETERS

arg A double number.

log

§ 9 Functions ref 1/10/96, 4:21 pm111

112

ICCH8C–1

RETURN VALUE

The double base-10 logarithm of arg.

DESCRIPTION

Computes the base-10 logarithm of a number.

longjmp setjmp.h

Long jump.

DECLARATION

void longjmp(jmp_buf env, int val)

PARAMETERS

env A struct of type jmp_buf holding the environment,
set by setjmp.

val The int value to be returned by the corresponding
setjmp.

RETURN VALUE

None.

DESCRIPTION

Restores the environment previously saved by setjmp. This causes
program execution to continue as a return from the corresponding
setjmp, returning the value val.

malloc stdlib.h

Allocates memory.

DECLARATION

void *malloc(size_t size)

longjmp

§ 9 Functions ref 1/10/96, 4:21 pm112

113

ICCH8C–1

PARAMETERS

size A size_t object specifying the size of the object.

RETURN VALUE

Result Value

Successful A pointer to the start (lowest byte address) of the
memory block.

Unsuccessful Zero, if there is no memory block of the required size
or greater available.

DESCRIPTION

Allocates a memory block for an object of the specified size.

The availability of memory depends on the size of the heap. For more
information about changing the heap size refer to Heap size, page 69.

memchr string.h

Searches for a character in memory.

DECLARATION

void *memchr(const void *s, int c, size_t n)

PARAMETERS

s A pointer to an object.

c An int representing a character.

n A value of type size_t specifying the size of each
object.

memchr

§ 9 Functions ref 1/10/96, 4:21 pm113

114

ICCH8C–1

RETURN VALUE

Result Value

Successful A pointer to the first occurrence of c in the n
characters pointed to by s.

Unsuccessful Null.

DESCRIPTION

Searches for the first occurrence of a character in a pointed-to region of
memory of a given size.

Both the single character and the characters in the object are treated as
unsigned.

memcmp string.h

Compares memory.

DECLARATION

int memcmp(const void *s1, const void *s2, size_t n)

PARAMETERS

s1 A pointer to the first object.

s2 A pointer to the second object.

n A value of type size_t specifying the size of each object.

RETURN VALUE

An integer indicating the result of comparison of the first n characters
of the object pointed to by s1 with the first n characters of the object
pointed to by s2:

Return value Meaning

>0 s1 > s2

=0 s1 = s2

<0 s1 < s2

memcmp

§ 9 Functions ref 1/10/96, 4:21 pm114

115

ICCH8C–1

DESCRIPTION

Compares the first n characters of two objects.

memcpy string.h

Copies memory.

DECLARATION

void *memcpy(void *s1, const void *s2, size_t n)

PARAMETERS

s1 A pointer to the destination object.

s2 A pointer to the source object.

n The number of characters to be copied.

RETURN VALUE

s1.

DESCRIPTION

Copies a specified number of characters from a source object to a
destination object.

If the objects overlap, the result is undefined, so memmove should be
used instead.

memmove string.h

Moves memory.

DECLARATION

void *memmove(void *s1, const void *s2, size_t n)

memcpy

§ 9 Functions ref 1/10/96, 4:21 pm115

116

ICCH8C–1

PARAMETERS

s1 A pointer to the destination object.

s2 A pointer to the source object.

n The number of characters to be copied.

RETURN VALUE

s1.

DESCRIPTION

Copies a specified number of characters from a source object to a
destination object.

Copying takes place as if the source characters are first copied into a
temporary array that does not overlap either object, and then the
characters from the temporary array are copied into the destination
object.

memset string.h

Sets memory.

DECLARATION

void *memset(void *s, int c, size_t n)

PARAMETERS

s A pointer to the destination object.

c An int representing a character.

n The size of the object.

RETURN VALUE

s.

DESCRIPTION

Copies a character (converted to an unsigned char) into each of the
first specified number of characters of the destination object.

memset

§ 9 Functions ref 1/10/96, 4:21 pm116

117

ICCH8C–1

modf math.h

Fractional and integer parts.

DECLARATION

double modf(double value, double *iptr)

PARAMETERS

value A double value.

iptr A pointer to the double that is to receive the integral
part of value.

RETURN VALUE

The fractional part of value.

DESCRIPTION

Computes the fractional and integer parts of value. The sign of both
parts is the same as the sign of value.

pow math.h

Raises to the power.

DECLARATION

double pow(double arg1, double arg2)

PARAMETERS

arg1 The double number.

arg2 The double power.

RETURN VALUE

arg1 raised to the power of arg2.

DESCRIPTION

Computes a number raised to a power.

modf

§ 9 Functions ref 1/10/96, 4:21 pm117

118

ICCH8C–1

printf stdio.h

Writes formatted data.

DECLARATION

int printf(const char *format, …)

PARAMETERS

format A pointer to the format string.

… The optional values that are to be printed under the
control of format.

RETURN VALUE

Result Value

Successful The number of characters written.

Unsuccessful A negative value, if an error occurred.

DESCRIPTION

Writes formatted data to the standard output stream, returning the
number of characters written or a negative value if an error occurred.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration.

format is a string consisting of a sequence of characters to be printed
and conversion specifications. Each conversion specification causes the
next successive argument following the format string to be evaluated,
converted, and written.

The form of a conversion specification is as follows:

% [flags] [field_width] [.precision] [length_modifier]
conversion

Items inside [] are optional.

printf

§ 9 Functions ref 1/10/96, 4:21 pm118

119

ICCH8C–1

printf

Flags
The flags are as follows:

Flag Effect

- Left adjusted field.

+ Signed values will always begin with plus or minus sign.

space Values will always begin with minus or space.

Alternate form:

Specifier Effect

octal First digit will always be a zero.

G g Decimal point printed and trailing zeros kept.

E e f Decimal point printed.

X Non-zero values prefixed with 0X.

x Non-zero values prefixed with 0X.

0 Zero padding to field width (for d, i, o, u, x, X, e, E, f, g,
and G specifiers).

Field width
The field_width is the number of characters to be printed in the field.
The field will be padded with space if needed. A negative value
indicates a left-adjusted field. A field width of * stands for the value of
the next successive argument, which should be an integer.

Precision
The precision is the number of digits to print for integers (d, i, o, u,
x, and X), the number of decimals printed for floating-point values (e, E,
and f), and the number of significant digits for g and G conversions. A
field width of * stands for the value of the next successive argument,
which should be an integer.

§ 9 Functions ref 1/10/96, 4:21 pm119

120

ICCH8C–1

Length modifier
The effect of each length_modifier is as follows:

Length_modifier Use

h before d, i, u, x, X, or o specifiers to denote a short
int or unsigned short int value.

l before d, i, u, x, X, or o specifiers to denote a long
integer or unsigned long value.

L before e, E, f, g, or G specifiers to denote a long
double value.

Conversion
The result of each value of conversion is as follows:

Conversion Result

d Signed decimal value.

i Signed decimal value.

o Unsigned octal value.

u Unsigned decimal value.

x Unsigned hexadecimal value, using lower case (0–9, a–f).

X Unsigned hexadecimal value, using upper case (0–9, A–F).

e Double value in the style [-]d.ddde+dd.

E Double value in the style [-]d.dddE+dd.

f Double value in the style [-]ddd.ddd.

g Double value in the style of f or e, whichever is the more
appropriate.

G Double value in the style of F or E, whichever is the more
appropriate.

C Single character constant.

s String constant.

printf

§ 9 Functions ref 1/10/96, 4:21 pm120

121

ICCH8C–1

Conversion Result

p Pointer value (address).

n No output, but store the number of characters written so
far in the integer pointed to by the next argument.

% % character.

Note that promotion rules convert all char and short int arguments to
int while floats are converted to double.

printf calls the library function putchar, which must be adapted for
the target hardware configuration.

The source of printf is provided in the file printf.c. The source of a
reduced version that uses less program space and stack is provided in
the file intwri.c.

EXAMPLES

After the following C statements:

int i=6, j=-6;
char *p = "ABC";
long l=100000;
float f1 = 0.0000001;
f2 = 750000;
double d = 2.2;

the effect of different printf function calls is shown in the following
table; ∆ represents space:

printf

§ 9 Functions ref 1/10/96, 4:21 pm121

122

ICCH8C–1

Statement Output Characters output

printf("%c",p[1]) B 1

printf("%d",i) 6 1

printf("%3d",i) ∆∆6 3

printf("%.3d",i) 006 3

printf("%-10.3d",i) 006∆∆∆∆∆∆∆ 10

printf("%10.3d",i) ∆∆∆∆∆∆∆006 10

printf("Value=%+3d",i) Value=∆+6 9

printf("%10.*d",i,j) ∆∆∆-000006 10

printf("String=[%s]",p) String=[ABC] 12

printf("Value=%lX",l) Value=186A0 11

printf("%f",f1) 0.000000 8

printf("%f",f2) 750000.000000 13

printf("%e",f1) 1.000000e-07 12

printf("%16e",d) ∆∆∆∆2.200000e+00 16

printf("%.4e",d) 2.2000e+00 10

printf("%g",f1) 1e-07 5

printf("%g",f2) 750000 6

printf("%g",d) 2.2 3

putchar stdio.h

Puts character.

DECLARATION

int putchar(int value)

PARAMETERS

value The int representing the character to be put.

putchar

§ 9 Functions ref 1/10/96, 4:21 pm122

123

ICCH8C–1

RETURN VALUE

Result Value

Successful value.

Unsuccessful The EOF macro.

DESCRIPTION

Writes a character to standard output.

You should customize this function for the particular target hardware
configuration. The function is supplied in source format in the file
putchar.c.

This function is called by printf.

puts stdio.h

Puts string.

DECLARATION

int puts(const char *s)

PARAMETERS

s A pointer to the string to be put.

RETURN VALUE

Result Value

Successful A non-negative value.

Unsuccessful -1 if an error occurred.

DESCRIPTION

Writes a string followed by a new-line character to the standard output
stream.

puts

§ 9 Functions ref 1/10/96, 4:21 pm123

124

ICCH8C–1

qsort stdlib.h

Makes a generic sort of an array.

DECLARATION

void qsort (const void *base, size_t nmemb, size_t size,
int (*compare) (const void *_key, const void *_base));

PARAMETERS

base Pointer to the array to sort.

nmemb Dimension of the array pointed to by base.

size Size of the array elements.

compare The comparison function, which takes two arguments
and returns:

<0 (negative value) if _key is less than _base.
0 if _key equals _base.
>0 (positive value) if _key is greater than _base.

RETURN VALUE

None.

DESCRIPTION

Sorts an array of nmemb objects pointed to by base.

rand stdlib.h

Random number.

DECLARATION

int rand(void)

PARAMETERS

None.

qsort

§ 9 Functions ref 1/10/96, 4:21 pm124

125

ICCH8C–1

RETURN VALUE

The next int in the random number sequence.

DESCRIPTION

Computes the next in the current sequence of pseudo-random integers,
converted to lie in the range [0,RAND_MAX].

See srand for a description of how to seed the pseudo-random
sequence.

realloc stdlib.h

Reallocates memory.

DECLARATION

void *realloc(void *ptr, size_t size)

PARAMETERS

ptr A pointer to the start of the memory block.

size A value of type size_t specifying the size of the
object.

RETURN VALUE

Result Value

Successful A pointer to the start (lowest address) of the memory
block.

Unsuccessful Null, if no memory block of the required size or greater
was available.

DESCRIPTION

Changes the size of a memory block (which must be allocated by
malloc, calloc, or realloc).

realloc

§ 9 Functions ref 1/10/96, 4:21 pm125

126

ICCH8C–1

scanf stdio.h

Reads formatted data.

DECLARATION

int scanf(const char *format, …)

PARAMETERS

format A pointer to a format string.

… Optional pointers to the variables that are to receive
values.

RETURN VALUE

Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION

Reads formatted data from standard input.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see Input and
output, page 66.

format is a string consisting of a sequence of ordinary characters and
conversion specifications. Each ordinary character reads a matching
character from the input. Each conversion specification accepts input
meeting the specification, converts it, and assigns it to the object
pointed to by the next successive argument following format.

If the format string contains white-space characters, input is scanned
until a non-white-space character is found.

The form of a conversion specification is as follows:

% [assign_suppress] [field_width] [length_modifier]
conversion

Items inside [] are optional.

scanf

§ 9 Functions ref 1/10/96, 4:21 pm126

127

ICCH8C–1

Assign suppress
If a * is included in this position, the field is scanned but no assignment
is carried out.

field_width
The field_width is the maximum field to be scanned. The default is
until no match occurs.

length_modifier
The effect of each length_modifier is as follows:

Length modifier Before Meaning

l d, i, or n long int as opposed to int.

o, u, or x unsigned long int as opposed to
unsigned int.

e, E, g, G, or f double operand as opposed to
float.

h d, i, or n short int as opposed to int.

o, u, or x unsigned short int as opposed to
unsigned int.

L e, E, g, G, or f long double operand as opposed to
float.

Conversion
The meaning of each conversion is as follows:

Conversion Meaning

d Optionally signed decimal integer value.

i Optionally signed integer value in standard C notation,
that is, is decimal, octal (0n) or hexadecimal (0xn, 0Xn).

o Optionally signed octal integer.

u Unsigned decimal integer.

x Optionally signed hexadecimal integer.

X Optionally signed hexadecimal integer (equivalent to x).

f Floating-point constant.

scanf

§ 9 Functions ref 1/10/96, 4:21 pm127

128

ICCH8C–1

Conversion Meaning

e E g G Floating-point constant (equivalent to f).

s Character string.

c One or field_width characters.

n No read, but store number of characters read so far in
the integer pointed to by the next argument.

p Pointer value (address).

[Any number of characters matching any of the
characters before the terminating]. For example, [abc]
means a, b, or c.

[] Any number of characters matching] or any of the
characters before the further, terminating]. For
example, []abc] means], a, b, or c.

[^ Any number of characters not matching any of the
characters before the terminating]. For example,
[^abc] means not a, b, or c.

[^] Any number of characters not matching] or any of the
characters before the further, terminating]. For
example, [^]abc] means not], a, b, or c.

% % character.

In all conversions except c, n, and all varieties of [, leading white-space
characters are skipped.

scanf indirectly calls getchar, which must be adapted for the actual
target hardware configuration.

EXAMPLES

For example, after the following program:

int n, i;
char name[50];
float x;
n = scanf("%d%f%s", &i, &x, name)

this input line:

25 54.32E-1 Hello World

scanf

§ 9 Functions ref 1/10/96, 4:21 pm128

129

ICCH8C–1

will set the variables as follows:

n = 3, i = 25, x = 5.432, name="Hello World"

and this function:

scanf("%2d%f%*d %[0123456789]", &i, &x, name)

with this input line:

56789 0123 56a72

will set the variables as follows:

i = 56, x = 789.0, name="56" (0123 unassigned)

setjmp setjmp.h

Sets up a jump return point.

DECLARATION

int setjmp(jmp_buf env)

PARAMETERS

env An object of type jmp_buf into which setjmp is to
store the environment.

RETURN VALUE

Zero.

Execution of a corresponding longjmp causes execution to continue as
if it was a return from setjmp, in which case the value of the int value
given in the longjmp is returned.

DESCRIPTION

Saves the environment in env for later use by longjmp.

Note that setjmp must always be used in the same function or at a
higher nesting level than the corresponding call to longjmp.

setjmp

§ 9 Functions ref 1/10/96, 4:21 pm129

130

ICCH8C–1

sin math.h

Sine.

DECLARATION

double sin(double arg)

PARAMETERS

arg A double value in radians.

RETURN VALUE

The double sine of arg.

DESCRIPTION

Computes the sine of a number.

sinh math.h

Hyperbolic sine.

DECLARATION

double sinh(double arg)

PARAMETERS

arg A double value in radians.

RETURN VALUE

The double hyperbolic sine of arg.

DESCRIPTION

Computes the hyperbolic sine of arg radians.

sin

§ 9 Functions ref 1/10/96, 4:21 pm130

131

ICCH8C–1

sprintf stdio.h

Writes formatted data to a string.

DECLARATION

int sprintf(char *s, const char *format, …)

PARAMETERS

s A pointer to the string that is to receive the formatted
data.

format A pointer to the format string.

… The optional values that are to be printed under the
control of format.

RETURN VALUE

Result Value

Successful The number of characters written.

Unsuccessful A negative value if an error occurred.

DESCRIPTION

Operates exactly as printf except the output is directed to a string. See
printf for details.

sprintf does not use the function putchar, and therefore can be used
even if putchar is not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see Input and
output, page 66.

sqrt math.h

Square root.

DECLARATION

double sqrt(double arg)

sprintf

§ 9 Functions ref 1/10/96, 4:21 pm131

132

ICCH8C–1

PARAMETERS

arg A double value.

RETURN VALUE

The double square root of arg.

DESCRIPTION

Computes the square root of a number.

srand stdlib.h

Sets random number sequence.

DECLARATION

void srand(unsigned int seed)

PARAMETERS

seed An unsigned int value identifying the particular
random number sequence.

RETURN VALUE

None.

DESCRIPTION

Selects a repeatable sequence of pseudo-random numbers.

The function rand is used to get successive random numbers from the
sequence. If rand is called before any calls to srand have been made, the
sequence generated is that which is generated after srand(1).

srand

§ 9 Functions ref 1/10/96, 4:21 pm132

133

ICCH8C–1

sscanf stdio.h

Reads formatted data from a string.

DECLARATION

int sscanf(const char *s, const char *format, …)

PARAMETERS

s A pointer to the string containing the data.

format A pointer to a format string.

… Optional pointers to the variables that are to receive
values.

RETURN VALUE

Result Value

Successful The number of successful conversions.

Unsuccessful -1 if the input was exhausted.

DESCRIPTION

Operates exactly as scanf except the input is taken from the string s.
See scanf, for details.

The function sscanf does not use getchar, and so can be used even
when getchar is not available for the target configuration.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration.

strcat string.h

Concatenates strings.

DECLARATION

char *strcat(char *s1, const char *s2)

sscanf

§ 9 Functions ref 1/10/96, 4:21 pm133

134

ICCH8C–1

PARAMETERS

s1 A pointer to the first string.

s2 A pointer to the second string.

RETURN VALUE

s1.

DESCRIPTION

Appends a copy of the second string to the end of the first string. The
initial character of the second string overwrites the terminating null
character of the first string.

strchr string.h

Searches for a character in a string.

DECLARATION

char *strchr(const char *s, int c)

PARAMETERS

c An int representation of a character.

s A pointer to a string.

RETURN VALUE

If successful, a pointer to the first occurrence of c (converted to a char)
in the string pointed to by s.

If unsuccessful due to c not being found, null.

DESCRIPTION

Finds the first occurrence of a character (converted to a char) in a
string. The terminating null character is considered to be part of the
string.

strchr

§ 9 Functions ref 1/10/96, 4:21 pm134

135

ICCH8C–1

strcmp string.h

Compares two strings.

DECLARATION

int strcmp(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the first string.

s2 A pointer to the second string.

RETURN VALUE

The int result of comparing the two strings:

Return value Meaning

>0 s1 > s2

=0 s1 = s2

<0 s1 < s2

DESCRIPTION

Compares the two strings.

strcoll string.h

Compares strings.

DECLARATION

int strcoll(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the first string.

s2 A pointer to the second string.

strcmp

§ 9 Functions ref 1/10/96, 4:21 pm135

136

ICCH8C–1

RETURN VALUE

The int result of comparing the two strings:

Return value Meaning

>0 s1 > s2

=0 s1 = s2

<0 s1 < s2

DESCRIPTION

Compares the two strings. This function operates identically to strcmp
and is provided for compatibility only.

strcpy string.h

Copies string.

DECLARATION

char *strcpy(char *s1, const char *s2)

PARAMETERS

s1 A pointer to the destination object.

s2 A pointer to the source string.

RETURN VALUE

s1.

DESCRIPTION

Copies a string into an object.

strcpy

§ 9 Functions ref 1/10/96, 4:21 pm136

137

ICCH8C–1

strcspn string.h

Spans excluded characters in string.

DECLARATION

size_t strcspn(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE

The int length of the maximum initial segment of the string pointed to
by s1 that consists entirely of characters not from the string pointed to
by s2.

DESCRIPTION

Finds the maximum initial segment of a subject string that consists
entirely of characters not from an object string.

strerror string.h

Gives an error message string.

DECLARATION

char * strerror (int errnum)

PARAMETERS

errnum The error message to return.

RETURN VALUE

strerror is an implementation-defined function. In the H8 C␣ Compiler
it returns the following strings.

strcspn

§ 9 Functions ref 1/10/96, 4:21 pm137

138

ICCH8C–1

errnum String returned

EZERO "no error"

EDOM "domain error"

ERANGE "range error"

errnum < 0 || errnum > Max_err_num "unknown error"

All other numbers "error No. errnum"

DESCRIPTION

Returns an error message string.

strlen string.h

String length.

DECLARATION

size_t strlen(const char *s)

PARAMETERS

s A pointer to a string.

RETURN VALUE

An object of type size_t indicating the length of the string.

DESCRIPTION

Finds the number of characters in a string, not including the
terminating null character.

strncat string.h

Concatenates a specified number of characters with a string.

DECLARATION

char *strncat(char *s1, const char *s2, size_t n)

strlen

§ 9 Functions ref 1/10/96, 4:21 pm138

139

ICCH8C–1

PARAMETERS

s1 A pointer to the destination string.

s2 A pointer to the source string.

n The number of characters of the source string to use.

RETURN VALUE

s1.

DESCRIPTION

Appends not more than n initial characters from the source string to the
end of the destination string.

strncmp string.h

Compares a specified number of characters with a string.

DECLARATION

int strncmp(const char *s1, const char *s2, size_t n)

PARAMETERS

s1 A pointer to the first string.

s2 A pointer to the second string.

n The number of characters of the source string to
compare.

RETURN VALUE

The int result of the comparison of not more than n initial characters
of the two strings:

Return value Meaning

>0 s1 > s2

=0 s1 = s2

<0 s1 < s2

strncmp

§ 9 Functions ref 1/10/96, 4:21 pm139

140

ICCH8C–1

DESCRIPTION

Compares not more than n initial characters of the two strings.

strncpy string.h

Copies a specified number of characters from a string.

DECLARATION

char *strncpy(char *s1, const char *s2, size_t n)

PARAMETERS

s1 A pointer to the destination object.

s2 A pointer to the source string.

n The number of characters of the source string to copy.

RETURN VALUE

s1.

DESCRIPTION

Copies not more than n initial characters from the source string into the
destination object.

strpbrk string.h

Finds any one of specified characters in a string.

DECLARATION

char *strpbrk(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the subject string.

s2 A pointer to the object string.

strncpy

§ 9 Functions ref 1/10/96, 4:21 pm140

141

ICCH8C–1

RETURN VALUE

Result Value

Successful A pointer to the first occurrence in the subject string of
any character from the object string.

Unsuccessful Null if none were found.

DESCRIPTION

Searches one string for any occurrence of any character from a second
string.

strrchr string.h

Finds character from right of string.

DECLARATION

char *strrchr(const char *s, int c)

PARAMETERS

s A pointer to a string.

c An int representing a character.

RETURN VALUE

If successful, a pointer to the last occurrence of c in the string pointed
to by s.

DESCRIPTION

Searches for the last occurrence of a character (converted to a char) in
a string. The terminating null character is considered to be part of the
string.

strrchr

§ 9 Functions ref 1/10/96, 4:21 pm141

142

ICCH8C–1

strspn string.h

Spans characters in a string.

DECLARATION

size_t strspn(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the subject string.

s2 A pointer to the object string.

RETURN VALUE

The length of the maximum initial segment of the string pointed to by
s1 that consists entirely of characters from the string pointed to by s2.

DESCRIPTION

Finds the maximum initial segment of a subject string that consists
entirely of characters from an object string.

strstr string.h

Searches for a substring.

DECLARATION

char *strstr(const char *s1, const char *s2)

PARAMETERS

s1 A pointer to the subject string.

s2 A pointer to the object string.

strspn

§ 9 Functions ref 1/10/96, 4:21 pm142

143

ICCH8C–1

RETURN VALUE

Result Value

Successful A pointer to the first occurrence in the string pointed
to by s1 of the sequence of characters (excluding the
terminating null character) in the string pointed to by
s2.

Unsuccessful Null if the string was not found. s1 if s2 is pointing to
a string with zero length.

DESCRIPTION

Searches one string for an occurrence of a second string.

strtod stdlib.h

Converts a string to double.

DECLARATION

double strtod(const char *nptr, char **endptr)

PARAMETERS

nptr A pointer to a string.

endptr A pointer to a pointer to a string.

RETURN VALUE

Result Value

Successful The double result of converting the ASCII
representation of an floating-point constant in the
string pointed to by nptr, leaving endptr pointing to
the first character after the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

strtod

§ 9 Functions ref 1/10/96, 4:21 pm143

144

ICCH8C–1

DESCRIPTION

Converts the ASCII representation of a number into a double, stripping
any leading white space.

strtok string.h

Breaks a string into tokens.

DECLARATION

char *strtok(char *s1, const char *s2)

PARAMETERS

s1 A pointer to a string to be broken into tokens.

s2 A pointer to a string of delimiters.

RETURN VALUE

Result Value

Successful A pointer to the token.

Unsuccessful Zero.

DESCRIPTION

Finds the next token in the string s1, separated by one or more
characters from the string of delimiters s2.

The first time you call strtok, s1 should be the string you want to
break into tokens. strtok saves this string. On each subsequent call, s1
should be NULL. strtok searches for the next token in the string it
saved. s2 can be different from call to call.

If strtok finds a token, it returns a pointer to the first character in it.
Otherwise it returns NULL. If the token is not at the end of the string,
strtok replaces the delimiter with a null character (\0).

strtok

§ 9 Functions ref 1/10/96, 4:21 pm144

145

ICCH8C–1

strtol stdlib.h

Converts a string to a long integer.

DECLARATION

long int strtol(const char *nptr, char **endptr, int
base)

PARAMETERS

nptr A pointer to a string.

endptr A pointer to a pointer to a string.

base An int value specifying the base.

RETURN VALUE

Result Value

Successful The long int result of converting the ASCII
representation of an integer constant in the string
pointed to by nptr, leaving endptr pointing to the first
character after the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

DESCRIPTION

Converts the ASCII representation of a number into a long int using
the specified base, and stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer.
Otherwise the expected sequence consists of digits and letters
representing an integer with the radix specified by base (must be
between 2 and 36). The letters [a,z] and [A,Z] are ascribed the values
10 to 35. If the base is 16, the 0x portion of a hex integer is allowed as
the initial sequence.

strtol

§ 9 Functions ref 1/10/96, 4:21 pm145

146

ICCH8C–1

strtoul stdlib.h

Converts a string to an unsigned long integer.

DECLARATION

unsigned long int strtoul(const char *nptr,
char **endptr, base int)

PARAMETERS

nptr A pointer to a string

endptr A pointer to a pointer to a string

base An int value specifying the base.

RETURN VALUE

Result Value

Successful The unsigned long int result of converting the ASCII
representation of an integer constant in the string
pointed to by nptr, leaving endptr pointing to the first
character after the constant.

Unsuccessful Zero, leaving endptr indicating the first non-space
character.

DESCRIPTION

Converts the ASCII representation of a number into an unsigned long
int using the specified base, stripping any leading white space.

If the base is zero the sequence expected is an ordinary integer.
Otherwise the expected sequence consists of digits and letters
representing an integer with the radix specified by base (must be
between 2 and 36). The letters [a,z] and [A,Z] are ascribed the values
10 to 35. If the base is 16, the 0x portion of a hex integer is allowed as
the initial sequence.

strtoul

§ 9 Functions ref 1/10/96, 4:21 pm146

147

ICCH8C–1

strxfrm string.h

Transforms a string and returns the length.

DECLARATION

size_t strxfrm(char *s1, const char *s2, size_t n)

PARAMETERS

s1 Return location of the transformed string.

s2 String to transform.

n Maximum number of characters to be placed in s1.

RETURN VALUE

The length of the transformed string, not including the terminating null
character.

DESCRIPTION

The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value corresponding to the result of the
strcoll function applied to the same two original strings.

tan math.h

Tangent.

DECLARATION

double tan(double arg)

PARAMETERS

arg A double value in radians.

RETURN VALUE

The double tangent of arg.

DESCRIPTION

Computes the tangent of arg radians.

strxfrm

§ 9 Functions ref 1/10/96, 4:21 pm147

148

ICCH8C–1

tanh math.h

Hyperbolic tangent.

DECLARATION

double tanh(double arg)

PARAMETERS

arg A double value in radians.

RETURN VALUE

The double hyperbolic tangent of arg.

DESCRIPTION

Computes the hyperbolic tangent of arg radians.

tolower ctype.h

Converts to lower case.

DECLARATION

int tolower(int c)

PARAMETERS

c The int representation of a character.

RETURN VALUE

The int representation of the lower case character corresponding to c.

DESCRIPTION

Converts a character into lower case.

tanh

§ 9 Functions ref 1/10/96, 4:21 pm148

149

ICCH8C–1

toupper ctype.h

Converts to upper case.

DECLARATION

int toupper(int c)

PARAMETERS

c The int representation of a character.

RETURN VALUE

The int representation of the upper case character corresponding to c.

DESCRIPTION

Converts a character into upper case.

va_arg stdarg.h

Next argument in function call.

DECLARATION

type va_arg(va_list ap, mode)

PARAMETERS

ap A value of type va_list.

mode A type name such that the type of a pointer to an
object that has the specified type can be obtained
simply by postfixing a * to type.

RETURN VALUE

See below.

toupper

§ 9 Functions ref 1/10/96, 4:21 pm149

150

ICCH8C–1

DESCRIPTION

A macro that expands to an expression with the type and value of the
next argument in the function call. After initialization by va_start,
this is the argument after that specified by parmN. va_arg advances ap
to deliver successive arguments in order.

For an example of the use of va_arg and associated macros, see the files
printf.c and intwri.c.

va_end stdarg.h

Ends reading function call arguments.

DECLARATION

void va_end(va_list ap)

PARAMETERS

ap A pointer of type va_list to the variable-argument
list.

RETURN VALUE

See below.

DESCRIPTION

A macro that facilitates normal return from the function whose variable
argument list was referenced by the expansion va_start that initialized
va_list ap.

va_list stdarg.h

Argument list type.

DECLARATION

char *va_list[1]

va_end

§ 9 Functions ref 1/10/96, 4:21 pm150

151

ICCH8C–1

PARAMETERS

None.

RETURN VALUE

See below.

DESCRIPTION

An array type suitable for holding information needed by va_arg and
va_end.

va_start stdarg.h

Starts reading function call arguments.

DECLARATION

void va_start(va_list ap, parmN)

PARAMETERS

ap A pointer of type va_list to the variable-argument
list.

parmN The identifier of the rightmost parameter in the
variable parameter list in the function definition.

RETURN VALUE

See below.

DESCRIPTION

A macro that initializes ap for use by va_arg and va_end.

va_start

§ 9 Functions ref 1/10/96, 4:21 pm151

152

ICCH8C–1

_formatted_read icclbutl.h

Reads formatted data.

DECLARATION

int _formatted_read (const char **line, const char
**format, va_list ap)

PARAMETERS

line A pointer to a pointer to the data to scan.

format A pointer to a pointer to a standard scanf format
specification string.

ap A pointer of type va_list to the variable argument
list.

RETURN VALUE

The number of successful conversions.

DESCRIPTION

Reads formatted data. This function is the basic formatter of scanf.

_formatted_read is concurrently reusable (reentrant).

Note that the use of _formatted_read requires the special ANSI-
defined macros in the file stdarg.h, described above. In particular:

◆ There must be a variable ap of type va_list.

◆ There must be a call to va_start before calling _formatted_read.

◆ There must be a call to va_end before leaving the current context.

◆ The argument to va_start must be the formal parameter
immediately to the left of the variable argument list.

_formatted_read

§ 9 Functions ref 1/10/96, 4:21 pm152

153

ICCH8C–1

_formatted_write icclbutl.h

Formats and writes data.

DECLARATION

int _formatted_write (const char *format, void outputf
(char, void *), void *sp, va_list ap)

PARAMETERS

format A pointer to standard printf/sprintf format
specification string.

outputf A function pointer to a routine that actually writes a
single character created by _formatted_write. The
first parameter to this function contains the actual
character value and the second a pointer whose value is
always equivalent to the third parameter of
_formatted_write.

sp A pointer to some type of data structure that the low-
level output function may need. If there is no need for
anything more than just the character value, this
parameter must still be specified with (void *) 0 as
well as declared in the output function.

ap A pointer of type va_list to the variable-argument
list.

RETURN VALUE

The number of characters written.

DESCRIPTION

Formats write data. This function is the basic formatter of printf and
sprintf, but through its universal interface can easily be adapted for
writing to non-standard display devices.

Since a complete formatter demands a lot of space there are several
different formatters to choose. For more information see the chapter
Configuration.

_formatted_write is concurrently reusable (reentrant).

_formatted_write

§ 9 Functions ref 1/10/96, 4:21 pm153

154

ICCH8C–1

_medium_read

Note that the use of _formatted_write requires the special ANSI-
defined macros in the file stdarg.h, described above. In particular:

◆ There must be a variable ap of type va_list.

◆ There must be a call to va_start before calling
_formatted_write.

◆ There must be a call to va_end before leaving the current context.

◆ The argument to va_start must be the formal parameter
immediately to the left of the variable argument list.

For an example of how to use _formatted_write, see the file
printf.c.

_medium_read icclbutl.h

Reads formatted data excluding floating-point numbers.

DECLARATION

int _medium_read (const char **line, const char **format,
va_list ap)

PARAMETERS

line A pointer to a pointer to the data to scan.

format A pointer to a pointer to a standard scanf format
specification string.

ap A pointer of type va_list to the variable argument
list.

RETURN VALUE

The number of successful conversions.

DESCRIPTION

A reduced version of _formatted_read which is half the size, but does
not support floating-point numbers.

For further information see _formatted_read.

§ 9 Functions ref 1/10/96, 4:21 pm154

155

ICCH8C–1

_medium_write icclbutl.h

Writes formatted data excluding floating-point numbers.

DECLARATION

int _medium_write (const char *format, void outputf(char,
void *), void *sp, va_list ap)

PARAMETERS

format A pointer to standard printf/sprintf format
specification string.

outputf A function pointer to a routine that actually writes a
single character created by _formatted_write. The
first parameter to this function contains the actual
character value and the second a pointer whose value is
always equivalent to the third parameter of
_formatted_write.

sp A pointer to some type of data structure that the low-
level output function may need. If there is no need for
anything more than just the character value, this
parameter must still be specified with (void *) 0 as
well as declared in the output function.

ap A pointer of type va_list to the variable-argument
list.

RETURN VALUE

The number of characters written.

DESCRIPTION

A reduced version of _formatted_write which is half the size, but
does not support floating-point numbers.

For further information see _formatted_write.

_medium_write

§ 9 Functions ref 1/10/96, 4:21 pm155

156

ICCH8C–1

_small_write

_small_write icclbutl.h

Small formatted data write routine.

DECLARATION

int _small_write (const char *format, void outputf (char,
void *), void *sp, va_list ap)

PARAMETERS

format A pointer to standard printf/sprintf format
specification string.

outputf A function pointer to a routine that actually writes a
single character created by _formatted_write. The
first parameter to this function contains the actual
character value and the second a pointer whose value is
always equivalent to the third parameter of
_formatted_write.

sp A pointer to some type of data structure that the low-
level output function may need. If there is no need for
anything more than just the character value, this
parameter must still be specified with (void *) 0 as
well as declared in the output function.

ap A pointer of type va_list to the variable-argument list.

RETURN VALUE

The number of characters written.

DESCRIPTION

This is a small version of _formatted_write which is about a quarter
of the size.

The _small_write formatter supports only the following specifiers for
int objects:

%%, %d, %o, %c, %s, and %x

It does not support field width or precision arguments, and no diagnostics
will be produced if unsupported specifiers or modifiers are used.

For further information see _formatted_write.

§ 9 Functions ref 1/10/96, 4:21 pm156

157

ICCH8C–1

LANGUAGE EXTENSIONS
This chapter summarizes the extensions provided in the H8 C␣ Compiler
to support specific features of the H8 microprocessor.

INTRODUCTION The extensions are provided in three ways:

◆ As extended keywords. By default, the compiler conforms to the
ANSI specifications and H8 extensions are not available. The
command line option -e makes the extended keywords available,
and hence reserves them so that they cannot be used as variable
names.

◆ As #pragma keywords. These provide #pragma directives which
control how the compiler allocates memory, whether the compiler
allows extended keywords, and whether the compiler outputs
warning messages.

◆ As intrinsic functions. These provide direct access to very low-level
processor details.

The extended keywords provide the following facilities:

BIT VARIABLES

The program may take advantage of the H8 bit-addressing modes by
using the following data type:

bit

ADDRESSING CONTROL

By default the address range in which the compiler places a variable is
determined by the memory model chosen. The program may achieve
additional efficiency for special cases by overriding the default by using
one of the storage modifiers:

tiny, near, far, huge.

EXTENDED KEYWORDS
SUMMARY

§10 Extensions 1/10/96, 4:21 pm157

LANGUAGE EXTENSIONS

158

ICCH8C–1

I/O ACCESS

The program may access the H8 I/O system using the following data
types:

sfr, sfrp.

NON-VOLATILE RAM

Variables may be placed in non-volatile RAM by using the following
data type modifier:

no_init.

FUNCTION POINTERS

Function pointers are near_func in the small memory model and
far_func in the large memory model. These defaults can be overridden
by use of the tiny_func modifier:

far_func, near_func, tiny_func.

INTERRUPT ROUTINES

Interrupt handlers and non-interruptable routines may be written in C
using the following keywords:

interrupt, monitor.

#pragma directives provide control of extension features while
remaining within the standard language syntax.

Note that #pragma directives are available regardless of the -e option.

The following categories of #pragma functions are available:

BITFIELD ORIENTATION

#pragma bitfield=default
#pragma bitfield=reversed

CODE SEGMENT

#pragma codeseg(seg-name)

#PRAGMA DIRECTIVE
SUMMARY

§10 Extensions 1/10/96, 4:21 pm158

LANGUAGE EXTENSIONS

159

ICCH8C–1

EXTENSION CONTROL

#pragma language=default
#pragma language=extended

FUNCTION ATTRIBUTE

#pragma function=default
#pragma function=interrupt
#pragma function=intrinsic
#pragma function=monitor
#pragma function=tiny_func

MEMORY USAGE

#pragma memory=constseg(seg-name)[:type]
#pragma memory=dataseg(seg-name)[:type]
#pragma memory=default
#pragma memory=far
#pragma memory=huge
#pragma memory=near
#pragma memory=no_init
#pragma memory=tiny

WARNING MESSAGE CONTROL

#pragma warnings=default
#pragma warnings=off
#pragma warnings=on

Predefined symbols allow inspection of the compile-time environment.

Function Description

__DATE__ Current date in Mmm dd yyyy format.

__FILE__ Current source filename.

__IAR_SYSTEMS_ICC IAR C compiler identifier.

__LINE__ Current source line number.

__STDC__ ANSI C compiler identifier.

PREDEFINED SYMBOLS
SUMMARY

§10 Extensions 1/10/96, 4:21 pm159

LANGUAGE EXTENSIONS

160

ICCH8C–1

Function Description

__TID__ Target identifier.

__TIME__ Current time in hh:mm:ss format.

__VER__ Returns the version number as an int.

Intrinsic functions allow very low-level control of the H8
microprocessor. To use them in a C application, include the header file
inh8.h. The intrinsic functions compile into in-line code, either a single
instruction or a short sequence of instructions.

For details concerning the effects of the intrinsic functions, see the
manufacturer’s documentation of the H8 processor.

GENERAL INTRINSICS

The following intrinsics are available for all processor groups:

Intrinsic Description

_args$ Returns an array of the parameters to a
function.

_argt$ Returns the type of the parameter.

and_ccr ANDs to the CCR register.

dadd Performs decimal addition.

disable_max_time Sets the maximum interrupt disable time.

do_byte_eepmov (eepmov) Copies a sequence of bytes.

do_word_eepmov (eepmov) Copies a sequence of words.

dsub Performs decimal subtraction.

func_stack_base Returns the function stack base address.

get_imask_ccr Returns the interrupt mask of the
condition code register.

no_operation Executes the NOP instruction.

or_ccr ORs to the CCR register.

INTRINSIC FUNCTION
SUMMARY

§10 Extensions 1/10/96, 4:21 pm160

LANGUAGE EXTENSIONS

161

ICCH8C–1

Intrinsic Description

ovfaddc, ovfaddw, Adds 1-byte, 2-byte, or 4-byte data with
ovfaddl overflow check.

ovfnegc, ovfnegw, Negates 1-byte, 2-byte, or 4-byte data with
ovfnegl overflow check.

ovfshalc, ovfshalw, Arithmetically shifts 1-byte, 2-byte, or
ovfshall 4-byte data with overflow check

ovfsubc, ovfsubw, Subtracts 1-byte, 2-byte, or 4-byte data
ovfsubl with overflow check.

read_ccr (get_ccr) Reads the CCR register.

rotlc, rotlw, Rotates 1-byte, 2-byte, or 4-byte data to the
rotll left.

rotrc, rotrw, Rotates 1-byte, 2-byte, or 4-byte data to the
rotrl right.

set_imask_ccr Sets the interrupt mask of the condition
code register.

set_interrupt_mask Sets the interrupt priority level.

sleep Executes the SLEEP instruction.

tas Executes the TAS instruction.

trapa Executes the TRAPA instruction.

write_ccr (set_ccr) Writes to the CCR register.

xor_ccr Exclusive-ORs to the CCR register.

§10 Extensions 1/10/96, 4:21 pm161

LANGUAGE EXTENSIONS

162

ICCH8C–1

H8S/2600 INTRINSIC FUNCTIONS

The following additional intrinsic functions are available for the
H8S⁄2600 processor group, selected using the -v2 command line option:

Intrinsic Description

and_exr ANDs to the EXR register.

get_imask_exr Returns the interrupt mask of the extend
register.

mac Performs multiply and accumulate.

macl Performs multiply and accumulate logical.

or_exr ORs to the EXR register.

read_exr (get_exr) Reads the EXR register.

read_hi_mac Reads MACH.

read_mac Reads MACL.

repeat_mac Inserts a loop with the MAC instruction.

set_imask_exr Sets the interrupt mask of the extend
register.

single_mac Performs a single MAC instruction.

write_exr (set_exr) Writes to the EXR register.

write_ext_mac Writes to MACH and MACL.

write_mac Clears the MAC and writes to MACL.

xor_exr XORs to the EXR register.

OTHER EXTENSIONS $ CHARACTER

The character $ has been added to the set of valid characters in
identifiers for compatibility with DEC/VMS C.

USE OF SIZEOF AT COMPILE TIME

The ANSI-specified restriction that the sizeof operator cannot be used
in #if and #elif expressions has been eliminated.

§10 Extensions 1/10/96, 4:22 pm162

163

ICCH8C–1

EXTENDED KEYWORD
REFERENCE
This chapter describes the extended keywords in alphabetical order.

The following general parameters are used in several of the definitions:

Parameter What it means

storage-class Denotes an optional keyword extern or static.

declarator Denotes a standard C variable or function declarator.

bit Declares a bit variable.

SYNTAX – RELOCATABLE ADDRESS

bit identifier

SYNTAX – FIXED ADDRESS

bit identifier = constant-expression.bit-selector

SYNTAX – SFR

bit identifier = sfr-identifier.bit-selector

DESCRIPTION

The bit variable is a variable whose storage is a single bit. It may have
values 0 and 1 only. Bit variables should not be confused with the C
standard bitfields.

§11 Extended keyword 1/10/96, 4:22 pm163

164

ICCH8C–1

A bit variable can be one of three kinds:

Bit variable type Description

Relocatable address -v0 option: the variable is one bit of an ordinary
relocatable variable in the tiny address range
0xFFFFFF00 to 0xFFFFFFFF.

-v2 and -v3 options: the variable is one bit of
an ordinary relocatable variable in the near
address range 0xFFFF8000 to 0x00007FFF.

Fixed address Must be in the bit addressable area 0x00000000
to 0x0FFFFFFF or 0xF0000000 to 0xFFFFFFFF.

sfr The variable is one bit of an sfr variable.

far Storage and pointer modifier.

SYNTAX

storage-class far declarator
storage-class far * declarator

DESCRIPTION

The far modifier can only be specified in the large memory model,
where it is the default. It allows you to specify far addressing when you
have overridden the default with a #pragma directive.

EXAMPLES

The following large memory model program makes the default
addressing mode huge and then specifies that buffer is far:

#pragma memory=huge
int i; /* huge variable */
far char buffer[1000]; /* large buffer in far memory */

The program needs a pointer into the far buffer:

char far *buffer_pointer;

Here the far keyword immediately before * denotes a pointer of type
far.

far

§11 Extended keyword 1/10/96, 4:22 pm164

165

ICCH8C–1

However, the following statement declares buffer1 to be in far
memory, while buffer2 is placed in the default data area:

char far buffer1[1000], buffer2[1000];

far_func Function or function pointer modifier.

SYNTAX

far_func function-declarator
storage-class far_func * declarator

DESCRIPTION

The far_func modifier specifies that the far_func calling mechanism
is to be used for the function, or that a pointer points to a function
declared with far_func.

In the large memory model the compiler uses the far_func mechanism
by default, so you do not normally need to use the far_func modifier. It
is provided so that if you use the #pragma directive to change the
default mechanism, you can specify the far_func mechanism for an
individual declaration.

In the small model, the far_func mechanism is not available.

EXAMPLE

#pragma function=tiny_func
/* Set default to tiny_func */

far_func void func2(void) /* declare far_func
function */

{
 ...
}
void (far_func * pi)()=func2; /* pointer to above */

far_func

§11 Extended keyword 1/10/96, 4:22 pm165

166

ICCH8C–1

huge Storage and pointer modifier.

SYNTAX

storage-class huge declarator
storage-class huge * declarator

DESCRIPTION

The huge modifier can only be specified in the large memory model to
override the default far addressing.

The huge modifier allows you to declare a data object in the huge
segment with no restriction on size, or to specify that a pointer is to
point to a data object in a huge segment. This lets you use additional
memory for storing very large data objects.

EXAMPLES

The program defines a buffer using huge addressing:

int i; /* default far variable */
huge char buffer[0x20000]; /* buffer larger than far

capacity */

interrupt Declare interrupt function.

SYNTAX

storage-class interrupt function-declarator
storage-class interrupt [vector] function-declarator
storage-class interrupt ccr_mask [mask] function-declarator
storage-class interrupt [vector] ccr_mask [mask]
function-declarator

PARAMETERS

function-declarator A function declarator.

[vector] A square-bracketed constant expression
yielding the vector address.

[mask] A square-bracketed constant expression
yielding the CCR mask.

huge

§11 Extended keyword 1/10/96, 4:22 pm166

167

ICCH8C–1

DESCRIPTION

The interrupt keyword declares a function that is called upon a
processor interrupt.

If the vector is a TRAPA vector, the interrupt function is allowed both to
have parameters and return values. This is a software interrupt. The
compiler will generate TRAPA instructions where these functions are
called.

For other vectors the function must be void and have no arguments.

If a vector is specified, the address of the function is inserted in that
vector. If no vector is specified, the user must provide an appropriate
entry in the vector table (preferably placed in the cstartup module) for
the interrupt function.

If a ccr_mask is specified, the first instruction of the function is
manipulating the ccr register according to the specified mask. The low
byte of the mask specifies the value which should be used. The high
byte of the mask specifies the operation which should be used. 0 is ldc,
1 is andc, 2 is orc, and 3 is xorc. If no vector is specified, no
manipulation of the ccr is done.

The run-time interrupt handler takes care of saving and restoring
processor registers, and returning via the RTE instruction.

The compiler disallows calls to non-TRAPA interrupt functions from the
program itself. It does allow interrupt function addresses to be passed to
function pointers which do not have the interrupt attribute. This is
useful for installing interrupt handlers in conjunction with operating
systems.

EXAMPLES

Several include files are provided that define specific interrupt
functions; see Run-time library, page 63. To use a predefined interrupt
define it with a statement:

interrupt void name(void)
{}

where name is the name of the interrupt function.

interrupt

§11 Extended keyword 1/10/96, 4:22 pm167

168

ICCH8C–1

interrupt [0x4E] void SIO_interrupt(void)
{
 my_char=SBUF_RX;
 P1_REG=my_char;
}

monitor Makes function atomic.

SYNTAX

storage-class monitor function-declarator

DESCRIPTION

The monitor keyword causes interrupts to be disabled during execution
of the function. This allows atomic operations to be performed, such as
operations on semaphores that control access to resources by multiple
processes.

A function declared with monitor is equivalent to a normal function in
all other respects.

EXAMPLES

The example below disables interrupts while the flag is tested. If the flag
is not set, it is set. Interrupts are set to their previous state when the
functions exits.

char printer_free; /* printer-free
semaphore */

monitor int got_flag(char *flag) /* With no danger of
interruption ... */

{
 if (!*flag) /* test if available */
 {
 return (*flag = 1); /* yes - take */
 }
 return (0); /* no - do not take */
}
void f(void)
{

monitor

§11 Extended keyword 1/10/96, 4:22 pm168

169

ICCH8C–1

 if (got_flag(&printer_free)) /* act only if
printer is free */

 action code
}

near Storage and pointer modifier.

SYNTAX

storage-class near declarator
storage-class near * declarator

DESCRIPTION

In the large memory model, the compiler normally places data objects in
the far segment, accessing them by 32-bit addressing, and also allocates
space for a far address in pointers to such data objects.

The near modifier allows you to place a data object in the near segment,
where it is accessed by a more efficient 16-bit addressing mode, or to
specify that a pointer is to point to a data object in a near segment. This
lets you place frequently-accessed variables so they will be accessed more
efficiently, and so that pointers to them will occupy 16 rather than 32 bits.

EXAMPLE

int i; /* variable in default area */
near int in; /* variable in near area */
int * pi; /* pointer to variable in default

area */
near int * pi; /* pointer to variable in near area

(pointer itself in default area) */
near int near * pi; /* pointer to variable in near area

(pointer itself also in near area) */

See also the examples for far, page 164.

near

§11 Extended keyword 1/10/96, 4:22 pm169

170

ICCH8C–1

near_func Function or function pointer modifier.

SYNTAX

near_func function-declarator
storage-class near_func * declarator

DESCRIPTION

The near_func modifier can only be specified in the small memory
model, where it is the default. It allows you to define a near_func
function when you have overridden the default with a #pragma
directive.

EXAMPLE

#pragma function=tiny_func
/* Set default to tiny_func */

near_func void func2(void) /* declare near_func
 function */

{
 ...
}
void (near_func * pi)()=func2; /* pointer to above */

no_init Type modifier for non-volatile variables.

SYNTAX

storage-class no_init declarator

DESCRIPTION

By default, the compiler places variables in main, volatile RAM and
initializes them on start-up. The no_init type modifier causes the
compiler to place the variable in non-volatile RAM (or EEPROM) and
not to initialize it on start-up.

no_init variable declarations may not include initializers.

near_func

§11 Extended keyword 1/10/96, 4:22 pm170

171

ICCH8C–1

If non-volatile memory is used, it is essential for the program to be
linked to refer to the non-volatile RAM area. For details, see Non-
volatile RAM, page 64.

EXAMPLES

The examples below show valid and invalid uses of the no_init
modifier.

no_init int settings[50]; /* array of non-volatile
settings */

no_init far i ; /* conflicting type
modifiers - invalid */

no_init int i = 1 ; /* initializer included -
invalid */

sfr Declare object of one-byte I/O data type.

SYNTAX

sfr identifier = constant-expression

DESCRIPTION

sfr denotes an I/O register which:

◆ Is equivalent to unsigned char.

◆ Can only be directly addressable; ie the & operator cannot be used.

The value of an sfr variable is the contents of the SFR register at the
address constant-expression. All operators that apply to integral
types except the unary & (address) operator may be applied to sfr
variables.

In expressions, sfr variables may also be appended by a period followed
by a bit-selector provided they lie in the bit area 0x00000000 to
0x0FFFFFFF or 0xF0000000 to 0xFFFFFFFF.

EXAMPLES

sfr P2 = 0xFFFFFF80; /* Defines P2 */
void func()

sfr

§11 Extended keyword 1/10/96, 4:22 pm171

172

ICCH8C–1

{
 P2 = 4; /* Set entire variable P2

= 00000100 */
 P2.2 = 1; /* Only affects one bit

P2 = XXXXX1XX*/
 if (P2 & 4) printf("ON"); /* Read entire P2 and

mask bit 2 */
 if (P2.2) printf("ON"); /* Same but does bit

 access only */
}

sfrp Declare object of two-byte I/O data type.

SYNTAX

sfrp identifier = constant-expression

DESCRIPTION

sfrp denotes an I/O register which:

◆ Is equivalent to unsigned short.

◆ Can only be directly addressable; ie the & operator cannot be used.

The value of an sfrp variable is the contents of the SFR register at the
address constant-expression. All operators that apply to integral
types except the unary & (address) operator may be applied to sfrp
variables.

In expressions, sfrp variables may be appended by a period followed by
a bit-selector provided they lie in the bit area 0x00000000 to
0x0FFFFFFF or 0xF0000000 to 0xFFFFFFFF.

EXAMPLES

sfrp P3CR = 0xFFFFFF90; /* Defines P3CR */
void func(void)
{
 P3CR = 0x400; /* Set entire variable

P3CR = 00000100 00000000 */
 P3CR.10 = 1; /* Only affects one bit

P3CR = xxxxx1xx xxxxxxxx */

sfrp

§11 Extended keyword 1/10/96, 4:22 pm172

173

ICCH8C–1

 if (P3CR & 4) printf("ON"); /* read entire P3CR and
mask bit 10 */

 if (P3CR.10) printf("ON"); /* Same but does bit access
only */

}

tiny Storage modifier.

SYNTAX

storage-class tiny declarator

DESCRIPTION

The tiny modifier causes a data object to be placed in the tiny segment,
0xFFFFFF00 to 0xFFFFFFFF, so it is accessed with the more-efficient
8-bit addressing mode. This lets you place frequently-used objects so
they will be accessed most efficiently.

EXAMPLE

int i; /* variable in near segment */
tiny int is; /* variable in tiny segment */

tiny_func Function modifier.

SYNTAX

tiny_func function-declarator

DESCRIPTION

The tiny_func modifier causes the tiny_func calling mechanism to
be used, even when this is not the default mechanism for the selected
memory model.

tiny_func functions are called indirectly via an exception vector.

tiny

§11 Extended keyword 1/10/96, 4:22 pm173

174

ICCH8C–1

tiny_func

EXAMPLES

The following example shows a function myfun declared tiny_func:

#pragma language=extended
tiny_func void myfun()

§11 Extended keyword 1/10/96, 4:22 pm174

175

ICCH8C–1

#PRAGMA DIRECTIVE
REFERENCE
This chapter describes the #pragma directives in alphabetical order.

bitfields=default Restores default order of storage of bitfields.

SYNTAX

#pragma bitfields = default

DESCRIPTION

Causes the compiler to allocate bitfields in its normal order. See
bitfields=reversed.

bitfields=reversed Reverses order of storage of bitfields.

SYNTAX

#pragma bitfields=reversed

DESCRIPTION

Causes the compiler to allocate bitfields starting at the most significant
bit of the field, instead of at the least significant bit. The ANSI standard
allows the storage order to be implementation dependent, so you can
use this keyword to avoid portability problems.

EXAMPLES

The default layout of the following structure in memory is given in the
diagram below:

struct
{
 short a:3; /* a is 3 bits */
 short :5; /* this reserves a hole of 5 bits */

§12 Pragma ref 1/10/96, 4:22 pm175

176

ICCH8C–1

 short b:4; /* b is 4 bits */
} bits; /* bits is 16 bits */

37 2 011

hole (4) b: 4

81215

hole (5) a: 3

For comparison, the following structure has the layout shown in the
diagram below:

#pragma bitfields=reversed
struct
{
 short a:3; /* a is 3 bits */
 short :5; /* this reserves a hole of 5 bits */
 short b:4; /* b is 4 bits */
} bits; /* bits is 16 bits */

4712 81315 3 0

hole (4)a: 3 hole (5) b: 4

codeseg Sets the code segment name.

SYNTAX

#pragma codeseg(seg_name)

where seg_name specifies the segment name, which must not conflict
with data segments.

DESCRIPTION

This directive places subsequent code in the named segment and is
equivalent to using the -R option.

EXAMPLES

The following example defines the code segment as ROM:

#pragma codeseg(ROM)

codeseg

§12 Pragma ref 1/10/96, 4:22 pm176

177

ICCH8C–1

function=default Restores function definitions to the default type.

SYNTAX

#pragma function=default

DESCRIPTION

Returns function definitions to near_func or far_func, as set by the
selected memory model.

EXAMPLES

The example below specifies that an external function f1 can be called
as a tiny_func function, while f3 is the default type (near_func or
far_func depending on the compiler options).

#pragma function=tiny_func
extern void f1(); /* Identical to extern

tiny_func void f1() */
#pragma function=default
extern int f3(); /* Default function type */

function=interrupt Makes function definitions interrupt.

SYNTAX

#pragma function=interrupt

DESCRIPTION

This directive makes subsequent function definitions of interrupt
type. It is an alternative to the function attribute interrupt.

Note that #pragma function=interrupt does not offer a vector
option.

EXAMPLES

The example below shows an interrupt function process_int (the
address of this function must be placed into the INTVEC table).

#pragma function=interrupt
void process_int() /* an interrupt function */

function=default

§12 Pragma ref 1/10/96, 4:22 pm177

178

ICCH8C–1

{
 ...
}
#pragma function=default

function=intrinsic Replaces a function by an in-line code sequence.

SYNTAX

#pragma function=intrinsic(n)

PARAMETERS

n Determines when intrinsic functions are produced as
in-line code:

n Condition

0 Controlled by the C compiler -s option.

1 Always on.

2 Controlled by the C compiler -s or -z options.

3 Controlled by the C compiler -s option.

See Optimize for speed (-s), page 42, and Optimize for size (-z), page 44.

DESCRIPTION

Calls to certain C library functions can be replaced by an in-line
sequence performed by the code-generator. This can change the
characteristics of a function which may be undesirable. Therefore this
optimization can be controlled by:

◆ A #pragma making the parser recognize intrinsic functions.

◆ An ANSI declaration found before the call.

If the call is rewritten into in-line the code looks like any other operator
rather than a function call. That is because there is no need for the
administration often required for function calls.

See also the chapter Intrinsic function reference.

function=intrinsic

§12 Pragma ref 1/10/96, 4:22 pm178

179

ICCH8C–1

EXAMPLE

The code below is from the include file string.h:

#if __TID__ & 0x8000 /* This processor knows
intrinsics */

#pragma function=intrinsic(n) /* "n" = 0 (see below) */
#endif
/* And now the declarations */
extern char *strcpy (char *, const char *);
extern int strlen (const char *);
#if __TID__ & 0x8000
#pragma function=default /* Back to normal */
#endif

The high bit in __TID__ indicates that the compiler supports this
feature.

When an intrinsic function is found no external declaration is
generated. However, as ANSI requires that it should also be possible to
specify standard functions explicitly, there must also be a ‘real’ function
in a library as well:

extern char *strcpy(char *, const char *);
/* Explicit declaration
*/

char arr[80];
main()
{
 strcpy(arr,"hey"); /* Calls "real" function

*/
}

Also, as it is possible to refer to functions indirectly, there will be
external declarations if such are performed on intrinsic functions. The
direct call though will be intrinsic.

#include <string.h>
char (*fp)(char *, const char *) = strcpy;

/* Indirect refer to lib */
char arr[80];
main()

{

function=intrinsic

§12 Pragma ref 1/10/96, 4:22 pm179

180

ICCH8C–1

 strcpy(arr,"hey"); /* Intrinsic call/code */
}

When an intrinsic function definition (body) is found it will be treated
as a standard function but calls to it will still be intrinsic. This can be
used to create a minimal (and fast) ANSI-compatible library:

#include <string.h>
char *strcpy(char * d, const char *s)

/* "real" function entry */
{
 return (strcpy(d,s)); /* Intrinsic call/code */
}

function=monitor Makes function definitions atomic (non-interruptable).

SYNTAX

#pragma function=monitor

DESCRIPTION

Makes subsequent function definitions of monitor type. It is an
alternative to the function attribute monitor.

EXAMPLES

The function f2 below will execute with interrupts temporarily
disabled.

#pragma function=monitor
void f2() /* Will make f2 a monitor function */
{
 ...
}
#pragma function=default

function=tiny_func Make subsequent function definitions default to the corresponding type.

SYNTAX

#pragma function=tiny_func

function=monitor

§12 Pragma ref 1/10/96, 4:22 pm180

181

ICCH8C–1

DESCRIPTION

These directives are alternatives to the function attributes.

EXAMPLE

#pragma function=tiny_func
void f2() /* Will make f2 a tiny_func

function */
 {
 }

Make subsequent function definitions default to the corresponding type.

language=default Restores availability of extended keywords to default.

SYNTAX

#pragma language=default

DESCRIPTION

Returns extended keyword availability to the default set by the C
compiler -e option. See language=extended.

EXAMPLES

See the example language=extended below.

language=extended Makes extended keywords available.

SYNTAX

#pragma language=extended

DESCRIPTION

Makes the extended keywords available regardless of the state of the C
compiler -e option; see Language extensions (-e), page 36.

language=default

§12 Pragma ref 1/10/96, 4:22 pm181

182

ICCH8C–1

EXAMPLE

In the example below, the tiny extended language modifier is enabled
for the definition of the variable ccount. The variable mycount is
defined in the standard way.

#pragma language=extended
tiny int ccount; /* use single-byte addressing*/
#pragma language=default
int mycount;

memory=constseg Directs constants to the named segment by default.

SYNTAX

#pragma memory=constseg(seg_name)[:type]

DESCRIPTION

Directs constants to the named segment by default. It is an alternative
to the memory attribute keywords. The default may be overridden by
the memory attributes.

The segment must not be one of the compiler’s reserved segment names.

The optional argument type can be used to specify the storage type, and
can be one of:

tiny, near, far, or huge.

If omitted, constants will be placed in the default memory type.

EXAMPLE

The example below places the constant array arr into the ROM
segment TABLE.

#pragma memory=constseg(TABLE)
char ar[] = {6, 9, 2, -5, 0};
#pragma memory = default

If another module accesses the array it must use an equivalent
declaration:

#pragma memory=constseg(TABLE)
extern char * arr;

memory=constseg

§12 Pragma ref 1/10/96, 4:22 pm182

183

ICCH8C–1

memory=dataseg Directs variables to the named segment by default.

SYNTAX

#pragma memory=dataseg(seg_name)[:type]

DESCRIPTION

Directs variables to the named segment by default. The default may be
overridden by the memory attributes.

The optional argument type can be used to specify the storage type, and
can be one of:

tiny, near, far, or huge.

If omitted, variables will be placed in the default memory type.

No initial values may be supplied in the variable definitions. Up to 10
different alternate data segments can be defined in any given module.
You can switch to any previously defined data segment name at any
point in the program.

EXAMPLE

The example below places three variables into the read/write area called
USART.

#pragma memory=dataseg(USART)
char USART_data; /* offset 0 */
char USART_control; /* offset 1 */
int USART_rate; /* offset 2, 3 */
#pragma memory = default

If another module wishes to access these symbols, the equivalent
extern declaration should be used:

#pragma memory=dataseg(USART)
extern char USART_data;

memory=dataseg

§12 Pragma ref 1/10/96, 4:22 pm183

184

ICCH8C–1

memory=default

memory=default Restores memory allocation of objects to the default area.

SYNTAX

#pragma memory=default

DESCRIPTION

Restores memory allocation of objects to the default area, as specified by
the memory model in use.

memory=far Directs variables to the far segment by default.

SYNTAX

#pragma memory=far

DESCRIPTION

Directs variables to the far area by default. This is only valid in the
large memory model, where it is the default.

EXAMPLE

The example places the variable buffer into huge memory. It then
restores far addressing for variable i:

#pragma memory=huge
int buffer[1000]; /* Buffer in huge memory */
#pragma memory=far
int i; /* Default far memory type */

memory=huge Directs variables to the huge segment by default.

SYNTAX

#pragma memory=huge

DESCRIPTION

Directs variables to the huge area by default. This is only valid in the large
memory model. The default can be overridden by the memory attribute.

§12 Pragma ref 1/10/96, 4:22 pm184

185

ICCH8C–1

memory=near

EXAMPLE

The example places the variables buffer and d into huge memory. The
no_init attribute of strings forces it into no_init memory.

#pragma memory=huge
int buffer[1000]; /* Buffer in huge memory

*/
extern double d; /* Variable in huge

memory */
no_init char *strings[5]; /* Overrides to no_init

memory */
#pragma memory=default
inti i; /* Default memory type */

memory=near Directs variables to the near segment by default.

SYNTAX

#pragma memory=near

DESCRIPTION

Directs variables to the near area by default. The default can be
overridden by the memory attribute.

EXAMPLE

The example places the variables buffer and d into near memory. The
no_init attribute of strings forces it into no_init memory.

#pragma memory=near
int buffer[1000]; /* Buffer in near memory */
extern double d; /* Variable in near

memory */
no_init char *strings[5]; /* Overrides to no_init

memory */
#pragma memory=default
inti i; /* Default memory type */

§12 Pragma ref 1/10/96, 4:22 pm185

186

ICCH8C–1

memory=no_init

memory=no_init Directs variables to the NO_INIT segment by default.

SYNTAX

#pragma memory=no_init

DESCRIPTION

Directs variables to the NO_INIT segment, so that they will not be
initialized and will reside in non-volatile RAM. It is an alternative to
the memory attribute no_init. The default may be overridden by the
memory attributes.

The NO_INIT segment must be linked to coincide with the physical
address of non-volatile RAM; see the chapter Configuration for details.

EXAMPLES

The example below places the variable buffer into non-initialized
memory. Variables i and j are placed into the DATA area.

#pragma memory=no_init
char buffer[1000]; /* in uninitialized memory */
#pragma memory=default
int i,j; /* default memory type */

Note that a non-default memory #pragma will generate error messages
if function declarators are encountered. Local variables and parameters
cannot reside in any other segment than their default segment, the
stack.

memory=tiny Directs variables to the tiny segment by default.

SYNTAX

#pragma memory=tiny

DESCRIPTION

Directs variables to the tiny area by default. The default can be
overridden by the memory attribute.

§12 Pragma ref 1/10/96, 4:22 pm186

187

ICCH8C–1

warnings=default Restores compiler warning output to default state

SYNTAX

#pragma warnings=default

DESCRIPTION

Returns the output of compiler warning messages to the default set by
the C compiler -w option. See #pragma warnings=on and #pragma
warnings=off.

warnings=off Turns off output of compiler warnings.

SYNTAX

#pragma warnings=off

DESCRIPTION

Disables output of compiler warning messages regardless of the state of
the C compiler -w option; see Disable warnings (-w), page 43.

warnings=on Turns on output of compiler warnings.

SYNTAX

#pragma warnings=on

DESCRIPTION

Enables output of compiler warning messages regardless of the state of
the C compiler -w option; see Disable warnings (-w), page 43.

warnings=default

§12 Pragma ref 1/10/96, 4:22 pm187

188

ICCH8C–1

warnings=on

§12 Pragma ref 1/10/96, 4:22 pm188

189

ICCH8C–1

PREDEFINED SYMBOLS
REFERENCE
This chapter gives reference information about the symbols predefined
by the compiler.

__DATE__ Current date.

SYNTAX

__DATE__

DESCRIPTION

The date of compilation is returned in the form Mmm dd yyyy.

__FILE__ Current source filename.

SYNTAX

__FILE__

DESCRIPTION

The name of the file currently being compiled is returned.

IAR C compiler identifier.

SYNTAX

__IAR_SYSTEMS_ICC

DESCRIPTION

The number 1 is returned. This symbol can be tested with #ifdef to
detect being compiled by an IAR Systems C Compiler.

__IAR_SYSTEMS
_ICC

§13 Predefined symbols 1/10/96, 4:23 pm189

190

ICCH8C–1

__LINE__ Current source line number.

SYNTAX

__LINE__

DESCRIPTION

The current line number of the file currently being compiled is
returned.

__STDC__ IAR C compiler identifier.

SYNTAX

__STDC__

DESCRIPTION

The number 1 is returned. This symbol can be tested with #ifdef to
detect being compiled by an ANSI C compiler.

__TID__ Target identifier.

SYNTAX

__TID__

DESCRIPTION

The target identifier contains a number unique for each IAR Systems
C␣ Compiler (ie unique for each target), the intrinsic flag, the value of
the -v option, and the value corresponding to the -m option:

Target_IDENT, unique
to each target processor

47 3 014 815

-v option value,
if supported

-m option value,
if supported

Intrinsic
support

1631

(not used)

__LINE__

§13 Predefined symbols 1/10/96, 4:23 pm190

191

ICCH8C–1

The __TID__ value is constructed as:

(0x8000 | (t << 8) | (v << 4) |m)

You can extract the values as follows:

f = (__TID__) & 0x8000;
t = (__TID__ >> 8) & 0x7F;
v = (__TID__ >> 4) & 0xF;
m = __TID__ & 0x0F;

Note that there are two underscores at each end of the macro name.

To find the value of Target_IDENT for the current compiler, execute:

printf("%ld",(__TID__>>8)&0x7F)

For an example of the use of __TID__, see the file stdarg.h.

The highest bit 0x8000 is set in the H8 C Compiler to indicate that the
compiler recognizes intrinsic functions. This may affect how you write
header files.

__TIME__ Current time.

SYNTAX

__TIME__

DESCRIPTION

The time of compilation is returned in the form hh:mm:ss.

__VER__ Returns the compiler version number.

SYNTAX

__VER__

DESCRIPTION

The version number of the compiler is returned as an int.

__TIME__

§13 Predefined symbols 1/10/96, 4:23 pm191

192

ICCH8C–1

EXAMPLE

The example below prints a message for version 3.34.

#if __VER__ == 334
#message "Compiler version 3.34"
#endif

__VER__

§13 Predefined symbols 1/10/96, 4:23 pm192

193

ICCH8C–1

INTRINSIC FUNCTION
REFERENCE
This chapter gives reference information about the intrinsic functions.
To use the intrinsic functions include the header file inh8.h.

In addition to the IAR H8 intrinsics, the H8 C Compiler also supports
the intrinsic functions provided by the Hitachi H8 C Compiler and,
where appropriate, these are listed in brackets after the equivalent IAR
function.

Certain intrinsics, marked -v2 only, are only available for the H8S/2600
processor group.

_args$ Returns an array of the parameters to a function.

SYNTAX

_args$

DESCRIPTION

_args$ is a reserved word that returns a char array (char *)
containing a list of descriptions of the formal parameters of the current
function:

Offset Contents

0 Parameter 1 type in _argt$ format.

1 Parameter 1 size in bytes.

2 Parameter 2 type in _argt$ format.

3 Parameter 2 size in bytes.

2n-2 Parameter n type in _argt$ format.

2n-1 Parameter n size in bytes.

2n \0

Sizes greater than 127 are reported as 127.

§14 Intrinsic function 1/10/96, 4:23 pm193

194

ICCH8C–1

_args$ may be used only inside function definitions. For an example of
the use of _args$, see the file stdarg.h.

If a variable length (varargs) parameter list was specified then the
parameter list is deemed to terminate at the final explicit parameter; you
cannot easily determine the types or sizes of the optional parameters.

_argt$ Returns the type of the parameter.

SYNTAX

_argt$(v)

DESCRIPTION

The returned values and their corresponding meanings are shown in
the following table.

Value Type

1 unsigned char
2 char
3 unsigned short
4 short
5 unsigned int
6 int
7 unsigned long
8 long
9 float
10 double
11 long double
12 pointer/address
13 union
14 struct

EXAMPLE

The example below uses _argt$ and tests for integer or long
parameter types.

switch (_argt$(i))
{
 case 6:

_argt$

§14 Intrinsic function 1/10/96, 4:23 pm194

195

ICCH8C–1

and_ccr

 printf("int %d\n", i);
 break;
 case 8:
 printf("long %ld\n", i);
 break;
 default:

and_ccr ANDs to the CCR register.

SYNTAX

void and_ccr(unsigned char mask)

DESCRIPTION

CCR &= mask. The function argument mask should be a constant.

and_exr ANDs to the EXR register (-v2 only).

SYNTAX

void and_exr(unsigned char mask)

DESCRIPTION

EXR & = mask. The function argument mask should be a constant.

dadd Performs decimal addition.

SYNTAX

void dadd (unsigned char size, char *ptr1, char *ptr2,
char *rst)

DESCRIPTION

Adds size-byte data stored in the area at ptr1 to size-byte data stored
in the area at ptr2 and stores the result in the size-byte area at rst.
The size must be a constant from 1 to 255.

§14 Intrinsic function 1/10/96, 4:23 pm195

196

ICCH8C–1

disable_max_time

disable_max_time Sets the maximum interrupt disable time.

SYNTAX

void disable_max_time(unsigned long cycles)

DESCRIPTION

Informs the compiler if it is possible to use the EEPMOV.B instruction for
moving blocks of memory. Since the EEPMOV.B instruction turns off the
interrupts, it is essential to be sure that the interrupts are not turned off
too long time. Note that the calculation is made for moving data within
2 cycle memory for the -v0 processor group option, and 1 cycle memory
for the -v1 and -v2 options.

Copies a sequence of bytes.

SYNTAX

void do_byte_eepmov(char *source, char *dest, unsigned
char count)

DESCRIPTION

Copies a sequence of count bytes from the address specified by source
to an EEPROM location specified by dest. The EEPMOV.B instruction is
used.

Copies a sequence of words.

SYNTAX

void do_word_eepmov(char *source, char *dest, unsigned
char count)

DESCRIPTION

Copies a sequence of count words from the address specified by source
to an EEPROM location specified by dest. The EEPMOV.W instruction is
used.

do_byte _eepmov
(eepmov)

do_word _eepmov
(eepmov)

§14 Intrinsic function 1/10/96, 4:23 pm196

197

ICCH8C–1

dsub

dsub Performs decimal subtraction.

SYNTAX

void dsub (unsigned char size, char *ptr1, char *ptr2,
char *rst)

DESCRIPTION

Subtracts size-byte data stored in the area at ptr1 to size-byte data
stored in the area at ptr2 and stores the result in the size-byte area at
rst. The size must be a constant from 1 to 255.

func_stack_base Returns the function stack base address.

SYNTAX

void *func_stack_base(void)

DESCRIPTION

Gives the value which the stack pointer SP had when the current
function was entered. This means that the result of this intrinsic call
points to the return address of the current function.

get_imask_ccr Returns the interrupt mask of the condition code register.

SYNTAX

unsigned char get_imask_ccr(void)

DESCRIPTION

Returns the mask value (0 to 1) in the interrupt mask bit (1) of the
condition code register (CCR).

§14 Intrinsic function 1/10/96, 4:23 pm197

198

ICCH8C–1

get_imask_exr

get_imask_exr Returns the interrupt mask of the extend register (-v2 only).

SYNTAX

unsigned char get_imask-exr(void)

DESCRIPTION

Returns the mask value (0 to 7) in the interrupt mask bits (I2 to I0) of
the extend register (EXR).

mac Performs multiply and accumulate (-v2 only).

SYNTAX

void mac(long val, int *ptr1, int *ptr2, unsigned long
count)

DESCRIPTION

Sets val to the MAC register as the initial value, multiplies two bytes
ptr1 and ptr2 with sign, adds the 4-byte result to the MAC register
contents, and adds two to ptr1 and ptr2. This operation is repeated for
the number of times specified by count.

macl Performs multiply and accumulate logical (-v2 only).

SYNTAX

void macl(long val, int *ptr1, int *ptr2, unsigned long
count, unsigned long mask)

DESCRIPTION

As mac, but it logically ANDs ptr2 with mask to use ptr2 repeatedly.

§14 Intrinsic function 1/10/96, 4:23 pm198

199

ICCH8C–1

no_operation Executes the NOP instruction.

SYNTAX

void no_operation(void)

DESCRIPTION

Executes the NOP instruction.

or_ccr ORs to the CCR register.

SYNTAX

void or_ccr(unsigned char mask)

DESCRIPTION

CCR |= mask. The function argument mask should be a constant.

or_exr ORs to the EXR register (-v2 only).

SYNTAX

void or_exr(unsigned char mask)

DESCRIPTION

EXR |= mask. The function argument mask should be a constant.

Adds 1-byte, 2-byte, or 4-byte data with overflow check.

SYNTAX

int ovfaddc(char dst, char src, char *rst)
int ovfaddw(int dst, int src, int *rst)
int ovfaddl(long dst, long src, long *rst)

no_operation

ovfaddc, ovfaddw,
ovfaddl

§14 Intrinsic function 1/10/96, 4:23 pm199

200

ICCH8C–1

DESCRIPTION

Adds 1-byte, 2-byte, and 4-byte data dst and src, stores the results in
the area specified by rst only when rst is not 0, returns 0 when the
results do not overflow and a value other then 0 when they do overflow.

These functions can be used only in the conditional statements such as
the if, do, while, and for statements.

Negates 1-byte, 2-byte, or 4-byte data with overflow check.

SYNTAX

int ovfnegc(char dst, char *rst)
int ovfnegw(int dst, int *rst)
int ovfnegl(long dst, long *rst)

DESCRIPTION

Calculates the 2’s complements of 1-byte, 2-byte, and 4-byte data dst,
stores the results in the area specified by rst only when rst is not 0,
and returns 0 when the results do not overflow and a value other than 0
when they overflow.

These functions can be used only in the conditional statements such as
the if, do, while, and for statements.

Arithmetically shifts 1-byte, 2-byte, or 4-byte data with overflow check.

SYNTAX

int ovfshalc(char dst, char char *rst)
int ovfshalw(int dst, int *rst)
int ovfshall(long dst, long *rst)

DESCRIPTION

Arithmetically shifts 1-byte, 2-byte, and 4-byte data dst to the left by
one bit, stores the results in the area specified by rst only when rst is
not 0, and returns 0 when the results do not overflow and a value other
than 0 when they overflow.

ovfnegc, ovfnegw, ovfnegl

ovfnegc, ovfnegw
ovfnegl

ovfshalc, ovfshalw
ovfshall

§14 Intrinsic function 1/10/96, 4:23 pm200

201

ICCH8C–1

These functions can be used only in the conditional statements such as
the if, do, while, and for statements.

Subtracts 1-byte, 2-byte, or 4-byte data with overflow check.

SYNTAX

int ovfsubc(char dst, char src, char *rst)
int ovfsubw(int dst, int src, int *rst)
int ovfsubl(long dst, long src, long *rst)

DESCRIPTION

Subtracts 1-byte, 2-byte, and 4-byte data src from dst, stores the results
in the area specified by rst only when rst is not 0, and returns 0 when
the results do not overflow and a value other than 0 when they
overflow.

These functions can be used only in the conditional statements such as
the if, do, while, and for statements.

read_ccr (get_ccr) Reads the CCR register.

SYNTAX

unsigned char read_ccr(void)

DESCRIPTION

Reads the CCR (condition code) register.

read_exr (get_exr) Reads the EXR register (-v2 only).

SYNTAX

unsigned char read_exr(void)

DESCRIPTION

Reads the EXR (extended) register.

ovfsubc, ovfsubw, ovfsubl

ovfsubc, ovfsubw
ovfsubl

§14 Intrinsic function 1/10/96, 4:23 pm201

202

ICCH8C–1

read_hi_mac

read_hi_mac Reads the MACH register (-v2 only).

SYNTAX

long read_hi_mac(void)

DESCRIPTION

Reads the MACH register.

read_mac Reads the MACL register (-v2 only).

SYNTAX

long read_mac(void)

DESCRIPTION

Reads the MACL register.

repeat_mac Inserts a loop with the MAC instruction (-v2 only).

SYNTAX

void repeat_mac(int *ptr1, int *ptr2, unsigned long
count)

DESCRIPTION

Inserts a loop with the MAC instruction.

rotlc, rotlw, rotll Rotates 1-byte, 2-byte, or 4-byte data to the left.

SYNTAX

char rotlc(int count, char data)
int rotlw(int count, int data)
long rotll(int count, long data)

§14 Intrinsic function 1/10/96, 4:23 pm202

203

ICCH8C–1

DESCRIPTION

Rotates 1-byte, 2-byte, or 4-byte data to the left by count bits, and
returns the result.

rotrc, rotrw, rotrl Rotates 1-byte, 2-byte, or 4-byte data to the right.

SYNTAX

char rotrc(int count, char data)
int rotrw(int count, int data)
long rotrl(int count, long data)

DESCRIPTION

Rotates 1-byte, 2-byte, and 4-byte data to the right by count bits, and
returns the result.

set_imask_ccr Sets the interrupt mask of the condition code register.

SYNTAX

void set_imask_ccr(unsigned char mask)

DESCRIPTION

Sets the mask value (0 to 1) to the interrupt mask bit (1) of the
condition code register (CCR).

set_imask_exr Sets the interrupt mask of the extend register (-v2 only).

SYNTAX

void set_imask_exr(unsigned char mask)

DESCRIPTION

Sets the mask value (0 to 7) to the interrupt mask bits (I2 to I0) of the
extend register (EXR).

rotrc, rotrw, rotrl

§14 Intrinsic function 1/10/96, 4:23 pm203

204

ICCH8C–1

set_interrupt_mask Sets the interrupt priority level.

SYNTAX

void set_interrupt_mask(char mask)

DESCRIPTION

Sets the interrupt priority level. The parameter, which should be a
constant, is interpreted as shown below:

Argument Action

0 All interrupts enabled.

1 All interrupts enabled.

2 General interrupts disabled.

3 All interrupts except NMI disabled.

single_mac Performs a single MAC instruction (-v2 only).

SYNTAX

void single_mac(int *ptr1, int *ptr2)

sleep Executes the SLEEP instruction.

SYNTAX

void sleep(void)

DESCRIPTION

Executes the SLEEP instruction.

set_interrupt_mask

§14 Intrinsic function 1/10/96, 4:23 pm204

205

ICCH8C–1

tas Executes the TAS instruction.

SYNTAX

void tas(char *addr)

DESCRIPTION

Expanded to the test and set instruction, TAS.

trapa Executes the TRAPA instruction.

SYNTAX

void trapa(unsigned int trap_no)

DESCRIPTION

Expanded to an unconditional trap instruction, TRAPA#trap_no.

write_ccr (set_ccr) Writes to the CCR register.

SYNTAX

void write_ccr(unsigned char value)

DESCRIPTION

Changes the contents of the CCR register to value.

write_exr (set_exr) Writes to the EXR register (-v2 only).

SYNTAX

void set_exr(unsigned char value)

DESCRIPTION

Writes to the EXR (extended) register.

tas

§14 Intrinsic function 1/10/96, 4:23 pm205

206

ICCH8C–1

write_ext_mac Writes to MACH and MACL (-v2 only).

SYNTAX

void write_ext_mac(long hi_val, long lo_val)

DESCRIPTION

Puts hi_val into MACH and lo_val into MACL.

write_mac Clears the MAC and writes to MACL (-v2 only).

SYNTAX

void write_mac(long val)

DESCRIPTION

Clears the MAC register using a CLRMAC instruction, and then puts
val into MACL.

xor_ccr Exclusive-ORs to the CCR register.

SYNTAX

void xor_ccr(unsigned char mask)

DESCRIPTION

CCR ^= mask. The function argument mask should be a constant.

xor_exr XORs to the EXR register (-v2 only).

SYNTAX

void xor_exr(unsigned char value)

DESCRIPTION

EXR ^= mask. The function argument mask should be a constant.

write_ext_mac

§14 Intrinsic function 1/10/96, 4:23 pm206

207

ICCH8C–1

ASSEMBLY LANGUAGE
INTERFACE
The H8 C Compiler allows assembly language modules to be combined
with compiled C modules. This is particularly used for small, time-
critical routines that need to be written in assembly language and then
called from a C main program. This chapter describes the interface
between a C main program and assembly language routines.

CREATING A SHELL The recommended method of creating an assembly language routine
with the correct interface is to start with an assembly language source
created by the C compiler. To this shell you can easily add the functional
body of the routine.

The shell source needs only to declare the variables required and
perform simple accesses to them, for example:

int k;
int foo(int i, int j)
{
 char c;
 i++; /* Access to i */
 j++; /* Access to j */
 c++; /* Access to c */
 k++; /* Access to k */
}
void f(void)
{
 foo(4,5); /* Call to foo */
}

This program is then compiled as follows:

icch8 shell -A -q -L R

The -A option creates an assembly language output, the -q option
includes the C source lines as assembler comments, and the -L option
creates a listing.

§15 Assembler interface 1/10/96, 4:23 pm207

ASSEMBLY LANGUAGE INTERFACE

208

ICCH8C–1

The result is the assembler source shell.s37 containing the
declarations, function call, function return, variable accesses, and a
listing file shell.lst.

The following sections describe the interface in detail.

CALLING CONVENTION The C compiler uses the run-time stack for administrating function
calls. Space for parameters and auto variables is allocated on the stack.
Although the first parameter has a location on the stack, it is normally
transferred in registers:

Size of parameter Location of parameter

1 byte R6L

2 R6

4 ER6

The only exception to this rule is when the first parameter is a struct,
union, or an 8-byte double, in which case the parameter is pushed on
the stack.

The remaining parameters, which are not transferred in registers, are
pushed on the stack in reverse order, ie the last parameter is transferred
first. Pushed parameters are removed by the caller after returning from
the called function.

All registers are preserved across function calls except for ER5 and ER6
which are used as scratch registers. Each function is therefore
responsible for saving and restoring any register it will use. The
condition codes in CCR are not preserved, except for interrupt and
monitor functions. Another exception to this rule are the registers that
transfer the function return value.

§15 Assembler interface 1/10/96, 4:23 pm208

ASSEMBLY LANGUAGE INTERFACE

209

ICCH8C–1

To sum up, a stack frame has the following general layout in memory:

Temporary storage

Auto variables

Return address

Saved registers

Parameters,
except first one

Location of first
parameter

Low address

High address

Stack pointer SP

Stack

The return value is given in registers if possible, otherwise at the
pointed-to location in the caller’s own storage space:

Size of return value Location of return value

1 byte R6L

2 R6

4 ER6

More than 4 bytes, Pointed to by R6 or ER6 depending on memory
struct, union, or model.
8-byte double.

Note that struct jim foo() is converted internally to
void foo(struct jim *) to allow the caller to specify where to store
the result.

§15 Assembler interface 1/10/96, 4:23 pm209

ASSEMBLY LANGUAGE INTERFACE

210

ICCH8C–1

An assembler routine that is to be called from C must:

◆ Conform to the calling convention described above.

◆ Have a PUBLIC entry-point label.

◆ Be declared as external before any call, to allow type checking and
optional promotion of parameters, as in extern int foo() or
extern int foo(int i, int j).

LOCAL STORAGE ALLOCATION

If the routine needs local storage, it may allocate it in one or more of the
following ways:

◆ On the hardware stack.

◆ In static workspace, provided of course that the routine is not
required to be simultaneously re-usable (“re-entrant”).

Functions can always use ER5 to ER6 without saving them.

INTERRUPT FUNCTIONS

The calling convention cannot be used for interrupt functions since the
interrupt may occur during the calling of a foreground function. Hence
the requirements for interrupt function routine are different from those
of a normal function routine, as follows:

◆ The routine must preserve all used registers.

◆ The routine must exit using RTE.

◆ The routine must treat all flags as undefined.

DEFINING INTERRUPT VECTORS

As an alternative to defining a C interrupt function in assembly
language as described above, the user is free to assemble an interrupt
routine and install it directly in the interrupt vector.

The interrupt vectors are located in the INTVEC segment.

CALLING ASSEMBLY
ROUTINES FROM C

§15 Assembler interface 1/10/96, 4:23 pm210

211

ICCH8C–1

SEGMENT REFERENCE
The H8 C Compiler places code and data into named segments which
are referred to by XLINK. Details of the segments are required for
programming assembly language modules, and are also useful when
interpreting the assembly language output of the compiler.

This section provides an alphabetical list of the segments. For each
segment, it shows:

◆ The name of the segment.

◆ A brief description of the contents.

◆ Whether the segment is read/write or read-only.

◆ Whether the segment may be accessed from the assembly language
(assembly-accessible) or from the compiler only.

◆ A fuller description of the segment contents and use.

MEMORY MAP DIAGRAMS

The diagrams on the following pages show the H8 memory map and the
allocation of segments within each memory area.

Tiny variables

Tiny RAM

Low

Bit variables (-v1)

UDATA0
IDATA0

High
BITVAR

Near RAM

Near variables

Bit variables (-v2 or -v3)

UDATA1
IDATA1

BITVAR

Low

High

§16 Segment ref 1/10/96, 4:24 pm211

212

ICCH8C–1

SEGMENT REFERENCE

RAM

Hardware stack

Non-volatile variables

CSTACK

NO_INIT

High

Huge variables

Far variables

UDATA3
IDATA3

UDATA2
IDATA2

Low

Writable string variablesECSTR
WCSTR

Auto variables when compiling
with the -d optionTEMP

PROM 0x00 to 0xFF

0xFF

Interrupt vector table

tiny_func function table

INTVEC

FLIST
IFLIST

0x00

PROM

Code and program code

Constants

Constant string literals

CODE
RCODE

CONST

CSTR

Low

High

Variable initializers

CDATA0
CDATA1
CDATA2
CDATA3

String literal initializersCCSTR

§16 Segment ref 1/10/96, 4:24 pm212

213

ICCH8C–1

BITVAR

BITVAR Bit variables.

TYPE

Read-write.

DESCRIPTION

Assembler-accessible.

Holds bit variables and can also hold user-written relocatable bit-
variables.

CCSTR String literals.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

Holds C string literals. This segment is copied to ECSTR at startup. For
more information refer to Writable strings (-y), page 44. See also CSTR,
page 215, and ECSTR, page␣ 215.

Initialization constants for tiny, near, far and huge data, respectively.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

CSTARTUP copies initialization values from this segment to the IDATA0
… IDATA3 segments.

CDATA0, CDATA1,
CDATA2, CDATA3

§16 Segment ref 1/10/96, 4:24 pm213

214

ICCH8C–1

CODE Code.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

Holds user program code and various library routines. Note that any
assembly language routines called from C must meet the calling
convention of the memory model in use. For more information see
Calling assembly routines from C, page 210.

CONST Constants.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

Used for storing const objects. Can be used in assembly language
routines for declaring constant data.

CSTACK Stack.

TYPE

Read/write.

DESCRIPTION

Assembly-accessible.

Holds the internal stack.

CODE

§16 Segment ref 1/10/96, 4:24 pm214

215

ICCH8C–1

This segment and length is normally defined in the XLINK file by the
command:

-Z(DATA)CSTACK + nn = start

where nn is the length and start is the location.

CSTR String literals.

TYPE

Read only.

DESCRIPTION

Assembly-accessible.

Holds C string literals when the C compiler Writable strings (-y)
option is not active (default). For more information see Writable strings
(-y), page 44. See also CCSTR, page 213, and ECSTR, page 215.

ECSTR Writable copies of string literals.

TYPE

Read/write.

DESCRIPTION

Assembly-accessible.

Holds C string literals. For more information refer to Writable strings
(-y), page 44. See also CCSTR, page 213, and CSTR, page 215.

FLIST, IFLIST Function list.

TYPE

Read-only.

CSTR

§16 Segment ref 1/10/96, 4:24 pm215

216

ICCH8C–1

DESCRIPTION

Assembler-accessible.

Holds a function table that is used to call functions by the tiny_func
mechanism. A tiny_func reference is an 8-bit index into this table. The
address to the actual function is contained in the FLIST/IFLIST entry.
The IFLIST segment contains references to internal functions of the
run-time library, while FLIST contains references to user-written
tiny_func functions.

Initialized static data for tiny, near, far and huge data, respectively.

TYPE

Read-write.

DESCRIPTION

Assembly-accessible.

Holds static variables in internal data memory that are automatically
initialized from CDATA0 … CDATA3 in cstartup.s37. See also CDATAn
above.

INTVEC Interrupt vectors.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

Holds the interrupt vector table generated by the use of the interrupt
extended keyword (which can also be used for user-written interrupt
vector table entries).

IDATA0, IDATA1, IDATA2, IDATA3

IDATA0, IDATA1,
IDATA2, IDATA3

§16 Segment ref 1/10/96, 4:24 pm216

217

ICCH8C–1

NO_INIT Non-volatile variables.

TYPE

Read/write.

DESCRIPTION

Assembly-accessible.

Holds variables to be placed in non-volatile memory. These will have
been allocated by the compiler, declared no_init or created no_init by
use of the memory #pragma, or created manually from assembly
language source.

RCODE Startup code.

TYPE

Read-only.

DESCRIPTION

Assembly-accessible.

Used for interrupt handlers and internal library functions.

TEMP Autos.

TYPE

Read/write.

DESCRIPTION

Used for autos when compiling with the -d option.

NO_INIT

§16 Segment ref 1/10/96, 4:24 pm217

218

ICCH8C–1

UDATA0, UDATA1, UDATA2, UDATA3

Uninitialized static data for tiny, near, far, and huge data respectively.

TYPE

Read/write.

DESCRIPTION

Assembly-accessible.

Holds variables in memory that are not explicitly initialized; these are
implicitly initialized to all zero, which is performed by CSTARTUP.

WCSTR Writable string literals.

TYPE

Read/write.

DESCRIPTION

Assembler-accessible.

Holds writable copies of C string literals when the compiler’s -P option
is inactive. See Generate promable code (-P), page 59.

UDATA0, UDATA1,
UDATA2, UDATA3

§16 Segment ref 1/10/96, 4:24 pm218

219

ICCH8C–1

K&R AND ANSI C
LANGUAGE DEFINITIONS
This chapter describes the differences between the K&R description of
the C language and the ANSI standard.

INTRODUCTION There are two major standard C language definitions:

◆ Kernighan & Richie, commonly abbreviated to K&R.

This is the original definition by the authors of the C language, and is
described in their book The C Programming Language.

◆ ANSI.

The ANSI definition is a development of the original K&R definition. It
adds facilities that enhance portability and parameter checking, and
removes a small number of redundant keywords. The IAR Systems
C␣ Compiler follows the ANSI approved standard X3.159-1989.

Both standards are described in depth in the latest edition of The C
Programming Language by Kernighan & Richie. This chapter
summarizes the differences between the standards, and is particularly
useful to programmers who are familiar with K&R C but would like to
use the new ANSI facilities.

DEFINITIONS ENTRY KEYWORD

In ANSI C the entry keyword is removed, so allowing entry to be a
user-defined symbol.

CONST KEYWORD

ANSI C adds const, an attribute indicating that a declared object is
unmodifiable and hence may be compiled into a read-only memory
segment. For example:

const int i; /* constant int */
const int *ip; /* variable pointer to

constant int */

§17 Language definitions 1/10/96, 4:24 pm219

K&R AND ANSI C LANGUAGE DEFINITIONS

220

ICCH8C–1

int *const ip; /* constant pointer to
variable int */

typedef struct /* define the struct
'cmd_entry' */

{
 char *command;
 void (*function)(void);
}
cmd_entry
const cmd_entry table[]= /* declare a constant object

of type 'cmd_entry' /*
{
 "help", do_help,
 "reset", do_reset,
 "quit", do_quit
};

VOLATILE KEYWORD

ANSI C adds volatile, an attribute indicating that the object may be
modified by hardware and hence any access should not be removed by
optimization.

SIGNED KEYWORD

ANSI C adds signed, an attribute indicating that an integer type is
signed. It is the counterpart of unsigned and can be used before any
integer type-specifier.

VOID KEYWORD

ANSI C adds void, a type-specifier that can be used to declare function
return values, function parameters, and generic pointers. For example:

void f(); /* a function without return
value */

type_spec f(void); /* a function with no parameters
*/

void *p; /* a generic pointer which can be
/* cast to any other pointer and
is assignment-compatible with any
pointer type */

§17 Language definitions 1/10/96, 4:24 pm220

K&R AND ANSI C LANGUAGE DEFINITIONS

221

ICCH8C–1

ENUM KEYWORD

ANSI C adds enum, a keyword that conveniently defines successive
named integer constants with successive values. For example:

enum {zero,one,two,step=6,seven,eight};

DATA TYPES

In ANSI C the complete set of basic data types is:

{unsigned | signed} char
{unsigned | signed} int
{unsigned | signed} short
{unsigned | signed} long
float
double
long double
* /* Pointer */

FUNCTION DEFINITION PARAMETERS

In K&R C, function parameters are declared by conventional
declaration statements before the body of the function. In ANSI C, each
parameter in the parameter list is preceded by its type identifiers. For
example:

K&R ANSI

long int g(s) long int g (char * s)
char * s;

{ {

The arguments of ANSI-type functions are always type-checked. The
IAR Systems C Compiler checks the arguments of K&R-type functions
only if the Global strict type check (-g) option is used.

§17 Language definitions 1/10/96, 4:24 pm221

K&R AND ANSI C LANGUAGE DEFINITIONS

222

ICCH8C–1

FUNCTION DECLARATIONS

In K&R C, function declarations do not include parameters. In ANSI C
they do. For example:

Type Example

K&R extern int f();

ANSI (named form) extern int(long int val);

ANSI (unnamed form) extern int(long int);

In the K&R case, a call to the function via the declaration cannot have
its parameter types checked, and if there is a parameter-type mismatch,
the call will fail.

In the ANSI C case, the types of function arguments are checked against
those of the parameters in the declaration. If necessary, a parameter of a
function call is cast to the type of the parameter in the declaration, in
the same way as an argument to an assignment operator might be.
Parameter names are optional in the declaration.

ANSI also specifies that to denote a variable number of arguments, an
ellipsis (three dots) is included as a final formal parameter.

If external or forward references to ANSI-type functions are used, a
function declaration should appear before the call. It is unsafe to mix
ANSI and K&R type declarations since they are not compatible for
promoted parameters (char or float).

Note that in the IAR Systems C Compiler, the -g option will find all
compatibility problems among function calls and declarations, including
between modules.

HEXADECIMAL STRING CONSTANTS

ANSI allows hexadecimal constants denoted by backslash followed by x
and any number of hexadecimal digits. For example:

#define Escape_C "\x1b\x43" /* Escape 'C' \0 */

\x43 represents ASCII C which, if included directly, would be
interpreted as part of the hexadecimal constant.

§17 Language definitions 1/10/96, 4:24 pm222

K&R AND ANSI C LANGUAGE DEFINITIONS

223

ICCH8C–1

STRUCTURE AND UNION ASSIGNMENTS

In K&R C, functions and the assignment operator may have arguments
that are pointers to struct or union objects, but not struct or union
objects themselves.

ANSI C allows functions and the assignment operator to have
arguments that are struct or union objects, or pointers to them.
Functions may also return structures or unions:

struct s a,b; /* struct s declared earlier
*/

struct s f(struct s parm); /* declare function
accepting and returning
structs */

a = f(b); /* call it */

To increase the usability of structures further, ANSI allows auto
structures to be initialized.

SHARED VARIABLE OBJECTS

Various C compilers differ in their handling of variable objects shared
among modules. The IAR Systems C Compiler uses the scheme called
Strict REF/DEF, recommended in the ANSI supplementary document
Rationale For C. It requires that all modules except one use the keyword
extern before the variable declaration. For example:

Module #1 Module #2 Module #3

int i; extern int i; extern int i;

int j=4; extern int j; extern int j;

#elif

ANSI C’s new #elif directive allows more compact nested else-if
structures.

#elif expression
…

is equivalent to:

#else
#if expression

§17 Language definitions 1/10/96, 4:24 pm223

K&R AND ANSI C LANGUAGE DEFINITIONS

224

ICCH8C–1

…
#endif

#error

The #error directive is provided for use in conjunction with
conditional compilation. When the #error directive is found, the
compiler issues an error message and terminates.

§17 Language definitions 1/10/96, 4:24 pm224

225

ICCH8C–1

DIAGNOSTICS
The diagnostic error and warning messages fall into six categories:

◆ Command line error messages.

◆ Compilation error messages.

◆ Compilation warning messages.

◆ Compilation fatal error messages.

◆ Compilation memory overflow message.

◆ Compilation internal error messages.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the compiler finds a fault in the
parameters given on the command line. In this case, the compiler issues
a self-explanatory message.

COMPILATION ERROR MESSAGES

Compilation error messages are produced when the compiler has found
a construct which clearly violates the C language rules, such that code
cannot be produced.

IAR C compilers are more strict on compatibility issues than many
other C compilers. In particular pointers and integers are considered as
incompatible when not explicitly casted.

COMPILATION WARNING MESSAGES

Compilation warning messages are produced when the compiler finds a
programming error or omission which is of concern but not so severe as
to prevent the completion of compilation.

COMPILATION FATAL ERROR MESSAGES

Compilation fatal error messages are produced when the compiler has
found a condition that not only prevents code generation, but which
makes further processing of the source not meaningful. After the
message has been issued, compilation terminates. Compilation fatal
error messages are described in Compilation error messages in this
chapter, and marked as fatal.

§18 Diagnostics 1/10/96, 4:24 pm225

DIAGNOSTICS

226

ICCH8C–1

COMPILATION MEMORY OVERFLOW MESSAGE

When the compiler runs out of memory, it issues the special message:

 * * * C O M P I L E R O U T O F M E M O R Y * * *
 Dynamic memory used: nnnnnn bytes

If this error occurs, the cure is either to add system memory or to split
source files into smaller modules. Also note that the following options
cause the compiler to use more memory (but not -rn):

Option Command line

Insert mnemonics. -q

Cross-reference. -x

Assembly output to prefixed filename. -A

Generate PROMable code. -P

Generate debug information. -r

See the H8 Command Line Interface Guide for more information.

COMPILATION INTERNAL ERROR MESSAGES

A compiler internal error message indicates that there has been a
serious and unexpected failure due to a fault in the compiler itself, for
example, the failure of an internal consistency check. After issuing a
self-explanatory message, the compiler terminates.

Internal errors should normally not occur and should be reported to the
IAR Systems technical support group. Your report should include all
possible information about the problem and preferably also a disk with
the program that generated the internal error.

§18 Diagnostics 1/10/96, 4:24 pm226

DIAGNOSTICS

227

ICCH8C–1

The following table lists the compilation error messages:

No Error message Suggestion

0 Invalid syntax The compiler could not decode
the statement or declaration.

1 Too deep #include nesting Fatal. The compiler limit for
(max is 10) nesting of #include files was

exceeded. One possible cause is
an inadvertently recursive
#include file.

2 Failed to open #include Fatal. The compiler could not
file 'name' open an #include file. Possible

causes are that the file does not
exist in the specified directories
(possibly due to a faulty -I
prefix or C_INCLUDE path) or is
disabled for reading.

3 Invalid #include filename Fatal. The #include filename
was invalid. Note that the
#include filename must be
written <file> or “file”.

4 Unexpected end of file Fatal. The end of file was
encountered encountered within a

declaration, function definition,
or during macro expansion. The
probable cause is bad () or {}
nesting.

5 Too long source line The source line length exceeds
(max is 512 chars); the compiler limit.
truncated

6 Hexadecimal constant The prefix 0x or 0X of
without digits hexadecimal constant was found

without following hexadecimal
digits.

7 Character constant larger A character constant contained
than "long" too many characters to fit in the

space of a long integer.

COMPILATION ERROR
MESSAGES

§18 Diagnostics 1/10/96, 4:24 pm227

DIAGNOSTICS

228

ICCH8C–1

No Error message Suggestion

8 Invalid character A character not included in the
encountered: '\xhh'; C character set was found.
ignored

9 Invalid floating point A floating-point constant was
constant found to be too large or have

invalid syntax. See the ANSI
standard for legal forms.

10 Invalid digits in octal The compiler found a non-octal
constant digit in an octal constant. Valid

octal digits are: 0–7.

11 Missing delimiter in No closing delimiter ' or " was
literal or character found in character or literal
constant constant.

12 String too long (max is The limit for the length of a
509) single or concatenated string was

exceeded.

13 Argument to #define too Lines terminated by \ resulted in
long (max is 512) a #define line that was too long.

14 Too many formal Fatal. Too many formal
parameters for #define parameters were found in a
(max is 127) macro definition (#define

directive).

15 ',' or ')' expected The compiler found an invalid
syntax of a function definition
header or macro definition.

16 Identifier expected An identifier was missing from a
declarator, goto statement, or
pre-processor line.

17 Space or tab expected Pre-processor arguments must be
separated from the directive with
tab or space characters.

18 Macro parameter 'name' The formal parameter of a
redefined symbol in a #define statement

was repeated.

§18 Diagnostics 1/10/96, 4:24 pm228

DIAGNOSTICS

229

ICCH8C–1

No Error message Suggestion

19 Unmatched #else, #endif Fatal. A #if, #ifdef, or
or #elif #ifndef was missing.

20 No such pre-processor # was followed by an unknown
command: 'name' identifier.

21 Unexpected token found A pre-processor line was not
in pre-processor line empty after the argument part

was read.

22 Too many nested Fatal. The pre-processor limit
parameterized macros was exceeded.
(max is 50)

23 Too many active macro Fatal. The pre-processor limit
parameters (max is 256) was exceeded.

24 Too deep macro nesting Fatal. The pre-processor limit
(max is 100) was exceeded.

25 Macro 'name' called with Fatal. A parameterized #define
too many parameters macro was called with more

arguments than declared.

26 Actual macro parameter A single macro argument may
too long (max is 512) not exceed the length of a source

line.

27 Macro 'name' called with A parameterized #define macro
too few parameters was called with fewer arguments

than declared.

28 Missing #endif Fatal. The end of file was
encountered during skipping of
text after a false condition.

29 Type specifier expected A type description was missing.
This could happen in struct,
union, prototyped function
definitions/declarations, or in
K&R function formal parameter
declarations.

§18 Diagnostics 1/10/96, 4:24 pm229

DIAGNOSTICS

230

ICCH8C–1

No Error message Suggestion

30 Identifier unexpected There was an invalid identifier.
This could be an identifier in a
type name definition like:
sizeof(int*ident);
or two consecutive identifiers.

31 Identifier 'name' There was a redeclaration of a
redeclared declarator identifier.

32 Invalid declaration There was an undecodable
syntax declarator.

33 Unbalanced '(' or ')' in There was a parenthesis error in
declarator a declarator.

34 C statement or func-def To get proper C source line
in #include file, add "i" stepping for #include code
to the "-r" switch when the C-SPY debugger is

used, the -ri option must be
specified.

Other source code debuggers
(that do not use the UBROF
output format) may not work
with code in #include files.

35 Invalid declaration of A struct, union, or enum was
"struct", "union" or followed by an invalid token(s).
"enum" type

36 Tag identifier 'name' A struct, union, or enum tag is
redeclared already defined in the current

scope.

37 Function 'name' declared A function was declared as a
within "struct" or member of struct or union.
"union"

38 Invalid width of field The declared width of field
(max is nn) exceeds the size of an integer (nn

is 16 or 32 depending on the
target processor).

§18 Diagnostics 1/10/96, 4:24 pm230

DIAGNOSTICS

231

ICCH8C–1

No Error message Suggestion

39 ',' or ';' expected There was a missing , or ; at the
end of declarator.

40 Array dimension outside Array dimension negative or
of "unsigned int" bounds larger than can be represented in

an unsigned integer.

41 Member 'name' of "struct" A member of struct or union
or "union" redeclared was redeclared.

42 Empty "struct" or "union" There was a declaration of
struct or union containing no
members.

43 Object cannot be There was an attempted
initialized initialization of typedef

declarator or struct or union
member.

44 ';' expected A statement or declaration needs
a terminating semicolon.

45 ']' expected There was a bad array
declaration or array expression.

46 ':' expected There was a missing colon after
default, case label, or in ?-
operator.

47 '(' expected The probable cause is a
misformed for, if, or while
statement.

48 ')' expected The probable cause is a
misformed for, if, or while
statement or expression.

49 ',' expected There was an invalid
declaration.

50 '{' expected There was an invalid declaration
or initializer.

51 '}' expected There was an invalid declaration
or initializer.

§18 Diagnostics 1/10/96, 4:24 pm231

DIAGNOSTICS

232

ICCH8C–1

No Error message Suggestion

52 Too many local variables Fatal. The compiler limit was
and formal parameters exceeded.
(max is 1024)

53 Declarator too complex The declarator contained too
(max is 128 '(' and/or many (,), or *
'*')

54 Invalid storage class An invalid storage-class for the
object was specified.

55 Too deep block nesting Fatal. The {} nesting in a
(max is 50) function definition was too deep.

56 Array of functions An attempt was made to declare
an array of functions.

The valid form is array of pointers to functions:

int array [5] (); /* Invalid */
int (*array [5]) (); /* Valid */

57 Missing array dimension There was a multi-dimensional
specifier array declarator with a missing

specified dimension. Only the
first dimension can be excluded
(in declarations of extern arrays
and function formal parameters).

58 Identifier 'name' There was a redefinition of a
redefined declarator identifier.

59 Function returning array Functions cannot return arrays.

60 Function definition A K&R function header was
expected found without a following

function definition, for example:

int f(i); /* Invalid */

61 Missing identifier in A declarator lacked an identifier.
declaration

62 Simple variable or array Only pointers, functions, and
of a "void" type formal parameters can be of

void type.

§18 Diagnostics 1/10/96, 4:24 pm232

DIAGNOSTICS

233

ICCH8C–1

No Error message Suggestion

63 Function returning A function cannot return a
function function, as in:

int f()(); /* Invalid */

64 Unknown size of variable The defined object has unknown
object 'name' size. This could be an external

array with no dimension given
or an object of an only partially
(forward) declared struct or
union.

65 Too many errors Fatal. The compiler aborts after a
encountered (>100) certain number of diagnostic

messages.

66 Function 'name' redefined Multiple definitions of a function
were encountered.

67 Tag 'name' undefined There was a definition of
variable of enum type with type
undefined or a reference to
undefined struct or union type
in a function prototype or as a
sizeof argument.

68 "case" outside "switch" There was a case without any
active switch statement.

69 "interrupt" function may An interrupt function call was
not be referred or called included in the program.

Interrupt functions can be called
by the run-time system only.

70 Duplicated "case" The same constant value was
label: nn used more than once as a case

label.

71 "default" outside There was a default without
"switch" any active switch statement.

72 Multiple "default" More than one default in one
within "switch" switch statement.

§18 Diagnostics 1/10/96, 4:24 pm233

DIAGNOSTICS

234

ICCH8C–1

No Error message Suggestion

73 Missing "while" in "do" Probable cause is missing {}
- "while" statement around multiple statements.

74 Label 'name' redefined A label was defined more than
once in the same function.

75 "continue" outside There was a continue outside
iteration statement any active while, do … while,

or for statement.

76 "break" outside "switch" There was a break outside any
or iteration statement active switch, while, do …

while, or for statement.

77 Undefined label 'name' There is a goto label with no
label: definition within the
function body.

78 Pointer to a field not There is a pointer to a field
allowed member of struct or union:

struct
{
 int *f:6; /* Invalid */
}

79 Argument of binary The first or second argument of
operator missing a binary operator is missing.

80 Statement expected One of ? : ,] or } was found
where statement was expected.

81 Declaration after A declaration was found after a
statement statement.

This could be due to an unwanted ; for example:

int i;;
char c; /* Invalid */

Since the second ; is a statement it causes a declaration after a
statement.

§18 Diagnostics 1/10/96, 4:24 pm234

DIAGNOSTICS

235

ICCH8C–1

No Error message Suggestion

82 "else" without preceding The probable cause is bad {}
"if" nesting.

83 "enum" constant(s) An enumeration constant was
outside "int" or created too small or too large.
"unsigned" "int" range

84 Function name not allowed An attempt was made to use a
in this context function name as an indirect

address.

85 Empty "struct", "union" There is a definition of struct
or "enum" or union that contains no

members or a definition of enum
that contains no enumeration
constants.

86 Invalid formal parameter There is a fault with the formal
parameter in a function
declaration.

Possible causes are:

int f(); /* valid K&R declaration */
int f(i); /* invalid K&R declaration */
int f(int i); /* valid ANSI declaration */
int f(i); /* invalid ANSI declaration */

87 Redeclared formal A formal parameter in a K&R
parameter: 'name' function definition was declared

more than once.

88 Contradictory function void appears in a function
declaration parameter type list together with

other type of specifiers.

89 "..." without previous ... cannot be the only
parameter(s) parameter description specified.

For example:

int f(...); /* Invalid */
int f(int, ...); /* Valid */

§18 Diagnostics 1/10/96, 4:24 pm235

DIAGNOSTICS

236

ICCH8C–1

No Error message Suggestion

90 Formal parameter An identifier of a parameter was
identifier missing missing in the header of a

prototyped function definition.

For example:

int f(int *p, char, float ff) /* Invalid - second
parameter has no name
*/

{
/* function body */

}

91 Redeclared number of A prototyped function was
formal parameters declared with a different number

of parameters than the first
declaration.

For example:

int f(int,char); /* first declaration -valid */
int f(int); /* fewer parameters -invalid */
int f(int,char,float);/* more parameters -invalid */

92 Prototype appeared after A prototyped declaration of a
reference function appeared after it was

defined or referenced as a K&R
function.

93 Initializer to field of A bit-field was initialized with a
width nn (bits) out of constant too large to fit in the
range field space.

94 Fields of width 0 must Zero length fields are only used
not be named to align fields to the next int

boundary and cannot be accessed
via an identifier.

95 Second operand for An attempt was made to divide
division or modulo is by zero.
zero

§18 Diagnostics 1/10/96, 4:24 pm236

DIAGNOSTICS

237

ICCH8C–1

No Error message Suggestion

96 Unknown size of object An incomplete pointer type is
pointed to used within an expression where

size must be known.

97 Undefined "static" A function was declared with
function 'name' static storage class but never

defined.

98 Primary expression An expression was missing.
expected

99 Extended keyword not An extended processor-specific
allowed in this context keyword occurred in an illegal

context; eg interrupt int i.

100 Undeclared identifier: There was a reference to an
'name' identifier that had not been

declared.

101 First argument of '.' The dot operator . was applied
operator must be of to an argument that was not
"struct" or "union" type struct or union.

102 First argument of '->' The arrow operator-> was
was not pointer to applied to an argument that was
"struct" or "union" not a pointer to a struct or

union.

103 Invalid argument of The sizeof operator was
"sizeof" operator applied to a bit-field, function, or

extern array of unknown size.

104 Initializer "string" An array of char with explicit
exceeds array dimension dimension was initialized with a

string exceeding array size.

For example:

char array [4] = "abcde";
/* invalid */

105 Language feature not A constant argument or constant
implemented pointer is required for the in-line

functions.

§18 Diagnostics 1/10/96, 4:24 pm237

DIAGNOSTICS

238

ICCH8C–1

No Error message Suggestion

106 Too many function Fatal. There were too many
parameters (max is 127) parameters in function

declaration/definition.

107 Function parameter 'name' A formal parameter in a function
already declared definition header was declared

more than once.

For example:

/* K&R function */ int myfunc(i, i) /* invalid */
int i;
{
}
/* Prototyped function */
int myfunc(int i, int i) /* invalid */
{
}

108 Function parameter 'name' In a K&R function definition,
declared but not found the parameter was declared but
in header not specified in the function

header.

For example:

int myfunc(i)
int i, j /* invalid - j is not specified in the
function header */
{
}

109 ';' unexpected An unexpected delimiter was
encountered.

110 ')' unexpected An unexpected delimiter was
encountered.

111 '{' unexpected An unexpected delimiter was
encountered.

112 ',' unexpected An unexpected delimiter was
encountered.

§18 Diagnostics 1/10/96, 4:24 pm238

DIAGNOSTICS

239

ICCH8C–1

No Error message Suggestion

113 ':' unexpected An unexpected delimiter was
encountered.

114 '[' unexpected An unexpected delimiter was
encountered.

115 '(' unexpected An unexpected delimiter was
encountered.

116 Integral expression The evaluated expression yielded
required a result of the wrong type.

117 Floating point The evaluated expression yielded
expression required a result of the wrong type.

118 Scalar expression The evaluated expression yielded
required a result of the wrong type.

119 Pointer expression The evaluated expression yielded
required a result of the wrong type.

120 Arithmetic expression The evaluated expression yielded
required a result of the wrong type.

121 Lvalue required The expression result was not a
memory address.

122 Modifiable lvalue The expression result was not a
required variable object or a const.

123 Prototyped function A prototyped function was called
argument number mismatch with a number of arguments

different from the number
declared.

124 Unknown "struct" or An attempt was made to
"union" member: 'name' reference a non-existent member

of a struct or union.

125 Attempt to take address The & operator may not be used
of field on bit-fields.

126 Attempt to take address The & operator may not be used
of "register" variable on objects with register

storage class.

§18 Diagnostics 1/10/96, 4:25 pm239

DIAGNOSTICS

240

ICCH8C–1

No Error message Suggestion

127 Incompatible pointers There must be full compatibility
of objects that pointers point to.

In particular, if pointers point (directly or indirectly) to
prototyped functions, the code performs a compatibility test on
return values and also on the number of parameters and their
types. This means that incompatibility can be hidden quite deeply,
for example:

char (*(*p1)[8])(int);
char (*(*p2)[8])(float);

/* p1 and p2 are incompatible – the function
parameters have incompatible types */

The compatibility test also includes checking of array dimensions
if they appear in the description of the objects pointed to, for
example:

int (*p1)[8];
int (*p2)[9];

/* p1 and p2 are incompatible – array dimensions
differ */

128 Function argument A function argument is
incompatible with its incompatible with the argument
declaration in the declaration.

129 Incompatible operands of The type of one or more
binary operator operands to a binary operator

was incompatible with the
operator.

130 Incompatible operands of The type of one or more
'=' operator operands to = was incompatible

with =.

131 Incompatible "return" The result of the expression is
expression incompatible with the return

value declaration.

132 Incompatible initializer The result of the initializer
expression is incompatible with
the object to be initialized.

§18 Diagnostics 1/10/96, 4:25 pm240

DIAGNOSTICS

241

ICCH8C–1

No Error message Suggestion

133 Constant value required The expression in a case label,
#if, #elif, bit-field declarator,
array declarator, or static
initializer was not constant.

134 Unmatching "struct" or The second and third argument
"union" arguments to '?' of the ? operator are different.
operator

135 " pointer + pointer" Pointers may not be added.
operation

136 Redeclaration error The current declaration is
inconsistent with earlier
declarations of the same object.

137 Reference to member of The only allowed reference to
undefined "struct" or undefined struct or union
"union" declarators is a pointer.

138 "- pointer" expression The - operator may be used on
pointers only if both operators
are pointers, that is, pointer -
pointer. This error means that
an expression of the form non-
pointer - pointer was found.

139 Too many "extern" symbols Fatal. The compiler limit was
declared (max is 32767) exceeded.

140 "void" pointer not A pointer expression such as an
allowed in this context indexing expression involved a

void pointer (element size
unknown).

141 #error 'any message' Fatal. The pre-processor directive
#error was found, notifying
that something must be defined
on the command line in order to
compile this module.

§18 Diagnostics 1/10/96, 4:25 pm241

DIAGNOSTICS

242

ICCH8C–1

No Error message Suggestion

142 "interrupt" function can An interrupt function
only be "void" and have declaration had a non-void result
no arguments and/or arguments, neither of

which are allowed.

143 Too large, negative or Check the [vector] values of
overlapping "interrupt" the declared interrupt functions.
[value] in name

144 Bad context for storage The no_init keyword can only
modifier (storage-class be used to declare variables with
or function) static storage-class. That is,

no_init cannot be used in
typedef statements or applied to
auto variables of functions. An
active #pragma memory=no_init
can cause such errors when
function declarations are found.

145 Bad context for function The keywords interrupt,
call modifier banked, non_banked, or

monitor can be applied only to
function declarations.

146 Unknown #pragma An unknown pragma identifier
identifier was found. This error will

terminate object code generation
only if the -g option is in use.

147 Extension keyword "name" Upon executing:

#pragma language=extended

the compiler found that the
named identifier has the same
name as an extension keyword.
This error is only issued when
compiler is executing in ANSI
mode.

148 '=' expected An sfr-declared identifier must
be followed by =value.

is already defined by
user

§18 Diagnostics 1/10/96, 4:25 pm242

DIAGNOSTICS

243

ICCH8C–1

No Error message Suggestion

149 Attempt to take address The & operator may not be
of "sfr" or "bit" applied to variables declared as
variable bit or as sfr.

150 Illegal range for "sfr" The address expression is not a
or "bit" address valid bit or sfr address.

151 Too many functions There may not be more than 256
defined in a single functions in use in a module.
module. Note that there are no limits to

the number of declared
functions.

152 '.' expected The . was missing from a bit
declaration.

153 Illegal context for
extended specifier

H8-SPECIFIC ERROR MESSAGES

None.

The following table lists the compilation warning messages:

No Warning message Suggestion

0 Macro 'name' redefined A symbol defined with #define
was redeclared with a different
argument or formal list.

1 Macro formal parameter A #define formal parameter
'name' is never never appeared in the argument
referenced string.

2 Macro 'name' is already #undef was applied to a symbol
#undef that was not a macro.

3 Macro 'name' called with A parameterized macro defined
empty parameter(s) in a #define statement was

called with a zero-length
argument.

COMPILATION
WARNING MESSAGES

§18 Diagnostics 1/10/96, 4:25 pm243

DIAGNOSTICS

244

ICCH8C–1

No Warning message Suggestion

4 Macro 'name' is called A recursive macro call makes the
recursively; not expanded pre-processor stop further

expansion of that macro.

5 Undefined symbol 'name' It is considered as bad
in #if or #elif; assumed programming practice to assume
zero that non-macro symbols should

be treated as zeros in #if and
#elif expressions. Use either:
#ifdef symbol or #if defined
(symbol)

6 Unknown escape sequence A backslash (\) found in a
('\c'); assumed 'c' character constant or string

literal was followed by an
unknown escape character.

7 Nested comment found The character sequence /* was
without using the '-C' found within a comment, and
option ignored.

8 Invalid type-specifier In this implementation, bitfields
for field; assumed "int" may be specified only as int or

unsigned int.

9 Undeclared function An undeclared identifier in the
parameter 'name'; header of a K&R function
assumed "int" definition is by default given the

type int.

10 Dimension of array An array with an explicit
ignored; array assumed dimension was specified as a
pointer formal parameter, and the

compiler treated it as a pointer to
object.

11 Storage class "static" An object or function was first
ignored; 'name' declared declared as extern (explicitly or
"extern" by default) and later declared as

static. The static declaration is
ignored.

§18 Diagnostics 1/10/96, 4:25 pm244

DIAGNOSTICS

245

ICCH8C–1

No Warning message Suggestion

12 Incompletely bracketed To avoid ambiguity, initializers
initializer should either use only one level

of {} brackets or be completely
surrounded by {} brackets.

13 Unreferenced label 'name' Label was defined but never
referenced.

14 Type specifier missing; No type specifier given in
assumed "int" declaration – assumed to be int.

15 Wrong usage of string This implementation restricts
operator ('#' or '##'); usage of # and ## operators to
ignored the token-field of parameterized

macros.

In addition the # operator must precede a formal parameter:

#define mac(p1) #p1 /* Becomes "p1" */
#define mac(p1,p2) p1+p2##add_this /* Merged p2 */

16 Non-void function: A non-void function definition
"return" with should exit with a defined return
<expression>; expected value in all places.

17 Invalid storage class Invalid storage class for function
for function; assumed to – ignored. Valid classes are
be "extern" extern, static, or typedef.

18 Redeclared parameter's Storage class of a function formal
storage class parameter was changed from

register to auto or vice versa
in a subsequent declaration/
definition.

19 Storage class "extern" An identifier declared as static
ignored; 'name' was was later explicitly or implicitly
first declared as declared as extern. The extern
"static" declaration is ignored.

§18 Diagnostics 1/10/96, 4:25 pm245

DIAGNOSTICS

246

ICCH8C–1

<expression>; expected

No Warning message Suggestion

20 Unreachable statement(s) One or more statements were
preceded by an unconditional
jump or return such that the
statement or statements would
never be executed.

For example:

break;
i = 2; /* Never executed */

21 Unreachable statement(s) One or more labeled statements
at unreferenced label were preceded by an
'name' unconditional jump or return

but the label was never
referenced, so the statement or
statements would never be
executed.

For example:

break;
here:
i = 2; /* Never executed */

22 Non-void function: A non-void function generated
explicit "return" an implicit return.

This could be the result of an
unexpected exit from a loop or
switch. Note that a switch
without default is always
considered by the compiler to be
‘exitable’ regardless of any case
constructs.

23 Undeclared function A reference to an undeclared
'name'; assumed "extern" function causes a default
"int" declaration to be used. The

function is assumed to be of
K&R type, have extern storage
class, and return int.

§18 Diagnostics 1/10/96, 4:25 pm246

DIAGNOSTICS

247

ICCH8C–1

No Warning message Suggestion

24 Static memory option A command line option for static
converts local "auto" or memory allocation caused auto
"register" to "static" and register declarations to be

treated as static.

25 Inconsistent use of K&R A K&R function was called with
function - varying number a varying number of parameters.
of parameters

26 Inconsistent use of K&R A K&R function was called with
function - changing type changing types of parameters.
of parameter

For example:

myfunc (34); /* int argument */
myfunc(34.6); /* float argument */

27 Size of "extern" object extern arrays should be
'name' is unknown declared with size.

28 Constant [index] outside There was a constant index
array bounds outside the declared array

bounds.

29 Hexadecimal escape The escape sequence is truncated
sequence larger than to fit into char.
"char"

§18 Diagnostics 1/10/96, 4:25 pm247

DIAGNOSTICS

248

ICCH8C–1

No Warning message Suggestion

30 Attribute ignored Since const or volatile are
attributes of objects they are
ignored when given with a
structure, union, or
enumeration tag definition that
has no objects declared at the
same time. Also, functions are
considered as being unable to
return const or volatile.

For example:

const struct s
{
 ...
}; /* no object declared, const ignored - warning */
const int myfunc(void);
/* function returning const int - warning */
const int (*fp)(void); /* pointer to function
returning const int - warning */
int (*const fp)(void);
/* const pointer to function returning int - OK,
no warning */

31 Incompatible parameters Pointers (possibly indirect) to
of K&R functions functions or K&R function

declarators have incompatible
parameter types.

The pointer was used in one of following contexts:

pointer - pointer,
expression ? ptr : ptr,
pointer relational_op pointer
pointer equality_op pointer
pointer = pointer
formal parameter vs actual parameter

§18 Diagnostics 1/10/96, 4:25 pm248

DIAGNOSTICS

249

ICCH8C–1

No Warning message Suggestion

32 Incompatible numbers of Pointers (possibly indirect) to
parameters of K&R functions or K&R function
functions declarators have a different

number of parameters.

The pointer is directly used in one of following contexts:

pointer - pointer
expression ? ptr : ptr
pointer relational_op
pointerpointer equality_op pointer
pointer = pointer
formal parameter vs actual parameter

33 Local or formal 'name' A formal parameter or local
was never referenced variable object is unused in the

function definition.

34 Non-printable character It is considered as bad
'\xhh' found in literal programming practice to use
or character constant non-printable characters in

string literals or character
constants. Use \0xhhh to get the
same result.

35 Old-style (K&R) type of An old style K&R function
function declarator declarator was found. This

warning is issued only if the -gA
option is in use.

36 Floating point constant A floating-point value is too large
out of range or too small to be represented by

the floating-point system of the
target.

37 Illegal float operation: During constant arithmetic a
division by zero not zero divide was found.
allowed

38 Tag identifier 'name' was
never defined

§18 Diagnostics 1/10/96, 4:25 pm249

DIAGNOSTICS

250

ICCH8C–1

No Warning message Suggestion

39 Dummy statement. Redundant code found. This
Optimized away! usually indicates a typing

mistake in the user code or it
might also be generated when
using macros which are a little
bit too generic (which is not a
fault).

For example:

a+b;

40 Possible bug! "If" This usually indicates a typing
statement terminated mistake in the user code.

For example:

if (a==b);
{
 <if body>
}

41 Possible bug! A variable is used before
Uninitialized variable initialization (the variable has a

random value).

For example:

void func (p1)
{
 short a;
 p1+=a;
}

42 This message is discarded.

§18 Diagnostics 1/10/96, 4:25 pm250

DIAGNOSTICS

251

ICCH8C–1

No Warning message Suggestion

43 Possible bug! Integer The rule of integer promotion
promotion may cause says that all integer operations
problems. Use cast to must generate a result as if they
avoid it were of int type if they have a

small precision than int and this
can sometimes lead to
unexpected results.

For example:

short tst(unsigned char a)
{
 if (-a)
 return (1);
 else
 return (-1);
}

This example will always return the value 1 even with the value
0xff. The reason is that the integer promotion casts the variable a
to 0x00ff first and then preforms a bit not.

Integer promotion is ignored by many other C compilers, so this
warning may be generated when recompiling an existing program
with the IAR Systems compiler.

44 Possible bug! Single '=' This usually indicates a typing
instead of '==' used in mistake in the user code.
"if" statement

For example:

if (a=1)
{
 <if body>
}

45 Redundant expression. This might indicate a typing
Example: Multiply with mistake in the user code, but it
1, add with 0 can also be a result of stupid

code generated by a case tool.

§18 Diagnostics 1/10/96, 4:25 pm251

DIAGNOSTICS

252

ICCH8C–1

No Warning message Suggestion

46 Possible bug! Strange or This usually indicates a bug in
faulty expression. the user code.
Example: Division by zero

47 Unreachable code deleted Redundant code block in the
by the global optimizer user code. It might be a result of

a bug but is usually only a sign of
incomplete code.

48 Unreachable returns. The The function will never be able
function will never to return to the calling function.
return This might be a result of a bug,

but is usually generated when
you have never ending loops in a
RTOS system.

49 Unsigned compare always This indicates a bug in the user
true/false code! A common reason is a

missing -c compiler switch.

For example:

for (uc=10; uc>=0; uc--)
{
 <loop body>
}

This is a never ending loop
because an unsigned value is
always larger than or equal to
zero.

51 Signed compare always This indicates a bug in the user
true/false code!

H8-SPECIFIC WARNING MESSAGES

None.

§18 Diagnostics 1/10/96, 4:25 pm252

INDEX

253

ICCH8C–1

INDEX

A
abort (library function) 88
abs (library function) 89
acos (library function) 89
alignment (#pragma directive) 175
and_ccr (intrinsic function) 195
and_exr (intrinsic function) 195
ANSI definition 219

data types 221
function declarations 222
function definition parameters 221
hexadecimal string constants 222

asin (library function) 90
assembler

calling conventions 208
interrupt functions 210

assembler interface 207
shell 207

assembler source 47
assert (library function) 90
assumptions iv
atan (library function) 91
atan2 (library function) 91
atof (library function) 92
atoi (library function) 92
atol (library function) 93

B
bit (extended keyword) 163
bitfields 75
bitfields=default (#pragma

directive) 175
bitfields=reversed (#pragma

directive) 175
BITVAR (segment) 213
bsearch (library function) 94

C
C compiler, features 5
C compiler options

-A 47, 207
-a 47
-b 56
-C 36
-c 36
-D 45
-e 11, 36, 181
-F 48
-f 56
-G 57
-g 37, 79
-H 57
-I 53
-i 48
-K 42
-L 48, 207
-l 49
-m 11, 54, 190
-N 49
-n 50
-O 58
-o 58
-P 11, 59
-p 50
-q 11, 50, 207
-R 59
-r 11, 44
-S 59
-s 42, 178
-T 51
-t 51
-U 52
-u 43
-v 55, 190
-W 43
-w 43, 187
-X 51

C compiler options (continued)
-x 52
-y 44, 213, 215
-z 44, 178

C compiler options summary 31
C library functions. See library

functions
C-SPY debugger, using 20
calloc (library function) 69, 95
CCSTR (segment) 213
CDATA (segment) 213
ceil (library function) 95
CODE (segment) 214
code generation options 35
code segment name 59
codeseg (#pragma directive) 176
command line options 55
compiler version number 191
configuration 61
const (keyword) 219
CONST (segment) 214
conventions v
cos (library function) 96
cosh (library function) 96
cross-reference list 52
CSTACK (segment) 214
CSTARTUP routine 69
CSTR (segment) 215
ctype.h (header file) 80

D
dadd (intrinsic function) 195
data representation 73
data types 73, 221
debug options 44
#define options 45
development cycle 8
diagnostics 225

error messages 227
warning messages 243, 252

§19 Index 1/10/96, 4:25 pm253

INDEX

254

ICCH8C–1

directives, #pragma 175
disable_max_time (intrinsic

function) 196
div (library function) 97
do_byte_eepmov (intrinsic

function) 196
do_word_eepmov (intrinsic

function) 196
documentation route map 4
dsub (intrinsic function) 197

E
ECSTR (segment) 215
efficient coding 77
Embedded Workbench

installing 2, 3
running 2

entry (keyword) 219
enum (keyword) 74, 221
errno.h (header file) 86
error messages 227
exit (library function) 98
exp (library function) 98
exp10 (library function) 99
extended keyword summary 157
extended keywords 163

bit 163
far 77, 164
far_func 76, 165
huge 77, 166
interrupt 166
monitor 168
near 77, 169
near_func 76, 170
no_init 170
sfr 171
sfrp 172
tiny 77, 173
tiny_func 76, 173

extensions 157

F
fabs (library function) 99
far (extended keyword) 77, 164
far_func (extended keyword) 76, 165
features, C compiler 5
FLIST (segment) 215
float.h (header file) 86
floating point precision, XLINK

command file 62
floating-point format 74

4-byte 74
8-byte 75

floor (library function) 100
fmod (library function) 100
free (library function) 101
frexp (library function) 101
func_stack_base (intrinsic

function) 197
function=default (#pragma

directive) 177
function=interrupt (#pragma

directive) 177
function=intrinsic (#pragma

directive) 178
function=monitor (#pragma

directive) 180
function=tiny_func (#pragma

directive) 180

G
get_ccr (intrinsic function) 201
get_exr (intrinsic function) 201
get_imask_ccr (intrinsic function) 197
get_imask_exr (intrinsic function) 198
getchar (library function) 66, 102
gets (library function) 102

H
header files 80

ctype.h 80
errno.h 86
float.h 86
icclbutl.h 81
limits.h 86
math.h 81
setjmp.h 82
stdarg.h 82
stddef.h 86
stdio.h 83
stdlib.h 83
string.h 84

heap size 69
hexadecimal string constants 222
huge (extended keyword) 77, 166

I
icclbutl.h (header file) 81
IDATA (segment) 216
IFLIST (segment) 215
include options 53
initialization 69
input and output 66
installation, requirements 1
interrupt (extended keyword) 166
interrupt functions 210
interrupt vectors 210
intrinsic function summary 160
intrinsic function support 191
intrinsic functions

_args$ 193
_argt$ 194
and_ccr 195
and_exr 195
dadd 195
disable_max_time 196

§19 Index 1/10/96, 4:25 pm254

INDEX

255

ICCH8C–1

intrinsic functions (continued)
do_byte_eepmov 196
do_word_eepmov 196
dsub 197
func_stack_base 197
get_ccr 201
get_exr 201
get_imask_ccr 197
get_imask_exr 198
mac 198
macl 198
no_operation 199
or_ccr 199
or_exr 199
ovfaddc 199
ovfaddl 199
ovfaddw 199
ovfnegc 200
ovfnegl 200
ovfnegw 200
ovfshalc 200
ovfshall 200
ovfshalw 200
ovfsubc 201
ovfsubl 201
ovfsubw 201
read_ccr 201
read_exr 201
read_hi_mac 202
read_mac 202
repeat_mac 202
rotlc 202
rotll 202
rotlw 202
rotrc 203
rotrl 203
rotrw 203
set_ccr 205
set_exr 205
set_imask_ccr 203
set_imask_exr 203

intrinsic functions (continued)
set_interrupt_mask 204
single_mac 204
sleep 204
tas 205
trapa 205
write_ccr 205
write_exr 205
write_ext_mac 206
write_mac 206
xor_ccr 206
xor_exr 206

intrinsic_on_M02 (global
variable) 178

INTVEC (segment) 216
isalnum (library function) 103
isalpha (library function) 104
iscntrl (library function) 104
isdigit (library function) 105
isgraph (library function) 105
islower (library function) 106
isprint (library function) 106
ispunct (library function) 107
isspace (library function) 107
isupper (library function) 108
isxdigit (library function) 109

K
K&R definition v
Kernighan & Richie definition 219
keywords

const 219
entry 219
enum 74, 221
signed 220
struct 223
union 223
void 220
volatile 220

L
labs (library function) 109
language extensions 157
language=default (#pragma

directive) 181
language=extended (#pragma

directive) 181
ldexp (library function) 110
ldiv (library function) 110
library functions

_formatted_read 152
_formatted_write 153
_medium_read 154
_medium_write 155
_small_write 156
abort 88
abs 89
acos 89
asin 90
assert 90
atan 91
atan2 91
atof 92
atoi 92
atol 93
bsearch 94
calloc 69, 95
ceil 95
cos 96
cosh 96
div 97
exit 98
exp 98
exp10 99
fabs 99
floor 100
fmod 100
free 101
frexp 101
getchar 102

§19 Index 1/10/96, 4:25 pm255

INDEX

256

ICCH8C–1

library functions (continued)
gets 102
isalnum 103
isalpha 104
iscntrl 104
isdigit 105
isgraph 105
islower 106
isprint 106
ispunct 107
isspace 107
isupper 108
isxdigit 109
labs 109
ldexp 110
ldiv 110
log 111
log10 111
longjmp 112
malloc 69, 112
memchr 113
memcmp 114
memcpy 115
memmove 115
memset 116
modf 117
pow 117
printf 118
putchar 122
puts 123
qsort 124
rand 124
realloc 125
scanf 126
setjmp 129
sin 130
sinh 130
sprintf 131
sqrt 131
srand 132
sscanf 133

library functions (continued)
strcat 133
strchr 134
strcmp 135
strcoll 135
strcpy 136
strcspn 137
strerror 137
strlen 138
strncat 138
strncmp 139
strncpy 140
strpbrk 140
strrchr 141
strspn 142
strstr 142
strtod 143
strtok 144
strtol 145
strtoul 146
strxfrm 147
tan 147
tanh 148
tolower 148
toupper 149
va_arg 149
va_end 150
va_list 150
va_start 151

library functions summary 80
limits.h (header file) 86
linker command file 62
list options 46
listings, formatting 48, 50
log (library function) 111
log10 (library function) 111
longjmp (library function) 112

M
mac (intrinsic function) 198
macl (intrinsic function) 198
malloc (library function) 69, 112
math.h (header file) 81
memchr (library function) 113
memcmp (library function) 114
memcpy (library function) 115
memmove (library function) 115
memory models 64

XLINK command file 62
memory=constseg (#pragma

directive) 182
memory=dataseg (#pragma

directive) 183
memory=default (#pragma

directive) 184
memory=far (#pragma directive) 184
memory=huge (#pragma

directive) 184
memory=near (#pragma

directive) 185
memory=no_init (#pragma

directive) 186
memory=shortad (#pragma

directive) 186
memset (library function) 116
modf (library function) 117
monitor (extended keyword) 168

N
near (extended keyword) 77, 169
near_func (extended

keyword) 76, 170
no_init (extended keyword) 170
NO_INIT (segment) 64, 186, 217
no_operation (intrinsic function) 199
non-volatile RAM 64

§19 Index 1/10/96, 4:25 pm256

INDEX

257

ICCH8C–1

O
object filename 58
operators, sizeof 162
optimization 42, 44
or_ccr (intrinsic function) 199
or_exr (intrinsic function) 199
ovfaddc (intrinsic function) 199
ovfaddl (intrinsic function) 199
ovfaddw (intrinsic function) 199
ovfnegc (intrinsic function) 200
ovfnegl (intrinsic function) 200
ovfnegw (intrinsic function) 200
ovfshalc (intrinsic function) 200
ovfshall (intrinsic function) 200
ovfshalw (intrinsic function) 200
ovfsubc (intrinsic function) 201
ovfsubl (intrinsic function) 201
ovfsubw (intrinsic function) 201

P
PATH variable 1
pointers 76

far 77
far_func 76
huge 77
near 77
near_func 76
tiny 77
tiny_func 76

pow (library function) 117
pragma directives. See #pragma

directives
predefined symbols

__DATE__ 189
__FILE__ 189
__IAR_SYSTEMS_ICC 189
__LINE__ 190
__STDC__ 190

predefined symbols (continued)
__TID__ 190
__TIME__ 191
__VER__ 191

printf (library function) 67, 118
processor groups 62
PROMable code 59
putchar (library function) 66, 122
puts (library function) 123

Q
qsort (library function) 124

R
rand (library function) 124
RCODE (segment) 217
read_ccr (intrinsic function) 201
read_exr (intrinsic function) 201
read_hi_mac (intrinsic function) 202
read_mac (intrinsic function) 202
realloc (library function) 125
recommendations 77
register I/O 69
repeat_mac (intrinsic function) 202
requirements 1
rotlc (intrinsic function) 202
rotll (intrinsic function) 202
rotlw (intrinsic function) 202
rotrc (intrinsic function) 203
rotrl (intrinsic function) 203
rotrw (intrinsic function) 203
route map 4
run-time library 63
run-time stack 208
running

a program 20
Embedded Workbench 2

S
scanf (library function) 68, 126
segments 211

BITVAR 213
CCSTR 213
CDATA 213
CODE 214
CONST 214
CSTACK 214
CSTR 215
ECSTR 215
FLIST 215
IDATA 216
IFLIST 215
INTVEC 216
NO_INIT 64, 186, 217
RCODE 217
TEMP 217
UDATA 218
WCSTR 218

set_ccr (intrinsic function) 205
set_exr (intrinsic function) 205
set_imask_ccr (intrinsic function) 203
set_imask_exr (intrinsic function) 203
set_interrupt_mask (intrinsic

function) 204
setjmp (library function) 129
setjmp.h (header file) 82
sfr (extended keyword) 171
sfr variables 75
sfrp (extended keyword) 172
shared variable objects 223
shell for interfacing to assembler 207
signed (keyword) 220
silent operation 59
sin (library function) 130
single_mac (intrinsic function) 204
sinh (library function) 130
sizeof (operator) 162
sleep (intrinsic function) 204

§19 Index 1/10/96, 4:25 pm257

INDEX

258

ICCH8C–1

Special Function Register
variables 75

sprintf (library function) 67, 131
sqrt (library function) 131
srand (library function) 132
sscanf (library function) 68, 133
stack 197
stack size 65
stdarg.h (header file) 82
stddef.h (header file) 86
stdio.h (header file) 83
stdlib.h (header file) 83
strcat (library function) 133
strchr (library function) 134
strcmp (library function) 135
strcoll (library function) 135
strcpy (library function) 136
strcspn (library function) 137
strerror (library function) 137
string.h (header file) 84
strlen (library function) 138
strncat (library function) 138
strncmp (library function) 139
strncpy (library function) 140
strpbrk (library function) 140
strrchr (library function) 141
strspn (library function) 142
strstr (library function) 142
strtod (library function) 143
strtok (library function) 144
strtol (library function) 145
strtoul (library function) 146
struct (keyword) 223
strxfrm (library function) 147
symbols, undefining 52

T
tab spacing 51
tan (library function) 147
tanh (library function) 148

target identifier 190
target options 54
tas (intrinsic function) 205
TEMP (segment) 217
tiny (extended keyword) 77, 173
tiny_func (extended keyword) 76, 173
tolower (library function) 148
toupper (library function) 149
trapa (intrinsic function) 205
tutorial files 7
tutorials

adding an interrupt handler 27
configuring to suit the target

program 9
running a program 20
using #pragma directives 22
using C-SPY 20

type check 37

U
UDATA (segment) 218
#undef options 52
union (keyword) 223

V
va_arg (library function) 149
va_end (library function) 150
va_list (library function) 150
va_start (library function) 151
void (keyword) 220
volatile (keyword) 220

W
warning messages 243, 252
warnings=default (#pragma

directive) 187

warnings=off (#pragma
directive) 187

warnings=on (#pragma
directive) 187

WCSTR (segment) 218
Workbench

installing 3
running 2

write_ccr (intrinsic function) 205
write_exr (intrinsic function) 205
write_ext_mac (intrinsic

function) 206
write_mac (intrinsic function) 206

X
XLINK command file 62
XLINK options, -A 67
xor_ccr (intrinsic function) 206
xor_exr (intrinsic function) 206

SYMBOLS

#pragma (directive) 175
#pragma directive summary 158
#pragma directives

alignment 175
bitfields=default 175
bitfields=reversed 175
function=default 177
function=interrupt 177
function=intrinsic 178
function=monitor 180
function=tiny_func 180
language=default 181
language=extended 181
memory=constseg 182
memory=dataseg 183
memory=default 184
memory=far 184

§19 Index 1/10/96, 4:25 pm258

INDEX

259

ICCH8C–1

#pragma directives (continued)
memory=huge 184
memory=near 185
memory=no_init 186
memory=shortad 186
warnings=default 187
warnings=off 187
warnings=on 187

$ character 162
-A (C compiler option) 47, 207
-a (C compiler option) 47
-A (XLINK option) 67
-b (C compiler option) 56
-C (C compiler option) 36
-c (C compiler option) 36
-D (C compiler option) 45
-e (C compiler option) 11, 36, 181
-F (C compiler option) 48
-f (C compiler option) 56
-G (C compiler option) 57
-g (C compiler option) 37, 79
-H (C compiler option) 57
-I (C compiler option) 53
-i (C compiler option) 48
-K (C compiler option) 42

-L (C compiler option) 48, 207
-l (C compiler option) 49
-m (C compiler option) 11, 54, 190
-N (C compiler option) 49
-n (C compiler option) 50
-O (C compiler option) 58
-o (C compiler option) 58
-P (C compiler option) 11, 59
-p (C compiler option) 50
-q (C compiler option) 11, 50, 207
-R (C compiler option) 59
-r (C compiler option) 11, 44
-S (C compiler option) 59
-s (C compiler option) 42
-s (compiler option) 178
-T (C compiler option) 51
-t (C compiler option) 51
-U (C compiler option) 52
-u (C compiler option) 43
-v (C compiler option) 55, 190
-W (C compiler option) 43
-w (C compiler option) 43, 187
-X (C compiler option) 51
-x (C compiler option) 52
-y (C compiler option) 44, 213, 215

-z (C compiler option) 44
-z (compiler option) 178
__DATE__ (predefined symbol) 189
__FILE__ (predefined symbol) 189
__IAR_SYSTEMS_ICC

(predefined symbol) 189
__LINE__ (predefined symbol) 190
__STDC__ (predefined symbol) 190
__TID__ (predefined symbol) 190
__TIME__ (predefined symbol) 191
__VER__ (predefined symbol) 191
_args$ (intrinsic function) 193
_argt$ (intrinsic function) 194
_formatted_read (library

function) 68, 152
_formatted_write (library

function) 67, 153
_medium_read (library

function) 68, 154
_medium_write (library

function) 67, 155
_small_write (library

function) 67, 156

§19 Index 1/10/96, 4:25 pm259

INDEX

260

ICCH8C–1§19 Index 1/10/96, 4:25 pm260

	WELCOME
	ABOUT THIS GUIDE
	CONTENTS
	INSTALLATION
	COMMAND LINE VERSIONS
	WINDOWS WORKBENCH VERSIONS
	UNIX VERSIONS
	DOCUMENTATION ROUTE MAP

	INTRODUCTION
	TUTORIAL
	TYPICAL DEVELOPMENT CYCLE
	GETTING STARTED
	CREATING A PROGRAM
	EXTENDING THE PROGRAM
	ADDING AN INTERRUPT HANDLER

	C COMPILER OPTIONS SUMMARY
	SETTING C COMPILER OPTIONS
	OPTIONS SUMMARY

	C COMPILER OPTIONS REFERENCE
	CODE GENERATION
	DEBUG
	#define
	LIST
	#undef
	INCLUDE
	TARGET
	MISCELLANEOUS

	CONFIGURATION
	INTRODUCTION
	PROCESSOR GROUP
	XLINK COMMAND FILE
	RUN-TIME LIBRARY
	MEMORY MODEL
	FLOATING-POINT PRECISION
	STACK SIZE
	INPUT AND OUTPUT
	REGISTER I/O
	HEAP SIZE
	INITIALIZATION

	DATA REPRESENTATION
	DATA TYPES
	POINTERS
	EFFICIENT CODING

	GENERAL C LIBRARY DEFINITIONS
	C LIBRARY FUNCTIONS REFERENCE
	LANGUAGE EXTENSIONS
	INTRODUCTION
	EXTENDED KEYWORDS SUMMARY
	#PRAGMA DIRECTIVE SUMMARY
	PREDEFINED SYMBOLS SUMMARY
	INTRINSIC FUNCTION SUMMARY
	OTHER EXTENSIONS

	EXTENDED KEYWORD REFERENCE
	#PRAGMA DIRECTIVE REFERENCE
	PREDEFINED SYMBOLS REFERENCE
	INTRINSIC FUNCTION REFERENCE
	ASSEMBLY LANGUAGE INTERFACE
	CREATING A SHELL
	CALLING CONVENTION
	CALLING ASSEMBLY ROUTINES FROM C

	SEGMENT REFERENCE
	K&R AND ANSI C LANGUAGE DEFINITIONS
	DIAGNOSTICS
	COMPILATION ERROR MESSAGES
	COMPILATION WARNING MESSAGES

	INDEX
	A-D
	D-I
	I-L
	L-N
	O-S
	S-X, SYMBOLS

