GCSE Mathematics (9-1) Practice Tests

Set 8 – Paper 3H mark scheme

Question	Working	Answer	Mark	Notes
1		2,20,29	3	M2 for 3 number selected with at least two of the properties: mean = 17, median = 20, range = 27 else M1 with one of these properties
				A1 in any order
Alt	ernative			<u> </u>
1	$ \frac{17 \times 3 (= 51)}{17 \times 3 - 20 (=31)} $	2,20,29	3	M1method to find sum of 3 numbersM1method to find sum of smallest and largest numbersA1in any order
	ernative			
1	x, 20, z or x, y, z and y = 20 $x + z = 31$ or $\frac{x + 20 + z}{3} = 17$ oe	2,20,29	3	M1 use of different letters with 20 shown as the middle value M1 an equation for the sum or for the difference of the two unknown
	$3 \\ or \ z - x = 27 \ or \ x - z = 27$			numbers A1 in any order
	· · · · · · · · · · · · · · · · · · ·		·	Total 3 marks

Q	uestion	Working	Answer	Mark		Notes
2	(a)(i)		67	1	B1	
	(ii)		reason	1	B1	dep on B1or a fully correct method shown in (i) e.g. <u>alternate angles</u> are equal or other fully correct method
	(b)	e.g. $180 - (67 + 60)$ or $120 - 67$ or (180 - 67) - (180 - 120) or $113 - 60$ or 180 - 67 = 60 + y or $113 = 60 + y$ or 120 - y = 67	53	2	M1	Correct calculation for y or correct equation in y, or $BFC = 60^{\circ}$ and $BCF = 67^{\circ}$ or $ABF = 60^{\circ}$ and $BCF = 67^{\circ}$ or $ABF = 60^{\circ}$ and $ABC = 113^{\circ}$
		· · · ·			•	Total 4 marks
3	(a)	$ \begin{array}{c} (0 \times 2) + 1 \times 7 + 2 \times 3 + 3 \times 4 + 4 \times 3 + 5 \times 1 \\ (0 +) 7 + 6 + 12 + 12 + 5 \end{array} $	42	2	M1 A1	For at least 4 correct products with the intention to add. SC B1 for 2.1
	(b)		2	1	B1	
				•	•	Total 3 marks
4		$\frac{6}{100} \times 8.50 \text{ or } 0.06 \times 8.50 \text{ or } 0.51 \text{ or } 51\text{p}$	9.01	3	M1	M2 for 1.06 × 8.50 oe
		8.50 + "0.51"			M1 A1	dep
				•	•	Total 3 marks

Question	Working	Answer	Mark		Notes
5 (a)		A correct enlargement in the correct position	2	M1 A1	Enlargment of given shape by SF 3 anywhere on grid or completely correct enlargement by SF 2 Fully correct
(b)		Rotation (Centre) (0,0) 90° clockwise oe	3	B1 B1 B1	$\begin{array}{c} O \text{ or origin} \\ -90^{\circ}, 270^{\circ} \end{array} \qquad \begin{array}{c} \text{If more than} \\ \text{one} \\ \text{transformation} \\ \text{mentioned then} \\ \text{no marks} \end{array}$
6	2240 ÷ 805 (=2.78(26)) "0.7826" × 60 (= 46.95) or "2.7826" × 60 (= 166.95)	2 hrs 47 mins	3	M1 M1 A1	Total 5 marks Method to change "0.7826" to minutes or "2.7826" to minutes cao
7	e.g. $7x = 4x - 13.5$ or $7x - 4x = -13.5$ or $7x + 13.5 = 4x$ or $4y - 7y = 54$ e.g. $y = 4 \times -4.5$ or $4x = -18$ or 7×-4.5 $- y = -13.5$	x = -4.5 $y = -18$	3	M1 M1 A1	Total 3 marksFor correctly eliminating y or xdep on first M1For method to find secondvariabledep on first M1for both answers
	•		•	•	Total 3 marks

Question	Working	Answer	Mark		Notes
8	$\cos A = \frac{43}{70} (=0.6142) \text{ or } \sin B = \frac{43}{70} (=0.6142)$	142	4	M1	$\cos B = \frac{55.23}{70}, \sin A = \frac{55.23}{70}$
	$A = \cos^{-1}\left(\frac{43}{70}\right)$ or $B = \sin^{-1}\left(\frac{43}{70}\right)$			M1	$A = \sin^{-1} \left(0.7890 \right)$
	$A = \cos \left(\frac{1}{70}\right) $ or $B = \sin \left(\frac{1}{70}\right)$				$B = \cos^{-1}(0.7890)$
	$A = 52.1^{\circ}$ or $B = 37.9^{\circ}$			A1	52° - 52.1° or 37.9° - 38°
					SC B1 If M0 M0 A0 award B1 for 52.1° or 37.9° not identified as <i>A</i>
					or as B
				B1	ft for an angle identified as A or B
					Correct bearing $(142 - 142.1)$
					Total 4 marks
9		$27a^{6}b^{12}$	2	B2	fully correct
					B1 for 2 of the three terms correct
					in a product.
			-	1.00	Total 2 marks
10	$-5-3 \le 2p < 13-3$ or $-5-3 \le 2p$ and $2p < 13-3$ or 5-2p + 2 - 12	$-4 \leq p < 5$	3	M2	Correctly subtracting 3 from each part of the inequality or dividing each term by 2
	$-\frac{5}{2} \leqslant \frac{2p+3}{2} < \frac{13}{2}$ or				or (<i>p</i> =) -4 and (<i>p</i> =) 5
					M1 for one end correct
	$-\frac{5}{2} \leqslant \frac{2p+3}{2}$ and $p + \frac{3}{2} < \frac{13}{2}$				e.g. $2p \ge -5-3$ or $\frac{2p+3}{2} < \frac{13}{2}$
					or (<i>p</i> =) -4 or (<i>p</i> =) 5
				A1	accept $p \ge -4$ and $p < 5$
					Total 3 marks

Question	Working	Answer	Mark		Notes
11	10 - 3	7	2	M1	10 and 3 identified
				A1	
					Total 2 marks
12	e.g. $4(5x-2) + 3(3-5x) = 2 \times 12$ or $\frac{4(5x-2)}{12} + \frac{3(3-5x)}{12}$ or $\frac{4(5x-2) + 3(3-5x)}{12}$	4.6	4	t t	For clear intention to multiply all terms by 12 or a multiple of 12 or to express LHS as a single fraction or as the sum of a pair of fractions with a common denominator of 12
					or a multiple of 12
	$20x - 8 + 9 - 15x = 2 \times 12$ or				Expanding brackets correctly in a
	$\frac{20x-8+9-15x}{12} = 2 \text{ or } \frac{20x-8}{12} + \frac{9-15x}{12} = 2$				correct equation.
	5x = 23 or 20x - 15x = 24 + 8 - 9 or 20x - 15x = 24 - 1 oe			(For correct rearrangement of a correct equation with fractions cleared and terms in x isolated.
				Aloe o	dep on at least M1
					Total 4 marks
13	$(1.4 \times 10^9) \div (3.5 \times 10^7)$ or $\frac{1400000000}{35000000}$	40	2	M1 	or for an answer equivalent to 4×10^{n} where <i>n</i> is an integer, e.g. 4, 4×10^{-2} , 4000, 0.4×10^{3} Accept 4×10^{1} or 4×10
					Total 2 marks

Question	Working	Answer	Mark	Notes
14 (a)		$\frac{4}{7}$	2	B1 For left branch correct 0.57(142)
		$\frac{4}{9}, \frac{5}{9}, \frac{4}{9}, \frac{5}{9}$		B1 For right branches correct 0.44(4), 0.55(5)
(b)	$\frac{3}{7} \times \frac{4}{9}$	$\frac{4}{21}$	2	$\begin{array}{c c} M1 & \text{ft their tree} \\ \hline A1 & \text{ft their tree for fractions less than} \\ 1 \text{ oe } \frac{12}{63}, 0.19(0476) \end{array}$
				Total 4 marks
15	$p^{2} = \frac{w+4}{w-2}$ $p^{2}(w-2) = w+4$ $p^{2}w-w = 4+2p^{2} \text{ or } -4-2p^{2} = w-p^{2}w$	$w = \frac{2p^2 + 4}{p^2 - 1}$	4	M1 For squaring both sides M1 For multiplying both sides by (w-2) M1 For isolating terms in w in a correct equation. A1 oe $w = \frac{-2p^2 - 4}{1 - p^2}$
		·		Total 4 marks

Question	Working	Answer	Mark	Notes
16 (a)	15 ÷ (80 – 50) (= 0.5)	28, 18	2	M1correct method to find fd for interval $50 < t \le 80$ or one correct frequency for $80 < t \le 120$ or $120 < t \le 180$ or 0.5 shown correctly on fd axis (1cm = 0.1) or 10 small squares = 1 person oeA1Both values correct
(b)	$\frac{10}{50-0} (= 0.2), \frac{12}{240-180} (= 0.2),$ $\frac{8}{320-240} (= 0.1)$ $0 < t \le 50 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $180 < t \le 240 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $240 < t \le 320 \text{ fd} = 0.1 \text{ (height 1 cm)}$	Correct bars drawn	2	 M1 For method to find one correct frequency density. Accept one bar drawn with correct height Accept 10 × 10 = 100 or 12 × 10 = 120 or 8 × 10 = 80 small squares. A1 Three bars with correct widths and heights
				Total 4 marks

Question	Working	Answer	Mark		Notes
17 (a)	$(2x+1)(x+3) - 2 \times 3 (= 45)$ or (2x+1)(x+3) - 6 (= 45)	$2x^2 + 7x - 48 = 0$ obtained correctly.	2	M1	A correct unsimplified expression or equation for shaded area
	$2x^2 + 6x + x + 3 - 6 = 45$			Aldep	Convincingly arriving at given equation. Expansion of brackets must be shown (3 or 4 terms).
(b)	$(x=)\frac{-7\pm\sqrt{7^2-4\times2\times-48}}{2\times2}\left(=\frac{-7\pm\sqrt{49+384}}{4}\right)$	3.45	3	M1	Correct substitution into the quadratic formula, allow one sign error in numbers and + instead of \pm ; discriminant must not be simplified as far as 433
				M1	dep on first M1 for simplification of discriminant to $\sqrt{433}$ or $\sqrt{49+384}$
				A1	dep on first M1 3.45(216) Award A0 if negative root is not excluded.
					Total 5 marks
18	1000x = 278.7878 $100x = 27.8787$ $10x = 2.7878$ $x = 0.2787$	$\frac{46}{165}$ correctly shown	2	M1	Two appropriate equations selected for use. e.g. $1000x =$ 278.7878 and $10x = 2.7878$
	$990x = 276$ $99x = 27.6$ $x = \frac{276}{990}$ $x = \frac{27.6}{99} (= \frac{276}{990})$	concerty showin		A1	e.g. $\frac{276}{990} = \frac{46}{165}$ or $\frac{27.6}{99} = \frac{46}{165}$ must be shown
					Total 2 marks

Question	Working	Answer	Mark	Notes
19	$\frac{(x+3)(x-3) - (x+4)(x-4)}{(x-3)(x-4)} \text{ or } \\ \frac{(x+3)(x-3)}{(x-3)(x-4)} - \frac{(x+4)(x-4)}{(x-3)(x-4)} \text{ oe } $	$\frac{7}{(x-3)(x-4)}$	3	M1 For a correct expression as one fraction or as two fractions with a common denominator
	$\frac{(x^2 - 3x + 3x - 9) - (x^2 - 4x + 4x - 16)}{(x - 3)(x - 4)}$ or			M1 Correct expansion of $(x-3)(x+3)$ and (x-4)(x+4) in a single correct fraction A1 Accept $\frac{7}{x^2-7x+12}$
	$\frac{(x^2-9)-(x^2-16)}{(x-3)(x-4)} \text{ or } \frac{x^2-9-x^2+16}{(x-3)(x-4)} \text{ oe}$			$\frac{1}{x^2 - 7x + 12}$ <i>Total 3 marks</i>
20	$\frac{5^{n^2+n^2-5n}}{5^{6+3}} (=125) \text{ or } 5^{n^2-6} \times 5^{n^2-5n-3} (=125) \text{ or}$ $5^{n^2+n^2-5n-9} (=125) \text{ or } 5^{n^2+n^2-5n} = 125 \times 5^9$	4	5	M1 For simplifying the LHS to a product or quotient of two single powers of 5 or for an equation with 125 and at most a single power of 5 on each side.
	$5^{n^2+n^2-5n} = 5^{12}$ or $5^{n^2+n^2-5n-9} = 5^3$ or $5^{n^2+n^2-5n-9-3} = 5^0$			M1 For simplifying both sides to a single power of 5
	e.g. $2n^2 - 5n - 12 (= 0)$ or $2n^2 - 5n = 12$			A1 A correct quadratic equation in <i>n</i> , simplified to three terms in any position.
	(2n+3)(n-4) (=0) or $5+\sqrt{(-5)^2-4\times2\times-12}$ $5+\sqrt{25+96}$			M1 A correct factorisation or correct substitution into the quadratic formula or correctly completing the square.
	$n = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times -12}}{2 \times 2} = (= \frac{5 \pm \sqrt{25 + 96}}{4})$			A1 dep on correct quadratic equation Award A0 if negative root is not excluded.
				Total 5 marks

Question	Working	Answer	Mark	Notes
21	$\frac{1}{2} \operatorname{side of square} = 11\cos72 (= 3.3991) \text{ or}$ $\frac{11\sin18}{\operatorname{side of square}} = \frac{11\sin36}{\sin72} (= 6.7983) \text{ or}$ $\frac{\sqrt{11^2 + 11^2 - 2 \times 11 \times 11 \times \cos(36)} \text{ or } 2 \times 11\cos72}{\sqrt{11^2 + 11^2 - 2 \times 11 \times 11 \times \cos(36)} \text{ or } 2 \times 11\cos72}$ $\frac{11\cos18 \text{ or } \sqrt{11^2 - ("3.3991")^2}}{\cos 45} (= 9.6143) \text{ or}$ $\frac{"6.7983"}{\sin 45} \text{ or } \sqrt{("6.7983")^2 + ("6.7983")^2}}$ $\frac{1}{2} \operatorname{diagonal of base} = \frac{"3.3991"}{\cos 45} (= 4.8071) \text{ or}$ $\frac{"3.3991"}{\sin 45} \text{ or } \sqrt{("3.3991")^2 + ("3.3991")^2} \text{ or}$ $\frac{"6.7983"\cos 45 \text{ or } "6.7983"\sin 45}$	9.89	4	 M1 For a complete correct method to find a length identified as side of square or ½ side of square. M1 For complete correct method to find a length identified as height of triangular face, or diagonal of base or ½ diagonal of base
	$OP = \sqrt{("10.4616")^2 - ("3.3991")^2} \text{ or } \sqrt{11^2 - (\frac{1}{2} \times "9.6143")^2} \text{ or } \sqrt{11^2 - ("4.8071")^2}$			M1A correct method to find OPA1Allow 9.8 - 9.95SC B1 If no other marks are scored, awardB1 for 11sin72 seen.
				Total 4 marks

Question	Working	Answer	Mark	Notes
22	$\frac{360}{5}(=72)$ oe or $\frac{1}{2} \times \frac{(5-2)180}{5}(=54)$ oe	16.5	4	M1 A correct method to find an angle in a triangle formed by two radii and a side of the pentagon.
	$\frac{72}{360} \times 2 \times \pi \times 6.8 \ (= \frac{68\pi}{25} = 8.54(5)) \ oe$			M1 A correct method to find arc length
	$\frac{2 \times 6.8 \times \sin 36^{\circ} \text{ or } 2 \times 6.8 \times \cos 54^{\circ} \text{ or}}{\sqrt{6.8^{2} + 6.8^{2} - 2 \times 6.8 \times 6.8 \times \cos 72^{\circ}}} \text{ or}$			M1 indep A correct method to find length of chord
	$\frac{6.8}{\sin 54^{\circ}} \times \sin 72^{\circ} (=7.99(3))$			A1 Allow 16.5 – 16.6 <i>Total 4 marks</i>
23	11 45 11 55 5 05 5 15	1001	1	
23	11.45, 11.55, 5.05, 5.15	1001	4	M1 For a correct upper or lower bound for either number
	11.55 ³ (=1540 (.798875))			M1 Correct method to find upper bound for volume of box
	$\frac{4}{3} \times \pi \times 5.05^3 \ (=539 \ (.53429))$			M1 Correct method to find lower bound for volume of ball
				A1 dep on correct working
				Accept 1001 or answer in range
				[1001.26, 1001.34]
				Total 4 marks

					Edexcel averages:	Mean score of students achieving grade						
Question	Skills tested	Mean score	Max score	Mean %	ALL	9	8	A/7	6	5	C / 4	3
Q01		2.15	3	72	2.15			2.35			1.19	
Q02ai		0.85	1	85	0.85			0.89			0.70	
Q02aii		0.31	1	31	0.31			0.31			0.15	
Q02b		1.37	2	69	1.37			1.44			0.65	
Q03a		1.73	2	87	1.73			1.86			1.41	
Q03b		0.45	1	45	0.45			0.42			0.18	
Q04		2.68	3	89	2.68			2.78			2.39	
Q05a		1.51	2	76	1.51			1.68			0.89	
Q05b		2.08	3	69	2.08			2.15			1.44	
Q06		2.17	3	72	2.17			2.28			1.29	
Q07		2.34	3	78	2.34			2.69			1.29	
Q08		2.41	4	60	2.41			2.70			0.47	
Q09a		1.47	2	74	1.47			1.58			0.87	
Q010		2.05	3	68	2.05			2.38			0.84	
Q11		1.08	2	54	1.08			1.03			0.41	
Q12		3.01	4	75	3.01			3.48			1.48	
Q13		1.68	2	84	1.68			1.80			1.29	
Q14a		1.85	2	93	1.85			1.93			1.64	
Q14b		1.62	2	81	1.62			1.88			0.92	
Q15		2.29	4	57	2.29			2.43			0.48	
Q16a		1.17	2	59	1.17			1.31			0.34	
Q16b		1.13	2	56	1.13			1.24			0.36	
Q17a		1.27	2	64	1.27			1.61			0.15	
Q17b		1.63	3	54	1.63			1.83			0.39	
Q18		0.77	2	39	0.77			0.72			0.07	
Q19		1.49	3	50	1.49			1.47			0.29	

Practice Tests Set 8 – Paper 3H

Q20	1.78	5	36	1.78	1.12	0.06	
Q21	1.66	4	42	1.66	1.40	0.11	
Q22	1.75	4	44	1.75	1.65	0.14	
Q23	1.59	4	40	1.59	1.43	0.05	
	49.34	80	62	49.34	51.84	21.94	

Suggested Grade Boundaries based on peformance of students in Summer 2018

ĺ	9	8	7	6	5	4	3
	65	56	47	37	27	17	12