Name:

Exam 02: Chapters 16-19

Instructions

- Solve six of the following problems to the best of your ability. You have two hours in which to complete this exam.
- Choose one problem from each chapter, then select two additional problems to complete. Clearly and unambiguously note which six problems you have solved and wish to have scored. If you work on more than six problems, I will not choose for you which of them to grade
- You may use your calculator and your textbook. If you solve a system of equations using your calculator, note this on your paper. If you need to use WolframAlpha to solve a trig equation, you will be given access to a mobile device.
- Read and follow the directions carefully. Pay attention to the hints!! They are there for a reason!!
- Solve using the method required by the problem statement. If you are not explicitly required to use a specific technique, please be sure to show sufficient work so that your method is obvious.
- Show all your work. Work as neatly as you can. If you need scratch paper, blank sheets will be provided for you.
- Express your answer as directed by the problem statement, using three significant digits. Include the appropriate units.

Scoring

Problem	Grade This?	Points	Problem	Grade This?	Points
01: Chapter 16		$/ 25$	$05:$ Chapter 18		$/ 25$
02: Chapter 16		$/ 25$	$06:$ Chapter 18		$/ 25$
03: Chapter 17		$/ 25$	$07:$ Chapter 19		$/ 25$
04: Chapter 17		$/ 25$	$08:$ Chapter 19		$/ 25$

Problem 01

When $\theta=60^{\circ}$, the slotted guide rod is moving to the left with a velocity $v=-5 \mathrm{~m} / \mathrm{s}$ and an acceleration $a=-2 \mathrm{~m} / \mathrm{s}^{2}$ and. Determine the angular velocity ω and angular acceleration α of the link AB at this instant.

Hint: Start with sign convention! Let to the left be negative x. Using A as the origin, express the horizontal (you do not need the vertical!) position of B as a function of θ. Then start taking time derivatives!

$$
\begin{aligned}
& x=r \cos \theta \\
& \dot{x}=-r \sin \theta \dot{\theta} \\
& \ddot{x}=-r\left[\cos \theta \dot{\theta}^{2}+\sin \theta \ddot{\theta}\right] \\
& \dot{x}=-r \sin \theta \dot{\theta}=v=-5 \mathrm{~m} / \mathrm{s} \\
& (0.2 \mathrm{~m}) \sin 60^{\circ} \omega=5 \mathrm{~m} / \mathrm{s} \\
& \dot{\theta}=\omega=28.9 \mathrm{rad} / \mathrm{s} \quad(+ \text { means } \curvearrowright) \\
& \ddot{x}=-r\left[\cos \theta \dot{\theta}^{2}+\sin \theta \ddot{\theta}\right]=a=-2 \mathrm{~m} / \mathrm{s}^{2} \\
& (0.2 \mathrm{~m})\left[(28.9 \mathrm{rad} / \mathrm{s})^{2} \cos 60^{\circ}+\ddot{\theta} \sin 60^{\circ}\right]=2 \mathrm{~m} / \mathrm{s}^{2} \\
& \ddot{\theta}=\alpha=-470 \mathrm{rad} / \mathrm{s}^{2} \quad(- \text { means } \curvearrowleft)
\end{aligned}
$$

Block D of the mechanism is confined to move within the slot of guide $C B$ while the link $A D$ rotates with constant $\omega_{A D}=4 \mathrm{rad} / \mathrm{s}$. Determine the angular velocity ω_{C} and angular acceleration α_{C} of CB at the instant shown.

Hint: Practically identical to 16.139 !
Set up solution similar to example problems:

Motion of Moving Reference Frame x, y	Motion of D w/resp to Moving Ref Frame x, y	Motion of D w/resp to Fixed Frame X, Y
$v=0$	$\overrightarrow{r_{D / C}}=(0.300 \mathrm{~m}) \hat{\mathbf{i}}$	$\overrightarrow{r_{A D}}=l_{A D}\left(\sin 30^{\circ} \hat{\mathbf{i}}+\cos 30^{\circ} \hat{\mathbf{j}}\right)$
$a=0$	$\overrightarrow{v_{D / C}}=\left(v_{D C}\right) \hat{\mathbf{i}}$	$\overrightarrow{v_{D}}=\overrightarrow{\omega_{A D}} \times \overrightarrow{r_{A D}}=\left[\omega_{A D} \hat{\mathbf{k}}\right] \times\left[l_{A D}\left(\sin 30^{\circ} \hat{\mathbf{i}}+\cos 30^{\circ} \hat{\mathbf{j}}\right)\right]$
$\Omega=\omega_{C}$	$\overrightarrow{a_{D / C}}=\left(a_{D C}\right) \hat{\mathbf{i}}$	$\overrightarrow{a_{D}}=\overrightarrow{\alpha_{A D}} \times \overrightarrow{r_{A D}}-\overrightarrow{\omega_{A D}^{2}} \overrightarrow{r_{A D}}=0-\left[\omega_{A D} l_{A D}\left(\sin 30^{\circ} \hat{\mathbf{i}}+\cos 30^{\circ} \hat{\mathbf{j}}\right)\right]$
$\dot{\Omega}=\alpha_{C}$	$\overrightarrow{v_{D}}=\overrightarrow{v_{C}}+\vec{\Omega} \times \overrightarrow{r_{D / C}}+\overrightarrow{v_{D / C}}$	
$\overrightarrow{a_{D}}=\overrightarrow{a_{C}}+\vec{\Omega} \times \overrightarrow{r_{D / C}}+\vec{\Omega} \times\left(\vec{\Omega} \times \overrightarrow{r_{D / C}}\right)+2 \vec{\Omega} \times \overrightarrow{v_{D / C}}+\overrightarrow{a_{D / C}}$		

$\overrightarrow{\boldsymbol{v}_{D}}=(4 \mathrm{rad} / \mathrm{s}) \hat{\mathbf{k}} \times\left[(0.200 \mathrm{~m})\left(\sin 30^{\circ} \hat{\mathbf{i}}+\cos 30^{\circ} \hat{\mathbf{j}}\right)\right]$

$$
\overrightarrow{\boldsymbol{v}_{D}}=(-0.693 \hat{\mathbf{i}}+0.400 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}
$$

$$
\overrightarrow{a_{D}}=-\left[(4 \mathrm{rad} / \mathrm{s})^{2}(0.200 \mathrm{~m})\left(\sin 30^{\circ} \hat{\mathbf{i}}+\cos 30^{\circ} \hat{\mathbf{j}}\right)\right]
$$

$$
\overrightarrow{a_{D}}=-(1.60 \hat{\mathbf{i}}+2.77 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
\overrightarrow{\boldsymbol{v}_{D}} & =0+\omega_{C} \hat{\mathbf{k}} \times(0.300 \mathrm{~m}) \hat{\mathbf{i}}+v_{D C} \hat{\mathbf{i}} \\
\overrightarrow{\boldsymbol{v}_{D}} & =v_{D C} \hat{\mathbf{i}}-(0.300 \mathrm{~m}) \omega_{C} \hat{\mathbf{j}} \\
\overrightarrow{\boldsymbol{a}_{D}} & =0+\alpha_{C} \hat{\mathbf{k}} \times(0.300 \mathrm{~m}) \hat{\mathbf{i}}+\left(\omega_{C} \hat{\mathbf{k}}\right) \times\left(\vec{\Omega} \times \overrightarrow{r_{D / C}}\right) \\
& +2\left(\omega_{C} \hat{\mathbf{k}}\right) \times\left(v_{D C} \hat{\mathbf{i}}\right)+\left(a_{D C} \hat{\mathbf{i}}\right)
\end{aligned}
$$

$\overrightarrow{\boldsymbol{v}_{D}}=v_{D C} \hat{\mathbf{i}}+(0.300 \mathrm{~m}) \omega_{C} \hat{\mathbf{j}}=(-0.693) \hat{\mathbf{i}}+(0.400) \hat{\mathbf{j}}$
$v_{D C}=(-0.693) \mathrm{m} / \mathrm{s}$
$\omega_{C}=1.33 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
\overrightarrow{a_{D}} & =\left[a_{D C}-(1.33)^{2}(0.3)\right] \hat{\mathbf{i}}+\left[(0.300 \mathrm{~m}) \alpha_{C}-2(1.33)(0.693)\right] \hat{\mathbf{j}} \\
& =(-1.60) \hat{\mathbf{i}}-(2.77) \hat{\mathbf{j}} \\
a_{D C} & =2.13 \mathrm{~m} / \mathrm{s}^{2} \\
\alpha_{C} & =-3.08 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Problem 03

If the cord at B suddenly fails, determine the horizontal and vertical components of the initial 800 N reaction at the pin A, and the angular acceleration α of the $120-\mathrm{kg}$ beam. Treat the beam as a uniform slender rod.

Hint: Do not over-think; straightforward $\Sigma \boldsymbol{F}=m \boldsymbol{a}$ and $\Sigma \boldsymbol{M}=I \boldsymbol{\alpha}$. Note that because of rotation with respect to A, you have a normal (centripetal) and tangential acceleration components (but then apply your initial condition of released from rest...).

$$
\begin{aligned}
& \sum F_{x}=A_{x}=m a_{n}=m\left(\omega^{2}\right)\left(\frac{l}{2}\right)=0 \\
& \sum F_{y}=800 \mathrm{~N}+m g-A_{y}=m a_{t}=m(\alpha)\left(\frac{l}{2}\right) \\
& \sum M_{G}=\left(800 \mathrm{~N}+A_{y}\right)\left(\frac{l}{2}\right)=I \alpha=\left(\frac{m l^{2}}{12}\right) \alpha \\
& 800 \mathrm{~N}-A_{y}+m g=\left(\frac{m l}{2}\right) \alpha \\
& 800 \mathrm{~N}+A_{y}=\left(\frac{m l}{6}\right) \alpha \\
& 1600 \mathrm{~N}+(120 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=\left[\frac{4(120 \mathrm{~kg})(4 \mathrm{~m})}{6}\right] \alpha \\
& \alpha=8.68 \mathrm{rad} / \mathrm{s}^{2} \\
& \mathrm{~A}_{\mathrm{y}}=\left[\frac{(120 \mathrm{~kg})(4 \mathrm{~m})}{6}\right]\left(8.68 \mathrm{rad} / \mathrm{s}^{2}\right)-800 \mathrm{~N}=-106 \mathrm{~N}
\end{aligned}
$$

Problem 04

The slender rod has mass $m=12 \mathrm{~kg}$. At the instant shown, $\theta=60^{\circ}$, and the rod's angular velocity is $\omega=2$ $\mathrm{rad} / \mathrm{s}$. Determine the angular acceleration α of the rod, and the reaction forces at A and B.
Hint: Free body equation!!!! Force summation is totally straightforward. Extend the lines of action of the normal forces N_{A} and N_{B}, and where they intersect is your bet bet for summing torques. To have enough equations to make a determinate system, also use relative accelerations:
$\boldsymbol{a}_{G}=\boldsymbol{a}_{B}+\boldsymbol{\alpha} \times \boldsymbol{r}_{G / B}-\omega^{2} \boldsymbol{r}_{G / B}$ and $\boldsymbol{a}_{A}=\boldsymbol{a}_{B}+\boldsymbol{\alpha} \times \boldsymbol{r}_{A / B}-\omega^{2} \boldsymbol{r}_{A / B}$

$$
\begin{aligned}
& \sum F_{x}=N_{B}=m a_{x} \\
& \sum F_{y}=m g-N_{A}=m a_{y} \\
& (\curvearrowright+) \sum M_{O}=(m g)\left(\frac{l}{2}\right) \cos 60^{\circ}=I \alpha+\left(m a_{y}\right)\left(\frac{l}{2}\right) \cos 60^{\circ}+\left(m a_{x}\right)\left(\frac{l}{2}\right) \sin 60^{\circ} \\
& (m g)\left(\frac{l}{2}\right) \cos 60^{\circ}=\left(\frac{m l^{2}}{12}\right) \alpha+\left(m a_{y}\right)\left(\frac{l}{2}\right) \cos 60^{\circ}+\left(m a_{x}\right)\left(\frac{l}{2}\right) \sin 60^{\circ} \\
& g \cos 60^{\circ}=\left(\frac{l}{6}\right) \alpha+\left(a_{y}\right) \cos 60^{\circ}+\left(a_{x}\right) \sin 60^{\circ} \\
& \overrightarrow{a_{G}}=\overrightarrow{a_{B}}+\vec{\alpha} \times \overrightarrow{\boldsymbol{r}_{G / B}}-\omega^{2} \overrightarrow{r_{G / B}}
\end{aligned}
$$

Problem 05

Motor M exerts a constant force $P=750 \mathrm{~N}$ on the rope. The post has $m=100-\mathrm{kg}$ and is at rest when $\theta=0^{\circ}$. Use the work-energy theorem to determine the angular velocity ω of the post at the instant $\theta=60^{\circ}$.

Hint: Neglect the mass of the pulley and its size, and consider the post as a slender rod. Also, that trick with the rope length! Work done on the post by the motor $=$ force \times distance, but you have to calculate the distance as the change in length of the rope: $A C_{i}-A C_{f}$.

$$
\begin{aligned}
& A C_{i}=5 \mathrm{~m} \\
& A C_{f}=\sqrt{4^{2}+3^{2}-2(4)(3) \cos 30^{\circ}} \mathrm{m}=2.05 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}+\sum_{1 \rightarrow 2} U=T_{2} \\
& 0+P\left(A C_{i}-A C_{f}\right)-(m g)\left(\frac{l}{2}\right) \sin \theta=\frac{1}{2} I_{B} \omega^{2}=\frac{1}{2}\left[\frac{1}{3} m l^{2}\right] \omega^{2} \\
& (750 \mathrm{~N})(5-2.05) \mathrm{m}-(100 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{3 \mathrm{~m}}{2}\right) \sin 60^{\circ}=\frac{1}{2}\left(\frac{1}{3}\right)(100 \mathrm{~kg})(3 \mathrm{~m})^{2} \omega^{2} \\
& \omega=2.50 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

The pendulum consists of a slender $\operatorname{rod}\left(m_{A B}=6 \mathrm{~kg}\right)$ fixed to a thin disk ($m_{D}=15 \mathrm{~kg}$). The spring has an unstretched length $l_{o}=0.2 \mathrm{~m}$, and the pendulum is released from rest. Use conservation of energy to determine the angular velocity ω of the pendulum when it and rotates clockwise 90° from its initial position shown. The roller at C allows the spring to always remain vertical.
Hint: Just be very careful with your moments of inertia.
Let the datum for gravitational energy be at the initial position of the pendulum; when $\theta=$ 90°, gravitational potential energy will be negative!

$T_{1}+V_{1}=T_{2}+V_{2}$
$0+\frac{1}{2} k\left(l_{1}-l_{o}\right)^{2}=\frac{1}{2} I_{B} \omega^{2}+\frac{1}{2} k\left(l_{2}-l_{o}\right)^{2}-\left(m_{A B} g\right) h_{E^{-}}\left(m_{D} g\right) h_{F}$
$I_{B}=\frac{1}{3} m_{A B} l^{2}+\frac{1}{2} m_{D} r^{2}+m_{D} d_{F}^{2}=\frac{1}{3}(6 \mathrm{~kg})(1 \mathrm{~m})^{2}+\frac{1}{2}(15 \mathrm{~kg})(0.3 \mathrm{~m})^{2}+(15 \mathrm{~kg})(1.3 \mathrm{~m})^{2}=28.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(0.5 \mathrm{~m}-0.2 \mathrm{~m})^{2}=\frac{1}{2}\left(28.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \omega^{2}+\frac{1}{2}(200 \mathrm{~N} / \mathrm{m})(1.0 \mathrm{~m}-0.2 \mathrm{~m})^{2}-[(6 \mathrm{~kg})(0.5 \mathrm{~m})+(15 \mathrm{~kg})(1.3 \mathrm{~m})]\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\omega=3.44 \mathrm{rad} / \mathrm{s}$

The slender $\operatorname{rod}(m=4 \mathrm{~kg})$ is initially at rest on a smooth floor. It is kicked so as to receive a horizontal impulse $I=8 \mathrm{~N} \cdot \mathrm{~s}$ at point A as shown. Use the impulse-momentum theorem to determine the linear velocity and angular velocity of the mass center of the rod.

Hint: Linear velocity vector! x - and y-components!

Problem 08

The pendulum consists of a $10-\mathrm{lb}$ solid ball and $4-\mathrm{lb}$ rod. If it is released from rest when $\theta_{i}=$ 0°, determine the angle θ_{f} of rebound after the ball strikes the wall and the pendulum swings back up to the point of momentary rest. The coefficient of restitution $e=0.8$.

Hint: Suspiciously similar to Problem 19.47...

