CHAPTER

rriangle Congruence

4A Triangles and Congruence
4-1 Classifying Triangles
Lab Develop the Triangle Sum Theorem

4-2 Angle Relationships in Triangles
4-3 Congruent Triangles

Concept Connection

4B Proving Triangle Congruence

Lab Explore SSS and SAS Triangle Congruence
4-4 Triangle Congruence: SSS and SAS
Lab Predict Other Triangle Congruence Relationships
4-5 Triangle Congruence: ASA, AAS, and HL
4-6 Triangle Congruence: CPCTC
4-7 Introduction to Coordinate Proof
4-8 Isosceles and Equilateral Triangles
Ext Proving Constructions Valid

Concept Connection

Congruent triangles can be seen in the structural design of the houses on Alamo Square.

Alamo Square

 San Francisco, CA
Are You Ready?

\checkmark vocabulary

Match each term on the left with a definition on the right.

1. acute angle
A. a statement that is accepted as true without proof
2. congruent segments
B. an angle that measures greater than 90° and less than 180°
3. obtuse angle
C. a statement that you can prove
4. postulate
D. segments that have the same length
5. triangle
E. a three-sided polygon
F. an angle that measures greater than 0° and less than 90°

$\sqrt{ }$ Measure Angles

Use a protractor to measure each angle.
6.

7.

Use a protractor to draw an angle with each of the following measures.
8. 20°
9. 63°
10. 105°
11. 158°

Solve Equations with Fractions

Solve.

12. $\frac{9}{2} x+7=25$
13. $3 x-\frac{2}{3}=\frac{4}{3}$
14. $x-\frac{1}{5}=\frac{12}{5}$
15. $2 y=5 y-\frac{21}{2}$

\bigcirc connect Words and Algebra

Write an equation for each statement.
16. Tanya's age t is three times Martin's age m.
17. Twice the length of a segment x is 9 ft .
18. The sum of 53° and twice an angle measure y is 90°.
19. The price of a radio r is $\$ 25$ less than the price of a CD player p.
20. Half the amount of liquid j in a jar is 5 oz more than the amount of liquid b in a bowl.

The information below "unpacks" the standards. The Academic Vocabulary is highlighted and defined to help you understand the language of the standards. Refer to the lessons listed after each standard for help with the math terms and phrases. The Chapter Concept shows how the standard is applied in this chapter.

Calfifornia Standard	Academic Vocabulary	Chapter Concept

Standards 1.0, 2.0, 3.0 and 16.0 are also covered in this chapter. To see these standards unpacked, go to Chapter 1 , p. 4 and Chapter 2, p. 72.

Reading Strategy: Read Geometry Symbols

In Geometry we often use symbols to communicate information.
When studying each lesson, read both the symbols and the words slowly and carefully. Reading aloud can sometimes help you translate symbols into words.

Throughout this course, you will use these symbols and combinations of these symbols to represent various geometric statements.

Symbol Combinations	Translated into Words	
$\overleftrightarrow{S T} \\| \overleftrightarrow{U V}$	Line $S T$ is parallel to line $U V$.	
$\overline{B C} \perp \overline{G H}$	Segment $B C$ is perpendicular to segment $G H$.	
$p \rightarrow q$	If p, then q.	
$\mathrm{m} \angle Q R S=45^{\circ}$	The measure of angle $Q R S$ is 45 degrees.	
$\angle C D E \cong \angle L M N$	Angle $C D E$ is congruent to angle $L M N$.	

Try This

Rewrite each statement using symbols.

1. the absolute value of 2 times pi
2. Segment $X Y$ is perpendicular to line $B C$.
3. The measure of angle 2 is 125 degrees.
4. If not p, then not q.

Translate the symbols into words.
5. $\mathrm{m} \angle F G H=\mathrm{m} \angle V W X$
6. $\overleftrightarrow{Z A} \| \overleftrightarrow{T U}$
7. $\sim p \rightarrow q$
8. $\overrightarrow{S T}$ bisects $\angle T S U$.

Objectives

Classify triangles by their angle measures and side lengths.
Use triangle classification to find angle measures and side lengths.

Vocabulary

acute triangle equiangular triangle right triangle obtuse triangle equilateral triangle isosceles triangle scalene triangle

Classifying Triangles

Who uses this?

Manufacturers use properties of triangles to calculate the amount of material needed to make triangular objects. (See Example 4.)

A triangle is a steel percussion instrument in the shape of an equilateral triangle. Different-sized triangles produce different musical notes when struck with a metal rod.
Recall that a triangle (\triangle) is a polygon with three sides. Triangles can be
 classified in two ways: by their angle measures or by their side lengths.

$\overline{A B}, \overline{B C}$, and $\overline{A C}$ are the sides of $\triangle A B C$.
A, B, and C are the triangle's vertices.

EXAMPLE 1 Classifying Triangles by Angle Measures

Calffornia Standards
12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems.

Classify each triangle by its angle measures.
$\triangle E H G$
$\angle E H G$ is a right angle. So $\triangle E H G$ is a right triangle.

B $\triangle E F H$
$\angle E F H$ and $\angle H F G$ form a linear pair, so they are supplementary. Therefore $\mathrm{m} \angle E F H+\mathrm{m} \angle H F G=180^{\circ}$. By substitution, $\mathrm{m} \angle E F H+60^{\circ}=180^{\circ}$. So $\mathrm{m} \angle E F H=120^{\circ} . \triangle E F H$ is an obtuse triangle by definition.

1. Use the diagram to classify $\triangle F H G$ by its angle measures.

Know it! Triangle Classification | Equilateral Triangle Side Lengths |
| :---: |
| Note |

E X A M P LE 2 Classifying Triangles by Side Lengths

Remember!

When you look at a figure, you cannot assume segments are congruent based on their appearance. They must be marked as congruent.

Classify each triangle by its side lengths.
A $\triangle A B C$
From the figure, $\overline{A B} \cong \overline{A C}$. So $A C=15$, and $\triangle A B C$ is equilateral.

B $\triangle A B D$

By the Segment Addition Postulate, $B D=B C+C D=15+5=20$.
Since no sides are congruent, $\triangle A B D$ is scalene.

CHECK
 IT OUTI

2. Use the diagram to classify $\triangle A C D$ by its side lengths.

$$
\begin{aligned}
& \text { EXAMPLE } 3 \text { Using Triangle Classification } \\
& \text { Find the side lengths of the triangle. } \\
& \text { Step } 1 \text { Find the value of } x \text {. } \\
& \overline{J K} \cong \overline{K L} \\
& J K=K L \\
& (4 x-1.3)=(x+3.2) \\
& 3 x=4.5 \\
& x=1.5 \\
& \text { Given } \\
& \text { Def. of } \cong \text { segs. } \\
& \text { Substitute }(4 x-13) \text { for JK and }(x+3.2) \text { for } K L \text {. } \\
& \text { Add } 1.3 \text { and subtract } x \text { from both sides. } \\
& \text { Divide both sides by } 3 .
\end{aligned}
$$

Step 2 Substitute 1.5 into the expressions to find the side lengths.

$$
\begin{aligned}
J K & =4 x-1.3 \\
& =4(1.5)-1.3=4.7 \\
K L & =x+3.2 \\
& =(1.5)+3.2=4.7 \\
J L & =5 x-0.2 \\
& =5(1.5)-0.2=7.3
\end{aligned}
$$

CHECR
IT OUTI
3. Find the side lengths of equilateral $\triangle F G H$.

EXAMPLE 4 Music Application

A manufacturer produces musical triangles by bending pieces of steel into the shape of an equilateral triangle. The triangles are available in side lengths of 4 inches, 7 inches, and 10 inches. How many 4-inch triangles can the manufacturer produce from a 100 inch piece of steel?

The amount of steel needed to make one triangle is equal to the perimeter P of the equilateral triangle.

$$
\begin{aligned}
P & =3(4) \\
& =12 \mathrm{in} .
\end{aligned}
$$

To find the number of triangles that can be made from 100 inches. of steel, divide 100 by the amount of steel needed for one triangle.

$$
100 \div 12=8 \frac{1}{3} \text { triangles }
$$

There is not enough steel to complete a ninth triangle.
So the manufacturer can make 8 triangles from a 100 in . piece of steel.

Each measure is the side length of an equilateral triangle.
Determine how many triangles can be formed from a 100 in . piece of steel.
4a. 7 in.
4b. 10 in.

THINK AND DISCUSS

1. For $\triangle D E F$, name the three pairs of consecutive sides and the vertex formed by each.
2. Sketch an example of an obtuse isosceles triangle, or explain why it is not possible to do so.
3. Is every acute triangle equiangular? Explain and support your answer with a sketch.
4. Use the Pythagorean Theorem to explain why you cannot draw an equilateral right triangle.
5. GET ORGANIZED Copy and complete the graphic organizer. In each box, describe each type of triangle.

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

1. In $\triangle J K L, J K, K L$, and $J L$ are equal. How does this help you classify $\triangle J K L$ by its side lengths?
2. $\triangle X Y Z$ is an obtuse triangle. What can you say about the types of angles in $\triangle X Y Z$?

SEE EXAMPLE	1
p. 216	

3. $\triangle D B C$
4. $\triangle A B D$
5. $\triangle A D C$

SEE EXAMPLE 2 Classify each triangle by its side lengths.
p. 217
6. $\triangle E G H$
7. $\triangle E F H$
8. $\triangle H F G$

SEE EXAMPLE 3 Multi-Step Find the side lengths of each triangle.
p. 217
\square
9.

10.

SEE EXAMPLE 4
p. 218
11. Crafts A jeweler creates triangular earrings by bending pieces of silver wire. Each earring is an isosceles triangle with the dimensions shown. How many earrings can be made from a piece of wire that is 50 cm long?

PRACTICE AND PROBLEM SOLVING

For Exercises	
$12-14$	See Example
$15-17$	2
$18-20$	3
$21-22$	4

Classify each triangle by its angle measures.
12. $\triangle B E A$
13. $\triangle D B C$
14. $\triangle A B C$

Extra Practice
skills Practice p. S 10
Application Practice p. S31

Classify each triangle by its side lengths.
15. $\triangle P S T$
16. $\triangle R S P$
17. $\triangle R P T$

Multi-Step Find the side lengths of each triangle.
18.

19.

20. Draw a triangle large enough to measure. Label the vertices X, Y, and Z.
a. Name the three sides and three angles of the triangle.
b. Use a ruler and protractor to classify the triangle by its side lengths and angle measures.

Carpentry Use the following information for Exercises 21 and 22. A manufacturer makes trusses, or triangular supports, for the roofs of houses. Each truss is the shape of an isosceles triangle in which $\overline{P Q} \cong \overline{P R}$. The length of the base $\overline{Q R}$ is $\frac{4}{3}$ the length of each of the congruent sides.
21. The perimeter of each truss is 60 ft . Find each side length.

22. How many trusses can the manufacturer make from 150 feet of lumber?

Draw an example of each type of triangle or explain why it is not possible.
23. isosceles right
24. equiangular obtuse
25. scalene right
26. equilateral acute
27. scalene equiangular
28. isosceles acute
29. An equilateral triangle has a perimeter of 105 in . What is the length of each side of the triangle?

Classify each triangle by its angles and sides.
30. $\triangle A B C$
31. $\triangle A C D$

32. An isosceles triangle has a perimeter of 34 cm . The congruent sides measure $(4 x-1) \mathrm{cm}$. The length of the third side is $x \mathrm{~cm}$. What is the value of x ?

Architecture The base of the Flatiron Building is a triangle bordered by three streets: Broadway, Fifth Avenue, and East Twenty-second Street. The Fifth Avenue side is 1 ft shorter than twice the East Twenty-second Street side. The East Twenty-second Street side is 8 ft shorter than half the Broadway side. The Broadway side is 190 ft .
a. Find the two unknown side lengths.
b. Classify the triangle by its side lengths.
34. Critical Thinking Is every isosceles triangle equilateral? Is every equilateral triangle isosceles? Explain. designed and built the 22 -story Flatiron Building in New York City in 1902.
Source:
www.greatbuildings.com
Tell whether each statement is sometimes, always, or never true. Support your answer with a sketch.
35. An acute triangle is a scalene triangle.
36. A scalene triangle is an obtuse triangle.
37. An equiangular triangle is an isosceles triangle.
38. Write About It Write a formula for the side length s of an equilateral triangle, given the perimeter P. Explain how you derived the formula.
39. Construction Use the method for constructing congruent segments to construct an equilateral triangle.

41. What is the side length of an equilateral triangle with a perimeter of $36 \frac{2}{3}$ inches?
(A) $36 \frac{2}{3}$ inches
(C) $12 \frac{1}{3}$ inches
(B) $18 \frac{1}{3}$ inches
(D) $12 \frac{2}{9}$ inches
42. The vertices of $\triangle R S T$ are $R(3,2), S(-2,3)$, and $T(-2,1)$. Which of these best describes $\triangle R S T$?
(F) Isosceles
(G) Scalene
(H) Equilateral
(J) Right
43. Which of the following is NOT a correct classification of $\triangle L M N$?
(A) Acute
(C) Isosceles
(B) Equiangular
(D) Right

44. Gridded Response $\triangle A B C$ is isosceles, and $\overline{A B} \cong \overline{A C} . A B=\left(\frac{1}{2} x+\frac{1}{4}\right)$, and $B C=\left(\frac{5}{2}-x\right)$. What is the perimeter of $\triangle A B C$?

CHALLENGE AND EXTEND

45. A triangle has vertices with coordinates $(0,0),(a, 0)$, and $(0, a)$, where $a \neq 0$. Classify the triangle in two different ways. Explain your answer.
46. Write a two-column proof.

Given: $\triangle A B C$ is equiangular. $E F \| A C$
Prove: $\triangle E F B$ is equiangular.

47. Two sides of an equilateral triangle measure $(y+10)$ units and $\left(y^{2}-2\right)$ units. If the perimeter of the triangle is 21 units, what is the value of y ?
48. Multi-Step The average length of the sides of $\triangle P Q R$ is 24 . How much longer then the average is the longest side?

SPIRAL REVIEW

Name the parent function of each function. (Previous course)
49. $y=5 x^{2}+4$
50. $2 y=3 x+4$
51. $y=2(x-8)^{2}+6$

Determine if each biconditional is true. If false, give a counter example. (Lesson 2-4)
52. Two lines are parallel if and only if they do not intersect.
53. A triangle is equiangular if and only if it has three congruent angles.
54. A number is a multiple of 20 if and only if the number ends in a 0 .

Determine whether each line is parallel to, is perpendicular to, or coincides with $y=4 x$. (Lesson 3-6)
55. $y=4 x+2$
56. $4 y=-x+8$
57. $\frac{1}{2} y=2 x$
58. $-2 y=\frac{1}{2} x$

Use with Lesson 4-2

Develop the Triangle Sum Theorem

In this lab, you will use patty paper to discover a relationship between the measures of the interior angles of a triangle.

Activity
Calfornia Standards
identifying and giving examples of undefined terms,
axioms, theorems, and inductive and deductive reasoning. axioms, theorems, and inductive and deductive reasoning.
(1) Draw and label $\triangle A B C$ on a sheet of notebook paper.

(2) On patty paper draw a line ℓ and label a point P on the line.

(3) Place the patty paper on top of the triangle you drew. Align the papers so that $\overline{A B}$ is on line ℓ and P and B coincide. Trace $\angle B$. Rotate the triangle and trace $\angle C$ adjacent to $\angle B$. Rotate the triangle again and trace $\angle A$ adjacent to $\angle C$. The diagram shows your final step.

Try This

1. What do you notice about the three angles of the triangle that you traced?
2. Repeat the activity two more times using two different triangles. Do you get the same results each time?
3. Write an equation describing the relationship among the measures of the angles of $\triangle A B C$.
4. Use inductive reasoning to write a conjecture about the sum of the measures of the angles of a triangle.

Angle Relationships in Triangles

Objectives

Find the measures of interior and exterior angles of triangles.
Apply theorems about the interior and exterior angles of triangles.

Vocabulary

auxiliary line corollary
interior
exterior
interior angle exterior angle remote interior angle

Who uses this?

Surveyors use triangles to make measurements and create boundaries. (See Example 1.)

Triangulation is a method used in surveying. Land is divided into adjacent triangles. By measuring the sides and angles of one triangle and applying properties of triangles, surveyors can gather information about adjacent triangles.

This engraving shows the county surveyor and commissioners laying out the town of Baltimore in 1730.

Theorem 4-2-1 Triangle Sum Theorem

The sum of the angle measures of a triangle is 180°.

$$
\mathrm{m} \angle A+\mathrm{m} \angle B+\mathrm{m} \angle C=180^{\circ}
$$

The proof of the Triangle Sum Theorem uses an auxiliary line. An auxiliary line is a line that is added to a figure to aid in a proof.

PROOF

Calformia Standards

12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems.
13.0 Students prove relationships between angles in polygons by using properties of complementary, supplementary, vertical, and exterior angles. Also covered: $0=\mathbf{2 . 0}$

Triangle Sum Theorem

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$

Proof:

EXAMPLE 1 Surveying Application

 The map of France commonly used in the 1600s was significantly revised as a result of a triangulation land survey. The diagram shows part of the survey map. Use the diagram to find the indicated angle measures.
$\mathrm{m} \angle N K M$

$$
\begin{aligned}
\mathrm{m} \angle K M N+\mathrm{m} \angle M N K+\mathrm{m} \angle N K M & =180^{\circ} & & \triangle \text { sum Thm. } \\
88+48+\mathrm{m} \angle N K M & =180 & & \begin{aligned}
\text { Substitute } 88 \text { for } \mathrm{m} \angle K M N \\
\text { and } 48 \text { for } \mathrm{m} \angle M N K .
\end{aligned} \\
136+\mathrm{m} \angle N K M & =180 & & \text { Simplify. } \\
\mathrm{m} \angle N K M & =44^{\circ} & & \text { Subtract } 136 \text { from both sides. }
\end{aligned}
$$

B $\mathrm{m} \angle J L K$
Step 1 Find $\mathrm{m} \angle J K L$.

$$
\begin{array}{rlrl}
\mathrm{m} \angle N K M+\mathrm{m} \angle M K J+\mathrm{m} \angle J K L & =180^{\circ} & & \begin{array}{l}
\text { Lin. Pair Thm. \& } \angle \text { Add. Post. } \\
44+104+\mathrm{m} \angle J K L
\end{array}=180 \\
& \begin{array}{ll}
\text { Substitute } 44 \text { for } m \angle N K M \\
\text { and } 104 \text { for } m \angle M K J .
\end{array} \\
148+\mathrm{m} \angle J K L & =180 & \text { Simplify. } \\
\mathrm{m} \angle J K L & =32^{\circ} & \text { Subtract } 148 \text { from both sides. }
\end{array}
$$

Step 2 Use substitution and then solve for $\mathrm{m} \angle J L K$.

$$
\begin{array}{rlrl}
\mathrm{m} \angle J L K+\mathrm{m} \angle J K L+\mathrm{m} \angle K J L & =180^{\circ} & & \triangle \text { Sum Thm. } \\
\mathrm{m} \angle J L K+32+70 & =180 & & \text { Substitute } 32 \text { for } \mathrm{m} \angle J K L \text { and } \\
& 70 \text { for } \mathrm{m} \angle K J L . \\
\mathrm{m} \angle J L K+102 & =180 & & \text { Simplify. } \\
\mathrm{m} \angle J L K & =78^{\circ} & & \text { Subtract } 102 \text { from both sides. }
\end{array}
$$

1. Use the diagram to find $\mathrm{m} \angle M J K$.

A corollary is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.

You will prove Corollaries 4-2-2 and 4-2-3 in Exercises 24 and 25.

E X A M P LE 2 Finding Angle Measures in Right Triangles
 One of the acute angles in a right triangle measures 22.9°. What is the
 Algebra measure of the other acute angle?

Let the acute angles be $\angle M$ and $\angle N$, with $\mathrm{m} \angle M=22.9^{\circ}$.

$$
\begin{aligned}
\mathrm{m} \angle M+\mathrm{m} \angle N & =90 & & \text { Acute } \mathbb{E} \text { of } r \text { r. } \triangle \text { are comp. } \\
22.9+\mathrm{m} \angle N & =90 & & \text { Substitute } 22.9 \text { for } \mathrm{m} \angle M . \\
\mathrm{m} \angle N & =67.1^{\circ} & & \text { Subtract } 22.9 \text { from both sides. }
\end{aligned}
$$

CHECR

The measure of one of the acute angles in a right triangle is given. What is the measure of the other acute angle?
2a. 63.7°
2b. x°
2c. $48 \frac{2}{5}^{\circ}$

The interior is the set of all points inside the figure. The exterior is the set of all points outside the figure. An interior angle is formed by two sides of a triangle. An exterior angle is formed by one side of the triangle and the extension of an adjacent side. Each exterior angle has two remote interior angles. A remote interior angle is an interior angle that is not adjacent to the exterior angle.

$\angle 4$ is an exterior angle. Its remote interior angles are $\angle 1$ and $\angle 2$.

Theorem 4-2-4 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of its remote interior angles.

$$
\mathrm{m} \angle 4=\mathrm{m} \angle 1+\mathrm{m} \angle 2
$$

You will prove Theorem 4-2-4 in Exercise 28.

3. Find $\mathrm{m} \angle A C D$.

Theorem 4-2-5 Third Angles Theorem

| THEOREM | HYPOTHESIS | CONCLUSION |
| :--- | :--- | :--- | :--- |
| If two angles of one triangle
 are congruent to two angles
 of another triangle, then
 the third pair of angles
 are congruent. | | |

You will prove Theorem 4-2-5 in Exercise 27.

EXAMPLE 4
 Algebra

Helpful Hint

You can use substitution to verify that $\mathrm{m} \angle F=36^{\circ}$.

$$
\begin{aligned}
\mathrm{m} \angle F & =(3 \cdot 36-72) \\
& =36^{\circ}
\end{aligned}
$$

So $\mathrm{m} \angle C=36^{\circ}$.
Since $\mathrm{m} \angle F=\mathrm{m} \angle C, \mathrm{~m} \angle F=36^{\circ}$.

Applying the Third Angles Theorem

Find $m \angle C$ and $m \angle F$.
Third \& Thm.
Def. of $\cong \stackrel{L}{L}$.
Substitute y^{2} for $m \angle C$ and $3 y^{2}-72$ for $m \angle F$.
$-2 y^{2}=-72$
$y^{2}=36$
Subtract $3 y^{2}$ from both sides.

Divide both sides by -2 .

4. Find $\mathrm{m} \angle P$ and $\mathrm{m} \angle T$.

THINK AND DISCUSS

1. Use the Triangle Sum Theorem to explain why the supplement of one of the angles of a triangle equals in measure the sum of the other two angles of the triangle. Support your answer with a sketch.
2. Sketch a triangle and draw all of its exterior angles. How many exterior angles are there at each vertex of the triangle? How many total exterior angles does the triangle have?
3. GET ORGANIZED Copy and complete the graphic organizer.

In each box, write each theorem in words and then draw a diagram to represent it.

Theorem	Words	Diagram
Triangle Sum Theorem		
Exterior Angle Theorem		
Third Angles Theorem		

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

1. To remember the meaning of remote interior angle, think of a television remote control. What is another way to remember the term remote?
2. An exterior angle is drawn at vertex E of $\triangle D E F$. What are its remote interior angles?
3. What do you call segments, rays, or lines that are added to a given diagram?

SEE EXAMPLE
p. 224

Astronomy Use the following information for Exercises 4 and 5. An asterism is a group of stars that is easier to recognize than a constellation. One popular asterism is the Summer Triangle, which is composed of the stars Deneb, Altair, and Vega.
4. What is the value of y ?
5. What is the measure of each angle in the Summer Triangle?

SEE EXAMPLE
p. 225

The measure of one of the acute angles in a right triangle is given. What is the measure of the other acute angle?
6. 20.8°
7. y°
8. $24 \frac{2}{3}^{\circ}$

SEE EXAMPLE 3
p. 225
9. $\mathrm{m} \angle M$

10. $\mathrm{m} \angle L$

11. In $\triangle A B C, \mathrm{~m} \angle A=65^{\circ}$, and the measure of an exterior angle at C is 117°. Find $\mathrm{m} \angle B$ and the $\mathrm{m} \angle B C A$.

p. 226
12. $\mathrm{m} \angle C$ and $\mathrm{m} \angle F$

13. $\mathrm{m} \angle S$ and $\mathrm{m} \angle U$

14. For $\triangle A B C$ and $\triangle X Y Z, \mathrm{~m} \angle A=\mathrm{m} \angle X$ and $\mathrm{m} \angle B=\mathrm{m} \angle Y$.

Find the measures of $\angle C$ and $\angle Z$ if $\mathrm{m} \angle C=4 x+7$ and $\mathrm{m} \angle Z=3(x+5)$.

Independent Practice For Exercises	
15	See Example
$16-18$	2
$19-20$	3
$21-22$	4

Extra Practice
Skills Practice p. S10
Application Practice p. S31

PRACTICE AND PROBLEM SOLVING

15. Navigation A sailor on ship A measures the angle between ship B and the pier and finds that it is 39°. A sailor on ship B measures the angle between ship A and the pier and finds that it is 57°. What is the measure of the angle between ships A and B?

The measure of one of the acute angles in a right triangle is given. What is the measure of the other acute angle?
16. $76 \frac{1^{\circ}}{4}$
17. $2 x^{\circ}$
18. 56.8°

Find each angle measure.
19. $\mathrm{m} \angle X Y Z$

21. $\mathrm{m} \angle N$ and $\mathrm{m} \angle P$

20. $\mathrm{m} \angle C$

22. $\mathrm{m} \angle Q$ and $\mathrm{m} \angle S$

23. Multi-Step The measures of the angles of a triangle are in the ratio 1:4:7. What are the measures of the angles? (Hint: Let $x, 4 x$, and $7 x$ represent the angle measures.)
24. Complete the proof of Corollary 4-2-2.

Given: $\triangle D E F$ with right $\angle F$
Prove: $\angle D$ and $\angle E$ are complementary.
Proof:

Statements	Reasons
1. $\triangle D E F$ with rt. $\angle F$	1. a. ? ?
2. b. $\frac{?}{}$	2. Def. of rt. \angle
3. $\mathrm{m} \angle D+\mathrm{m} \angle E+\mathrm{m} \angle F=180^{\circ}$	3. c. ? ?
4. $\mathrm{m} \angle D+\mathrm{m} \angle E+90^{\circ}=180^{\circ}$	4. d. ?
5. e. ?	5. Subtr. Prop.
6. $\angle D$ and $\angle E$ are comp.	6. f. ?

25. Prove Corollary 4-2-3 using two different methods of proof.

Given: $\triangle A B C$ is equiangular.
Prove: $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C=60^{\circ}$
26. Multi-Step The measure of one acute angle in a right triangle is $1 \frac{1}{4}$ times the measure of the other acute angle. What is the measure of the larger acute angle?
27. Write a two-column proof of the Third Angles Theorem.
28. Prove the Exterior Angle Theorem.

Given: $\triangle A B C$ with exterior angle $\angle A C D$
Prove: $\mathrm{m} \angle A C D=\mathrm{m} \angle A+\mathrm{m} \angle B$
(Hint: $\angle B C A$ and $\angle D C A$ form a linear pair.)

Find each angle measure.
29. $\angle U X W$
30. $\angle U W Y$
31. $\angle W Z X$
32. $\angle X Y Z$

33. Critical Thinking What is the measure of any exterior angle of an equiangular triangle? What is the sum of the exterior angle measures?
34. Find $\mathrm{m} \angle S R Q$, given that $\angle P \cong \angle U, \angle Q \cong \angle T$, and $\mathrm{m} \angle R S T=37.5^{\circ}$.

35. Multi-Step In a right triangle, one acute angle measure is 4 times the other acute angle measure. What is the measure of the smaller angle?
36. Aviation To study the forces of lift and drag, the Wright brothers built a glider, attached two ropes to it, and flew it like a kite. They modeled the two wind forces as the legs of a right triangle.
a. What part of a right triangle is formed by each rope?
b. Use the Triangle Sum Theorem to write an equation relating the angle measures in the right triangle.

c. Simplify the equation from part \mathbf{b}. What is the relationship between x and y ?
d. Use the Exterior Angle Theorem to write an expression for z in terms of x.
e. If $x=37^{\circ}$, use your results from parts \mathbf{c} and \mathbf{d} to find y and z.
37. Estimation Draw a triangle and two exterior angles at each vertex. Estimate the measure of each angle. How are the exterior angles at each vertex related? Explain.
38. Given: $\overline{A B} \perp \overline{B D}, \overline{B D} \perp \overline{D C}, \angle A \cong \angle C$ Prove: $\overline{A D} \| \overline{C B}$

39. Write About lt A triangle has angle measures of $115^{\circ}, 40^{\circ}$, and 25°. Explain how to find the measures of the triangle's exterior angles. Support your answer with a sketch.
40. This problem will prepare you for the Concept Connection on page 238.
One of the steps in making an origami crane involves folding a square sheet of paper into the shape shown.
a. $\angle D C E$ is a right angle. $\overline{F C}$ bisects $\angle D C E$, and $\overline{B C}$ bisects $\angle F C E$. Find $\mathrm{m} \angle F C B$.

b. Use the Triangle Sum Theorem to find $\mathrm{m} \angle C B E$.
41. What is the value of x ?
(A) 19
(C) 57
(B) 52
(D) 71
42. Find the value of s.
(F) 23
(H) 34
(G) 28
(J) 56

43. $\angle A$ and $\angle B$ are the remote interior angles of $\angle B C D$ in $\triangle A B C$. Which of these equations must be true?
(A) $\mathrm{m} \angle A-180^{\circ}=\mathrm{m} \angle B$
(C) $\mathrm{m} \angle B C D=\mathrm{m} \angle B C A-\mathrm{m} \angle A$
(B) $\mathrm{m} \angle A=90^{\circ}-\mathrm{m} \angle B$
(D) $\mathrm{m} \angle B=\mathrm{m} \angle B C D-\mathrm{m} \angle A$
44. Extended Response The measures of the angles in a triangle are in the ratio 2:3:4. Describe how to use algebra to find the measures of these angles. Then find the measure of each angle and classify the triangle.

CHALLENGE AND EXTEND

45. An exterior angle of a triangle measures 117°. Its remote interior angles measure $\left(2 y^{2}+7\right)^{\circ}$ and $\left(61-y^{2}\right)^{\circ}$. Find the value of y.
46. Two parallel lines are intersected by a transversal. What type of triangle is formed by the intersection of the angle bisectors of two same-side interior angles? Explain. (Hint: Use geometry software or construct a diagram of the angle bisectors of two same-side interior angles.)
47. Critical Thinking Explain why an exterior angle of a triangle cannot be congruent to a remote interior angle.
48. Probability The measure of each angle in a triangle is a multiple of 30°. What is the probability that the triangle has at least two congruent angles?
49. In $\triangle A B C, \mathrm{~m} \angle B$ is 5° less than $1 \frac{1}{2}$ times $\mathrm{m} \angle A . \mathrm{m} \angle C$ is 5° less than $2 \frac{1}{2}$ times $\mathrm{m} \angle A$. What is $\mathrm{m} \angle A$ in degrees?

SPIRAL REVIEW

Make a table to show the value of each function when x is $-2,0,1$, and 4 .
(Previous course)
50. $f(x)=3 x-4$
51. $f(x)=x^{2}+1$
52. $f(x)=(x-3)^{2}+5$
53. Find the length of $\overline{N Q}$. Name the theorem or postulate that justifies your answer. (Lesson 1-2)

Classify each triangle by its side lengths. (Lesson 4-1)
54. $\triangle A C D$
55. $\triangle B C D$
56. $\triangle A B D$
57. What if...? If $C A=8$, What is the effect on the classification of $\triangle A C D$?

4-3

Objectives

Use properties of congruent triangles.
Prove triangles congruent by using the definition of congruence.

Vocabulary

corresponding angles corresponding sides congruent polygons

Calformia Standards

5.0 Students prove that triangles are congruent or similar, and they are able to use the concept of corresponding parts of congruent triangles.
Also covered: $\mathbf{2 . 0}$

Helpful Hint

Two vertices that are the endpoints of a side are called consecutive vertices. For example, P and Q are consecutive vertices.

Congruent Triangles

Who uses this?
 Machinists used triangles to construct a model of the International Space Station's support structure.

Geometric figures are congruent if
 they are the same size and shape. Corresponding angles and corresponding sides are in the same position in polygons with an equal number of sides. Two polygons are congruent polygons if and only if their corresponding angles and sides are congruent. Thus triangles that are the same size and shape are congruent.

Properties of Congruent Polycuons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
	$\begin{aligned} & \angle A \cong \angle D \\ & \angle B \cong \angle E \\ & \angle C \cong \angle F \end{aligned}$	$\begin{aligned} & \overline{A B} \cong \overline{D E} \\ & \overline{B C} \cong \overline{E F} \\ & \overline{A C} \cong \overline{D F} \end{aligned}$
 polygon $P Q R S \cong$ polygon $W X Y Z$	$\begin{aligned} \angle P & \cong \angle W \\ \angle Q & \cong \angle X \\ \angle R & \cong \angle Y \\ \angle S & \cong \angle Z \end{aligned}$	$\begin{aligned} & \overline{P Q} \cong \overline{W X} \\ & \overline{Q R} \cong \overline{X Y} \\ & \overline{R S} \cong \overline{Y Z} \\ & \overline{P S} \cong \overline{W Z} \end{aligned}$

To name a polygon, write the vertices in consecutive order. For example, you can name polygon $P Q R S$ as $Q R S P$ or $S R Q P$, but not as $P R Q S$. In a congruence statement, the order of the vertices indicates the corresponding parts.

E X A M PLE 1 Naming Congruent Corresponding Parts

$\triangle R S T$ and $\triangle X Y Z$ represent the triangles of the space station's support structure.
If $\triangle R S T \cong \triangle X Y Z$, identify all pairs of congruent corresponding parts.
Angles: $\angle R \cong \angle X, \angle S \cong \angle Y, \angle T \cong \angle Z$
Sides: $\overline{R S} \cong \overline{X Y}, \overline{S T} \cong \overline{Y Z}, \overline{R T} \cong \overline{X Z}$

1. If polygon $L M N P \cong$ polygon $E F G H$, identify all pairs of corresponding congruent parts.

Given: $\triangle E F H \cong \triangle G F H$

A Find the value of x.
$\angle F H E$ and $\angle F H G$ are rt. \llcorner.

$$
\angle F H E \cong \angle F H G
$$

$$
\mathrm{m} \angle F H E=\mathrm{m} \angle F H G
$$

$$
(6 x-12)^{\circ}=90^{\circ}
$$

$$
6 x=102
$$

$$
x=17
$$

Helpful Hint

When you write a statement such as $\triangle A B C \cong \triangle D E F$, you are also stating which parts are congruent.

Def. of \perp lines
Rt. $\angle \cong$ Thm.
Def. of $\cong \&$
Substitute values for $m \angle F H E$ and $m \angle F H G$.
Add 12 to both sides.
Divide both sides by 6 .
B Find $\mathrm{m} \angle G F H$.

$$
\begin{aligned}
\mathrm{m} \angle E F H+\mathrm{m} \angle F H E+\mathrm{m} \angle E & =180^{\circ} & & \triangle \text { sum Thm. } \\
\mathrm{m} \angle E F H+90+21.6 & =180 & & \text { Substitute values } \\
\mathrm{m} \angle E F H+111.6 & =180 & & \text { and } \mathrm{m} \angle E . \\
\mathrm{m} \angle E F H & =68.4 & & \text { Subtract } 111.6 \text { fro } \\
\angle G F H & \cong \angle E F H & & \text { Corr. } \triangleq \text { © of } \cong \text { ar } \\
\mathrm{m} \angle G F H & =\mathrm{m} \angle E F H & & \text { Def. of } \cong \triangleq \\
\mathrm{m} \angle G F H & =68.4^{\circ} & & \text { Trans. Prop. of }=
\end{aligned}
$$

Given: $\triangle A B C \cong \triangle D E F$
2a. Find the value of x.
2b. Find $m \angle F$.

EXAMPLE 3 Proving Triangles Congruent

Given: $\angle P$ and $\angle M$ are right angles. R is the midpoint of $\overline{P M}$.
$\overline{P Q} \cong \overline{M N}, \overline{Q R} \cong \overline{N R}$
Prove: $\triangle P Q R \cong \triangle M N R$

Proof:

Statements	Reasons
1. $\angle P$ and $\angle M$ are rt. $\angle \mathrm{s}$	1. Given
2. $\angle P \cong \angle M$	2. Rt. $\angle \cong$ Thm.
3. $\angle P R Q \cong \angle M R N$	3. Vert. $\angle \mathrm{s}$ Thm.
4. $\angle Q \cong \angle N$	4. Third $\angle \mathrm{s}$ Thm.
5. R is the mdpt. of $\overline{P M}$.	5. Given
6. $\overline{P R} \cong \overline{M R}$	6. Def. of mdpt.
7. $\overline{P Q} \cong \overline{M N ; ~} \overline{Q R \cong \overline{N R}}$	7. Given
8. $\triangle P Q R \cong \triangle M N R$	8. Def. of $\cong \unlhd$

3. Given: $\overline{A D}$ bisects $\overline{B E}$.
$\overline{B E}$ bisects $\overline{A D}$. $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$
Prove: $\triangle A B C \cong \triangle D E C$

Student to Student

Cecelia Medina Lamar High School
"With overlapping triangles, it helps me to redraw the triangles separately. That way I can mark what I know about one triangle without getting confused by the other one."

EXAMPLE 4 Engineering Application

The bars that give structural support to a roller coaster form triangles. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent. Given: $\overline{J K} \perp \overline{K L}, \overline{M L} \perp \overline{K L}, \angle K L J \cong \angle L K M$, $\overline{J K} \cong \overline{M L}, \overline{J L} \cong \overline{M K}$
Prove: $\triangle J K L \cong \triangle M L K$
Proof:

Statements	Reasons
1. $\overline{J K} \perp \overline{K L}, \overline{M L} \perp \overline{K L}$ 2. $\angle J K L$ and $\angle M L K$ are rt. $\angle s$. 3. $\angle J K L \cong \angle M L K$ 4. $\angle K L J \cong \angle L K M$ 5. $\angle K J L \cong \angle L M K$ 6. $\overline{J K} \cong \overline{M L}, \bar{J} \cong \overline{M K}$ 7. $\overline{K L} \cong \overline{L K}$ 8. $\triangle J K L \cong \triangle M L K$	1. Given 2. Def. of \perp lines 3. Rt. $\angle \cong$ Thm. 4. Given 5. Third $\stackrel{s}{ }$ Thm. 6. Given 7. Reflex. Prop. of \cong 8. Def. of $\cong \subseteq$

4. Use the diagram to prove the following.

Given: $\overline{M K}$ bisects $\overline{J L}$. $\overline{J L}$ bisects $\overline{M K} . \overline{J K} \cong \overline{M L}, \overline{J K} \| \overline{M L}$
Prove: $\triangle J K N \cong \triangle L M N$

THINK AND DISCUSS

1. A roof truss is a triangular structure that supports a roof. How can you be sure that two roof trusses are the same size and shape?
2. GET ORGANIZED Copy and complete the graphic organizer. In each box, name the congruent corresponding parts.

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

1. An everyday meaning of corresponding is "matching." How can this help you find the corresponding parts of two triangles?
2. If $\triangle A B C \cong \triangle R S T$, what angle corresponds to $\angle S$?

SEE EXAMPLE 1 Given: $\triangle R S T \cong \triangle L M N$. Identify the congruent corresponding parts.
p. 231
3. $\overline{R S} \cong$ \qquad
6. $\overline{T S} \cong$ \qquad
4. $\overline{L N} \cong$ \qquad 5. $\angle S \cong$ \qquad
7. $\angle L \cong$ \qquad
8. $\angle N \cong$ \qquad

SEE EXAMPLE 2
Given: $\triangle F G H \cong \triangle J K L$. Find each value.
p. 232
9. $K L$
10. x

SEE EXAMPLE 3
p. 232
11. Given: E is the midpoint of $\overline{A C}$ and $\overline{B D}$.
$\overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$
Prove: $\triangle A B E \cong \triangle C D E$
Proof:

Statements	Reasons	
1. $\overline{A B} \\| \overline{C D}$	1. a. $\frac{?}{}$	
2. $\angle A B E \cong \angle C D E, \angle B A E \cong \angle D C E$	2. b. $\frac{?}{?}$	
3. $\overline{A B} \cong \overline{C D}$	3. c. $\frac{?}{?}$	
4. E is the mdpt. of $\overline{A C}$ and $\overline{B D}$.	4. d. ?	
5. e. ?	5. Def. of mdpt.	
6. $\angle A E B \cong \angle C E D$	6. f. ?	
7. $\triangle A B E \cong \triangle C D E$	7. g. ?	

SEE EXAMPLE 4
p. 233
12. Engineering The geodesic dome shown is a 14 -story building that models Earth. Use the given information to prove that the triangles that make up the sphere are congruent.
Given: $\overline{S U} \cong \overline{S T} \cong \overline{S R}, \overline{T U} \cong \overline{T R}$, $\angle U S T \cong \angle R S T$, and $\angle U \cong \angle R$
Prove: $\triangle R T S \cong \triangle U T S$

PRACTICE AND PROBLEM SOLVING

Independent Practice For Exercises	See Example
$13-16$	1
$17-18$	2
19	3
20	4

Extra Practice Skills Practice p. S10
Application Practice p. S31

Given: Polygon $C D E F \cong$ polygon $K L M N$. Identify the congruent corresponding parts.
13. $\overline{D E} \cong$ \qquad
15. $\angle F \cong$ \qquad
14. $\overline{K N} \cong$ \qquad
16. $\angle L \cong$ \qquad

Given: $\triangle A B D \cong \triangle C B D$. Find each value.
17. $\mathrm{m} \angle C$
18. y

19. Given: $\overline{M P}$ bisects $\angle N M R$. P is the midpoint of $\overline{N R} . \overline{M N} \cong \overline{M R}, \angle N \cong \angle R$
Prove: $\triangle M N P \cong \triangle M R P$

Proof:

Statements	Reasons
1. $\angle N \cong \angle R$	1. a. ?
2. $\overline{M P}$ bisects $\angle N M R$.	2. b. ?
3. c. ?	3. Def. of \angle bisector
4. d. ?	4. Third \S Thm.
5. P is the mdpt. of $\overline{N R}$.	5. e. ?
6. f. ?	6. Def. of mdpt.
7. $\overline{M N} \cong \overline{M R}$	7. g. ?
8. $\overline{M P} \cong \overline{M P}$	8. h. ?
9. $\triangle M N P \cong \triangle M R P$	9. Def. of $\cong \bigcirc$

20. Hobbies In a garden, triangular flower beds are separated by straight rows of grass as shown.
Given: $\angle A D C$ and $\angle B C D$ are right angles.
$\overline{A C} \cong \overline{B D}, \overline{A D} \cong \overline{B C}$
$\angle D A C \cong \angle C B D$
Prove: $\triangle A D C \cong \triangle B C D$
21. For two triangles, the following
 corresponding parts are given:
$\overline{G S} \cong \overline{K P}, \overline{G R} \cong \overline{K H}, \overline{S R} \cong \overline{P H}$,
$\angle S \cong \angle P, \angle G \cong \angle K$, and $\angle R \cong \angle H$.
Write three different congruence statements.
22. The two polygons in the diagram are congruent.

Complete the following congruence statement for the polygons. polygon R \qquad ? \cong polygon V \qquad $?$

Write and solve an equation for each of the following.

23. $\triangle A B C \cong \triangle D E F$. $A B=2 x-10$, and $D E=x+20$.

Find the value of x and $A B$.
24. $\triangle J K L \cong \triangle M N P . \mathrm{m} \angle L=\left(x^{2}+10\right)^{\circ}$, and $\mathrm{m} \angle P=\left(2 x^{2}+1\right)^{\circ}$. What is $\mathrm{m} \angle L$?
25. Polygon $A B C D \cong$ polygon $P Q R S . B C=6 x+5$, and $Q R=5 x+7$.

Find the value of x and $B C$.

CONCEPT CONNECTION
26. This problem will prepare you for the Concept Connection on page 238. Many origami models begin with a square piece of paper, $J K L M$, that is folded along both diagonals to make the creases shown. $\overline{J L}$ and $\overline{M K}$ are perpendicular bisectors of each other, and $\angle N M L \cong \angle N K L$.
a. Explain how you know that $\overline{K L}$ and $\overline{M L}$ are congruent.
b. Prove $\triangle N M L \cong \triangle N K L$.

27. Draw a diagram and then write a proof.

Given: $\overline{B D} \perp \overline{A C}$. D is the midpoint of $\overline{A C} . \overline{A B} \cong \overline{C B}$, and $\overline{B D}$ bisects $\angle A B C$.
Prove: $\triangle A B D \cong \triangle C B D$
28. Critical Thinking Draw two triangles that are not congruent but have an area of $4 \mathrm{~cm}^{2}$ each.
29. ///ERROR ANALYSIS//// Given $\triangle M P Q \cong \triangle E D F$. Two solutions for finding $\mathrm{m} \angle E$ are shown. Which is incorrect? Explain the error.

(B)

Since the acute \& of a rt. \triangle are comp., $\mathrm{m} \angle M=46^{\circ}$. $\angle E \cong \angle M$, so $\mathrm{m} \angle E=46^{\circ}$.
30. Write About It Given the diagram of the triangles, is there enough information to prove that $\triangle H K L$ is congruent to $\triangle Y W X$? Explain.

31. Which congruence statement correctly indicates that the two given triangles are congruent?
(A) $\triangle A B C \cong \triangle E F D$
(C) $\triangle A B C \cong \triangle D E F$
(B) $\triangle A B C \cong \triangle F D E$
(D) $\triangle A B C \cong \triangle F E D$

32. $\triangle M N P \cong \triangle R S T$. What are the values of x and y ? (F) $x=26, y=21 \frac{1}{3}$
(H) $x=25, y=20 \frac{2}{3}$
(G) $x=27, y=20$
(J) $x=30 \frac{1}{3}, y=16 \frac{2}{3}$

33. $\triangle A B C \cong \triangle X Y Z . \mathrm{m} \angle A=47.1^{\circ}$, and $\mathrm{m} \angle C=13.8^{\circ}$. Find $\mathrm{m} \angle Y$.
(A) 13.8
(C) 76.2
(B) 42.9
(D) 119.1
34. $\triangle M N R \cong \triangle S P Q, N L=18, S P=33, S R=10, R Q=24$, and $Q P=30$. What is the perimeter of $\triangle M N R$?
(F) 79
(H) 87
(G) 85
(J) 97

CHALLENGE AND EXTEND

35. Multi-Step Given that the perimeter of TUVW is 149 units, find the value of x. Is $\triangle T U V \cong \triangle T W V$? Explain.

36. Multi-Step Polygon $A B C D \cong$ polygon $E F G H . \angle A$ is a right angle. $\mathrm{m} \angle E=\left(y^{2}-10\right)^{\circ}$, and $\mathrm{m} \angle H=\left(2 y^{2}-132\right)^{\circ}$. Find $\mathrm{m} \angle D$.
37. Given: $\overline{R S} \cong \overline{R T}, \angle S \cong \angle T$ Prove: $\triangle R S T \cong \triangle R T S$

SPIRAL REVIEW

Two number cubes are rolled. Find the probability of each outcome.
(Previous course)
38. Both numbers rolled are even.
39. The sum of the numbers rolled is 5 .

Classify each angle by its measure. (Lesson 1-3)
40. $\mathrm{m} \angle D O C=40^{\circ}$
41. $\mathrm{m} \angle B O A=90^{\circ}$
42. $\mathrm{m} \angle C O A=140^{\circ}$

Find each angle measure. (Lesson 4-2)
43. $\angle Q$
44. $\angle P$
45. $\angle Q R S$

Career Path

Jordan Carter Emergency Medical Services Program

Q: What math classes did you take in high school?
A: Algebra 1 and 2, Geometry, Precalculus
Q: What kind of degree or certification will you receive?
A: I will receive an associate's degree in applied science. Then I will take an exam to be certified as an EMT or paramedic.

Q: How do you use math in your hands-on training?
A: I calculate dosages based on body weight and age. I also calculate drug doses in milligrams per kilogram per hour or set up an IV drip to deliver medications at the correct rate.

Q: What are your future career plans?
A: When I am certified, I can work for a private ambulance service or with a fire department. I could also work in a hospital, transporting critically ill patients by ambulance or helicopter.

Triangles and Congruence

Origami Origami is the Japanese art of paper folding. The Japanese word origami literally means "fold paper." This ancient art form relies on properties of geometry to produce fascinating and beautiful shapes.

Each of the figures shows a step in making an origami swan from a square piece of paper. The final figure shows the creases of an origami swan that has been unfolded.

Fold the paper in half diagonally and crease it. Turn it over.

Step 4

Fold the narrow point upward at a 90° angle and crease. Push in the fold so that the neck is inside the body.

Fold corners A and C to the center line and crease. Turn it over.

Step 5

Fold the tip downward and crease. Push in the fold so that the head is inside the neck.

Step 3

Fold in half along the center crease so that $\overline{D E}$ and $\overline{D F}$ are together.

Step 6

Fold up the flap to form the wing.

1. Use the fact that $A B C D$ is a square to classify $\triangle A B D$ by its side lengths and by its angle measures.
2. $\overline{D B}$ bisects $\angle A B C$ and $\angle A D C$. $\overline{D E}$ bisects $\angle A D B$. Find the measures of the angles in $\triangle E D B$. Explain how you found the measures.
3. Given that $\overline{D B}$ bisects $\angle A B C$ and $\angle E D F, \overline{B E} \cong \overline{B F}$, and $\overline{D E} \cong \overline{D F}$, prove that $\triangle E D B \cong \triangle F D B$.

READY TO GO ON?

Quiz for Lessons 4-1 Through 4-3

4-1 Classifying Triangles

Classify each triangle by its angle measures.

1. $\triangle A C D$
2. $\triangle A B D$
3. $\triangle A D E$

Classify each triangle by its side lengths.
4. $\triangle P Q R$
5. $\triangle P R S$
6. $\triangle P Q S$

4-2 Angle Relationships in Triangles

Find each angle measure.
7. $\mathrm{m} \angle M$

8. $\mathrm{m} \angle A B C$

9. A carpenter built a triangular support structure for a roof. Two of the angles of the structure measure 37° and 55°. Find the measure of $\angle R T P$, the angle formed by the roof of the house and the roof of the patio.

4-3 Congruent Triangles

Given: $\triangle J K L \cong \triangle D E F$. Identify the congruent corresponding parts.
10. $\overline{K L} \cong$ \qquad 11. $\overline{D F} \cong$ \qquad 12. $\angle K \cong$ \qquad 13. $\angle F \cong$ \qquad
Given: $\triangle P Q R \cong \triangle S T U$. Find each value.
14. $P Q$
15. y
16. Given: $\stackrel{\overleftrightarrow{A B}}{\overline{A C}} \| \frac{\overleftrightarrow{C D}}{C D}, \overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{B D}$, $\overline{A C} \perp \overline{C D}, \overline{D B} \perp \overline{A B}$

Prove: $\triangle A C D \cong \triangle D B A$
Proof:

Statements	Reasons	
1. $\overleftrightarrow{A B} \\| \overleftrightarrow{C D}$	1. a. ?	
2. $\angle B A D \cong \angle C D A$	2. b. ?	
3. $\overline{A C} \perp \overline{C D}, \overline{D B} \perp \overline{A B}$	3. c. ?	
4. $\angle A C D$ and $\angle D B A$ are rt. $\stackrel{\text { s }}{ }$	4. d. ?	
5. e. ?	5. Rt. $\angle \cong$ Thm.	
6. f. ?	6. Third $\stackrel{s}{ }$ Thm.	
7. $\overline{A B} \cong \overline{C D}, \overline{A C} \cong \overline{B D}$	7. g. ?	
8. h. ?	8. Reflex Prop. of \cong	
9. $\triangle A C D \cong \triangle D B A$	9. i. ?	

Use with Lesson 4-4

Explore SSS and SAS Triangle Congruence

In Lesson 4-3, you used the definition of congruent triangles to prove triangles congruent. To use the definition, you need to prove that all three pairs of corresponding sides and all three pairs of corresponding angles are congruent.

In this lab, you will discover some shortcuts for proving triangles congruent.

Calformia Standards
$\mathbf{1 . 0}$ Students demonstrate
understanding by identifying and giving
examples of undefined terms, axioms, theorems, and inductive and deductive reasoning.

Activity 1

(1) Measure and cut six pieces from the straws: two that are 2 inches long, two that are 4 inches long, and two that are 5 inches long.
(2) Cut two pieces of string that are each about 20 inches long.
(3) Thread one piece of each size of straw onto a piece of string. Tie the ends of the string together so that the pieces of straw form a triangle.
(4)

Using the remaining pieces, try to make another triangle with the same side lengths that is not congruent to the first triangle.

Try This

1. Repeat Activity 1 using side lengths of your choice. Are your results the same?
2. Do you think it is possible to make two triangles that have the same side lengths but that are not congruent? Why or why not?
3. How does your answer to Problem 2 provide a shortcut for proving triangles congruent?
4. Complete the following conjecture based on your results. Two triangles are congruent if \qquad .

Activity 2

(1) Measure and cut two pieces from the straws: one that is 4 inches long and one that is 5 inches long.
(2) Use a protractor to help you bend a paper clip to form a 30° angle.
(3) Place the pieces of straw on the sides of the 30° angle. The straws will form two sides of your triangle.
(4) Without changing the angle formed by the paper clip, use a piece of straw to make a third side for your triangle, cutting it to fit
 as necessary. Use additional paper clips or string to hold the straws together in a triangle.

Iry This

5. Repeat Activity 2 using side lengths and an angle measure of your choice. Are your results the same?
6. Suppose you know two side lengths of a triangle and the measure of the angle between these sides. Can the length of the third side be any measure? Explain.
7. How does your answer to Problem 6 provide a shortcut for proving triangles congruent?
8. Use the two given sides and the given angle from Activity 2 to form a triangle that is not congruent to the triangle you formed. (Hint: One of the given sides does not have to be adjacent to the given angle.)
9. Complete the following conjecture based on your results. Two triangles are congruent if \qquad ? .

Triangle Congruence: SSS and SAS

Objectives

Apply SSS and SAS to construct triangles and to solve problems.
Prove triangles congruent by using SSS and SAS.

Vocabulary

triangle rigidity included angle

Calffornia Standards
5.0 Students prove that triangles are congruent or similar, and they are able to use the concept of corresponding parts of congruent triangles.
Also covered: 2.0, $\mathbf{1 6 . 0}$

Who uses this?

Engineers used the property of triangle rigidity to design the internal support for the Statue of Liberty and to build bridges, towers, and other structures.
(See Example 2.)

In Lesson 4-3, you proved triangles congruent by showing that all six pairs of corresponding parts were congruent.

The property of triangle rigidity gives you a shortcut for proving two triangles congruent. It states that if the side lengths of a triangle are given, the triangle can have only one shape.

For example, you only need to know that two triangles have three pairs of congruent corresponding sides. This can be expressed as the following postulate.

Remember!

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts.

EXAMPLE 1 Using SSS to Prove Triangle Congruence
Use SSS to explain why $\triangle P Q R \cong \triangle P S R$.
It is given that $\overline{P Q} \cong \overline{P S}$ and that $\overline{Q R} \cong \overline{S R}$. By the Reflexive Property of Congruence, $\overline{P R} \cong \overline{P R}$. Therefore $\triangle P Q R \cong \triangle P S R$ by SSS.

1. Use SSS to explain why $\triangle A B C \cong \triangle C D A$.

An included angle is an angle formed by two adjacent sides of a polygon. $\angle B$ is the included angle between sides $\overline{A B}$ and $\overline{B C}$.

It can also be shown that only two pairs of congruent corresponding sides are needed to prove the congruence of two triangles if the included angles are also congruent.

Note	POSTULATE	HYPOTHESIS	CONCLUSION
	If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.		$\triangle A B C \cong \triangle E F D$

E X A MPLE 2 Engineering Application

The figure shows part of the support

Caution!

structure of the Statue of Liberty.

The letters SAS are written in that order because the congruent angles must be between pairs of congruent corresponding sides. Use SAS to explain why $\triangle K P N \cong \triangle L P M$.

It is given that $\overline{K P} \cong \overline{L P}$ and that $\overline{N P} \cong \overline{M P}$. By the Vertical Angles Theorem, $\angle K P N \cong \angle L P M$. Therefore $\triangle K P N \cong \triangle L P M$ by SAS.

The SAS Postulate guarantees that if you are given the lengths of two sides and the measure of the included angle, you can construct one and only one triangle.

Construction Congruent Triangles Using SAS

Use a straightedge to draw two segments and one angle, or copy the given segments and angle.

1

Construct $\overline{A B}$ congruent to one of the segments.
(2)

Construct $\angle A$ congruent to the given angle.
(3)

Construct $\overline{A C}$ congruent to the other segment. Draw $\overline{C B}$ to complete $\triangle A B C$.

Verifying Triangle Congruence
Show that the triangles are congruent
Algebra for the given value of the variable.

$$
\text { A } \begin{aligned}
& \triangle U V W \cong \triangle Y X W, x=3 \\
& Z Y=x-1 \\
&=3-1=2 \\
& X Z=x=3 \\
& X Y=3 x-5 \\
&=3(3)-5=4
\end{aligned}
$$

$\overline{U V} \cong \overline{Y X} . \overline{U W} \cong \overline{X Z}$, and $\overline{U W} \cong \overline{Y Z}$.
So $\triangle U V W \cong \triangle Y X Z$ by SSS.
B $\triangle D E F \cong \triangle J G H, y=7$

$$
\begin{aligned}
J G & =2 y+1 \\
& =2(7)+1 \\
& =15 \\
G H & =y^{2}-4 y+3 \\
& =(7)^{2}-4(7)+3 \\
& =24 \\
m \angle G & =12 y+42 \\
& =12(7)+42 \\
& =126^{\circ}
\end{aligned}
$$

$\overline{D E} \cong \overline{J G} . \overline{E F} \cong \overline{G H}$, and $\angle E \cong \angle G$.
So $\triangle D E F \cong \triangle J G H$ by SAS.
3. Show that $\triangle A D B \cong \triangle C D B$ when $t=4$.

EXAMPLE 4 Proving Triangles Congruent

Given: $\ell \| m, \overline{E G} \cong \overline{H F}$
Prove: $\triangle E G F \cong \triangle H F G$
Proof:

Statements	Reasons	
1. $\overline{E G} \cong \overline{H F}$	1. Given	
2. $\ell \\| m$	2. Given	
3. $\angle E G F \cong \angle H F G$	3. Alt. Int. $\angle \mathrm{Thm}$.	
4. $\overline{F G} \cong \overline{G F}$	4. Reflex Prop. of \cong	
5. $\triangle E G F \cong \triangle H F G$	5. SAS Steps $1,3,4$	

4. Given: $\overrightarrow{Q P}$ bisects $\angle R Q S$. $\overline{Q R} \cong \overline{Q S}$

Prove: $\triangle R Q P \cong \triangle S Q P$

THINK AND DISCUSS

1. Describe three ways you could prove that $\triangle A B C \cong \triangle D E F$.
2. Explain why the SSS and SAS Postulates are shortcuts for proving triangles congruent.

3. GET ORGANIZED Copy and complete the graphic organizer. Use it to compare the SSS and SAS postulates.

$4-4$

 ExercisesCalffornia Standards
2.0, 5.0, 16.0,
7AF4.1, 7MG3.3,
7MG3.4, 7MR1.0, 7MR1.1,
1A2.0, 1A4.0, \& 1A5.0

GUIDED PRACTICE

1. Vocabulary In $\triangle R S T$ which angle is the included angle of sides $\overline{S T}$ and $\overline{T R}$?

SEE EXAMPLE 1
p. 242
\square

SEE EXAMPLE 2
p. 243

Use SSS to explain why the triangles in each pair are congruent.
2. $\triangle A B D \cong \triangle C D B$

3. $\triangle M N P \cong \triangle M Q P$

4. Sailing Signal flags are used to communicate messages when radio silence is required. The Zulu signal flag means, "I require a tug." $G J=G H=G L=G K=20 \mathrm{in}$. Use SAS to explain why $\triangle J G K \cong \triangle L G H$.

SEE EXAMPLE 3
p. 244

6. $\triangle R S T \cong \triangle T U R, x=18$

7. Given: $\overline{J K} \cong \overline{M L}, \angle J K L \cong \angle M L K$

Prove: $\triangle J K L \cong \triangle M L K$

Proof:

Statements	Reasons
1. $\overline{J K} \cong \overline{M L}$	1. a. ?
2. b. ?	2. Given
3. $\overline{K L} \cong \overline{L K}$	3. c. ?
4. $\triangle J K L \cong \triangle M L K$	4. d. ? ?

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
$8-9$	1
10	2
$11-12$	3
13	4

Extra Practice

Skills Practice p. S11
Application Practice p. S31

Use SSS to explain why the triangles in each pair are congruent.
8. $\triangle B C D \cong \triangle E D C$

9. $\triangle G J K \cong \triangle G J L$

10. Theater The lights shining on a stage appear to form two congruent right triangles. Given $\overline{E C} \cong \overline{D B}$, use SAS to explain why $\triangle E C B \cong \triangle D B C$.

Show that the triangles are congruent for the given value of the variable.
11. $\triangle M N P \cong \triangle Q N P, y=3$

12. $\triangle X Y Z \cong \triangle S T U, t=5$

13. Given: B is the midpoint of $\overline{D C} \cdot \overline{A B} \perp \overline{D C}$ Prove: $\triangle A B D \cong \triangle A B C$

Proof:

Statements	Reasons
1. B is the mdpt. of $\overline{D C}$. 2. b. \qquad $?$ 3. c. $?$ \qquad 4. $\angle A B D$ and $\angle A B C$ are rt. \angle. 5. $\angle A B D \cong \angle A B C$ 6. f. \qquad ? 7. $\triangle A B D \cong \triangle A B C$	1. a. \qquad ? 2. Def. of mdpt. 3. Given 4. d. \qquad ? 5. e. ? \qquad 6. Reflex. Prop. of \cong 7. g. ?

Which postulate, if any, can be used to prove the triangles congruent?
14.

15.

16.

17.

18. Explain what additional information, if any, you would need to prove $\triangle A B C \cong \triangle D E C$ by each postulate.
a. SSS
b. SAS

Multi-Step Graph each triangle. Then use the Distance Formula and the SSS Postulate to determine whether the triangles are congruent.
19. $\triangle Q R S$ and $\triangle T U V$
$Q(-2,0), R(1,-2), S(-3,-2)$
$T(5,1), U(3,-2), V(3,2)$
20. $\triangle A B C$ and $\triangle D E F$
$A(2,3), B(3,-1), C(7,2)$
$D(-3,1), E(1,2), F(-3,5)$
21. Given: $\angle Z V Y \cong \angle W Y V$,

$$
\begin{aligned}
& \angle Z V W \cong \angle W Y Z, \\
& \overline{V W} \cong \overline{Y Z}
\end{aligned}
$$

Prove: $\triangle Z V Y \cong \triangle W Y V$
Proof:

Statements	Reasons
1. $\angle Z V Y \cong \angle W Y V, \angle Z V W \cong W Y Z$ 2. $\begin{aligned} & \mathrm{m} \angle Z V Y=\mathrm{m} \angle W Y V, \\ & \mathrm{~m} \angle Z V W=\mathrm{m} \angle W Y Z \end{aligned}$ 3. $\mathrm{m} \angle Z V Y+\mathrm{m} \angle Z V W=$ $\mathrm{m} \angle W Y V+\mathrm{m} \angle W Y Z$ 4. c. \qquad $?$ 5. $\angle W V Y \cong \angle Z Y V$ 6. $\overline{V W} \cong \overline{Y Z}$ 7. f. ? 8. $\triangle Z V Y \cong \triangle W Y V$	1. a. \qquad 2. b. ? \qquad 3. Add. Prop. of $=$ 4. \angle Add. Post. 5. d. \qquad ? 6. e. \qquad ? 7. Reflex. Prop. of \cong 8. g. ?

22. This problem will prepare you for the Concept Connection on page 280. The diagram shows two triangular trusses that were built for the roof of a doghouse.
a. You can use a protractor to check that $\angle A$ and $\angle D$ are right angles. Explain how you could make just two additional measurements on each truss to ensure that the trusses are congruent.
b. You verify that the trusses are congruent and find that $A B=A C=2.5 \mathrm{ft}$. Find the length of $\overline{E F}$ to the nearest tenth. Explain.

23. Critical Thinking Draw two isosceles triangles that are not congruent but that have a perimeter of 15 cm each.
24. $\triangle A B C \cong \triangle A D C$ for what value of x ? Explain why the SSS Postulate can be used to prove the two triangles congruent.

Ecology A wing deflector is a triangular structure made of logs that is filled with large rocks and placed in a stream to guide the current or prevent erosion. Wing deflectors are often used in pairs. Suppose an engineer wants to build two wing deflectors. The logs that form the sides of each wing deflector are perpendicular. How can the engineer make sure that the two wing deflectors are congruent?

26. Write About It If you use the same two sides and included angle to repeat the construction of a triangle, are your two constructed triangles congruent? Explain.
27. Construction Use three segments (SSS) to construct a scalene triangle. Suppose you then use the same segments in a different order to construct a second triangle. Will the result be the same? Explain.

StaNDARDIZED

 Test Prep28. Which of the three triangles below can be proven congruent by SSS or SAS?

(A) I and II
(B) II and III
(C) I and III
(D) I, II, and III
29. What is the perimeter of polygon $A B C D$?
(F) 29.9 cm
(H) 49.8 cm
(G) 39.8 cm
(J) 59.8 cm

30. Jacob wants to prove that $\triangle F G H \cong \triangle J K L$ using SAS. He knows that $\overline{F G} \cong \overline{J K}$ and $\overline{F H} \cong \overline{J L}$. What additional piece of information does he need?
(A) $\angle F \cong \angle J$
(C) $\angle H \cong \angle L$
(B) $\angle G \cong \angle K$
(D) $\angle F \cong \angle G$
31. What must the value of x be in order to prove that $\triangle E F G \cong \triangle E H G$ by SSS ?
(F) 1.5
(H) 4.67
(G) 4.25
(J) 5.5

CHALLENGE AND EXTEND

32. Given:. $\angle A D C$ and $\angle B C D$ are supplementary. $\overline{A D} \cong \overline{C B}$
Prove: $\triangle A D B \cong \triangle C B D$
(Hint: Draw an auxiliary line.)

33. Given: $\angle Q P S \cong \angle T P R, \overline{P Q} \cong \overline{P T}, \overline{P R} \cong \overline{P S}$

Prove: $\triangle P Q R \cong \triangle P T S$

Algebra Use the following information for Exercises 34 and 35. Find the value of x. Then use SSS or SAS to write a paragraph proof showing that two of the triangles are congruent.
34. $\mathrm{m} \angle F K J=2 x^{\circ}$

$$
\begin{aligned}
\mathrm{m} \angle K F J & =(3 x+10)^{\circ} \\
K J & =4 x+8 \\
H J & =6(x-4)
\end{aligned}
$$

35. $\overline{F J}$ bisects $\angle K F H$.

$$
\begin{aligned}
\mathrm{m} \angle K F J & =(2 x+6)^{\circ} \\
\mathrm{m} \angle H F J & =(3 x-21)^{\circ} \\
F K & =8 x-45 \\
F H & =6 x+9
\end{aligned}
$$

SPIRAL REVIEW

Solve and graph each inequality. (Previous course)
36. $\frac{x}{2}-8 \leq 5$
37. $2 a+4>3 a$
38. $-6 m-1 \leq-13$

Solve each equation. Write a justification for each step. (Lesson 2-5)
39. $4 x-7=21$
40. $\frac{a}{4}+5=-8$
41. $6 r=4 r+10$

Given: $\triangle E F G \cong \triangle G H E$. Find each value. (Lesson 4-3)
42. x
43. $\mathrm{m} \angle F E G$
44. $\mathrm{m} \angle F G H$

Using Technology

Use geometry software to complete the following.

1. Draw a triangle and label the vertices A, B, and C. Draw a point and label it D. Mark a vector from A to B and translate D by the marked vector. Label the image E. Draw $\overleftrightarrow{D E}$. Mark $\angle B A C$ and rotate $\overleftrightarrow{D E}$ about D by the marked angle. Mark $\angle A B C$ and rotate $\overleftrightarrow{D E}$ about E by the marked angle. Label the intersection F.
2. $\operatorname{Drag} A, B$, and C to different locations. What do you notice about the two triangles?
3. Write a conjecture about $\triangle A B C$ and $\triangle D E F$.

4. Test your conjecture by measuring the sides and angles of $\triangle A B C$ and $\triangle D E F$.

4-5

Use with Lesson 4-5

Predict Other Triangle Congruence Relationships

Geometry software can help you investigate whether certain combinations of triangle parts will make only one triangle. If a combination makes only one triangle, then this arrangement can be used to prove two triangles congruent.

Activity 1

(1) Construct $\angle C A B$ measuring 45° and $\angle E D F$ measuring 110°.

(2) Move $\angle E D F$ so that $\overrightarrow{D E}$ overlays $\overrightarrow{B A}$. Where $\overrightarrow{D F}$ and $\overrightarrow{A C}$ intersect, label the point G. Measure $\angle D G A$.

(3) Move $\angle C A B$ to the left and right without changing the measures of the angles. Observe what happens to the size of $\angle D G A$.
(4) Measure the distance from A to D. Try to change the shape of the triangle without changing $A D$ and the measures of $\angle A$ and $\angle D$.

Try This

1. Repeat Activity 1 using angle measures of your choice. Are your results the same? Explain.
2. Do the results change if one of the given angles measures 90° ?
3. What theorem proves that the measure of $\angle D G A$ in Step 2 will always be the same?
4. In Step 3 of the activity, the angle measures in $\triangle A D G$ stayed the same as the size of the triangle changed. Does Angle-Angle-Angle, like Side-Side-Side, make only one triangle? Explain.
5. Repeat Step 4 of the activity but measure the length of $\overline{A G}$ instead of $\overline{A D}$. Are your results the same? Does this lead to a new congruence postulate or theorem?
6. If you are given two angles of a triangle, what additional piece of information is needed so that only one triangle is made? Make a conjecture based on your findings in Step 5.

Activity 2

(1) Construct $\overline{Y Z}$ with a length of 6.5 cm .
(2) Using $\overline{Y Z}$ as a side, construct $\angle X Y Z$ measuring 43°.

(3) Draw a circle at Z with a radius of 5 cm . Construct $\overline{Z W}$, a radius of circle Z.

(4) Move W around circle Z. Observe the possible shapes of $\triangle Y Z W$.

Try This

7. In Step 4 of the activity, how many different triangles were possible? Does Side-Side-Angle make only one triangle?
8. Repeat Activity 2 using an angle measure of 90° in Step 2 and a circle with a radius of 7 cm in Step 3. How many different triangles are possible in Step 4?
9. Repeat the activity again using a measure of 90° in Step 2 and a circle with a radius of 8.25 cm in Step 3 . Classify the resulting triangle by its angle measures.
10. Based on your results, complete the following conjecture. In a Side-Side-Angle combination, if the corresponding nonincluded angles are \qquad ? , then only one triangle is possible.

Triangle Congruence: ASA, AAS, and HL

Objectives

Apply ASA, AAS, and HL to construct triangles and to solve problems.
Prove triangles congruent by using ASA, AAS, and HL.

Vocabulary

included side

Calfornia Standards

5.0 Students prove that triangles are congruent or similar, and they are able to use the concept of corresponding parts of congruent triangles.
Also covered: $\mathbf{2 . 0}, \mathbf{4 . 0}$, -16.0

Why use this?

Bearings are used to convey direction, helping people find their way to specific locations.

Participants in an orienteering race use a map and a compass to find their way to checkpoints along an unfamiliar course. Directions are given by bearings, which are based on compass headings. For example, to travel along the bearing $\mathrm{S} 43^{\circ} \mathrm{E}$, you face south and then turn 43° to the east.

An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.

$\overline{P Q}$ is the included side of $\angle P$ and $\angle Q$.

EXAMPLE 1 Problem-Solving Application

Organizers of an orienteering race are planning a course with checkpoints A, B, and C. Does the table give enough information to determine the location of the checkpoints?

	Bearing	Distance
\boldsymbol{A} to B	$\mathrm{~N} 55^{\circ} \mathrm{E}$	7.6 km
B to C	$\mathrm{~N} 26^{\circ} \mathrm{W}$	
C to A	$\mathrm{~S} 20^{\circ} \mathrm{W}$	

Understand the Problem

The answer is whether the information in the table can be used to find the position of checkpoints A, B, and C. List the important information: The bearing from A to B is $\mathrm{N} 55^{\circ} \mathrm{E}$. From B to C is $\mathrm{N} 26^{\circ} \mathrm{W}$, and from C to A is $\mathrm{S} 20^{\circ} \mathrm{W}$. The distance from A to B is 7.6 km .

Make a Plan
Draw the course using vertical lines to show north-south directions. Then use these parallel lines and the alternate interior angles to help find angle measures of $\triangle A B C$.

- 3 Solve
$\mathrm{m} \angle C A B=55^{\circ}-20^{\circ}=35^{\circ}$
$\mathrm{m} \angle C B A=180^{\circ}-\left(26^{\circ}+55^{\circ}\right)=99^{\circ}$

You know the measures of $\angle C A B$ and $\angle C B A$ and the length of the included side $\overline{A B}$. Therefore by ASA, a unique triangle $A B C$ is determined.

4 Look Back

One and only one triangle can be made using the information in the table, so the table does give enough information to determine the location of all the checkpoints.

1. What if...? If 7.6 km is the distance from B to C, is there enough information to determine the location of all the checkpoints? Explain.

EXAMPLE 2 Applying ASA Congruence
 Determine if you can use ASA to prove $\triangle U V X \cong \triangle W V X$. Explain. $\angle U X V \cong \angle W X V$ as given. Since $\angle W V X$ is a right angle that forms a linear pair with $\angle U V X, \angle W V X \cong \angle U V X$. Also $\overline{V X} \cong \overline{V X}$ by the Reflexive Property. Therefore $\triangle U V X \cong \triangle W V X$ by ASA.

2. Determine if you can use ASA to
prove $\triangle N K L \cong \triangle L M N$. Explain.

Construction Congruent Triangles Using ASA

Use a straightedge to draw a segment and two angles, or copy the given segment and angles.
(1)

Construct $\overline{C D}$ congruent to the given segment.

2

(3

Construct $\angle D$ congruent to the other angle.

4

$\triangle C D E$
Label the intersection of the rays as E.

You can use the Third Angles Theorem to prove another congruence relationship based on ASA. This theorem is Angle-Angle-Side (AAS).

PROOF

Angle-Angle-Side Congruence
Given: $\angle G \cong \angle K, \angle J \cong \angle M, \overline{H J} \cong \overline{L M}$
Prove: $\triangle G H J \cong \triangle K L M$
Proof:

Statements	Reasons
1. $\angle G \cong \angle K, \angle J \cong \angle M$	1. Given
2. $\angle H \cong \angle L$	2. Third \S Thm.
3. $\overline{H J} \cong \overline{L M}$	3. Given
4. $\triangle G H J \cong \triangle K L M$	4. ASA Steps 1,3 , and 2

E X A M P LE 3 Using AAS to Prove Triangles Congruent

Use AAS to prove the triangles congruent.
Given: $\overline{A B} \| \overline{E D}, \overline{B C} \cong \overline{D C}$
Prove: $\triangle A B C \cong \triangle E D C$
Proof:

3. Use AAS to prove the triangles congruent.

Given: $\overline{J L}$ bisects $\angle K L M$. $\angle K \cong \angle M$
Prove: $\triangle J K L \cong \triangle J M L$

There are four theorems for right triangles that are not used for acute or obtuse triangles. They are Leg-Leg (LL), Hypotenuse-Angle (HA), Leg-Angle (LA), and Hypotenuse-Leg (HL). You will prove LL, HA, and LA in Exercises 21, 23, and 33.

You will prove the Hypotenuse-Leg Theorem in Lesson 4-8.

EXAMPLE 4 Applying HL Congruence

Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.
A $\triangle V W X$ and $\triangle Y X W$
According to the diagram, $\triangle V W X$ and $\triangle Y X W$ are right triangles that share hypotenuse $\overline{W X} . \overline{W X} \cong \overline{X W}$ by the Reflexive Property. It is given that $\overline{W V} \cong \overline{X Y}$,
 therefore $\triangle V W X \cong \triangle Y X W$ by HL.
B $\triangle V W Z$ and $\triangle Y X Z$
This conclusion cannot be proved by HL. According to the diagram, $\triangle V W Z$ and $\triangle Y X Z$ are right triangles, and $\overline{W V} \cong \overline{X Y}$. You do not know that hypotenuse $\overline{W Z}$ is congruent to hypotenuse $\overline{X Z}$.
4. Determine if you can use the HL Congruence Theorem to prove $\triangle A B C \cong \triangle D C B$. If not, tell what else you need to know.

THINK AND DISCUSS

1. Could you use AAS to prove that these two triangles are congruent? Explain.

2. The arrangement of the letters in ASA matches the arrangement of what parts of congruent triangles? Include a sketch to support your answer.
3. GET ORGANIZED Copy and complete the graphic organizer. In each column, write a description of the method and then sketch two triangles, marking the appropriate congruent parts.

Proving Triangles Congruent						
	Def. of $\triangle \cong$	SSS	SAS	ASA	AAS	HL
Words						
Pictures						

GUIDED PRACTICE

1. Vocabulary A triangle contains $\angle A B C$ and $\angle A C B$ with $\overline{B C}$ "closed in" between them. How would this help you remember the definition of included side?

SEE EXAMPLE 1 Surveying Use the table for Exercises 2 and 3.
p. 252

A landscape designer surveyed the boundaries of a triangular park. She made the following table for the dimensions of the land.

	\boldsymbol{A} to \boldsymbol{B}	\boldsymbol{B} to \mathbf{C}	\boldsymbol{C} to \boldsymbol{A}
Bearing	E	$\mathrm{S} 25^{\circ} \mathrm{E}$	$\mathrm{N} 62^{\circ} \mathrm{W}$
Distance	115 ft	$?$	$?$

2. Draw the plot of land described by the table.

Label the measures of the angles in the triangle.
3. Does the table have enough information to determine the locations of points A, B, and C ? Explain.

SEE EXAMPLE 2 Determine if you can use ASA to prove the triangles congruent. Explain.
p. 253

4. $\frac{\triangle V R S}{V S}$ and $\triangle V T S$, given that bisects $\angle R S T$ and $\angle R V T$

5. $\triangle D E H$ and $\triangle F G H$

SEE EXAMPLE 3
p. 254
6. Use AAS to prove the triangles congruent.

Given: $\angle R$ and $\angle P$ are right angles.

$$
\overline{Q R} \| \overline{S P}
$$

Prove: $\triangle Q P S \cong \triangle S R Q$

Proof:

SEE EXAMPLE 4 Determine if you can use the HL Congruence Theorem to prove the triangles
p. 255 congruent. If not, tell what else you need to know.
7. $\triangle A B C$ and $\triangle C D A$

8. $\triangle X Y V$ and $\triangle Z Y V$

Independent For Exercises	
$9-10$	See Example
$11-12$	2
13	3
$14-15$	4

Extra Practice
Skills Practice p. S11
Application Practice p. S31

Euclid wrote the mathematical text The Elements around 2300 years ago. It may be the second most reprinted book in history.

PRACTICE AND PROBLEM SOLVING

Surveying Use the table for Exercises 9 and 10.
From two different observation towers a fire is sighted. The locations of the towers are given in the following table.

	X to Y	X to F	Y to F
Bearing	E	$\mathrm{N} 53^{\circ} \mathrm{E}$	$\mathrm{N} 16^{\circ} \mathrm{W}$
Distance	6 km	$?$	$?$

9. Draw the diagram formed by observation tower X, observation tower Y, and the fire F. Label the measures of the angles.
10. Is there enough information given in the table to pinpoint the location of the fire? Explain.

Determine if you can use ASA to prove the triangles congruent. Explain.
11. $\triangle M K J$ and $\triangle M K L$

12. $\triangle R S T$ and $\triangle T U R$

13. Given: $\overline{A B} \cong \overline{D E}, \angle C \cong \angle F$ Prove: $\triangle A B C \cong \triangle D E F$

Proof:

Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.
14. $\triangle G H J$ and $\triangle J K G$

15. $\triangle A B E$ and $\triangle D C E$, given that E is the midpoint of $\overline{A D}$ and $\overline{B C}$

Multi-Step For each pair of triangles write a triangle congruence statement. Identify the transformation that moves one triangle to the position of the other triangle.
16.

17.

18. Critical Thinking Side-Side-Angle (SSA) cannot be used to prove two triangles congruent. Draw a diagram that shows why this is true.
19. This problem will prepare you for the Concept Connection on page 280. A carpenter built a truss to support the roof of a doghouse.
a. The carpenter knows that $\overline{K J} \cong \overline{M J}$. Can the carpenter conclude that $\triangle K J L \cong \triangle M J L$? Why or why not?
b. Suppose the carpenter also knows that $\angle J L K$ is a right angle. Which theorem can be used to show that $\triangle K J L \cong \triangle M J L$?

20. ///ERROR ANALYSIS/// Two proofs that $\triangle E F H \cong \triangle G H F$ are given. Which is incorrect? Explain the error.

(A)

It is given that $\overline{E F} \| \overline{G H}$. By the Alt. Int. \& Thm., $\angle E F H \cong \angle G H F$. $\angle E \cong \angle \mathrm{G}$ by the Rt. $\angle \cong$ Thm. By the Reflex. Prop. of $\cong \overline{H F} \cong \overline{H F}$. So by $A A S, \triangle E F H \cong \triangle G H F$.
(B)
$\overline{H F}$ is the hyp. of both rt. \triangle. $\overline{H F} \cong$ $\overline{H F}$ by the Reflex. Prop. of \cong. Since the opp. sides of a rect. are $\cong, \overline{E F} \cong$ $\overline{G H}$. So by $H L, \triangle E F H \cong \triangle F H G$.
21. Write a paragraph proof of the Leg-Leg (LL) Congruence Theorem. If the legs of one right triangle are congruent to the corresponding legs of another right triangle, the triangles are congruent.
22. Use AAS to prove the triangles congruent.

Given: $\overline{A D} \| \overline{B C}, \overline{A D} \cong \overline{C B}$
Prove: $\triangle A E D \cong \triangle C E B$
Proof:

Statements	Reasons	
1. $\overline{A D} \\| \overline{B C}$	1. a. ?	
2. $\angle D A E \cong \angle B C E$	2. b. ?	
3. c. $\frac{?}{\text { ? }}$	3. Vert. $\angle \mathrm{Thm}$.	
4. d. $\frac{\text { ? }}{}$	3. Given	
5. e. $\frac{\text { ? }}{}$	4. f. ? ?	

23. Prove the Hypotenuse-Angle (HA) Theorem.

Given: $\overline{K M} \perp \overline{J L}, \overline{J M} \cong \overline{L M}, \angle J M K \cong \angle L M K$
Prove: $\triangle J K M \cong \triangle L K M$

24. Write About It The legs of both right $\triangle D E F$ and right $\triangle R S T$ are 3 cm and 4 cm . They each have a hypotenuse 5 cm in length. Describe two different ways you could prove that $\triangle D E F \cong \triangle R S T$.
25. Construction Use the method for constructing perpendicular lines to construct a right triangle.
26. What additional congruence statement is necessary to prove $\triangle X W Y \cong \triangle X V Z$ by ASA?
(A) $\angle X V Z \cong \angle X W Y$
(C) $\overline{V Z} \cong \overline{W Y}$
(B) $\angle V U Y \cong \angle W U Z$
(D) $\overline{X Z} \cong \overline{X Y}$

27. Which postulate or theorem justifies the congruence statement $\triangle S T U \cong \triangle V U T$?
(F) ASA
(H) HL
(G) SSS
(J) SAS

28. Which of the following congruence statements is true?
(A) $\angle A \cong \angle B$
(C) $\triangle A E D \cong \triangle C E B$
(B) $\overline{C E} \cong \overline{D E}$
(D) $\triangle A E D \cong \triangle B E C$

29. In $\triangle R S T, R T=6 y-2$. In $\triangle U V W, U W=2 y+7 . \angle R \cong \angle U$, and $\angle S \cong \angle V$. What must be the value of y in order to prove that $\triangle R S T \cong \triangle U V W$?
(F) 1.25
(G) 2.25
(H) 9.0
11.5
30. Extended Response Draw a triangle. Construct a second triangle that has the same angle measures but is not congruent. Compare the lengths of each pair of corresponding sides. Consider the relationship between the lengths of the sides and the measures of the angles. Explain why Angle-Angle-Angle (AAA) is not a congruence principle.

CHALLENGE AND EXTEND

31. Sports This bicycle frame includes $\triangle V S U$ and $\triangle V T U$, which lie in intersecting planes. From the given angle measures, can you conclude that $\triangle V S U \cong \triangle V T U$? Explain.
$\mathrm{m} \angle V U S=(7 y-2)^{\circ}$
$\mathrm{m} \angle V U T=\left(5 \frac{1}{2} x-\frac{1}{2}\right)^{\circ}$
$\mathrm{m} \angle U S V=5 \frac{2}{3} y^{\circ}$
$\mathrm{m} \angle U T V=(4 x+8)^{\circ}$
$\mathrm{m} \angle S V U=(3 y-6)^{\circ}$
$\mathrm{m} \angle T V U=2 x^{\circ}$

32. Given: $\triangle A B C$ is equilateral. C is the midpoint of $\overline{D E} . \angle D A C$ and $\angle E B C$ are congruent and supplementary.
Prove: $\triangle D A C \cong \triangle E B C$

33. Write a two-column proof of the Leg-Angle (LA) Congruence Theorem. If a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, the triangles are congruent. (Hint: There are two cases to consider.)
34. If two triangles are congruent by ASA, what theorem could you use to prove that the triangles are also congruent by AAS? Explain.

SPIRAL REVIEW

Identify the x - and y-intercepts. Use them to graph each line. (Previous course)
35. $y=3 x-6$
36. $y=-\frac{1}{2} x+4$
37. $y=-5 x+5$
38. Find $A B$ and $B C$ if $A C=10$. (Lesson 1-6)
39. Find $\mathrm{m} \angle C$. (Lesson 4-2)

Triangle Congruence: CPCTC
 c

Objective

Use CPCTC to prove parts of triangles are congruent.

Vocabulary

 CPCTC
Why learn this?

You can use congruent triangles to estimate distances.

CPCTC is an abbreviation for the phrase
"Corresponding Parts of Congruent Triangles are Congruent." It can be used as a justification in a proof after you have proven two triangles congruent.

Helpful Hint

Work backward when planning a proof. To show that $\overline{E D}|\mid \overline{G F}$, look for a pair of angles that are congruent. Then look for triangles that contain these angles.

Given: $\overline{E G} \| \overline{D F}, \overline{E G} \cong \overline{D F}$
Prove: $\overline{E D} \| \overline{G F}$
Proof:

Statements	Reasons	
1. $\overline{E G} \cong \overline{D F}$	1. Given	
2. $\overline{E G} \\| \overline{D F}$	2. Given	
3. $\angle E G D \cong \angle F D G$	3. Alt. Int. $\angle \mathrm{Thm}$.	
4. $\overline{G D} \cong \overline{D G}$	4. Reflex. Prop. of \cong	
5. $\triangle E G D \cong \triangle F D G$	5. SAS Steps 1,3 , and 4	
6. $\angle E D G \cong \angle F G D$	6. CPCTC	
7. $\overline{E D} \\| \overline{G F}$	7. Converse of Alt. Int. $\S \mathrm{Thm}$.	

3. Given: J is the midpoint of $\overline{K M}$ and $\overline{N L}$.

Prove: $\overline{K L} \| \overline{M N}$

You can also use СРСТС when triangles are on a coordinate plane. You use the Distance Formula to find the lengths of the sides of each triangle. Then, after showing that the triangles are congruent, you can make conclusions about their corresponding parts.

E X A MPLE 4 Using CPCTC in the Coordinate Plane
 Given: $A(2,3), B(5,-1), C(1,0)$, $D(-4,-1), E(0,2), F(-1,-2)$

Prove: $\angle A B C \cong \angle D E F$
Step 1 Plot the points on a coordinate plane.
Step 2 Use the Distance Formula to find the lengths of the sides of each triangle.

$$
\begin{aligned}
D & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A B & =\sqrt{(5-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \\
B C & =\sqrt{(1-5)^{2}+(0-(-1))^{2}} \\
& =\sqrt{16+1}=\sqrt{17} \\
A C & =\sqrt{(1-2)^{2}+(0-3)^{2}} \\
& =\sqrt{1+9}=\sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
D E & =\sqrt{(0-(-4))^{2}+(2-(-1))^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5 \\
E F & =\sqrt{(-1-0)^{2}+(-2-2)^{2}} \\
& =\sqrt{1+16}=\sqrt{17} \\
D F & =\sqrt{(-1-(-4))^{2}+(-2-(-1))^{2}} \\
& =\sqrt{9+1}=\sqrt{10}
\end{aligned}
$$

So $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong \overline{D F}$. Therefore $\triangle A B C \cong \triangle D E F$ by SSS, and $\angle A B C \cong \angle D E F$ by СРСТС.
4. Given: $J(-1,-2), K(2,-1), L(-2,0), R(2,3), S(5,2), T(1,1)$ Prove: $\angle J K L \cong \angle R S T$

THINK AND DISCUSS

1. In the figure, $\overline{U V} \cong \overline{X Y}, \overline{V W} \cong \overline{Y Z}$, and $\angle V \cong \angle Y$. Explain why $\triangle U V W \cong \triangle X Y Z$. By СРСТС, which additional parts are congruent?

2. GET ORGANIZED Copy and complete the graphic organizer. Write all conclusions you can make using CPCTC.

4-6

Fxercises

Calfornia Standards \& 2.0, 5.0, 7AF2.0, 7- 7AF4.1, 7MG3.2, 7MG3.4, 7MR1.1, \&- 1A2.0

GUIDED PRACTICE

1. Vocabulary You use CPCTC after proving triangles are congruent. Which parts of congruent triangles are referred to as corresponding parts?

SEE EXAMPLE

p. 260
2. Archaeology An archaeologist wants to find the height $A B$ of a rock formation. She places a marker at C and steps off the distance from C to B. Then she walks the same distance from C and places a marker at D. If $D E=6.3 \mathrm{~m}$, what is $A B$?

SEE EXAMPLE 2
p. 260
3. Given: X is the midpoint of $\overline{S T} \cdot \overline{R X} \perp \overline{S T}$ Prove: $\overline{R S} \cong \overline{R T}$

Proof:

SEE EXAMPLE 3 p. 261
4. Given: $\overline{A C} \cong \overline{A D}, \overline{C B} \cong \overline{D B}$

Prove: $\overline{A B}$ bisects $\angle C A D$.

Proof:

Statements	Reasons
1. $\overline{A C} \cong \overline{A D}, \overline{C B} \cong \overline{D B}$	1. a. ?
2. b. $\frac{\text { ? }}{}$	2. Reflex. Prop. of \cong
3. $\triangle A C B \cong \triangle A D B$	3. c. $\frac{?}{?}$
4. $\angle C A B \cong \angle D A B$	4. d. $\frac{?}{?}$
5. $\overline{A B}$ bisects $\angle C A D$	5. e. $\frac{?}{?}$

SEE EXAMPLE 4 Multi-Step Use the given set of points to prove each congruence statement.
p. 261
5. $E(-3,3), F(-1,3), G(-2,0), J(0,-1), K(2,-1), L(1,2) ; \angle E F G \cong \angle J K L$
6. $A(2,3), B(4,1), C(1,-1), R(-1,0), S(-3,-2), T(0,-4) ; \angle A C B \cong \angle R T S$

PRACTICE AND PROBLEM SOLVING

Independent Practice
\(\underset{Exercises}{\substack{For

Example}}\)| See |
| :---: |
| Ex |

71

8-9 2
10-11 3
12-13 4
Extra Practice
Skills Practice p. S11 Application Practice $\mathrm{p} . \mathrm{S} 31$
7. Surveying To find the distance $A B$ across a river, a surveyor first locates point C. He measures the distance from C to B. Then he locates point D the same distance east of C. If $D E=420 \mathrm{ft}$, what is $A B$?
8. Given: M is the midpoint of $\overline{P Q}$ and $\overline{R S}$.
Prove: $\overline{Q R} \cong \overline{P S}$

10. Given: G is the midpoint of $\overline{F H}$.

$$
\overline{E F} \cong \overline{E H}
$$

Prove: $\angle 1 \cong \angle 2$

9. Given: $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W}$

Prove: $\angle W \cong \angle Y$

11. Given: $\overline{L M}$ bisects $\angle J L K . \overline{J L} \cong \overline{K L}$ Prove: M is the midpoint of $\overline{J K}$.

Multi-Step Use the given set of points to prove each congruence statement.
12. $R(0,0), S(2,4), T(-1,3), U(-1,0), V(-3,-4), W(-4,-1) ; \angle R S T \cong \angle U V W$
13. $A(-1,1), B(2,3), C(2,-2), D(2,-3), E(-1,-5), F(-1,0) ; \angle B A C \cong \angle E D F$
14. Given: $\triangle Q R S$ is adjacent to $\triangle Q T S . \overline{Q S}$ bisects $\angle R Q T . \angle R \cong \angle T$

Prove: $\overline{Q S}$ bisects $\overline{R T}$.
15. Given: $\triangle A B E$ and $\triangle C D E$ with E the midpoint of $\overline{A C}$ and $\overline{B D}$

Prove: $\overline{A B} \| \overline{C D}$
16. This problem will prepare you for the Concept Connection on page 280 .
The front of a doghouse has the dimensions shown.
a. How can you prove that $\triangle A D B \cong \triangle A D C$?
b. Prove that $\overline{B D} \cong \overline{C D}$.
c. What is the length of $\overline{B D}$ and $\overline{B C}$ to the nearest tenth?

Multi-Step Find the value of x.
17.

18.

Use the diagram for Exercises 19-21.
19. Given: $P S=R Q, \mathrm{~m} \angle 1=\mathrm{m} \angle 4$

Prove: $\mathrm{m} \angle 3=\mathrm{m} \angle 2$
20. Given: $\mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{~m} \angle 3=\mathrm{m} \angle 4$

Prove: $P S=R S$

21. Given: $P S=R Q, P Q=R S$

Prove: $\overline{P Q} \| \overline{R S}$
22. Critical Thinking Does the diagram contain enough information to allow you to conclude that $\overline{J K} \| \overline{M L}$? Explain.

23. Write About lt Draw a diagram and explain how a surveyor can set up triangles to find the distance across a lake. Label each part of your diagram. List which sides or angles must be congruent.

STANDARDIZED TEST Prep

24. Which of these will NOT be used as a reason in a proof of $\overline{A C} \cong \overline{A D}$?
(A) SAS
(C) ASA
(B) CPCTC
(D) Reflexive Property

25. Given the points $K(1,2), L(0,-4), M(-2,-3)$, and $N(-1,3)$, which of these is true?
(F) $\angle K N L \cong \angle M N L$
(H) $\angle M L N \cong \angle K L N$
(G) $\angle L N K \cong \angle N L M$
(J) $\angle M N K \cong \angle N K L$
26. What is the value of y ?
(A) 10
(C) 35
(B) 20
(D) 85

27. Which of these are NOT used to prove angles congruent?
(F) congruent triangles
(H) parallel lines
(G) noncorresponding parts
(J) perpendicular lines
28. Which set of coordinates represents the vertices of a triangle congruent to $\triangle R S T$? (Hint: Find the lengths of the sides of $\triangle R S T$.)
(A) $(3,4),(3,0),(0,0)$
(C)
$(3,1),(3,3)$
,$(4,6)$
(B) $(3,3),(0,4),(0,0)$
(D) $(3,0),(4,4),(0,6)$

CHALLENGE AND EXTEND

29. All of the edges of a cube are congruent. All of the angles on each face of a cube are right angles. Use CPCTC to explain why any two diagonals on the faces of a cube (for example, $\overline{A C}$ and $\overline{A F}$) must be congruent.

30. Given: $\overline{J K} \cong \overline{M L}, \overline{J M} \cong \overline{K L}$

Prove: $\angle J \cong \angle L$
(Hint: Draw an auxiliary line.)

31. Given: R is the midpoint of $\overline{A B}$.
S is the midpoint of $\overline{D C}$. $\overline{R S} \perp \overline{A B}, \angle A S D \cong \angle B S C$
Prove: $\triangle A S D \cong \triangle B S C$

32. $\triangle A B C$ is in plane $\mathcal{M} . \triangle C D E$ is in plane \mathcal{P}. Both planes have C in common and $\angle A \cong \angle E$. What is the height $A B$ to the nearest foot?

SPIRAL REVIEW

33. Lina's test scores in her history class are $90,84,93,88$, and 91 . What is the minimum score Lina must make on her next test to have an average test score of 90 ? (Previous course)
34. One long-distance phone plan costs $\$ 3.95$ per month plus $\$ 0.08$ per minute of use. A second long-distance plan costs $\$ 0.10$ per minute for the first 50 minutes used each month and then $\$ 0.15$ per minute after that. Which plan is cheaper if you use an average of 75 long-distance minutes per month? (Previous course)

A figure has vertices at $(1,3),(2,2),(3,2)$, and $(4,3)$. Identify the transformation of the figure that produces an image with each set of vertices. (Lesson 1-7)
35. $(1,-3),(2,-2),(3,-2),(4,-3)$
36. $(-2,-1),(-1,-2),(0,-2),(1,-1)$
37. Determine if you can use ASA to prove $\triangle A C B \cong \triangle E C D$. Explain. (Lesson 4-5)

Quadratic Equations

Connecting
 Geometry to

Algebra

See Skills Bank page S66

A quadratic equation is an equation that can be written in the form $a x^{2}+b x+c=0$.

Example

Given: $\triangle A B C$ is isosceles with $\overline{A B} \cong \overline{A C}$. Solve for x.
Step 1 Set $x^{2}-5 x$ equal to 6 to get $x^{2}-5 x=6$.
Step 2 Rewrite the quadratic equation by subtracting 6 from each side to get $x^{2}-5 x-6=0$.

Calformia Standards

12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems. Also covered: Review of \mathbb{f} 1A14.0, 1 120.0

Step 3 Solve for x.

Method 1: Factoring

Method 2: Quadratic Formula

$$
\begin{array}{rlrl}
x^{2}-5 x-6 & =0 & & \\
(x-6)(x+1) & =0 & & \text { Factor. } \\
x-6=0 \text { or } x+1 & =0 & & \text { Set each factor } \\
& & \text { equal to } 0 . \\
x=6 \quad \text { or } \quad x & =-1 & & \text { Solve. }
\end{array}
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-6)}}{2(1)}$
Simplify.
Find the square root.
Simplify.

Step 4 Check each solution in the original equation.

\[

\]

$x^{2}-5 x=6$	
$(-1)^{2}-5(-1)$	6
$1+5$	6
6	6

Try This

Solve for x in each isosceles triangle.

1. Given: $\overline{F E} \cong \overline{F G}$

2. Given: $\overline{J K} \cong \overline{J L}$

3. Given: $\overline{Y X} \cong \overline{Y Z}$

4. Given: $\overline{Q P} \cong \overline{Q R}$

Introduction to Coordinate Proof

Objectives

Position figures in the coordinate plane for use in coordinate proofs.
Prove geometric concepts by using coordinate proof.

Vocabulary

coordinate proof

Calformia Standards
 17.0 Students prove theorems by using coordinate geometry, including the midpoint of a line segment, the distance formula, and various forms of equations of lines and circles.

Who uses this?

The Bushmen in South Africa use the Global Positioning System to transmit data about endangered animals to conservationists.
(See Exercise 24.)
You have used coordinate geometry to find the midpoint of a line segment and to find the distance between two points. Coordinate geometry can also be used to prove conjectures.

A coordinate proof is a style of proof that uses coordinate geometry and algebra. The first step of a coordinate proof is to position the given figure in the plane. You can use any position, but some strategies can make the steps of the proof simpler.

Strategies for Positioning Figures in the Coordinate Plane

- Use the origin as a vertex, keeping the figure in Quadrant I.
- Center the figure at the origin.
- Center a side of the figure at the origin.
- Use one or both axes as sides of the figure.

EXAMPLE

Positioning a Figure in the Coordinate Plane

Position a rectangle with a length of 8 units and a width of 3 units in the coordinate plane.

Method 1 You can center the longer side of the rectangle at the origin.

Method 2 You can use the origin as a vertex of the rectangle.

Depending on what you are using the figure to prove, one solution may be better than the other. For example, if you need to find the midpoint of the longer side, use the first solution.

1. Position a right triangle with leg lengths of 2 and 4 units in the coordinate plane. (Hint: Use the origin as the vertex of the right angle.)

Once the figure is placed in the coordinate plane, you can use slope, the coordinates of the vertices, the Distance Formula, or the Midpoint Formula to prove statements about the figure.

E X A M P LE 2 Writing a Proof Using Coordinate Geometry
 Write a coordinate proof.

Given: Right $\triangle A B C$ has vertices $A(0,6)$, $B(0,0)$, and $C(4,0) . D$ is the midpoint of $\overline{A C}$.
Prove: The area of $\triangle D B C$ is one half the area of $\triangle A B C$.
Proof: $\triangle A B C$ is a right triangle with height $A B$ and base $B C$.

area of $\triangle A B C=\frac{1}{2} b h$

$$
=\frac{1}{2}(4)(6)=12 \text { square units }
$$

By the Midpoint Formula, the coordinates of $D=\left(\frac{0+4}{2}, \frac{6+0}{2}\right)=(2,3)$. The y-coordinate of D is the height of $\triangle D B C$, and the base is 4 units.

$$
\text { area of } \begin{aligned}
\triangle D B C & =\frac{1}{2} b h \\
& =\frac{1}{2}(4)(3)=6 \text { square units }
\end{aligned}
$$

Since $6=\frac{1}{2}(12)$, the area of $\triangle D B C$ is one half the area of $\triangle A B C$.
2. Use the information in Example 2 to write a coordinate proof showing that the area of $\triangle A D B$ is one half the area of $\triangle A B C$.

A coordinate proof can also be used to prove that a certain relationship is always true. You can prove that a statement is true for all right triangles without knowing the side lengths. To do this, assign variables as the coordinates of the vertices.

E X A MPLE 3 Assigning Coordinates to Vertices

Caution!

Do not use both axes when positioning a figure unless you know the figure has a right angle.

Position each figure in the coordinate plane and give the coordinates of each vertex.

A a right triangle with leg lengths a and b

B a rectangle with length c and width d

3. Position a square with side length $4 p$ in the coordinate plane and give the coordinates of each vertex.

If a coordinate proof requires calculations with fractions, choose coordinates that make the calculations simpler. For example, use multiples of 2 when you are to find coordinates of a midpoint. Once you have assigned the coordinates of the vertices, the procedure for the proof is the same, except that your calculations will involve variables.

EXAMPLE 4 Writing a Coordinate Proof

Given: $\angle B$ is a right angle in $\triangle A B C . D$ is the midpoint of $\overline{A C}$.
Prove: The area of $\triangle D B C$ is one half the area of $\triangle A B C$.

Step 1 Assign coordinates to each vertex.
The coordinates of A are $(0,2 j)$,
the coordinates of B are $(0,0)$, and the coordinates of C are $(2 n, 0)$.

Since you will use the Midpoint Formula to find the coordinates of D, use multiples of 2 for the leg lengths.

Step 2 Position the figure in the coordinate plane.
Step 3 Write a coordinate proof.
Proof: $\triangle A B C$ is a right triangle with height $2 j$ and base $2 n$.

$$
\text { area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} b h \\
& =\frac{1}{2}(2 n)(2 j) \\
& =2 n j \text { square units }
\end{aligned}
$$

By the Midpoint Formula, the coordinates of $D=\left(\frac{0+2 n}{2}, \frac{2 j+0}{2}\right)=(n, j)$. The height of $\triangle D B C$ is j units, and the base is $2 n$ units.

$$
\text { area of } \begin{aligned}
\triangle D B C & =\frac{1}{2} b h \\
& =\frac{1}{2}(2 n)(j) \\
& =n j \text { square units }
\end{aligned}
$$

Since $n j=\frac{1}{2}(2 n j)$, the area of $\triangle D B C$ is one half the area of $\triangle A B C$.
4. Use the information in Example 4 to write a coordinate proof showing that the area of $\triangle A D B$ is one half the area of $\triangle A B C$.

THINK AND DISCUSS

1. When writing a coordinate proof why are variables used instead of numbers as coordinates for the vertices of a figure?
2. How does the way you position a figure in the coordinate plane affect your calculations in a coordinate proof?
3. Explain why it might be useful to assign $2 p$ as a coordinate instead of just p.
4. GET ORGANIZED Copy and complete the graphic organizer. In each row, draw an example of each strategy that might be used when positioning a figure for a coordinate proof.

Positioning Strategy	Example
Use origin as a vertex.	
Center figure at origin.	
Center side of figure at origin.	
Use axes as sides of figure.	

GUIDED PRACTICE

1. Vocabulary What is the relationship between coordinate geometry, coordinate plane, and coordinate proof?

SEE EXAMPLE 1 Position each figure in the coordinate plane.
p. 267
2. a rectangle with a length of 4 units and width of 1 unit
3. a right triangle with leg lengths of 1 unit and 3 units

SEE EXAMPLE 2 Write a proof using coordinate geometry.
p. 268
4. Given: Right $\triangle P Q R$ has coordinates $P(0,6), Q(8,0)$, and $R(0,0)$. A is the midpoint of $\overline{P R}$. B is the midpoint of $\overline{Q R}$.
Prove: $A B=\frac{1}{2} P Q$
SEE EXAMPLE 3 Position each figure in the coordinate plane and give
p. 268 the coordinates of each vertex.

5. a right triangle with leg lengths m and n
6. a rectangle with length a and width b

SEE EXAMPLE 4 Multi-Step Assign coordinates to each vertex and write a coordinate proof.
p. 269
7. Given: $\angle R$ is a right angle in $\triangle P Q R . A$ is the midpoint of $\overline{P R}$. B is the midpoint of $\overline{Q R}$.
Prove: $A B=\frac{1}{2} P Q$

PRACTICE AND PROBLEM SOLVING

Independent Practice
For Exercises
$8-9$
8 Example
10

Extra Practice
Skills Practice p. S11
Application Practice p. S31

Position each figure in the coordinate plane.
8. a square with side lengths of 2 units
9. a right triangle with leg lengths of 1 unit and 5 units

Write a proof using coordinate geometry.
10. Given: Rectangle $A B C D$ has coordinates $A(0,0)$, $B(0,10), C(6,10)$, and $D(6,0) . E$ is the midpoint of $\overline{A B}$, and F is the midpoint of $\overline{C D}$. Prove: $E F=B C$

Position each figure in the coordinate plane and give the coordinates of each vertex.
11. a square with side length $2 m$
12. a rectangle with dimensions x and $3 x$

Multi-Step Assign coordinates to each vertex and write a coordinate proof.
13. Given: E is the midpoint of $\overline{A B}$ in rectangle $A B C D$. F is the midpoint of $\overline{C D}$. Prove: $E F=A D$
14. Critical Thinking Use variables to write the general form of the endpoints of a segment whose midpoint is $(0,0)$.

The origin of the springbok's name may come from its habit of pronking, or bouncing. When pronking, a springbok can leap up to 13 feet in the air. Springboks can run up to 53 miles per hour.
15. Recreation A hiking trail begins at $E(0,0)$. Bryan hikes from the start of the trail to a waterfall at $W(3,3)$ and then makes a 90° turn to a campsite at $C(6,0)$.
a. Draw Bryan's route in the coordinate plane.
b. If one grid unit represents 1 mile, what is the total distance Bryan hiked? Round to the nearest tenth.

Find the perimeter and area of each figure.
16. a right triangle with leg lengths of a and $2 a$ units
17. a rectangle with dimensions s and t units

Find the missing coordinates for each figure.
18.

19.

20. Conservation The Bushmen have sighted animals at the following coordinates: $(-25,31.5),(-23.2,31.4)$, and $(-24,31.1)$. Prove that the distance between two of these locations is approximately twice the distance between two other.
21. Navigation Two ships depart from a port at $P(20,10)$. The first ship travels to a location at $A(-30,50)$, and the second ship travels to a location at $B(70,-30)$. Each unit represents one nautical mile. Find the distance to the nearest nautical mile between the two ships. Verify that the port is at the midpoint between the two.

Write a coordinate proof.

22. Given: Rectangle $P Q R S$ has coordinates $P(0,2), Q(3,2), R(3,0)$, and $S(0,0)$.
$\overline{P R}$ and $\overline{Q S}$ intersect at $T(1.5,1)$.
Prove: The area of $\triangle R S T$ is $\frac{1}{4}$ of the area of the rectangle.
23. Given: $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, with midpoint $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ Prove: $A M=\frac{1}{2} A B$
24. Plot the points on a coordinate plane and connect them to form $\triangle K L M$ and $\triangle M P K$. Write a coordinate proof.
Given: $K(-2,1), L(-2,3), M(1,3), P(1,1)$
Prove: $\triangle K L M \cong \triangle M P K$
25. Write About It When you place two sides of a figure on the coordinate axes, what are you assuming about the figure?

26. This problem will prepare you for the Concept Connection on page 280.

Paul designed a doghouse to fit against the side of his house. His plan consisted of a right triangle on top of a rectangle.
a. Find $B D$ and $C E$.
b. Before building the doghouse, Paul sketched his plan on a coordinate plane. He placed A at the origin and $\overline{A B}$ on the x-axis. Find the coordinates of B, C, D, and E, assuming that each unit of the coordinate plane represents one inch.
 Test Prep
27. The coordinates of the vertices of a right triangle are $(0,0),(4,0)$, and $(0,2)$. Which is a true statement?
(A) The vertex of the right angle is at $(4,2)$.
(B) The midpoints of the two legs are at $(2,0)$ and $(0,1)$.
(C) The hypotenuse of the triangle is $\sqrt{6}$ units.
(D) The shortest side of the triangle is positioned on the x-axis.
28. A rectangle has dimensions of $2 g$ and $2 f$ units. If one vertex is at the origin, which coordinates could NOT represent another vertex?
(F) $(2 f, g)$
(G) $(2 f, 0)$
(H) $(2 g, 2 f)$
(J) $(-2 f, 2 g)$
29. The coordinates of the vertices of a rectangle are (0,0), $(a, 0),(a, b)$, and $(0, b)$. What is the perimeter of the rectangle?
(A) $a+b$
(B) $a b$
(C) $\frac{1}{2} a b$
(D) $2 a+2 b$
30. A coordinate grid is placed over a map. City A is located at $(-1,2)$ and city C is located at $(3,5)$. If city C is at the midpoint between city A and city B , what are the coordinates of city B ?
(F) $(1,3.5)$
(G) $(-5,-1)$
(H) $(7,8)$
(J) $(2,7)$

CHALLENGE AND EXTEND

Find the missing coordinates for each figure.
31.

32.

33. The vertices of a right triangle are at $(-2 s, 2 s),(0,2 s)$, and $(0,0)$. What coordinates could be used so that a coordinate proof would be easier to complete?
34. Rectangle $A B C D$ has dimensions of $2 f$ and $2 g$ units. The equation of the line containing $\overline{B D}$ is $y=\frac{g}{f} x$, and the equation of the line containing $\overline{A C}$ is $y=-\frac{g}{f} x+2 g$. Use algebra to show that the coordinates of E are (f, g).

SPIRAL REVIEW

Use the quadratic formula to solve for x. Round to the nearest hundredth if necessary. (Previous course)
35. $0=8 x^{2}+18 x-5$
36. $0=x^{2}+3 x-5$
37. $0=3 x^{2}-x-10$

Find each value. (Lesson 3-2)
38. x
39. y

40. Use $A(-4,3), B(-1,3), C(-3,1), D(0,-2), E(3,-2)$, and $F(2,-4)$ to prove $\angle A B C \cong \angle E D F$. (Lesson 4-6).

Isosceles and Equilateral Triangles

Objectives

Prove theorems about isosceles and equilateral triangles.
Apply properties of isosceles and equilateral triangles.

Vocabulary

legs of an isosceles triangle
vertex angle
base
base angles

Who uses this?
 Astronomers use geometric methods. (See Example 1.)

Recall that an isosceles triangle has at least two congruent sides. The congruent sides are called the legs. The vertex angle is the angle formed by the legs. The side opposite the vertex angle is called the base, and the base angles are the two angles that have the base as a side.
$\angle 3$ is the vertex angle.
$\angle 1$ and $\angle 2$ are the base angles.

Theorems Isosceles Triangle

THEOREM	HYPOTHESIS	CONCLUSION	
4-8-1	Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	B	
4-8-2	Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	CB	

Theorem 4-8-1 is proven below. You will prove Theorem 4-8-2 in Exercise 35.
12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems.
Also covered: 2.0, 4.0,

Calffornia Standards

```
17.0
```

PROOF
Reading Math the
The Isosceles
Triangle Theorem is
sometimes stated as
"Base angles of an
isosceles triangle
are congruent."

The Isosceles Triangle Theorem is sometimes stated as isosceles triangle are congruent."

Isosceles Triangle Theorem
Given: $\overline{A B} \cong \overline{A C}$
Prove: $\angle B \cong \angle C$
Proof:

Statements	Reasons
1. Draw X, the mdpt. of $\overline{B C}$.	1. Every seg. has a unique mdpt.
2. Draw the auxiliary line $\overline{A X}$.	2. Through two pts. there is exactly one line.
3. $\overline{B X} \cong \overline{C X}$	3. Def. of mdpt.
4. $\overline{A B} \cong \overline{A C}$	4. Given
5. $\overline{A X} \cong \overline{A X}$	5. Reflex. Prop. of \cong
6. $\triangle A B X \cong \triangle A C X$	6. SSS Steps $3,4,5$
7. $\angle B \cong \angle C$	7. CPCTC

The distance from Earth to nearby stars can be measured using the parallax method, which requires observing the positions of a star 6 months apart. If the distance $L M$ to a star in July is $4.0 \times 10^{13} \mathrm{~km}$, explain why the distance $L K$ to the star in January is the same. (Assume the distance from Earth to the Sun
 does not change.)

Not drawn to scale
$\mathrm{m} \angle L K M=180-90.4$, so $\mathrm{m} \angle L K M=89.6^{\circ}$. Since $\angle L K M \cong \angle M$, $\triangle L M K$ is isosceles by the Converse of the Isosceles Triangle Theorem. Thus $L K=L M=4.0 \times 10^{13} \mathrm{~km}$.

1. If the distance from Earth to a star in September is $4.2 \times 10^{13} \mathrm{~km}$, what is the distance from Earth to the star in March? Explain.

EXAMPLE 2 Finding the Measure of an Angle
 Find each angle measure.

Algebra
A $\mathrm{m} \angle C$

$$
\begin{aligned}
& \mathrm{m} \angle C=\mathrm{m} \angle B=x^{\circ} \\
& \mathrm{m} \angle C+\mathrm{m} \angle B+\mathrm{m} \angle A=180 \\
& x+x+38=180
\end{aligned}
$$

$$
2 x=142 \quad \text { Simplify and subtract } 38 \text { from both sides. }
$$

$$
x=71 \quad \text { Divide both sides by } 2 .
$$

Thus $\mathrm{m} \angle C=71^{\circ}$.
B $\mathrm{m} \angle S$

$$
\begin{array}{rlrl}
\mathrm{m} \angle S & =\mathrm{m} \angle R & & \text { Isosc. } \triangle \text { Thm. } \\
2 x^{\circ} & =(x+30)^{\circ} & & \text { Substitute the given values. } \\
x & =30 & & \text { Subtract } x \text { from both sides. } \\
\text { Thus } \mathrm{m} \angle S=2 x^{\circ}=2(30)=60^{\circ} .
\end{array}
$$

Find each angle measure.
2a. $\mathrm{m} \angle H$
2b. $\mathrm{m} \angle N$

The following corollary and its converse show the connection between equilateral triangles and equiangular triangles.

You will prove Corollary 4-8-3 in Exercise 36.
Corollary 4-8-4 Equiangular Triangle

COROLLARY	HYPOTHESIS	CONCLUSION
If a triangle is equiangular, then it is equilateral. (equiangular $\triangle \rightarrow$ equilateral \triangle)		$\overline{D E} \cong \overline{D F} \cong \overline{E F}$

You will prove Corollary 4-8-4 in Exercise 37.

E X A M P LE 3 Using Properties of Equilateral Triangles Find each value.
 A x
 $\triangle A B C$ is equiangular.
 $(3 x+15)^{\circ}=60^{\circ}$
 $3 x=45$
 $x=15$
 Equilateral $\triangle \rightarrow$ equiangular \triangle The measure of each \angle of an equiangular \triangle is 60°. Subtract 15 from both sides. Divide both sides by 3.

B t $\triangle J K L$ is equilateral.
$4 t-8=2 t+1$
$2 t=9$
$t=4.5$

Equiangular $\triangle \rightarrow$ equilateral \triangle Def. of equilateral \triangle
Subtract $2 t$ and add 8 to both sides.

Divide both sides by 2.

CHECR
IT OUTI
3. Use the diagram to find $J L$.

E X A M P L 4 Using Coordinate Proof

Remember!

A coordinate proof may be easier if you place one side of the triangle along the x-axis and locate a vertex at the origin or on the y-axis.

Prove that the triangle whose vertices are the midpoints of the sides of an isosceles triangle is also isosceles.

Given: $\triangle A B C$ is isosceles. X is the mdpt. of $\overline{A B}$. Y is the mdpt. of $\overline{A C} . Z$ is the mdpt. of $\overline{B C}$.
Prove: $\triangle X Y Z$ is isosceles.
Proof:

Draw a diagram and place the coordinates of $\triangle A B C$ and $\triangle X Y Z$ as shown.
By the Midpoint Formula, the coordinates of X are $\left(\frac{2 a+0}{2}, \frac{2 b+0}{2}\right)=(a, b)$, the coordinates of Y are $\left(\frac{2 a+4 a}{2}, \frac{2 b+0}{2}\right)=(3 a, b)$, and the coordinates of Z are $\left(\frac{4 a+0}{2}, \frac{0+0}{2}\right)=(2 a, 0)$.
By the Distance Formula, $X Z=\sqrt{(2 a-a)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$, and $Y Z=\sqrt{(2 a-3 a)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$.
Since $X Z=Y Z, \overline{X Z} \cong \overline{Y Z}$ by definition. So $\triangle X Y Z$ is isosceles.

4. What if...? The coordinates of $\triangle A B C$ are $A(0,2 b), B(-2 a, 0)$, and $C(2 a, 0)$. Prove $\triangle X Y Z$ is isosceles.

THINK AND DISCUSS

1. Explain why each of the angles in an equilateral triangle measures 60°.
2. GET ORGANIZED Copy and complete the graphic organizer. In each box, draw and mark a diagram for each type of triangle.
Triangle

4-8 Exercises

Calformia Standards

\& 2.0, $\&-4.0$, $8=17.0$,
7AF4.1, 7MG3.4, 7MR1.2, 7MR2.3, 1A2.0

GUIDED PRACTICE

1. Vocabulary Draw isosceles $\triangle J K L$ with $\angle K$ as the vertex angle. Name the legs, base, and base angles of the triangle.

SEE EXAMPLE 1
p. 274
2. Surveying To find the distance $Q R$ across a river, a surveyor locates three points Q, R, and S. $Q S=41 \mathrm{~m}$, and $\mathrm{m} \angle S=35^{\circ}$. The measure of exterior $\angle P Q S=70^{\circ}$. Draw a diagram and explain how you can find $Q R$.

SEE EXAMPLE 2 Find each angle measure.
p. 274

SEE EXAMPLE 3 Find each value.
p. 275

SEE EXAMPLE 4
p. 275

4. $\mathrm{m} \angle K$

5. $\mathrm{m} \angle X$

6. $\mathrm{m} \angle A$

7. y

8. x
9. $B C$

11. Given: $\triangle A B C$ is right isosceles. X is the midpoint of $\overline{A C} . \overline{A B} \cong \overline{B C}$
Prove: $\triangle A X B$ is isosceles.
10. $J K$

3. $\mathrm{m} \angle E C D$

Independent Practice	
For Exercises	See Example
12	1
$13-16$	2
$17-20$	3
21	4

Extra Practice
Skills Practice p. S11
Application Practice p. S31

PRACTICE AND PROBLEM SOLVING

12. Aviation A plane is flying parallel to the ground along $\overrightarrow{A C}$. When the plane is at A, an air-traffic controller in tower T measures the angle to the plane as 40°. After the plane has traveled 2.4 mi to B, the angle to the plane is 80°. How can you find $B T$?

Find each angle measure.

14. $\mathrm{m} \angle T R U$

15. $\mathrm{m} \angle F$

16. $\mathrm{m} \angle A$

Find each value.
17. z

18. y

19. $B C$

20. $X Z$

21. Given: $\triangle A B C$ is isosceles. P is the midpoint of $\overline{A B}$. Q is the midpoint of $\overline{A C}$. $\overline{A B} \cong \overline{A C}$
Prove: $\overline{P C} \cong \overline{Q B}$

Tell whether each statement is sometimes, always, or never true.
Support your answer with a sketch.
22. An equilateral triangle is an isosceles triangle.
23. The vertex angle of an isosceles triangle is congruent to the base angles.
24. An isosceles triangle is a right triangle.
25. An equilateral triangle and an obtuse triangle are congruent.
26. Critical Thinking Can a base angle of an isosceles triangle be an obtuse angle? Why or why not?
27. This problem will prepare you for the Concept Connection page 280.
The diagram shows the inside view of the support structure of the back of a doghouse. $\overline{P Q} \cong \overline{P R}$, $\overline{P S} \cong \overline{P T}, \mathrm{~m} \angle P S T=71^{\circ}$, and $\mathrm{m} \angle Q P S=\mathrm{m} \angle R P T=18^{\circ}$.
a. Find $\mathrm{m} \angle S P T$.
b. Find $\mathrm{m} \angle P Q R$ and $\mathrm{m} \angle P R Q$.

Multi-Step Find the measure of each numbered angle.
28.

29.

30. Write a coordinate proof.

Given: $\angle B$ is a right angle in isosceles right $\triangle A B C$. X is the midpoint of $\overline{A C} \cdot \overline{B A} \cong \overline{B C}$
Prove: $\triangle A X B \cong \triangle C X B$

31. Estimation Draw the figure formed by $(-2,1),(5,5)$, and $(-1,-7)$. Estimate the measure of each angle and make a conjecture about the classification of the figure. Then use a protractor to measure each angle. Was your conjecture correct? Why or why not?
32. How many different isosceles triangles have a perimeter of 18 and sides whose lengths are natural numbers? Explain.

Multi-Step Find the value of the variable in each diagram.
33.

34.

Navigation

The taffrail \log is dragged from the stern of a vessel to measure the speed or distance traveled during a voyage. The log consists of a rotator, recording device, and governor.
35. Prove the Converse of the Isosceles Triangle Theorem.
36. Complete the proof of Corollary 4-8-3.

Given: $\overline{A B} \cong \overline{A C} \cong \overline{B C}$
Prove: $\angle A \cong \angle B \cong \angle C$

Proof: Since $\overline{A B} \cong \overline{A C}$, a. ? by the Isosceles Triangle Theorem.
Since $\overline{A C} \cong \overline{B C}, \angle A \cong \angle B \overline{\text { by } \mathbf{b}}$. \qquad . Therefore $\angle A \cong \angle C$ by . \qquad .
By the Transitive Property of $\cong, \angle A \cong \angle B \cong \angle C$.
37. Prove Corollary 4-8-4.
38. Navigation The captain of a ship traveling along $\overrightarrow{A B}$ sights an island C at an angle of 45°. The captain measures the distance the ship covers until it reaches B, where the angle to the island is 90°. Explain how to find the distance $B C$ to the island.

39. Given: $\triangle A B C \cong \triangle C B A$

Prove: $\triangle A B C$ is isosceles.
40. Write About It Write the Isosceles Triangle Theorem and its converse as a biconditional.
41. Rewrite the paragraph proof of the Hypotenuse-Leg (HL) Congruence Theorem as a two-column proof.
Given: $\triangle A B C$ and $\triangle D E F$ are right triangles. $\angle C$ and $\angle F$ are right angles. $\overline{A C} \cong \overline{D F}$, and $\overline{A B} \cong \overline{D E}$.

Prove: $\triangle A B C \cong \triangle D E F$
Proof: On $\triangle D E F$ draw $\overrightarrow{E F}$. Mark G so that $F G=C B$. Thus $\overline{F G} \cong \overline{C B}$. From the diagram, $\overline{A C} \cong \overline{D F}$ and $\angle C$ and $\angle F$ are right angles. $\overline{D F} \perp \overline{E G}$ by definition of perpendicular lines. Thus $\angle D F G$ is a right angle, and $\angle D F G \cong \angle C . \triangle A B C \cong \triangle D G F$ by SAS. $\overline{D G} \cong \overline{A B}$ by СРСТС. $\overline{A B} \cong \overline{D E}$ as given. $\overline{D G} \cong \overline{D E}$ by the Transitive Property. By the Isosceles Triangle Theorem $\angle G \cong \angle E . \angle D F G \cong \angle D F E$ since right angles are congruent. So $\triangle D G F \cong \triangle D E F$ by AAS. Therefore $\triangle A B C \cong \triangle D E F$ by the Transitive Property.

Standardized
 TEst Prep

42. Lorena is designing a window so that $\angle R, \angle S, \angle T$, and $\angle U$ are right angles, $\overline{V U} \cong \overline{V T}$, and $\mathrm{m} \angle U V T=20^{\circ}$. What is $\mathrm{m} \angle R U V$?
(A) 10°
(C) 20°
(B) 70°
(D) 80°

43. Which of these values of y makes $\triangle A B C$ isosceles?
(F) $1 \frac{1}{4}$
(H) $7 \frac{1}{2}$
(G) $2 \frac{1}{2}$
(J) $15 \frac{1}{2}$

44. Gridded Response The vertex angle of an isosceles triangle measures $(6 t-9)^{\circ}$, and one of the base angles measures $(4 t)^{\circ}$. Find t.

CHALLENGE AND EXTEND

45. In the figure, $\overline{J K} \cong \overline{J L}$, and $\overline{K M} \cong \overline{K L}$. Let $\mathrm{m} \angle J=x^{\circ}$. Prove $\mathrm{m} \angle M K L$ must also be x°.
46. An equilateral $\triangle A B C$ is placed on a coordinate plane. Each side length measures $2 a . B$ is at the origin, and C is at $(2 a, 0)$. Find the coordinates of A.

47. An isosceles triangle has coordinates $A(0,0)$ and $B(a, b)$. What are all possible coordinates of the third vertex?

SPIRAL REVIEW

Find the solutions for each equation. (Previous course)
48. $x^{2}+5 x+4=0$
49. $x^{2}-4 x+3=0$
50. $x^{2}-2 x+1=0$

Find the slope of the line that passes through each pair of points. (Lesson 3-5)
51. $(2,-1)$ and $(0,5)$
52. $(-5,-10)$ and $(20,-10)$
53. $(4,7)$ and $(10,11)$
54. Position a square with a perimeter of $4 s$ in the coordinate plane and give the coordinates of each vertex. (Lesson 4-7)

Proving Triangles Congruent

Gone to the Dogs You are planning to build a doghouse for your dog. The pitched roof of the doghouse will be supported by four trusses. Each truss will be an isosceles triangle with the dimensions shown. To determine the materials you need to purchase and how you will construct the trusses, you must first plan carefully.

1. You want to be sure that all four trusses are exactly the same size and shape. Explain how you could measure three lengths on each truss to ensure this. Which postulate or theorem are you using?
2. Prove that the two triangular halves of the truss are congruent.
3. What can you say about $\overline{A D}$ and $\overline{D B}$? Why is this true? Use this to help you find the lengths of $\overline{A D}, \overline{D B}, \overline{A C}$, and $\overline{B C}$.

4. You want to make careful plans on a coordinate plane before you begin your construction of the trusses. Each unit of the coordinate plane represents 1 inch. How could you assign coordinates to vertices A, B, and C ?
5. $\mathrm{m} \angle A C B=106^{\circ}$. What is the measure of each of the acute angles in the truss? Explain how you found your answer.
6. You can buy the wood for the trusses at the building supply store for $\$ 0.80$ a foot. The store sells the wood in 6 -foot lengths only. How much will you have to spend to get enough wood for the 4 trusses of the doghouse?

Quiz for Lessons 4-4 Through 4-8

θ

4-4 Triangle Congruence: SSS and SAS

1. The figure shows one tower and the cables of a suspension bridge. Given that $\overline{A C} \cong \overline{B C}$, use SAS to explain why $\triangle A C D \cong \triangle B C D$.
2. Given: $\overline{J K}$ bisects $\angle M J N . \overline{M J} \cong \overline{N J}$ Prove: $\triangle M J K \cong \triangle N J K$

4-5 Triangle Congruence: ASA, AAS, and HL

Determine if you can use the HL Congruence Theorem to prove the triangles congruent. If not, tell what else you need to know.
3. $\triangle R S U$ and $\triangle T U S$

4. $\triangle A B C$ and $\triangle D C B$

Observers in two lighthouses K and L spot a ship S.
5. Draw a diagram of the triangle formed by the lighthouses and the ship. Label each measure.
6. Is there enough data in the table to pinpoint

	K to L	\boldsymbol{K} to \boldsymbol{S}	\boldsymbol{L} to \boldsymbol{S}
Bearing	E	$\mathrm{N} 58^{\circ} \mathrm{E}$	$\mathrm{N} 77^{\circ} \mathrm{W}$
Distance	12 km	$?$	$?$

4-6 Triangle Congruence: CPCTC

7. Given: $\overline{C D}\|\overline{B E}, \overline{D E}\| \overline{C B}$

Prove: $\angle D \cong \angle B$

4-7 Introduction to Coordinate Proof

8. Position a square with side lengths of 9 units in the coordinate plane
9. Assign coordinates to each vertex and write a coordinate proof.

Given: $A B C D$ is a rectangle with M as the midpoint of $\overline{A B} . N$ is the midpoint of $\overline{A D}$.
Prove: The area of $\triangle A M N$ is $\frac{1}{8}$ the area of rectangle $A B C D$.

4-8 Isosceles and Equilateral Triangles

Find each value.
10. $\mathrm{m} \angle C$

11. $S T$

12. Given: Isosceles $\triangle J K L$ has coordinates $J(0,0), K(2 a, 2 b)$, and $L(4 a, 0)$. M is the midpoint of $\overline{J K}$, and N is the midpoint of $\overline{K L}$.
Prove: $\triangle K M N$ is isosceles.

Exisisuiv Proving Constructions Valid

Objective

Use congruent triangles to prove constructions valid.

Calffornia Standards

2.0 Students write

 geometric proofs, including proofs by contradiction. Also covered: $\mathbf{5 . 0}$When performing a compass and straight edge construction, the compass setting remains the same width until you change it. This fact allows you to construct a segment congruent to a given segment. You can assume that two distances constructed with the same compass setting are congruent.

The steps in the construction of a figure can be justified by combining the assumptions of compass and straightedge constructions and the postulates and theorems that are used for proving triangles congruent.

You have learned that there exists exactly one midpoint on any line segment.
The proof below justifies the construction of a midpoint.

EXAMPLE 1 Proving the Construction of a Midpoint
Given: diagram showing the steps in the construction
Prove: M is the midpoint of $\overline{A B}$.

Proof:

Statements	Reasons
1. Draw $\overline{A C}, \overline{B C}, \overline{A D}$, and $\overline{B D}$.	1. Through any two pts. there is exactly one line.
2. $\overline{A C} \cong \overline{B C} \cong \overline{A D} \cong \overline{B D}$	2. Same compass setting used
3. $\overline{C D} \cong \overline{C D}$	3. Reflex. Prop. of \cong
4. $\triangle A C D \cong \triangle B C D$	4. SSS Steps 2,3
5. $\angle A C D \cong \angle B C D$	5. CPCTC
6. $\overline{C M} \cong \overline{C M}$	6. Reflex. Prop. of \cong
7. $\triangle A C M \cong \triangle B C M$	7. SAS Steps $2,5,6$
8. $\overline{A M} \cong \overline{B M}$	8. CPCTC
9. M is the midpt. of $\overline{A B}$.	9. Def. of mdpt.

1. Given: above diagram

Prove: $\overleftrightarrow{C D}$ is the perpendicular bisector of $\overline{A B}$.

EXAMPLE 2 Proving the Construction of an Angle

Remember!

To review the construction of an angle congruent to another angle, see page 22 .

Given: diagram showing the steps in the construction
Prove: $\angle A \cong \angle D$

Proof: Since there is a straight line through any two points, you can draw $\overline{B C}$ and $\overline{E F}$. The same compass setting was used to construct $\overline{A C}, \overline{A B}, \overline{D F}$, and $\overline{D E}$, so $\overline{A C} \cong \overline{A B} \cong \overline{D F} \cong \overline{D E}$. The same compass setting was used to construct $\overline{B C}$ and $\overline{E F}$, so $\overline{B C} \cong \overline{E F}$. Therefore $\triangle B A C \cong \triangle E D F$ by SSS, and $\angle A \cong \angle D$ by СРСТС.
2. Prove the construction for bisecting an angle. (See page 23.)

EXTENSION

Exercises

Use each diagram to prove the construction valid.

1. parallel lines
(See page 163 and page 170.)

2. constructing a triangle using SAS (See page 243.)

3. a perpendicular through a point not on the line (See page 179.)

4. constructing a triangle using ASA (See page 253.)

Vocabulary

acute triangle216auxiliary line223
base 273
base angle 273
congruent polygons 231
coordinate proof. 267
corollary 224
corresponding angles 231
231 231corresponding sides.

CPCTC
260
equiangular triangle 216
equilateral triangle
217
exterior 225
exterior angle 225
included angle 242
included side 252
interior 225
interior angle. 225
isosceles triangle 217
legs of an isosceles triangle 273
obtuse triangle 216
remote interior angle 225
right triangle 216
scalene triangle. 217
triangle rigidity 242
vertex angle 273

Complete the sentences below with vocabulary words from the list above.

1. $\mathrm{A}(\mathrm{n})$ \qquad is a triangle with at least two congruent sides.
2. A name given to matching angles of congruent triangles is \qquad ? .
3. $\mathrm{A}(\mathrm{n})$ \qquad ? is the common side of two consecutive angles in a polygon.

4-1 Classifying Triangles (pp. 216-221)

E X A M P L E

- Classify the triangle by its angle measures and side lengths.

EXERCISES

Classify each triangle by its angle measures and side lengths.
4.

5.

4-2 Angle Relationships in Triangles (pp. 223-230)

EXAMPLE
Find $m \angle S$.

$$
12 x=3 x+42+6 x
$$

$$
12 x=9 x+42
$$

$$
3 x=42
$$

$$
x=14
$$

$$
\mathrm{m} \angle S=6(14)=84^{\circ}
$$

EXERCISES

Find $m \angle N$.
6.

7. In $\triangle L M N, \mathrm{~m} \angle L=8 x^{\circ}, \mathrm{m} \angle M=(2 x+1)^{\circ}$, and $\mathrm{m} \angle N=(6 x-1)^{\circ}$.

EXAMPLE

- Given: $\triangle D E F \cong \triangle J K L$. Identify all pairs of congruent corresponding parts. Then find the value of x.

The congruent pairs follow: $\angle D \cong \angle J, \angle E \cong \angle K$, $\angle F \cong \angle L, \overline{D E} \cong \overline{J K}, \overline{E F} \cong \overline{K L}$, and $\overline{D F} \cong \overline{J L}$.
Since $\mathrm{m} \angle E=\mathrm{m} \angle K, 90=8 x-22$. After 22 is added to both sides, $112=8 x$. So $x=14$.

EXERCISES

Given: $\triangle P Q R \cong \triangle X Y Z$. Identify the congruent corresponding parts.
8. $\overline{P R} \cong$ \qquad
9. $\angle Y \cong$ \qquad

Given: $\triangle A B C \cong \triangle C D A$
Find each value.
10. x
11. $C D$

4-4 Triangle Congruence: SSS and SAS (pp. 242-249)

EXAMPLES

■ Given: $\overline{R S} \cong \overline{U T}$, and $\overline{V S} \cong \overline{V T} . V$ is the midpoint of $\overline{R U}$.

Prove: $\triangle R S V \cong \triangle U T V$
Proof:

Statements	Reasons
1. $\overline{R S} \cong \overline{U T}$	1. Given
2. $\overline{V S} \cong \overline{V T}$	2. Given
3. V is the mdpt. of $\overline{R U}$.	3. Given
4. $\overline{R V} \cong \overline{U V}$	4. Def. of mdpt.
5. $\triangle R S V \cong \triangle U T V$	5. SSS Steps $1,2,4$

- Show that $\triangle A D B \cong \triangle C D B$ when $s=5$.

$$
\begin{array}{rlrl}
A B & =s^{2}-4 s & A D & =14-2 s \\
& =5^{2}-4(5) & & =14-2(5) \\
& =5 & & =4
\end{array}
$$

$\overline{B D} \cong \overline{B D}$ by the Reflexive Property. $\overline{A D} \cong \overline{C D}$ and $\overline{A B} \cong \overline{C B}$. So $\triangle A D B \cong \triangle C D B$ by SSS.

EXERCISES

12. Given: $\begin{aligned} \overline{A B} & \cong \overline{D E}, \\ \overline{D B} & \cong \overline{A E}\end{aligned}$

Prove: $\triangle A D B \cong \triangle D A E$

13. Given: $\overline{G J}$ bisects $\overline{F H}$, and $\overline{F H}$ bisects $\overline{G J}$. Prove: $\triangle F G K \cong \triangle H J K$

14. Show that $\triangle A B C \cong \triangle X Y Z$ when $x=-6$.

15. Show that $\triangle L M N \cong \triangle P Q R$ when $y=25$.

EXAMPLES

- Given: B is the midpoint of $\overline{A E}$.

$\angle A \cong \angle E$,

 $\angle A B C \cong \angle E B D$Prove: $\triangle A B C \cong \triangle E B D$

Proof:

Statements	Reasons
1. $\angle A \cong \angle E$	1. Given
2. $\angle A B C \cong \angle E B D$	2. Given
3. B is the mdpt. of $\overline{A E}$.	3. Given
4. $\overline{A B} \cong \overline{E B}$	4. Def. of mdpt.
5. $\triangle A B C \cong \triangle E B D$	5. ASA Steps $1,4,2$

EXERCISES

16. Given: C is the midpoint of $\overline{A G}$. $\overline{H A} \| \overline{G B}$
Prove: $\triangle H A C \cong \triangle B G C$

17. Given: $\overline{W X} \perp \overline{X Z}$,
$\overline{Y Z} \perp \overline{Z X}$,
$\overline{W Z} \cong \overline{Y X}$
Prove: $\triangle W Z X \cong \triangle Y X Z$

18. Given: $\angle S$ and $\angle V$ are right angles. $R T=U W$.
$\mathrm{m} \angle T=\mathrm{m} \angle W$
Prove: $\triangle R S T \cong \triangle U V W$

4-6 Triangle Congruence: CPCTC (pp. 260-265)

EXAMPLES

■ Given: $\overline{J L}$ and $\overline{H K}$ bisect each other.
Prove: $\angle J H G \cong \angle L K G$

Proof:

Statements	Reasons
1. $\overline{J L}$ and $\overline{H K}$ bisect each other.	1. Given
2. $\overline{J G} \cong \overline{L G}$, and	2. Def. of bisect
$\overline{H G} \cong \overline{K G}$.	
3. $\angle J G H \cong \angle L G K$	3. Vert. $\angle \mathrm{s}$ Thm.
4. $\triangle J H G \cong \triangle L K G$	4. SAS Steps 2,3
5. $\angle J H G \cong \angle L K G$	5. CPCTC

EXERCISES

19. Given: M is the midpoint of $\overline{B D}$.
$\overline{B C} \cong \overline{D C}$
Prove: $\angle 1 \cong \angle 2$

20. Given: $\overline{P Q} \cong \overline{R Q}$,
$\overline{P S} \cong \overline{R S}$
Prove: $\overline{Q S}$ bisects $\angle P Q R$.

21. Given: H is the midpoint of $\overline{G J}$. L is the midpoint of $\overline{M K}$. $\overline{G M} \cong \overline{K J}, \overline{G J} \cong \overline{K M}$, $\angle G \cong \angle K$
Prove: $\angle G M H \cong \angle K J L$

EXAMPLES

Given: $\angle B$ is a right angle in isosceles right $\triangle A B C$. E is the midpoint of $\overline{A B}$. D is the midpoint of $\overline{C B}, \overline{A B} \cong \overline{C B}$
Prove: $\overline{C E} \cong \overline{A D}$
Proof: Use the coordinates $A(0,2 a), B(0,0)$, and $C(2 a, 0)$. Draw $\overline{A D}$ and $\overline{C E}$.

By the Midpoint Formula,
$E=\left(\frac{0+0}{2}, \frac{2 a+0}{2}\right)=(0, a)$ and
$D=\left(\frac{0+2 a}{2}, \frac{0+0}{2}\right)=(a, 0)$
By the Distance Formula,

$$
\begin{aligned}
C E & =\sqrt{(2 a-0)^{2}+(0-a)^{2}} \\
& =\sqrt{4 a^{2}+a^{2}}=a \sqrt{5} \\
A D & =\sqrt{(a-0)^{2}+(0-2 a)^{2}} \\
& =\sqrt{a^{2}+4 a^{2}}=a \sqrt{5}
\end{aligned}
$$

Thus $\overline{C E} \cong \overline{A D}$ by the definition of congruence.

EXERCISES

Position each figure in the coordinate plane and give the coordinates of each vertex.
22. a right triangle with leg lengths r and s
23. a rectangle with length $2 p$ and width p
24. a square with side length $8 m$

For exercises 25 and 26 assign coordinates to each vertex and write a coordinate proof.
25. Given: In rectangle $A B C D, E$ is the midpoint of $\overline{A B}, F$ is the midpoint of $\overline{B C}, G$ is the midpoint of $\overline{C D}$, and H is the midpoint of $\overline{A D}$.
Prove: $\overline{E F} \cong \overline{G H}$
26. Given: $\triangle P Q R$ has a right $\angle Q$. M is the midpoint of $\overline{P R}$.
Prove: $M P=M Q=M R$
27. Show that a triangle with vertices at $(3,5),(3,2)$, and $(2,5)$ is a right triangle.

4-8 Isosceles and Equilateral Triangles (pp. 273-279)

EXAMPLE

- Find the value of x.
$\mathrm{m} \angle D+\mathrm{m} \angle E+\mathrm{m} \angle F=180^{\circ}$
by the Triangle Sum
Theorem. $\mathrm{m} \angle E=\mathrm{m} \angle F$ by the Isosceles Triangle Theorem.

$$
\begin{array}{rlrl}
\mathrm{m} \angle D+2 \mathrm{~m} \angle E & =180^{\circ} & & \text { Substitution } \\
42+2(3 x) & =180 & & \text { Substitute the given } \\
& \begin{aligned}
& \text { values. }
\end{aligned} \\
6 x & =138 & & \text { Simplify. } \\
x & =23 & & \text { Divide both sides by } 6 .
\end{array}
$$

EXERCISES

Find each value.
28. x

29. $R S$

30. Given: $\triangle A C D$ is isosceles with $\angle D$ as the vertex angle. B is the midpoint of $\overline{A C}$.
$A B=x+5, B C=2 x-3$, and $C D=2 x+6$. Find the perimeter of $\triangle A C D$.

Chapter Test

1. Classify $\triangle A C D$ by its angle measures.

Classify each triangle by its side lengths.
2. $\triangle A C D$
3. $\triangle A B C$
4. $\triangle A B D$

5. While surveying the triangular plot of land shown, a surveyor finds that $\mathrm{m} \angle S=43^{\circ}$. The measure of $\angle R T P$ is twice that of $\angle R T S$. What is $\mathrm{m} \angle R$?

Given: $\triangle X Y Z \cong \triangle J K L$
Identify the congruent corresponding parts.
6. $\overline{J L} \cong$ \qquad 7. $\angle Y \cong$ \qquad
8. $\angle L \cong$ \qquad 9. $\overline{Y Z} \cong$ \qquad
10. Given: T is the midpoint of $\overline{P R}$ and $\overline{S Q}$. Prove: $\triangle P T S \cong \triangle R T Q$

11. The figure represents a walkway with triangular supports. Given that $\overline{G J}$ bisects $\angle H G K$ and $\angle H \cong \angle K$, use AAS to prove $\triangle H G J \cong \triangle K G J$

12. Given: $\overline{A B} \cong \overline{D C}$,

$$
\begin{aligned}
& \overline{A B} \perp \overline{A C}, \\
& \overline{D C} \perp \overline{D B}
\end{aligned}
$$

Prove: $\triangle A B C \cong \triangle D C B$

13. Given: $\overline{P Q} \| \overline{S R}$, Prove: $\overline{P S} \| \overline{Q R}$

14. Position a right triangle with legs 3 m and 4 m long in the coordinate plane.

Give the coordinates of each vertex.
15. Assign coordinates to each vertex and write a coordinate proof.

Given: Square $A B C D$
Prove: $\overline{A C} \cong \overline{B D}$

Find each value.
16. y

17. $\mathrm{m} \angle S$

18. Given: Isosceles $\triangle A B C$ has coordinates $A(2 a, 0), B(0,2 b)$, and $C(-2 a, 0)$.
D is the midpoint of $\overline{A C}$, and E is the midpoint of $\overline{A B}$.
Prove: $\triangle A E D$ is isosceles.

