1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to substitute $k=1, k=2$ and $k=4$ into $a_{k}=2^{k}+1, k$ Ö 1	M1	1.1b	5th Understand disproof by counter example.
	Shows that $a_{1}=3, a_{2}=5$ and $a_{4}=17$ and these are prime numbers.	A1	1.1b	
		(2)		
(b)	Substitutes a value of k that does not yield a prime number. For example, $a_{3}=9$ or $a_{5}=33$	A1	1.1b	5th Understand disproof by counter example.
	Concludes that their number is not prime. For example, states that $9=3 \times 3$, so 9 is not prime.	B1	2.4	
		(2)		
(4 marks)				
Notes				

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Finds $\|a\|=\sqrt{(4)^{2}+(-1)^{2}+(3)^{2}}=\sqrt{26}$	M1	1.1b	5th Find the magnitude of a vector in 3 dimensions.
	$\text { States } \cos \theta_{y}=-\frac{1}{\sqrt{26}}$	M1	1.1b	
	Solves to find $\theta_{y}=101.309 \ldots{ }^{\circ}$. Accept awrt 101.3°	A1	1.1b	
		(3)		
	(3 marks)			
Notes				

3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Deduces from $3 \sin \left(\frac{x}{6}\right)^{3}-\frac{1}{10} x-1=0$ that $3 \sin \left(\frac{x}{6}\right)^{3}=\frac{1}{10} x+1$	M1	1.1b	Understand the concept of roots of equations.
	States $\left(\frac{x}{6}\right)^{3}=\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right)$	M1	1.1b	
	Multiplies by 6^{3} and then takes the cube root: $x=6\left(\sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right)}\right)$	A1	1.1b	
		(3)		
(b)	Attempts to use iterative procedure to find subsequent values.	M1	1.1b	6th Solve equations approximately using the method of iteration.
	Correctly finds: $\begin{aligned} & x_{1}=4.716 \\ & x_{2}=4.802 \\ & x_{3}=4.812 \\ & x_{4}=4.814 \end{aligned}$	A1	1.1b	
		(2)		
(5 marks)				
(b) A	Notes d M1 if finds at least one correct answer.			

4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
Recognises that two subsequent values will divide to give an equal ratio and sets up an appropriate equation. $\frac{2 k^{2}}{4 k}=\frac{4 k}{k+2}$	M1	2.2 a	4th Understand simple geometric sequences.	
	Makes an attempt to solve the equation. For example, $2 k^{3}+4 k^{2}=16 k^{2}$ or $2 k^{3}-12 k^{2}=0$	M1	1.1 b	
	M1	1.1 b		

5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Makes an attempt to set up a long division. For example: $x ^ { 2 } - 2 x - 1 5 \longdiv { x ^ { 4 } + 2 x ^ { 3 } - 2 9 x ^ { 2 } - 4 8 x + 9 0 }$ is seen.	M1	2.2a	6th Decompose algebraic fractions into
	Award 1 accuracy mark for each of the following: x^{2} seen, $4 x$ seen, -6 seen. $\begin{gathered} x^{2}+4 x-6 \\ x ^ { 2 } - 2 x - 1 5 \longdiv { x ^ { 4 } + 2 x ^ { 3 } - 2 9 x ^ { 2 } - 4 7 x + 7 7 } \\ \frac{x^{4}-2 x^{3}-15 x^{2}}{4 x^{3}-14 x^{2}-47 x} \\ \frac{4 x^{3}-8 x^{2}-60 x}{-6 x^{2}+13 x+77} \\ \frac{-6 x^{2}+12 x+90}{x-13} \end{gathered}$	A3	1.1b	three linear factors.
	Equates the various terms to obtain the equation: $x-13=V(x-5)+W(x+3)$ Equating the coefficients of $x: V+W=1$ Equating constant terms: $-5 V+3 W=-13$	M1	2.2a	
	Multiplies one or or both of the equations in an effort to equate one of the two variables.	M1	1.1b	
	Finds $W=-1$ and $V=2$.	A1	1.1b	
				(7 marks)
Notes				

6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Use Pythagoras' theorem to show that the length of $O B=2 \sqrt{3}$ or $O D=2 \sqrt{3}$ or states $B D=4 \sqrt{3}$	M1	2.2a	6th Solve problems involving arc length and sector area in context.
	Makes an attempt to find $\angle D A B$ or $\angle D C B$. For example, $\cos \angle D A O=\frac{2}{4}$ is seen.	M1	2.2a	
	Correctly states that $\angle D A B=\frac{2 \pi}{3}$ or $\angle D C B=\frac{2 \pi}{3}$	A1	1.1b	
	Makes an attempt to find the area of the sector with a radius of 4 and a subtended angle of $\frac{2 \pi}{3}$ For example, $A=\frac{1}{2} \times 4^{2} \times \frac{2 \pi}{3}$ is shown.	M1	2.2a	
	Correctly states that the area of the sector is $\frac{16 \pi}{3}$	A1	1.1b	
	Recognises the need to subtract the sector area from the area of the rhombus in an attempt to find the shaded area. For example, $\frac{16 \pi}{3}-8 \sqrt{3}$ is seen.	M1	3.2a	
	Recognises that to find the total shaded area this number will need to be multiplied by 2 . For example, $2 \times\left(\frac{16 \pi}{3}-8 \sqrt{3}\right)$	M1	3.2a	
	Using clear algebra, correctly manipulates the expression and gives a clear final answer of $\frac{2}{3}(16 \pi-24 \sqrt{3})$	A1	1.1b	
				(8 marks)
	Notes			

7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to rearrange $x=\frac{1+4 t}{1-t}$ to make t the subject. For example, $x-x t=1+4 t$ is seen.	M1	2.2a	5th Convert between parametric equations and cartesian forms using substitution.
	Correctly states $t=\frac{x-1}{4+x}$	A1	1.1b	
	Makes an attempt to substitute $t=\frac{x-1}{4+x}$ into $y=\frac{2+b t}{1-t}$ For example, $y=\frac{2+\frac{b x-b}{x+4}}{1-\frac{x-1}{x+4}}=\frac{\frac{2 x+8+b x-b}{x+4}}{\frac{x+4-x+1}{x+4}}$ is seen.	M1	2.2a	
	Simplifies the expression showing all steps. For example, $y=\frac{2 x+8+b x-b}{5}=\left(\frac{2+b}{5}\right) x+\left(\frac{8-b}{5}\right)$	A1	1.1b	
		(4)		
(b)	Interprets the gradient of line being -1 as $\frac{2+b}{5}=-1$ and finds $b=-7$	M1	2.2a	5th Convert between parametric equations and cartesian forms using substitution
	Substitutes $t=-1$ to find $x=-\frac{3}{2}$ and $y=\frac{9}{2}$ And substitutes $t=0$ to find $x=1$ and $y=2$	M1	1.1b	
	Makes an attempt to use Pythagoras' Theorem to find the length of the line: $\sqrt{\left(\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}}$	M1	1.1b	
	Correctly finds the length of the line segment, $\frac{5 \sqrt{2}}{2}$ or states $a=\frac{5}{2}$	A1	1.1b	
		(4)		
				(8 marks)
	Notes			

8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Differentiates $u=4 t^{\frac{2}{3}}$ obtaining $\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{8}{3} t^{-\frac{1}{3}}$ and differentiates $v=t^{2}+1$ obtaining $\frac{\mathrm{d} v}{\mathrm{~d} t}=2 t$	M1	1.1b	6th Differentiate using the product rule.
	Makes an attempt to substitute the above values into the product rule formula: $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} t}-u \frac{\mathrm{~d} v}{\mathrm{~d} t}}{v^{2}}$	M1	2.2a	
	Finds $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{\frac{8}{3} t^{\frac{5}{3}}+\frac{8}{3} t^{-\frac{1}{3}}-8 t^{\frac{5}{3}}}{\left(t^{2}+1\right)^{2}}$	M1	1.1b	
	Fully simplfies using correct algebra to obtain $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{8\left(1-2 t^{2}\right)}{3 \sqrt[3]{t}\left(t^{2}+1\right)^{2}}$	A1	2.4	
		(4)		
(b)	Makes an attempt to substitute $t=2$ into $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{8\left(1-2 t^{2}\right)}{3 \sqrt[3]{t}\left(t^{2}+1\right)^{2}}=\frac{8\left(1-2(2)^{2}\right)}{3 \sqrt[3]{2}\left(2^{2}+1\right)^{2}}$	M1 ft	1.1b	6th Differentiate using the product rule.
	Correctly finds $\frac{\mathrm{d} H}{\mathrm{~d} t}=-0.592 \ldots$ and concludes that as $\frac{\mathrm{d} H}{\mathrm{~d} t}<0$ the toy soldier was decreasing in height after 2 seconds.	B1 ft*	3.5a	
		(2)		

(c)	$\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{8\left(1-2 t^{2}\right)}{3 \sqrt[3]{t}\left(t^{2}+1\right)^{2}}=0$ or $8-16 t^{2}=0$ at a turning point. Solves $8-16 t^{2}=0$ to find $t=\frac{1}{\sqrt{2}}$ Can also state $t \neq-\frac{1}{\sqrt{2}}$	M1 ft A1 ft	1.1b	6th Differentiate using the product rule.
		(2)		
(8 marks)				
Notes (b) Award ft marks for a correct answer using an incorrect answer from part a. B1: Can also state $\frac{\mathrm{d} H}{\mathrm{~d} t}<0$ as the numerator of $\frac{\mathrm{d} H}{\mathrm{~d} t}$ is negative and the denominator is positive. Award ft marks for a correct answer using an incorrect answer from part a.				

9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Recognises the need to write $\tan ^{4} x \equiv \tan ^{2} x \tan ^{2} x$	M1	2.2a	6th Integrate using trigonometric identities.
	Recognises the need to write $\tan ^{2} x \tan ^{2} x \equiv\left(\sec ^{2} x-1\right) \tan ^{2} x$	M1	2.2a	
	Multiplies out the bracket and makes a further substitution $\begin{aligned} & \left(\sec ^{2} x-1\right) \tan ^{2} x \\ & \equiv \sec ^{2} x \tan ^{2} x-\tan ^{2} x \\ & \equiv \sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right) \end{aligned}$	M1	2.2a	
	States the fully correct final answer $\sec ^{2} x \tan ^{2} x+1-\sec ^{2} x$	A1	1.1b	
		(4)		
(b)	States or implies that $\int \sec ^{2} x \mathrm{~d} x=\tan x$	M1	1.1b	6th Integrate using the reverse chain rule.
	States fully correct integral $\int \tan ^{4} x \mathrm{~d} x=\frac{1}{3} \tan ^{3} x+x-\tan x+C$	M1	2.2a	
	Makes an attempt to substitute the limits. For example, $\left[\frac{1}{3} \tan ^{3} x+x-\tan x\right]_{0}^{\frac{\pi}{4}}=\left(\frac{1}{3}\left(\tan \frac{\pi}{4}\right)^{3}+\frac{\pi}{4}-\tan \frac{\pi}{4}\right)-(0) \text { is seen. }$	M1 ft	1.1b	
	Begins to simplify the expression $\frac{1}{3}+\frac{\pi}{4}-1$	M1 ft	1.1b	
	States the correct final answer $\frac{3 \pi-8}{12}$	A1 ft	1.1b	
		(5)		
(9 marks)				
Notes (b) Student does not need to state ' $+C$ ' to be awarded the second method mark. (b) Award ft marks for a correct answer using an incorrect initial answer.				

10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Begins the proof by assuming the opposite is true. 'Assumption: given a rational number a and an irrational number b, assume that $a-b$ is rational.'	B1	3.1	7th Complete proofs using proof by contradiction.
	Sets up the proof by defining the different rational and irrational numbers. The choice of variables does not matter. Let $a=\frac{m}{n}$ As we are assuming $a-b$ is rational, let $a-b=\frac{p}{q}$ So $a-b=\frac{p}{q} \Rightarrow \frac{m}{n}-b=\frac{p}{q}$	M1	2.2a	
	Solves $\frac{m}{n}-b=\frac{p}{q}$ to make b the subject and rewrites the resulting expression as a single fraction: $\frac{m}{n}-b=\frac{p}{q} \Rightarrow b=\frac{m}{n}-\frac{p}{q}=\frac{m q-p n}{n q}$	M1	1.1b	
	Makes a valid conclusion. $b=\frac{m q-p n}{n q}$, which is rational, contradicts the assumption b is an irrational number. Therefore the difference of a rational number and an irrational number is irrational.	B1	2.4	
				(4 marks)
Notes				

11	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Figure 1	Graph has a distinct V-shape.	M1	2.2a	5th Sketch the graph of the modulus function of a linear function.
		Labels vertex $\left(-\frac{3}{2},-4\right)$	A1	2.2a	
		Finds intercept with the y-axis.	M1	1.1b	
		Makes attempt to find x-intercept, for example states that $\|2 x+3\|-4=0$	M1	2.2a	
		Successfully finds both x-intercepts.	A1	1.1b	
			(5)		
(b)	Recognises that there are two solutions. For example, writing$2 x+3=-\frac{1}{4} x+2 \text { and }-(2 x+3)=-\frac{1}{4} x+2$		M1	2.2a	5th Solve equations involving the modulus function.
	Makes an attempt to solve both questions for x, by manipulating the algebra.		M1	1.1b	
	Correctly states $x=-\frac{4}{9}$ or $x=-\frac{20}{7}$. Must state both answers.		A1	1.1b	
	Makes an attempt to substitute to find y.		M1	1.1b	
	Correctly finds y and states both sets of coordinates correctly$\left(-\frac{4}{9},-\frac{17}{9}\right) \text { and }\left(-\frac{20}{7},-\frac{9}{7}\right)$		A1	1.1b	
			(5)		
					(10 marks)
Notes					

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	$\text { Writes } \begin{aligned} (\sin 3 \theta+\cos 3 \theta)^{2} & \equiv(\sin 3 \theta+\cos 3 \theta)(\sin 3 \theta+\cos 3 \theta) \\ & \equiv \sin ^{2} 3 \theta+2 \sin 3 \theta \cos 3 \theta+\cos ^{2} 3 \theta \end{aligned}$	M1	1.1b	7th Use addition formulae and/or double-angle formulae to solve equations.
	Uses $\sin ^{2} 3 \theta+\cos ^{2} 3 \theta \equiv 1$ and $2 \sin 3 \theta \cos 3 \theta \equiv \sin 6 \theta$ to write: $(\sin 3 \theta+\cos 3 \theta)^{2} \equiv 1+\sin 6 \theta$ Award one mark for each correct use of a trigonometric identity.	A2	2.2a	
		(3)		
(b)	States that: $1+\sin 6 \theta=\frac{2+\sqrt{2}}{2}$	B1	2.2a	7th Use addition formulae and/or double-angle formulae to solve equations.
	Simplifies this to write: $\sin 6 \theta=\frac{\sqrt{2}}{2}$	M1	1.1b	
	Correctly finds $6 \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{9 \pi}{4}, \frac{11 \pi}{4}$ Additional answers might be seen, but not necessary in order to award the mark.	M1	1.1b	
	States $\theta=\frac{\pi}{24}, \frac{3 \pi}{24}$ Note that $\theta \neq \frac{9 \pi}{24}, \frac{11 \pi}{24}$. For these values 3θ lies in the third quadrant, therefore $\sin 3 \theta$ and $\cos 3 \theta$ are both negative and cannot be equal to a positive surd.	A1	1.1b	
		(4)		
(7 marks)				
Notes				
6b				

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Correctly writes $6(2+3 x)^{-1}$ as: $6\left(2^{-1}\left(1+\frac{3}{2} x\right)^{-1}\right) \text { or } 3\left(1+\frac{3}{2} x\right)^{-1}$	M1	2.2a	6th Understand the binomial theorem for rational n .
	Completes the binomial expansion: $3\left(1+\frac{3}{2} x\right)^{-1}=3\left(1+(-1)\left(\frac{3}{2}\right) x+\frac{(-1)(-2)\left(\frac{3}{2}\right)^{2} x^{2}}{2}+\ldots\right)$	M1	2.2a	
	Simplifies to obtain $3-\frac{9}{2} x+\frac{27}{4} x^{2}+\ldots$	A1	1.1b	
	Correctly writes $4(3-5 x)^{-1}$ as: $4\left(3^{-1}\left(1-\frac{5}{3} x\right)^{-1}\right) \text { or } \frac{4}{3}\left(1-\frac{5}{3} x\right)^{-1}$	M1	2.2a	
	Completes the binomial expansion: $\frac{4}{3}\left(1-\frac{5}{3} x\right)^{-1}=\frac{4}{3}\left(1+(-1)\left(-\frac{5}{3}\right) x+\frac{(-1)(-2)\left(-\frac{5}{3}\right)^{2} x^{2}}{2}+\ldots\right)$	M1	2.2a	
	Simplifies to obtain $\frac{4}{3}+\frac{20}{9} x+\frac{100}{27} x^{2}+\ldots$	A1	1.1b	
	Simplifies by subtracting to obtain $\frac{5}{3}-\frac{121}{18} x+\frac{329}{108} x^{2}+\ldots$ Reference to the need to subtract, or the subtracting shown, must be seen in order to award the mark.	A1	1.1b	
		(7)		

(b)	Makes an attempt to substitute $x=0.01$ into $\mathrm{f}(x)$. For example, $\frac{6}{2+3(0.01)}-\frac{4}{3-5(0.01)}$ is seen.	M1	1.1 b	6th Understand the binomial theorem for rational n .
	States the answer 1.5997328	A1	1.1b	
		(2)		
(c)	Makes an attempt to substitute $x=0.01$ into $\frac{5}{3}-\frac{121}{18} x-\frac{329}{108} x^{2}+\ldots$ For example $\frac{5}{3}-\frac{121}{18}(0.01)+\frac{329}{108}(0.01)^{2}+\ldots$ is seen.	M1 ft	1.1 b	6th Understand the binomial theorem for rational n .
	States the answer 1.59974907... Accept awrt 1.60.	M1 ft	1.16	
	Finds the percentage error: 0.0010%	A1 ft	1.16	
		(3)		
(12 marks)				
Notes (a) If one expansion is correct and one is incorrect, or both are incorrect, award the final accuracy mark if they are subtracted correctly. (c) Award all 3 marks for a correct answer using their incorrect answer from part (a).				

14	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Uses $a_{n}=a+(n-1) d$ substituting $a=5$ and $d=3$ to get $a_{n}=5+(n-1) 3$	M1	3.1b	5th Use arithmetic sequences and series in context.
	Simplifies to state $a_{n}=3 n+2$	A1	1.1b	
		(2)		
(b)	Use the sum of an arithmetic series to state $\frac{k}{2}[10+(k-1) 3]=948$	M1	3.1b	5th Use arithmetic sequences and series in context.
	States correct final answer $3 k^{2}+7 k-1896=0$	A1	1.1b	
		(2)		
				(4 marks)
Notes				

15	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
	Understands that integration is required to solve the problem. For example, writes $\int_{\frac{\pi}{2}}^{\pi}\left(x \sin ^{2} x\right) \mathrm{d} x$	M1	3.1a	6th Use definite integration to find areas between curves.	
	Uses the trigonometric identity $\cos 2 x \equiv 1-2 \sin ^{2} x$ to rewrite $\int_{\frac{\pi}{2}}^{\pi} x \sin ^{2} x \mathrm{~d} x$ as $\int_{\frac{\pi}{2}}^{\pi}\left(\frac{1}{2} x-\frac{1}{2} x \cos 2 x\right) \mathrm{d} x$ o.e.	M1	2.2a		
	Shows $\int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} x \mathrm{~d} x=\left[\frac{1}{4} x^{2}\right]_{\frac{\pi}{2}}^{\pi}$	A1	1.1b		
	Demonstrates an understanding of the need to find $\int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} x \cos 2 x \mathrm{~d} x$ using integration by parts. For example, $u=x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$ $\frac{\mathrm{d} v}{\mathrm{~d} x}=\cos 2 x, v=\frac{1}{2} \sin 2 x$ o.e. is seen.	M1	2.2a		
	States fully correct integral $\int_{\frac{\pi}{2}}^{\pi}\left(\frac{1}{2} x-\frac{1}{2} x \cos 2 x\right) \mathrm{d} x=\left[\frac{1}{4} x^{2}-\frac{1}{4} x \sin 2 x-\frac{1}{8} \cos 2 x\right]_{\frac{\pi}{2}}^{\pi}$	A1	1.1b		
	Makes an attempt to substitute the limits $\left(\frac{\pi^{2}}{4}-\frac{1}{4}(0)-\frac{1}{8}(1)\right)-\left(\frac{\pi^{2}}{16}-\frac{1}{4}(0)-\frac{1}{8}(-1)\right)$	M1	2.2a		
	States fully correct answer: either $\frac{3 \pi^{2}}{16}-\frac{1}{4}$ or $\frac{3 \pi^{2}-4}{16}$ o.e.	A1	1.1b		
Notes Integration shown without the limits is acceptable for earlier method and accuracy marks. Must correctly substitute limits at step 6					

