TE 354 – Pengolahan Citra Digital

02 – Digital Image Fundamentals

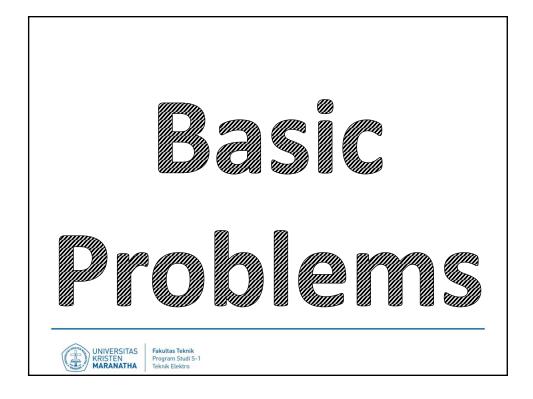
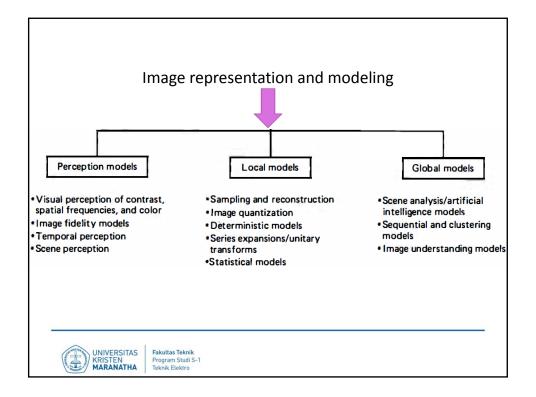

prepared by jimmyhasugian

Image Processing Problems

There are many image processing applications and problems, we will consider the following basic classes of problems

- Image Representation & Modeling
- Image Enhancement
- Image Restoration
- Image Analysis
- Image Reconstruction
- Image Data Compression


Image Representation & Modeling

In image representation one is concerned with characterization of the quantity that each picture element (pixel) represents.

Image

- represent luminance of objects in a scene (taken by ordinary camera)
- represent the absorption characteristics of the body tissue (X-ray imaging)
- represent radar cross section of a target (radar imaging)
- represent the temperature profile of a region (infrared imaging)
- represent the gravitational field in an area (geophysical imaging)

Image Enhancement

The goal is to accentuate certain image features for subsequent analysis or for image display.

- Contrast and Edge enhancement
- Pseudo coloring
- Noise filtering
- Sharpening
- Magnifying

Image enhancement is useful in feature extraction, image analysis, and visual information display

Image Restoration

Image restoration refers to removal or minimization of known degradations in an image. This includes deblurring of images degraded by the limitations of a sensor or its environment, noise filtering, and correction of geometric distortion or non-linearities due to sensors.

The image of an object can be expressed as

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y;\alpha,\beta) \underline{f(\alpha,\beta)} \ d\alpha \ d\beta + \underline{\eta(x,y)}$$

The image

point spread The object function

additive noise function

Image Analysis

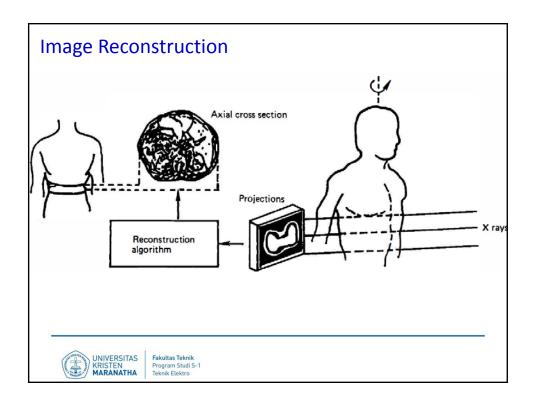

- Image analysis is concerned with making quantitative measurements from an image to produce a description of it.
- Image analysis techniques require extraction of certain features that aid in the identification of the object
- Segmentation technique are used to isolate the desired object from the scene so that the measurements can be made on it subsequently.
- Quantitative measurements of object features allow classification and description of the image

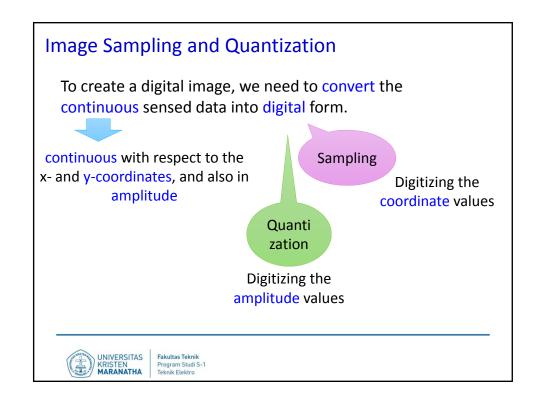
Image Reconstruction

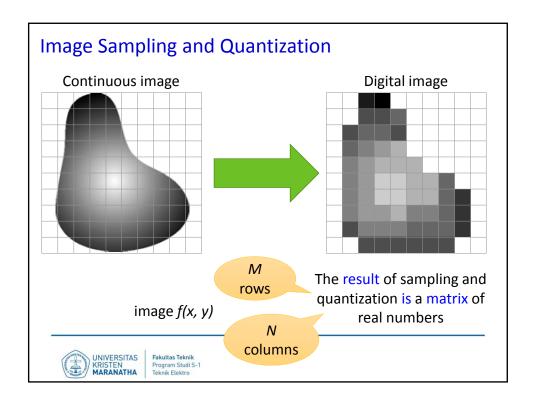
- Image reconstruction from projections is a special class of image restoration problems where a two- (or higher) dimensional object is reconstructed from several onedimensional projections.
- Planar projections are thus obtained by viewing the object from many different angles.

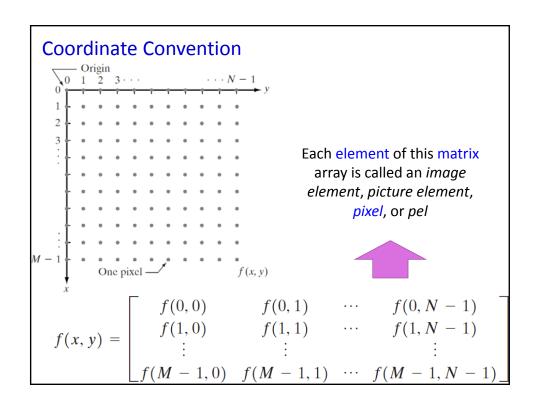
Image Data Compression

The amount of data associated with visual information is so large that its storage would require enormous storage capacity.

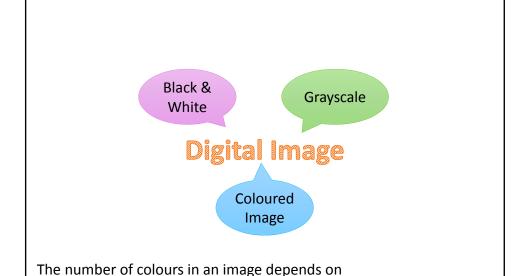
TABLE 1.1a Data Volumes of Image Sources (in Millions of Bytes)


(III WIIII OT BY 100)		
National archives	12.5 × 10°	
1 h of color television	28×10^{3}	
Encyclopeadia Britannica	12.5×10^{3}	
Book (200 pages of text characters)	1.3	
One page viewed as an image	.13	
	TABLE 1.1b Storage Capacitie (in Millions of Bytes)	s
	Human brain	125,000,000
	Magnetic cartridge	250,000
	Optical disc memory	12,500
	 Magnetic disc 	760
	2400-ft magnetic tape	200
UNIVERSITAS Fakultas Teknik Program Studi S-1	Floppy disc	1.25
MARANATHA Teknik Elektro	Solid-state memory modules	0.25


Image Data Compression


Storage and/or transmission of such data require large capacity and /or bandwidth, which could be very expensive. Image data compression techniques are concerned with reduction of the number of bits required to store or transmit images without any appreciable loss of information

Convention in MATLAB


Digital image represented in MATLAB matrix

$$f = \begin{bmatrix} f(1,1) & f(1,2) & \cdots & f(1,N) \\ f(2,1) & f(2,2) & \cdots & f(2,N) \\ \vdots & & \vdots & & \vdots \\ f(M,1) & f(M,2) & \cdots & f(M,N) \end{bmatrix}$$

$$f(1,1) = f(0,0)$$

$$f(1,1) = f(0,0)$$

$$f(1,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & & \vdots & & \vdots \end{bmatrix}$$

UNIVERSITAS KRISTEN MARANATHA Program Studi S-1 Teknik Elektro

the colour depth (the number of bits per pixel

Colour Depth

The number of distinct colours that can be represented by a pixel depends on the number of bits per pixel (bpp)

Gray Level

Colours in image

Fakultas Teknik Program Studi S-1 Teknik Elektro

Colour Depth (Gray Level)

- 1 bpp = 2 colours (Black and White)
- 2 bpp = 4 colours
- 3 bpp = 8 colours
- 8 bpp = 256 colours
- 16 bpp = 65,536 colours ("Highcolor")
- 24 bpp = 16.7 million colours ("Truecolor")

Storage Requirements

Size = rows * columns * bpp

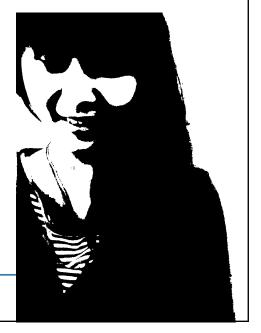
Storage Requirements

Let the resolution of a digital image be 256 x 256. It is an 8 bit grayscale image. How many KBs are required to store this image?

Size (Storage Capacity) = $256 \times 256 \times 8$

= 524,288 bits

= 65,536 bytes


= 64 KB

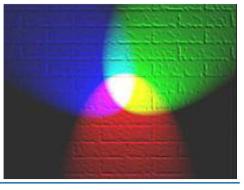
Fakultas Teknik Program Studi S-1 Teknik Elektro

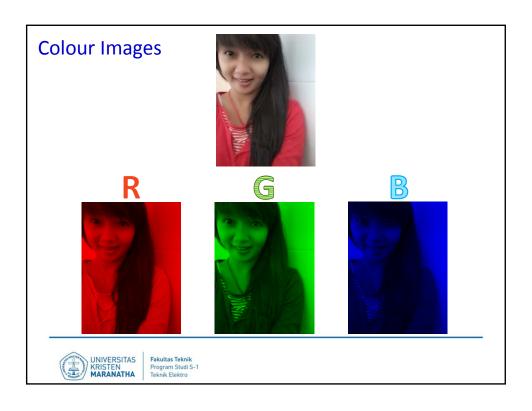
Black and White Images

- Binary Image
- Intensity of Black = 0
- Intensity of White = 1

Grayscale Image

- 8 bit grayscale image has 256 pixel intensities
- Range: 0 to 255
- Intensity of Black = 0
- Intensity of Gray = 127
- Intensity of White = 255




Fakultas Teknik Program Studi S-1 Teknik Elektro

Colour Images

- Different models used for colour images
- RGB: combination of 3 planes (channels)
- In MATLAB, 3 different 2-D arrays, each for Red, Green, and Blue

Weighted Conversion
Grayscale = (0.3 * R + 0.59 * G + 0.11 * B)

Fakultas Teknik Program Studi S-1 Teknik Elektro

Different Type of Images

Same picture in three different modes

