MHT-CET TRIUMPH MATHEMATICS

Based on Std. XI & XII Syllabus of MHT-CET

HINTS TO MULTIPLE CHOICE QUESTIONS, EVALUATION TESTS

&

MHT-CET 2019 (6th May, Afternoon) PAPER

CONTENT

Sr. No.	Textbook Chapter	Chapter Name	Page No.			
	No.	•	U			
Std. XI						
1	2	Trigonometric Functions	1			
2	3	Trigonometric Functions of Compound Angles	13			
3	4	Factorization Formulae	41			
4	6	Straight Line	54			
5	7	Circle and Conics	79			
6	1	Sets, Relations and Functions	115			
7	4	Sequence and Series	138			
8	11	Probability	174			
Std. XII						
9	1	Mathematical Logic	196			
10	2	Matrices	203			
11	3	Trigonometric Functions	219			
12	4	Pair of Straight Lines	270			
13	5	Vectors	292			
14	6	Three Dimensional Geometry	309			
15	7	Line	320			
16	8	Plane	338			
17	9	Linear Programming	366			
18	1	Continuity	383			
19	2	Differentiation	405			
20	3	Applications of Derivatives	458			
21	4	Integration	504			
22	5	Definite Integrals	558			
23	6	Applications of Definite Integral	606			
24	7	Differential Equations	630			
25	8	Probability Distribution	671			
26	9	Binomial Distribution	683			
		MHT-CET 2019 (6 th May, Afternoon) Paper	691			

Textbook Chapter No.

2 Trigonometric Functions

_					
	Classical Thinking				
1.	$\tan \theta = \frac{9}{2}$				
	$\Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{9}{2}$				
	$\Rightarrow \cos \theta = \frac{2}{9} \sin \theta = \frac{2}{9} \times \frac{3}{4} = \frac{1}{6}$				
2.	$5\sin\theta = 3 \Rightarrow \sin\theta = \frac{3}{5}$				
	$\frac{\sec\theta + \tan\theta}{1 + \sin\theta} = \frac{1 + \sin\theta}{1 + \sin\theta}$				
	$\sec \theta - \tan \theta = 1 - \sin \theta$				
	$1 + \frac{3}{5}$				
	$=\frac{5}{3}$				
	$1 - \frac{5}{5}$				
	= 4				
2	$\sin\theta$ $\cos\theta$ $\sin\theta.\sin\theta$ $\cos\theta.\cos\theta$				
3.	$\frac{1}{1-\cot\theta} + \frac{1}{1-\tan\theta} = \frac{1}{\sin\theta - \cos\theta} + \frac{1}{\cos\theta - \sin\theta}$				
	$-\cos^2\theta - \sin^2\theta$				
	$-\frac{1}{\cos\theta-\sin\theta}$				
	$=\cos\theta+\sin\theta$				
4.	$\sin \theta = -\frac{1}{\sqrt{2}}$ and $\tan \theta = 1$				
	Since, sin θ is -ve and tan θ is +ve in third quadrant,				
÷	θ lies in the III rd quadrant.				
5.	Since, $\sin \theta$ is -ve and $\cos \theta$ is +ve				
<i>.</i>	θ lies in IV ^{III} quadrant.				
7.	$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4} = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 - \left(1\right)^2$				
	$=\frac{1}{4}+\frac{1}{4}-1 = -\frac{1}{2}$				
8.	$x \sin 45^\circ \cos^2 60^\circ = \frac{\tan^2 60^\circ \operatorname{cosec} 30^\circ}{\sec 45^\circ \cot^2 30^\circ}$				
	$\Rightarrow x.\frac{1}{\sqrt{2}}.\frac{1}{4} = \frac{3.2}{\sqrt{2}.3}$				

Hints $\Rightarrow \frac{x}{4\sqrt{2}} = \sqrt{2}$ $\Rightarrow x = 8$ $\sin \theta = \sqrt{3} \cos \theta$ 9. $\Rightarrow \frac{\sin\theta}{\cos\theta} = \sqrt{3}$ $\Rightarrow \tan \theta = \sqrt{3} \Rightarrow \theta = 60^{\circ}$ 10. $\sin(\alpha - \beta) = \frac{1}{2} = \sin 30^\circ$ $\Rightarrow \alpha - \beta = 30^{\circ}$(i) and $\cos(\alpha + \beta) = \frac{1}{2} = \cos 60^{\circ}$ $\Rightarrow \alpha + \beta = 60^{\circ}$(ii) On solving (i) and (ii), we get $\alpha = 45^{\circ}$ and $\beta = 15^{\circ}$ $\tan \theta = \frac{20}{21}$ 11. Since $1 + \tan^2 \theta = \sec^2 \theta$ \therefore sec² $\theta = 1 + \frac{400}{441} = \frac{841}{441}$ $\Rightarrow \sec \theta = \pm \frac{29}{21}$ $\Rightarrow \cos \theta = \pm \frac{21}{29}$ 12. $1 + \tan^2 \theta = \sec^2 \theta$ $\Rightarrow 1 + \frac{1}{10} = \sec^2 \theta$ $\Rightarrow \sec^2 \theta = \frac{11}{10} \Rightarrow \sec \theta = \sqrt{\frac{11}{10}}$ \ldots [:: θ lies in the fourth quadrant] 13. $\sec^2 \theta = 1 + \tan^2 \theta = 1 + \frac{1}{2} = \frac{6}{2}$

$$\Rightarrow \cos^2 \theta = \frac{5}{6}$$
$$\Rightarrow \cos \theta = \frac{\sqrt{5}}{\sqrt{6}} \quad \dots [\because \theta \text{ lies in the } 1^{\text{st}} \text{ quadrant}]$$

14.
$$\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$$

$$= \frac{1 + \sin \theta}{-\sqrt{1 - \sin^2 \theta}}$$
....[$\because \theta$ lies in the second quadrant, $\therefore \cos \theta < 0$]

$$= \frac{-\left(1 + \frac{21}{29}\right)}{\sqrt{1 - \left(\frac{21}{29}\right)^2}} = -\frac{5}{2}$$
15. $\sec^4 x - \sec^2 x = \sec^2 x (\sec^2 x - 1)$
 $= (1 + \tan^2 x) \tan^2 x$
 $= \tan^2 x + \tan^4 x$
16. $\tan^2 \theta - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1\right)$
 $= \sin^2 \theta (\sec^2 \theta - 1)$
 $= \sin^2 \theta (\sec^2 \theta - 1)$
 $= \sin^2 \theta \tan^2 \theta$
Also $\sec^2 \theta \csc^2 \theta \neq \sec^2 \theta - \csc^2 \theta$, and $\csc^2 \theta + \cot^2 \theta \neq \csc^2 \theta - \csc^2 \theta$, and $\csc^2 \theta + \cot^2 \theta \neq \csc^2 \theta - \csc^2 \theta$, and $\csc^2 \theta + \cot^2 \theta \neq \csc^2 \theta - \tan^2 \theta$
17. $x = \sec \theta + \tan \theta$
 $\therefore x + \frac{1}{x} = \sec \theta + \tan \theta + \frac{1}{\sec \theta - \tan \theta}$
 $= \sec \theta + \tan \theta + \frac{\sec \theta - \tan \theta}{\sec^2 \theta - \tan^2 \theta}$
 $= \sec \theta + \tan \theta + \sec \theta - \tan \theta$
 $\dots [\because \sec^2 \theta - \tan^2 \theta = 1]$
 $= 2 \sec \theta$
18. $\cot x + \tan x = \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}$
 $= \frac{1}{\sin x \cos x}$
 $= \frac{1}{\sin x \cos x}$
 $= \sec x \csc^2 x^2$
19. $\frac{\sin^2 20^\circ + \cos^2 20^\circ}{\sin^2 20^\circ (1 - \sin^2 20^\circ)}$
 $= \frac{\sin^2 20^\circ + \cos^2 20^\circ}{\sin^2 20^\circ (1 - \sin^2 20^\circ)} = 1$
20. $x = a \cos \theta + b \sin \theta$ (i)
and $y = a \sin \theta - b \cos \theta$ (ii)

Squaring (i) and (ii) and adding, we get $x^{2} + y^{2} = a^{2} \cos^{2} \theta + b^{2} \sin^{2} \theta + 2ab \cos \theta \sin \theta$ $+ a^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta - 2ab \sin \theta \cos \theta$ $\Rightarrow x^2 + v^2 = a^2 + b^2$ 21. $x = a \cos^3 \theta$ $\Rightarrow \left(\frac{x}{a}\right)^{\frac{1}{3}} = \cos\theta$, and(i) $y = b \sin^3 \theta$ $\Rightarrow \left(\frac{y}{b}\right)^{\frac{1}{3}} = \sin\theta$(ii) Squaring (i) and (ii) and adding, we get $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = \cos^2\theta + \sin^2\theta$ 22. $\cos x + \cos^2 x = 1$ $\Rightarrow \cos x = \sin^2 x \qquad \dots [\because 1 - \cos^2 x = \sin^2 x]$ $\therefore \quad \sin^2 x + \sin^4 x = \cos x + \cos^2 x = 1$ 23. $\sin x + \sin^2 x = 1$ $\Rightarrow \sin x = \cos^2 x$ $\cos^{8} x + 2 \cos^{6} x + \cos^{4} x$ = $\sin^{4} x + 2 \sin^{3} x + \sin^{2} x$ *.*.. $=(\sin x + \sin^2 x)^2$ $=(1)^2 = 1$ $\sec \theta = \frac{1}{2}$ is not possible as $|\sec \theta| \ge 1$ 24. 25. $\tan \theta$ can have any value $\sin \theta$ and $\cos \theta$ cannot be numerically greater than 1. sec θ should be greater than 1. ... Option (D) is the correct answer. 26. Since, $-1 \le \cos \theta \le 1$ $-5 \le 5 \cos \theta \le 5$ $\Rightarrow -5 + 12 \le 5 \cos \theta + 12 \le 5 + 12$ \Rightarrow 7 \leq 5 cos θ + 12 \leq 17 **Critical Thinking** $\frac{p\sin\theta - q\cos\theta}{p\sin\theta + q\cos\theta} = \frac{p\frac{\sin\theta}{\cos\theta} - q}{p\frac{\sin\theta}{\cos\theta} + q}$ 1.

$$= \frac{p \tan \theta - q}{p \tan \theta + q}$$
$$= \frac{p^2 - q^2}{p^2 + q^2} \qquad \qquad \dots \left[\because \tan \theta = \frac{p}{q} (given) \right]$$

2. $\cos^2 \theta + \sec^2 \theta = (\cos \theta - \sec \theta)^2 + 2 \ge 2$ 3. $\sin x + \csc x = 2$ $\Rightarrow \sin^2 x + 1 = 2 \sin x$ $\Rightarrow (\sin x - 1)^2 = 0 \Rightarrow \sin x = 1$ $\therefore \quad \sin^n x + \csc^n x = \sin^n x + \frac{1}{\sin^n x}$ $= (1)^n + \frac{1}{(1)^n} = 2$

- 4. Since, 1 radian = 57° nearly and sin $57^{\circ} > \sin 1^{\circ}$
- $\therefore \quad \sin 1 > \sin 1^{\circ}$
- 5. Since, 1 radian = 57° nearly
 ∴ 2 radians = 114° nearly
 Since, 57° lies in Ist quadrant and 114° lies in IInd quadrant.
- $\therefore \quad \tan 1 > 0 \text{ and } \tan 2 < 0$
- \therefore tan 1 > tan 2

6.
$$\cos A = \frac{\sqrt{3}}{2}$$

⇒ $\cos A = \cos 30^{\circ}$
⇒ $A = 30^{\circ}$
∴ $\tan 3A = \tan 90^{\circ} = \infty$

7.
$$\tan(A - B) = 1 = \tan \frac{\pi}{4}$$

 $\Rightarrow A - B = \frac{\pi}{4}$ (i)
and $\sec(A + B) = \frac{2}{\sqrt{3}}$
 $\Rightarrow A + B = \frac{11\pi}{6}$ (ii)
From (i) and (ii), we get
 $B = \frac{19\pi}{24}$

8. $\sin (A + B + C) = 1$ $\Rightarrow A + B + C = 90^{\circ}$ (i) $\tan (A - B) = \frac{1}{\sqrt{3}}$ $\Rightarrow A - B = 30^{\circ}$ (ii) $\sec (A + C) = 2$ $\Rightarrow A + C = 60^{\circ}$ (iii) From (i), (ii) and (iii), we get $B = 30^{\circ}, A = 60^{\circ}, C = 0^{\circ}$ 9. $\cos A = \frac{3}{5}$ and $\cos B = \frac{4}{5}$ Both A and B lie in the fourth quadrant.

Hence, both sin A and sin B are negative.

$$\therefore 2 \sin A + 4 \sin B$$

$$= -2 \sqrt{1 - \cos^{2} A} - 4 \sqrt{1 - \cos^{2} B}$$

$$= -2 \sqrt{1 - \frac{9}{25}} - 4 \sqrt{1 - \frac{16}{25}} = -4$$

10. $\sec \theta + \tan \theta = \sqrt{3} \qquad \dots(i)$

$$\Rightarrow \sec \theta - \tan \theta = \frac{1}{\sqrt{3}} \qquad \dots(ii)$$

$$\dots[\because \sec^{2} \theta - \tan^{2} \theta = 1]$$

Subtracting (ii) from (i), we get

$$2 \tan \theta = \sqrt{3} - \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \qquad \Rightarrow \theta = \frac{\pi}{6}$$

11. $\sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} = \sqrt{\frac{(1 - \sin \theta)^{2}}{1 - \sin^{2} \theta}}$

$$= \frac{1 - \sin \theta}{|\cos \theta|}$$

$$= \frac{1 - \sin \theta}{|\cos \theta|}$$

$$= \frac{1 - \sin \theta}{|\cos \theta|} \qquad \dots[\because \frac{\pi}{2} < \theta < \frac{3\pi}{2} \Rightarrow \cos \theta < 0]$$

$$= - \sec \theta + \tan \theta$$

12. $\sqrt{\left(\frac{1 - \sin \theta}{1 + \sin \theta}\right)} + \sqrt{\left(\frac{1 + \sin \theta}{1 - \sin \theta}\right)}$

$$= \frac{1 - \sin \theta + 1 + \sin \theta}{\sqrt{1 - \sin^{2} \theta}} = \frac{2}{\sqrt{\cos^{2} \theta}}$$

$$= \frac{2}{-\cos \theta} \qquad \dots[\because \theta \text{ lies in the } 2^{nd} \text{ quadrant}]$$

$$= -2 \sec \theta$$

13. $\sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}$

$$= \frac{1 - \cos \alpha + 1 + \cos \alpha}{\sqrt{1 - \cos^{2} \alpha}}$$

$$= \frac{2}{-\sin \alpha} \qquad \dots[\because \pi < \alpha < \frac{3\pi}{2}]$$

14. $3 \tan A + 4 = 0 \Rightarrow \tan A = -\frac{4}{3}$
 $1 + \tan^{2} A = \sec^{2} A$
 $\Rightarrow \sec^{2} A = 1 + \frac{16}{9}$

MHT-CET Triumph Maths (Hints) \Rightarrow sec A = $\frac{-5}{2}$ [:: θ lies in 2nd quadrant] $\Rightarrow \cos A = -\frac{3}{5}$ $\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \frac{9}{25}}$ *:*. $=\frac{4}{5}$ [:: A lies in 2nd quadrant] $2 \cot A - 5 \cos A + \sin A$ *.*.. $= 2\left(-\frac{3}{4}\right) - 5\left(-\frac{3}{5}\right) + \frac{4}{5}$ $=\frac{23}{10}$ 15. $\sec \theta - \tan \theta = \frac{1}{2}$(i) \Rightarrow sec θ + tan θ = 2(ii) $\dots(11)$ $\dots[\because \sec^2 \theta - \tan^2 \theta = 1]$ Adding (i) and (ii), we get $2 \sec \theta = \frac{5}{2} \Rightarrow \sec \theta = \frac{5}{4}$ Subtracting (ii) from (i), we get $2 \tan \theta = \frac{3}{2} \Rightarrow \tan \theta = \frac{3}{4}$ Since, both sec θ and tan θ are positive, *.*.. θ lies in the first quadrant. $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$ 16. Squaring both sides, we get $\cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta = 2\cos^2 \theta$ *.*.. $\Rightarrow 2 \sin \theta \cos \theta = 2 \cos^2 \theta - 1$(i) Now $(\cos \theta - \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta - 2\sin \theta \cos \theta$ $= 1 - (2\cos^2\theta - 1)$[From (i)] $= 2 (1 - \cos^2 \theta)$ $= 2 \sin^2 \theta$ $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$ *.*.. $(\sin x - \cos x)^2 = \sin^2 x + \cos^2 x - 2\sin x \cos x$ 17. $= 1 - \{(\sin x + \cos x)^2 - (\sin^2 x + \cos^2 x)\}\$ $= 1 - (a^2 - 1)$ [:: sin x + cos x = a] $= 2 - a^2$ $|\sin x - \cos x| = \sqrt{2 - a^2}$ *.*.. 18. $3\sin\theta + 4\cos\theta = 5$ Squaring both sides, we get $9 \sin^2 \theta + 16 \cos^2 \theta + 24 \sin \theta \cos \theta = 25$

 \Rightarrow 9 (1- cos² θ) + 16 (1- sin² θ) $+24 \sin \theta \cos \theta = 25$ $\Rightarrow 9\cos^2\theta + 16\sin^2\theta - 24\sin\theta\cos\theta = 0$ $\Rightarrow (3 \cos \theta - 4 \sin \theta)^2 = 0$ \Rightarrow 3 cos θ – 4 sin θ = 0 19. $2u_6 - 3u_4$ $= 2 (\cos^6 \theta + \sin^6 \theta) - 3 (\cos^4 \theta + \sin^4 \theta)$ $= 2(1 - 3\sin^2\theta\cos^2\theta) - 3(1 - 2\sin^2\theta\cos^2\theta)$ = -1 $\sin x + \sin^2 x = 1$ 20. $\Rightarrow \sin x = 1 - \sin^2 x$ $\Rightarrow \sin x = \cos^2 x$ $\cos^{12} x + 3 \cos^{10} x + 3 \cos^{8} x + \cos^{6} x - 2$ *.*.. $=\sin^{6} x + 3 \sin^{5} x + 3 \sin^{4} x + \sin^{3} x - 2$ $= (\sin^2 x)^3 + 3(\sin^2 x)^2 \sin x + 3(\sin^2 x)(\sin x)^2$ $+(\sin x)^{3}-2$ $= (\sin^2 x + \sin x)^3 - 2$ $=(1)^{3}-2$ [: $\sin x + \sin^{2} x = 1$] = -121. $10 \sin^4 \alpha + 15 \cos^4 \alpha = 6$ $\Rightarrow 10 \sin^4 \alpha + 15 \cos^4 \alpha = 6 (\sin^2 \alpha + \cos^2 \alpha)^2$ $\Rightarrow 10 \tan^4 \alpha + 15 = 6 (\tan^2 \alpha + 1)^2$ $\Rightarrow (2 \tan^2 \alpha - 3)^2 = 0$ $\Rightarrow \tan^2 \alpha = \frac{3}{2}$ $27 \operatorname{cosec}^6 \alpha + 8 \operatorname{sec}^6 \alpha$ ÷. $= 27 (1 + \cot^2 \alpha)^3 + 8 (1 + \tan^2 \alpha)^3$ $= 27 \left(1 + \frac{2}{3}\right)^3 + 8 \left(1 + \frac{3}{2}\right)^3 = 250$ 22. $\sec \alpha - \tan \alpha = \frac{1 - \sin \alpha}{1 - \sin \alpha}$ $=\frac{1-\frac{2pq}{p^{2}+q^{2}}}{\sqrt{1-\left(\frac{2pq}{p^{2}+q^{2}}\right)^{2}}}$ $=\frac{(p-q)^2}{\sqrt{(p^2-q^2)^2}}$ $=\frac{(p-q)^2}{n^2-a^2}=\frac{p-q}{p+q}$

 $\sec \theta - \tan \theta = \frac{a+1}{a-1}$ 23.(i) \Rightarrow sec θ + tan $\theta = \frac{a-1}{a+1}$ (ii) \ldots [:: sec² θ – tan² θ = 1] Adding (i) and (ii), we get $2 \sec \theta = \frac{a+1}{a-1} + \frac{a-1}{a+1}$ $\Rightarrow 2 \sec \theta = \frac{(a+1)^2 + (a-1)^2}{a^2 - 1}$ $\Rightarrow 2 \sec \theta = \frac{2(a^2 + 1)}{a^2 - 1}$ \Rightarrow sec $\theta = \frac{a^2 + 1}{a^2 - 1}$ $\Rightarrow \cos \theta = \frac{a^2 - 1}{a^2 + 1}$ $\tan^2 \theta = \sec^2 \theta - 1$ 24. $=\left(x+\frac{1}{4r}\right)^2-1=\left(x-\frac{1}{4r}\right)^2$ $\Rightarrow \tan \theta = \pm \left(x - \frac{1}{4r} \right)$ \Rightarrow sec θ + tan θ = $x + \frac{1}{4x} \pm \left(x - \frac{1}{4x}\right)$ \Rightarrow sec θ + tan θ = $x + \frac{1}{4x} + \left(x - \frac{1}{4x}\right)$ or $\sec \theta + \tan \theta = x + \frac{1}{4x} - \left(x - \frac{1}{4x}\right)$ \Rightarrow sec θ + tan θ = 2x or $\frac{1}{2r}$ 25. $\sin^6\left(\frac{\pi}{49}\right) + \cos^6\left(\frac{\pi}{49}\right) - 1 + 3\sin^2\left(\frac{\pi}{49}\right)\cos^2\left(\frac{\pi}{49}\right)$ $=\sin^{6}\left(\frac{\pi}{49}\right)+\cos^{6}\left(\frac{\pi}{49}\right)$ $+3\sin^2\left(\frac{\pi}{49}\right)\cos^2\left(\frac{\pi}{49}\right)\left(\sin^2\frac{\pi}{49}+\cos^2\frac{\pi}{49}\right)-1$ $=\left(\sin^2\frac{\pi}{49}+\cos^2\frac{\pi}{49}\right)^3-1=1-1=0$

26.
$$\frac{1-\cos\alpha + \sin\alpha}{1+\sin\alpha} = \frac{1-\cos\alpha + \sin\alpha}{1+\sin\alpha} \cdot \frac{1+\cos\alpha + \sin\alpha}{1+\cos\alpha + \sin\alpha}$$
$$= \frac{(1+\sin\alpha)^2 - \cos^2\alpha}{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}$$
$$= \frac{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}$$
$$= \frac{2\sin\alpha(1+\sin\alpha)}{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}$$
$$= \frac{2\sin\alpha(1+\sin\alpha)}{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}$$
$$= \frac{2\sin\alpha}{(1+\sin\alpha)(1+\cos\alpha + \sin\alpha)}$$
$$= \frac{2\sin\alpha}{1+\cos\alpha + \sin\alpha}$$
$$= x$$
27.
$$1 - \frac{\sin^2 y}{1+\cos y} + \frac{1+\cos y}{\sin y} - \frac{\sin y}{1-\cos y}$$
$$= \frac{1+\cos y - \sin^2 y}{1+\cos y} + \frac{(1-\cos^2 y) - \sin^2 y}{\sin y(1-\cos y)}$$
$$= \frac{\cos^2 y + \cos y}{1+\cos y} + \frac{\sin^2 y - \sin^2 y}{\sin y(1-\cos y)}$$
$$= \frac{\cos y(1+\cos y)}{1+\cos y} + 0 = \cos y$$
28.
$$\frac{2\sin\theta \tan\theta(1-\tan\theta) + 2\sin\theta \sec^2\theta}{(1+\tan\theta)^2}$$
$$= \frac{2\sin\theta}{(1+\tan\theta)^2} \tan\theta(1-\tan\theta) + \sec^2\theta$$
$$= \frac{2\sin\theta}{(1+\tan\theta)^2} (\tan\theta - \tan^2\theta + 1 + \tan^2\theta)$$
$$= \frac{2\sin\theta}{1+\tan\theta}$$
29.
$$\frac{\sin^3 A - \cos^3 A}{\sin A - \cos A} + \frac{\sin A}{\sqrt{1+\tan^2 A}} - 2 \tan A \cot A$$
$$= (\sin^2 A + \cos^2 A + \sin A \cos A) + \frac{\sin A}{|\sec A|} - 2$$
$$= 1 + \sin A \cos A - \sin A \cos A - 2$$
$$\dots [\because A \text{ is an obtuse angle} \Rightarrow \cos A < 0]$$
$$= -1$$

30.
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = -1$$
(i)
and $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1$ (ii)

Squaring (i) and (ii) and adding, we get $\frac{x^2}{a^2} \left(\sin^2 \theta + \cos^2 \theta \right) + \frac{y^2}{b^2} \left(\sin^2 \theta + \cos^2 \theta \right) = 2$ $\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$

- 31. $x \sin^3 \alpha + y \cos^3 \alpha = \sin \alpha \cos \alpha$ (i) and $x \sin \alpha - y \cos \alpha = 0$ $\Rightarrow x \sin \alpha = y \cos \alpha$ (ii) \therefore From (i) and (ii), we get $y \cos \alpha \sin^2 \alpha + y \cos^3 \alpha = \sin \alpha \cos \alpha$ $\Rightarrow y \cos \alpha (\sin^2 \alpha + \cos^2 \alpha) = \sin \alpha \cos \alpha$ $\Rightarrow y \cos \alpha = \sin \alpha \cos \alpha$
- $\Rightarrow y = \sin \alpha$
- $\therefore \quad x = \cos \alpha$ $\therefore \quad x^2 + y^2 = \cos^2 \alpha + \sin^2 \alpha = 1$
- 32. $m + n = a \cos^{3} \alpha + 3a \cos \alpha \sin^{2} \alpha$ $+ 3a \cos^{2} \alpha \sin \alpha + a \sin^{3} \alpha$ $= a (\cos \alpha + \sin \alpha)^{3}$ Similarly, $(m - n) = a (\cos \alpha - \sin \alpha)^{3}$

$$\therefore \quad (m+n)^{2/3} + (m-n)^{2/3} \\ = a^{\frac{2}{3}} \{(\cos \alpha + \sin \alpha)^2 + (\cos \alpha - \sin \alpha)^2\} \\ = a^{\frac{2}{3}} \{2(\cos^2 \alpha + \sin^2 \alpha)\} = 2a^{\frac{2}{3}}$$

33. $\sin^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma$ $= \frac{\tan^{2} \alpha}{1 + \tan^{2} \alpha} + \frac{\tan^{2} \beta}{1 + \tan^{2} \beta} + \frac{\tan^{2} \gamma}{1 + \tan^{2} \gamma}$ $= \frac{x}{1 + x} + \frac{y}{1 + y} + \frac{z}{1 + z}$[Let $x = \tan^{2} \alpha, y = \tan^{2} \beta, z = \tan^{2} \gamma$] $= \frac{(x + y + z) + (xy + yz + zx + 2xyz) + xy + yz + zx + xyz}{(1 + x)(1 + y)(1 + z)}$ $= \frac{x + y + z + 1 + xy + yz + zx + xyz}{(1 + x)(1 + y)(1 + z)} = 1$

34.
$$p + q = \frac{2\sin\theta}{1 + \sin\theta + \cos\theta} + \frac{\cos\theta}{1 + \sin\theta}$$
$$= \frac{2\sin\theta(1 + \sin\theta) + \cos\theta(1 + \sin\theta + \cos\theta)}{(1 + \sin\theta + \cos\theta)(1 + \sin\theta)}$$
$$= \frac{2\sin\theta + 2\sin^2\theta + \cos\theta + \cos\theta\sin\theta + \cos^2\theta}{1 + 2\sin\theta + \sin^2\theta + \cos\theta + \cos\theta\sin\theta}$$
$$= \frac{2\sin\theta + \sin^2\theta + (\sin^2\theta + \cos^2\theta) + \cos\theta + \cos\theta\sin\theta}{1 + 2\sin\theta + \sin^2\theta + \cos\theta + \cos\theta\sin\theta}$$
$$\Rightarrow p + q = 1$$

$$xy = (\sec \phi - \tan \phi) (\csc \phi + \cot \phi)$$

$$= \frac{1 - \sin \phi}{\cos \phi} \cdot \frac{1 + \cos \phi}{\sin \phi}$$

$$xy + 1 = \frac{1 - \sin \phi + \cos \phi - \sin \phi \cos \phi + \sin \phi \cos \phi}{\cos \phi \sin \phi} \quad \dots (i)$$

$$x - y = (\sec \phi - \tan \phi) - (\csc \phi + \cot \phi)$$

$$= \frac{1 - \sin \phi}{\cos \phi} - \frac{1 + \cos \phi}{\sin \phi}$$

$$= \frac{\sin \phi - \sin^2 \phi - \cos \phi - \cos^2 \phi}{\cos \phi \sin \phi}$$

$$= \frac{\sin \phi - \cos \phi - (\sin^2 \phi + \cos^2 \phi)}{\cos \phi \sin \phi}$$

$$\Rightarrow x - y = \frac{\sin \phi - \cos \phi - 1}{\cos \phi \sin \phi} \quad \dots (ii)$$
Adding (i) and (ii), we get
$$xy + 1 + (x - y) = 0$$

$$\Rightarrow x = \frac{y - 1}{y + 1}$$

35.

36. $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$ $\Rightarrow \sin \theta_1 = \sin \theta_2 = \sin \theta_3 = 1$[$\because -1 \le \sin x \le 1$]

$$\Rightarrow \theta_1 = \theta_2 = \theta_3 = \frac{\pi}{2}$$
$$\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = 0$$

37. Given, $(a + b)^2 = 4ab \sin^2 \theta$ $\Rightarrow \sin^2 \theta = \frac{(a + b)^2}{4ab} \le 1$ $\Rightarrow (a + b)^2 - 4ab \le 0$ $\Rightarrow (a - b)^2 \le 0$ $\Rightarrow a = b$

38.
$$12 \sin \theta - 9 \sin^2 \theta = -9 \left(\sin^2 \theta - \frac{12}{9} \sin \theta \right)$$
$$= -9 \left(\sin^2 \theta - \frac{4}{3} \sin \theta \right)$$
$$= -9 \left[\sin^2 \theta - \frac{4}{3} \sin \theta + \left(\frac{2}{3} \right)^2 - \left(\frac{2}{3} \right)^2 \right]$$
$$= -9 \left(\sin \theta - \frac{2}{3} \right)^2 + 9 \times \frac{4}{9} \le 4$$

39.
$$y = \sin^{2} \theta + \cos^{4} \theta$$
$$\Rightarrow y = \cos^{4} \theta - \cos^{2} \theta + 1$$
$$\Rightarrow y = \left(\cos^{2} \theta - \frac{1}{2}\right)^{2} + \frac{3}{4}$$
Now, $0 \le \cos^{2} \theta \le 1$
$$\Rightarrow -\frac{1}{2} \le \cos^{2} \theta - \frac{1}{2} \le \frac{1}{2}$$
$$\Rightarrow 0 \le \left(\cos^{2} \theta - \frac{1}{2}\right)^{2} \le \frac{1}{4}$$
$$\Rightarrow \frac{3}{4} \le \left(\cos^{2} \theta - \frac{1}{2}\right)^{2} + \frac{3}{4} \le 1$$
$$\Rightarrow \frac{3}{4} \le y \le 1$$
$$\underbrace{\text{Competitive Thinking}}$$
1.
$$\frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 2\cos\theta} = \frac{5\tan\theta - 3}{5\tan\theta + 2}$$

$$\frac{1}{5\sin\theta + 2\cos\theta} = \frac{1}{5\tan\theta + 2}$$
$$= \frac{4-3}{4+2}$$
$$\dots [\because 5\tan\theta = 4 \text{ (given)}]$$
$$= \frac{1}{6}$$

2.
$$\sin^2 \theta + \csc^2 \theta$$

= $(\sin \theta + \csc \theta)^2 - 2\sin \theta \csc \theta$
= $(2)^2 - 2$ [$\because \sin \theta + \csc \theta = 2$ (given)]
= $4 - 2 = 2$

3.
$$\sin \theta + \csc \theta = 2$$

$$\Rightarrow \sin^2 \theta + 1 = 2 \sin \theta \quad \dots \left[\because \csc \theta = \frac{1}{\sin \theta} \right]$$
$$\Rightarrow \sin^2 \theta - 2 \sin \theta + 1 = 0$$
$$\Rightarrow (\sin \theta - 1)^2 = 0$$
$$\Rightarrow \sin \theta = 1$$
$$\sin^{10} \theta + \operatorname{acces}^{10} \theta = \sin^{10} \theta + \frac{1}{2}$$

$$\therefore \quad \sin^{10}\theta + \csc^{10}\theta = \sin^{10}\theta + \frac{1}{\sin^{10}\theta}$$
$$= (1)^{10} + \frac{1}{(1)^{10}}$$
$$= 2$$

4. $\tan A + \cot A = 4$ Squaring both sides, we get $\tan^2 A + \cot^2 A + 2 \tan A \cot A = 16$ $\Rightarrow \tan^2 A + \cot^2 A = 14$ Again, squaring both sides, we get $\tan^4 A + \cot^4 A + 2 = 196$ $\Rightarrow \tan^4 A + \cot^4 A = 194$ Chapter 02: Trigonometric Functions

5. Since, 200° lies in IIIrd quadrant.

$$\therefore$$
 sin 200°, cos 200° are both -ve.
 \therefore their sum is -ve.
6. One of the factor of the given expression is $\cos 90^\circ = 0$.
 \therefore cos 1°.cos 2°.cos 3°.....cos 179° = 0
7. Given that $x \in \left[0, \frac{\pi}{2}\right]$, $y \in \left[0, \frac{\pi}{2}\right]$
sin $x + \cos y = 2$
Maximum value of sin $x = 1 \Rightarrow x = \frac{\pi}{2}$
Maximum value of cos $y = 1 \Rightarrow y = 0$
 \therefore $x + y = \frac{\pi}{2} + 0 = \frac{\pi}{2}$
58. $\sin \theta - \cos \theta = 1$...(i)
 \therefore (sin $\theta - \cos \theta)^2 = 1$
 \therefore 1 - 2 sin $\theta \cos \theta = 1$...(ii)
 \therefore (sin $\theta - \cos \theta)$ (sin² θ + sin $\theta \cos \theta$ + cos² θ)
 $= (1) (1 + \sin \theta \cos \theta)$...[From (ii)]
 $= 1 + 0$...[From (ii)]
 $= 1 + 0$...[From (iii)]
 $= 1$
8. $\csc^2 \theta = 1 + \cot^2 \theta$
 $= 1 + \frac{9}{16}$ [$\because \tan \theta = -\frac{4}{3}$]
 $= \frac{25}{16}$
 \therefore $\sin^2 \theta = \frac{1}{\cos e^2 \theta} = \frac{16}{25} \Rightarrow \sin \theta = \pm \frac{4}{5}$
Both the values are acceptable.
Since, $\tan \theta = -\frac{4}{3}$
i.e., θ lies in 2nd or 4th quadrant.
9. $\sin \theta = \frac{24}{25}$
 $\Rightarrow \cos \theta = \frac{-7}{25}$, $\tan \theta = \frac{-24}{7}$
....[$\because \theta$ lies in the 2nd quadrant]
 \therefore sec $\theta + \tan \theta = \frac{-25}{7} - \frac{24}{7} = -7$
10. $\cos \theta = -\sqrt{1 - \left(\frac{2t}{1+t^2}\right)^2}$

$$= -\sqrt{\frac{(1+t^2)^2 - 4t^2}{(1+t^2)^2}} = -\sqrt{\frac{(1-t^2)^2}{(1+t^2)^2}}$$
$$= \frac{-|1-t^2|}{1+t^2}$$

 $\sqrt{\operatorname{cosec}^2 \alpha + 2 \cot \alpha} = \sqrt{1 + \cot^2 \alpha + 2 \cot \alpha}$ 11. $= |1 + \cot \alpha|$ But $\frac{3\pi}{4} < \alpha < \pi$ $\Rightarrow \cot \alpha < -1 \Rightarrow 1 + \cot \alpha < 0$ Hence, $|1 + \cot \alpha| = -(1 + \cot \alpha)$

12.
$$\csc \theta - \cot \theta = 2017$$
 ...(i)

$$\Rightarrow \frac{1}{\csc \theta - \cot \theta} = \frac{1}{2017}$$

$$\Rightarrow \frac{\csc \theta + \cot \theta}{(\csc \theta - \cot \theta) (\csc \theta + \cot \theta)} = \frac{1}{2017}$$

$$\Rightarrow \csc \theta + \cot \theta = \frac{1}{2017}$$
 ...(ii)
Adding (i) and (ii), we get

....

$$2 \operatorname{cosec} \theta = 2017 + \frac{1}{2017}$$

$$\Rightarrow \operatorname{cosec} \theta = \operatorname{positive} \Rightarrow \sin \theta = \operatorname{positive}$$

Subtracting (i) from (ii), we get

$$\Rightarrow 2 \cot \theta = \frac{1}{2017} - 2017$$
$$\Rightarrow \cot \theta = \text{negative} \Rightarrow \tan \theta = \text{negative}$$
$$\theta \text{ lies in II quadrant.}$$

 $\csc \theta - \cot \theta = \frac{1}{2}$ (i) 13. $\csc \theta + \cot \theta = 2$(ii) *.*.. \ldots [:: $\csc^2 \theta - \cot^2 \theta = 1$] Adding (i) and (ii), we get $2 \operatorname{cosec} \theta = \frac{5}{2} \Longrightarrow \sin \theta = \frac{4}{5}$ Subtracting (ii) from (i), we get $2 \cot \theta = \frac{3}{2} \Rightarrow \cot \theta = \frac{3}{4}$ $\Rightarrow \cos \theta = \frac{3}{4} \sin \theta$ $=\frac{3}{4}\times\frac{4}{5}=\frac{3}{5}$

$\operatorname{cosec} A + \operatorname{cot} A = \frac{11}{2}$ 14. \Rightarrow cosec A- cot A = $\frac{2}{11}$ $2\cot A = \frac{117}{22} \Rightarrow \tan A = \frac{44}{117}$ *.*:. 15. $\sec \theta + \tan \theta = p$(i) $\sec \theta - \tan \theta = \frac{1}{n}$ *.*..(ii) $2 \tan \theta = p - \frac{1}{p} \Longrightarrow \tan \theta = \frac{p^2 - 1}{2p}$ *.*.. $\tan \theta + \sec \theta = e^x$ 16.(i) $\sec \theta - \tan \theta = e^{-x}$ *.*..(ii) $2 \sec \theta = e^x + e^{-x}$ ÷ $\Rightarrow \cos \theta = \frac{2}{e^x + e^{-x}}$ $\sin \theta + \cos \theta = 1$ 17. Squaring both sides, we get $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1$ $\Rightarrow \sin \theta \cos \theta = 0$

18.
$$(3 \cos A - 5 \sin A)^2$$

= $9 \cos^2 A + 25 \sin^2 A - 30 \sin A \cos A$
= $9(1 - \sin^2 A) + 25 (1 - \cos^2 A)$
- $30 \sin A \cos A$
= $34 - (9 \sin^2 A + 25 \cos^2 A + 30 \sin A \cos A)$
= $34 - (3 \sin A + 5 \cos A)^2$
= $34 - 25$ [:: $3 \sin A + 5 \cos A = 5$]
= 9

19. Given, sec
$$\theta$$
 = m and tan θ = n
Since, sec² θ - tan² θ = 1
∴ (sec θ - tan θ) (sec θ + tan θ) = 1
 \Rightarrow (m - n) (m + n) = 1
 \Rightarrow m - n = $\frac{1}{m+n}$ (i)
∴ $\frac{1}{m} \left\{ (m+n) + \frac{1}{m+n} \right\} = \frac{1}{m} (m+n+m-n)$
....[From (i)]
= 2

20.
$$n(m^2 - 1) = (\sec \theta + \csc \theta).2\sin\theta \cos\theta$$

....[$\because m^2 = 1 + 2\sin\theta \cos\theta$]
 $= \frac{\sin\theta + \cos\theta}{\sin\theta \cos\theta}.2\sin\theta \cos\theta = 2m$

....

21. $2y\cos\theta = x\sin\theta$(i) and $2x \sec \theta - y \csc \theta = 3$ $\Rightarrow \frac{2x}{\cos\theta} - \frac{y}{\sin\theta} = 3$ $\Rightarrow 2x \sin\theta - y \cos\theta - 3 \sin\theta \cos\theta = 0$(ii) Solving (i) and (ii), we get $v = \sin \theta$ and $x = 2 \cos \theta$ $x^2 + 4y^2 = 4\cos^2\theta + 4\sin^2\theta$ *.*.. $=4(\cos^2\theta+\sin^2\theta)=4$ $m + n = 2 \tan \theta$, $m - n = 2 \sin \theta$ 22. $m^2 - n^2 = 4 \tan \theta$. sin θ *.*..(i) Also, $4\sqrt{mn} = 4\sqrt{\tan^2\theta - \sin^2\theta}$ $= 4 \sin \theta \tan \theta$(ii) From (i) and (ii), we get $m^2 - n^2 = 4\sqrt{mn}$ *.*.. 23. $(\sec \alpha + \tan \alpha)(\sec \beta + \tan \beta)(\sec \gamma + \tan \gamma)$ $= \tan \alpha \tan \beta \tan \gamma \ldots (i)$ Let $x = (\sec \alpha - \tan \alpha)(\sec \beta - \tan \beta)$ $(\sec \gamma - \tan \gamma) \dots (ii)$ Multiplying equations (i) and (ii), we get $(\sec^2\alpha - \tan^2\alpha)(\sec^2\beta - \tan^2\beta)(\sec^2\gamma - \tan^2\gamma)$ = $x(\tan \alpha \tan \beta \tan \gamma)$ $\Rightarrow x = \frac{1}{\tan \alpha \tan \beta \tan \gamma}$ $x = \cot \alpha \cot \beta \cot \gamma$ *.*.. $2 P_6 - 3 P_4 + 1$ 24. $= 2 (\cos^6 \theta + \sin^6 \theta) - 3(\cos^4 \theta + \sin^4 \theta) + 1$ $= 2 (1 - 3 \sin^2 \theta \cos^2 \theta) - 3 [(\sin^2 \theta + \cos^2 \theta)^2]$ $-2\sin^2\theta\cos^2\theta$] + 1 $= 2 - 6 \sin^2 \theta \cos^2 \theta - 3 (1 - 2 \sin^2 \theta \cos^2 \theta) + 1$ = 0 $(\sec A + \tan A - 1)(\sec A - \tan A + 1) - 2 \tan A$ 25. $= \sec^2 A - \tan^2 A - \sec A \tan A + \sec A$ +sec Atan A+tanA-secA+tanA-1-2 tanA = sec²A - tan²A - 1 \ldots [: sec² A – tan² A = 1] = 0 $\cos^4\theta - \sin^4\theta$ 26. $=(\cos^2\theta+\sin^2\theta)(\cos^2\theta-\sin^2\theta)=\cos^2\theta-\sin^2\theta$ $=\cos^2\theta - (1 - \cos^2\theta) = 2\cos^2\theta - 1$

Chapter 02: Trigonometric Functions $\sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta$ 27. $= (\sin^2 \theta + \cos^2 \theta)^3 - 3 \sin^2 \theta \cos^2 \theta$ $+3\sin^2\theta\cos^2\theta=1$ $6(\sin^6\theta + \cos^6\theta) - 9(\sin^4\theta + \cos^4\theta) + 4$ 28. $= 6[(\sin^2\theta + \cos^2\theta)^3 - 3\sin^2\theta\cos^2\theta]$ $-9[(\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta] + 4$ $= 6(1-3 \sin^2 \theta \cos^2 \theta) - 9(1-2 \sin^2 \theta \cos^2 \theta) + 4$ = 6 - 9 + 4 = 1 $\sin x + \sin^2 x = 1$ 29. $\Rightarrow \sin x = 1 - \sin^2 x$ $\Rightarrow \sin x = \cos^2 x$ $\cos^{12} x + 3\cos^{10} x + 3\cos^{8} x + \cos^{6} x - 1$ *.*.. $=\sin^{6}x + 3\sin^{5}x + 3\sin^{4}x + \sin^{3}x - 1$ $=(\sin^2 x)^3 + 3(\sin^2 x)^2 \sin x + 3 \sin^2 x \cdot \sin^2 x$ $+(\sin x)^{3}-1$ $=(\sin^2 x + \sin x)^3 - 1 = 1^3 - 1 = 0$

30.
$$(\cos x + \sin x)^{2} + k \sin x \cos x - 1 = 0$$
$$\Rightarrow \cos^{2} x + \sin^{2} x + 2 \cos x \sin x$$
$$+ k \sin x \cos x - 1 = 0$$
$$\Rightarrow (k + 2) \cos x \sin x = 0$$
$$\Rightarrow k + 2 = 0 \Rightarrow k = -2$$

31. Since,
$$\sec^2 \theta \ge 1$$

$$\Rightarrow \frac{4xy}{(x+y)^2} \ge 1 \Rightarrow 4xy \ge (x+y)^2$$

$$\Rightarrow (x-y)^2 \le 0$$
It is possible only when $x = y$ and $x \ne 0$.

- 32. Since, $\theta \in \left(0, \frac{\pi}{4}\right)$
- $\begin{array}{ll} \therefore & \tan \theta < 1 \ \text{and} \ \cot \theta > 1 \\ & \text{Let} \ \tan \theta = 1 \lambda_1 \ \text{and} \ \cot \theta = 1 + \lambda_2, \ \text{where} \ \lambda_1 \\ & \text{and} \ \lambda_2 \ \text{are very small and positive.} \\ & \text{Then,} \ t_1 = \left(1 \lambda_1\right)^{1 \lambda_1}, \ t_2 = \left(1 \lambda_1\right)^{1 + \lambda_2} \\ & t_3 = \left(1 + \lambda_2\right)^{1 \lambda_1}, \ t_4 = \left(1 + \lambda_2\right)^{1 + \lambda_2} \\ & \text{Clearly,} \ t_4 > t_3 > t_1 > t_2 \end{array}$

Evaluation Test

1. $\sin A = a \cos B$ and $\cos A = b \sin B$ $\therefore a^2 \cos^2 B + b^2 \sin^2 B = \sin^2 A + \cos^2 A$ $\Rightarrow a^2 \cos^2 B + b^2 (1 - \cos^2 B) = 1$ $\Rightarrow \cos^2 B = \frac{1 - b^2}{a^2 - b^2}$ and $\sin^2 B = \frac{a^2 - 1}{a^2 - b^2}$ $\Rightarrow \tan^2 B = \frac{a^2 - 1}{1 - b^2}$(i)

Again, $\sin A = a \cos B$ and $\cos A = b \sin B$

$$\Rightarrow \tan A = \frac{a}{b} \cot B$$

$$\Rightarrow \tan^{2}A = \frac{a^{2}}{b^{2}} \cot^{2}B$$

$$\Rightarrow \tan^{2}A = \frac{a^{2}}{b^{2}} \left(\frac{1-b^{2}}{a^{2}-1}\right) \qquad \dots [From (i)]$$

$$(a^{2} - 1) \tan^{2}A + (1 - b^{2}) \tan^{2}B$$

$$\therefore \quad (a^2 - 1) \tan^2 A + (1 - b^2) \tan^2 B$$
$$= \frac{a^2}{b^2} (1 - b^2) + (a^2 - 1) = \frac{a^2 - b^2}{b^2}$$

2. Given,
$$\tan \theta = \frac{x \sin \phi}{1 - x \cos \phi}$$

 $\Rightarrow \frac{1}{x} \tan \theta - \tan \theta \cos \phi = \sin \phi$

$$\Rightarrow \frac{1}{x} = \frac{\sin \phi + \cos \phi \tan \theta}{\tan \theta}$$
Also, $\tan \phi = \frac{y \sin \theta}{1 - y \cos \theta}$

$$\Rightarrow \tan \phi = \frac{\sin \theta}{\frac{1}{y} - \cos \theta}$$

$$\Rightarrow \frac{1}{y} \tan \phi - \tan \phi \cos \theta = \sin \theta$$

$$\Rightarrow \frac{1}{y} \tan \phi = \sin \theta + \tan \phi \cos \theta$$

$$\Rightarrow \frac{1}{y} = \frac{\sin \theta + \tan \phi \cos \theta}{\tan \phi}$$

 $\therefore \qquad \frac{x}{y} = \left[\frac{\tan\theta}{\sin\phi + \cos\phi\tan\theta}\right] \times \left[\frac{\sin\theta + \tan\phi\cos\theta}{\tan\phi}\right]$

$$= \frac{\tan \theta}{\tan \phi} \left[\frac{\sin \theta + \cos \theta \frac{\sin \phi}{\cos \phi}}{\sin \phi + \cos \phi \frac{\sin \theta}{\cos \theta}} \right]$$

$$= \frac{\tan \theta \cos \theta}{\tan \phi \cos \phi} = \frac{\sin \theta}{\sin \phi}$$

3. $a \sin^2 x + b \cos^2 x = c$
 $\Rightarrow a(1 - \cos^2 x) + b \cos^2 x = c$
 $\Rightarrow (b - a)\cos^2 x = c - a$
 $\Rightarrow (b - a) = (c - a)(1 + \tan^2 x)$
....[$\because \sec^2 \theta = 1 + \tan^2 \theta$]
and $b \sin^2 y + a \cos^2 y = d$
 $\Rightarrow (a - b)\cos^2 y = d - b$
 $\Rightarrow (a - b) = (d - b)(1 + \tan^2 y)$
 $\therefore \tan^2 x = \frac{b - c}{c - a} \text{ and } \tan^2 y = \frac{a - d}{d - b}$
 $\therefore \frac{\tan^2 x}{\tan^2 y} = \frac{(b - c)(d - b)}{(c - a)(a - d)}$ (i)
But, a $\tan x = b \tan y$

$$\Rightarrow \frac{\tan x}{\tan y} = \frac{b}{a} \qquad \dots \dots (ii)$$

From (i) and (ii), we get

$$\frac{b^2}{a^2} = \frac{(b-c)(d-b)}{(c-a)(a-d)}$$
$$\Rightarrow \frac{a^2}{b^2} = \frac{(c-a)(a-d)}{(b-c)(d-b)}$$

4.

Given,
$$\csc \theta - \sin \theta = a$$

 $\Rightarrow \frac{1 - \sin^2 \theta}{\sin \theta} = a \Rightarrow \frac{\cos^2 \theta}{\sin \theta} = a \qquad \dots(i)$
and $\sec \theta - \cos \theta = b$

$$\Rightarrow \frac{1 - \cos^2 \theta}{\cos \theta} = b \Rightarrow \frac{\sin^2 \theta}{\cos \theta} = b \qquad \dots (ii)$$

Squaring (i) and multiplying by (ii), we get $\cos^3 \theta = a^2 b$ $\Rightarrow \cos \theta = (a^2b)^{1/3}$(iii) Squaring (ii) and multiplying by (i), we get $\sin^3\theta = b^2a$ $\Rightarrow \sin \theta = (b^2 a)^{1/3}$(iv) Squaring (iii) and (iv) and adding, we get $1 = (a^2b)^{2/3} + (b^2a)^{2/3}$ $\Rightarrow a^{4/3} b^{2/3} + b^{4/3} a^{2/3} = 1$ $\Rightarrow a^{2/3} b^{2/3} (a^{2/3} + b^{2/3}) = 1$ $\sin x + \sin^2 x + \sin^3 x = 1$ 5. $\Rightarrow \sin x + \sin^3 x = 1 - \sin^2 x$ $\Rightarrow \sin x + \sin^3 x = \cos^2 x$ $\Rightarrow \sin x (1 + \sin^2 x) = \cos^2 x$ $\Rightarrow \sin x (2 - \cos^2 x) = \cos^2 x$ \ldots [:: $\sin^2\theta = 1 - \cos^2\theta$] $\Rightarrow \sin^2 x(2 - \cos^2 x)^2 = \cos^4 x$ $\Rightarrow (1 - \cos^2 x) (4 - 4 \cos^2 x + \cos^4 x) = \cos^4 x$ $\Rightarrow 4 - 4\cos^2 x + \cos^4 x - 4\cos^2 x$ $+4\cos^{4}x - \cos^{6}x = \cos^{4}x$ $\Rightarrow \cos^6 x - 4\cos^4 x + 8\cos^2 x = 4$ Given, $\cot \theta + \tan \theta = m$ 6. $\Rightarrow \frac{1}{\tan \theta} + \tan \theta = m \Rightarrow 1 + \tan^2 \theta = m \tan \theta$ $\Rightarrow \sec^2 \theta = m \tan \theta$(i) and sec $\theta - \cos \theta = n \Rightarrow \sec^2 \theta - 1 = n \sec \theta$ $\Rightarrow \tan^2 \theta = n \sec \theta$ $\Rightarrow \tan^4 \theta = n^2 \sec^2 \theta$ $\Rightarrow \tan^4 \theta = n^2 m \tan \theta$[From (i)] $\Rightarrow \tan^3 \theta = n^2 m$ $\Rightarrow \tan \theta = (n^2 m)^{1/3}$(ii) Putting (ii) in (i), we get $\sec^2 \theta = m(n^2m)^{1/3}$ Since, $\sec^2 \theta - \tan^2 \theta = 1$ $m(mn^2)^{1/3} - (n^2m)^{2/3} = 1$ *.*.. \Rightarrow m(mn²)^{1/3} - n(nm²)^{1/3} = 1 $\frac{\sin^4 \theta}{a} + \frac{\cos^4 \theta}{b} = \frac{1}{a+b}$ 7. $\Rightarrow (a+b)\left(\frac{\sin^4\theta}{a} + \frac{\cos^4\theta}{b}\right) = (\sin^2\theta + \cos^2\theta)^2$

Chapter 02: Trigonometric Functions

$$\Rightarrow \sin^{4} \theta + \cos^{4} \theta + \frac{b}{a} \sin^{4} \theta + \frac{a}{b} \cos^{4} \theta$$

$$= \sin^{4} \theta + \cos^{4} \theta + 2 \sin^{2} \theta \cos^{2} \theta$$

$$\Rightarrow \frac{b}{a} \sin^{4} \theta + \frac{a}{b} \cos^{4} \theta - 2 \sin^{2} \theta \cos^{2} \theta = 0$$

$$\Rightarrow \left(\sqrt{\frac{b}{a}} \sin^{2} \theta - \sqrt{\frac{a}{b}} \cos^{2} \theta\right)^{2} = 0$$

$$\Rightarrow \sqrt{\frac{b}{a}} \sin^{2} \theta = \sqrt{\frac{a}{b}} \cos^{2} \theta$$

$$\Rightarrow b \sin^{2} \theta = a \cos^{2} \theta$$

$$\Rightarrow \frac{\sin^{2} \theta}{a} = \frac{\cos^{2} \theta}{b} = \frac{\sin^{2} \theta + \cos^{2} \theta}{a + b}$$

$$\Rightarrow \frac{\sin^{2} \theta}{a} = \frac{\cos^{2} \theta}{b} = \frac{1}{a + b}$$

$$\Rightarrow \sin^{2} \theta = \frac{a}{a + b} \text{ and } \cos^{2} \theta = \frac{b}{a + b}$$
Only option (B) does not satisfy these values.
Hence, option (B) is incorrect.

$$x \sin \theta = y \cos \theta = \frac{2z \tan \theta}{1 - \tan^{2} \theta}$$
Consider, $x \sin \theta = \frac{2z \frac{\sin \theta}{\cos^{2} \theta - \sin^{2} \theta}}{\frac{\cos^{2} \theta - \sin^{2} \theta}{2 \cos^{2} \theta - \sin^{2} \theta}}$

$$\Rightarrow x \sin \theta = \frac{2z \cos \theta}{\cos^{2} \theta - \sin^{2} \theta} \dots (i)$$
Similarly, by solving $y \cos \theta = \frac{2z \tan \theta}{1 - \tan^{2} \theta}$,
we get

$$z = \frac{y(\cos^{2} \theta - \sin^{2} \theta)}{2 \sin \theta} \dots (i)$$
From (i) and (ii), we get $\tan \theta = \frac{y}{x}$

$$x \sin \theta = \frac{2\frac{zy}{x}}{1 - \frac{y^{2}}{x^{2}}} = \frac{2xyz}{x^{2} - y^{2}}$$

8.

...

MHT-CET Triumph Maths (Hints) $\Rightarrow \sin \theta = \frac{2yz}{x^2 - v^2}$ Similarly, $\cos \theta = \frac{2xz}{x^2 - v^2}$ Since, $\sin^2 \theta + \cos^2 \theta = 1$ $\therefore \qquad \left(\frac{2yz}{r^2 - v^2}\right)^2 + \left(\frac{2xz}{r^2 - v^2}\right)^2 = 1$ $\Rightarrow \frac{4z^2(x^2+y^2)}{(x^2-y^2)^2} = 1$ $\Rightarrow 4z^2(x^2 + y^2) = (x^2 - y^2)^2$ $3 \cot A = 6 \sec B = -2\sqrt{10}$ 9. Consider, $\cot A = -\frac{2}{3}\sqrt{10}$ $\Rightarrow \cot^2 A = \frac{40}{9}$ $\operatorname{cosec}^{2} A = \frac{49}{9}$ $\dots \left[\because \frac{\pi}{2} < A < \pi \right]$ \Rightarrow cosec A = $\frac{7}{3}$ Also, 6 sec B = $-2\sqrt{10}$ $\Rightarrow \cos B = -\frac{3}{\sqrt{10}}$ $\Rightarrow \sin B = -\sqrt{1 - \cos^2 B} \qquad \dots \left[\because \pi < B < \frac{3\pi}{2} \right]$ $=-\sqrt{1-\frac{9}{10}}=-\frac{1}{\sqrt{10}}$ $\tan B = \frac{\sin B}{\cos B} = \frac{1}{3}$ *:*. $\operatorname{cosec} A - \tan B = \frac{7}{3} - \frac{1}{3}$... 10. $x = \sum_{n=0}^{\infty} \cos^{2n} \phi$ $= 1 + \cos^2 \phi + \cos^4 \phi + \dots \infty$ $= \frac{1}{(1 - \cos^2 \phi)} \qquad \dots [\text{Since infinite G.P.}]$ $=\frac{1}{\sin^2\phi}$ $y = \sum_{n=1}^{\infty} \sin^{2n} \phi$ $= 1 + \sin^2 \phi + \sin^4 \phi + \dots \infty$

$$= \frac{1}{(1-\sin^2\phi)} = \frac{1}{\cos^2\phi}$$

$$z = \sum_{n=0}^{\infty} \cos^{2n}\phi \sin^{2n}\phi$$

$$= 1 + \cos^2\phi \sin^2\phi + \cos^4\phi \sin^4\phi + \dots \infty$$

$$= \frac{1}{(1-\cos^2\phi \sin^2\phi)}$$
Now, $xyz = \frac{1}{\sin^2\phi \cos^2\phi(1-\cos^2\phi \sin^2\phi)} \dots (i)$

$$\therefore \quad xy + z = \frac{1}{\sin^2\phi \cos^2\phi} + \frac{1}{1-\cos^2\phi \sin^2\phi}$$

$$= \frac{1}{\sin^2\phi \cos^2\phi(1-\cos^2\phi \sin^2\phi)}$$

$$= xyz \qquad \dots [From (i)]$$

Textbook Chapter No.

Trigonometric Functions of Compound Angles

Hints

Classical Thinking 1. $\cos 105^\circ = \cos (60^\circ + 45^\circ)$ $= \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ$ $= \frac{1 - \sqrt{3}}{2\sqrt{2}}$ 2. $\tan 15^\circ = \tan (45^\circ - 30^\circ)$ $= \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}$ $\dots \left[\because \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \right]$ $= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$ $= 2 - \sqrt{3}$

- 3. $\cos 38^\circ \cos 8^\circ + \sin 38^\circ \sin 8^\circ$ = $\cos (38^\circ - 8^\circ) = \cos 30^\circ$
- 4. $\frac{1}{4} (\sqrt{3} \cos 23^{\circ} \sin 23^{\circ})$ $= \frac{1}{2} (\cos 30^{\circ} \cos 23^{\circ} \sin 30^{\circ} \sin 23^{\circ})$ $\dots \left[\because \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \sin 30^{\circ} = \frac{1}{2} \right]$ $= \frac{1}{2} \cos (30^{\circ} + 23^{\circ}) = \frac{1}{2} \cos 53^{\circ}$ 5. $\tan 5A = \tan (3A + 2A)$ $= \frac{\tan 3A + \tan 2A}{1 \tan 3A \tan 2A}$
 - $\Rightarrow \tan 5A \tan 5A \tan 3A \tan 2A$ = tan 3A + tan 2A $\Rightarrow \tan 5A - \tan 3A - \tan 2A$ = tan 5A tan 3A tan 2A

6.
$$\tan (57^\circ - 12^\circ) = \tan 45^\circ$$
$$\Rightarrow \frac{\tan 57^\circ - \tan 12^\circ}{1 + \tan 57^\circ \tan 12^\circ} = 1$$

 \Rightarrow tan 57° - tan 12° = 1 + tan 57° tan 12° \Rightarrow tan 57° - tan 12° - tan 57° tan 12° = 1 $= \tan 45^{\circ}$ $\frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}} = \frac{1 + \tan 10^{\circ}}{1 - \tan 10^{\circ}}$ 7. $= \tan (45^{\circ} + 10^{\circ})$[:: $\tan 45^\circ = 1$] $= \tan 55^{\circ}$ $\frac{\cos 8^\circ - \sin 8^\circ}{\cos 8^\circ + \sin 8^\circ} = \frac{1 - \tan 8^\circ}{1 + \tan 8^\circ}$ 8. $= \tan (45^{\circ} - 8^{\circ}) = \tan 37^{\circ}$ $\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ 9. $=\frac{\frac{a}{a+1}+\frac{1}{2a+1}}{1-\frac{a}{a+1}\cdot\frac{1}{2a+1}}$ $=\frac{2a^{2}+a+a+1}{2a^{2}+2a+a+1-a}$ $=\frac{2a^2+2a+1}{2a^2+2a+1}$ $= 1 = \tan \frac{\pi}{4}$ \therefore A + B = $\frac{\pi}{4}$ 10. $\cot(A - B) = \frac{1}{\tan(A - B)}$ $=\frac{1+\tan A \tan B}{1+\tan A}$ tan A – tan B $=\frac{1}{\tan A - \tan B} + \frac{\tan A \tan B}{\tan A - \tan B}$ $=\frac{1}{\tan A - \tan B} + \frac{1}{\cot B - \cot A}$ $=\frac{1}{x}+\frac{1}{y}$

MHT-CET Triumph Maths (Hints) Since, $\cos^2 A - \sin^2 B = \cos (A+B)$. $\cos (A-B)$ 11. 17. $\cos^2 48^\circ - \sin^2 12^\circ = \cos 60^\circ$. $\cos 36^\circ$ · . $=\frac{1}{2}\left(\frac{\sqrt{5}+1}{4}\right)$ $=\frac{\sqrt{5}+1}{\circ}$ 18 *.*.. 12. $\frac{\cot^2 15^\circ - 1}{\cot^2 15^\circ + 1} = \frac{\frac{\cos^2 15^\circ}{\sin^2 15^\circ} - 1}{\frac{\cos^2 15^\circ}{\cos^2 15^\circ} + 1}$ 19. *.*.. $=\frac{\cos^2 15^\circ - \sin^2 15^\circ}{\cos^2 15^\circ + \sin^2 15^\circ} = \cos(30^\circ)$ $[:: \cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)]$ $=\frac{\sqrt{3}}{2}$ 13. $\tan(-945^{\circ}) = \tan[-(945^{\circ})]$ $= -\tan \left[(2 \times 360^{\circ} + 225^{\circ}) \right]$ 20. $= - \tan (225^{\circ})$ $= - \tan 45^{\circ}$ \dots [:: tan (180° + θ) = tan θ] = 0= -121. 14. $\sin \frac{\pi}{10} \sin \frac{3\pi}{10} = \sin 18^\circ \cdot \sin 54^\circ$ $= \sin 18^\circ \cdot \cos 36^\circ$ \ldots [:: $\sin(90^\circ - \theta) = \cos \theta$] $=\frac{\sqrt{5}-1}{4}.\frac{\sqrt{5}+1}{4}$ $=\frac{1}{4}$ 15. $\sin 15^\circ + \cos 105^\circ$ $= \sin 15^{\circ} + \cos (90^{\circ} + 15^{\circ})$ $= \sin 15^\circ - \sin 15^\circ$ \ldots [:: cos(90° + θ) = - sin θ] = 0 $\tan (A + B) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{2}} = 1$ = 216. 24. $A + B = 45^{\circ}$ $\Rightarrow 2A = 90^{\circ} - 2B$ $\Rightarrow \cos 2A = \sin 2B \dots [\because \cos (90^\circ - \theta) = \sin \theta]$ = -1

 $\cos 7\theta + \cos \theta = \cos (8\theta - \theta) + \cos \theta$ $= \cos(\pi - \theta) + \cos\theta$ \dots [:: $8\theta = \pi$ (given)] $= -\cos\theta + \cos\theta$ = 0Since, $A + C = 180^{\circ}$ and $B + D = 180^{\circ}$ $\cos A + \cos B = \cos (180^\circ - C) + \cos (180^\circ - D)$ $= -(\cos C + \cos D)$ \ldots [:: $\cos(180^\circ - \theta) = -\cos\theta$] Since, ABCD is a cyclic quadrilateral. $A + C = 180^{\circ}$ $\Rightarrow A = 180^{\circ} - C$ $\Rightarrow \cos A = \cos (180^\circ - C) = -\cos C$ $\Rightarrow \cos A + \cos C = 0$(i) Also, $B + D = 180^{\circ}$ $\Rightarrow \cos B + \cos D = 0$(ii) Subtracting (ii) from (i), we get $\cos A - \cos B + \cos C - \cos D = 0$ $\sin 10^\circ + \sin 20^\circ + \sin 30^\circ + ... + \sin 180^\circ$ $+\sin(180^{\circ}+10^{\circ})+\sin(180^{\circ}+20^{\circ})+...$ $+\sin(180^{\circ}+180^{\circ})$ \ldots [:: sin (180° + θ) = - sin θ] $(\cos 1^\circ + \cos 179^\circ) + (\cos 2^\circ + \cos 178^\circ)$ $+ \ldots + (\cos 89^\circ + \cos 91^\circ)$ $+(\cos 90^{\circ} + \cos 180^{\circ})$ \ldots [:: cos (180° – θ) = – cos θ] 22. $\sec\left(\frac{7\pi}{2} - A\right) = \sec\left(2\pi + \frac{3\pi}{2} - A\right)$ $= \sec\left(\frac{3\pi}{2} - A\right)$ $= - \operatorname{cosec} A$ 23. $\frac{\cot 54^{\circ}}{\tan 36^{\circ}} + \frac{\tan 20^{\circ}}{\cot 70^{\circ}}$ $= \frac{\cot(90^\circ - 36^\circ)}{\tan 36^\circ} + \frac{\tan 20^\circ}{\cot(90^\circ - 20^\circ)}$ = 1 + 1[\because cot $(90^\circ - \theta) = \tan \theta$] $\cos(90^{\circ} + \theta) \sec(-\theta) \tan(180^{\circ} - \theta)$ $\sin(360^\circ + \theta) \sec(180^\circ + \theta) \cot(90^\circ - \theta)$ $(-\sin\theta)(\sec\theta)(-\tan\theta)$ $(\sin\theta)(-\sec\theta)\tan\theta$

 $\sin^2 25^\circ + \sin^2 65^\circ = \sin^2 25^\circ + \sin^2 (90^\circ - 25^\circ)$ 25. $=\sin^2 25^\circ + \cos^2 25^\circ$ \ldots [:: $\sin(90^\circ - \theta) = \cos \theta$] = 1 $26. \quad \sin\frac{7\pi}{8} = \sin\left(\pi - \frac{\pi}{8}\right) = \sin\frac{\pi}{8}$ $\sin \frac{5\pi}{8} = \sin \left(\pi - \frac{3\pi}{8} \right) = \sin \frac{3\pi}{8}$ $\sin^2\frac{\pi}{8} + \sin^2\frac{3\pi}{8} + \sin^2\frac{5\pi}{8} + \sin^2\frac{7\pi}{8}$ *.*.. $=2\left|\sin^2\frac{\pi}{8}+\sin^2\frac{3\pi}{8}\right|$ $=2\left|\sin^2\frac{\pi}{8}+\cos^2\frac{\pi}{8}\right|$ \ldots $\because \sin \frac{3\pi}{8} = \sin \left(\frac{\pi}{2} - \frac{\pi}{8} \right) = \cos \frac{\pi}{8}$ = 2 $\cos 2\theta = 2\cos^2\theta - 1$ 27. $= 1 - 2 \sin^2 \theta$ $=\frac{1-\tan^2\theta}{1+\tan^2\theta}$ $\sin 4\theta = 2 \sin 2\theta \cos 2\theta$ 28. $= 2.2 \sin\theta \cos\theta (1 - 2 \sin^2\theta)$ $=4\sin\theta(1-2\sin^2\theta)\sqrt{1-\sin^2\theta}$ $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}, \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$ 29. $\tan 2\theta + \sec 2\theta = \frac{2t}{1-t^2} + \frac{1+t^2}{1-t^2}$ *.*..[:: $\tan \theta = t(\text{given})$] $=\frac{(1+t)^2}{(1-t)(1+t)}=\frac{1+t}{1-t}$ Given, $\sin A + \cos A = 1$ 30. Squaring on both sides, we get $(\sin A + \cos A)^2 = 1$ $\Rightarrow 1 + \sin 2A = 1$ $\Rightarrow \sin 2A = 0$ $2 + 2\cos 4\theta = 2(1 + \cos 4\theta)$ 31. $\frac{-4\cos^{2}2\theta}{\sqrt{2+\sqrt{2+2\cos 4\theta}}} = \sqrt{2+2\cos 2\theta} \qquad \dots (i)$ *.*.. _....[From (i)] $=\sqrt{2(1+\cos 2\theta)}$ $=\sqrt{4\cos^2\theta}$

 $= 2 \cos \theta$

 $1 + \cos^2 2A = (\cos^2 A + \sin^2 A)^2$ 32. $+(\cos^2 A - \sin^2 A)^2$ $= 2 (\cos^4 A + \sin^4 A)$ 33. $1-2\sin^2\left(\frac{\pi}{4}+\theta\right)=\cos\left(\frac{\pi}{2}+2\theta\right)$ $\ldots \left[\because \cos 2\theta = 1 - 2\sin^2 \theta \right]$ $= -\sin 2\theta$ 34. $\sin \theta \cos \theta = \frac{1}{2} (\sin 2\theta)$ Since, $-1 \le \sin 2\theta \le 1$ $\Rightarrow -\frac{1}{2} \le \frac{1}{2} (\sin 2\theta) \le \frac{1}{2}$ Largest value is $\frac{1}{2}$. *.*.. 35. $(\sec 2A + 1) \sec^2 A$ $= \left(\frac{1+\tan^2 A}{1-\tan^2 A}+1\right) (1+\tan^2 A)$ $=\frac{2(1+\tan^2 A)}{1-\tan^2 A}=2 \sec 2A$ 36. cosec A - 2 cot 2A cos A $2\cos A\cos 2A$ ____1 sin A sin2A $=\frac{1}{\sin A}-\frac{2\cos A\cos 2A}{2\sin A\cos A}$ $=\frac{1-\cos 2A}{\sin A}=\frac{2\sin^2 A}{\sin A}=2\sin A$ 37. $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{\sin 2^3 20^\circ}{2^3 \sin 20^\circ}$ $=\frac{\sin 160^{\circ}}{8\sin 20^{\circ}}$ $=\frac{\sin\left(180^\circ-20^\circ\right)}{8\sin 20^\circ}$ $=\frac{1}{8}$ $\frac{\sin\theta + \sin 2\theta}{\sin\theta + 2\sin\theta \cos\theta} = \frac{\sin\theta + 2\sin\theta \cos\theta}{\sin\theta \sin\theta}$ 38. $\overline{1+\cos\theta+\cos2\theta}$ $2\cos^2\theta + \cos\theta$ $=\frac{\sin\theta(1+2\cos\theta)}{\cos\theta}$ $\cos\theta(1+2\cos\theta)$ $= \tan \theta$ 39. $\sin^3 \theta + \cos^3 \theta$ $= (\sin \theta + \cos \theta) \left(\cos^2 \theta + \sin^2 \theta - \frac{\sin 2\theta}{2} \right)$

Chapter 03: Trigonometric Functions

of Compound Angles

$$= \sqrt{(\sin\theta + \cos\theta)^2} \left(1 - \frac{\sin 2\theta}{2}\right)$$
$$\Rightarrow \sin^3\theta + \cos^3\theta = \sqrt{1 + \frac{3}{4}} \left(1 - \frac{3}{8}\right)$$
$$= \frac{\sqrt{7}}{2} \times \frac{5}{8} = \frac{5\sqrt{7}}{16}$$

- 40. Given that, $\cos 3\theta = \alpha \cos \theta + \beta \cos^3 \theta$ But, $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$ $\Rightarrow (\alpha, \beta) = (-3, 4)$
- 41. Given, $\tan A = \frac{1}{2}$ $\Rightarrow \tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$ $= \frac{3 \cdot \frac{1}{2} - \frac{1}{8}}{1 - 3 \cdot \frac{1}{4}} = \frac{12 - 1}{2}$ $= \frac{11}{2}$

42. We have,
$$x + \frac{1}{x} = 2 \cos \theta$$

Now, $x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right)$
 $= (2 \cos \theta)^3 - 3(2 \cos \theta)$
 $= 8 \cos^3 \theta - 6 \cos \theta$
 $= 2 (4 \cos^3 \theta - 3 \cos \theta) = 2 \cos 3\theta$
43. $\cos \left(\frac{\alpha}{2}\right) = -\sqrt{\frac{1 + \cos \alpha}{2}}$
 $\dots \left[\because \pi < \alpha < \frac{3\pi}{2} \Rightarrow \frac{\pi}{2} < \frac{\alpha}{2} < \frac{3\pi}{4}\right]$
Now, $\cos \alpha = -\sqrt{1 - \sin^2 \alpha}$

$$\dots \left[\because \pi < \alpha < \frac{3\pi}{2} \right]$$
$$= -\sqrt{1 - \frac{9}{25}} = -\frac{4}{5}$$
$$\therefore \quad \cos \frac{\alpha}{2} = -\sqrt{\frac{1 - \frac{4}{5}}{2}} = -\frac{1}{\sqrt{10}}$$

44.
$$\frac{1-t^{2}}{1+t^{2}} = \frac{1-\tan^{2}\frac{\theta}{2}}{1+\tan^{2}\frac{\theta}{2}} = \cos \theta$$

45. Given that,
$$\tan \frac{A}{2} = \frac{3}{2}$$

$$\therefore \quad \frac{1+\cos A}{1-\cos A} = \frac{2\cos^{2}\frac{A}{2}}{2\sin^{2}\frac{A}{2}} = \cot^{2}\frac{A}{2}$$

$$= \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$$

46.
$$\tan\left(\frac{A}{2}\right) = \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} = \sqrt{\frac{1-\cos A}{2}}$$

$$= \sqrt{\frac{1-\cos A}{2}}$$

47.
$$\tan^{2}\frac{\theta}{2} = \frac{1-\cos \theta}{1+\cos \theta}$$

$$= \frac{\tan \alpha - \tan \beta}{\tan \alpha + \tan \beta}$$

$$\dots \left[\because \cos \theta = \frac{\tan \beta}{\tan \alpha} (\text{given})\right]$$

$$= \frac{\frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta}}{\frac{\sin \alpha}{\cos \beta} + \sin \beta \cos \alpha}$$

$$= \frac{\sin \alpha \cos \beta - \sin \beta \cos \alpha}{\sin \alpha \cos \beta + \sin \beta \cos \alpha}$$

$$=\frac{\sin(\alpha-\beta)}{\sin(\alpha+\beta)}$$

Critical Thinking

1. $\cos (A + B) = \alpha \cos A \cos B + \beta \sin A \sin B$ But, $\cos (A + B) = \cos A \cos B - \sin A \sin B$ $\Rightarrow \alpha = 1, \beta = -1$

Г

2.
$$\cos (A + B) = \cos A \cos B - \sin A \sin B$$

= $\sqrt{1 - \frac{16}{25}} \left(-\frac{12}{13} \right) - \frac{4}{5} \sqrt{1 - \frac{144}{169}}$

Chapter 03: Trigonometric Functions of Compound Angles
$$= \frac{3}{5} \left(-\frac{12}{13} \right) - \frac{4}{5} \left(-\frac{5}{13} \right)$$

....[: A lies in first quadrant and
B lies in third quadrant]
$$= -\frac{16}{65}$$

3. $\sin (A + B) = \sin A \cos B + \cos A \sin B$
$$= \frac{1}{\sqrt{10}} \sqrt{1 - \frac{1}{5}} + \frac{1}{\sqrt{5}} \sqrt{1 - \frac{1}{10}}$$

$$= \frac{1}{\sqrt{10}} \sqrt{\frac{4}{5}} + \frac{1}{\sqrt{5}} \sqrt{\frac{9}{10}}$$

$$= \frac{1}{\sqrt{50}} (2 + 3) = \frac{5}{\sqrt{50}}$$

$$= \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin (A + B) = \sin \frac{\pi}{4}$$

$$\Rightarrow A + B = \frac{\pi}{4}$$

4. $\tan (\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} = 1$
$$\tan (2\theta + \phi) = \tan [\theta + (\theta + \phi)]$$

$$= \frac{\tan \theta + \tan(\theta + \phi)}{1 - \tan \theta \tan(\theta + \phi)}$$

$$= \frac{\frac{1}{2} + 1}{1 - \frac{1}{2} \cdot 1} = 3$$

5. $\cos \theta = \frac{8}{17} \text{ and } 0 < \theta < \frac{\pi}{2}$
$$\Rightarrow \sin \theta = \sqrt{1 - \left(\frac{8}{17}\right)^2}$$

$$= \frac{15}{17}$$

$$\cos (30^\circ + \theta) + \cos (45^\circ - \theta) + \cos (120^\circ - \theta)$$

 $\cos (30^\circ + \theta) + \cos (45^\circ - \theta) + \cos (120^\circ - \theta)$ $= \cos 30^\circ \cos \theta - \sin 30^\circ \sin \theta + \cos 45^\circ \cos \theta$ $+ \sin 45^\circ \sin \theta + \cos 120^\circ \cos \theta + \sin 120^\circ \sin \theta$

$$= \cos \theta \left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) - \sin \theta \left(\frac{1}{2} - \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \right)$$

$$= \frac{8}{17} \left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) + \frac{15}{17} \left(\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right)$$

$$= \frac{23}{17} \left(\frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)$$
6. $A + B = \frac{\pi}{4}$
 $\Rightarrow \tan (A + B) = \tan \frac{\pi}{4}$
 $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$
 $\Rightarrow \tan A + \tan B + \tan A \tan B = 1$
 $\Rightarrow (1 + \tan A) (1 + \tan B) = 2$
7. $A + B = 45^{\circ}$
 $\Rightarrow \tan (A + B) = 1$
 $\Rightarrow \tan A + \tan B = 1 - \tan A \tan B$
 $\Rightarrow \frac{1}{\cot A} + \frac{1}{\cot B} = 1 - \frac{1}{\cot A \cot B}$
 $\Rightarrow \cot A + \cot B = \cot A \cot B - 1$
 $\Rightarrow \cot A \cot B - \cot A - \cot B = 1$
 $\Rightarrow \cot A \cot B - \cot A - \cot B = 1$
 $\Rightarrow \cot A - 0 = 1 = 2$
8. $\sin (\alpha - \beta) = \sin [(\theta - \beta) - (\theta - \alpha)]$
 $= \sin(\theta - \beta) \cos(\theta - \alpha) - \cos(\theta - \beta) \sin(\theta - \alpha)$
 $= ba - \sqrt{1 - b^2} \sqrt{1 - a^2}$
 $and \cos(\alpha - \beta) = \cos [(\theta - \beta) - (\theta - \alpha)]$
 $= \cos(\theta - \beta) \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha)$
 $= a\sqrt{1 - b^2} + b\sqrt{1 - a^2}$
 $\therefore \cos^2(\alpha - \beta) + 2ab \sin(\alpha - \beta)$
 $= (a\sqrt{1 - b^2} + b\sqrt{1 - a^2})^2 + 2ab (ab - \sqrt{1 - a^2} \sqrt{1 - b^2})$
 $= a^2 + b^2$
9. Let $x - y = \alpha, y - z = \beta$ and $z - x = \gamma$, then $\alpha + \beta + \gamma = 0$
 $\Rightarrow \alpha + \beta = -\gamma$
 $\Rightarrow \tan (\alpha + \beta) = \tan (-\gamma)$

$$\Rightarrow$$
 tan α + tan β + tan γ = tan α tan β tan γ

10. Since,
$$\tan 3A = \frac{\tan A + \tan 2A}{1 - \tan A \tan 2A}$$

 $\Rightarrow \tan 3A - \tan 2A - \tan A$
 $= \tan 3A \tan 2A \tan A$

 $\Rightarrow \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = -\tan\gamma$

11.	$\tan (20^{\circ} + 40^{\circ}) = \frac{\tan 20^{\circ} + \tan 40^{\circ}}{1 - \tan 20^{\circ} \tan 40^{\circ}}$
	$\Rightarrow \sqrt{3} = \frac{\tan 20^\circ + \tan 40^\circ}{1 - \tan 20^\circ \tan 40^\circ}$
	$\rightarrow \sqrt{2} \sqrt{2} \tan 20^\circ \tan 40^\circ = \tan 20^\circ \pm \tan 40^\circ$
	\rightarrow $\sqrt{3} = \sqrt{3} \tan 20^\circ \tan 40^\circ = \tan 40^\circ = 1 \tan 20^\circ + \tan 40^\circ = \sqrt{3}$
	\rightarrow tail 20 + tail 40 + $\sqrt{3}$ tail 20 tail 40 - $\sqrt{3}$
12.	$\tan\left(\frac{6\pi}{15} - \frac{\pi}{15}\right) = \tan\frac{\pi}{3}$
	$\Rightarrow \frac{\tan\frac{6\pi}{15} - \tan\frac{\pi}{15}}{1 + \tan\frac{6\pi}{15}\tan\frac{\pi}{15}} = \tan\frac{\pi}{3}$
	$\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} = \sqrt{3} + \sqrt{3}\tan\frac{6\pi}{15}\tan\frac{\pi}{15}$
	$\Rightarrow \tan\frac{6\pi}{15} - \tan\frac{\pi}{15} - \sqrt{3} \tan\frac{6\pi}{15} \tan\frac{\pi}{15} = \sqrt{3}$
	$\Rightarrow \tan \frac{2\pi}{5} - \tan \frac{\pi}{15} - \sqrt{3} \tan \frac{2\pi}{5} \tan \frac{\pi}{15} = \sqrt{3}$
13.	$2 \tan (A - B) = 2 \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right)$
	$= 2\left[\frac{2\tan B + \cot B - \tan B}{1 + (2\tan B + \cot B)\tan B}\right]$
	\dots [:: tan A = 2 tan B + cot B]
	$\begin{bmatrix} \tan B + \cot B \end{bmatrix}$
	$= 2 \left[\frac{\operatorname{dim} B + \operatorname{cor} B}{2(1 + \tan^2 B)} \right]$
	$=\frac{\cot B(\tan^2 B+1)}{1+(\cos^2 B)}$
	$1 + \tan^2 B$
14	$= \cot \mathbf{B}$
14.	$\sin \alpha + \sin \beta + \sin \gamma - \sin(\alpha + \beta + \gamma)$ $= \sin \alpha + \sin \beta + \sin \gamma - \sin \alpha \cos \beta \cos \gamma$
	$-\cos\alpha\sin\beta\cos\gamma - \cos\alpha\cos\beta\sin\gamma$
	$+\sin\alpha\sin\beta\sin\gamma$
	$= \sin \alpha (1 - \cos \beta \cos \gamma) + \sin \beta (1 - \cos \alpha \cos \gamma)$
	$+\sin\gamma(1-\cos\alpha\cos\beta)+\sin\alpha\sin\beta\sin\gamma>0$
· · ·	$\sin \alpha + \sin \beta + \sin \gamma > \sin (\alpha + \beta + \gamma)$
	$\Rightarrow \frac{\sin(\alpha + \beta + \gamma)}{\sin \alpha + \sin \beta + \sin \gamma} < 1$
15.	
	$\tan 3A - \tan A \cot 3A - \cot A$
	$=\frac{1}{\tan 2A}$ $\tan A$ $+\frac{\tan A \tan 3A}{\tan 2A}$
	$\tan \beta A - \tan A$ $\tan \beta A - \tan A$
	$=\frac{1}{\tan 3A - \tan A} = \frac{1}{\tan 2A} = \cot 2A$
	$\frac{1}{1 + \tan 3A}$ tan A

16.
$$\cos 105^\circ + \sin 105^\circ$$

 $= \cos (90^\circ + 15^\circ) + \sin (90^\circ + 15^\circ)$
 $= \cos 15^\circ - \sin 15^\circ$
 $= \cos (45^\circ - 30^\circ) - \sin (45^\circ - 30^\circ)$
 $= \frac{\sqrt{3} + 1}{2\sqrt{2}} - \frac{\sqrt{3} - 1}{2\sqrt{2}}$
 $= \frac{2}{2\sqrt{2}}$
 $= \frac{1}{\sqrt{2}}$

17.
$$\tan 81^{\circ} - \tan 63^{\circ} - \tan 27^{\circ} + \tan 9^{\circ}$$
$$= \{\tan (90^{\circ} - 9^{\circ}) + \tan 9^{\circ}\}$$
$$- \{\tan (90^{\circ} - 27^{\circ}) + \tan 27^{\circ}\}$$
$$= (\cot 9^{\circ} + \tan 9^{\circ}) - (\cot 27^{\circ} + \tan 27^{\circ})$$
$$= 2 \operatorname{cosec} 18^{\circ} - 2 \operatorname{cosec} 54^{\circ}$$
$$\ldots [\because \tan \theta + \cot \theta = 2 \operatorname{cosec} 2\theta]$$
$$= \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin 54^{\circ}}$$
$$= \frac{2}{\sin 18^{\circ}} - \frac{2}{\cos 36^{\circ}}$$

$$= \frac{2 \times 4}{\sqrt{5} - 1} - \frac{2 \times 4}{\sqrt{5} + 1}$$
$$= 8 \left[\frac{\sqrt{5} + 1 - \sqrt{5} + 1}{\left(\sqrt{5}\right)^2 - 1^2} \right]$$
$$= 4$$
$$\beta + \gamma = \alpha$$
$$\Rightarrow \gamma = \alpha - \beta$$
$$\Rightarrow \tan \gamma = \tan (\alpha - \beta)$$

18.

$$\Rightarrow \tan \gamma = \tan (\alpha - \beta)$$

$$\Rightarrow \tan \gamma = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\Rightarrow \tan \gamma = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cot \alpha}$$

$$\dots \left[\because \alpha + \beta = \frac{\pi}{2}, \therefore \beta = \frac{\pi}{2} - \alpha \right]$$

$$\Rightarrow \tan \gamma = \frac{1}{2} (\tan \alpha - \tan \beta)$$

$$\Rightarrow \tan \alpha = \tan \beta + 2 \tan \gamma$$

$$\tan \left(\frac{\pi}{2} + \theta \right) \tan \left(\frac{3\pi}{2} + \theta \right)$$

19.
$$\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{3\pi}{4} + \theta\right)$$

= $\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{\pi}{2} + \left(\frac{\pi}{4} + \theta\right)\right)$

$$= \tan\left(\frac{\pi}{4} + \theta\right) \left\{ -\cot\left(\frac{\pi}{4} + \theta\right) \right\}$$

$$= \tan\left(\frac{\pi}{4} + \theta\right) \left\{ -\cot\left(\frac{\pi}{4} + \theta\right) \right\}$$

$$= -1$$
20. $\tan(100^{\circ} + 125^{\circ}) = \frac{\tan(100^{\circ} + \tan(125^{\circ}))}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$

$$= \tan(225^{\circ}) = \frac{\tan(100^{\circ} + \tan(125^{\circ}))}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$$

$$= -1$$
20. $\tan(100^{\circ} + 125^{\circ}) = \frac{\tan(100^{\circ} + \tan(125^{\circ}))}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$

$$= -1$$
20. $\tan(100^{\circ} + \tan(125^{\circ})) = \tan(125^{\circ})$

$$= -1$$

$$= -1$$
21. $\frac{\tan(10^{\circ} + \tan(125^{\circ}))}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$

$$= -\frac{1}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$$

$$= -\frac{1}{1 - \tan(100^{\circ} \tan(125^{\circ}))}$$

$$= -\frac{1}{1 - \tan(100^{\circ} + \tan(125^{\circ}))}$$

$$= -\frac{1}{1 - \tan(10^{\circ} + \tan(10^{\circ}))}$$

$$= -\frac{1}{1 - \tan(10^{\circ}$$

.

MHT-CET Triumph Maths (Hints) $\sin x + \cos x = \frac{1}{2}$ 27. Squaring both sides $1 + \sin 2x = \frac{1}{25}$ $\Rightarrow \sin 2x = \frac{-24}{25}$ $\Rightarrow \frac{2\tan x}{1+\tan^2 x} = \frac{-24}{25}$ \Rightarrow 24 tan² x + 50 tan x + 24 = 0 \Rightarrow 12 tan² x + 25 tan x + 12 = 0 \Rightarrow (3 tan x + 4) (4 tan x + 3) = 0 $\Rightarrow \tan x = \frac{-4}{2} \text{ or } \frac{-3}{4}$ 28. $\cos x + \sin x = \frac{1}{2}$ $\Rightarrow (\cos x + \sin x)^2 = \frac{1}{4}$ $\Rightarrow 1 + \sin 2x = \frac{1}{4}$ $\Rightarrow \sin 2x = -\frac{3}{4}$ $\Rightarrow \frac{2 \tan x}{1 + \tan^2 x} = -\frac{3}{4}$ \Rightarrow 3 tan² x + 8 tan x + 3 = 0 $\Rightarrow \tan x = \frac{-4 \pm \sqrt{7}}{2}$ 29. $\tan\left(\frac{\pi}{4}+\theta\right) - \tan\left(\frac{\pi}{4}-\theta\right) = \frac{1+\tan\theta}{1-\tan\theta} - \frac{1-\tan\theta}{1+\tan\theta}$ $=\frac{4\tan\theta}{1-\tan^2\theta}$ $=2\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$ $= 2 \tan 2\theta$ $\sec 2\theta = p + \tan 2\theta$ 30. \Rightarrow sec 2θ – tan 2θ = p(i) \Rightarrow sec 2θ + tan $2\theta = \frac{1}{\pi}$(ii) $\dots [\because \sec^2 2\theta - \tan^2 2\theta = 1]$ Adding (i) and (ii), we get $2 \sec 2\theta = p + \frac{1}{2}$

 $\Rightarrow \cos 2\theta = \frac{2p}{p^2 + 1} \Rightarrow 1 - 2\sin^2 \theta = \frac{2p}{p^2 + 1}$ $\Rightarrow 2\sin^2\theta = 1 - \frac{2p}{p^2 + 1} \Rightarrow 2\sin^2\theta = \frac{(p-1)^2}{p^2 + 1}$ $\Rightarrow \sin^2 \theta = \frac{(p-1)^2}{2(p^2+1)}$ Given, $\tan \theta = \frac{1}{7}$, $\sin \phi = \frac{1}{\sqrt{10}}$ 31. $\Rightarrow \sin \theta = \frac{1}{\sqrt{50}}, \cos \theta = \frac{7}{\sqrt{50}}, \cos \phi = \frac{3}{\sqrt{10}}$ $\cos 2\phi = 2\cos^2 \phi - 1 = 2\left(\frac{9}{10}\right) - 1 = \frac{4}{5}$ *:*.. $\sin 2\phi = 2 \sin \phi \cos \phi = 2 \left(\frac{1}{\sqrt{10}}\right) \left(\frac{3}{\sqrt{10}}\right) = \frac{3}{5}$ ÷ $\cos(\theta + 2\phi) = \cos\theta\cos 2\phi - \sin\theta\sin 2\phi$ $=\frac{7}{\sqrt{50}}\cdot\frac{4}{5}-\frac{1}{\sqrt{50}}\cdot\frac{3}{5}=\frac{28}{5\sqrt{50}}-\frac{3}{5\sqrt{50}}$ $=\frac{25}{5\sqrt{50}}=\frac{1}{\sqrt{2}}$ $\theta + 2\phi = 45^{\circ}$ *.*.. 32. $\cos(\alpha - \beta) = \cos[\theta + \alpha - (\theta + \beta)]$ $= \cos (\theta + \alpha) \cos (\theta + \beta)$ $+\sin(\theta + \alpha)\sin(\theta + \beta)$ $=\sqrt{1-a^2} \sqrt{1-b^2} + ab$ Now, $\cos 2 (\alpha - \beta) - 4ab \cos (\alpha - \beta)$ $= 2 \cos^2 (\alpha - \beta) - 1 - 4ab \cos (\alpha - \beta)$ $= 2\left(\sqrt{1-a^2}\sqrt{1-b^2} + ab\right)^2$ $-4ab\left(\sqrt{1-a^2}\sqrt{1-b^2}+ab\right)-1$ $= 2\{(1-a^2)(1-b^2) + a^2b^2\}$ $+2ab\sqrt{1-a^2}\sqrt{1-b^2}$ $-4ab(\sqrt{1-a^2}\sqrt{1-b^2}+ab)-1$ $= 2 (1 - b^{2} - a^{2} + a^{2} b^{2}) + 2a^{2} b^{2} - 4a^{2} b^{2} - 1$ $= 2(1 - a^2 - b^2) - 1$ $= 1 - 2a^2 - 2b^2$ 33. $\tan^2 \theta = 2 \tan^2 \phi + 1$ $\Rightarrow 1 + \tan^2 \theta = 2 (1 + \tan^2 \phi)$ $\Rightarrow \sec^2 \theta = 2 \sec^2 \phi$

Chapter 03: Trigonometric Functions of Compound Angles
$$\Rightarrow \cos^2 \phi = 2 \cos^2 \theta$$

$$\Rightarrow \cos^2 \phi = 1 + \cos 2\theta$$

$$\Rightarrow \sin^2 \phi + \cos 2\theta = 0$$

....[:: $\sin^2 \theta + \cos^2 \theta = 1$]

34.
$$\tan \theta - \cot \theta = a \text{ and } \sin \theta + \cos \theta = b$$

 $\therefore \quad (b^2 - 1)^2 (a^2 + 4)$
 $= \{(\sin \theta + \cos \theta)^2 - 1\}^2 \{(\tan \theta - \cot \theta)^2 + 4\}$
 $= (1 + \sin 2\theta - 1)^2 (\tan^2 \theta + \cot^2 \theta - 2 + 4)$
 $= \sin^2 2\theta (\csc^2 \theta + \sec^2 \theta)$
 $= 4 \sin^2 \theta \cos^2 \theta \left(\frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta}\right)$
 $= 4$

35. Squaring and adding the given expressions, we get $x^2 + y^2 = 1 + 1 + 2\cos(2A - A)$ ∴ $\frac{x^2 + y^2 - 2}{2} = \cos A$ (i)

Also, $\cos A + 2 \cos^2 A - 1 = y$ $\Rightarrow (\cos A + 1)(2 \cos A - 1) = y$ Putting the value of $\cos A$ from (i), we get $(x^2 + y^2) (x^2 + y^2 - 3) = 2y$

36.
$$y - z = a(\cos^2 x - \sin^2 x) + 4b \sin x \cos x$$

 $-c(\cos^2 x - \sin^2 x)$
 $= (a - c) \cos 2x + 2b \sin 2x$
 $= (a - c) \left\{ \frac{1 - \tan^2 x}{1 + \tan^2 x} \right\} + 2b \left\{ \frac{2 \tan x}{1 + \tan^2 x} \right\}$
 $= (a - c) \left\{ \frac{1 - 4b^2 / (a - c)^2}{1 + 4b^2 / (a - c)^2} \right\}$
 $+ 2b \left\{ \frac{2.2b / (a - c)}{1 + 4b^2 / (a - c)^2} \right\}$
 $\dots \left[\because \tan x = \frac{2b}{a - c} (given) \right]$
 $= \frac{(a - c) \{ (a - c)^2 - 4b^2 \} + 8b^2 (a - c)}{(a - c)^2 + 4b^2}$
 $\therefore \quad y - z = \frac{(a - c) \{ (a - c)^2 + 4b^2 \}}{(a - c)^2 + 4b^2} = a - c$
 $\Rightarrow y \neq z$ [∵ $a \neq c$]
 $y + z = a(\cos^2 x + \sin^2 x) + c(\sin^2 x + \cos^2 x)$
 $= a + c$

37.
$$8 \sin \frac{x}{8} \cos \frac{x}{2} \cos \frac{x}{4} \cos \frac{x}{8}$$
$$= 4 \left(2 \sin \frac{x}{8} \cos \frac{x}{8} \right) \cos \frac{x}{2} \cos \frac{x}{4}$$
$$= 4 \left(\sin \frac{x}{4} \cos \frac{x}{2} \cos \frac{x}{4} \right)$$
$$\dots [\because 2 \sin A \cos A = \sin 2A]$$
$$= 2 \left(2 \sin \frac{x}{4} \cos \frac{x}{4} \right) \cos \frac{x}{2} = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$
$$= \sin x$$

38.
$$x = \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ}$$
$$= \frac{1}{2 \sin 10^{\circ}} (2 \sin 10^{\circ} \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ})$$
$$= \frac{1}{2.2 \sin 10^{\circ}} (2 \sin 20^{\circ} \cos 20^{\circ} \cos 40^{\circ})$$
$$= \frac{1}{2.4 \sin 10^{\circ}} (2 \sin 40^{\circ} \cos 40^{\circ})$$
$$= \frac{1}{8 \sin 10^{\circ}} (\sin 80^{\circ})$$
$$= \frac{1}{8 \sin 10^{\circ}} (\cos 10^{\circ}) = \frac{1}{8} \cot 10^{\circ}$$

39. Since,

40.

$$\cos \theta \cos 2\theta \cos 2^2 \theta \dots \cos 2^{n-1} \theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$$
$$= \frac{\sin(\pi - \theta)}{2^n \sin \theta}$$
$$\dots \left[\because \theta = \frac{\pi}{2^n + 1} (\text{given}) \Longrightarrow 2^n \theta + \theta = \pi \\ \Rightarrow 2^n \theta = \pi - \theta \right]$$
$$= \frac{1}{2^n}$$
$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = \left[\frac{\sin\left(2^3 \cdot \frac{\pi}{7}\right)}{2^3 \sin\left(\frac{\pi}{7}\right)} \right]$$
$$= \frac{\sin \frac{8\pi}{7}}{8 \sin \frac{\pi}{7}}$$
$$= -\frac{1}{8} \qquad \dots \left[\because \sin \frac{8\pi}{7} = \sin\left(\pi + \frac{\pi}{7}\right) = -\sin\frac{\pi}{7} \right]$$

41.
$$\cos \frac{\pi}{5} \cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5} = \frac{\sin \frac{2^{*}\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{\sin \frac{16\pi}{5}}{16 \sin \frac{\pi}{5}}$$

$$= \frac{\sin \left(3\pi + \frac{\pi}{5}\right)}{16 \sin \frac{\pi}{5}}$$

$$= \frac{-\sin \frac{\pi}{5}}{16 \sin \frac{\pi}{5}} = -\frac{1}{16}$$
42. $\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$

$$= \frac{2\left\{\frac{1}{2}\cos 10^{\circ} - \frac{\sqrt{3}}{2}\sin 10^{\circ}\right\}}{\sin 10^{\circ}\cos 10^{\circ}}$$

$$= \frac{2\sin (30^{\circ} - 10^{\circ})}{\frac{1}{2}(\sin 20^{\circ})} = 4$$

$$\frac{1}{2}(\sin 20^{\circ})$$
43. $|\tan A| < 1 \text{ and } |A| \text{ is acute.}$

$$\therefore -\frac{\pi}{4} < A < \frac{\pi}{4} \Rightarrow \cos A > \sin A$$

$$\therefore \frac{\sqrt{1 + \sin 2A} + \sqrt{1 - \sin 2A}}{\sqrt{1 + \sin 2A} - \sqrt{1 - \sin 2A}}$$

$$= \frac{\sqrt{(\cos A + \sin A)^2} + \sqrt{(\cos A - \sin A)^2}}{\sqrt{(\cos A + \sin A)^2} - \sqrt{(\cos A - \sin A)^2}}$$

$$= \frac{|\cos A + \sin A| + |\cos A - \sin A|}{|\cos A + \sin A| - |\cos A - \sin A|}$$

$$= \frac{(\cos A + \sin A) + (\cos A - \sin A)}{(\cos A + \sin A) - (\cos A - \sin A)} = \cot A$$
44. Given that, $\tan x = \frac{b}{a}$

44. Given that,
$$\tan x = \frac{-a}{a}$$

$$\therefore \qquad \sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}} = \sqrt{\frac{1+\frac{b}{a}}{1-\frac{b}{a}}} + \sqrt{\frac{1-\frac{b}{a}}{1+\frac{b}{a}}}$$

$$= \frac{2}{\sqrt{1 - \frac{b^2}{a^2}}} = \frac{2}{\sqrt{1 - \tan^2 x}}$$
$$= \frac{2}{\sqrt{1 - \frac{\sin^2 x}{\cos^2 x}}} = \frac{2\cos x}{\sqrt{\cos 2x}}$$

45. $\tan (60^\circ + A) \tan (60^\circ - A)$
$$= \frac{\sin^2 60^\circ - \sin^2 A}{\cos^2 60^\circ - \sin^2 A}$$
$$= \frac{3}{4} - \left(\frac{1 - \cos 2A}{2}\right)}{\frac{1}{4} - \left(\frac{1 - \cos 2A}{2}\right)} = \frac{3 - 2 + 2\cos 2A}{1 - 2 + 2\cos 2A}$$
$$= \frac{2\cos 2A + 1}{2\cos 2A - 1}$$

46. $\sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta$
$$= 1 - \frac{1}{2}(\sin 2\theta)^2$$
Since, $0 \le \sin^2 2\theta \le 1$
 $\therefore \quad 0 \ge -\frac{1}{2}\sin^2 2\theta \ge -\frac{1}{2}$
$$\Rightarrow 1 + 0 \ge 1 - \frac{1}{2}\sin^2 2\theta \ge 1 - \frac{1}{2}$$
$$\Rightarrow 1 \ge \sin^4 \theta + \cos^4 \theta \ge \frac{1}{2}$$

47. $2\sin^2 x - \cos 2x = 4\sin^2 x - 1$
and $0 \le \sin^2 x \le 1 \Rightarrow 0 \le 4\sin^2 x \le 4$
$$\Rightarrow -1 \le 4\sin^2 x - 1 \le 3$$

48. $3\sin 2\theta = 2\sin 3\theta$
$$\Rightarrow 6\sin \theta \cos \theta = 2(3\sin \theta - 4\sin^3 \theta)$$
Dividing by $2\sin \theta \ne 0$, we get
 $3\cos \theta = 3 - 4\sin^2 \theta$
$$\Rightarrow 3\cos \theta = 3 - 4(1 - \cos^2 \theta)$$
$$\Rightarrow 4\cos^2 \theta - 3\cos \theta - 1 = 0$$
$$\Rightarrow \cos \theta = 1, -\frac{1}{4}$$
But, $0 < \theta < \pi$
 $\therefore \quad \cos \theta = 1, -\frac{1}{4}$
 $\Rightarrow \sin \theta = \sqrt{1 - \frac{1}{16}} = \frac{\sqrt{15}}{4}$

22

49. $\sin 2A = \sin 3A$ \Rightarrow 2 sin A cos A = 3 sin A - 4 sin³ A $\Rightarrow \sin A = 0 \text{ or } 2 \cos A = 3 - 4 \sin^2 A$ \Rightarrow A = 0 or 2 cos A = 3 - 4 (1 - cos² A) \Rightarrow A = 0 or 4 cos² A - 2 cos A - 1 = 0 $\Rightarrow A = 0 \text{ or } \cos A = \frac{2 \pm \sqrt{4 + 16}}{2 \times 4} = \frac{1 \pm \sqrt{5}}{4}$ $\Rightarrow A = 0^{\circ} \text{ or } 36^{\circ} \qquad \dots [\because 0 \le A \le 90^{\circ}]$ 50. $\tan \theta + \tan \left(\theta + \frac{\pi}{3} \right) + \tan \left(\theta + \frac{2\pi}{3} \right) = 3$ $\Rightarrow \tan \theta + \left(\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} + \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}\right) = 3$ $\Rightarrow \tan \theta + \frac{8 \tan \theta}{1 - 3 \tan^2 \theta} = 3$ $\Rightarrow \frac{9\tan\theta - 3\tan^3\theta}{1 - 3\tan^2\theta} = 3$ \Rightarrow 3 tan 3 θ = 3 $\Rightarrow \tan 3\theta = 1$ 51. $\sin \theta = -\frac{4}{5}$ $\Rightarrow \cos \theta = \sqrt{1 - \frac{16}{25}} = \pm \frac{3}{5}$

Since,
$$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$$

= $\pm \sqrt{\frac{1 - 3/5}{2}} = \pm \sqrt{\frac{1}{5}}$
 $\therefore \quad \cos \frac{\theta}{2} = -\frac{1}{\sqrt{5}} \quad \dots \left[\because \frac{\theta}{2} \text{ lies in the } 2^{\text{nd}} \text{ quadrant} \right]$

 $\Rightarrow \cos \theta = \frac{-3}{5} \dots [\because \theta \text{ lies in the } 3^{rd} \text{ quadrant}]$

52. Given that, $\sec \theta = \frac{5}{4}$ Since, $\sec \theta = \frac{1 + \tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)}$ $\Rightarrow \frac{5}{4} = \frac{1 + \tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)}$

$$\Rightarrow 5 - 5 \tan^{2}\left(\frac{\theta}{2}\right) = 4 + 4 \tan^{2}\left(\frac{\theta}{2}\right)$$

$$\Rightarrow 9 \tan^{2}\left(\frac{\theta}{2}\right) = 1 \Rightarrow \tan\left(\frac{\theta}{2}\right) = \frac{1}{3}$$
53. For A = 133°, $\frac{A}{2} = 66.5^{\circ}$

$$\Rightarrow \sin \frac{A}{2} > \cos \frac{A}{2} > 0$$

$$\sqrt{1 + \sin A} = \sin \frac{A}{2} + \cos \frac{A}{2} \qquad \dots(i)$$

and $\sqrt{1 - \sin A} = \sin \frac{A}{2} - \cos \frac{A}{2} \qquad \dots(i)$
Subtracting (ii) from (i), we get
 $2\cos \frac{A}{2} = \sqrt{1 + \sin A} - \sqrt{1 - \sin A}$
54. Given, $\cos \theta = \frac{3}{5} \Rightarrow \sin \theta = \frac{4}{5}$
and $\cos \phi = \frac{4}{5} \Rightarrow \sin \phi = \frac{3}{5}$
 $\therefore \cos (\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi$
 $= \frac{3}{5} \cdot \frac{4}{5} + \frac{4}{5} \cdot \frac{3}{5} = \frac{24}{25}$
But, $2\cos^{2}\left(\frac{\theta - \phi}{2}\right) = 1 + \cos (\theta - \phi) = 1 + \frac{24}{25}$
 $\therefore \cos^{2}\left(\frac{\theta - \phi}{2}\right) = \frac{49}{50} \qquad \therefore \cos\left(\frac{\theta - \phi}{2}\right) = \frac{7}{5\sqrt{2}}$
55. $(\cos \alpha + \cos \beta)^{2} + (\sin \alpha + \sin \beta)^{2}$
 $= \cos^{2} \alpha + \cos^{2} \beta + 2 \cos \alpha \cos \beta + \sin^{2} \alpha$
 $+ \sin^{2} \beta + 2 \sin \alpha \sin \beta$
 $= 2\{1 + \cos (\alpha - \beta)\} = 4\cos^{2}\left(\frac{\alpha - \beta}{2}\right)$
56. $\left(\frac{\sin 2A}{1 + \cos 2A}\right)\left(\frac{\cos A}{1 + \cos A}\right)$
 $= \left(\frac{2\sin A\cos A}{2\cos^{2} A}\right)\left(\frac{\cos A}{1 + \cos A}\right)$
 $= \frac{2\sin \frac{A}{2}\cos \frac{A}{2}$

 $2\cos^2\frac{A}{2}$

 $= \tan \frac{A}{2}$

Chapter 03: Trigonometric Functions

57.
$$\frac{1+\sin A - \cos A}{1+\sin A + \cos A} = \frac{2\sin^2 \frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{A}{2}}{2\cos^2 \frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{A}{2}}$$
$$= \frac{2\sin \frac{A}{2}\left(\sin \frac{A}{2} + \cos \frac{A}{2}\right)}{2\cos \frac{A}{2}\left(\cos \frac{A}{2} + \sin \frac{A}{2}\right)}$$
$$= \tan \frac{A}{2}$$
58.
$$\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{\sin A + 1 - \cos A}{\sin A - 1 + \cos A}$$
$$= \frac{\sin A + (1 - \cos A)}{\sin A - (1 - \cos A)}$$
$$= \frac{2\sin \frac{A}{2}\cos \frac{A}{2} + 2\sin^2 \frac{A}{2}}{2\sin \frac{A}{2}\cos \frac{A}{2} - 2\sin^2 \frac{A}{2}}$$
$$= \frac{\cos \frac{A}{2} + \sin \frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}}$$
$$= \frac{\left(\cos \frac{A}{2} + \sin \frac{A}{2}\right)^2}{\cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}}$$
$$= \frac{1 + \sin A}{\cos A}$$

59.
$$\frac{y+1}{1-y} = \sqrt{\frac{1+\sin\theta}{1-\sin\theta}}$$
$$\Rightarrow \frac{y+1}{1-y} = \sqrt{\frac{\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)^2}{\left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)^2}}$$
$$\Rightarrow \frac{1+y}{1-y} = \frac{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}{\left|\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right|}$$
$$\Rightarrow \frac{1+y}{1-y} = \frac{\cos\frac{\theta}{2} + \sin\frac{\theta}{2}}{\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}$$
$$\dots \left[\because 0 < \theta < \frac{\pi}{2} \Rightarrow 0 < \frac{\theta}{2} < \frac{\pi}{4} \\ \Rightarrow \cos\frac{\theta}{2} > \sin\frac{\theta}{2} \right]$$

$$\Rightarrow \frac{1+y}{1-y} = \frac{1+\tan\frac{\theta}{2}}{1-\tan\frac{\theta}{2}}$$
$$\Rightarrow y = \tan\frac{\theta}{2}$$

60. tan A and tan B are the roots of the equation $x^2 - ax + b = 0$.

$$\therefore$$
 tan A + tan B = a and tan A tan B = b

$$\therefore \quad \tan (A + B) = \frac{a}{1 - b}$$
Now, $\sin^2 (A + B) = \frac{1}{2} \{1 - \cos 2 (A + B)\}$

$$\Rightarrow \sin^2 (A + B) = \frac{1}{2} \{1 - \frac{1 - \tan^2 (A + B)}{1 + \tan^2 (A + B)}\}$$

$$\Rightarrow \sin^2 (A + B) = \frac{1}{2} \{1 - \frac{1 - \frac{a^2}{(1 - b)^2}}{1 + \frac{a^2}{(1 - b)^2}}\}$$

$$\Rightarrow \sin^2 (A + B) = \frac{1}{2} \{\frac{2a^2}{a^2 + (1 - b)^2}\}$$

$$= \frac{a^2}{a^2 + (1 - b)^2}$$

1.
$$\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right)$$

 $= \cos\frac{\pi}{4}\cos x$
 $-\sin\frac{\pi}{4}\sin x + \cos\frac{\pi}{4}\cos x + \sin\frac{\pi}{4}\sin x$
 $= 2\cos\frac{\pi}{4}\cos x$
 $= \frac{2}{\sqrt{2}}\cos x = \sqrt{2}\cos x$
2. $2\sin\left(\theta + \frac{\pi}{3}\right) = \cos\left(\theta - \frac{\pi}{6}\right)$
 $\therefore 2\left(\sin\theta \cdot \cos\frac{\pi}{3} + \cos\theta \cdot \sin\frac{\pi}{3}\right)$
 $= \cos\theta \cdot \cos\frac{\pi}{6} + \sin\theta \cdot \sin\frac{\pi}{6}$

 $2\left(\frac{\sin\theta}{2} + \frac{\sqrt{3}}{2}\cos\theta\right) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$ *.*.. $\sin\theta + \sqrt{3}\cos\theta = 0$ *.*.. $\tan \theta = -\sqrt{3}$ $\cos 15^\circ - \sin 15^\circ = \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos 15^\circ - \frac{1}{\sqrt{2}} \sin 15^\circ \right)$ 3. $=\sqrt{2}\cos(45^\circ + 15^\circ)$ $=\sqrt{2}\cos 60^\circ$ $=\sqrt{2} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}}$ We have, $\sin \theta = \frac{12}{13}$ 4. $\cos \theta = \sqrt{1 - \sin^2 \theta}$ ÷. $=\sqrt{1-\left(\frac{12}{13}\right)^2}=\frac{5}{13}$ $\left[\because 0 < \theta < \frac{\pi}{2}\right]$ and $\cos \phi = \frac{-3}{5}$ $\sin\phi = \sqrt{1 - \frac{9}{25}} = \frac{-4}{5} \qquad \dots \left[\because \pi < \phi < \frac{3\pi}{2} \right]$ ÷. *.*.. $\sin(\theta + \phi) = \sin \theta$. $\cos \phi + \cos \theta$. $\sin \phi$ $=\left(\frac{12}{13}\right)\left(\frac{-3}{5}\right)+\left(\frac{5}{13}\right)\left(\frac{-4}{5}\right)$ $=\frac{-36}{65}-\frac{20}{65}=\frac{-56}{65}$ $\sin \alpha = \frac{15}{17}$ 5. $\Rightarrow \cos \alpha = -\frac{8}{17}$ $\because \frac{\pi}{2} < \alpha < \pi$ $\tan \beta = \frac{12}{5}$ $\Rightarrow \sin \beta = \frac{-12}{13} \text{ and } \cos \beta = \frac{-5}{13}$ \dots $\therefore \pi < \beta < \frac{3\pi}{2}$ $\sin (\beta - \alpha) = \sin \beta \cos \alpha - \cos \beta \sin \alpha = \frac{1/1}{221}$ *.*.. $2\mathbf{A} = (\mathbf{A} + \mathbf{B}) + (\mathbf{A} - \mathbf{B})$ 6. $\Rightarrow \tan 2A = \frac{\tan(A+B) + \tan(A-B)}{1 - \tan(A+B)\tan(A-B)}$ $=\frac{p+q}{1-pq}$

Chapter 03: Trigonometric Functions of Compound Angles Given, $\cos(\alpha + \beta) = \frac{4}{5} \Rightarrow \tan(\alpha + \beta) = \frac{3}{4}$ 7. and $\sin(\alpha - \beta) = \frac{5}{12} \Rightarrow \tan(\alpha - \beta) = \frac{5}{12}$ Now, $\tan 2\alpha = \tan[(\alpha + \beta) + (\alpha - \beta)]$ $=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4}\cdot\frac{5}{12}}=\frac{56}{33}$ Given, $\cos(A - B) = \frac{3}{5}$ 8. $5 \cos A \cos B + 5 \sin A \sin B = 3$ *.*..(i) Also, $\tan A \tan B = 2$ $\sin A \sin B = 2 \cos A \cos B$(ii) *.*.. From (i) and (ii), we get $\cos A \cos B = \frac{1}{5}$ and $\sin A \sin B = \frac{2}{5}$ 9. $\sin \theta = 3 \sin(\theta + 2\alpha)$ $\Rightarrow \sin(\theta + \alpha - \alpha) = 3 \sin(\theta + \alpha + \alpha)$ $\Rightarrow \sin(\theta + \alpha) \cos \alpha - \cos (\theta + \alpha) \sin \alpha$ = $3 \sin(\theta + \alpha) \cos \alpha + 3 \cos(\theta + \alpha) \sin \alpha$ $\Rightarrow -2\sin(\theta + \alpha)\cos\alpha = 4\cos(\theta + \alpha)\sin\alpha$ $\Rightarrow \frac{-\sin(\theta + \alpha)}{\cos(\theta + \alpha)} = \frac{2\sin\alpha}{\cos\alpha}$ $\Rightarrow \tan(\theta + \alpha) + 2 \tan \alpha = 0$ $\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 - n \sin^2 \alpha}$ 10. $\Rightarrow \tan \beta = \frac{n \tan \alpha}{\sec^2 \alpha - n \tan^2 \alpha}$ $=\frac{n\tan\alpha}{1+\tan^2\alpha-n\tan^2\alpha}$ Now, $\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ $\frac{\tan \alpha - \frac{n \tan \alpha}{1 + \tan^2 \alpha - n \tan^2 \alpha}}{1 + \tan \alpha \left(\frac{n \tan \alpha}{1 + \tan^2 \alpha - n \tan^2 \alpha}\right)}$ $= \frac{\tan \alpha + \tan^3 \alpha - n \tan^3 \alpha - n \tan \alpha}{1 + \tan^2 \alpha - n \tan^2 \alpha + n \tan^2 \alpha}$ $=\frac{\tan\alpha(1+\tan^2\alpha)-n\tan\alpha(1+\tan^2\alpha)}{1+\tan^2\alpha}$ $(1 + \tan^2 \alpha)$ $= (1 - n)(\tan \alpha)$

MHT-CET Triumph Maths (Hints) We have, $A - B = \frac{\pi}{4}$ 11. $\Rightarrow \tan (A - B) = \tan \frac{\pi}{4}$ $\Rightarrow \frac{\tan A - \tan B}{1 + \tan A \tan B} = 1$ \Rightarrow tan A - tan B - tan A tan B = 1 \Rightarrow tan A - tan B - tan A tan B + 1 = 2 \Rightarrow (1 + tan A) (1 - tan B) = 2 $\Rightarrow y = 2$ $(y+1)^{y+1} = (2+1)^{2+1} = (3)^3 = 27$ *.*.. 12. Since, $\cos\left(\frac{\pi}{2}\right) = 0$ $\therefore \cos\left[\left(\frac{\pi}{4}+\theta\right)+\left(\frac{\pi}{4}-\theta\right)\right]=0$ $\Rightarrow \cos\left(\frac{\pi}{4} + \theta\right) \cos\left(\frac{\pi}{4} - \theta\right)$ $-\sin\left(\frac{\pi}{4}+\theta\right)\sin\left(\frac{\pi}{4}-\theta\right)=0$ $\Rightarrow \cos\left(\frac{\pi}{4} + \theta\right) \cos\left(\frac{\pi}{4} - \theta\right) = \sin\left(\frac{\pi}{4} + \theta\right) \sin\left(\frac{\pi}{4} - \theta\right)$ $\Rightarrow \cot\left(\frac{\pi}{4} + \theta\right) \cot\left(\frac{\pi}{4} - \theta\right) = 1$ Let $\theta = \alpha + \beta$, where $\tan \alpha = \frac{1}{2}$, $\tan \beta = \frac{1}{3}$ 13. $\tan \theta = \tan(\alpha + \beta) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{2}} = 1 \Longrightarrow \theta = \frac{\pi}{4}$... 14. $\cos P = \frac{1}{7} \Rightarrow \sin P = \frac{\sqrt{48}}{7}$ $\cos Q = \frac{13}{14} \Rightarrow \sin Q = \frac{\sqrt{27}}{14}$ $\cos (P - Q) = \cos P \cos Q + \sin P \sin Q$ *.*.. $=\frac{1}{7}\cdot\frac{13}{14}+\frac{\sqrt{48}}{7}\cdot\frac{\sqrt{27}}{14}$ $=\frac{13+36}{98}=\frac{1}{2}=\cos 60^{\circ}$ $P - Q = 60^{\circ}$ *.*..

15. We have,
$$\sin \alpha = \frac{1}{\sqrt{5}}$$

 $\therefore \cos \alpha = \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} = \frac{2}{\sqrt{5}}$
and $\sin \beta = \frac{3}{5}$
 $\therefore \cos \beta = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$
 $\therefore \sin (\beta - \alpha) = \sin \beta \cos \alpha - \cos \beta \sin \alpha$
 $= \frac{3}{5} \times \frac{2}{\sqrt{5}} - \frac{4}{5} \times \frac{1}{\sqrt{5}} = \frac{2}{5\sqrt{5}}$
 $= 0.1789$
Now, $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} = 0.7071$
Since, $0 < 0.1789 < 0.7071$
 $\therefore \sin 0 < \sin (\beta - \alpha) < \sin \frac{\pi}{4}$
 $\Rightarrow 0 < (\beta - \alpha) < \frac{\pi}{4}$
16. $\tan \theta_1 = k \cot \theta_2$
 $\Rightarrow \frac{\tan \theta_1 + \cot \theta_2}{\cot \theta_2} = \frac{k+1}{k-1}$
 $\Rightarrow \frac{\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2}{\sin \theta_1 \sin \theta_2 - \cos \theta_1 \cos \theta_2} = \frac{k+1}{k-1}$
 $\Rightarrow \frac{\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2}{\cos (\theta_1 - \theta_2)} = \frac{k+1}{1-k}$
 $\Rightarrow \frac{\cos (\theta_1 - \theta_2)}{\cos (\theta_1 - \theta_2)} = \frac{1-k}{1-k}$
 $\Rightarrow \frac{\cos (17^\circ + \sin 17^\circ}{\cos 17^\circ - \sin 17^\circ} = \frac{1 + \tan 17^\circ}{1 - \tan 17^\circ}$
 $= \frac{\tan 45^\circ + \tan 17^\circ}{1 - \tan 45^\circ \tan 17^\circ}$

 $= \tan(45^{\circ} + 17^{\circ})$

 $= \tan 62^{\circ}$

18.
$$\frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} - \sin 9^{\circ}} = \frac{1 + \tan 9^{\circ}}{1 - \tan 9^{\circ}}$$
$$= \tan (45^{\circ} + 9^{\circ})$$
$$= \tan 54^{\circ}$$
19. We have,
$$\tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$$
$$\Rightarrow \tan \theta = \frac{\frac{1}{\sqrt{2}} (\sin \alpha - \cos \alpha)}{\frac{1}{\sqrt{2}} (\sin \alpha + \cos \alpha)}$$
$$\Rightarrow \tan \theta = \frac{\sin \alpha \cos \frac{\pi}{4} - \cos \alpha \sin \frac{\pi}{4}}{\sin \alpha \sin \frac{\pi}{4} + \cos \alpha \cos \frac{\pi}{4}}$$
$$\Rightarrow \tan \theta = \frac{\sin \left(\alpha - \frac{\pi}{4}\right)}{\cos \left(\alpha - \frac{\pi}{4}\right)}$$
$$\Rightarrow \tan \theta = \tan \left(\alpha - \frac{\pi}{4}\right)$$
$$\Rightarrow \theta = \alpha - \frac{\pi}{4} \Rightarrow \alpha = \theta + \frac{\pi}{4}$$
$$\therefore \quad \sin \alpha + \cos \alpha = \sin \left(\theta + \frac{\pi}{4}\right) + \cos \left(\theta + \frac{\pi}{4}\right)$$
$$= \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta$$
$$= \frac{2}{\sqrt{2}} \cos \theta = \sqrt{2} \cos \theta$$
and $\sin \alpha - \cos \alpha = \sin \left(\theta + \frac{\pi}{4}\right) - \cos \left(\theta + \frac{\pi}{4}\right)$
$$= \frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \cos \theta + \frac{1}{\sqrt{2}} \sin \theta$$
$$= \frac{2}{\sqrt{2}} \sin \theta = \sqrt{2} \sin \theta$$
20.
$$\cos^{2} 45^{\circ} - \sin^{2} 15^{\circ} = \cos (45 + 15)^{\circ}$$
$$= \cos (45 - 15)^{\circ}$$
$$\dots [\because \cos^{2} A - \sin^{2} B = \cos (A + B) \cos(A - B)]$$
$$= \cos 60^{\circ} \cos 30^{\circ}$$
$$= \frac{\sqrt{3}}{4}$$

Chapter 03: Trigonometric Functions
of Compound Angles
21.
$$\cos^2\left(\frac{\pi}{6}+\theta\right) - \sin^2\left(\frac{\pi}{6}-\theta\right)$$

 $= \cos\left(\frac{\pi}{6}+\theta+\frac{\pi}{6}-\theta\right)\cos\left(\frac{\pi}{6}+\theta-\frac{\pi}{6}+\theta\right)$
 $\dots [\because \cos^2 A - \sin^2 B = \cos (A+B) \cos(A-B)]$
 $= \cos\frac{2\pi}{6}\cos 2\theta = \frac{1}{2}\cos 2\theta$
22. Let $f(x) = \sin\left(x+\frac{\pi}{6}\right) + \cos\left(x+\frac{\pi}{6}\right)$. Then,
 $f(x) = \sqrt{2} \left[\cos\left(x+\frac{\pi}{6}\right)\cos\frac{\pi}{4}+\sin\left(x+\frac{\pi}{6}\right)\sin\frac{\pi}{4}\right]$
 $= \sqrt{2} \left[\cos\left(x+\frac{\pi}{6}-\frac{\pi}{4}\right)$
 $\dots [\because \cos(A-B) = \cos A \cos B + \sin A \sin B]$
 $= \sqrt{2} \cos\left(x-\frac{\pi}{12}\right)$
Since, $-1 \le \cos\left(x-\frac{\pi}{12}\right) \le 1$
 \therefore $f(x)$ is maximum, if $x - \frac{\pi}{12} = 0$ i.e., if $x = \frac{\pi}{12}$
23. $\sin 15^\circ = \sin(45^\circ - 30^\circ)$
 $= \sin45^\circ \cos30^\circ - \cos45^\circ \sin30^\circ$
 $= \left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}}$
24. $\sin 75^\circ = \sin(90^\circ - 15^\circ)$
 $= \cos 15^\circ$
 $= \cos (45^\circ - 30^\circ)$
 $= \frac{\sqrt{3}+1}{2\sqrt{2}}$
25. $\sin 765^\circ = \sin (720 + 45)^\circ$
 $= \sin (4\pi + 45)^\circ$
 $= \sin 45^\circ \dots [\because \sin (2\pi + \theta) = \sin \theta]$
 $= \frac{1}{\sqrt{2}}$
26. $\tan \theta \sin\left(\frac{\pi}{2}+\theta\right)\cos\left(\frac{\pi}{2}-\theta\right)$
 $= \tan \theta \cos \theta \sin \theta$

МНТ	-CET Triumph Maths (Hints)		
27.	$\cot (45^\circ + \theta) \cot (45^\circ - \theta)$	32.	$\sin(\pi + \theta) \sin(\pi - \theta)$
	$= \tan \left(90^\circ - 45^\circ - \theta\right) \cot \left(45^\circ - \theta\right)$		$= -\sin\theta\sin\theta\frac{1}{1}$
	$\dots [\because \tan (90^\circ - \theta) = \cot \theta]$		= -1
	$= \tan \left(45^\circ - \theta\right) \cot \left(45^\circ - \theta\right) = 1$	22	
28.	$\tan 75^{\circ} - \cot 75^{\circ} = \tan (90^{\circ} - 15^{\circ}) - \cot 75^{\circ} = \cot 15^{\circ} - \cot 75^{\circ} = (2 + \sqrt{3}) - (2 - \sqrt{3}) = 2\sqrt{3}$	33.	Given that, ABCD So, $A + C = 180^\circ =$ $\Rightarrow \cos A = \cos(180^\circ)$ $\Rightarrow \cos A + \cos C =$ Similarly, $\cos B +$ Adding, (i) and (ii) $\cos A + \cos B + \cos B + \cos B$
29.	$\tan 50^\circ = \tan (70^\circ - 20^\circ) = \frac{1}{1 + \tan 70^\circ \tan 20^\circ}$ $\Rightarrow \tan 50^\circ + \tan 70^\circ \tan 20^\circ \tan 50^\circ$	34.	$\cos (270^{\circ} + \theta) \cos (\theta)$ $= \sin \theta. \sin \theta + \cos \theta$
	$= \tan 70^\circ - \tan 20^\circ$ $\Rightarrow \tan 50^\circ + \tan 50^\circ = \tan 70^\circ - \tan 20^\circ$	35.	cos A + sin (270° +
	$\dots [\because \tan 70^\circ = \cot 20^\circ]$		$= \cos A - \cos A +$
	$\Rightarrow 2 \tan 50^\circ + \tan 20^\circ = \tan 70^\circ$	36.	tan A + cot (180° +
30.	$\sec 50^\circ + \tan 50^\circ$		
	$=\frac{1}{\cos 50^\circ}+\tan 50^\circ$	27	$= \tan A + \cot A -$
	$= \frac{\cos 20^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}} + \tan 50^{\circ}$	37.	$\sin 1^{\circ} + \sin 2^{\circ} + \dots$ = (sin 1° + sin 359° + (sin
	$=\frac{\sin 70^{\circ}}{\cos 20^{\circ}\cos 50^{\circ}}+\tan 50^{\circ}$		$= (\sin 1^{\circ} - \sin 1^{\circ}) + (\sin 1^{\circ})$
	$\ldots [\because \cos \theta = \sin (90^\circ - \theta)]$		= 0
	$\sin(50^\circ + 20^\circ)$	38.	sin 600° cos 330° -
	$= \frac{1}{\cos 20^\circ \cos 50^\circ} + \tan 50^\circ$		$= -\sin 60^{\circ} \cos 30^{\circ}$
	$=\frac{\sin 50^{\circ} \cos 20^{\circ} + \cos 50^{\circ} \sin 20^{\circ}}{\tan 50^{\circ}} + \tan 50^{\circ}$		$= -\{\sin(60^{\circ} + 30^{\circ})\}$ = -1
	$\cos 20^{\circ} \cos 50^{\circ}$ $\sin 50^{\circ} \cos 20^{\circ}$	20	
	$= \frac{\sin 30^{\circ} \cos 20^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}} + \frac{\cos 30^{\circ} \sin 20^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}} + \tan 50^{\circ}$	39.	Let $f(x) = 2 \sin 3x$
	$= \tan 50^\circ + \tan 20^\circ + \tan 50^\circ$ $= 2 \tan 50^\circ + \tan 20^\circ$		$f\left(\frac{3\pi}{6}\right) = 2\sin\left(\frac{3\pi}{2}\right)$
31.	$2 \sec 2\alpha = \tan \beta + \cot \beta$		$=2\sin\left(2\pi+\frac{\pi}{2}\right)+3$
	$\Rightarrow \frac{2}{1} = \frac{\sin\beta}{\cos\beta} + \frac{\cos\beta}{\cos\beta}$		(2)
	$rac{1}{2} \cos 2\alpha - \cos \beta + \sin \beta$		$=2\sin\frac{\pi}{2}+3\cos\frac{\pi}{2}$
	$=\frac{\sin^2\beta + \cos^2\beta}{\cos^2\beta} = \frac{1}{\cos^2\beta}$		2 2
	$\Rightarrow \cos 2\alpha = \sin 2\beta \Rightarrow \cos 2\alpha = \cos\left(\frac{\pi}{2} - 2\beta\right)$	40.	$\frac{1-\tan 2^\circ \cot 62^\circ}{\tan 152^\circ - \cot 88^\circ} =$
			$=\frac{1-\tan 2^{\circ}\cot 62^{\circ}}{1-\tan 2^{\circ}\cot 62^{\circ}}$
	$\Rightarrow 2\alpha = \frac{\pi}{2} - 2\beta \Rightarrow 2\alpha + 2\beta = \frac{\pi}{2}$		$-\cot 62^\circ - \tan 2^\circ$
	$\rightarrow \alpha + \beta = \pi$		$= -\tan(62^\circ - 2^\circ)$
	$\rightarrow \alpha + p - \frac{1}{4}$		$= -\tan 60^\circ = -\sqrt{3}$

 $\sin(\pi + \theta) \sin(\pi - \theta) \csc^2 \theta$ $= -\sin\theta\sin\theta\frac{1}{\sin^2\theta}$ = -1 Given that, ABCD is a cyclic quadrilateral. So, $A + C = 180^{\circ} \Rightarrow A = 180^{\circ} - C$ $\Rightarrow \cos A = \cos(180^\circ - C) = -\cos C$ $\Rightarrow \cos A + \cos C = 0$(i) Similarly, $\cos B + \cos D = 0$ (ii) Adding, (i) and (ii), we get $\cos A + \cos B + \cos C + \cos D = 0$ $\cos(270^\circ+\theta)\cos(90^\circ-\theta) - \sin(270^\circ-\theta)\cos\theta$ $=\sin\theta$. $\sin\theta + \cos\theta$. $\cos\theta = 1$ $\cos A + \sin (270^\circ + A) - \sin (270^\circ - A)$ $+\cos(180^{\circ} + A)$ $= \cos A - \cos A + \cos A - \cos A = 0$ $\tan A + \cot (180^{\circ} + A) + \cot (90^{\circ} + A)$ $+ \cot(360^{\circ} - A)$ $= \tan A + \cot A - \tan A - \cot A = 0$ $\sin 1^{\circ} + \sin 2^{\circ} + \ldots + \sin 359^{\circ}$ $= (\sin 1^{\circ} + \sin 359^{\circ}) + (\sin 2^{\circ} + \sin 358^{\circ}) + \dots$ $+(\sin 179^{\circ} + \sin 181^{\circ}) + \sin 180^{\circ}$ $= (\sin 1^{\circ} - \sin 1^{\circ}) + (\sin 2^{\circ} - \sin 2^{\circ}) + \dots$ $+(\sin 179^{\circ} - \sin 179^{\circ}) + \sin 180^{\circ}$ = 0sin 600° cos 330° + cos 120° sin 150° $= -\sin 60^\circ \cos 30^\circ - \sin 30^\circ \cos 60^\circ$ $= -\{\sin(60^\circ + 30^\circ)\}$ = -1Let $f(x) = 2 \sin 3x + 3 \cos 3x$ $f\left(\frac{5\pi}{6}\right) = 2\sin\left(\frac{5\pi}{2}\right) + 3\cos\left(\frac{5\pi}{2}\right)$ $= 2\sin\left(2\pi + \frac{\pi}{2}\right) + 3\cos\left(2\pi + \frac{\pi}{2}\right)$ $= 2\sin\frac{\pi}{2} + 3\cos\frac{\pi}{2} = 2(1) + 3(0) = 2$ $\frac{1 - \tan 2^{\circ} \cot 62^{\circ}}{\tan 152^{\circ} - \cot 88^{\circ}} = \frac{1 - \tan 2^{\circ} \cot 62^{\circ}}{\tan (90^{\circ} + 62^{\circ}) - \cot (90^{\circ} - 2^{\circ})}$ $= \frac{1 - \tan 2^{\circ} \cot 62^{\circ}}{-\cot 62^{\circ} - \tan 2^{\circ}} = \frac{\tan 62^{\circ} - \tan 2^{\circ}}{-(1 + \tan 2^{\circ} \tan 62^{\circ})}$ $=-\tan(62^\circ-2^\circ)$

41. $\frac{\cos 12^{\circ} - \sin 12^{\circ}}{\cos 12^{\circ} + \sin 12^{\circ}} + \frac{\sin 147^{\circ}}{\cos 147^{\circ}}$ $= \frac{1 - \tan 12^{\circ}}{1 + \tan 12^{\circ}} + \tan 147^{\circ}$ $= \tan (45^{\circ} - 12^{\circ}) + \tan (180^{\circ} - 33^{\circ})$ $= \tan 33^{\circ} - \tan 33^{\circ} = 0$ 42. $\frac{\tan 160^{\circ} - \tan 110^{\circ}}{1 + (\tan 160^{\circ}) (\tan 110^{\circ})}$ $= \frac{\tan (180^{\circ} - 160^{\circ}) - \cot (90^{\circ} - 110^{\circ})}{1 + [\tan (180^{\circ} - 160^{\circ}) \cot (90^{\circ} - 110^{\circ})]}$ $= \frac{-\tan 20^{\circ} + \cot 20^{\circ}}{1 + (-\tan 20^{\circ})(-\cot 20^{\circ})}$ $= \frac{-\lambda + \frac{1}{\lambda}}{1 + 1}$ $= \frac{1 - \lambda^{2}}{2\lambda}$

43. $\sin^2 17.5^\circ + \sin^2 72.5^\circ$ = $\sin^2 17.5^\circ + [\sin (90^\circ - 17.5^\circ)]^2$ = $\sin^2 17.5^\circ + \cos^2 17.5^\circ$ = $1 = \tan^2 45^\circ$

44. $3\left\{\sin^{4}\left(\frac{3\pi}{2} - \alpha\right) + \sin^{4}(3\pi + \alpha)\right\}$ $-2\left\{\sin^{6}\left(\frac{\pi}{2} + \alpha\right) + \sin^{6}(5\pi - \alpha)\right\}$ $= 3\left\{(-\cos \alpha)^{4} + (-\sin \alpha)^{4}\right\} - 2(\cos^{6} \alpha + \sin^{6} \alpha)$ $= 3(1 - 2\sin^{2} \alpha \cos^{2} \alpha) - 2(1 - 3\sin^{2} \alpha \cos^{2} \alpha)$ $= 3 - 6\sin^{2} \alpha \cos^{2} \alpha - 2 + 6\sin^{2} \alpha \cos^{2} \alpha$ = 3 - 2 = 1

45.
$$\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + ... + \sin^2 85^\circ + \sin^2 90^\circ$$

Since, $\sin 90^\circ = 1$ or $\sin^2 90^\circ = 1$
Similarly, $\sin 45^\circ = \frac{1}{\sqrt{2}}$ or $\sin^2 45^\circ = \frac{1}{2}$ and
the angles are in A.P. of 18 terms.
Also, $\sin^2 85^\circ = [\sin(90^\circ - 5^\circ)]^2 = \cos^2 5^\circ$
Therefore from the complementary rule, we
have $\sin^2 5^\circ + \sin^2 85^\circ = \sin^2 5^\circ + \cos^2 5^\circ = 1$
∴ $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + ... + \sin^2 85^\circ + \sin^2 90^\circ$
 $= (1 + 1 + 1 + 1 + 1 + 1 + 1) + 1 + \frac{1}{2}$
 $= 9\frac{1}{2}$

of Compound Angles $46. \quad \cos 15^\circ = \sqrt{\frac{1+\cos(2\times 15^\circ)}{2}}$ $=\sqrt{\frac{1+\cos 30^\circ}{2}}$ 47. $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \text{irrational}$ $\cos 15^\circ = \cos (45^\circ - 30^\circ) = \frac{\sqrt{3} + 1}{2\sqrt{2}} = irrational$ $\sin 15^{\circ} \cos 15^{\circ} = \frac{1}{2} (2 \sin 15^{\circ} \cos 15^{\circ})$ $=\frac{1}{2}\sin 30^\circ = \frac{1}{2}\cdot\frac{1}{2}$ $=\frac{1}{4}$ = rational $\sin 15^\circ \cos 75^\circ = \sin 15^\circ \sin 15^\circ$ $=\sin^2 15^\circ$ $=\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)^2$ $=\frac{4-2\sqrt{3}}{9}$ = irrational 48. $\frac{1}{8}(3-4\cos 2\theta+\cos 4\theta)$ $=\frac{1}{8}(3-4\cos 2\theta+2\cos^2 2\theta-1)$ $=\frac{1}{9}(2\cos^2 2\theta - 4\cos 2\theta + 2)$ $=\frac{1}{4}(\cos^2 2\theta - 2\cos 2\theta + 1)$ $=\frac{1}{4}(\cos 2\theta - 1)^2$ $= \frac{1}{4} (-2\sin^2\theta)^2 \quad \dots [\because \cos 2\theta = 1 - 2\sin^2\theta]$ $=\frac{1}{4}(4\sin^4\theta)=\sin^4\theta$ $1-\sin 2x$ 49.

Chapter 03: Trigonometric Functions

$$\sec 2x - \tan 2x = \frac{1}{\cos 2x}$$
$$= \frac{(\cos x - \sin x)^2}{(\cos^2 x - \sin^2 x)}$$
$$= \frac{\cos x - \sin x}{\cos x + \sin x}$$
$$= \frac{1 - \tan x}{1 + \tan x}$$

50.

$$=\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\left(\frac{\pi}{4}\right)\tan x}$$
$$= \tan\left(\frac{\pi}{4} - x\right)$$
$$\sqrt{3}\operatorname{cosec} 20^\circ - \sec 20^\circ = \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}$$
$$=\frac{\sqrt{3}\cos 20^\circ - \sin 20^\circ}{\sin 20^\circ \cos 20^\circ}$$
$$=\frac{2\left[\frac{\sqrt{3}}{2}\cos 20^\circ - \frac{1}{2}\sin 20^\circ\right]}{\frac{2}{2}\sin 20^\circ \cos 20^\circ}$$
$$=\frac{4\cos(20^\circ + 30^\circ)}{\sin 40^\circ} = \frac{4\cos 50^\circ}{\sin 40^\circ}$$
$$=\frac{4\sin 40^\circ}{\sin 40^\circ}$$
$$=4$$

 $\tan(1^{\circ}) + \tan(89^{\circ})$ 51. $= \tan 1^{\circ} + \cot 1^{\circ} \quad \dots [\because \tan (90^{\circ} - \theta) = \cot \theta]$ $=\frac{\tan^2 1^{\circ} + 1}{\tan 1^{\circ}}$ $=\frac{\sec^{2}1^{\circ}}{\tan 1^{\circ}}=\frac{1}{\sin 1^{\circ}\cos 1^{\circ}}=\frac{2}{\sin 2^{\circ}}$ 52. $\cot 2\theta + \tan \theta = \frac{1}{\tan 2\theta} + \tan \theta$ $=\frac{1-\tan^2\theta}{2\tan\theta}+\tan\theta$ $=\frac{1+\tan^2\theta}{2\tan\theta}=\frac{1}{\sin2\theta}$ = cosec 2θ Now, $\cot \frac{2x}{3} + \tan \frac{x}{3} = \csc \frac{kx}{3}$ \Rightarrow cosec $\frac{2x}{3} =$ cosec $\frac{kx}{3}$ \Rightarrow k = 2 53. $2\sin^2\left[\left(\frac{\pi}{2}\right)\cos^2 x\right] = 1 - \cos\left(\pi \sin 2x\right)$ $\Rightarrow 2\sin^2\left[\left(\frac{\pi}{2}\right)\cos^2 x\right] = 2\sin^2\left[\frac{\pi\sin 2x}{2}\right]$ $\Rightarrow \cos^2 x = \sin 2x \Rightarrow \cos^2 x = 2 \sin x \cos x$ 30

$$\Rightarrow \tan x = \frac{1}{2}$$
Now, $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{1 - \frac{1}{4}}{1 + \frac{1}{4}} = \frac{3}{5}$
54. $8 \cos 2\theta + 8 \sec 2\theta = 65$
 $\Rightarrow 8 \cos^2 2\theta + 8 = 65 \cos 2\theta$
 $\Rightarrow 8 \cos^2 2\theta - 65 \cos 2\theta + 8 = 0$
 $\Rightarrow (\cos 2\theta - 8) (8 \cos 2\theta - 1) = 0$
Since, $\cos 2\theta \in [-1, 1]$
 $\therefore \quad \cos 2\theta = \frac{1}{8}$
Now, $4 \cos 4\theta = 4(2 \cos^2 2\theta - 1)$
 $= 4\left[2\left(\frac{1}{8}\right)^2 - 1\right] = -\frac{31}{8}$
55. $5(\tan^2 x - \cos^2 x) = 2 \cos 2x + 9$
Put $\cos^2 x = t$
 $\therefore \quad 5\left(\frac{1 - t}{t} - t\right) = 2(2t - 1) + 9$
 $\Rightarrow 5(1 - t - t^2) = 4t^2 - 2t + 9t$
 $\Rightarrow 9t^2 + 12t - 5 = 0$
 $\Rightarrow 9t^2 + 15t - 3t - 5 = 0$
 $\Rightarrow 1(3t + 5) - 1(3t + 5) = 0$
 $\Rightarrow (3t + 5)(3t - 1) = 0$
 $\Rightarrow t = \frac{1}{3} \text{ or } t = -\frac{5}{3}$
But t cannot be negative
 $\therefore \quad t = \frac{1}{3}$
 $\Rightarrow \cos 2x = 2 \cos^2 x - 1$
 $= \frac{2}{3} - 1 = -\frac{1}{3}$
 $\Rightarrow \cos 4x = 2 \cos^2 2x - 1$
 $= 2\left(\frac{-1}{3}\right)^2 - 1$
 $= 2\left(\frac{-1}{3}\right)^2 - 1$
 $= 2\left(\frac{-1}{3}\right)^2 - 1$
 $= 2\left(\frac{-1}{3}\right)^2 - 1$
 $= \frac{-7}{9}$
56. $x + \frac{1}{x} = 2\cos \alpha$
Squaring on both sides, we get
 $x^2 + \frac{1}{x^2} + 2 = 4 \cos^2 \alpha$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = 4\cos^{2} \alpha - 2$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = 2(2\cos^{2} \alpha - 1)$$

$$= 2\cos 2\alpha$$

Similarly, $x^{n} + \frac{1}{x^{n}} = 2\cos n\alpha$
57. $\sin x + \cos x = \frac{1}{5}$

$$\Rightarrow \sin^{2} x + \cos^{2} x + 2\sin x \cos x = \frac{1}{25}$$

$$\Rightarrow \sin^{2} x + \cos^{2} x + 2\sin x \cos x = \frac{1}{25}$$

$$\Rightarrow \sin^{2} x + \cos^{2} x + 2\sin x \cos x = \frac{1}{25}$$

$$\Rightarrow \sin 2x = \frac{-24}{25} \Rightarrow \cos 2x = \frac{-7}{25}$$

$$\Rightarrow \tan 2x = \frac{24}{7}$$

58. $3\tan A - 4 = 0$

$$\Rightarrow \tan A = \frac{4}{3}$$

$$\Rightarrow \sin A = -\frac{4}{5}, \cos A = -\frac{3}{5}$$

$$\therefore 5\sin 2A + 3\sin A + 4\cos A$$

$$= 10\sin A\cos A + 3\sin A + 4\cos A$$

$$= 10\left(\frac{12}{25}\right) - \frac{12}{5} - \frac{12}{5} = 0$$

59. $a\cos 2\theta + b\sin 2\theta = a\left(\frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta}\right) + b\left(\frac{2\tan \theta}{1 + \tan^{2} \theta}\right)$

$$= a\left(\frac{1 - \frac{b^{2}}{a^{2}}}{1 + \frac{b^{2}}{a^{2}}}\right) + b\left(\frac{\frac{2b}{a}}{1 + \frac{b^{2}}{a^{2}}}\right)$$

$$\dots \left[\because \tan \theta = \frac{b}{a}(\text{given})\right]$$

$$= a\left(\frac{a^{2} - b^{2}}{a^{2} + b^{2}}\right) + b\left(\frac{2ba}{a^{2} + b^{2}}\right)$$

$$= \frac{1}{(a^{2} + b^{2})}(a^{3} - ab^{2} + 2ab^{2}) = \frac{a(a^{2} + b^{2})}{a^{2} + b^{2}}$$

$$= a$$

60. $a\cos 2\theta + b\sin 2\theta = c$

60.
$$a \cos 2\theta + b \sin 2\theta = c$$

 $\Rightarrow a \left(\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) + b \left(\frac{2 \tan \theta}{1 + \tan^2 \theta} \right) = c$
 $\Rightarrow a - a \tan^2 \theta + 2b \tan \theta = c + c \tan^2 \theta$
 $\Rightarrow - (a + c) \tan^2 \theta + 2b \tan \theta + (a - c) = 0$
 $\therefore \quad \tan \alpha + \tan \beta = -\frac{2b}{-(c + a)} = \frac{2b}{c + a}$

Chapter 03: Trigonometric Functions of Compound Angles 61. 6 cos θ + 8 sin θ = 9(i)
⇒ 8 sin θ = 9 - 6 cos θ
Squaring on both sides, we get
64 sin²θ = 81 - 108 cos θ + 36 cos² θ
⇒ 64(1 - cos² θ) = 81 - 108 cos θ + 36 cos² θ
⇒ 100 cos² θ - 108 cos θ + 17 = 0
∴ cos α cos β =
$$\frac{17}{100}$$

From (i), 6 cos θ = 9 - 8 sin θ
Squaring on both sides, we get
36 cos² θ = 81 - 144 sin θ + 64 sin² θ
⇒ 36(1 - sin² θ) = 81 - 144 sin θ + 64 sin² θ
⇒ 100 sin² θ - 144 sin θ + 45 = 0
∴ sin α sin β = $\frac{45}{100}$
Now, cos(α + β) = cos α cos β - sin α sin β
 $= \frac{17}{100} - \frac{45}{100} = \frac{-28}{100} = \frac{-14}{50}$
∴ sin(α + β) = $\sqrt{1 - cos^2 (\alpha + \beta)}$
 $= \sqrt{1 - (\frac{-14}{50})^2} = \frac{1}{50} \sqrt{2500 - 196}$
 $= \frac{48}{50} = \frac{24}{25}$
62. 25 cos² α + 5 cos α - 12 = 0
⇒ cos α = $\frac{-5 \pm \sqrt{25 + 1200}}{50} = \frac{-5 \pm 35}{50}$
⇒ cos α = $\frac{-4}{5}$ [$\because \frac{\pi}{2} < \alpha < \pi \Rightarrow cos \alpha < 0$]
⇒ sin α = $\sqrt{1 - (\frac{-4}{5})^2} = \frac{3}{5}$
∴ sin 2α = 2 sin α cos α = $\frac{-24}{25}$

63.
$$2 \cos^2 \theta - 2 \sin^2 \theta = 1$$

 $\Rightarrow 2 \cos 2\theta = 1 \Rightarrow \cos 2\theta = \frac{1}{2} = \cos 60^\circ$
 $\Rightarrow 2\theta = 60^\circ \Rightarrow \theta = 30^\circ$

64.
$$2 \sin A \cos^{3} A - 2 \sin^{3} A \cos A$$
$$= 2 \sin A \cos A (\cos^{2} A - \sin^{2} A)$$
$$= 2 \sin A \cos A \cos 2A$$
$$= \sin 2A \cos 2A$$
$$= \frac{1}{2} \sin 4A$$

31

$$65. \quad \sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8}$$

$$= \frac{1}{4} \left[\left(2\sin^2 \frac{\pi}{8} \right)^2 + \left(2\sin^2 \frac{3\pi}{8} \right)^2 \right]$$

$$+ \frac{1}{4} \left[\left(2\sin^2 \frac{\pi}{8} \right)^2 + \left(2\sin^2 \frac{3\pi}{8} \right)^2 \right]$$

$$= \frac{1}{4} \left[\left(1 - \cos \frac{\pi}{4} \right)^2 + \left(1 - \cos \frac{3\pi}{4} \right)^2 \right]$$

$$+ \frac{1}{4} \left[\left(1 - \cos \frac{\pi}{4} \right)^2 + \left(1 - \cos \frac{3\pi}{4} \right)^2 \right]$$

$$= \frac{1}{4} \left[\left(1 - \frac{1}{\sqrt{2}} \right)^2 + \left(1 + \frac{1}{\sqrt{2}} \right)^2 \right]$$

$$+ \frac{1}{4} \left[\left(1 - \frac{1}{\sqrt{2}} \right)^2 + \left(1 + \frac{1}{\sqrt{2}} \right)^2 \right]$$

$$= \frac{1}{4} (3) + \frac{1}{4} (3) = \frac{3}{2}$$

 $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2$ 66. $+4(\sin^6 x + \cos^6 x)$ $= 3(\sin^2 x + \cos^2 x - 2\sin x \cos x)^2 + 6(\sin^2 x)^2$ $+\cos^{2} x + 2\sin x \cos x + 4(\sin^{6} x + \cos^{6} x)$ $= 3(1 - \sin 2x)^2 + 6(1 + \sin 2x)$ $+4(1-3\sin^2 x \cos^2 x)$ $= 3 + 3\sin^2 2x - 6\sin 2x + 6 + 6\sin 2x$ $+4-3\sin^2 2x$ $= 9 + 4 + 3 \sin^2 2x - 3 \sin^2 2x = 13$ 67. $\sin 2\theta + \sin 2\phi = \frac{1}{2}$(i) and $\cos 2\theta + \cos 2\phi = \frac{3}{2}$(ii) Squaring and adding (i) and (ii), we get $(\sin^2 2\theta + \cos^2 2\theta) + (\sin^2 2\phi + \cos^2 2\phi)$ $+2(\sin 2\theta \sin 2\phi + \cos 2\theta \cos 2\phi) = \frac{1}{4} + \frac{9}{4}$ $\Rightarrow \cos 2\theta \cos 2\phi + \sin 2\theta \sin 2\phi = \frac{1}{4}$ $\Rightarrow \cos(2\theta - 2\phi) = \frac{1}{4}$ $\Rightarrow 2\cos^2(\theta - \phi) - 1 = \frac{1}{4}$ $\Rightarrow \cos^2(\theta - \phi) = \frac{5}{8}$

$$68. \quad \cos \alpha \cos 2 \alpha \cos 2^{2} \alpha \cos 2^{3} \alpha \dots \cos 2^{n-1} \alpha \\ = \frac{2^{n} \sin \alpha \cos \alpha \cos 2 \alpha \cos 2^{2} \alpha \dots \cos 2^{n-1} \alpha}{2^{n} \sin \alpha} \\ = \frac{\sin \left\{2(2^{n-1}\alpha)\right\}}{2^{n} \sin \alpha} \\ (\text{using } 2 \sin \theta \cos \theta = \sin 2\theta \text{ again and again}) \\ = \frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha} \\ 69. \quad \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} \\ = \frac{\sin 2^{4} \frac{2\pi}{15}}{2^{4} \sin \frac{2\pi}{15}} = \frac{\sin \frac{32\pi}{15}}{16 \sin \frac{2\pi}{15}} \\ = \frac{\sin \left(2\pi + \frac{2\pi}{15}\right)}{16 \sin \frac{2\pi}{15}} = \frac{\sin \frac{2\pi}{15}}{16 \sin \frac{2\pi}{15}} = \frac{1}{16} \\ 70. \quad \text{k} = \sin \frac{\pi}{18} \sin \frac{5\pi}{18} \sin \frac{7\pi}{18} \\ = \cos \left(\frac{\pi}{2} - \frac{\pi}{18}\right) \cos \left(\frac{\pi}{2} - \frac{5\pi}{18}\right) \cos \left(\frac{\pi}{2} - \frac{7\pi}{18}\right) \\ = \cos \left(\frac{\pi}{2} - \frac{\pi}{18}\right) \cos \left(\frac{\pi}{2} - \frac{5\pi}{18}\right) \cos \left(\frac{\pi}{2} - \frac{7\pi}{18}\right) \\ = \cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9} = \frac{\sin 2^{3} \frac{\pi}{9}}{2^{3} \sin \frac{\pi}{9}} \\ = \frac{\sin \frac{8\pi}{9}}{8 \sin \frac{\pi}{9}} = \frac{\sin \left(\pi - \frac{\pi}{9}\right)}{8 \sin \frac{\pi}{9}} = \frac{1}{8} \\ 71. \quad \sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{7\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14} \\ = \sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{7\pi}{14} \sin \frac{9\pi}{14} \sin \frac{11\pi}{14} \sin \frac{13\pi}{14} \\ = \sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin \frac{5\pi}{14} \sin \frac{\pi}{14} \right)^{2} \\ = \left(\cos \frac{6\pi}{14} \cos \frac{4\pi}{14} \cos \frac{2\pi}{14}\right)^{2} \\ = \left(\cos \frac{6\pi}{14} \cos \frac{4\pi}{14} \cos \frac{2\pi}{14}\right)^{2}$$

$$= \left(\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{3\pi}{7}\right)^2$$
$$= \left(-\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7}\right)^2$$
$$\dots \left[\because \cos\frac{3\pi}{7} = \cos\left(\pi - \frac{4\pi}{7}\right) = -\cos\frac{4\pi}{7}\right]$$
$$= \left(-\frac{\sin\frac{2^3\pi}{7}}{2^3\sin\frac{\pi}{7}}\right)^2 = \frac{1}{64}\left(-\frac{\sin\frac{8\pi}{7}}{\sin\frac{\pi}{7}}\right)^2$$
$$= \frac{1}{64} \qquad \dots \left[\because \sin\frac{8\pi}{7} = \sin\left(\pi + \frac{\pi}{7}\right) = -\sin\frac{\pi}{7}\right]$$
$$72. \qquad \sin\left(\frac{31}{3}\pi\right) = \sin\left(10\pi + \frac{\pi}{3}\right)$$
$$= \sin\frac{\pi}{3}$$
$$= \frac{\sqrt{3}}{2}$$

73. Since,
$$\tan \alpha + 2 \tan 2 \alpha + 2^{2} \tan 2^{2} \alpha + ...$$

 $+ 2^{n} \tan 2^{n} \alpha + 2^{n+1} \cot 2^{n+1} \alpha = \cot \alpha \forall n \in$
 Here, $\alpha = \frac{\pi}{5}$
 $\therefore \quad \tan \frac{\pi}{5} + 2 \tan \frac{2\pi}{5} + 4 \cot \frac{4\pi}{5} = \cot \frac{\pi}{5}$
74. $\frac{\cot x - \tan x}{\cot 2x} = \frac{\cos^{2} x - \sin^{2} x}{\sin x \cos x} \times \frac{\sin 2x}{\cos 2x}$
 $= \frac{2 \cos 2x}{\sin 2x} \times \frac{\sin 2x}{\cos 2x} = 2$
75. $\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{1 - \cos 8A}{\cos 8A} \cdot \frac{\cos 4A}{1 - \cos 4A}$
 $= \frac{2 \sin^{2} 4A}{\cos 8A} \cdot \frac{\cos 4A}{2 \sin^{2} 2A}$
 $= \frac{2 \sin 4A \cos 4A}{\cos 8A} \cdot \frac{\sin 4A}{2 \sin^{2} 2A}$
 $= \tan 8A \frac{2 \sin 2A \cos 2A}{2 \sin^{2} 2A}$
 $= \frac{\tan 8A}{\tan 2A}$
76. $2 \tan A = 3 \tan B$
 $\Rightarrow \tan A = \frac{3}{2} \tan B = \frac{3}{2} t$ [Let $\tan B = t$]

Chapter 03: Trigonometric Functions of Compound Angles

$$\sin 2B = \frac{2t}{1+t^2}, \cos 2B = \frac{1-t^2}{1+t^2}$$
$$\therefore \quad \frac{\sin 2B}{5-\cos 2B} = \frac{\left(\frac{2t}{1+t^2}\right)}{5-\left(\frac{1-t^2}{1+t^2}\right)} = \frac{2t}{4+6t^2}$$
$$= \frac{t}{2+3t^2} = \frac{\frac{3t}{2}-t}{1+\frac{3t^2}{2}}$$
$$= \tan (A - B)$$

77.
$$\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$$

Ν

By componendo – dividendo, we get

 $\frac{\cos 2\alpha + 1}{\cos 2\alpha - 1} = \frac{3\cos 2\beta - 1 + 3 - \cos 2\beta}{3\cos 2\beta - 1 - (3 - \cos 2\beta)}$ $\Rightarrow \frac{2\cos^2 \alpha}{-2\sin^2 \alpha} = \frac{2 + 2\cos 2\beta}{4\cos 2\beta - 4}$ $\Rightarrow \frac{-\cos^2 \alpha}{\sin^2 \alpha} = \frac{1 + \cos 2\beta}{2(\cos 2\beta - 1)} = \frac{2\cos^2 \beta}{-4\sin^2 \beta}$ $\Rightarrow \frac{\sin^2 \alpha}{\cos^2 \alpha} = \frac{2\sin^2 \beta}{\cos^2 \beta} \Rightarrow \tan^2 \alpha = 2\tan^2 \beta$ $\Rightarrow \tan \alpha = \sqrt{2} \tan \beta$

2 -

78. Since,
$$\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$$

$$\therefore \quad \cos 3\theta = 4 \left[\frac{1}{2^3} \left(a + \frac{1}{a} \right)^3 \right] - 3 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]$$

$$\Rightarrow \cos 3\theta = \frac{1}{2} \left(a + \frac{1}{a} \right) \left[\left(a + \frac{1}{a} \right)^2 - 3 \right]$$

$$\Rightarrow \cos 3\theta = \frac{1}{2} \left(a^3 + \frac{1}{a^3} \right)$$
79. $\cos^3 \theta + \cos^3 (120^\circ - \theta) + \cos^3 (120^\circ + \theta)$

$$= \frac{3}{4} \cos(3\theta)$$

$$\therefore \quad \cos^3 10^\circ + \cos^3 110^\circ + \cos^3 130^\circ$$

$$= \cos^3 (10^\circ) + \cos^3 (120^\circ - 10^\circ)$$

$$+ \cos^3 (120^\circ + 10^\circ)$$

$$= \frac{3}{4} \cos(3 \times 10^\circ) = \frac{3}{4} \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{8}$$

80. $\sin 6\theta = 2 \sin 3\theta \cos 3\theta$ $= 2(3 \sin \theta - 4 \sin^3 \theta)(4 \cos^3 \theta - 3 \cos \theta)$ $= 24 \sin \theta \cos \theta (\sin^2 \theta + \cos^2 \theta) - 18 \sin \theta \cos \theta$ $- 32 \sin^3 \theta \cos^3 \theta$ $= 6 \sin \theta \cos \theta - 32 \sin \theta \cos^3 \theta \sin^2 \theta$ $= 3 \sin 2\theta - 32 \sin \theta \cos^3 \theta (1 - \cos^2 \theta)$ $= 32 \cos^5 \theta \sin \theta - 32 \cos^3 \theta \sin \theta + 3 \sin 2\theta$ Given, $\sin 6\theta = 32 \cos^5 \theta \sin \theta - 32 \cos^3 \theta \sin \theta + 3x$ \therefore On comparing, we get $x = \sin 2\theta$

81.
$$\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$
$$= \frac{1 + \tan\frac{\theta}{2}}{1 - \tan\frac{\theta}{2}} + \frac{1 - \tan\frac{\theta}{2}}{1 + \tan\frac{\theta}{2}}$$
$$= \frac{\left(1 + \tan\frac{\theta}{2}\right)^2 + \left(1 - \tan\frac{\theta}{2}\right)^2}{1 - \tan^2\frac{\theta}{2}}$$
$$= 2\left(\frac{1 + \tan^2\frac{\theta}{2}}{1 - \tan^2\frac{\theta}{2}}\right)$$
$$= 2\left(\frac{1 + \tan^2\frac{\theta}{2}}{1 - \tan^2\frac{\theta}{2}}\right)$$
$$= \frac{2}{\cos\theta}$$
$$= 2 \sec\theta$$
82. Given, $\tan x = \frac{3}{2}$

$$\Rightarrow \cos x = -\frac{4}{5} \qquad \dots \left[\because \pi < x < \frac{3\pi}{2} \right]$$

Since, $1 + \cos x = 2 \cos^2 \frac{x}{2}$

$$\therefore \quad 1 - \frac{4}{5} = 2\cos^2\frac{x}{2} \qquad \therefore \qquad \cos^2\frac{x}{2} = \frac{1}{10}$$

$$\therefore \quad \cos\frac{x}{2} = -\frac{1}{\sqrt{10}} \quad \dots \left[\because \pi < x < \frac{3\pi}{2} \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4} \right]$$
83.
$$\sin A = \frac{4}{5}$$

$$\Rightarrow \tan A = -\frac{4}{3} \qquad \dots \left[\because 90^\circ < A < 180^\circ \right]$$
Now,
$$\tan A = \frac{2\tan\frac{A}{2}}{1 - \tan^2\frac{A}{2}} \text{ (Let } \tan\frac{A}{2} = P \text{)}$$

$$\Rightarrow -\frac{4}{3} = \frac{2P}{1-P^2}$$

$$\Rightarrow 4P^2 - 6P - 4 = 0$$

$$\Rightarrow P = \frac{-1}{2} \text{ or } P = 2$$

$$P = \frac{-1}{2} \text{ is not possible}$$

$$\therefore P = 2 \Rightarrow \tan \frac{A}{2} = 2$$

84. Given, $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$

$$\therefore \cos \frac{\theta}{2} = \sqrt{1-\sin^2 \frac{\theta}{2}} = \sqrt{\frac{x+1}{2x}}$$

and $\tan \frac{\theta}{2} = \frac{\sqrt{x-1}}{\sqrt{x+1}}$
Since, $\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1-\tan^2 \frac{\theta}{2}}$

$$\therefore$$
 tan $\theta = \sqrt{x^2 - 1}$

85.
$$\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$
$$= \frac{2y}{1 + y^2} \qquad \dots \left[\text{Let } y = \tan\left(\frac{x}{2}\right) \right]$$
$$\therefore \qquad \tan \frac{x}{2} = \csc x - \sin x = \frac{1}{\sin x} - \sin x$$
$$\Rightarrow y = \frac{1 + y^2}{2y} - \frac{2y}{1 + y^2}$$
$$\Rightarrow 2y^2 (1 + y^2) = 1 + y^4 + 2y^2 - 4y^2$$
$$\Rightarrow 1 - y^4 - 4y^2 = 0 \Rightarrow y^4 + 4y^2 - 1 = 0$$
$$\Rightarrow y^2 = \frac{-4 \pm \sqrt{16 + 4}}{2} = \frac{-4 \pm \sqrt{20}}{2}$$
$$\Rightarrow \tan^2\left(\frac{x}{2}\right) = -2 \pm \sqrt{5}$$
But,
$$\tan^2\left(\frac{x}{2}\right) = -2 \pm \sqrt{5}$$
$$\Rightarrow \tan^2\left(\frac{x}{2}\right) = -2 \pm \sqrt{5}$$
$\cos \theta = \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}$ 86. By componendo - dividendo, we get $\cos\theta + 1 \ \cos\alpha - \cos\beta + 1 - \cos\alpha \cos\beta$ $\frac{1}{\cos\theta-1} - \frac{1}{\cos\alpha - \cos\beta - (1 - \cos\alpha \cos\beta)}$ $\Rightarrow \frac{\cos\theta + 1}{\cos\theta - 1} = \frac{(1 + \cos\alpha)(1 - \cos\beta)}{-(1 - \cos\alpha)(1 + \cos\beta)}$ $\Rightarrow \frac{1 + \cos\theta}{1 - \cos\theta} = \frac{1 + \cos\alpha}{1 - \cos\alpha} \times \frac{1 - \cos\beta}{1 + \cos\beta}$ $\Rightarrow \cot^2 \frac{\theta}{2} = \cot^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}$ $\Rightarrow \tan^2 \frac{\theta}{2} = \tan^2 \frac{\alpha}{2} \cot^2 \frac{\beta}{2}$ $\Rightarrow \tan \frac{\theta}{2} = \pm \tan \frac{\alpha}{2} \cot \frac{\beta}{2}$ $\sqrt{4\cos^4\theta + \sin^2 2\theta} + 4\cot\theta\cos^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$ 87. $=\sqrt{4\cos^4\theta+4\sin^2\theta\cos^2\theta}$ $+4 \cot \theta \left| \frac{1+\cos 2\left(\frac{\pi}{4}-\frac{\theta}{2}\right)}{2} \right|$ $=\sqrt{4\cos^2\theta(\cos^2\theta+\sin^2\theta)}$ $+2 \cot \theta \left| 1 + \cos \left(\frac{\pi}{2} - \theta \right) \right|$ $= |2\cos\theta| + 2\cot\theta + 2\cos\theta$ $\dots \left[\because \theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \right]$ $= 2 \cot \theta$ Put $\tan\left(\frac{\theta}{2}\right) = t$ 88. $(m+2)\left(\frac{2t}{1+t^2}\right) + (2m-1)\left(\frac{1-t^2}{1+t^2}\right) = 2m+1$ *.*.. \Rightarrow (2m + 4) t + (2m - 1) (1 - t²) $= (2m + 1)(1 + t^{2})$ $\Rightarrow 4 \text{ mt}^2 - (2m + 4) \text{ t} + 2 = 0$ $\Rightarrow 2 \text{ mt}^2 - \text{mt} - 2t + 1 = 0$ \Rightarrow mt(2t - 1) - 1(2t - 1) = 0 \Rightarrow (2t - 1) (mt - 1) = 0 $\Rightarrow t = \frac{1}{2} \text{ or } t = \frac{1}{m}$ If $t = \frac{1}{2}$, then $\tan \theta = \frac{2t}{1-t^2} = \frac{1}{1-\frac{1}{t}} = \frac{4}{3}$

Chapter 03: Trigonometric Functions of Compound Angles If $t = \frac{1}{m}$, then $\tan \theta = \frac{\frac{2}{m}}{1 - \left(\frac{1}{m^2}\right)} = \frac{2m}{m^2 - 1}$ 89. $\cos\left(\frac{\alpha-\beta}{2}\right) = 2\cos\left(\frac{\alpha+\beta}{2}\right)$ $\Rightarrow \cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}} + \sin{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}$ $= 2\cos\frac{\alpha}{2}\cos\frac{\beta}{2} - 2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}$ $\Rightarrow 3 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} = \cos \frac{\alpha}{2} \cos \frac{\beta}{2}$ $\Rightarrow \tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{1}{2}$ 90. Since, $\tan \frac{A}{2} = \frac{1 - \cos A}{\sin A}$ Putting $\frac{A}{2} = \left(7\frac{1}{2}\right)^{\circ}$, we get $\tan\left(7\frac{1}{2}\right)^{\circ} = \frac{1 - \cos 15^{\circ}}{\sin 15^{\circ}}$ $=\frac{1-\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}-1}{2\sqrt{2}}}$ $=\frac{2\sqrt{2}-\sqrt{3}-1}{\sqrt{3}-1}\times\frac{\sqrt{3}+1}{\sqrt{3}+1}$ $=\sqrt{6}-\sqrt{3}+\sqrt{2}-2$ 91. $\cot \frac{A}{2} = \frac{1 + \cos A}{\sin A}$ Putting $A = \left(7\frac{1}{2}\right)^{\circ}$, we get $\cot\left(7\frac{1}{2}\right)^{\circ} = \frac{1 + \cos 15^{\circ}}{\sin 15^{\circ}}$ $=\frac{1\!+\!\frac{\sqrt{3}+1}{2\sqrt{2}}}{\sqrt{3}-1}$ $=\frac{2\sqrt{2}+\sqrt{3}+1}{\sqrt{3}-1}\times\frac{\sqrt{3}+1}{\sqrt{3}+1}$ $=\sqrt{6}+\sqrt{2}+\sqrt{3}+\sqrt{4}$

92. Since,
$$\sin\left(22\frac{1}{2}\right)^{\circ} = \frac{1}{2}\sqrt{2-\sqrt{2}} = \cos\left(67\frac{1}{2}\right)^{\circ}$$

and $\cos\left(22\frac{1}{2}\right)^{\circ} = \frac{1}{2}\sqrt{2+\sqrt{2}} = \sin\left(67\frac{1}{2}\right)^{\circ}$
 $\left[1+\cos\left(22\frac{1}{2}\right)^{\circ}\right]\left[1+\cos\left(67\frac{1}{2}\right)^{\circ}\right]$
 $\left[1+\cos\left(22\frac{1}{2}\right)^{\circ}\right]\left[1+\cos\left(67\frac{1}{2}\right)^{\circ}\right]$
 $= \left[1+\cos\left(22\frac{1}{2}\right)^{\circ}\right]\left[1+\cos\left(67\frac{1}{2}\right)^{\circ}\right]$
 $\left[1-\sin\left(22\frac{1}{2}\right)^{\circ}\right]\left[1-\sin\left(67\frac{1}{2}\right)^{\circ}\right]$
 $\ldots\left[\because\cos(90^{\circ}+\theta)=-\sin\theta\right]$
 $= \left[1+\frac{1}{2}\sqrt{2+\sqrt{2}}\right]\left[1+\frac{1}{2}\sqrt{2-\sqrt{2}}\right]$
 $\left[1-\frac{1}{2}\sqrt{2-\sqrt{2}}\right]\left[1-\frac{1}{2}\sqrt{2+\sqrt{2}}\right]$
 $= \left[1-\frac{1}{4}(2+\sqrt{2})\right]\left[1-\frac{1}{4}(2-\sqrt{2})\right]$
 $= \frac{(4-2-\sqrt{2})(4-2+\sqrt{2})}{16}$
 $= \frac{(2-\sqrt{2})(2+\sqrt{2})}{16} = \frac{4-2}{16} = \frac{1}{8}$
93. $\tan A = \frac{1-\cos B}{\sin B} = \frac{2\sin^{2}\left(\frac{B}{2}\right)}{2\sin\left(\frac{B}{2}\right)\cos\left(\frac{B}{2}\right)} = \tan \frac{B}{2}$
 $\Rightarrow \tan 2A = \tan B$
94. Given, $\csc \theta = \frac{p+q}{p-q} \Rightarrow \frac{1}{\sin \theta} = \frac{p+q}{p-q}$
By componendo – dividendo, we get
 $\frac{1+\sin\theta}{1-\sin\theta} = \frac{p+q+p-q}{p+q-p+q}$
 $\Rightarrow \left\{\frac{\cos\frac{\theta}{2}+\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right\}^{2} = \frac{p}{q}$
 $\Rightarrow \left\{\frac{1+\tan\frac{\theta}{2}}{1-\tan\frac{\theta}{2}}\right\}^{2} = \frac{p}{q}$

$$\Rightarrow \tan^{2}\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{p}{q} \Rightarrow \cot^{2}\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{q}{p}$$

$$\Rightarrow \cot\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \sqrt{\frac{q}{p}}$$
95.
$$\frac{\sqrt{2} - \sin\alpha - \cos\alpha}{\sin\alpha - \cos\alpha}$$

$$= \frac{\sqrt{2} - \sqrt{2}\left\{\frac{1}{\sqrt{2}}\sin\alpha + \frac{1}{\sqrt{2}}\cos\alpha\right\}}{\sqrt{2}\left\{\frac{1}{\sqrt{2}}\sin\alpha - \frac{1}{\sqrt{2}}\cos\alpha\right\}}$$

$$= \frac{\sqrt{2} - \sqrt{2}\cos\left(\alpha - \frac{\pi}{4}\right)}{\sqrt{2}\sin\left(\alpha - \frac{\pi}{4}\right)}$$

$$= \frac{\sqrt{2}\left(1 - \cos\theta\right)}{\sqrt{2}\sin\theta}, \text{ where } \theta = \alpha - \frac{\pi}{4}$$

$$= \frac{2\sin^{2}\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}$$

$$= \tan\frac{\theta}{2} = \tan\left(\frac{\alpha}{2} - \frac{\pi}{8}\right) \quad \dots \left[\because \theta = \alpha - \frac{\pi}{4}\right]$$

96. Putting $\theta = \phi = \frac{\pi}{4}$ in the given expression, we get $\cos 2\left(\frac{\pi}{2}\right) - 4\cos\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) + 2\sin^2\left(\frac{\pi}{4}\right) = 0$

> Put $\theta = \phi = \frac{\pi}{4}$ in option (A), then $\cos 2\theta = \cos \frac{\pi}{2} = 0$

Hence, option (A) is the correct answer.

97. Given that $\sin \theta + \sin \phi = a$ (i) and $\cos \theta + \cos \phi = b$ (ii) Squaring (i) and (ii) and adding, we get $2 + 2 (\sin \theta \sin \phi + \cos \theta \cos \phi) = a^2 + b^2$ $\Rightarrow 2 \cos (\theta - \phi) = a^2 + b^2 - 2$ $\Rightarrow \cos (\theta - \phi) = \frac{a^2 + b^2 - 2}{2}$ $\Rightarrow \frac{1 - \tan^2 \frac{\theta - \phi}{2}}{1 + \tan^2 \frac{\theta - \phi}{2}} = \frac{a^2 + b^2 - 2}{2}$

 \Rightarrow (a² + b²) + (a² + b²) tan² $\frac{\theta - \phi}{2} - 2$ $-2\tan^2\frac{\theta-\phi}{2}=2-2\tan^2\frac{\theta-\phi}{2}$ $\Rightarrow \frac{4-a^2-b^2}{a^2+b^2} = \tan^2\frac{\theta-\phi}{2}$ $\Rightarrow \tan\left(\frac{\theta-\phi}{2}\right) = \sqrt{\frac{4-a^2-b^2}{a^2+b^2}}$ **Trick :** Putting $\theta = \frac{\pi}{4} = \phi$, we get $\tan \frac{\theta - \phi}{2} = 0$, which is given by option (B). $\frac{1+\sin 2\alpha}{\cos(2\alpha-2\pi)\tan\left(\alpha-\frac{3\pi}{4}\right)}$ 98. $-\frac{1}{4}\sin 2\alpha \left(\cot \frac{\alpha}{2} + \cot \left(\frac{3\pi}{2} + \frac{\alpha}{2}\right)\right)$ $\frac{1+2\sin\alpha\cos\alpha}{\cos 2\alpha \left(\frac{\tan\alpha+1}{1-\tan\alpha}\right)}$ $-\frac{1}{4}(2\sin\alpha\cos\alpha)\left(\frac{\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}\right)$ $=\frac{\left(\cos\alpha+\sin\alpha\right)^2}{\cos2\alpha\left(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\right)}$ $-\frac{1}{4}(2\sin\alpha\cos\alpha)\left(2\frac{\cos\alpha}{\sin\alpha}\right)$ $= 1 - \cos^2 \alpha = \sin^2 \alpha$ When $\cos 4\theta = \frac{1}{2}$, then $2 \cos^2 2\theta - 1 = \frac{1}{2}$ 99. $\Rightarrow 2\cos^2 2\theta = \frac{4}{2} \Rightarrow \cos^2 2\theta = \frac{2}{2}$ $f\left(\frac{1}{3}\right) = f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$ *.*.. $=\frac{2\cos^2\theta}{2\cos^2\theta-1}=\frac{1+\cos 2\theta}{\cos 2\theta}$ $f\left(\frac{1}{3}\right) = 1 \pm \sqrt{\frac{3}{2}} \qquad \dots \left[\because \cos 2\theta = \pm \sqrt{\frac{2}{3}}\right]$ *.*..

Chapter 03: Trigonometric Functions of Compound Angles 100. $f_n(\theta) = \left(\tan\frac{\theta}{2}\right)(1 + \sec\theta)(1 + \sec 2\theta)$ $(1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$ $= \left(\tan\frac{\theta}{2}\right) \left(\frac{1+\cos\theta}{\cos\theta}\right) (1+\sec 2\theta)$ $(1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$ $= \left(\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\right) \times \frac{2\cos^2\frac{\theta}{2}}{\cos\theta} (1 + \sec 2\theta)$ $(1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$ $= \frac{\sin\theta}{\cos\theta} (1 + \sec 2\theta)(1 + \sec 4\theta)....(1 + \sec 2^{n}\theta)$ \ldots [:: sin 2A = 2 sin A cos A] $= \tan \theta \left(\frac{1 + \cos 2\theta}{\cos 2\theta} \right) (1 + \sec 4\theta) \dots (1 + \sec 2^{n}\theta)$ $=\frac{\sin\theta}{\cos\theta}\left(\frac{2\cos^2\theta}{\cos2\theta}\right)(1+\sec4\theta)....(1+\sec2^n\theta)$ $= \tan 2\theta (1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$ $= \tan 2^n \theta$ \therefore $f_2\left(\frac{\pi}{16}\right) = \tan\left(2^2 \times \frac{\pi}{16}\right) = 1$ $f_3\left(\frac{\pi}{32}\right) = \tan\left(2^3 \times \frac{\pi}{32}\right) = 1$ $f_4\left(\frac{\pi}{64}\right) = \tan\left(2^4 \times \frac{\pi}{64}\right) = 1$ $f_5\left(\frac{\pi}{128}\right) = \tan\left(2^5 \times \frac{\pi}{128}\right) = 1$ option (D) is incorrect. *.*.. 101. $\sum_{n=1}^{\infty} \sin\left(\frac{n!\pi}{720}\right) = \left(\sin\frac{1!\pi}{720} + \sin\frac{2!\pi}{720} + \dots + \frac{\sin 5!\pi}{720}\right)$ $+\sum_{n=1}^{\infty}\sin\frac{n!\pi}{720}$ $=\sin\left(\frac{\pi}{6}\right)+\sin\left(\frac{\pi}{30}\right)+\sin\left(\frac{\pi}{120}\right)+\sin\left(\frac{\pi}{360}\right)$

 $(30) \quad (120) \quad (360) + \sin\left(\frac{\pi}{720}\right)$ $\dots \left[\because \sum_{n=6}^{\infty} \sin\frac{n!\pi}{720} = 0\right]$

Evaluation Test

4.

1.
$$x\cos\theta = y\cos\left(\theta + \frac{2\pi}{3}\right) = z\cos\left(\theta + \frac{4\pi}{3}\right) = k(say)$$

 $\Rightarrow \cos\theta = \frac{k}{x}, \cos\left(\theta + \frac{2\pi}{3}\right) = \frac{k}{y}$
and $\cos\left(\theta + \frac{4\pi}{3}\right) = \frac{k}{z}$
 $\therefore \frac{k}{x} + \frac{k}{y} + \frac{k}{z}$
 $= \cos\theta + \cos\left(\theta + \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{4\pi}{3}\right)$
 $= \cos\theta + \cos\left(\pi - \left(\frac{\pi}{3} - \theta\right)\right) + \cos\left(\pi + \left(\frac{\pi}{3} + \theta\right)\right)$
 $= \cos\theta - \cos\left(\frac{\pi}{3} - \theta\right) - \cos\left(\frac{\pi}{3} + \theta\right)$
 $= \cos\theta - 2\cos\left(\frac{\pi}{3} - \theta\right) + \cos\left(\frac{\pi}{3} + \theta\right)$
 $= \cos\theta - 2 \cos\frac{\pi}{3}\cos\theta$
 $= \cos\theta - 2 \times \frac{1}{2}\cos\theta$
 $\therefore \frac{k}{x} + \frac{k}{y} + \frac{k}{z} = 0$
 $\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$
2. $\tan 70^\circ - \tan 20^\circ - 2 \tan 40^\circ$
 $= (\cot 20^\circ - \tan 20^\circ) - 2 \tan 40^\circ$
 $\dots [\because \cot\theta - \tan\theta = 2 \cot 2\theta]$
 $= 2(\cot 40^\circ - \tan 40^\circ)$
 $= 2(2 \cot 80^\circ) = 4 \cot 80^\circ$
 $= 4 \cot(90^\circ - 10^\circ) = 4 \tan 10^\circ$
3. Given, $\sqrt{x} + \frac{1}{\sqrt{x}} = 2\cos\theta$
Squaring on both sides, we get
 $x + \frac{1}{x} = 4\cos^2\theta - 2$
 $\Rightarrow x + \frac{1}{x} = 2(2\cos^2\theta - 1) = 2\cos 2\theta$

 $x^2 + \frac{1}{x^2} + 2 = 4\cos^2 2\theta$ $\Rightarrow x^2 + \frac{1}{x^2} = 4\cos^2 2\theta - 2$ $\Rightarrow x^{2} + \frac{1}{x^{2}} = 2 (2 \cos^{2} 2\theta - 1)$ $\Rightarrow x^2 + \frac{1}{x^2} = 2\cos 4\theta$ (i) Cubing on both sides, we get $\left(x^2 + \frac{1}{x^2}\right)^3 = (2\cos 4\theta)^3$ $\Rightarrow x^6 + \frac{1}{x^6} + 3x^2 \times \frac{1}{x^2} \left(x^2 + \frac{1}{x^2} \right) = 8\cos^3 4\theta$ $\Rightarrow x^6 + \frac{1}{x^6} + 3(2\cos 4\theta) = 8\cos^3 4\theta$[From (i)] $\Rightarrow x^6 + \frac{1}{x^6} = 8\cos^3 4\theta - 6\cos 4\theta$ $= 2(4\cos^3 4\theta - 3\cos 4\theta)$ $= 2 \cos 3(4\theta)$ $\dots [\because \cos 3A = 4 \cos^3 A - 3 \cos A]$ $= 2\cos 12\theta$ $\cos^{3}\theta + \cos^{3}(\theta + 120^{\circ}) + \cos^{3}(\theta - 120^{\circ})$ $\cos 3\theta + 3\cos \theta$

Again, squaring on both sides, we get

$$= \frac{4}{4} + \frac{\cos(3\theta + 360^\circ) + 3\cos(\theta + 120^\circ)}{4} + \frac{\cos(3\theta - 360^\circ) + 3\cos(\theta - 120^\circ)}{4}$$
$$= \frac{\cos(3\theta)}{4} + \frac{3\cos(3\theta - 360^\circ) + 3\cos(\theta - 120^\circ)}{4} + \frac{\cos(3\theta)}{4} + \frac{\cos(3\theta)}{4} + \frac{\cos(3\theta)}{4} + \frac{3\cos(\theta - 120^\circ)}{4} + \frac{\cos(\theta - 120$$

 $=\frac{3}{4}\cos 3\theta + \frac{3}{4}\left\{2\cos\theta\left(-\sin 30^\circ\right) + \cos\theta\right\}$ $= \frac{3}{4} \cos 3\theta + \frac{3}{4} \left\{ 2\cos \theta \left(-\frac{1}{2} \right) + \cos \theta \right\}$ $=\frac{3}{4}\cos 3\theta + \frac{3}{4}(-\cos \theta + \cos \theta)$ $=\frac{3}{4}\cos 3\theta$ 5. $\tan 2\alpha = \tan(\alpha + \alpha)$ $=\frac{\frac{1}{5}+\frac{1}{5}}{1-\frac{1}{25}}$ $\tan 2\alpha = \frac{5}{12}$.**.**. $\tan 4\alpha = \tan(2\alpha + 2\alpha)$ $=\frac{\frac{5}{12}+\frac{5}{12}}{1-\frac{25}{144}}$ $=\frac{120}{119}$ 120 1 $\tan (4\alpha - \beta) = \frac{\overline{119} - \overline{239}}{1 + \frac{120}{119} \times \frac{1}{239}}$ *.*.. $=\frac{120\times239-119}{119\times239+120}$ $=\frac{(119+1)239-119}{119\times239+120}$ $=\frac{119\times239+(239-119)}{119\times239+120}=1$ Given, sec $(\theta + \phi)$, sec θ and sec $(\theta - \phi)$ are in 6. A. P.

$$\therefore 2 \sec \theta = \sec (\theta + \phi) + \sec (\theta - \phi)$$

$$\Rightarrow \frac{2}{\cos \theta} = \frac{1}{\cos(\theta + \phi)} + \frac{1}{\cos(\theta - \phi)}$$

$$\Rightarrow \frac{2}{\cos \theta} = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{\cos(\theta + \phi)\cos(\theta - \phi)}$$

$$\Rightarrow \frac{2}{\cos \theta} = \frac{2\cos\theta\cos\phi}{\cos^2\theta - \sin^2\phi}$$

$$\dots [\because \cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B]$$

$$\Rightarrow \cos^2 \theta \cos \phi = \cos^2 \theta - \sin^2 \phi$$

$$\Rightarrow \cos^2 \theta - \cos^2 \theta \cos \phi = \sin^2 \phi$$

Chapter 03: Trigonometric Functions of Compound Angles $\Rightarrow \cos^2 \theta (1 - \cos \phi) = (1 - \cos^2 \phi)$ $\Rightarrow \cos^2 \theta = 1 + \cos \phi$ $\Rightarrow \cos^2 \theta = 2 \cos^2 \frac{\phi}{2}$ $\Rightarrow \cos \theta = \pm \sqrt{2} \cos \frac{\phi}{2}$ Comparing with $\cos \theta = k \cos \frac{\phi}{2}$, we get $k = \pm \sqrt{2}$ $\sin^2 \theta + 3 \sin \theta \cos \theta + 5 \cos^2 \theta$ $= \frac{1}{2} \left\{ 2 \sin^2 \theta + 3(2\sin \theta \cos \theta) + 5(2\cos^2 \theta) \right\}$ $= \frac{1}{2} \{1 - \cos 2\theta + 3 \sin 2\theta + 5(1 + \cos 2\theta)\}\$ $=3+2\cos 2\theta+\frac{3}{2}\sin 2\theta$ Now. $-\sqrt{4+\frac{9}{4}} \le 2\cos 2\theta + \frac{3}{2}\sin 2\theta \le \sqrt{4+\frac{9}{4}}$ $\Rightarrow -\frac{5}{2} \le 2\cos 2\theta + \frac{3}{2}\sin 2\theta \le \frac{5}{2}$ $\Rightarrow \frac{1}{2} \le 3 + 2\cos 2\theta + \frac{3}{2}\sin 2\theta \le \frac{11}{2}$ $\Rightarrow \frac{1}{2} \le \sin^2 \theta + 3 \sin \theta \cos \theta + 5\cos^2 \theta \le \frac{11}{2}$ $\Rightarrow \frac{2}{11} \le \frac{1}{\sin^2 \theta + 3\sin \theta \cos \theta + 5\cos^2 \theta} \le 2$ Hence, the maximum value of the given expression is 2. $\sin \alpha + \sin \beta = -\frac{21}{65}, \cos \alpha + \cos \beta = -\frac{27}{65}$ $(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2$ $=\left(\frac{-21}{65}\right)^{2}+\left(\frac{-27}{65}\right)^{2}$ \Rightarrow (sin² α + cos² α) + (sin² β + cos² β) + 2 sin α sin β + 2 cos α cos β = $\frac{441}{(65)^2} + \frac{729}{(65)^2}$ \Rightarrow 2 + 2 sin α sin β + 2 cos α cos β $=\frac{441}{(65)^2}+\frac{729}{(65)^2}$ $\Rightarrow 2 + 2[\cos(\alpha - \beta)] = \frac{1170}{(65)^2}$ $\Rightarrow 2[1 + \cos(\alpha - \beta)] = \frac{1170}{(65)^2}$

7

8.

...

MHT-CET Triumph Maths (Hints) $\Rightarrow 2 \times 2 \cos^2\left(\frac{\alpha-\beta}{2}\right) = \frac{1170}{(65)^2}$ $\cos\left(\frac{\alpha-\beta}{2}\right) = -\frac{3\sqrt{130}}{130}$ *:*.. $\dots \left| \because \frac{\pi}{2} < \frac{\alpha - \beta}{2} < \frac{3\pi}{2} \right|$ $=\frac{-3}{\sqrt{130}}$ $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ 9. $\Rightarrow \tan(\alpha + \beta) = \frac{\frac{1}{1 + \frac{1}{2^{x}}} + \frac{1}{1 + 2^{x+1}}}{1 - \left(\frac{1}{1 + \frac{1}{2^{x}}}\right)\left(\frac{1}{1 + 2^{x+1}}\right)}$ $\Rightarrow \tan(\alpha + \beta) = \frac{2^{x} + 2 \cdot 2^{x+x} + 2^{x} + 1}{1 + 2^{x} + 2 \cdot 2^{x} + 2 \cdot 2^{x+x} - 2^{x}}$ $\Rightarrow \tan(\alpha + \beta) = 1$ $\Rightarrow \tan (\alpha + \beta) = \tan \frac{\pi}{4}$ $\Rightarrow \alpha + \beta = \frac{\pi}{4}$ 10. We have, $\frac{3\sin A}{\sin B} = \frac{2\cos B}{\cos A}$ $\Rightarrow \frac{3\sin A}{\cos A} = \frac{2\cos B\sin B}{\cos^2 A}$ $\Rightarrow \tan A = \frac{\sin 2B}{3\cos^2 A}$ $\Rightarrow \tan A = \frac{\sin 2B}{3\cos 2B} \times \frac{\cos 2B}{\cos^2 A}$ $\Rightarrow \tan A = \frac{\tan 2B}{3\cos^2 A} (2\cos^2 B - 1)$ $\Rightarrow \tan A = \frac{\tan 2B}{2\cos^2 A} (4 - 3\cos^2 A - 1)$[:: $2 \cos^2 B = 4 - 3 \cos^2 A$ (given)] $\Rightarrow \tan A = \tan 2B \frac{\sin^2 A}{\cos^2 A}$ \dots [:: $1 - \cos^2 A = \sin^2 A$] \Rightarrow tan A = tan 2B tan² A \Rightarrow tan A tan 2B = 1 \Rightarrow tan A = cot 2B

 $\Rightarrow \tan A = \tan \left(\frac{\pi}{2} - 2B\right)$ $\Rightarrow A = \frac{\pi}{2} - 2B$ $\Rightarrow A + 2B = \frac{\pi}{2}$ 11. $\frac{\sin^4 A}{a} + \frac{\cos^4 A}{b} = \frac{1}{a+b}$ $\Rightarrow \frac{(1-\cos 2A)^2}{4a} + \frac{(1+\cos 2A)^2}{4b} = \frac{1}{a+b}$ $\Rightarrow b(a+b) (1-2\cos 2A + \cos^2 2A)$ $+a(a + b) (1 + 2 \cos 2A + \cos^2 2A) = 4ab$ \Rightarrow {b(a + b) + a(a + b)} cos² 2A $+2(a+b)(a-b)\cos 2A$ +a(a+b)+b(a+b)-4ab=0 $\Rightarrow (a+b)^2 \cos^2 2A + 2(a+b) (a-b) \cos 2A$ $(a - b)^2 = 0$ $\Rightarrow \{(a+b)\cos 2A + (a-b)\}^2 = 0$ $\Rightarrow \cos 2A = \frac{b-a}{b+a}$(i) $\therefore \qquad \frac{\sin^8 A}{n^3} + \frac{\cos^8 A}{h^3} = \frac{(1 - \cos 2A)^4}{16a^3} + \frac{(1 + \cos 2A)^4}{16h^3}$ $=\frac{1}{16a^{3}}\left(1-\frac{b-a}{b+a}\right)^{4}+\frac{1}{16b^{3}}\left(1+\frac{b-a}{b+a}\right)^{4}$[From (i)] $=\frac{16a^4}{16a^3(b+a)^4}+\frac{16b^4}{16b^3(b+a)^4}$ $=\frac{1}{(b+a)^4}(a+b)=\frac{1}{(a+b)^3}$ 12. $\sin (\pi \cos \theta) = \cos (\pi \sin \theta)$ $\Rightarrow \sin(\pi \cos \theta) = \sin\left(\frac{\pi}{2} + \pi \sin \theta\right)$ \dots $\because \cos \theta = \sin \left(\frac{\pi}{2} + \theta \right)$ $\Rightarrow \pi \cos \theta = \frac{\pi}{2} + \pi \sin \theta$ $\Rightarrow \cos \theta - \sin \theta = \frac{1}{2}$ (i) $\therefore \cos\left(\theta + \frac{\pi}{4}\right) = \cos\theta\cos\frac{\pi}{4} - \sin\theta\sin\frac{\pi}{4}$ $=\frac{1}{\sqrt{2}}(\cos\theta-\sin\theta)$ $=\frac{1}{2\sqrt{2}}$ [From (i)]

Textbook Chapter No.

Factorization Formulae

	Classical Thinking
1.	$\cos 5^{\circ} - \sin 25^{\circ} = \sin (90 - 5)^{\circ} - \sin 25^{\circ}$ = sin 85^{\circ} - sin 25^{\circ} = 2 cos 55^{\circ} sin 30^{\circ} = cos 55^{\circ}
2.	$\cos 57^{\circ} + \sin 27^{\circ} = \cos 57^{\circ} + \cos (90^{\circ} - 27^{\circ})$ = cos 57^{\circ} + cos 63^{\circ} = 2 cos 60^{\circ} cos 3^{\circ} = cos 3^{\circ}
3.	$\cos 18^\circ - \sin 18^\circ = \cos 18^\circ - \cos 72^\circ$ $= 2 \sin 45^\circ \sin 27^\circ$ $= \sqrt{2} \sin 27^\circ$
4.	$\cos\left(\frac{3\pi}{4}+x\right) - \cos\left(\frac{3\pi}{4}-x\right)$
	$=2\sin\left(\frac{\frac{3\pi}{4}+x+\frac{3\pi}{4}-x}{2}\right)\times\sin\left(\frac{\frac{3\pi}{4}-x-\frac{3\pi}{4}-x}{2}\right)$
	$= 2 \sin\left(\frac{3\pi}{4}\right) \sin(-x)$
	$= -2\sin\left(\frac{\pi}{2} + \frac{\pi}{4}\right)\sin x$
	$= -2\cos\left(\frac{\pi}{4}\right)\sin x$
	$=-\sqrt{2}\sin x$
5	$(\sin 50^\circ - \sin 70^\circ) + \sin 10^\circ$

5. $(\sin 50^\circ - \sin 70^\circ) + \sin 10^\circ$ = 2 cos 60° sin (-10°) + sin 10° = -2. $\frac{1}{2}$ sin 10° + sin 10° = 0

6.
$$\cos 52^\circ + \cos 68^\circ + \cos 172^\circ$$

= $(\cos 52^\circ + \cos 172^\circ) + \cos 68^\circ$
= $2 \cos 112^\circ \cos 60^\circ + \cos 68^\circ$
= $\cos 112^\circ + \cos 68^\circ$
= $2 \cos 90^\circ \cos 22^\circ$
= 0

Hints

7.	${\sin (\beta + \gamma - \alpha) + \sin (\gamma + \alpha - \beta)} +$				
	${\sin(\alpha + \beta - \gamma) - \sin(\alpha + \beta + \beta)}$				
	= $2 \sin \gamma \cos (\beta - \alpha) + 2 \sin (-\gamma) \cos (\alpha + \beta)$				
	= $2 \sin \gamma [\cos (\beta - \alpha) - \cos (\alpha + \beta)]$				
	= $2 \sin \gamma \cdot 2 \sin \alpha \sin \beta$ = $4 \sin \alpha \sin \beta \sin \gamma$				
8.	$\frac{\sin 3x - \sin x}{\sin 2x} = \frac{2\cos 2x\sin x}{\sin x}$				
	$\cos 2x \qquad \cos 2x = 2 \sin x$				
	$-2 \sin x$				
9.	$\frac{\sin 5x + \sin 3x}{2} = \frac{2\sin 4x \cos x}{2}$				
	$\cos 5x + \cos 3x \qquad 2\cos 4x \cos x$				
	$= \tan 4x$				
10	$\frac{\cos 7A + \cos 5A}{\cos 6A \cos A} = \frac{2\cos 6A \cos A}{\cos A}$				
10.	$\sin 7A - \sin 5A = 2\cos 6A\sin A$				
	$= \cot A$				
11	$\sin 70^{\circ} + \cos 40^{\circ} - \sin 70^{\circ} + \sin 50^{\circ}$				
11.	$\frac{1}{\cos 70^\circ + \sin 40^\circ} - \frac{1}{\cos 70^\circ + \cos 50^\circ}$				
	$=\frac{2\sin 60^{\circ}\cos 10^{\circ}}{}$				
	$-\frac{1}{2\cos 60^{\circ}\cos 10^{\circ}}$				
	$= \tan 60^{\circ}$				
	$=\sqrt{3}$				
	$\sin 3A - \cos\left(\frac{\pi}{2} - A\right)$				
12	$\frac{\sin 3A - \cos\left(\frac{1}{2} - A\right)}{\sin 3A - \sin A} = \frac{\sin 3A - \sin A}{\sin A - \sin A}$				
12.	$\cos A + \cos(\pi + 3A)$ $\cos A - \cos 3A$				
	$=\frac{2\cos 2A\sin A}{\sin A}$				
	$2\sin 2A\sin A$				
	$= \cot 2A$				
13	$\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta$				
15.	$\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta$				
	$= \frac{(\sin 3\theta + \sin 9\theta) + (\sin 5\theta + \sin 7\theta)}{(\sin 5\theta + \sin 7\theta)}$				
	$-\frac{1}{(\cos 3\theta + \cos 9\theta) + (\cos 5\theta + \cos 7\theta)}$				
	$2\sin 6\theta \cos 3\theta + 2\sin 6\theta \cos \theta$				
	$=\frac{1}{2\cos 6\theta \cos 3\theta + 2\cos 6\theta \cos \theta}$				
	$2\sin 6\theta (\cos 3\theta + \cos \theta)$				
$-\frac{1}{2\cos 6\theta (\cos 3\theta + \cos \theta)}$					
	$= \tan 6\theta$				

MHT-CET Triumph Maths (Hints) $\frac{\sin(x+y)}{\sin(x+y)} = \frac{a+b}{\sin(x+y)}$ 14. $\sin(x-y) = a-b$ By componendo and dividendo, we get $\frac{\sin(x+y) + \sin(x-y)}{\sin(x+y) - \sin(x-y)} = \frac{(a+b) + (a-b)}{(a+b) - (a-b)}$ $\Rightarrow \frac{2\sin x \cos y}{2\cos x \sin y} = \frac{2a}{2b}$ $\Rightarrow \frac{\tan x}{\tan v} = \frac{a}{b}$ 15. $2 \sin 3x \cos 2x = \sin (3x + 2x) + \sin (3x - 2x)$ $= \sin 5x + \sin x$ $2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \sin\left(\frac{5\pi}{12} + \frac{\pi}{12}\right) + \sin\left(\frac{5\pi}{12} - \frac{\pi}{12}\right)$ 16. $=\sin\frac{\pi}{2}+\sin\frac{\pi}{2}$ $=1+\frac{\sqrt{3}}{2}=\frac{2+\sqrt{3}}{2}$ $\cos 75^\circ \cos 15^\circ$ 17. $=\frac{1}{2}[2\cos 75^{\circ}\cos 15^{\circ}]$ $= \frac{1}{2} \left[\cos \left(75^{\circ} + 15^{\circ} \right) + \cos \left(75^{\circ} - 15^{\circ} \right) \right]$ $=\frac{1}{2}\left[\cos 90^\circ + \cos 60^\circ\right]$ $=\frac{1}{4}$ $\sin (45^{\circ} + A) \sin (45^{\circ} - A)$ 18. $= \frac{1}{2} [2 \sin (45^\circ + A) \sin (45^\circ - A)]$ $= \frac{1}{2} \left[\cos \left(45^{\circ} + A - 45^{\circ} + A \right) \right]$ $-\cos (45^{\circ} + A + 45^{\circ} - A)$ $=\frac{1}{2}\left[\cos 2A - \cos 90^{\circ}\right]$ $=\frac{1}{2}\cos 2A$ 19. $4\sin\left(\frac{\pi}{3}+\theta\right)\sin\left(\frac{\pi}{3}-\theta\right)$ $=2\left|2\sin\left(\frac{\pi}{3}+\theta\right)\sin\left(\frac{\pi}{3}-\theta\right)\right|$

 $= 2 \left| \cos \left(\frac{\pi}{3} + \theta - \frac{\pi}{3} + \theta \right) - \cos \left(\frac{\pi}{3} + \theta + \frac{\pi}{3} - \theta \right) \right|$

 $=2\left|\cos 2\theta - \cos\left(\frac{2\pi}{3}\right)\right|$ $= 2 \cos 2\theta + 1$ $\sin 18^{\circ} \sin 70^{\circ} + \sin 16^{\circ} \sin 36^{\circ}$ 20. $= \frac{1}{2} [2 \sin 18^{\circ} \sin 70^{\circ} + 2 \sin 16^{\circ} \sin 36^{\circ}]$ $= \frac{1}{2} \left[\cos 52^\circ - \cos 88^\circ + \cos 20^\circ - \cos 52^\circ \right]$ $=\frac{1}{2} \left[\cos 20^\circ - \cos 88^\circ\right]$ $=\frac{1}{2}[2 \sin 54^{\circ} \sin 34^{\circ}]$ $= \sin 54^{\circ} \sin 34^{\circ}$ 21. $\sin 10^\circ \sin 30^\circ \sin 50^\circ \sin 70^\circ$ $=\frac{1}{2}\cdot\frac{1}{2}$ (2 sin 10° sin 50°) sin 70° $=\frac{1}{4}(\cos 40^\circ - \cos 60^\circ)\sin 70^\circ$ $=\frac{1}{8}(2\sin 70^{\circ}\cos 40^{\circ}-\sin 70^{\circ})$ $=\frac{1}{9}(\sin 110^\circ + \sin 30^\circ - \sin 70^\circ)$ $=\frac{1}{9}(\sin 70^\circ + \frac{1}{2} - \sin 70^\circ)$ \ldots [:: sin(180° – A) = sin A] $=\frac{1}{16}$ $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$ 22. $=\frac{1}{2}\cdot\frac{1}{2}(2\cos 40^{\circ}\cos 20^{\circ})\cos 80^{\circ}$ $=\frac{1}{4}(\cos 60^{\circ} + \cos 20^{\circ})\cos 80^{\circ}$ $=\frac{1}{2}(\cos 80^\circ + 2\cos 20^\circ\cos 80^\circ)$ $=\frac{1}{9}(\cos 80^\circ + \cos 100^\circ + \cos 60^\circ)$ $=\frac{1}{16}$ $\dots [\because \cos(180^\circ - A) = -\cos A]$ 24. $\operatorname{cosec} A (\sin B \cos C + \cos B \sin C)$ = cosec A sin (B + C) = cosec A sin (180° – A) = cosec A sin A = 1

 $\sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma$ 25. $=\sin^2 \alpha + \sin (\beta - \gamma) \sin (\beta + \gamma)$ $=\sin^2 \alpha + \sin (\pi - \alpha) \sin (\beta - \gamma)$ $= \sin \alpha [\sin \alpha + \sin (\beta - \gamma)]$ $= \sin \alpha [\sin (\beta + \gamma) + \sin (\beta - \gamma)]$ = $2 \sin \alpha \sin \beta \cos \gamma$ $\cos^2 A + \cos^2 B - \cos^2 C$ 26. $= \frac{1}{2}(1 + \cos 2A) + \frac{1}{2}(1 + \cos 2B)$ $-\frac{1}{2}(1+\cos 2C)$ $=\frac{1}{2}+\frac{1}{2}(\cos 2A+\cos 2B-\cos 2C)$ $=\frac{1}{2}+\frac{1}{2}(1-4\sin A\sin B\cos C)$ $= 1 - 2 \sin A \sin B \cos C$ 27. $\tan (A + B) = \tan(180^\circ - C)$ $\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$ \Rightarrow tan A + tan B = - tan C (1 - tan A tan B) \Rightarrow tan A + tan B = - tan C + tan A tan B tan C \Rightarrow tan A + tan B + tan C = tan A tan B tan C 28. $\cos A = \cos B \cos C$ $\Rightarrow \cos(\pi - B - C) = \cos B \cos C$ $\Rightarrow -\cos(B+C) = \cos B \cos C$ $\Rightarrow -\cos B \cos C + \sin B \sin C = \cos B \cos C$ \Rightarrow 2 cos B cos C = sin B sin C $\Rightarrow \cot B \cot C = \frac{1}{2}$ **Critical Thinking** $\cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ}$ 1. $= (\cos 12^\circ + \cos 132^\circ) + (\cos 84^\circ + \cos 156^\circ)$ $= 2 \cos 72^{\circ} \cos 60^{\circ} + 2 \cos 120^{\circ} \cos 36^{\circ}$ $= 2 \cos 72^\circ \times \frac{1}{2} - 2 \times \frac{1}{2} \times \cos 36^\circ$ $= \cos 72^\circ - \cos 36^\circ$

$$= \frac{\sqrt{5} - 1}{4} - \frac{\sqrt{5} + 1}{4}$$
$$= \frac{-1}{2}$$

2. $\cot 70^\circ + 4 \cos 70^\circ$ = $\frac{\cos 70^\circ + 4 \sin 70^\circ \cos 70^\circ}{\sin 70^\circ}$ $\begin{aligned} &= \frac{\cos 70^{\circ} + 2 \sin 140^{\circ}}{\sin 70^{\circ}} \\ &= \frac{\cos (90^{\circ} - 20^{\circ}) + 2 \sin (180^{\circ} - 40^{\circ})}{\sin 70^{\circ}} \\ &= \frac{\sin 20^{\circ} + \sin 40^{\circ} + \sin 40^{\circ}}{\sin 70^{\circ}} \\ &= \frac{2 \sin 30^{\circ} \cos 10^{\circ} + \sin 40^{\circ}}{\sin 70^{\circ}} \\ &= \frac{\cos 10^{\circ} + \sin 40^{\circ}}{\sin 70^{\circ}} \\ &= \frac{\sin 80^{\circ} + \sin 40^{\circ}}{\sin 70^{\circ}} \\ &= \frac{2 \sin 60^{\circ} \cos 20^{\circ}}{\sin 70^{\circ}} \\ &= \sqrt{3} \end{aligned}$

3. $\cos 10x + \cos 8x + 3 \cos 4x + 3 \cos 2x$ $= (\cos 10 x + \cos 8 x) + 3 (\cos 4 x + \cos 2 x)$ $= 2 \cos 9x \cos x + 6 \cos 3x \cos x$ $= 2 \cos x (\cos 9x + 3 \cos 3x)$ $= 2 \cos x [\cos (3(3x)) + 3 \cos 3x]$ $= 2 \cos x (4 \cos^3 3x - 3 \cos 3x + 3 \cos 3x)$ $= 8 \cos^3 3x \cos x$

4.
$$1 + \cos 2x + \cos 4x + \cos 6x$$

= $(1 + \cos 6x) + (\cos 2x + \cos 4x)$
= $2 \cos^2 3x + 2 \cos 3x \cos x$
= $2 \cos 3x (\cos 3x + \cos x)$
= $4 \cos x \cos 2x \cos 3x$
5. $\cos 6x + 6 \cos 4x + 15 \cos 2x + 10$

5.
$$\frac{\cos 3x + 0\cos 4x + 10\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x}$$
$$= \frac{(\cos 6x + \cos 4x) + 5(\cos 4x + \cos 2x) + 10(\cos 2x + 1)}{\cos 5x + 5\cos 3x + 10\cos x}$$
$$= \frac{2\cos x \cos 5x + 10\cos x \cos 3x + 10(2\cos^2 x - 1 + 1)}{\cos 5x + 5\cos 3x + 10\cos x}$$
$$= \frac{2\cos x(\cos 5x + 5\cos 3x + 10\cos x)}{\cos 5x + 5\cos 3x + 10\cos x}$$
$$= 2\cos x$$
6.
$$\sin \theta + \sin 3\theta + \sin 2\theta = \sin \alpha$$
$$\Rightarrow 2\sin 2\theta \cos \theta + \sin 2\theta = \sin \alpha$$
$$\Rightarrow \sin 2\theta (2\cos \theta + 1) = \sin \alpha \qquad \dots (i)$$
Also,
$$\cos \theta + \cos 3\theta + \cos 2\theta = \cos \alpha$$
$$\Rightarrow 2\cos 2\theta (\cos \theta + 1) = \cos \alpha \qquad \dots (ii)$$

- From (i) and (ii), we get $\tan 2\theta = \tan \alpha$ $\Rightarrow 2\theta = \alpha$ $\Rightarrow \theta = \frac{\alpha}{2}$
- 7. $\cos x + \cos y + \cos \alpha = 0$ $\Rightarrow \cos x + \cos y = -\cos \alpha$ $\Rightarrow 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = -\cos \alpha \dots(i)$

Also, $\sin x + \sin y + \sin \alpha = 0$ $\Rightarrow \sin x + \sin y = -\sin \alpha$ (x + y) (x - y)

$$\Rightarrow 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = -\sin \alpha \quad \dots (ii)$$

Dividing (i) by (ii), we get

$$\frac{2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)}{2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)} = \frac{\cos\alpha}{\sin\alpha}$$
$$\Rightarrow \cot\left(\frac{x+y}{2}\right) = \cot\alpha$$

8.
$$(\cos A + \cos B)^2 + (\sin A - \sin B)^2$$

 $= \left[2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \right]^2$
 $+ \left[2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \right]^2$
 $= 4\cos^2\left(\frac{A+B}{2}\right) \left[\cos^2\left(\frac{A-B}{2}\right) + \sin^2\left(\frac{A-B}{2}\right) \right]$
 $= 4\cos^2\left(\frac{A+B}{2}\right)$

9.
$$\cos^{2} \alpha + \cos^{2} (\alpha + 120^{\circ}) + \cos^{2} (\alpha - 120^{\circ})$$

 $= \cos^{2} \alpha + \{\cos (\alpha + 120^{\circ}) + \cos (\alpha - 120^{\circ})\}^{2}$
 $-2 \cos (\alpha + 120^{\circ}) \cos (\alpha - 120^{\circ})$
 $= \cos^{2} \alpha + \{2 \cos \alpha \cos 120^{\circ}\}^{2}$
 $-2 \{\cos^{2} \alpha - \sin^{2} 120^{\circ}\}$
 $= \cos^{2} \alpha + \cos^{2} \alpha - 2 \cos^{2} \alpha + 2 \sin^{2} 120^{\circ}$
 $= 2 \sin^{2} 120^{\circ}$
 $= 2 \times \frac{3}{4} = \frac{3}{2}$
10. $\frac{\cos(A + B)}{\cos(A - B)} = \frac{\sin(C + D)}{\sin(C - D)}$

By componendo and dividendo, we get

$$\frac{\cos(A+B) + \cos(A-B)}{\cos(A+B) - \cos(A-B)}$$

$$= \frac{\sin(C+D) + \sin(C-D)}{\sin(C+D) - \sin(C-D)}$$

$$\Rightarrow \frac{2\cos A \cos B}{-2\sin A \sin B} = \frac{2\sin C \cos D}{2\cos C \sin D}$$

$$\Rightarrow -\cot A \cot B = \tan C \cot D$$

$$\Rightarrow \tan A \tan B \tan C + \tan D = 0$$
11.
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B}$$

$$= \frac{2\sin (A+B)\sin (A-B)}{\sin 2A - \sin 2B}$$
....[:: sin²A - sin²B = sin (A+B) sin (A - B)]
$$= \frac{2\sin (A+B)\sin (A-B)}{2\cos(A+B)\sin(A-B)}$$

$$= \tan (A+B)$$
12. Since, cos $\alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta)$

$$+ \dots + \cos \{\alpha + (n-1)\beta\}$$

$$= \frac{\cos \{\alpha + (n-1)\frac{\beta}{2}\}\sin(\frac{n\beta}{2})}{\sin \beta}$$

$$\sin \frac{\pi}{2}$$
Here, $\alpha = \frac{\pi}{11}$ and $\beta = \frac{2\pi}{11}$

$$\cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11}$$

$$= \frac{\cos \left(\frac{\pi}{11} + \frac{4\pi}{11}\right) \sin \left(\frac{5\pi}{11}\right)}{\sin \left(\frac{\pi}{11}\right)}$$

$$= \frac{\cos \frac{5\pi}{11} \sin \frac{5\pi}{11}}{\sin \frac{\pi}{11}}$$

$$= \frac{1}{2} \frac{\sin \frac{10\pi}{11}}{\sin \frac{\pi}{11}} \qquad \dots [\because 2 \sin \theta \cos \theta = \sin 2\theta]$$

$$= \frac{1}{2}$$

13.
$$2\sin\frac{3A}{2}\sin\frac{A}{2} = \cos 2 A - \cos 3 A$$

= $2\cos^2 A - 1 - 4\cos^3 A + 3\cos A$

$$\begin{aligned} & = 2\left(\frac{9}{16}\right) - 1 - 4\left(\frac{27}{64}\right) + 3\left(\frac{3}{4}\right) \\ & \dots \left[\because \cos A = \frac{3}{4}\right] \\ &= \frac{9}{8} - 1 - \frac{27}{16} + \frac{9}{4} \\ &= \frac{11}{16} \end{aligned}$$

$$14. \quad \sin \frac{\pi}{16} \sin \frac{3\pi}{16} \sin \frac{5\pi}{16} \sin \frac{7\pi}{16} \\ &= \frac{1}{4} \left[2\sin \frac{\pi}{16} \sin \frac{3\pi}{16} \cdot 2\sin \frac{5\pi}{16} \sin \frac{7\pi}{16} \right] \\ &= \frac{1}{4} \left[\left(\cos \frac{\pi}{8} - \cos \frac{\pi}{4}\right) \left(\cos \frac{\pi}{8} - \cos \frac{3\pi}{4}\right) \right] \\ &= \frac{1}{4} \left[\left(\cos \frac{\pi}{8} - \frac{1}{\sqrt{2}}\right) \left(\cos \frac{\pi}{8} + \frac{1}{\sqrt{2}}\right) \right] \\ &= \frac{1}{4} \left[\left(\cos^2 \frac{\pi}{8} - \frac{1}{2}\right) \right] \\ &= \frac{1}{8} \left[2\cos^2 \frac{\pi}{8} - 1 \right] = \frac{1}{8} \left[\cos \frac{\pi}{4} \right] \\ &= \frac{1}{8} \times \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{16} \end{aligned}$$

15.
$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$$

 $= \frac{\sqrt{3}}{2} \sin 20^{\circ} \sin (60^{\circ} - 20^{\circ}) \sin (60^{\circ} + 20^{\circ})$
 $= \frac{\sqrt{3}}{2} \cdot \frac{1}{4} \sin 60^{\circ}$
 $\dots \left[\because \sin \theta \sin (60^{\circ} - \theta) \sin (60^{\circ} + \theta) = \frac{1}{4} \sin 3\theta \right]$
 $= \frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2}$
 $= \frac{3}{16}$

16.
$$\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ}$$

= $\tan 20^{\circ} \tan (60^{\circ} - 20^{\circ}) \cdot \sqrt{3} \cdot \tan(60^{\circ} + 20^{\circ})$
= $\sqrt{3} \tan 20^{\circ} \cdot \tan (60^{\circ} - 20^{\circ}) \cdot \tan (60^{\circ} + 20^{\circ})$
= $\sqrt{3} \tan 3(20^{\circ})$
....[:: $\tan \theta \tan(60^{\circ} - \theta) \tan(60^{\circ} + \theta) = \tan 3\theta$]
= $\sqrt{3} \cdot \sqrt{3} = 3$

17.
$$\frac{\tan 70^{\circ} - \tan 20^{\circ}}{\tan 50^{\circ}} = \frac{\frac{\sin 70^{\circ}}{\cos 70^{\circ}} - \frac{\sin 20^{\circ}}{\cos 20^{\circ}}}{\frac{\sin 50^{\circ}}{\cos 50^{\circ}}}$$
$$= \frac{\frac{\sin 70^{\circ} \cos 20^{\circ} - \cos 70^{\circ} \sin 20^{\circ}}{\frac{\sin 50^{\circ}}{\cos 50^{\circ}}}}{\frac{\sin 50^{\circ} \cos 20^{\circ} - \cos 70^{\circ} \sin 20^{\circ}}{\frac{\sin 50^{\circ}}{\cos 50^{\circ}}}}$$
$$= \frac{\frac{\sin 70^{\circ} \cos 20^{\circ} \sin 50^{\circ}}{\cos 50^{\circ} \cos 20^{\circ} \sin 50^{\circ}}}$$
$$= \frac{2\sin 50^{\circ} \cos 20^{\circ} \sin 50^{\circ}}{2\cos 70^{\circ} \cos 20^{\circ} \sin 50^{\circ}}}$$
$$= \frac{2\cos 50^{\circ}}{2\cos 70^{\circ} \cos 20^{\circ} \sin 50^{\circ}}}$$
$$= \frac{2\cos 50^{\circ}}{2\cos 50^{\circ} + \cos 50^{\circ}}}$$
$$= \frac{2\cos 50^{\circ}}{2\cos 50^{\circ} + \cos 50^{\circ}}}$$
$$= \frac{2\cos 50^{\circ}}{0 + \cos 50^{\circ}} = 2$$
18.
$$\tan 20^{\circ} + 2 \tan 50^{\circ} - \tan 70^{\circ}$$
$$= \frac{\sin 20^{\circ}}{\cos 20^{\circ}} - \frac{\sin 70^{\circ}}{\cos 70^{\circ}} + 2 \tan 50^{\circ}$$
$$= \frac{\sin 20^{\circ} \cos 70^{\circ} - \cos 20^{\circ} \sin 70^{\circ}}{\cos 20^{\circ} \cos 70^{\circ}} + 2 \tan 50^{\circ}$$
$$= \frac{\sin 20^{\circ} \cos 70^{\circ}}{\cos 50^{\circ} + 2 \tan 50^{\circ}}$$
$$= \frac{2\sin(-50^{\circ})}{1 \frac{1}{2} [\cos(70^{\circ} + 20^{\circ}) + \cos(70^{\circ} - 20^{\circ})]} + 2 \tan 50^{\circ}$$
$$= \frac{-2\sin 50^{\circ}}{0 + \cos 50^{\circ}} + 2 \tan 50^{\circ}$$
$$= -2 \tan 50^{\circ} + 2 \tan 50^{\circ}$$
$$= -2 \tan 50^{\circ} + 2 \tan 50^{\circ}$$
$$= -2 \tan 50^{\circ} + 2 \tan 50^{\circ}$$
$$= 0$$
19.
$$\cos e 48^{\circ} + \csc 84^{\circ} + \csc 192^{\circ} + \csc 384^{\circ}$$

$$= \frac{1}{\sin 48^{\circ}} + \frac{1}{\sin 84^{\circ}} + \frac{1}{-\sin 12^{\circ}} + \frac{1}{\sin 24^{\circ}}$$
$$= \left(\frac{1}{\sin 48^{\circ}} - \frac{1}{\sin 12^{\circ}}\right) + \left(\frac{1}{\sin 84^{\circ}} + \frac{1}{\sin 24^{\circ}}\right)$$
$$= -\frac{(\sin 48^{\circ} - \sin 12^{\circ})}{\sin 48^{\circ} \sin 12^{\circ}} + \frac{(\sin 84^{\circ} + \sin 24^{\circ})}{\sin 84^{\circ} \sin 24^{\circ}}$$
$$= -\frac{2\cos 30^{\circ} \sin 18^{\circ}}{\frac{1}{2}(\cos 36^{\circ} - \cos 60^{\circ})}$$
$$+ \frac{2\sin 54^{\circ} \cos 30^{\circ}}{\frac{1}{2}(\cos 60^{\circ} - \cos 108^{\circ})}$$
$$= \frac{4\cos 30^{\circ} \sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{4\sin 54^{\circ} \cos 30^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}}$$

$$= 4 \cos 30^{\circ} \left[\frac{\sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\sin 54^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}} \right]$$
$$= 4 \cos 30^{\circ} \left[\frac{\sin 18^{\circ}}{\cos 60^{\circ} - \cos 36^{\circ}} + \frac{\cos 36^{\circ}}{\cos 60^{\circ} + \sin 18^{\circ}} \right]$$
$$= 4 \cos 30^{\circ} \left[\frac{\frac{\sqrt{5} - 1}{4}}{\frac{1}{2} - \frac{\sqrt{5} + 1}{4}} + \frac{\frac{\sqrt{5} + 1}{4}}{\frac{1}{2} + \frac{\sqrt{5} - 1}{4}} \right]$$
$$= 4 \cos 30^{\circ} (-1 + 1) = 0$$

20.
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7}$$
$$= \frac{1}{2\sin \frac{\pi}{7}} \left\{ 2\cos \frac{2\pi}{7} \sin \frac{\pi}{7} + 2\cos \frac{4\pi}{7} \sin \frac{\pi}{7} + 2\cos \frac{6\pi}{7} \sin \frac{\pi}{7} + 2\cos \frac{6\pi}{7} \sin \frac{\pi}{7} \right\} + \cos \pi$$
$$= \frac{1}{2\sin \frac{\pi}{7}} \left[\sin \frac{3\pi}{7} - \sin \frac{\pi}{7} + \sin \frac{5\pi}{7} - \sin \frac{3\pi}{7} + \sin \pi - \sin \frac{5\pi}{7} \right] + \cos \pi$$
$$= -\frac{1}{2} - 1$$
$$= -\frac{3}{2}$$

21. $\cos^{2}(A - B) + \cos^{2}B - 2\cos(A - B)\cos A \cos B$ = $\cos^{2}(A - B) + \cos^{2} B$ - $\cos(A - B) \{\cos(A - B) + \cos(A + B)\}$ = $\cos^{2} B - \cos(A - B)\cos(A + B)$ = $\cos^{2} B - (\cos^{2} A - \sin^{2} B)$ = $1 - \cos^{2} A$ Hence, it depends on A.

22.
$$\frac{A}{B} = \tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}$$
$$= \frac{(2\sin 66^{\circ} \sin 6^{\circ})(2\sin 78^{\circ} \sin 42^{\circ})}{(2\cos 66^{\circ} \cos 6^{\circ})(2\cos 78^{\circ} \cos 42^{\circ})}$$
$$= \frac{(\cos 60^{\circ} - \cos 72^{\circ})(\cos 36^{\circ} - \cos 120^{\circ})}{(\cos 60^{\circ} + \cos 72^{\circ})(\cos 36^{\circ} + \cos 120^{\circ})}$$
$$= \frac{(\cos 60^{\circ} - \sin 18^{\circ})(\cos 36^{\circ} + \sin 30^{\circ})}{(\cos 60^{\circ} + \sin 18^{\circ})(\cos 36^{\circ} - \sin 30^{\circ})}$$
$$\dots [\because \cos(90^{\circ} + \theta) = -\sin \theta]$$

$$= \frac{\left(\frac{1}{2} - \frac{\sqrt{5} - 1}{4}\right)\left(\frac{\sqrt{5} + 1}{4} + \frac{1}{2}\right)}{\left(\frac{1}{2} + \frac{\sqrt{5} - 1}{4}\right)\left(\frac{\sqrt{5} + 1}{4} - \frac{1}{2}\right)}$$
$$= \frac{9 - 5}{5 - 1} = 1$$
$$\Rightarrow A = B$$

23. $\sin 2A + \sin 2B - \sin 2C$ = 2 sin A cos A + 2 cos (B + C) sin (B - C) = 2 sin A cos A - 2 cos A sin (B - C) = 2 cos A [sin A - sin (B - C)] = 2 cos A [sin (B + C) - sin (B - C)][:: sin (B + C) = sin A] = 2 cos A (2 cos B sin C) = 4 cos A cos B sin C Trick : Check by assuming A = B = 45° and

24.
$$\cos 2A + \cos 2B + \cos 2C$$

= 2 cos (A + B) cos (A - B) + (2 cos² C - 1)
= -1 - 2 cos C cos (A - B) + 2 cos² C
....[:: cos (A + B) = - cos C]
= -1 - 2 cos C[cos (A - B) + cos (A + B)]
= -1 - 4 cos A cos B cos C

 $C = 90^{\circ}$

25.
$$\cos 2x + \cos 2y - \cos 2z$$

= $2 \cos(x + y) \cos(x - y) - 2 \cos^2 z + 1$
= $2 \cos (\pi - z) \cos(x - y) - 2 \cos^2 z + 1$
= $1 - 2 \cos z \{\cos(x - y) - \cos(x + y)\}$
= $1 - 2 \cos z \cdot 2 \sin x \sin y$
= $1 - 4 \sin x \sin y \cos z$

- 26. $\cos 2A + \cos 2B + \cos 2C$ = $2 \cos (A + B) \cos (A - B) + \cos 2C$ = $2 \cos \left(\frac{3\pi}{2} - C\right) \cos(A - B) + \cos 2C$ $\left[\because A + B = \frac{3\pi}{2} - C\right]$ = $-2 \sin C \cos (A - B) + 1 - 2 \sin^2 C$ = $1 - 2 \sin C \left\{\cos (A - B) + \sin C\right\}$ = $1 - 2 \sin C \left\{\cos (A - B) - \cos (A + B)\right\}$
 - $= 1 4 \sin A \sin B \sin C$

Trick : Check by assuming $A = B = C = \frac{\pi}{2}$

 $\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B}$ 27. $\frac{2\sin A\cos A}{2\sin A\sin B\sin C} + \frac{2\sin B\cos B}{2\sin A\sin B\sin C}$ $+\frac{2\sin C\cos C}{2\sin A\sin B\sin C}$ $=\frac{\sin 2 A + \sin 2 B + \sin 2 C}{\sin 2 C}$ 2 sin A sin B sin C $= \frac{4\sin A \sin B \sin C}{2\sin A \sin B \sin C}$ = 2 $\sin^2 A + \sin^2 B + \sin^2 C$ 28. $= 1 - \cos^2 A + 1 - \cos^2 B + \sin^2 C$ $= 2 - \cos^2 A - (\cos^2 B - \sin^2 C)$ $= 2 - \cos^2 A - \cos (B + C) \cos (B - C)$ $= 2 - \cos A \left[\cos A - \cos \left(B - C \right) \right]$ $= 2 - \cos A [-\cos (B + C) - \cos (B - C)]$ $= 2 + \cos A.2 \cos B \cos C$ $\sin^2 A + \sin^2 B + \sin^2 C - 2 \cos A \cos B \cos C$ ÷. 29. $\cos^2 A + \cos^2 \left(A + \frac{\pi}{3}\right) + \cos^2 \left(A - \frac{\pi}{3}\right)$ $=\frac{1}{2}(1+\cos 2A)+\frac{1}{2}\left\{1+\cos\left(2A+\frac{2\pi}{3}\right)\right\}$ $+\frac{1}{2}\left\{1+\cos\left(2A-\frac{2\pi}{3}\right)\right\}$ $=\frac{3}{2}+\frac{1}{2}\cos 2A$ $+\frac{1}{2}\left\{\cos\left(2A+\frac{2\pi}{3}\right)+\cos\left(2A-\frac{2\pi}{3}\right)\right\}$ $=\frac{3}{2}+\frac{1}{2}\cos 2A+\cos 2A\cos \frac{2\pi}{3}$ \dots [:: cos (A + B) + cos (A - B) $= 2 \cos A \cos B$ $=\frac{3}{2}+\frac{1}{2}\cos 2A-\frac{1}{2}\cos 2A=\frac{3}{2}$ 30. We have. $\cos^2\frac{A}{2} + \cos^2\frac{B}{2} - \cos^2\frac{C}{2}$ $= \frac{1}{2}(1 + \cos A) + \frac{1}{2}(1 + \cos B) - \frac{1}{2}(1 + \cos C)$

 $=\frac{1}{2}+\frac{1}{2}(\cos A + \cos B - \cos C)$

Chapter 04: Factorization Formulae $=\frac{1}{2}+\frac{1}{2}$ $4\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}-1$ $=2\cos{\frac{A}{2}}\cos{\frac{B}{2}}\sin{\frac{C}{2}}$ 31. $\sin A + \sin B + \sin C$ $= 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$ $=2\sin\left(\frac{\pi}{2}-\frac{C}{2}\right)\cos\frac{A-B}{2}$ $+2\cos\frac{C}{2}\sin\left(\frac{\pi}{2}-\left(\frac{A+B}{2}\right)\right)$ $= 2\cos\frac{C}{2}\cos\frac{A-B}{2} + 2\cos\frac{C}{2}\cos\frac{A+B}{2}$ $=2\cos\frac{C}{2}\left[\cos\frac{A-B}{2}+\cos\frac{A+B}{2}\right]$ $= 2 \cos \frac{C}{2} \left(2 \cos \frac{A}{2} \cos \frac{B}{2} \right)$ $=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ $\sin 2A + \sin 2B + \sin 2C$ 32. $\cos A + \cos B + \cos C - 1$ 4 sin A sin B sin C $1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-1$ $=\frac{\left(2\sin\frac{A}{2}\cos\frac{A}{2}\right)\left(2\sin\frac{B}{2}\cos\frac{B}{2}\right)\left(2\sin\frac{C}{2}\cos\frac{C}{2}\right)}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}$ \dots $\because \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$ $= 8 \cos{\frac{A}{2}} \cos{\frac{B}{2}} \cos{\frac{C}{2}}$ 33. We have, $\alpha + \beta + \gamma = 2 \pi$ $\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2} = \pi$ $\Rightarrow \tan\left(\frac{\alpha}{2} + \frac{\beta}{2} + \frac{\gamma}{2}\right) = \tan \pi = 0$

 $\Rightarrow \tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} - \tan\frac{\alpha}{2} \tan\frac{\beta}{2} \tan\frac{\gamma}{2} = 0$ $\Rightarrow \tan\frac{\alpha}{2} + \tan\frac{\beta}{2} + \tan\frac{\gamma}{2} = \tan\frac{\alpha}{2} \tan\frac{\beta}{2} \tan\frac{\gamma}{2}$

34.
$$\sum \frac{\cot A + \cot B}{\tan A + \tan B} = \sum \frac{\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B}}{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}$$
$$= \sum \left(\frac{\sin B \cos A + \sin A \cos B}{\sin A \sin B}\right) \left(\frac{\cos A \cos B}{\cos A + \cos B \sin B}\right)$$
$$= \sum \cot A \cot B$$
$$= \cot A \cot B + \cot B \cot C + \cot C \cot A = 1$$
$$\dots \left[\because A + B + C = \pi, \\ \therefore \cot A \cot B + \cot B \cot C + \cot C \cot A = 1 \right]$$
$$\underbrace{ \therefore \cot A \cot B + \cot B \cot C + \cot C \cot A = 1 }$$
$$\dots \left[\because A + B + C = \pi, \\ \therefore \cot A \cot B + \cot B \cot C + \cot C \cot A = 1 \right]$$
$$\underbrace{ 0 \text{ months of } 0^{\circ} - (\sin 11^{\circ} + \sin 25^{\circ}) = 2 \sin 54^{\circ} \cos 7^{\circ} - 2 \sin 18^{\circ} \cos 7^{\circ} = 2 \cos 7^{\circ} (\sin 54^{\circ} - \sin 18^{\circ}) = 2 \cos 7^{\circ} (\sin 54^{\circ} - \sin 18^{\circ}) = 2 \cos 7^{\circ} (2 \cos 36^{\circ} \sin 18^{\circ}) = 2 \cos 7^{\circ} (2 \cos 36^{\circ} \sin 18^{\circ}) = 2 \cos 7^{\circ} (2 \cos 36^{\circ} \sin 18^{\circ}) = 4 \cos 7^{\circ} \cdot \frac{\sqrt{5} + 1}{4} \cdot \frac{\sqrt{5} - 1}{4} = \cos 7^{\circ}$$
$$2. \quad \cos A + \cos(240^{\circ} + A) + \cos(240^{\circ} - A) = \cos A + 2 \cos 240^{\circ} \cos A = \cos A + 1 + 2 \cos (180^{\circ} + 60^{\circ}) \} = \cos A \left\{ 1 + 2 \cos (180^{\circ} + 60^{\circ}) \right\} = \cos A \left\{ 1 + 2 \cos (180^{\circ} + 60^{\circ}) \right\} = \cos A \left\{ 1 + 2 \cos (180^{\circ} + 60^{\circ}) \right\} = 0$$
$$3. \quad \cos \frac{10\pi}{13} + \cos \frac{8\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = \left(\cos \frac{10\pi}{13} + \cos \frac{3\pi}{13} \right) + \left(\cos \frac{8\pi}{13} + \cos \frac{5\pi}{13} \right) = 2 \cos \left(\frac{13\pi}{2 \times 13} \right) \cdot \cos \left(\frac{7\pi}{2 \times 13} \right) + 2 \cos \left(\frac{13\pi}{2 \times 13} \right) \cos \left(\frac{3\pi}{2 \times 13} \right) = 2 \cos \frac{\pi}{2} \left(\cos \frac{7\pi}{26} + \cos \frac{3\pi}{26} \right) = 0 \quad \dots \left[\because \cos \frac{\pi}{2} = 0 \right]$$

4.
$$2 \cos \frac{\pi}{13} \cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}$$

 $= 2 \cos \frac{\pi}{13} \cos \frac{9\pi}{13} + 2 \cos \frac{4\pi}{13} \cos \frac{\pi}{13}$
 $= 2 \cos \frac{\pi}{13} \left[\cos \frac{9\pi}{13} + \cos \frac{4\pi}{13} \right]$
 $= 2 \cos \frac{\pi}{13} \left[2 \cos \frac{\pi}{2} \cos \frac{5\pi}{26} \right]$
 $= 0 \qquad \dots \left[\because \cos \frac{\pi}{2} = 0 \right]$
5. $2 \cos x - \cos 3x - \cos 5x$
 $= 2 \cos x (1 - \cos 4x)$
 $= 2 \cos x \sin^2 2x$
 $= 4 \cos x (2 \sin x \cos x)^2$
 $= 16 \sin^2 x \cos^3 x$
6. $1 + \cos 10^\circ + \cos 20^\circ + \cos 30^\circ$
 $= 2 \cos^2 5^\circ + 2 \cos 25^\circ \cos 5^\circ$
 $= 2 \cos 5^\circ (\cos 5^\circ + \cos 25^\circ)$
 $= 2 \cos 5^\circ (\cos 5^\circ + \cos 25^\circ)$
 $= 2 \cos^5 \cos 10^\circ \cos 15^\circ$
7. $1 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ$
 $= 2 \cos^2 28^\circ + 2 \sin 62^\circ \sin 4^\circ$
 $= 2 \cos^2 28^\circ + 2 \cos 29^\circ \cos 86^\circ$
 $\dots [\because \sin (90^\circ - \theta) = \cos \theta]$
 $= 2 \cos 28^\circ (\cos 29^\circ \sin 33^\circ)$
 $\dots [\because \cos (90^\circ - \theta) = \sin \theta]$
8. $\frac{\sin 85^\circ - \sin 35^\circ}{\cos 65^\circ} = \frac{2 \cos 60^\circ \sin 25^\circ}{\sin 10^\circ} = 2 \times \frac{1}{2}$
 $= 1$
9. $\frac{\sin 55^\circ - \cos 55^\circ}{\sin 10^\circ} = \frac{\sin 55^\circ - \sin 35^\circ}{\sin 10^\circ} = \sqrt{2}$
10. $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$
 $= \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ$
 $\dots [\because \tan (90^\circ - \theta) = \cot \theta]$

L

Chapter 04: Factorization Formulae $\Rightarrow 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)=1$(ii) Dividing (i) by (ii), we get $\tan\left(\frac{x+y}{2}\right) = \frac{1}{2}$ Now, $\tan(x+y) = \frac{2\tan\left(\frac{x+y}{2}\right)}{1-\tan^2\left(\frac{x+y}{2}\right)}$ $=\frac{2\left(\frac{1}{2}\right)}{1-\frac{1}{2}}=\frac{4}{3}$ $\cos x = 3 \cos y \Rightarrow \frac{\cos x}{\cos y} = \frac{3}{1}$ 15. By componendo and dividendo, we get $\frac{\cos x + \cos y}{\cos x - \cos y} = \frac{3+1}{3-1}$ $\Rightarrow \frac{2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)}{-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)} = \frac{4}{2}$ $\Rightarrow -\cot\left(\frac{x+y}{2}\right)\cot\left(\frac{x-y}{2}\right) = 2$ $\Rightarrow \cot\left(\frac{x+y}{2}\right)\cot\left(\frac{y-x}{2}\right) = 2$ $\Rightarrow 2 \tan\left(\frac{y-x}{2}\right) = \cot\left(\frac{x+y}{2}\right)$ 16. Given that, $\cos A = m \cos B$ $\Rightarrow \frac{m}{1} = \frac{\cos A}{\cos B}$ By componendo and dividendo, we get $\underline{m+1} = \underline{\cos A + \cos B}$ $m-1 \cos A - \cos B$ $=\frac{2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B-A}{2}\right)}{2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{B-A}{2}\right)}$ $\dots [:: \cos (B - A) = \cos (A - B)]$ $= \cot\left(\frac{A+B}{2}\right)\cot\left(\frac{B-A}{2}\right)$ $\Rightarrow \cot\left(\frac{A+B}{2}\right) = \frac{m+1}{m-1}\tan\left(\frac{B-A}{2}\right)$

$$= (\tan 9^{\circ} + \cot 9^{\circ}) - (\tan 27^{\circ} + \cot 27^{\circ})$$

$$= \frac{1}{\sin 9^{\circ} \cos 9^{\circ}} - \frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$$

$$= \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin 54^{\circ}}$$
...[$\because \sin 2\theta = 2 \sin \theta \cos \theta$]
$$= 2 \left\{ \frac{\sin 54^{\circ} - \sin 18^{\circ}}{\sin 18^{\circ} \sin 54^{\circ}} \right\}$$

$$= 2 \cdot \frac{2 \cos 36^{\circ} \sin 18^{\circ}}{\sin 18^{\circ} \sin 54^{\circ}}$$

$$= \frac{4 \cos 36^{\circ}}{\cos 36^{\circ}}$$

$$= 4$$
11.
$$\frac{\sin A - \sin B}{\cos A + \cos B} = \frac{2 \cdot \cos \left(\frac{A + B}{2}\right) \cdot \sin \left(\frac{A - B}{2}\right)}{2 \cdot \cos \left(\frac{A + B}{2}\right) \cdot \cos \left(\frac{A - B}{2}\right)}$$

$$= \tan \left(\frac{A - B}{2}\right)$$
12.
$$\frac{\sin (B + A) + \cos (B - A)}{\sin (B - A) + \cos (B + A)}$$

$$= \frac{\sin (B + A) + \sin \{90^{\circ} - (B - A)\}}{\sin (B - A) + \cos (B + A)}$$

$$= \frac{\sin (A + 45^{\circ}) \cos (45^{\circ} - B)}{2 \sin (45^{\circ} - A) \cos (45^{\circ} - B)}$$

$$= \frac{\sin (A + 45^{\circ})}{\sin (45^{\circ} - A) \cos (45^{\circ} - B)}$$

$$= \frac{\sin (A + 45^{\circ})}{\sin (45^{\circ} - A) = \cos 4A - \sin 2A}$$

$$\Rightarrow \sin 4A + \sin 2A = \cos 4A - \sin 2A$$

$$\Rightarrow 2 \sin 3A \cos A = 2 \cos 3A \cos A$$

$$\Rightarrow \tan 3A = 1$$

$$\Rightarrow 3A = \frac{\pi}{4}$$

$$\Rightarrow 4A = \frac{\pi}{3}$$

$$\therefore \quad \tan 4A = \tan \frac{\pi}{3}$$

$$= \sqrt{3}$$
14.
$$\sin x + \sin y = \frac{1}{2}$$

$$\Rightarrow 2 \sin \left(\frac{x + y}{2}\right) \cos \left(\frac{x - y}{2}\right) = \frac{1}{2} \quad \dots (i)$$

$$\cos x + \cos y = 1$$

49

- 17. $S = \sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta$ Since, $\sin \theta + \sin(\theta + \beta) + \sin(\theta + 2\beta) + \dots + \sin [\theta + (n-1)\beta]$ $= \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \sin \left[\theta + \left(\frac{(n-1)}{2}\right)\beta\right]$ Here, $\beta = \theta$ $\therefore \qquad S = \frac{\sin \frac{n\theta}{2} \cdot \sin \frac{\theta(n+1)}{2}}{\sin \frac{\theta}{2}}$
- 18. Since, $\cos \alpha + \cos 2\alpha + \cos 3\alpha + \dots + \cos n\alpha$ = $\frac{\cos\left(\frac{n+1}{2}\alpha, \sin\left(\frac{n\alpha}{2}\right)\right)}{\sin\left(\frac{\alpha}{2}\right)}$

Here, n = 3 and
$$\alpha = \frac{2\pi}{7}$$

 $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$
 $= \frac{\cos\left(\frac{3+1}{2}\right)\left(\frac{2\pi}{7}\right)\sin\left(\frac{3\times 2\pi}{2\times 7}\right)}{\sin\left(\frac{2\pi}{7\times 2}\right)}$
 $= \frac{\cos\left(\frac{4\pi}{7}\right).\sin\left(\frac{3\pi}{7}\right)}{\sin\left(\frac{\pi}{7}\right)}$

Since, the values of $\cos\left(\frac{4\pi}{7}\right)$, $\sin\left(\frac{3\pi}{7}\right)$ and

- $\sin\left(\frac{\pi}{7}\right)$ are -ve, +ve and +ve respectively.
- \therefore option (C) is the correct answer.

19. $\cos A = \frac{3}{4} \Rightarrow \sin A = \frac{\sqrt{7}}{4}$ Now, $32 \sin \frac{A}{2} \cos \frac{5A}{2}$ $= 16 (\sin 3A - \sin 2A)$ $= 16 (3\sin A - 4\sin^3 A - 2\sin A \cos A)$ $= 16 \sin A(3 - 4\sin^2 A - 2\cos A)$ $= 16. \frac{\sqrt{7}}{4} \left(3 - 4. \frac{7}{16} - 2. \frac{3}{4}\right)$

 $=-\sqrt{7}$

20.
$$\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$$

 $= \frac{1}{2} (\cos 36^{\circ} - \cos 60^{\circ}) \cos 36^{\circ}$
 $= \frac{1}{2} \left[\frac{\sqrt{5} + 1}{4} - \frac{1}{2} \right] \left[\frac{\sqrt{5} + 1}{4} \right]$
 $= \frac{1}{2} \left[\frac{\sqrt{5} - 1}{4} \right] \left[\frac{\sqrt{5} + 1}{4} \right]$
 $= \frac{5 - 1}{32}$

 $= \frac{1}{8}$ 21. $\sin 12^{\circ} \sin 24^{\circ} \sin 48^{\circ} \sin 84^{\circ}$ $= \frac{1}{4} (2 \sin 12^{\circ} \sin 48^{\circ}) (2 \sin 24^{\circ} \sin 84^{\circ})$ $= \frac{1}{2} (\cos 36^{\circ} - \cos 60^{\circ}) (\cos 60^{\circ} - \cos 108^{\circ})$ $= \frac{1}{4} \left(\cos 36^{\circ} - \frac{1}{2} \right) \left(\frac{1}{2} + \sin 18^{\circ} \right)$ $= \frac{1}{4} \left\{ \frac{1}{4} (\sqrt{5} + 1) - \frac{1}{2} \right\} \left\{ \frac{1}{2} + \frac{1}{4} (\sqrt{5} - 1) \right\}$ $= \frac{1}{16}$ Consider, $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$ $= \frac{1}{2} [\cos (60^{\circ} - 20^{\circ}) \cos 20^{\circ} \cos (60^{\circ} + 20^{\circ})]$

$$= \frac{1}{2} \left[\frac{1}{4} \cos 3 (20^{\circ}) \right]$$

.... $\left[\because \cos \theta \cos(60^{\circ} - \theta) \cos(60^{\circ} + \theta) = \frac{1}{4} \cos 3\theta \right]$
$$= \frac{1}{8} \cos 60^{\circ} = \frac{1}{8} \times \frac{1}{2} = \frac{1}{16}$$

$$\therefore$$
 option (A) is the correct answer

22.
$$\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)$$
$$=\left(1+\cos\frac{\pi}{8}\right)\left(1-\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1-\cos\frac{3\pi}{8}\right)$$
$$\dots\left[\because\cos\left(\pi-\theta\right)=-\cos\theta\right]$$
$$=\left(1-\cos^{2}\frac{\pi}{8}\right)\left(1-\cos^{2}\frac{3\pi}{8}\right)$$

...

$$= \sin^{2} \frac{\pi}{8} \sin^{2} \frac{3\pi}{8}$$

$$= \frac{1}{4} \left(2 \sin \frac{\pi}{8} \cdot \sin \frac{3\pi}{8} \right)^{2}$$

$$= \frac{1}{4} \left(\cos \frac{\pi}{4} - \cos \frac{\pi}{2} \right)^{2}$$

$$= \frac{1}{8}$$

23. $\frac{m}{n} = \frac{\tan(\theta + 120^{\circ})}{\tan(\theta - 30^{\circ})}$

$$\Rightarrow \frac{m + n}{m - n} = \frac{\tan(\theta + 120^{\circ}) + \tan(\theta - 30^{\circ})}{\tan(\theta + 120^{\circ}) - \tan(\theta - 30^{\circ})}$$

....[By componendo and dividendo]

$$= \frac{\sin(\theta + 120^{\circ})\cos(\theta - 30^{\circ}) + \cos(\theta + 120^{\circ})\sin(\theta - 30^{\circ})}{\sin(\theta + 120^{\circ})\cos(\theta - 30^{\circ}) - \cos(\theta + 120^{\circ})\sin(\theta - 30^{\circ})}$$

$$= \frac{\sin(2\theta + 90^{\circ})}{\sin(150^{\circ})} = \frac{\cos 2\theta}{\frac{1}{2}}$$

$$= 2 \cos 2\theta$$

24. $\cos^{2} 76^{\circ} + \cos^{2} 16^{\circ} - \cos 76^{\circ} \cos 16^{\circ}$

$$= \frac{1}{2} [1 + \cos 152^{\circ} + 1 + \cos 32^{\circ} - \cos 92^{\circ} - \cos 92^{\circ}]$$

$$= \frac{1}{2} \left[\frac{3}{2} + 2 \cos 92^{\circ} \cos 60^{\circ} - \cos 92^{\circ} \right]$$

$$= \frac{1}{2} \left[\frac{3}{2} + \cos 92^{\circ} - \cos 92^{\circ} \right]$$

$$= \frac{3}{4}$$

25. $\cos 2(\alpha + \beta) = 2 \cos^{2}(\alpha + \beta) - 1$
and $2 \sin^{2} \beta = 1 - \cos 2\beta$
Now, $2 \sin^{2} \beta + 4 \cos(\alpha + \beta) \sin\alpha \sin\beta$

$$+ \cos 2(\alpha + \beta)$$

 $= 1 - \cos 2\beta + 4 \cos (\alpha + \beta) \sin \alpha \sin \beta$

 $+2\cos^2(\alpha+\beta)-1$

Chapter 04: Factorization Formulae = $2\cos(\alpha + \beta)[2\sin\alpha\sin\beta + \cos(\alpha + \beta)] - \cos 2\beta$ $= -\cos 2\beta + 2\cos(\alpha + \beta)\cos(\alpha - \beta)$ $= -\cos 2\beta + \cos 2\alpha + \cos 2\beta$ $= \cos 2\alpha$ 26. In $\triangle ABC$, $A + B + C = \pi$ $\sin 2A + \sin 2B + \sin 2C$ $= 2 \sin (A + B) \cos (A - B) + 2 \sin C \cos C$ = $2 \sin(\pi - C)\cos(A - B) + 2 \sin C \cos{\pi - (A + B)}$ $= 2 \sin C \cos (A - B) - 2 \sin C \cos (A + B)$ $= 2 \sin C \{\cos (A - B) - \cos (A + B)\}$ $= 2 \sin C (2 \sin A \sin B)$ $= 4 \sin A \sin B \sin C$ 27. $\cos A = \cos B \cos C$ $\Rightarrow \cos[\pi - (B + C)] = \cos B \cos C$ $\Rightarrow -\cos(B+C) = \cos B \cos C$ $\Rightarrow -[\cos B \cos C - \sin B \sin C] = \cos B \cos C$ \Rightarrow sin B sin C = 2 cos B cos C \Rightarrow tan B tan C = 2 28. $\cot (A + B) = \cot (\pi - C)$ $\Rightarrow \frac{\cot A \cot B - 1}{\cot A + \cot B} = -\cot C$ $\Rightarrow \cot A \cot B - 1 = -\cot A \cot C - \cot B \cot C$ \Rightarrow cot B cot C + cot C cot A + cot A cot B = 1 $\cot B + \cot C = \frac{\sin C \cos B + \sin B \cos C}{\sin B \sin C}$ 29. $=\frac{\sin(B+C)}{\sin(B+C)}$ sin Bsin C $=\frac{\sin\left(180^{\circ}-A\right)}{}$ sin Bsin C = $\frac{\sin A}{\sin A}$ sin B sin C Similarly, $\cot C + \cot A = \frac{\sin B}{\sin C \sin A}$ and $\cot A + \cot B = -\frac{\sin C}{2}$ sin A sin B $(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)$ *.*.. sin B sin C sin A = - $\sin B \sin C \sin C \sin A \sin B$ = cosec A cosec B cosec C 30. Since, $\tan A + \tan B + \tan C = \tan A \tan B \tan C$ $\tan A + \frac{\tan B}{\cos 2} + \frac{\tan C}{\cos 2} = 1$ *.*..

tanA tan B tan C

4. Given, sin A + sin B = C
and cos A + cos B = D

$$\therefore \frac{\sin A + \sin B}{\cos A + \cos B} = \frac{C}{D}$$

$$\Rightarrow \frac{2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)}{2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)} = \frac{C}{D}$$

$$\Rightarrow \tan\left(\frac{A+B}{2}\right) = \frac{C}{D} \dots(i)$$
Now, sin (A + B) = $\frac{2 \tan\left(\frac{A+B}{2}\right)}{1 + \tan^2\left(\frac{A+B}{2}\right)}$

$$= \frac{2 \tan\left(\frac{A+B}{2}\right)}{1 + \tan^2\left(\frac{A+B}{2}\right)}$$

$$= \frac{2 CD}{1 + \frac{C^2}{D^2}} \dots[From (i)]$$

$$= \frac{2 CD}{C^2 + D^2}$$
5. $\frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha} = \frac{2 \cos \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2}}{2 \sin \frac{\alpha + \gamma}{2} \sin \frac{\alpha - \gamma}{2}}$

$$= \cot \frac{\alpha + \gamma}{2}$$
But α, β, γ are in A.P. $\Rightarrow \frac{\alpha + \gamma}{2} = \beta$

$$\therefore \frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha} = \cot \beta$$
6. $\sin^3 x \sin 3x$

$$= \frac{1}{4} (3 \sin x - \sin 3x) \sin 3x$$

$$\dots \left[\because \sin 3A = 3 \sin A - 4 \sin^3 A \\ \Rightarrow \sin^3 A = \frac{1}{4} (3 \sin A - \sin 3A) \right]$$

$$= \frac{3}{8} (2 \sin x \sin 3x) - \frac{1}{8} (2 \sin^2 3x)$$

Chapter 04: Factorization Formulae $=\frac{3}{8}(\cos 2x - \cos 4x) - \frac{1}{8}(1 - \cos 6x)$ $= -\frac{1}{8} + \frac{3}{8}\cos 2x - \frac{3}{8}\cos 4x + \frac{1}{8}\cos 6x \dots (i)$ and $\sum_{m=0}^{n} c_{m} \cos mx$ $= c_0 + c_1 \cos x + c_2 \cos 2x + c_3 \cos 3x$ $+ + c_n \cos nx$ (ii) But, $\sin^3 x \sin 3 x = \sum_{n=0}^{n} c_m \cos mx$ from (i) and (ii), we get n = 6. *.*.. Given, $\sin B = \frac{1}{5} \sin (2A + B)$ 7. $\Rightarrow \frac{\sin(2A+B)}{\sin B} = \frac{5}{1}$ By componendo and dividendo, we get $\frac{\sin(2A+B)+\sin B}{\sin(2A+B)-\sin B} = \frac{5+1}{5-1}$ $\Rightarrow \frac{2\sin(A+B)\cos A}{2\cos(A+B)\sin A} = \frac{6}{4}$ $\Rightarrow \frac{\tan(A+B)}{\tan A} = \frac{3}{2}$ 8. $\sin A + \sin 2A + \sin 3A = \cos A + \cos 2A + \cos 3A$ $(\sin 3A + \sin A) + \sin 2A = (\cos 3A + \cos A)$ $+\cos 2A$ $2 \sin 2A \cos A + \sin 2A = 2 \cos 2A \cos A$ *.*.. $+\cos 2A$ $\sin 2A(2 \cos A + 1) = \cos 2A(2 \cos A + 1)$ $\tan 2A = 1$

...

... *.*..

Textbook Chapter No.

Straight Line

Hints

8.

9.

Classical Thinking

Gradient of the line which passes through 2. (1, 0) and (-2, $\sqrt{3}$) is $m = \frac{\sqrt{3} - 0}{-2 - 1} = -\frac{1}{\sqrt{2}}$

$$\Rightarrow \tan \theta = -\frac{1}{\sqrt{3}}$$
$$\Rightarrow \theta = \tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) = 150^{\circ}$$

- 3. The required equation is $y + 6 = \tan 45^{\circ}(x - 4)$ $\Rightarrow x - y - 10 = 0$
- The required equation passing through (0, 0)4. and having gradient $m = \frac{1}{0}$, is $y = \frac{1}{0}x$ $\Rightarrow x = 0$
- Midpoint is (3, 4) and slope of AB = $\frac{6}{4}$ 5.
- Slope of perpendicular = $\frac{-1}{6/4} = \frac{-2}{2}$...
- the required equation is $y 4 = \frac{-2}{3}(x 3)$ *.*.. $\Rightarrow 2x + 3y = 18$
- $m = \frac{-1}{\frac{b'-b}{a'-a}} = \frac{a'-a}{b-b'}$ 6. Midpoint is $\left(\frac{a+a'}{2}, \frac{b+b'}{2}\right)$
- the required equation is *.*.. $y - \left(\frac{b+b'}{2}\right) = \frac{a'-a}{b-b'} \left| x - \left(\frac{a+a'}{2}\right) \right|$ $\Rightarrow 2(b-b')y+2(a-a')x=b^2-b'^2+a^2-a'^2$ Midpoint = (4, -9) and slope = $\frac{-1}{3+1} = \frac{3}{2}$ 7. Hence, the required line is $y + 9 = \frac{3}{2}(x - 4)$

$$\Rightarrow 3x - 2y = 30$$

 $\begin{array}{c} O \\ R(3, 3\sqrt{3}) \\ X' \bullet P(-1, 0) \\ Q(0, 0) \\ \end{array} X$ Slope of QR = $\frac{3\sqrt{3} - 0}{3 - 0} = \sqrt{3}$ i.e., $\theta = 60^{\circ}$ Clearly, $\angle PQR = 120^{\circ}$ OQ is the angle bisector of the angle PQR, so line OQ makes 120° with the positive direction of X-axis. Therefore, equation of the bisector of $\angle PQR$ is $y = \tan 120^{\circ}x \Rightarrow y = -\sqrt{3}x \Rightarrow \sqrt{3}x + y = 0$ $m = \frac{5-0}{4} = \frac{5}{4}$

- the required equation is 5x + 4y = 0. *.*..
- 10. Equation of a line passing through the given
 - points is $\frac{y-(-6)}{-6-10} = \frac{x-(-5)}{-5-3}$ $\Rightarrow \frac{y+6}{-16} = \frac{x+5}{-8} \Rightarrow 2x-y+4 = 0$
- 11. The point of intersection is (0, 0)Thus, the equation of line passing through the points (0, 0) and (2, 2) is y = x.
- Equation of line is y = mx + c12. \Rightarrow y = (tan 135°)x - 5 \Rightarrow y = -x - 5 $\Rightarrow x + y + 5 = 0$

13. From the figure,
$$m = \tan \theta = \frac{-c}{3}$$

Hence, the required equation is y = 3x - 9

Chapter 06: Straight Line

- 14. Here, intercept on X-axis is 3 and intercept on Y-axis is -2. So, using double intercept form, the required equation of the line is $\frac{x}{3} - \frac{y}{2} = 1$.
- 15. Using double intercept form, we get $\frac{x}{2} + \frac{y}{2} = 1$

$$2a \sec \theta \qquad 2a \csc \theta$$
$$\Rightarrow x \cos \theta + y \sin \theta = 2a$$

- 16. Intersection point on X-axis is $(2x_1, 0)$ and on Y-axis is $(0, 2y_1)$. Thus, equation of line passing through these points is $\frac{x}{x_1} + \frac{y}{y_1} = 2$.
- 17. Since, the given line passes through (2, -3) and (4, -5).
- $\therefore \quad \frac{2}{a} \frac{3}{b} = 1 \text{ and } \frac{4}{a} \frac{5}{b} = 1$ $\implies b = -1, a = -1$
- 20. The equation of line is $\frac{x}{a} + \frac{y}{a} = 1$. ⇒ x + y - a = 0∴ Slope = $-\frac{\text{coefficient of } x}{\text{coefficient of } y} = -1$
- 21. The required equation which passes through (1, 2) and its gradient m = 3, is y 2 = 3(x-1).
- 22. The required equation which passes through (c, d) and its gradient $-\frac{a}{b}$, is $y-d = -\frac{a}{b}(x-c)$ $\Rightarrow a(x-c) + b(y-d) = 0$
- 23. The required equation passing through (3, -4) and having gradient $\frac{4}{3}$ is $y + 4 = \frac{4}{3}(x-3)$.
- 24. Equation of line perpendicular to ax + by + c = 0 is $bx - ay + \lambda = 0$ (i) It passes through (a, b).
- $\therefore \quad ab ab + \lambda = 0 \Rightarrow \lambda = 0$ Putting $\lambda = 0$ in (i), we get bx - ay = 0 which is the required equation.
- 25. Slope of perpendicular = $\frac{-y'}{2a}$

$$\therefore \quad \text{the required equation is } y - y' = -\frac{y'}{2a} (x - x')$$
$$\Rightarrow xy' + 2ay - 2ay' - x'y' = 0$$

26.
$$m_{1} = \sqrt{3}, m_{2} = 0$$

$$\therefore \quad \tan \theta = \left| \frac{\sqrt{3} - 0}{1 + 0} \right|$$

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$\Rightarrow \theta = 60^{\circ}$$

27.
$$\theta = \tan^{-1} \left| \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + 4 - 3} \right| = \tan^{-1} \left(\sqrt{3} \right)$$

$$\Rightarrow \theta = 60^{\circ}$$

28.
$$\theta = \tan^{-1} \left| \frac{-\cot 30^{\circ} + \cot 60^{\circ}}{1 + \cot 30^{\circ} \cot 60^{\circ}} \right|$$

$$= \tan^{-1} \left| \frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 30^{\circ} \tan 60^{\circ}} \right| = 30^{\circ}$$

29. Equation of lines are $\frac{x}{a} - \frac{y}{b} = 1$ and $\frac{x}{b} - \frac{y}{a} = 1$

$$\Rightarrow m_{1} = \frac{b}{a} \text{ and } m_{2} = \frac{a}{b}$$

$$\therefore \quad \theta = \tan^{-1} \left| \frac{\frac{b}{a} - \frac{a}{b}}{1 + \frac{b}{a} \cdot \frac{a}{b}} \right|$$

$$= \tan^{-1} \frac{\frac{b^{2}}{2ab}}{1 + \frac{b}{2} - \frac{a^{2}}{2ab}}$$

30. Let $L_1 \equiv 2x + 3y - 7 = 0$ and $L_2 \equiv 2x + 3y - 5 = 0$ Here, slope of L_1 = slope of $L_2 = -\frac{2}{3}$

Hence, the lines are parallel.

31. Slope of given line is $\frac{1}{2}$

Thus,
$$\tan 45^\circ = \pm \frac{m - \frac{1}{2}}{1 + m \cdot \frac{1}{2}} \implies m = 3 \text{ or } \frac{-1}{3}$$

Hence option (B) is correct.

33. Let $L_1 \equiv 2x + 5y - 7 \equiv 0$ and $L_2 \equiv 2x - 5y - 9 \equiv 0$, so that $m_1 = -\frac{2}{5}$, $m_2 = \frac{2}{5}$

Lines are neither parallel nor perpendicular, also not coincident. Hence, the lines are intersecting.

$$34. \quad \begin{vmatrix} m_{1} & -1 & c_{1} \\ m_{2} & -1 & c_{2} \\ m_{3} & -1 & c_{3} \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} m_{1} & m_{2} & m_{3} \\ -1 & -1 & -1 \\ c_{1} & c_{2} & c_{3} \end{vmatrix}$$

$$\Rightarrow m_{1}(c_{2} - c_{3}) + m_{2}(c_{3} - c_{1}) + m_{3}(c_{1} - c_{2}) = 0$$

$$35. \quad \text{The lines are concurrent, if } \begin{vmatrix} 7 & -8 & 5 \\ 3 & -4 & 5 \\ 4 & 5 & k \end{vmatrix} = 0$$

$$\Rightarrow 7(-4k - 25) + 8(3k - 20) + 5(15 + 16) = 0$$

$$\Rightarrow k = -45$$

$$36. \quad \text{consider } \begin{vmatrix} 15 & -18 & 1 \\ 12 & 10 & -3 \\ 6 & 66 & -11 \end{vmatrix}$$

$$= 15 (-110 + 198) + 18 (-132 + 18) + 1 (792 - 60)$$

$$= 0$$

$$37. \quad u = a_{1}x + b_{1}y + c_{1} = 0, v = a_{2}x + b_{2}y + c_{2} = 0$$

$$\text{let } \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} = c$$

$$\Rightarrow a_{2} = \frac{a_{1}}{c}, b_{2} = \frac{b_{1}}{c_{2}}, c_{2} = \frac{c_{1}}{c}$$
Given that, $u + kv = 0$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} + k(a_{2}x + b_{2}y + c_{2}) = 0$$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} + k(a_{2}x + b_{2}y + c_{2}) = 0$$

$$\Rightarrow a_{1}x + b_{1}y + c_{1} = 0 = u$$

$$38. \quad \text{Required length = } \left| \frac{4(3) + 3(1) + 20}{\sqrt{1} + 1} \right| = \frac{10}{\sqrt{2}} = 5\sqrt{2}$$

40. Required distance
$$= \left| \frac{-7}{\sqrt{12^2 + 5^2}} \right| = \frac{7}{13}$$

41. Here, equation of line is $y = x \tan \alpha + c$, c > 0Length of the perpendicular drawn on line from point (a cos α , a sin α) is

$$p = \left| \frac{-a \sin \alpha + a \cos \alpha \tan \alpha + c}{\sqrt{1 + \tan^2 \alpha}} \right| = \frac{c}{\sec \alpha} = c \cos \alpha$$

42.
$$p = \left| \frac{ab}{\sqrt{a^2 + b^2}} \right|$$
$$\Rightarrow \frac{a^2 + b^2}{a^2 b^2} = \frac{1}{p^2}$$
$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$$

43.

Length of perpendicular is
$$\left|\frac{\frac{b}{a} - \frac{a}{b} - 1}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(-\frac{1}{b}\right)^2}}\right| = \left|\frac{b^2 - a^2 - ab}{\sqrt{a^2 + b^2}}\right|$$

44. Straight line
$$y - y' = \frac{y'' - y'}{x'' - x'}(x - x')$$

Length of perpendicular
$$\begin{vmatrix} x'(y''-y') - y'(x''-x') \end{vmatrix}$$

$$= \left| \frac{(x'' - x')^2 + (y'' - y')^2}{\sqrt{(x'' - x')^2 + (y'' - y')^2}} \right|$$
$$= \left| \frac{x'y'' - y'x''}{\sqrt{(x'' - x')^2 + (y'' - y')^2}} \right|$$

45. Given lines are
$$5x + 3y - 7 = 0$$
(i)
and $15x + 9y + 14 = 0$ or
 $5x + 3y + \frac{14}{3} = 0$ (ii)

Lines (i) and (ii) are parallel.

$$\therefore \quad \text{Required distance} = \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right| = \frac{\left| -7 - \frac{14}{3} \right|}{\left| \sqrt{5^2 + 3^2} \right|}$$

$$= \left| \frac{-35}{3\sqrt{34}} \right| = \frac{35}{3\sqrt{34}}$$

Critical Thinking

- 1. The four vertices on solving are A(-3, 3), B(1, 1), C(1, -1) and D(-2, -2). $m_1 =$ slope of AC = -1, $m_2 =$ slope of BD = 1
- $\therefore \quad m_1 m_2 = -1 \\ \text{Hence, the angle between diagonals AC and} \\ \text{BD is 90°.}$
- 2. Mid point of $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ is $(a(\cos \alpha + \cos \beta), a(\sin \alpha + \sin \beta))$

$$P\left(\frac{a(\cos\alpha + \cos\beta)}{2}, \frac{a(\sin\alpha + \sin\beta)}{2}\right)$$

Chapter 06: Straight Line

 $\therefore \qquad \text{Slope of line AB is} \\ \frac{a\sin\beta - a\sin\alpha}{a\cos\beta - a\cos\alpha} = \frac{\sin\beta - \sin\alpha}{\cos\beta - \cos\alpha} = m_1 \\ \text{and slope of OP is } \frac{\sin\alpha + \sin\beta}{\cos\alpha + \cos\beta} = m_2 \\ \text{Now, } m_1 \times m_2 = \frac{\sin^2\beta - \sin^2\alpha}{\cos^2\beta - \cos^2\alpha} = -1 \end{cases}$

Hence, the lines are perpendicular.

3. Slope $=\frac{8-2}{3-1}=3$ The diagonal is y-2=3(x-1) $\Rightarrow 3x-y-1=0$

4. S = midpoint of QR =
$$\left(\frac{6+7}{2}, \frac{-1+3}{2}\right) = \left(\frac{13}{2}, 1\right)$$

 \therefore 'm' of PS = $\frac{2-1}{2-\frac{13}{2}} = -\frac{2}{9}$

... The required equation is
$$y+1 = \frac{-2}{9}(x-1)$$

i.e., $2x + 9y + 7 = 0$

5. Point P(a, b) is on 3x + 2y = 13So, 3a + 2b = 13(i) Point Q(b, a) is on 4x - y = 5So, 4b - a = 5(ii) By solving (i) and (ii), we get a = 3, b = 2Now, equation of PQ is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$\Rightarrow y - 2 = \frac{3 - 2}{2 - 3} (x - 3) \Rightarrow y - 2 = -(x - 3)$$

$$\Rightarrow x + y = 5$$

- 6. Here, slope of AB = 1 $\Rightarrow \tan \theta = m_1 = 1$ or $\theta = 45^{\circ}$
- ∴ tan (45° + 15°) = tan 60°
 [∵ It is rotated anticlockwise so the angle will be 45° + 15° = 60°]

Thus, slope of new line is $\sqrt{3}$

- ... The required equation of line passing through (2, 0) and $m = \sqrt{3}$ is $y = \sqrt{3} (x - 2)$ i.e., $y = \sqrt{3}x - 2\sqrt{3}$
- 7. Let ABCD be a rectangle. Given, A (1, 3) and C (5, 1).

Intersecting point of diagonal of a rectangle is same or at midpoint.

- ... midpoint of AC is (3, 2). Also, y = 2x + c passes through (3, 2). Hence, c = -4
- 8. Since the hour, minute and second hands always pass through origin because one end of these hands is always at origin.

Now, at 4 O' clock, the hour hand makes 30° angle in fourth quadrant.

So, the equation of hour hand is $_{\rm Y}$

$$y = mx \Rightarrow y = -\frac{1}{\sqrt{3}}x$$

$$\Rightarrow x + \sqrt{3}y = 0$$

9. Let the co-ordinates of axes are A (a, 0) and B(0, b), but the point (-5, 4) divides the line AB in the ratio of 1 : 2.

 \therefore the co-ordinates of axes are $\left(\frac{-15}{2}, 0\right)$ and

(0, 12). Therefore, the equation of line passing through these coordinate axes is given by 8x - 5y + 60 = 0

10. Let the intercept be a and 2a, then the equation of line is $\frac{x}{a} + \frac{y}{2a} = 1$, but it also passes through (1, 2), therefore a = 2. Hence, the required equation is 2x + y = 4

11. Take two perpendicular lines as the coordinate axes. If a, b be the intercepts made by the moving line on the coordinate axes, then the equation of the line is

$$\frac{x}{a} + \frac{y}{b} = 1$$
(i)
Let $\frac{1}{a} + \frac{1}{b} = \frac{1}{k}$
i.e., $\frac{k}{a} + \frac{k}{b} = 1$ (ii)

The result (ii) shows that the straight line (i) passes through a fixed point (k, k).

- 12. Given, $a + b = 14 \Rightarrow a = 14 b$ Hence, the equation of straight line is $\frac{x}{14-b} + \frac{y}{b} = 1$ Also, it passes through (3, 4) 3 4
- $\therefore \quad \frac{3}{14-b} + \frac{4}{b} = 1$ $\Rightarrow b = 8 \text{ or } 7$ Therefore, equations are 4x + 3y = 24 and x + y = 7
- 13. Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$ The co-ordinates of the mid point of the intercept AB between the axes are $\left(\frac{a}{2}, \frac{b}{2}\right)$
- $\therefore \quad \frac{a}{2} = 1, \frac{b}{2} = 2 \implies a = 2, b = 4$ Hence, the equation of the line is x = y = 1 = 2 = 2 = 4
 - $\frac{x}{2} + \frac{y}{4} = 1 \implies 2x + y = 4$
- 14. A line perpendicular to the line 5x y = 1 is given by $x + 5y \lambda = 0 = L$

In intercept form
$$\frac{x}{\lambda} + \frac{y}{\lambda/5} = 1$$

So, area of triangle is $\frac{1}{2} \times$ (Multiplication of intercept

intercepts)

$$\Rightarrow \frac{1}{2}(\lambda) \times \left(\frac{\lambda}{5}\right) = 5$$
$$\Rightarrow \lambda = \pm 5\sqrt{2}$$
Hence, the equation of

Hence, the equation of required line is $x + 5y = \pm 5\sqrt{2}$

15. Given form is 3x + 3y + 7 = 0

$$\Rightarrow \frac{3}{\sqrt{3^2 + 3^2}} x + \frac{3}{\sqrt{3^2 + 3^2}} y + \frac{7}{\sqrt{3^2 + 3^2}} = 0$$
$$\Rightarrow \frac{3}{3\sqrt{2}} x + \frac{3}{3\sqrt{2}} y = \frac{-7}{3\sqrt{2}}$$
$$p = \left|\frac{-7}{3\sqrt{2}}\right| = \frac{7}{3\sqrt{2}}$$

16. Let p be the length of the perpendicular from the origin on the given line. Then its equation in normal form is

 $x \cos 30^\circ + y \sin 30^\circ = p \text{ or } \sqrt{3}x + y = 2p$ This meets the coordinate axes at $A\left(\frac{2p}{\sqrt{3}}, 0\right)$

and B(0, 2p)

...

$$\therefore \quad \text{Area of } \Delta \text{OAB} = \frac{1}{2} \left(\frac{2p}{\sqrt{3}} \right) 2p = \frac{2p^2}{\sqrt{3}}$$
$$\Rightarrow \frac{2p^2}{\sqrt{3}} = \frac{50}{\sqrt{3}} \Rightarrow p = \pm 5$$

Hence, the lines are $\sqrt{3}x + y \pm 10 = 0$

- 17. The equation of line passing through A(-5, -4) is $\frac{x+5}{\cos\theta} = \frac{y+4}{\sin\theta}$ Let $AB = r_1 AC = r_2$, $AD = r_3$ The co-ordinate of B is $(r_1 \cos \theta - 5, r_1 \sin \theta - 4)$ which lies on x + 3y + 2 = 0 $r_1 = \frac{15}{\cos\theta + 3\sin\theta}$... Similarly, $\frac{10}{AC} = 2\cos\theta + \sin\theta$ and $\frac{6}{\Delta D} = \cos \theta - \sin \theta$ Putting in the given relation, we get $(2\cos\theta + 3\sin\theta)^2 = 0$ $\Rightarrow \tan \theta = -\frac{2}{3}$ The equation of line is $y + 4 = -\frac{2}{3}(x+5)$ *.*.. $\Rightarrow 2x + 3y + 22 = 0$ 18. Let the required line through the point (1,2) be
 - inclined at an angle θ to the axis of X. Then its equation is $\frac{x-1}{\cos \theta} = \frac{y-2}{\sin \theta} = r$ (i)

The co-ordinates of a point on the line (i) are $(1 + r \cos \theta, 2 + r \sin \theta)$ If this point is at a distance $\frac{\sqrt{6}}{2}$ form (1, 2), then $r = \frac{\sqrt{6}}{2}$ Therefore, the point is $\left(1+\frac{\sqrt{6}}{3}\cos\theta, 2+\frac{\sqrt{6}}{3}\sin\theta\right).$ But this point lies on the line x + y = 4 $\Rightarrow \frac{\sqrt{6}}{2}(\cos\theta + \sin\theta) = 1$ or $\sin\theta + \cos\theta = \frac{3}{\sqrt{6}}$ $\Rightarrow \frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta = \frac{\sqrt{3}}{2}$(Dividing both sides by $\sqrt{2}$) $\Rightarrow \sin(\theta + 45^\circ) = \sin 60^\circ \text{ or } \sin 120^\circ$ $\Rightarrow \theta = 15^{\circ} \text{ or } 75^{\circ}$ 19. The slope of line x + y = 1 is -1. It makes an angle of 135° with X-axis. The equation of line passing through (1, 1)and making an angle of 135° is. $\frac{x-1}{\cos 135^{\circ}} = \frac{y-1}{\sin 135^{\circ}} = r$ $\Rightarrow \frac{x-1}{-1/\sqrt{2}} = \frac{y-1}{1/\sqrt{2}} = r$ Co-ordinates of any point on this line are *.*.. $\left(1-\frac{r}{\sqrt{2}},1+\frac{r}{\sqrt{2}}\right)$ If this point lies on 2x - 3y = 4, then $2\left(1-\frac{r}{\sqrt{2}}\right)-3\left(1+\frac{r}{\sqrt{2}}\right)=4$ \Rightarrow r = $\sqrt{2}$ $\left(\frac{-2}{3a}\right)\left(\frac{-3}{4}\right) = -1$ or $a = \frac{-1}{2}$ 21. $x \cos \theta - y \sin \theta = a(\cos^4 \theta - \sin^4 \theta) = a \cos 2\theta$ 22. Mid point $\equiv \left(\frac{1+1}{2}, \frac{3-7}{2}\right) = (1, -2)$ 23. Therefore, required line is

$$y + 2 = \frac{2}{3} (x - 1) \implies 2x - 3y = 8$$

Chapter 06: Straight Line Given, line AB makes 0 intercepts on X-axis 24. and Y – axis so, $(x_1, y_1) = (0, 0)$ Slope of perpendicular = $\frac{4}{2}$ Equation is $y - 0 = \frac{4}{3}(x - 0)$ *:*.. $\Rightarrow 4x - 3y = 0$ Let the equation of perpendicular bisector FN 25. of AB is x - y + 5 = 0.....(i) A(1,-2) $C(x_2, y_2)$ $B(x_1, y_1)$ middle point AB The F of is $\left(\frac{x_1+1}{2}, \frac{y_1-2}{2}\right)$ Which lies on line (i). *.*.. $x_1 - y_1 = -13$(ii) Also AB is perpendicular to FN. So the product of their slopes is -1. i.e., $\frac{y_1+2}{x_1-1} \times 1 = -1$ or $x_1 + y_1 = -1$ (iii) On solving (ii) and (iii), we get B(-7, 6)Similarly, C $\left(\frac{11}{5}, \frac{2}{5}\right)$ Hence, the equation of BC is 14x + 23y - 40 = 026. The equation of any line parallel to 2x + 6y + 7 = 0 is 2x + 6y + k = 0. This meets the axes at $A\left(-\frac{k}{2},0\right)$ and $B\left(0,-\frac{k}{6}\right)$ Since, AB = 10 $\Rightarrow \sqrt{\frac{k^2}{4} + \frac{k^2}{26}} = 10 \Rightarrow \sqrt{\frac{10k^2}{36}} = 10$ $\Rightarrow 10k^2 = 3600 \Rightarrow k = \pm 6\sqrt{10}$ Hence, there are two lines given by $2x + 6y \pm 6\sqrt{10} = 0$ 27. $\theta = \tan^{-1} \left| \frac{-\cot \alpha_1 + \cot \alpha_2}{1 + \cot \alpha_1 \cot \alpha_2} \right|$ $= \tan^{-1} \left| \frac{\tan \alpha_1 - \tan \alpha_2}{1 + \tan \alpha_2 \tan \alpha_1} \right| = \alpha_1 - \alpha_2$

28. Here, equation of AB is x + 4y - 4 = 0(i) and equation of BC is 2x + y - 22 = 0(ii) Thus angle between (i) and (ii) is given by $\begin{pmatrix} 1 + 2 \end{pmatrix}$

$$\tan^{-1}\left(\frac{\frac{-++2}{4}}{1+\left(-\frac{1}{4}\right)(-2)}\right) = \tan^{-1}\frac{7}{6}$$

29.
$$\frac{k - (2 + \sqrt{3})}{1 + k(2 + \sqrt{3})} = \sqrt{3}$$
$$\Rightarrow k - 2 - \sqrt{3} = \sqrt{3} + 2k\sqrt{3} + 3k$$
$$\Rightarrow k = \frac{-2(1 + \sqrt{3})}{2(1 + \sqrt{3})} = -1$$

30. Let θ be the acute angle which the line y = mx + 4 makes with the lines y = 3x + 1 and 2y = x + 3. Then,

$$\tan \theta = \left| \frac{m-3}{1+3m} \right| \text{ and } \tan \theta = \left| \frac{m-\frac{1}{2}}{1+\frac{m}{2}} \right|$$
$$\Rightarrow \left| \frac{m-3}{1+3m} \right| = \left| \frac{2m-1}{m+2} \right|$$
$$\Rightarrow m^2 - m - 6 = \pm (6m^2 - m - 1)$$
$$\Rightarrow 5m^2 + 5 = 0 \text{ or } 7m^2 - 2m - 7 = 0$$
$$\Rightarrow 7m^2 - 2m - 7 = 0$$
$$\Rightarrow m = \frac{1 \pm 5\sqrt{2}}{7}$$

31. Any line through (1, -10) is given by y + 10 = m(x - 1)Since, it makes equal angle say '\alpha' with the given lines 7x - y + 3 = 0 and x + y - 3 = 0∴ $\tan \alpha = \frac{m - 7}{1 + 7m} = \frac{m - (-1)}{1 + m(-1)}$

$$\Rightarrow$$
 m = $\frac{1}{3}$ or - 3

Hence, the two possible equations of third side are 3x + y + 7 = 0, x - 3y - 31 = 0.

32. Here,

Slope of Ist diagonal = $m_1 = \frac{2-0}{2-0} = 1$ $\Rightarrow \theta_1 = 45^\circ$ Slope of IInd diagonal = $m_2 = \frac{2-0}{1-1} = \infty$ $\Rightarrow \theta_2 = 90^\circ$

$$\Rightarrow \theta_2 - \theta_1 = 45^\circ = \frac{\pi}{4}$$

- 33. Intersection point of the line is (ab/(a+b), ab/(a+b)), which is satisfying all the equations given in options (A), (B) and (C). Hence, (D) is correct.
 34. Putting k = 1, 2, we get
- 3x + 2y = 12(i) 4x + 3y = 19(ii) The given lines are not parallel. Hence on solving them, we get x = -2, y = 9Therefore, the lines pass through (-2, 9)
- 35. Slope of AC = 5/2. Let m be the slope of a line inclined at an angle of 45° to AC,

Thus, let the slope of AB or DC be $\frac{3}{7}$ and that

of AD or BC be $-\frac{7}{3}$.

Then, equation of AB is 3x - 7y + 19 = 0. Also the equation of BC is 7x + 3y - 4 = 0

On solving these equations, we get $B\left(-\frac{1}{2},\frac{5}{2}\right)$

Now let the co-ordinates of the vertex D be (h, k). Since the middle points of AC and BD are same

 $\therefore \qquad \frac{1}{2} \left(h - \frac{1}{2} \right) = \frac{1}{2} (3+1) \Longrightarrow h = \frac{9}{2}$ $\Rightarrow \frac{1}{2} \left(k + \frac{5}{2} \right) = \frac{1}{2} (4-1)$ $\Rightarrow k = \frac{1}{2}$ Hence, $D = \left(\frac{9}{2}, \frac{1}{2} \right)$

Chapter 06: Straight Line

36.
$$\begin{vmatrix} p-q & q-r & r-p \\ q-r & r-p & p-q \\ r-p & p-q & q-r \end{vmatrix} = \begin{vmatrix} 0 & q-r & r-p \\ 0 & p-q & q-r \\ 0 & p-q & q-r \end{vmatrix} = 0$$

....[By C₁ \rightarrow C₁ + C₂ + C₃]
Hence, the lines are concurrent.
37. Given lines are $3x + 4y = 5$, $5x + 4y = 4$,
 $\lambda x + 4y = 6$. These lines meet at a point if the
point of intersection of first two lines lies on
the third line.
From $3x + 4y = 5$ and $5x + 4y = 4$
We get $x = \frac{-1}{2}$, $y = \frac{13}{8}$
This lies on $\lambda x + 4y = 6$, if $\lambda \left(-\frac{1}{2}\right) + 4\left(\frac{13}{8}\right) = 6$
 $\Rightarrow \lambda = 1$
38. If the given lines are concurrent, then
 $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} a & 1-a & 1-a \\ 1 & b-1 & 0 \\ 1 & 0 & c-1 \end{vmatrix} = 0$
[By C₂ \rightarrow C₂ $- C_1$ and C₃ \rightarrow C₃ $- C_1$]
 $\Rightarrow a(b-1)(c-1) - (b-1)(1-a)$
 $-(c-1)(1-a) = 0$
 $\Rightarrow \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$
....[Divide by $(1-a)(1-b)(1-c)$]
 $\Rightarrow \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$
39. From option (B),
 $\begin{vmatrix} 1 & 2 & -10 \\ 2 & 1 & 5 \end{vmatrix} = 1(0 - 20) - 2(-25) - 10(-3) = 0$

 $\begin{vmatrix} 1 & 2 & -10 \\ 2 & 1 & 5 \\ 5 & 4 & 0 \end{vmatrix} = 1(0 - 20) - 2(-25) - 10(3) = 0$

Hence, option (B) is the correct answer.

- 40. From option (B), we get
 - $\begin{vmatrix} 3 & 4 & 6 \\ 6 & 5 & 9 \\ 3 & 3 & 5 \end{vmatrix} = 3(25 27) 4(3) + 6(3) = 0$
- 41. The three lines are concurrent, if $\begin{vmatrix} 1 & 2 & -9 \end{vmatrix}$
 - $\begin{vmatrix} 1 & 2 & -5 \\ 3 & 5 & -5 \end{vmatrix} = 0$
 - a b -1

 $\Rightarrow 35a - 22b + 1 = 0$ which is true if the line 35x - 22y + 1 = 0passes through (a, b). 42. By the given condition of a + b + c = 0, the three lines reduce to

$$x-y=\frac{p}{a}$$
 or $\frac{p}{b}$ or $\frac{p}{c}$ ($p \neq 0$).

All these lines are parallel. Hence, they do not intersect in finite plane.

43. The point of intersection of the lines is (1, 1). and slope of the line 2y - 3x + 2 = 0 is $\frac{3}{2}$ Hence, the equation is $y - 1 = \frac{3}{2} (x - 1)$ $\Rightarrow 3x - 2y = 1$

44. The intersection point of lines
$$x - 2y = 1$$
 and
 $x + 3y = 2$ is $\left(\frac{7}{5}, \frac{1}{5}\right)$ and the slope of required
line $= -\frac{3}{4}$

: Equation of required line is

$$y - \frac{1}{5} = \frac{-3}{4} \left(x - \frac{7}{5} \right)$$
$$\Rightarrow \frac{3x}{4} + y = \frac{21}{20} + \frac{1}{5} \Rightarrow 3x + 4y = 5$$
$$\Rightarrow 3x + 4y - 5 = 0$$

- 45. The point of intersection of 5x 6y 1 = 0and 3x + 2y + 5 = 0 is (-1, -1). Now the line perpendicular to 3x - 5y + 11 = 0 is 5x + 3y + k = 0, but it passes through (-1, -1) $\Rightarrow -5 - 3 + k = 0 \Rightarrow k = 8$ Hence, required line is 5x + 3y + 8 = 0.
- 46. Equation of line passing through point of intersection of x + 2y + 3 = 0 and 3x + 4y + 7 = 0 is (x + 2y + 3) + k (3x + 4y + 7) = 0 $\Rightarrow (1 + 3k)x + (2 + 4k) y + 3 + 7k = 0$ (i) Slope of equation (i) is $m_1 = \frac{-(1+3k)}{2+4k}$ and slope of given line is $m_2 = \frac{-1}{-1} = 1$ (ii) Since (i) and (ii) represent perpendicular lines. ∴ $m_1m_2 = -1$ -(1+3k)

$$\therefore \quad \frac{-(1+3K)}{(2+4k)} \times 1 = -1$$

equation of required line is

$$(x + 2y + 3) - 1(3x + 4y + 7) = 0$$

$$\Rightarrow x + y + 2 = 0$$

- 47. Equation of line passing through point of intersection of u = 0 and v = 0 is u + kv = 0
- $\therefore \quad (x+2y+5)+k(3x+4y+1)=0$ It is passing through (3, 2)
- $\therefore \quad (3+2\times 2+5)+k (3\times 3+4\times 2+1)=0$

 \therefore equation of line will be

 $\frac{2}{3}$

$$(x + 2y + 5) - \frac{2}{3}(3x + 4y + 1) = 0$$

$$\Rightarrow 3x + 2y - 13 = 0$$

48. Equation of line through the point of intersection of lines 2x + 3y + 1 = 0 and 3x - 5y - 5 = 0 is given by (2 + 3k)x + (3 - 5k)y + (1 - 5k) = 0Slope of line is given by

$$\tan 45^\circ = -\frac{(2+3k)}{3-5k}$$
$$\Rightarrow k = \frac{5}{2}$$

- \therefore Equation of line is 19x 19y 23 = 0
- 49. Required line should be

$$(3x - y + 2) + \lambda(5x - 2y + 7) = 0 \qquad \dots (i)$$

$$\Rightarrow (3 + 5\lambda)x - (2\lambda + 1)y + (2 + 7\lambda) = 0$$

$$\Rightarrow y = \frac{3 + 5\lambda}{2\lambda + 1}x + \frac{2 + 7\lambda}{2\lambda + 1} \qquad \dots (ii)$$

As the equation (ii), has infinite slope,

 $2\lambda + 1 = 0$

 $\Rightarrow \lambda = -1/2$

Putting $\lambda = -1/2$ in equation (i) we have

$$(3x - y + 2) + (-1/2)(5x - 2y + 7) = 0$$

 $\Rightarrow x = 3$

Alternate Method:

The point of intersection of 3x - y + 2 = 0 and 5x - 2y + 7 = 0 is (3, 11)

....[By solving equations simultaneously] The required line has infinite slope (i.e. parallel to Y - axis) and passes through (3, 11).

 \Rightarrow *x* = 3 is required equation.

50. Equation of AD is (x+y-6) + k (x+2y-5) = 0 $\Rightarrow (1 + k)x + (1 + 2k)y - (6 + 5k) = 0$(i) EZ 6 D 2x + v - 4 = 0Slope of AD = $m_1 = \frac{-(1+k)}{(1+2k)}$ and Slope of $BC = m_2 = -2$ *.*.. $m_1m_2 = -1$ \ldots [:: AD \perp BC] $k = -\frac{3}{4}$ *.*.. *.*.. From (i), equation of AD is x - 2y = 9.....(ii) Similarly, equation of BE is 2x - y = -12.....(iii) By solving equation (ii) and (iii), we get x = -11, y = -10

:.
$$H \equiv (-11, -10)$$

51. Lengths of perpendicular from (0,0) on the given lines are each equal to 2.

52.
$$p_{1}.p_{2} = \left(\frac{b\sqrt{a^{2}-b^{2}}\cos\theta + 0 - ab}{\sqrt{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}}\right)$$
$$\times \left(\frac{-b\sqrt{a^{2}-b^{2}}\cos\theta - ab}{\sqrt{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}}\right)$$
$$= \frac{-[b^{2}(a^{2}-b^{2})\cos^{2}\theta - a^{2}b^{2}]}{(b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta)}$$
$$= \frac{b^{2}[a^{2} - a^{2}\cos^{2}\theta + b^{2}\cos^{2}\theta]}{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta}$$
$$= \frac{b^{2}[a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta]}{b^{2}\cos^{2}\theta + a^{2}\sin^{2}\theta} = b^{2}$$
53. Here,
$$p = \left|\frac{-k}{\sqrt{\sec^{2}\alpha + \csc^{2}\alpha}}\right|$$
$$and \quad p' = \left|\frac{-k\cos 2\alpha}{\sqrt{\cos^{2}\alpha + \sin^{2}\alpha}}\right|$$
$$\therefore \quad 4p^{2} + p'^{2} = \frac{4k^{2}}{\sec^{2}\alpha + \csc^{2}\alpha}$$
$$+ \frac{k^{2}(\cos^{2}\alpha - \sin^{2}\alpha)^{2}}{1}$$

Chapter 06: Straight Line

$$= 4k^{2} \sin^{2}\alpha \cos^{2}\alpha + k^{2} (\cos^{4}\alpha + \sin^{4}\alpha) - 2k^{2} \cos^{2}\alpha \sin^{2}\alpha = k^{2} (\sin^{2}\alpha + \cos^{2}\alpha)^{2} = k^{2}$$

54. Let the point be (h, k), then h + k = 4....(i)and

 $1 = \frac{4h + 3k - 10}{\sqrt{4^2 + 3^2}}$ \Rightarrow 4h + 3k = 15(ii)(iii) and 4h + 3k = 5On solving (i) and (ii), and (i) and (iii), we get the required points (3, 1) and (-7, 11).

55.
$$|AD| = \left|\frac{2-2-1}{\sqrt{1^2+2^2}}\right|$$

 $= \frac{1}{\sqrt{5}}$
 $\tan 60^\circ = \frac{AD}{BD}$
 $\Rightarrow \sqrt{3} = \frac{1/\sqrt{5}}{BD}$
 $\Rightarrow BD = \frac{1}{\sqrt{15}}$
A(2,-1)
A(2,-1)
 $x(2,-1)$
 $\Rightarrow D$
 $x + 2y - 1 = 0$

$$\therefore$$
 BC = 2BD = 2/ $\sqrt{15}$

56. Equation of any line through (0, a) is y - a = m(x - 0) or mx - y + a = 0.....(i) If the length of perpendicular from (2a, 2a) to the line (i) is 'a', then $a = \pm \frac{m(2a) - 2a + a}{\sqrt{m^2 + 1}}$

 \Rightarrow m = 0, $\frac{4}{3}$

Hence, the required equations of lines are y - a = 0, 4x - 3y + 3a = 0

57. The equation of lines passing through (1, 0) is given by y = m(x - 1).

Its distance from origin is $\frac{\sqrt{3}}{2}$.

$$\Rightarrow \left| \frac{-m}{\sqrt{1+m^2}} \right| = \frac{\sqrt{3}}{2} \Rightarrow m = \pm \sqrt{3}$$

Hence, the lines are $\sqrt{3}x + y - \sqrt{3} = 0$ and $\sqrt{3}x - y - \sqrt{3} = 0$

58. Point of intersection is (2, 3). Therefore, the equation of line passing through (2, 3) is y - 3 = m(x - 2)

or mx - y - (2m - 3) = 0According to the condition,

$$\frac{3m-2-(2m-3)}{\sqrt{1+m^2}} = \frac{7}{5} \Longrightarrow m = \frac{3}{4}, \frac{4}{3}$$

Hence, the equations are 3x - 4y + 6 = 0 and 4x - 3y + 1 = 0.

- 59. Slope = $-\sqrt{3}$
- $\therefore \quad \text{Line is } y = -\sqrt{3} x + c$ $\Rightarrow \sqrt{3} x + y = c$ $\text{Now } \frac{c}{2} = |4|$ $\sqrt{3}x + y = 8$ \Rightarrow c = ± 8 $\Rightarrow x\sqrt{3} + v = \pm 8$

60.
$$d = \left| \frac{8-3}{\sqrt{(3)^2 + (4)^2}} \right| = 1$$

- If the given lines represent the same line, then 61. the length of the perpendiculars from the origin to the lines are equal, so that $\frac{c}{\sqrt{1+m^2}} = \frac{p}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}}$ \Rightarrow c = p $\sqrt{1 + m^2}$
- 62. Lines 3x + 4y + 2 = 0 and 3x + 4y + 5 = 0 are on the same side of the origin. The distance

between these lines is
$$d_1 = \left| \frac{2-5}{\sqrt{3^2 + 4^2}} \right| = \frac{3}{5}$$
.

Lines 3x + 4y + 2 = 0 and 3x + 4y - 5 = 0 are on the opposite sides of the origin. The distance

between these lines is d

$$\mathbf{d}_2 = \left| \frac{2+3}{\sqrt{3^2 + 4^2}} \right| = \frac{7}{5} \; .$$

Thus, 3x + 4y + 2 = 0 divides the distance between 3x + 4y + 5 = 0 and 3x + 4y - 5 = 0in the ratio $d_1 : d_2$ i.e., 3 : 7.

63. Since, the distance between the parallel lines lx + my + n = 0 and lx + my + n' = 0 is same as the distance between parallel lines mx + y + n = 0 and mx + ly + n' = 0. Therefore, the parallelogram is a rhombus. Since, the diagonals of a rhombus are at right

angles, therefore the required angle is $\frac{\pi}{2}$

64. Line AB will pass through (0, a) and (2a, k)

But as we are given AB = AC

$$\Rightarrow k = \sqrt{4a^2 + (k - a)^2} \Rightarrow k = \frac{5a}{2}$$

Hence, the required equation is 3x - 4y + 4a = 0

65. B(0,b)

0 0 A(a

By the section formula, we get $a = -\frac{32}{3}$ and

$$b = \frac{24}{5}$$

Hence, the required equation is given by

$$\frac{x}{-(32/3)} + \frac{y}{(24/5)} = 1$$

$$\Rightarrow 9x - 20y + 96 = 0$$

66. It is given that the lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent, therefore $\begin{vmatrix} a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1 \end{vmatrix} = 0$ $\Rightarrow -a + 2b - c = 0 \Rightarrow 2b = a + c$ $\Rightarrow a, b, c$ are in A. P.

67. The two lines will be identical if there exists some real number k such that $b^3 - c^3 = k(b - c), c^3 - a^3 = k(c - a),$ $a^3 - b^3 = k(a - b)$ $\Rightarrow b - c = 0 \text{ or } b^2 + c^2 + bc = k$ $\Rightarrow c - a = 0 \text{ or } c^2 + a^2 + ac = k$ $\Rightarrow a - b = 0 \text{ or } a^2 + b^2 + ab = k$ $\Rightarrow b = c, c = a, a = b$ $\text{ or } b^2 + c^2 + bc = c^2 + a^2 + ca$ $\Rightarrow b^2 - a^2 = c(a - b)$ $\Rightarrow b = a \text{ or } a + b + c = 0$

68.
$$2p = \left| \frac{0 + 0 - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right|$$

 $\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4p^2} \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{8p^2}$
 $\Rightarrow a^2, 8p^2, b^2 \text{ are in H.P.}$

Competitive Thinking

- 1. Since, the line makes an angle of measure 30° with Y-axis. Therefore, the line will make an angle of measure 60° or -60° with X-axis.
- $\therefore \quad \text{Slope of line} = \tan 60^\circ \text{ or } \tan(-60^\circ)$ $= \sqrt{3} \text{ or } -\sqrt{3} = \pm \sqrt{3}$
- 2. Here, the straight line is parallel to X-axis. So, the slope of such a line = 0.

3.
$$m_1 = \frac{6+4}{-2-3} = \frac{10}{-5} = -2$$
 and $m_2 = \frac{-18-6}{9-(-3)} = -2$

Hence, the lines are parallel.

- 4. Midpoint of the line joining the points (4, -5) and (-2, 9) is $\left(\frac{4-2}{2}, \frac{-5+9}{2}\right)$ i.e., (1, 2)
- ∴ Inclination of straight line passing through point (-3, 6) and midpoint (1, 2) is

$$m = \frac{2-6}{1+3} \Rightarrow \tan \theta = -1$$
$$\Rightarrow \theta = \frac{3\pi}{4}$$

5. The required equation of line passing through (a, b) and having gradient $m = \frac{-b}{a}$, is

$$(y-b) = \frac{-b}{a} (x-a)$$

i.e. $\frac{x}{a} + \frac{y}{b} = 2$

6. The required equation of line passing through (-2, 3) and gradient m = $\frac{3}{4}$, is $y-3 = \frac{3}{4}[x-(-2)]$ i.e. 3x - 4y + 18 = 0

Chapter 06: Straight Line

7. Slope of line passing through (1, 0) and $(-4, 1) = \frac{1-0}{-4-1} = \frac{-1}{5}$ Slope of line perpendicular to the given line is m = 5 Equation of line passing through (-3, 5) and having slope 5 is

y-5 = 5(x+3) $\Rightarrow 5x - y + 20 = 0$

- 8. Midpoint \equiv (2, 7) Slope of perpendicular = -6
- $\therefore \quad \text{the required equation is } y 7 = -6 (x 2)$ $\Rightarrow 6x + y 19 = 0$
- 9. Midpoint of given line segment $\equiv (2, -1)$ Now, slope of the line segment $= \frac{-8}{8} = -1$ Slope of the required line segment is 1
- $\therefore \quad \text{the required equation of line is } y + 1 = 1 \ (x 2)$ $\Rightarrow x y = 3$
- 10. Midpoint = (3, 2). ∴ the required equation is y - 2 = 2(x - 3) $\Rightarrow 2x - y - 4 = 0$
- 11. The required diagonal passes through the midpoint of AB and is perpendicular to AB. So, its equation is y 2 = -3(x 2) or y + 3x 8 = 0.
- 12. Co-ordinates of the vertices of the square are A(0, 0), B(0, 1), C(1, 1) and D(1, 0).

Now, the equation of AC is y = x and of BD is

$$y-1 = -\frac{1}{1}(x-0) \Rightarrow x+y = 1$$

$$A(0,3) \qquad x = 0$$

$$y = 0$$

$$B(0,0)$$

$$A(0,3) \qquad y = 0$$

$$A(0,3)$$

13.

 $D\left(\frac{2}{5},\frac{3}{5}\right)$

From figure, diagonal BD is passing through origin, therefore its equation is given by

 $x + y = 1 \qquad \qquad C(1,0)$

 $\left(y - \frac{3}{5}\right) = \frac{-(3/5)}{-(2/5)} \left(x - \frac{2}{5}\right)$ $\Rightarrow 3x - 2y = 0$

14. Since, the required line will be a line passing through A and B.

$$\therefore \qquad \frac{y-6}{6-(-4)} = \frac{x-1}{1-3}$$
$$\Rightarrow 10x - 10 = -2y + 12 \Rightarrow 5x + y - 11 = 0$$

15. Since, equation of diagonal 11x + 7y = 9 does not pass through origin, so it cannot be the equation of the diagonal OB. Thus, on solving the equation AC with the equations OA and

Therefore, the midpoint of AC is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Hence, the equation of OB is y = xi.e., x - y = 0.

16. Point of intersection of x - y + 1 = 0 and 7x - y - 5 = 0 is (1, 2) Equation of diagonal passing through (-1, -2) and (1, 2) is $y + 2 = \frac{4}{2} (x + 1)$ $\Rightarrow 2x + 2 = y + 2$

$$\Rightarrow 2x + 2 = y + \Rightarrow 2x - y = 0$$

Equation of another diagonal passing through

Point of intersection of 7x - y - 5 = 0 and x + 2y = -5 is $\left(\frac{1}{3}, \frac{-8}{3}\right)$

 \therefore Answer is option (C)

MHT-CET Triumph Maths (Hints)					
17.	Slope = $\frac{(2-1)}{1-(-\frac{1}{2})} = \frac{1}{(\frac{3}{2})} = \frac{2}{3}$	21.	Let the equation of PQ be $\frac{x}{h} + \frac{y}{k} = 1$.		
	So, equation of the line is $y - 2 = \frac{2}{3}(x - 1)$		(0, k)Q $R(h, k)$		
	$\Rightarrow y = \frac{2}{3}x + \frac{4}{3}$		(2,3)		
	Putting $y = 0$, to find x-intercept, $\frac{2}{3}x + \frac{4}{3} = 0$		Since, the line passes through the fixed point (2, 3). $\Rightarrow 2 + 3 = 1$		
	$\Rightarrow x = -2$		$\rightarrow \frac{h}{h} + \frac{h}{k} - 1$		
<i>.</i>	x-intercept = -2		\Rightarrow Locus of R(h, k) is $\frac{2}{x} + \frac{3}{y} = 1$		
18.	Let the equation be $\frac{x}{a} + \frac{y}{-a} = 1$.	22.	$\Rightarrow 3x + 2y = xy$ Equation of the line has its intercepts on the		
	$\Rightarrow x - y = a$ (i)		X-axis and Y-axis in the ratio 2 : 1 i.e., 2a		
	But, it passes through $(-3, 2)$		and a		
	a = -3 - 2 = -5		x y 1 z 2 z z		
	Putting the value of a in (i), we get	·.	$\frac{1}{2a} + \frac{1}{a} = 1 \Longrightarrow x + 2y \equiv 2a \qquad \dots (1)$		
	x - y + 5 = 0		Line (i) also passes through midpoint of		
			(3, -4) and $(5, 2)$ i.e., $(4, -1)$		
19.	Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$.		$4 + 2(-1) = 2a \Rightarrow a = 1$ Hence the equation of required line is		
	Given, $a = b$		x + 2y = 2		
	So, equation of line is $x + y = a$				
	Since, this line passes through $(2, 4)$.	23.	Let the points of the required line on X-axis and Y-axis be $A(a, 0)$ and $B(0, b)$ respectively.		
	$2 + 4 = a$ $\Rightarrow a = 6$		Since, $\left(\frac{3}{2}, \frac{5}{2}\right)$ is midpoint of AB.		
	the required equation of line is $x + y = 6$ i.e., $x + y - 6 = 0$		$\frac{a+0}{2} = \frac{3}{2}$ and $\frac{0+b}{2} = \frac{5}{2} \Rightarrow a = 3$ and $b = 5$		
20.	Here, $a + b = -1$		the equation of line is $\frac{x}{3} + \frac{y}{5} = 1$		
	required line is $\frac{x}{a} - \frac{y}{1+a} = 1$ (i)		$\Rightarrow 5x + 3y - 15 = 0$		
	Since, line (i) passes through (4, 3).	24.	The required equation of line is		
	$\frac{4}{a} - \frac{3}{1+a} = 1$		$\frac{x}{6} + \frac{y}{8} = 1 \implies 4x + 3y = 24$		
	$\Rightarrow 4 + 4a - 3a = a + a^2$	25.	Let $P\left(\alpha = \frac{a}{2}, \beta = \frac{b}{2}\right)$ be the midpoint of the		
	$\Rightarrow a^2 = 4$ $\Rightarrow a = \pm 2$		line joining (a, 0) and (0, b)		
	$\rightarrow a = \pm 2$		a		
	the required lines are $\frac{x}{2} - \frac{y}{3} = 1$ and	.:.	$\alpha = \frac{1}{2} \Longrightarrow a = 2\alpha \qquad \dots (i)$		
	$\frac{x}{-2} + \frac{y}{1} = 1.$		and $\beta = \frac{b}{2} \Rightarrow b = 2\beta$ (ii)		

66

... Equation of a straight line cutting off intercepts a and b on X-axis and Y-axis respectively is

 $\frac{x}{a} + \frac{y}{b} = 1$ $\Rightarrow \frac{x}{2\alpha} + \frac{y}{2\beta} = 1$ [From (i) and (ii)] $\Rightarrow \frac{x}{\alpha} + \frac{y}{\beta} = 2$

26.
$$\frac{a+0}{2} = 4 \Rightarrow a = 8$$

and $\frac{b+0}{2} = -3 \Rightarrow b = -6$
 \therefore the required equation of
the line is $\frac{x}{8} + \frac{y}{-6} = 1$

$$\Rightarrow \frac{3x - 4y}{24} = 1 \Rightarrow 3x - 4y = 24$$

27.

Point P divides AB in the ratio 2:3

$$\therefore \qquad \left(\frac{1}{2}, \frac{1}{3}\right) = \left(\frac{0+2a}{5}, \frac{3b+0}{5}\right)$$
$$\Rightarrow a = \frac{5}{4} \text{ and } b = \frac{5}{9}$$
$$\therefore \qquad \text{equation of line AB is}$$

$$\frac{x}{a} + \frac{y}{b} = 1$$

i.e.,
$$4x + 9y = 5$$

 $\begin{array}{c} Y \\ O \\ (0,0) \\ 2 \\ P(2,-1) \\ B(0,b) \end{array} X$

Point P divides AB in the ratio 3:2

$$\therefore \quad (2, -1) = \left(\frac{0+2a}{5}, \frac{3b+0}{5}\right)$$
$$\Rightarrow a = 5 \text{ and } b = \frac{-5}{3}$$

28.

- $\therefore \quad \text{Equation of the line AB is} \\ \frac{x}{a} + \frac{y}{b} = 1 \\ \Rightarrow x 3y 5 = 0$
- 29. Since, px qy = r intersects at X-axis and Y-axis.

$$\therefore \quad a = \frac{r}{p} \text{ and } b = -\frac{r}{q}$$
$$\therefore \quad a + b = \frac{r}{p} - \frac{r}{q} = r \left(\frac{q - p}{pq}\right)$$

30. Any line through the middle point M(1, 5) of the intercept AB may be taken as

$$\frac{x-1}{\cos\theta} = \frac{y-5}{\sin\theta} = r \qquad \dots \dots (i)$$

Since, the points A and B are equidistant from M and on the opposite sides of it.

Therefore, if the co-ordinates of A are obtained by putting r = d in (i), then the co-ordinates of B are given by putting r = -d. Now, the point A(1 + d cos θ , 5 + d sin θ) lies on the line 5x - y - 4 = 0 and

point B(1 – d cos θ , 5 – d sin θ) lies on the line 3x + 4y - 4 = 0.

$$\therefore 5(1 + d \cos\theta) - (5 + d \sin\theta) - 4 = 0$$

and $3(1 - d \cos\theta) + 4(5 - d \sin\theta) - 4 = 0$
Eliminating 'd', we get $\frac{\cos\theta}{35} = \frac{\sin\theta}{83}$
Hence, the required line is $\frac{x - 1}{35} = \frac{y - 5}{83}$ or

83x - 35y + 92 = 0.

MHT-CET Triumph Maths (Hints) Since, $m_1m_2 = (2)\left(-\frac{1}{2}\right) = -1$ 31. *.*.. the lines are perpendicular. Here, $m_1 = -1$, $m_2 = -\frac{1}{1_k}$. 32. For orthogonal lines, $m_1m_2 = -1 \Rightarrow \frac{1}{k} = -1 \Rightarrow k = -1$ Here, $m_1 = \frac{-2}{3}$ and $m_2 = \frac{-1}{k}$ 33. for perpendicular lines $m_1m_2 = -1$ $\therefore \quad \frac{-2}{3} \times \frac{-1}{k} = -1$ \Rightarrow k = $\frac{-2}{2}$ $m_1m_2 = -1$ 34. $\Rightarrow \left(\frac{k-3}{2-4}\right)(2) = -1 \Rightarrow 2k-6 = 2 \Rightarrow k = 4$ 35. (0,b) E (a/2,b/2) ► X (0,0) B D(a/2,0) (a,0) From figure, $\left(\frac{b/2}{a/2}\right)\left(\frac{b}{-a/2}\right) = -1$ $\Rightarrow a^2 = 2b^2 \Rightarrow a = \pm \sqrt{2}b$ Since, the point (-4, 5) does not lie on the 36. diagonal 7x - y + 8 = 0, so point will lie on the other diagonal. Also, diagonals are perpendicular. Slope of other diagonal = $\frac{-1}{7}$ *.*.. equation of the other diagonal is *.*.. $y-5 = -\frac{1}{7}(x+4) \implies 7y+x = 31$

37. The equation of lines in intercept form are

1

$$\frac{x}{-8/a} + \frac{y}{-8/b} =$$
$$\frac{x}{-3} + \frac{y}{2} = 1$$

According to the given condition,

$$-\frac{8}{a} = -(-3) \text{ and } -\frac{8}{b} = -2$$
$$\implies a = -\frac{8}{3} \text{ and } b = 4$$

- 38. The equation of a line perpendicular to x y = 0 is -x y + c = 0(i) Since, the line passes through (3, 2).
- $\therefore \quad -3 2 + c = 0$ $\therefore \quad c = 5$ Putting c = 5 in (i), we get x + y = 5
- 39. The equation of a line perpendicular to x + y + 1 = 0 is $x y + \lambda = 0$. Since, the line passes through the point (1, 2).
- $\therefore \quad 1 2 + \lambda = 0$ $\Rightarrow \lambda = 1$ Hence, required equation of line is y - x - 1 = 0

40. Slope of
$$y = 3x - 1$$
 is 3

- ... Slope of line perpendicular to the above line is $m = \frac{-1}{3}$ Equation of line passing through (1, 2) and having slope (m) = $\frac{-1}{3}$ is $(y-2) = \frac{-1}{3} (x-1)$ $\Rightarrow 3y-6 = -x+1$ $\Rightarrow x+3y-7 = 0$
- 41. The required equation passing through (-1, 1) and having gradient $\frac{3}{2}$ is

$$y-1 = \frac{3}{2}(x+1) \Rightarrow 2(y-1) = 3(x+1)$$

- 42. 5x 6y 1 = 0...(i) 3x + 2y + 5 = 0...(ii) On solving (i) and (ii), we get x = -1, y = -1Slope of line 3x - 5y + 11 = 0 is $\frac{3}{5}$. Slope of line perpendicular to above line $=\frac{-5}{3}$
- ... Equation of line passing through (-1, -1) and having slope $-\frac{5}{3}$ is

Chapter 06: Straight Line

- $(y+1) = -\frac{5}{3}(x+1)$ $\Rightarrow 3y+3 = -5x-5$ $\Rightarrow 5x+3y+8 = 0$
- 43. The given line is bx ay = ab(i) It cuts X-axis at (a, 0). The equation of a line perpendicular to (i) is ax + by = k. Since, the line passes through (a, 0) $\Rightarrow k = a^2$ Hence, required equation of line is $ax + by = a^2$
 - i.e., $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$
- 44. The equation of a line passing through (2, 2) and perpendicular to 3x + y = 3 is $y-2 = \frac{1}{3}(x-2)$ or x - 3y + 4 = 0.

Putting x = 0 in this equation, we get $y = \frac{4}{2}$

 \therefore y - intercept = $\frac{4}{3}$

45.

In ∆ABC;

slope of BC =
$$\frac{0 - (-1)}{4 - 2} = \frac{1}{2}$$

slope of AC = $\frac{0 - 3}{4 - (-2)} = \frac{-3}{6} = \frac{-1}{2}$

Since, $AP \perp BC$ and $BQ \perp AC$,

- $\therefore \quad \text{slope of } AP = -2, \\ \text{slope of } BQ = 2$
- $\therefore \quad \text{Equation of AP is } 2x + y + 1 = 0 \text{ and equation} \\ \text{of BQ is } 2x y 5 = 0 \\ \text{Solving the above equations, we get} \\ \text{orthocentre, } O = (1, -3) \\ \text{Also, centroid of the triangle,} \\ C = \left(\frac{-2 + 2 + 4}{3}, \frac{3 1 + 0}{3}\right) \\ \end{array}$

i.e.
$$C = \left(\frac{4}{3}, \frac{2}{3}\right)$$

 \therefore Equation of line OC is 11x - y - 14 = 0

46. Line; x + 2y + 3 = 0intersects the co-ordinate axes at A (-3, 0) and B $\left(0, \frac{-3}{2}\right)$

Line: x + 2y + 8 = 0 intersects the coordinate axes at C(-8, 0) and D(0, -4) Since the required line divides the distance

Since the required line divides the distance between the two lines in the ratio 1 : 2

:. (h, 0) divides the distance between A(-3, 0) and C(-8, 0) in the ratio 1:2

:.
$$(h, 0) = \left(\frac{1(-8) + 2(-3)}{3}, 0\right)$$

$$\therefore \quad (h, 0) = \left(\frac{-14}{3}, 0\right)$$

...

∴ the required equation of line passing through $\left(\frac{-14}{3}, 0\right)$ and having gradient $m = \frac{-1}{2}$, is $(y-0) = \frac{-1}{2}\left(x + \frac{14}{3}\right)$ ∴ -3x - 6y = 14Writing in permal form

Writing in normal form,

$$\frac{-3x}{\sqrt{45}} - \frac{6y}{\sqrt{45}} = \frac{14}{\sqrt{45}}$$
i.e. $x \cos a + y \sin a = \frac{14}{\sqrt{45}}$
where, $\cos a = \frac{-3}{\sqrt{45}}$, $\sin a = \frac{-6}{\sqrt{45}}$
 $a = \pi + \tan^{-1} \frac{\frac{-6}{\sqrt{45}}}{\frac{-3}{\sqrt{45}}}$
i.e. $a = \pi + \tan^{-1} 2$

- 47. Here, $m_1 = -\cot \alpha$, $m_2 = \tan \beta$ $\therefore \quad \tan \theta = \left| \frac{-\cot \alpha - \tan \beta}{1 - \cot \alpha \tan \beta} \right|$ $\therefore \quad \tan \theta = -\cot(\alpha - \beta)$
- $\therefore \qquad \theta = \frac{\pi}{2} \beta + \alpha$
- 48. The lines are bx + ay ab = 0 and bx - ay - ab = 0. Hence, the required angle is

$$\theta = \tan^{-1} \left| \frac{\frac{-b}{a} - \frac{b}{a}}{1 - \frac{b^2}{a^2}} \right| = \tan^{-1} \left| \frac{2ab}{b^2 - a^2} \right|$$
$$= 2\tan^{-1} \frac{b}{a} \quad \dots \quad \left[\because 2\tan^{-1} \frac{y}{x} = \tan^{-1} \left| \frac{2xy}{y^2 - x^2} \right| \right]$$
$$49. \quad \theta = 90^\circ - \tan^{-1} \left(\frac{1}{3} \right)$$
$$\Rightarrow \tan \theta = \cot \left[\tan^{-1} \left(\frac{1}{3} \right) \right] = 3$$
$$\Rightarrow \theta = \tan^{-1}(3)$$

$$Y$$

$$X' \leftarrow O$$

$$x - 3y = 6$$

$$Y'$$

$$X' \leftarrow Y'$$

- 50. Given lines are ax + by + c = 0and $x = \alpha t + \beta$, $y = \gamma t + \delta$ After eliminating t, we get $\gamma x - \alpha y + \alpha \delta - \gamma \beta = 0$ For parallelism condition, $\frac{a}{\gamma} = \frac{b}{-\alpha} \Rightarrow a\alpha + b\gamma = 0$
- 51. The given lines are perpendicular because $m_1m_2 = (2)\left(\frac{-1}{2}\right) = -1$

Hence, the angle between the two lines is 90°.

- 52. The slopes of the lines are $m_1 = \frac{-1}{2}$, $m_2 = 2$
- $\therefore \qquad m_1 m_2 = -1$ So, the lines are perpendicular i.e., $\theta = 90^\circ$

- 53. Slopes of lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b'} + \frac{y}{a'} = 1$ are $\frac{-b}{a}$ and $\frac{-a'}{b'}$ respectively ∴ Product of slopes is $\frac{a'b}{ab'}$ But $\frac{1}{ab'} + \frac{1}{ba'} = 0$ $\Rightarrow ab' = -a'b$ \Rightarrow Product of slopes = -1 Hence option (C)
- 54. The equation of a straight line passing through (3, -2) is y + 2 = m(x - 3)(i) The slope of the line $\sqrt{3}x + y = 1$ is $-\sqrt{3}$ So, tan $60^\circ = \pm \frac{m - (-\sqrt{3})}{1 + m (-\sqrt{3})}$ On solving, we get m = 0 or $\sqrt{3}$ Putting the values of m in (i), the required equation of lines are y + 2 = 0 and $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$

55. Here the lines are x - 3 = 0, y - 4 = 0 and 4x - 3y + a = 0. These will be concurrent, if $\begin{vmatrix} 1 & 0 & -3 \\ 0 & 1 & -4 \\ 4 & -3 & a \end{vmatrix} = 0 \implies a = 0$

56. Lines are concurrent, if $\begin{vmatrix} 4 & 3 & -1 \\ 1 & -1 & 5 \\ b & 5 & -3 \end{vmatrix} = 0$ $\Rightarrow 4(3-25) - 3(-3-5b) - 1(5+b) = 0$ $\Rightarrow -88 + 9 + 15b - 5 - b = 0$ $\Rightarrow -84 + 14b = 0$ $\Rightarrow b = 6$

57. Given lines are concurrent, if $\begin{vmatrix} 2 & 1 & -1 \\ a & 3 & -3 \\ 3 & 2 & -2 \end{vmatrix} = 0$

$$\Rightarrow - \begin{vmatrix} 2 & 1 & 1 \\ a & 3 & 3 \\ 3 & 2 & 2 \end{vmatrix} = 0$$

This is true for all values of a because C_2 and C_3 are identical.
Chapter 06: Straight Line

- 58. Here, the given lines are ax + by + c = 0bx + cy + a = 0cx + ay + b = 0a b c The lines will be concurrent, if $\begin{vmatrix} b & c \end{vmatrix} = 0$ с a b $\Rightarrow a^3 + b^3 + c^3 - 3abc = 0$ Dividing both sides of relation 3a + 2b + 4c = 059. by 4, we get $\frac{3}{4}a + \frac{1}{2}b + c = 0$, which shows that for all values of a, b and c each member of the set of lines ax + by + c = 0 passes through the point $\left(\frac{3}{4}, \frac{1}{2}\right)$ Since, lines x + 3y - 9 = 0, 4x + by - 2 = 0, 60. and 2x - y - 4 = 0 are concurrent _9 $\begin{vmatrix} 4 & b & -2 \\ 2 & -1 & -4 \end{vmatrix} = 0$ 1(-4b-2)-3(-16+4)-9(-4-2b)=0*.*.. \Rightarrow b = -5 the required line passes through (-5, 0)*.*.. Now, consider option (D) and x + 3y - 9 = 0, 4x - 5y - 2 = 01 3 -9 $\begin{vmatrix} 4 & -5 & -2 \end{vmatrix} = 0$ *.*.. option (D) is correct *.*.. Required equation of line which is parallel to 61. x + 2y = 5 is x + 2y + k = 0....(i) Given equation of lines are x + y = 2....(ii) x - y = 0....(iii)
 - Adding (ii) and (iii), we get $2x = 2 \Rightarrow x = 1$ From (iii), we get y = 1
- ... Point of intersection is (1, 1). Putting x = 1, y = 1 in (i), we get k = -3... the required equation of line is x + 2y = 3.

62. Point of intersection is
$$y = -\frac{21}{5}$$
 and $x = \frac{23}{5}$

$$\therefore \quad 3x + 4y = \frac{3(23) + 4(-21)}{5} = \frac{69 - 84}{5} = -3$$

Hence, required line is $3x + 4y + 3 = 0$

- 63. The lines passing through the intersection of the lines ax + 2by + 3b = 0 and bx - 2ay - 3a = 0 is $ax + 2by + 3b + \lambda(bx - 2ay - 3a) = 0$ $\Rightarrow (a + b\lambda)x + (2b - 2a\lambda)y + 3b - 3\lambda a = 0 \dots(i)$ Line (i) is parallel to X-axis, $a + b\lambda = 0 \Rightarrow \lambda = \frac{-a}{b}$ Putting the value of λ in (i), we get $ax + 2by + 3b - \frac{a}{b} (bx - 2ay - 3a) = 0$ $\Rightarrow y\left(2b + \frac{2a^2}{b}\right) + 3b + \frac{3a^2}{b} = 0$ $\Rightarrow y\left(\frac{2b^2 + 2a^2}{b}\right) = -\left(\frac{3b^2 + 3a^2}{b}\right)$ $\Rightarrow y = \frac{-3(a^2 + b^2)}{2(b^2 + a^2)} = \frac{-3}{2}$ So, it is 3/2 unit below X-axis.
- 64. Point of intersection of the lines is (3, -2)Also, slope of perpendicular = $\frac{2}{7}$ Hence, the equation is $y + 2 = \frac{2}{7} (x - 3)$ $\Rightarrow 2x - 7y - 20 = 0$
- 65. Slopes of the lines are 1 and -1

Since, the point of intersection is (1, 1) Hence, the required equations are $y-1=\pm 1(x-1)$

66. The point of intersection of the lines 3x + y + 1 = 0 and 2x - y + 3 = 0 are $\left(\frac{-4}{5}, \frac{7}{5}\right)$.

The equation of line which makes equal intercepts with the axes is x + y = a.

$$\therefore \qquad -\frac{4}{5} + \frac{7}{5} = a \Longrightarrow a = \frac{3}{5}$$

 \therefore the required equation of the line is

$$x + y - \frac{3}{5} = 0$$
 i.e., $5x + 5y - 3 = 0$

67. (a-2b)x + (a+3b)y + 3a + 4b = 0or a(x + y + 3) + b(-2x + 3y + 4) = 0, which represents a family of straight lines through point of intersection of x + y + 3 = 0 and -2x + 3y + 4 = 0 i.e, (-1, -2).

68. Required distance =
$$\left| \frac{3(3) - 5(-4) - 26}{\sqrt{9 + 16}} \right| = \frac{3}{5}$$

69. Since, L (p, q) =
$$\frac{ap + bq + c}{\sqrt{a^2 + b^2}}$$

and L $\left(\frac{2}{3}, \frac{1}{3}\right) + L\left(\frac{1}{3}, \frac{2}{3}\right) + L(2, 2) = 0$
 $\therefore \quad \frac{a\left(\frac{2}{3}\right) + b\left(\frac{1}{3}\right) + c}{\sqrt{a^2 + b^2}} + \frac{a\left(\frac{1}{3}\right) + b\left(\frac{2}{3}\right) + c}{\sqrt{a^2 + b^2}} + \frac{a(2) + b(2) + c}{\sqrt{a^2 + b^2}} = 0$

$$\therefore \quad \frac{3a+3b+3c}{\sqrt{a^2+b^2}} = 0$$

- $\therefore \quad a+b+c=0 \qquad \dots(i)$ Comparing equation (i) with ax + by + c = 0, we get a+b+c = ax + by + ci.e. x = 1 and y = 1 $\therefore \quad \text{The line } ax + by + c = 0$ presses through the
- $\therefore \quad \text{The line } ax + by + c = 0 \text{ passes through the point (1, 1).}$
- 70. The line is 4x 3y 12 = 0.

:. Required length =
$$\left| \frac{-12}{\sqrt{4^2 + (-3)^2}} \right| = \frac{12}{5} = 2\frac{2}{5}$$

- 71. Given, equation of line is $\frac{x \sin \alpha}{b} - \frac{y \cos \alpha}{a} - 1 = 0$
- : perpendicular distance from origin

$$= \left| \frac{0 \cdot \frac{\sin \alpha}{b} - \frac{0 \cdot \cos \alpha}{a} - 1}{\sqrt{\frac{\sin^2 \alpha}{b^2} + \frac{\cos^2 \alpha}{a^2}}} \right| = \frac{|ab|}{\sqrt{a^2 \sin^2 \alpha + b^2 \cos^2 \alpha}}$$

72. Equation of the line is

1

$$y - 0 = \left(\frac{3 - 0}{-5}\right)(x - 5)$$

⇒ 3x + 5y - 15 = 0
∴
$$d = \left|\frac{3(4) + 5(4) - 15}{\sqrt{3^2 + 5^2}}\right| = \frac{17}{\sqrt{34}} = \sqrt{\frac{17}{2}}$$

73. Distance of (1, 1) from
$$3x + 4y + c = 0$$
 is

$$d = \left| \frac{3(1) + 4(1) + c}{\sqrt{9 + 16}} \right|$$

$$\Rightarrow \pm 7 = \frac{7 + c}{5}$$

$$\Rightarrow c = -42, 28$$

74. Let the point be (h, 0), then $a = \left| \frac{bh + 0 - ab}{\sqrt{a^2 + b^2}} \right|$ $\Rightarrow bh = \pm a\sqrt{a^2 + b^2} + ab$ $\Rightarrow h = \frac{a}{b}(b \pm \sqrt{a^2 + b^2})$ Hence, the points are $\left\{ \frac{a}{b}(b \pm \sqrt{a^2 + b^2}), 0 \right\}$.

75. From option (C),

$$P(x, y)$$

 $\sqrt{85}$
 $(1, 1)A \bullet B(3, -2)$

BP =
$$\sqrt{(5-3)^2 + (7+2)^2}$$

= $\sqrt{4+81} = \sqrt{85}$
Hence, option (C) is correct

Hence, option (C) is correct. 76. $L_{12} \equiv x - 3y + 1 = 0$

> $L_{23} \equiv 2x + y - 12 = 0$ $L_{13} \equiv 3x - 2y - 4 = 0$ Therefore, the required distances are

$$D_{3} = \left| \frac{4 - 3 \times 4 + 1}{\sqrt{10}} \right| = \frac{7}{\sqrt{10}}$$
$$D_{1} = \left| \frac{4 + 1 - 12}{\sqrt{5}} \right| = \frac{7}{\sqrt{5}}$$
$$D_{2} = \left| \frac{3 \times 5 - 2 \times 2 - 4}{\sqrt{9 + 4}} \right|$$
$$= \frac{7}{\sqrt{13}}$$

77. Let p be the length of the perpendicular from the vertex (2, -1) to the base x + y = 2.

Then,
$$p = \left| \frac{2 - 1 - 2}{\sqrt{1^2 + 1^2}} \right| = \frac{1}{\sqrt{2}}$$

If 'a' is the length of the side of triangle, then $p = a \sin 60^{\circ}$

$$\therefore \quad d = \left| \frac{-1+2}{\sqrt{4+1}} \right|$$
$$d = \frac{1}{\sqrt{5}}$$

Side of equilateral triangle = $\frac{2}{\sqrt{3}} \times d$

$$=\frac{2}{\sqrt{3}}\times\frac{1}{\sqrt{5}}=\frac{2}{\sqrt{15}}$$

80. Point of intersection is (1, 2) Therefore, the equation of line passing through (1, 2) is (y - 2) = m(x - 1)or mx - y + 2 - m = 0Since, the line is at distance of $\sqrt{5}$ from

Since, the line is at distance of $\sqrt{5}$ from origin i.e. (0, 0),

$$\left|\frac{(0)m - (0) + 2 - m}{\sqrt{m^2 + 1}}\right| = \sqrt{5}$$

Chapter 06: Straight Line

$$\Rightarrow$$
 m = $\frac{-1}{2}$

 \therefore Equation of the line is x + 2y - 5 = 0

81. Given b = 2a

$$\therefore$$
 The equation of the line is $\frac{x}{a} + \frac{y}{b} = 1$

$$\Rightarrow \frac{x}{a} + \frac{y}{2a} = 1$$

$$\Rightarrow 2x + y = 2a$$

Distance of the line from (0, 0) is

$$d = \left| \frac{2(0) + 1(0) - 2a}{\sqrt{4 + 1}} \right|$$
$$\Rightarrow 1 = \left| \frac{-2a}{\sqrt{5}} \right|$$
$$\Rightarrow a = \pm \frac{\sqrt{5}}{2}$$

- \therefore Equation of line is $2x + y = \pm \sqrt{5}$
- 82. Gradient of BC = -1 and its equation is x + y + 4 = 0. Therefore, the equation of line parallel to BC is x + y + λ = 0.
 Also, it is ¹/₂ unit distant from origin.

Thus, $\frac{\lambda}{\sqrt{2}} = \frac{1}{2} \Longrightarrow \lambda = \frac{\sqrt{2}}{2}$

Hence, the required equation of line is $2x + 2y + \sqrt{2} = 0$

83. Equation of straight line parallel to 4x - 3y = 5is $4x - 3y = \lambda$ According to the given condition,

$$\frac{4(-1)-3(-4)-\lambda}{\sqrt{16+9}} = \pm 1$$
$$\Rightarrow 8 - \lambda = \pm 5$$
$$\Rightarrow \lambda = 3, 13$$

- :. the equation of one of the lines is 4x 3y 3 = 0
- 84. Equation of AB: 4x 3y 17 = 0Equation of BC: 3x + 4y - 19 = 0If P(x, y) is a point on the bisector of $\angle ABC$ then,

$$\left|\frac{4x - 3y - 17}{\sqrt{(4)^2 + (-3)^2}}\right| = \left|\frac{3x + 4y - 19}{\sqrt{(3)^2 + (4)^2}}\right|$$

 \therefore 7y = x + 2 is the required equation of the angle bisector.

According to the given condition, $\frac{|a-2b+c|}{\sqrt{2}} = \frac{|3a+4b+c|}{\sqrt{2}}$ $\sqrt{a^2 + b^2}$ $\sqrt{a^2 + b^2}$ \Rightarrow 3a + 4b +c = ±(a - 2b + c) \Rightarrow a + 3b = 0 (taking +ve)(ii) \Rightarrow 2a + b + c = 0 (taking-ve)(iii) From, (i) and (ii), we get a = b = 0 which is not possible so taking (i) and (iii), (taking a = -b) we get $a + c = 0 \Longrightarrow c = -a$ a:b:c=a:-a:-a=1:-1:-1or a = 1, b = -1, c = -1From (i) and (iii) (taking a = b), we get $3a + c = 0 \Longrightarrow c = -3a$ a:b:c=a:a:-3a=1:1:-3option (B) is the correct answer.

- 88. Here, the lines are 3x + 4y 9 = 0 and 6x + 8y - 15 = 0 or $3x + 4y - \frac{15}{2} = 0$. ∴ Required distance $= \left| \frac{-9 - \left(\frac{-15}{2} \right)}{\sqrt{3^2 + 4^2}} \right| = \left| \frac{-3}{10} \right| = \frac{3}{10}$
- 89. Given equation of parallel lines are x - y + a = 0, x - y + b = 0

...

$$\therefore \quad \text{required distance} = \left| \frac{a - b}{\sqrt{(1)^2 + (-1)^2}} \right| = \frac{|a - b|}{\sqrt{2}}$$

90. Line L passes through (13, 32).

$$\therefore \quad \frac{13}{5} + \frac{32}{b} = 1$$

$$\Rightarrow b = -20$$

So, equation of L is $\frac{x}{5} - \frac{y}{20} = 1 \Rightarrow 4x - y = 20$
Slope of L is $m_1 = 4$.
Slope of $\frac{x}{c} + \frac{y}{3} = 1$ is $m_2 = -\frac{3}{c}$

$$\Rightarrow -\frac{3}{c} = 4$$

$$\Rightarrow c = -\frac{3}{4}$$

Equation of line K is $-\frac{4x}{3} + \frac{y}{3} = 1$

$$\Rightarrow 4x - y = -3$$

Distance between L and K is $\left|\frac{20+3}{\sqrt{16+1}}\right| = \frac{23}{\sqrt{17}}$

74

 $=\frac{|3a+4b+c|}{\sqrt{a^2+b^2}}$

Chapter 06: Straight Line

91. Distance between lines -x + y = 2 and x - y = 2 is $\alpha = \left|\frac{2+2}{\sqrt{2}}\right| = 2\sqrt{2}$ (i)

Distance between lines 4x - 3y = 5 and 6y - 8x = 1 is

$$\beta = \left| \frac{5 - \left(\frac{-1}{2}\right)}{5} \right| = \frac{11}{10} \qquad \dots (ii)$$

From (i) and (ii), we get $\alpha = 2\sqrt{2}$

$$\frac{\alpha}{\beta} = \frac{2\sqrt{2}}{11/10}$$
$$\Rightarrow 20\sqrt{2\beta} = 11\alpha$$

92. $(K + 1)^2 x + Ky - 2K^2 - 2 = 0$ ∴ $(K^2 + 2K + 1)x + Ky - 2K^2 - 2 = 0$ ∴ $K^2(x - 2) + K(2x + y) + (x - 2) = 0$

 $\therefore \quad (K^2 + 1)(x - 2) + K(2x + y) + (x - 2) = 0$

$$r = 2 = 0$$
 i.e. $r = 2$

and
$$2x + y = 0$$

$$\therefore 2(2) + y = 0$$

- $\therefore y = -4$
- \therefore The fixed point is (2, -4)
- : The required line has slope 2 and passes through the point (2, -4)
- \therefore Equation of line;

$$y - (-4) = 2(x - 2)$$

$$\therefore \quad y+4=2x-4$$

- $\therefore \quad y = 2x 8$
- 93. ax + by + c = 0 always passes through (1, -2). \therefore $a - 2b + c = 0 \implies 2b = a + c$ Therefore, a, b and c are in A.P.
- 94. Since, *l*, m, n are in A.P.
- $\therefore 2m = l + n$ Given equation of line is lx + my = n = 0Consider, option (B), If the point (1, -2) satisfy the given equation.
- $\therefore \quad l 2m + n = 0 \Rightarrow 2m = l + n$ $\Rightarrow l, m, n \text{ are A.P.}$

95. a, b, c are in H. P., then
$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$
(i)

Given, line is
$$\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$$
(ii)
From (i) and (ii), we get

From (1) and (11), we get
$$1$$

$$\frac{1}{a}(x-1) + \frac{1}{b}(y+2) = 0$$

Since, $a \neq 0, b \neq 0$

So, (x-1) = 0 and (y+2) = 0 $\Rightarrow x = 1$ and y = -2Y x = 0B(0, 4)

$$A(3, 0)$$

$$y = 0$$

$$X$$

For a triangle with side lengths a, b and c and vertices at points opposite to these sides (x_1, y_1) , (x_2, y_2) and (x_3, y_3) respectively, the incentre is given by,

$$(x_{i}, y_{i}) = \left(\frac{ax_{1} + bx_{2} + cx_{3}}{a + b + c}, \frac{ay_{1}by_{2} + cy_{3}}{a + b + c}\right)$$

For the given triangle,

OA = 3 units OB = 4 units

$$OB = 4 \text{ units}$$

 $AB = \sqrt{(4-0)^2 + (0-3)^2} = 5 \text{ units}$

96.

$$= \left(\frac{3(0)+4(3)+5(0)}{3+4+5}, \frac{3(4)4(0)5(0)}{3+4+5}\right)$$
$$= \left(\frac{12}{12}, \frac{12}{12}\right)$$
$$= (1, 1)$$

$$\therefore$$
 Incentre is (1, 1)

- 97. Two sides x 3y = 0 and 3x + y = 0 of the given triangle are perpendicular to each other. Therefore, its orthocentre is the point of intersection of x - 3y = 0 and 3x + y = 0 i.e., (0, 0).
- 98. The vertices of triangle are the intersection points of these given lines. The vertices of Δ are A(0, 4), B(1, 1), C(4, 0) Now,

$$AB = \sqrt{(0-1)^2 + (4-1)^2} = \sqrt{10}$$
$$BC = \sqrt{(1-4)^2 + (1-0)^2} = \sqrt{10}$$
$$AC = \sqrt{(0-4)^2 + (4-0)^2} = 4\sqrt{2}$$

- \therefore AB = BC
- $\therefore \Delta$ is isosceles.
- 99. The point of intersection of the given lines are (−1, 1), (1, −1) and (2/3, 2/3) which is the vertices of an isosceles triangle.

*

Evaluation Test

- 1. Given, $f(\alpha) = x \cos \alpha + y \sin \alpha p(\alpha)$
- $\therefore \quad f(\beta) = x \cos \beta + y \sin \beta p(\beta)$ Since, both the lines are perpendicular to each other.
- $\therefore \quad a_1 a_2 + b_1 b_2 = 0$ $\Rightarrow \cos \alpha \cos \beta + \sin \alpha \sin \beta = 0$ $\Rightarrow \cos (\alpha - \beta) = 0 \Rightarrow |\alpha - \beta| = \frac{\pi}{2}$
- 2. The equations of the sides of the triangle are

$$L_1 \equiv \frac{x}{p} - \frac{y}{1+p} = -1,$$
$$L_2 \equiv \frac{x}{q} - \frac{y}{1+q} = -1,$$

$$L_3 \equiv y \equiv 0$$

The coordinates of vertices are A(-p, 0), B(-q, 0) and C(pq,(1 + p) (1 + q)).

The equation of the altitude through C is x = pq and the equation of the altitude through B is (1 + p) y + px + pq = 0. Solving these equations, we get x = pq and y = -pqLet (h - k) be the geographication of the

Let (h, k) be the coordinates of the orthocentre. Then,

h = pq and k = $-pq \Rightarrow k = -h$ Hence, the locus of (h, k) is y = -x, which is a straight line.

3. The line ax + by + c = 0 meets the coordinate axes at $A\left(-\frac{c}{a}, 0\right)$ and $B\left(0, -\frac{c}{b}\right)$. \therefore Area of $\triangle OAB = \frac{1}{2} \times OA \times OB$ $= \frac{1}{2} \times \left|-\frac{c}{a}\right| - \frac{c}{b} = \frac{c^2}{2ab}$

This will be constant, if a, c, b are in G.P.

4. The clockwise rotation of the point P(cos θ, sin θ) through an angle α takes it to the point (cos(θ - α), sin(θ - α)) and anticlockwise rotation through angle α takes P to the point (cos(θ + α), sin(θ + α)).
∴ options (A) and (B) are not correct.

This shows that PQ is perpendicular to a line with slope $\tan \frac{\alpha}{2}$. Thus, Q can be obtained from P by taking its reflection in the line through origin with slope $\tan \frac{\alpha}{2}$.

5. Let QS be the bisector of $\angle PQR$.

Chapter 06: Straight Line

 $\therefore \quad \angle XQR = 60^{\circ}$ $\Rightarrow \angle PQR = 120^{\circ}$ $\Rightarrow \angle PQS = \angle SQR = 60^{\circ} \Rightarrow \angle XQS = 120^{\circ}$ $\therefore \quad \text{Slope of } QS = \tan 120^{\circ} = -\sqrt{3}$ $\therefore \quad \text{the equation of } QS \text{ is } y = -\sqrt{3}x \text{ i.e., } \sqrt{3}x + y = 0$

Slope of
$$OB = \tan\left(\frac{-\pi}{4} + \alpha\right)$$

$$\therefore \quad \text{Slope of AC} = -\cot\left(\frac{\pi}{4} + \alpha\right)$$

$$= -\left(\frac{\cos\alpha - \sin\alpha}{\cos\alpha + \sin\alpha}\right)$$

$$= \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}$$

 \therefore the equation of AC is

6.

$$y - a \sin \alpha = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} (x - a \cos \alpha)$$
$$\Rightarrow y(\sin \alpha + \cos \alpha) + x(\cos \alpha - \sin \alpha) = a$$

7. Equation of line L passing through (1, 1) and (2, 0) is

$$y - 1 = \frac{0 - 1}{2 - 1}(x - 1)$$
$$\Rightarrow x + y = 2$$

 \therefore Slope of L = -1

Also, slope of L' = 1 [:: $L \perp L'$]

....(i)

Equation of line L' passing through $\left(\frac{1}{2}, 0\right)$ and having slope 1 is $y - 0 = 1 \left(x - \frac{1}{2} \right)$ $\Rightarrow 2x - 2y = 1$(ii) Equation of Y axis, x = 0....(iii) From (i), (ii) and (iii), vertices the of the triangle are A(0, 2), B $\left(0, -\frac{1}{2}\right)$ and C $\left(\frac{5}{4}, \frac{3}{4}\right)$. the area of the triangle is 0 2 1 $\frac{1}{2} \begin{vmatrix} 0 & -\frac{1}{2} & 1 \end{vmatrix} = \frac{25}{16}$ square units

- 8. By solving 3x + 4y = 9, y = mx + 1, we get $x = \frac{5}{3+4m}$. Now, x is an integer, if 3 + 4m = 1, -1, 5, -5 $\therefore m = \frac{-2}{4}, \frac{-4}{4}, \frac{2}{4}, \frac{-8}{4}$. Since, $m = \frac{-2}{4}, \frac{2}{4}$ do not give integral values of m.
- \therefore m has two integral values.

 $\frac{3}{-1}$

 $\frac{5}{4}$

...

9. Given, the lines ax + by + p = 0 and

 $x \cos \alpha + y \sin \alpha - p = 0$ are inclined at an

angle
$$\frac{\pi}{4}$$
.

$$\tan \frac{\pi}{4} = \frac{\left|\frac{-\frac{\pi}{b} + \frac{\pi}{\sin \alpha}}{1 + \frac{a \cos \alpha}{b \sin \alpha}}\right|$$

 \Rightarrow a cos α + b sin α = - a sin α + b cos α

.....(i)

Also, the lines ax + by + p = 0,

 $x\cos \alpha + y\sin \alpha - p = 0$ and $x\sin \alpha - y\cos \alpha = 0$ are concurrent.

b а р $\sin \alpha$ *.*.. $\cos \alpha$ -p = 0 $\sin \alpha - \cos \alpha$ 0 \Rightarrow - ap cos α - bp sin α - p = 0 \Rightarrow a cos α + b sin α = -1(ii) From (i) and (ii), we get $-a\sin\alpha + b\cos\alpha = -1$(iii) Squaring (ii) and (iii) and adding, we get $(a \cos \alpha + b \sin \alpha)^2 + (-a \sin \alpha + b \cos \alpha)^2 = 2$ $\Rightarrow a^2 + b^2 = 2$ 10. Slopes of AB and BC A(2, -7)

are
$$-4$$
 and $\frac{3}{4}$
respectively.
 $C \qquad \frac{\alpha}{3x - 4y + 1 = 0}$

4x+y=1

<u>α</u>∧B

Let α be the angle between AB and BC.

Then,
$$\tan \alpha = \left| \frac{-4 - \frac{3}{4}}{1 - 4\left(\frac{3}{4}\right)} \right| = \frac{19}{8} \quad \dots (i)$$

Since, AB = AC

$$\Rightarrow \angle ABC = \angle ACB = \alpha$$

... the line AC also makes an angle α with BC. If m is the slope of the line AC, then its equation is y + 7 = m(x - 2)(ii)

Now,
$$\tan \alpha = \pm \left[\frac{m - \frac{3}{4}}{1 + m \cdot \frac{3}{4}} \right]$$

$$\Rightarrow \frac{19}{8} = \pm \frac{4m - 3}{4 + 3m} \qquad \dots [From (i)]$$

$$\Rightarrow m = -4 \text{ or } -\frac{52}{89}$$
But slope of AB is - 4, so slope of AC is $-\frac{52}{89}$.

Therefore, the equation of line AC given by (ii) is 52x + 89y + 519 = 0.

Textbook Chapter No.

07

Circle and Conics

Hints

Classical Thinking

- 2. Required equation is $(x a)^2 + (y a)^2 = a^2$ $\Rightarrow x^2 + y^2 - 2ax - 2ay + a^2 = 0$
- 3. The equation of circle with centre (x_1, y_1) is $(x - x_1)^2 + (y - y_1)^2 = r^2$ since, the circle touches both the axes, $x_1 = y_1 = r$
- $\therefore \quad (x x_1)^2 + (y x_1)^2 = x_1^2$ $\Rightarrow x^2 + y^2 2x_1(x + y) + x_1^2 = 0$
- 4. Since, the circle touches X-axis
- \therefore Radius = 2.
- $\therefore \quad \text{the equation of the circle is} \\ (x-1)^2 + (y-2)^2 = 2^2 \\ \Rightarrow x^2 + y^2 2x 4y + 1 = 0$
- 5. Let O' be the centre

Now, from the figure Radius (r) = $\sqrt{(4)^2 + (3)^2} = 5$

6. Extremities of diameter are (5, 7) and (1, 4) Radius is half of the distance between them

$$\therefore \quad \text{Radius} = \frac{1}{2} \sqrt{(4)^2 + (3)^2}$$
$$= \frac{5}{2}$$

- 7. Using condition of point circle Radius = $\sqrt{g^2 + f^2 - c} = 0$ $\Rightarrow g^2 + f^2 = c$
- 8. $(\text{Radius})^2 = g^2 + f^2 c$ $\Rightarrow 121 = 81 + 36 - k \Rightarrow k = -4$
- 9. If c = 0; circle passes through origin.

- 10. Intercept made by the circle on the X-axis = $2\sqrt{g^2 - c}$ = $2\sqrt{9-9} = 0$
- ∴ Intercept cut on X-axis is zero. Hence, circle touches X-axis.
- 11. Circle $x^2 + y^2 + 2gx + 2fy + c = 0$ touches X-axis
- $\therefore \quad \text{radius} = \text{ordinate of centre}$ $\Rightarrow \sqrt{g^2 + f^2 - c} = (-f)$ $\Rightarrow g^2 = c$
- 12. Required conditions are g = f = r and $\sqrt{g^2 + f^2 - c} = r$ $\Rightarrow g = \sqrt{c} = f = r$
- 13. Both axis, as centre is (-2, 2) and radius is 2.
- 14. Centre is (0, -3) and radius = $\sqrt{0^2 + 9 0} = 3$

Hence, circle touches X-axis at the origin.

- 15. Centre (3, 4) of the given circle is satisfying only x + y = 7
- \therefore Correct answer is the option (C)
- 16. Here, the centre of circle (3, -1) must lie on the line x + 2by + 7 = 0.
- $\therefore \quad 3-2b+7=0$ $\Rightarrow b=5$
- 17. Centre of the required circle is (-4, -5) and it passes through (2, 3)

:. Radius =
$$\sqrt{(-4-2)^2 + (-5-3)^2}$$

= 10

$$\therefore \quad \text{Equation of the required circle is} (x+4)^2 + (y+5)^2 = (10)^2 \Rightarrow x^2 + y^2 + 8x + 10y - 59 = 0$$

18.	The equation of circle in third quadrant touching the coordinate axes with centre (-a, -a) and radius 'a' is $r^2+v^2+2ar+2av+a^2=0$ (i)
	Since, line $3x - 4y + 8 = 0$ touches the circle
	perpendiular distance from centre of the circle to the line = radius
÷	$\left \frac{3(-a) - 4(-a) + 8}{\sqrt{9 + 16}}\right = a$
	$\Rightarrow a = 2$ Substituting a = 2 in equation (i), we get $x^2 + y^2 + 4x + 4y + 4 = 0$
	This is the required equation of the circle
19.	Radius of circle = $\left \frac{2(1) - 1(-3) - 4}{\sqrt{4+1}}\right = \frac{1}{\sqrt{5}}$
÷	Equation is $(x-1)^2 + (y+3)^2 = \left(\frac{1}{\sqrt{5}}\right)^2$
	$\Rightarrow x^2 + y^2 - 2x + 6y + 10 = \frac{1}{5}$
	$\Rightarrow 5x^2 + 5y^2 - 10x + 30y + 49 = 0$
20.	$4x^2 + 4y^2 = 9$
	$\Rightarrow x^2 + y^2 = \frac{9}{4} \Rightarrow x^2 + y^2 = \left(\frac{3}{2}\right)^2$
<i>.</i>	$x = \frac{3}{2} \cos \theta, y = \frac{3}{2} \sin \theta$
21.	$(x-3)^2 + (y+4)^2 = 5^2$ Comparing with $(x-h)^2 + (y-k)^2 = r^2$, we get
÷	h = 3, k = -4, r = 5 Parametric equations are $x = 3 + 5 \cos \theta$, $v = -4 + 5 \sin \theta$
22.	Given equation can be written as $(x^2 + 2x + 1 - 1) + (y^2 - 4y + 4 - 4) - 4 = 0$
	$\Rightarrow (x+1)^2 + (y-2)^2 = 3^2$
·• ·•	h = -1, k = 2 and r = 3 Parametric form of equation are $x = -1 + 3 \cos \theta$, $y = 2 + 3 \sin \theta$
23.	$\frac{x+1}{2} = \cos \theta \qquad \dots (i)$
	and $\frac{y-3}{2} = \sin \theta$ (ii)
	Squaring (i) and (ii) and adding, we get
	$\left(\frac{x+1}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$
	$\Rightarrow (x+1)^2 + (y-3)^2 = 4,$
••	centre is $(-1, 3)$

24. Parabola $y^2 = x$ is symmetric about X-axis. Y X

26. Since, parabola $y^2 = 4ax$ passes through (-3, 2)

$$\therefore \quad 4 = -12a$$

$$\Rightarrow 4a = -\frac{4}{3} = \frac{4}{3} \quad \dots [Taking positive sign]$$

27. Let the equation of parabola be $x^2 = -4ay$ Since, parabola passing through the point (-4, -2).

$$\therefore \quad (-4)^2 = -4a(-2)$$
$$\Rightarrow a = 2$$

:. equation becomes $x^2 = -8y$ and latus rectum = 4a = 8

29.
$$y^2 = 4 \cdot \frac{1}{5} x \Rightarrow a = \frac{1}{5}$$

co-ordinates of latus rectum are (a, 2a) and
(a, -2a)
i.e., $\left(\frac{1}{5}, \frac{2}{5}\right)$ and $\left(\frac{1}{5}, \frac{-2}{5}\right)$
30. $x^2 = -8y$
 $\Rightarrow a = 2$
So, focus = (0, -2)

:. Ends of latus rectum = (4, -2), (-4, -2).

$$31. \quad y^2 = 12x$$
$$\therefore \quad \mathbf{a} = 3$$

a = 3 \Rightarrow abscissa is 4 - 3 = 1 and $y^2 = 12$, $y = \pm 2\sqrt{3}$ Hence, points are $(1, 2\sqrt{3}), (1, -2\sqrt{3})$

- 32. We have, y = 3xAccording to given condition, $(3x)^2 = 36x$ $\Rightarrow x = 4$ and y = 12
- \therefore Required point is (4, 12)
- 34. $y^2 + 2y + x = 0$ $\Rightarrow y^2 + 2y + 1 = -x + 1$ $(y + 1)^2 = -(x - 1)$ Hence, vertex is (1, -1), which lies in IVth quadrant.

Vertex = (2, 0)35. \Rightarrow focus is (2+2, 0) = (4, 0)

- 36. $v^2 = 4v 4x$ $\Rightarrow y^2 - 4y + 4 = -4x + 4$ $\Rightarrow (y-2)^2 = -4(x-1)$ Comparing this equation with $Y^2 = -4aX$, we get a = 1, X = x - 1 and Y = y - 2Focus of the parabola is X = -a, Y = 0 $\Rightarrow x - 1 = -1, y - 2 = 0$ $\Rightarrow x = 0, y = 2$ *.*.. focus = (0, 2)
- Equation of parabola is $x^2 4x 8y + 12 = 0$ 37. $\Rightarrow x^2 - 4x + 4 = 8y - 8$ $\Rightarrow (x-2)^2 = 8(y-1) \Rightarrow X^2 = 8Y$ Comparing with $X^2 = 4aY$, we get a = 2
- Directrix is $Y = -a \Rightarrow y 1 = -2 \Rightarrow y = -1$. *.*..
- The parabola is $(x-2)^2 = (3y-6)$ 38. Hence, axis is x - 2 = 0.
- 39. The given equation of parabola is $x^2 - 4x - 8y + 12 = 0$ $\Rightarrow x^2 - 4x = 8y - 12$ $\Rightarrow x^2 - 4x + 4 = 8y - 12 + 4$ $\Rightarrow (x-2)^2 = 8(y-1)$ Hence, the length of latus rectum = 4a = 8.
- 40. $x^2 + 5y = 0 \Longrightarrow x^2 = -5y$ On comparing with $x^2 = -4ay$, we get $a = \frac{5}{4}$

End points of latus rectum of the parabola are $(\pm 2a, -a) = \left(\pm \frac{5}{2}, \frac{-5}{4}\right)$

41. Here, ae = 4 and e = $\frac{4}{5}$ $\Rightarrow a = 5$ Now, $b^2 = a^2(1 - e^2)$ $\Rightarrow b^2 = 25\left(1 - \frac{16}{25}\right) = 9$

Equation of the ellipse is $\frac{x^2}{25} + \frac{y^2}{9} = 1$. *.*..

42. Since, $e^2 = 1 - \frac{b^2}{a^2}$ $\Rightarrow \left(\frac{2}{3}\right)^2 = 1 - \frac{b^2}{a^2}$

Chapter 07: Circle and Conics

$$\Rightarrow b^{2} = \frac{5a^{2}}{9} \qquad \dots (i)$$
Given length of latus rectum = 5

$$\Rightarrow \frac{2b^{2}}{a} = 5$$

$$\Rightarrow b^{2} = \frac{5a}{2} \qquad \dots (ii)$$
From (i) and (ii), we get

$$\Rightarrow a^{2} = \frac{81}{4}, b^{2} = \frac{45}{4}$$

$$\therefore \qquad \text{Equation of ellipse is } \frac{4x^{2}}{81} + \frac{4y^{2}}{45} = 1$$
43. $e^{2} = 1 - \frac{b^{2}}{a^{2}} = 1 - \frac{28}{64}$

$$\Rightarrow e^{2} = \frac{36}{64} \Rightarrow e = \frac{3}{4}$$
44. $\frac{x^{2}}{112} + \frac{y^{2}}{112} = 1$

$$\therefore \qquad e = \sqrt{1 - \frac{a^{2}}{b^{2}}} = \sqrt{1 - \frac{112}{16} \cdot \frac{7}{112}} = \frac{3}{4}$$
45. According to the condition, $\frac{2a}{e} = 3(2ae)$

$$\Rightarrow e = \frac{1}{\sqrt{3}}$$

46. Foci are (±ae, 0)
∴ According to the condition, 2ae = 2b
⇒ ae = b(i)
Also, b² = a²(1 - e²)
⇒ e² = (1 - e²)[From (i)]
⇒ e =
$$\frac{1}{\sqrt{2}}$$

We have, ae = 1 and a = 247. $\Rightarrow e = \frac{1}{2}$ Also, $b^2 = a^2 (1 - e^2)$ \Rightarrow b = $2\sqrt{1-\frac{1}{4}} = \sqrt{3}$ Minor axis = $2b = 2\sqrt{3}$ *.*..

49.
$$3x^2 + 4y^2 = 12$$

$$\Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$$
∴ Latus rectum $= \frac{2b^2}{a} = 3$

- 50. Here, $a^2 = 36$, $b^2 = 49$ Since, b > a
- $\therefore \text{ the length of the latus rectum} = \frac{2a^2}{2} = 2 \times \frac{36}{2} = \frac{72}{2}$

$$\frac{1}{b} = 2 \times \frac{1}{7} = \frac{1}{7}$$

51. We have, $e = \frac{1}{\sqrt{2}}$ \therefore Latus rectum $= \frac{2b^2}{a} = \frac{2}{a} \times a^2 (1 - e^2)$ $= 2a \left(1 - \frac{1}{2}\right) = a$

i.e., semi-major axis

52. We have,
$$2ae = 10 \Rightarrow a = \frac{10}{\frac{2 \times 5}{8}} = 8$$

Also, $b^2 = a^2 (1 - e^2)$
 $\Rightarrow b = 8\sqrt{1 - \frac{25}{64}} = \sqrt{39}$
Now, Latus rectum $= \frac{2b^2}{a} = \frac{2 \times 39}{8} = \frac{39}{4}$

53. Focal distance of any point P (x,y) on the ellipse is equal to SP = a + ex. Here, $x = a \cos \theta$

$$\therefore \quad SP = a + ae \cos \theta \\ = a(1 + e \cos \theta)$$

54.
$$4x^{2} + 9y^{2} - 16x - 54y + 61 = 0$$

$$\Rightarrow 4x^{2} - 16x + 9y^{2} - 54y = -61$$

$$\Rightarrow 4(x^{2} - 4x + 4 - 4) + 9(y^{2} - 6y + 9 - 9) = -61$$

$$\Rightarrow 4(x - 2)^{2} + 9(y - 3)^{2} = 36$$

$$\Rightarrow \frac{(x - 2)^{2}}{9} + \frac{(y - 3)^{2}}{4} = 1$$

Hence, the centre is (2, 3)

Hence, the centre is (2, 3) 55. Distance between foci is 4 = 2ae $\Rightarrow a^2 = \frac{9}{4}$ Also, $e^2 = 1 + \frac{b^2}{a^2}$ $\Rightarrow \frac{16}{9} - 1 = \frac{b^2}{a^2} \Rightarrow b^2 = \frac{7}{4}$ Centre is (0, 4) Hence, equation of hyperbola $\frac{x^2}{9} - \frac{4(y-4)^2}{7} = 1$ 56. Let S(1, -1) be the focus and $P \equiv (x, y)$ be any point on conic. Now, PS = e PM

$$\Rightarrow \sqrt{(x-1)^2 + (y+1)^2} = \sqrt{2} \left| \frac{x-y+1}{\sqrt{1+1}} \right|$$

$$\Rightarrow \sqrt{x^2 - 2x + 1 + y^2 + 2y + 1} = |x-y+1|$$

Squaring both sides, we get
$$4x - 4y - 2xy - 1 = 0$$

$$\Rightarrow 2xy - 4x + 4y + 1 = 0$$

57. 2a = 8, 2b = 6Difference of focal distances of any point of the hyperbola = 2a = 8

58. The equation of hyperbola is $9x^2 - 16y^2 = 144$ $\Rightarrow \frac{x^2}{16} - \frac{y^2}{9} = 1$ $e = \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{16 + 9}}{4} = \frac{5}{4}$ Hence, foci are $(\pm ae, 0) \Rightarrow (\pm 4 \times \frac{5}{4}, 0)$ i.e., $(\pm 5, 0)$.

- 59. Since, e > 1 always for hyperbola and $\frac{2}{3} < 1$.
- $60. \quad \frac{x^2}{25} \frac{y^2}{25} = 1$
- \therefore Eccentricity = $\sqrt{2}$ as a = b.

61.
$$\frac{y^2}{k^2} - \frac{x^2}{-k} = 1$$

Also, $a^2 = b^2 (e^2 - 1)$
$$\Rightarrow -k = k^2 (e^2 - 1) \Rightarrow -\frac{1}{k} = e^2 - 1$$
$$\Rightarrow e^2 = 1 - \frac{1}{k} \Rightarrow e = \sqrt{1 - \frac{1}{k}}$$

62. Vertices $(\pm 4, 0) \equiv (\pm a, 0)$ $\Rightarrow a = 4$ Foci $(\pm 6, 0) \equiv (\pm ae, 0)$ $\Rightarrow e = \frac{6}{4} = \frac{3}{2}$

is

63. The given equation of hyperbola is $16x^2 - 9y^2 = 144 \Rightarrow \frac{x^2}{9} - \frac{y^2}{16} = 1$ \therefore L.R. $= \frac{2b^2}{a} = \frac{2 \times 16}{3} = \frac{32}{3}$

Chapter 07: Circle and Conics

64. Length of latus rectum =
$$\frac{2b^2}{a} = \frac{2 \times 4}{\frac{2}{\sqrt{3}}} = 4\sqrt{3}$$

Equation of hyperbola is 66. $x = 8 \sec \theta, y = 8 \tan \theta$ $\Rightarrow \frac{x}{2} = \sec \theta, \frac{y}{2} = \tan \theta$

$$\therefore \quad \sec^2 \theta - \tan^2 \theta = 1$$
$$\Rightarrow \frac{x^2}{8^2} - \frac{y^2}{8^2} = 1$$
Here, a = 8, b = 8
Here, a = b

- it is rectangular hyperbola *.*.. $\Rightarrow e = \sqrt{2}$
- Distance between directrices = $\frac{2a}{e}$ *.*.. $=\frac{2\times 8}{\sqrt{2}}$ $= 8\sqrt{2}$
- 67. The given equation of hyperbola is $9x^2 - 36x - 16y^2 + 96y - 252 = 0$ Partially differentiating with respect to x, we get 18x - 36 = 0 $\Rightarrow x = 2$ Now partially differentiating with respect to y, we get -32y + 96 = 0= 3

$$\Rightarrow -32y = -96 \Rightarrow y$$

- *.*.. Centre $\equiv (2, 3)$
- equation 68. of hyperbola Given is $5x^2 - 4y^2 + 20x + 8y = 4$ $\Rightarrow 5(x^2 + 4x + 4) - 4(y^2 - 2y + 1) = 4 + 20 - 4$ $\Rightarrow 5(x+2)^{2} - 4(y-1)^{2} = 20$ $\Rightarrow \frac{(x+2)^{2}}{4} - \frac{(y-1)^{2}}{5} = 1$ $\Rightarrow a^2 = 4, b^2 = 5$ $e = \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{4+5}}{2} = \frac{3}{2}$
- $2x = e^{t} + e^{-t} \text{ and } 2y = e^{t} e^{-t}$ $\Rightarrow 4x^{2} = e^{2t} + 2 + e^{-2t} \dots \dots \dots (i)$ and $4y^{2} = e^{2t} 2 + e^{-2t} \dots \dots \dots (ii)$ 69. Subtracting (ii) from (i), we get $4x^2 - 4y^2 = 4$ $\Rightarrow x^2 - y^2 = 1$ The equation represents hyperbola.

The equation is $(x - 0)^{2} + (y - 0)^{2} = a^{2}$ 70.

(O)**Critical Thinking**

1. Radius =
$$\sqrt{\cos^2 \theta + \sin^2 \theta + 8} = 3$$

2. The point of intersection of $3x + y - 14 = 0$
and $2x + 5y - 18 = 0$ is (4, 2).
Centre of the circle is $(1, -2)$.
 \therefore radius = $\sqrt{(4-1)^2 + (2+2)^2} = 5$
 \therefore the equation of the circle is
 $(x - 1)^2 + (y + 2)^2 = 5^2$
 $\therefore x^2 + y^2 - 2x + 4y - 20 = 0$.
3. Given, OA = 3 and
OB = 4
 \therefore OL = $\frac{3}{2}$ and CL = 2
By pythagoras theorem,
OC² = OL² + LC²
 \therefore OC² = $(\frac{3}{2})^2 + 2^2$
 $= \frac{25}{4}$
 \therefore OC = $\frac{5}{2}$
The centre of the circle is $(\frac{3}{2}, 2)$ and
radius = $\frac{5}{2}$.
 \therefore the equation of the circle is
 $(x - \frac{3}{2})^2 + (y - 2)^2 = (\frac{5}{2})^2$
 $\therefore x^2 + y^2 - 3x - 4y = 0$
4. Here, r = 10 (radius)
Centre will be the point of intersection of the
diameters, i.e., $(8, -2)$.
Hence, required equation is
 $(x - 8)^2 + (y + 2)^2 = 10^2$
 $\Rightarrow x^2 + y^2 - 16x + 4y - 32 = 0$
5. Let its centre be (h, k), then
h - k = 1(i)
Also, radius a = 3
 \therefore Equation of the circle is

... Equation of the circle is

$$(x - h)^2 + (y - k)^2 = 9$$

Also, it passes through (7, 3)
i.e., $(7 - h)^2 + (3 - k)^2 = 9$ (ii)
From (i) and (ii), we get
 $h = 4, k = 3$

Equation is $x^2 + y^2 - 8x - 6y + 16 = 0$ *.*..

- 6. Centre is (-4, 3)Radius = Distance between centres – Radius of other circle = 5 - 1 = 4Hence, equation of circle is $x^2+y^2+8x-6y+9=0$
- 7. Centre of the given circle is (0, -1) \therefore the required circle passes through (0, -1).
- $\therefore \quad r = \sqrt{(0-1)^2 + (-1+2)^2} = \sqrt{2}$ Hence, the required equation is $(x-1)^2 + (y+2)^2 = (\sqrt{2})^2$
 - $\Rightarrow x^2 + y^2 2x + 4y + 3 = 0.$ Centre of the circle
- 8. Centre of the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ is C(2,3). Since, it touches the Y-axis \therefore r = 2
 - r = 2 Hence, required equation of the circle is $(x-2)^2 + (y-3)^2 = 2^2$ $\Rightarrow x^2 + y^2 - 4x - 6y + 9 = 0$
- 9. Let centre of circle be (h, k). Since it touches both axes, therefore h = k = aHence, equation can be $(x - a)^2 + (y - a)^2 = a^2$ But it also touches the line 3x + 4y = 4
- $\therefore \quad \left| \frac{3a + 4a 4}{\sqrt{9 + 16}} \right| = a$ $\Rightarrow a = 2$ Hence, the required equation of circle is $(x - 2)^2 + (y - 2)^2 = 2^2$ $\Rightarrow x^2 + y^2 - 4x - 4y + 4 = 0$
- 10. Let the centre of the required circle be (x_1, y_1) . Centre of given circle is (1, 2) and $r = \sqrt{1+4+20} = 5$
- \therefore radii of both circles are same.
- ∴ Point of contact (5, 5) is the mid point of the line joining the centres of both circles.

$$\therefore \quad \frac{x_1 + 1}{2} = 5 \text{ and } \frac{y_1 + 2}{2} = 5$$

$$\Rightarrow x_1 = 9, y_1 = 8$$

Hence, the required equation is

$$(x - 9)^2 + (y - 8)^2 = 25$$

$$\Rightarrow x^2 + y^2 - 18x - 16y + 120 = 0$$

- 11. Equation of circle concentric to given circle is $x^{2} + y^{2} - 6x + 12y + k = 0$ Since, area of required circle = 2 (area of given circle) $\Rightarrow \sqrt{9+36-k} = \sqrt{2} \quad \sqrt{9+36-15}$ $\Rightarrow 45 - k = 60$ $\Rightarrow k = -15$ Hence, the required equation of circle is $x^{2} + y^{2} - 6x + 12y - 15 = 0.$
- 12. We have the equation of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ But it passes through (0, 0) and (2, 1)*.*.. c = 05 + 4g + 2f = 0....(i) Also $\sqrt{g^2 + f^2 - c} = |g|$...[:: c = 0] $\Rightarrow f = 0$ $g = -\frac{5}{4}$ *.*..[From (i)] Hence, the equation will be $2x^2 + 2y^2 - 5x = 0$. since, X-intercept = 2a13. $2\sqrt{g^2-c}=2a$ *.*..(i) Also, Y-intercept = 2b $2\sqrt{f^2 - c} = 2b$ ÷.(ii) On squaring (i) and (ii) and then subtracting (ii) from (i), we get $g^2 - f^2 = a^2 - b^2$ Hence, the locus is $x^2 - y^2 = a^2 - b^2$ 14. Let the equation of circle be $x^{2} + y^{2} + 2gx + 2fy + c = 0.$ Now on passing through the given points, we get three equations c = 0....(i) $a^2 + 2ga + c = 0$(ii) $b^2 + 2fb + c = 0$(iii) solving equations (i), (ii) and (iii), we get $g = -\frac{a}{2}, f = -\frac{b}{2}$ Hence, the centre is $\left(\frac{a}{2}, \frac{b}{2}\right)$. 15. The equation of circle through points (0, 0), (1, 3) and (2, 4) is $x^2 + y^2 - 10x = 0$ Point (k, 3) will be on the circle, if $k^2 + 9 - 10k = 0$ \Rightarrow k² - 10k + 9 = 0 $\Rightarrow k^2 - 9k - k + 9 = 0$ \Rightarrow (k -1) (k - 9) = 0 \Rightarrow k = 1 or k = 9 16. Given, $x = 2 + 3 \cos \theta$
- i.e., $x 2 = 3 \cos \theta$ (i) and $y = 3 - 3 \sin \theta$ i.e., $y - 3 = -3 \sin \theta$ (ii) Squaring and adding equation (i) and (ii), we get

 $(x-2)^{2} + (y-3)^{2} = 9\cos^{2}\theta + 9\sin^{2}\theta$ $(x-2)^{2} + (v-3)^{2} = 3^{2}$ ÷. centre \equiv (2, 3), radius = 3 units *.*... 17. $x = 2a\left(\frac{1-t^2}{1+t^2}\right)$(i) $y = \frac{4at}{1+t^2}$(ii) Squaring and adding (i) and (ii), we get $x^{2} + y^{2} = 4a^{2} \cdot \frac{(1-t^{2})^{2}}{(1+t^{2})^{2}} + \frac{16a^{2}t^{2}}{(1+t^{2})^{2}}$ $=\frac{4a^2}{(1+t^2)^2}\left[1-2t^2+t^4+4t^2\right]$ $=\frac{4a^2}{(1+t^2)^2}(1+t^2)^2$ $x^{2} + v^{2} = (2a)^{2}$ *.*.. Radius = 2a*.*.. 18. The point of intersection is $x = a \cos \theta + b \sin \theta$ $y = a \sin \theta - b \cos \theta$ $x^2 + v^2 = a^2 + b^2$ *.*.. Hence, it is equation of a circle. 19. Since, the axis of parabola is Y-axis Equation of parabola $x^2 = 4av$ *.*.. Since, it passes through (6, -3)36 = -12a*.*.. $\Rightarrow a = -3$ Equation of parabola is $x^2 = -12v$ *.*.. Since, the axis of parabola is vertical and it's 20. vertex is (-1, -2). equation of parabola is *.*.. $(x+1)^2 = 4a(y+2)$ Also, it passes through (3, 6) $16 = 4a \times 8$ *.*.. \Rightarrow a = $\frac{1}{2}$ \Rightarrow (x + 1)² = 2(y + 2) $\Rightarrow x^2 + 2x - 2y - 3 = 0$ a = VS21. $=\sqrt{(2-2)^2+(-3+1)^2}$ = 2 Since. V (2, -1) $(x-h)^2 = -4a(y-k)$ S(2, -3) $(x-2)^2 = -4 \times 2(y+1)$ *.*.. $\Rightarrow (x-2)^2 = -8(y+1)$ $\Rightarrow x^2 + 4 - 4x = -8y - 8$ $\Rightarrow x^2 - 4x + 8v + 12 = 0$

Chapter 07: Circle and Conics 22. Let any point on required parabola be P(x, y), then from definition of parabola, we get PS = PM $\Rightarrow \sqrt{(x+8)^2 + (y+2)^2} = \left|\frac{2x-y-9}{\sqrt{5}}\right|$ $\Rightarrow 5(x^2 + 16x + 64 + y^2 + 4y + 4)$ $= 4x^2 + y^2 + 81 - 4xy + 18y - 36x$ $\Rightarrow x^2 + 4y^2 + 4xy + 116x + 2y + 259 = 0$ 23. Let (x, y) be any point on the required parabola by using definition of parabola, we get *.*.. $(x-a)^{2} + (y-b)^{2} = \left(\frac{bx+ay-ab}{\sqrt{a^{2}+b^{2}}}\right)^{2}$ \Rightarrow (a² + b²) (x² - 2ax + a² + y² - 2yb + b²) $= b^{2}x^{2} + a^{2}y^{2} + a^{2}b^{2} + 2abxy - 2a^{2}yb - 2ab^{2}x$ $\Rightarrow a^{2}x^{2} - 2a^{3}x + a^{4} + a^{2}b^{2} + b^{2}y^{2} - 2yb^{3} + b^{4}$ $\Rightarrow a^{2}x^{2} - 2abxy + b^{2}y^{2} - 2a^{3}x - 2b^{3}y + a^{4} + a^{2}b^{2} + b^{4} = 0$ = 2abxv $\Rightarrow (ax - by)^2 - 2a^3x - 2b^3y + a^4 + a^2b^2 + b^4 = 0$ 24. By using definition of parabola, we get SP = PM \Rightarrow SP² = PM² $\Rightarrow x^2 + y^2 = \left(\frac{x + y - 4}{\sqrt{2}}\right)^2$ $\Rightarrow 2x^2 + 2y^2 = x^2 + y^2 + 16 + 2xy - 8y - 8x$ $\Rightarrow x^{2} + y^{2} - 2xy + 8x + 8y - 16 = 0$ $(13x-1)^{2} + (13y-1)^{2} = k(5x-12y+1)^{2}$ 25. $\Rightarrow 169 \left| \left(x - \frac{1}{13} \right)^2 + \left(y - \frac{1}{13} \right)^2 \right| = k \left(5x - 12y + 1 \right)^2$ Taking square root, we get $\sqrt{\left(x - \frac{1}{13}\right)^2} + \left(y - \frac{1}{13}\right)^2 = \frac{\sqrt{k}(5x - 12y + 1)}{13}$ Now, condition for eccentricity is PS = ePM $\Rightarrow PS = \sqrt{k}PM$ $\Rightarrow \sqrt{k} = 1 \Rightarrow k = 1$ $26. \quad 9x^2 - 6x + 36v + 9 = 0$ $\Rightarrow x^2 - \frac{2}{2}x + 4y + 1 = 0$ $\Rightarrow x^2 - \frac{2}{3}x + \frac{1}{9} + 4y + 1 - \frac{1}{9} = 0$ $\Rightarrow \left(x - \frac{1}{2}\right)^2 = -4\left(y + \frac{2}{9}\right).$

Hence, the vertex is $\left(\frac{1}{3}, -\frac{2}{9}\right)$

→ X

- 27. $y^2 + 8x 12y + 20 = 0$ $\Rightarrow y^2 - 12y = -8x - 20$ $\Rightarrow y^2 - 12y + 36 = -8x - 20 + 36$ $\Rightarrow (y - 6)^2 = -8x + 16$ $\Rightarrow (y - 6)^2 = -8(x - 2)$ \Rightarrow Vertex is (2, 6)
- 28. The given equation can be written as $(x-4)^2 = 1[y - (c - 16)]$ Therefore, the vertex of the parabola is (4, c - 16). The point lies on X-axis. $\Rightarrow c - 16 = 0$ $\Rightarrow c = 16$
- 29. Given, equation can be written as

$$y^2 = \frac{4k}{4} \left(x - \frac{8}{k} \right)$$

The standard equation of parabola is $y^2 = 4ax$

$$\Rightarrow a = \frac{\kappa}{4}$$

 $\therefore \quad \text{Equation of directrix is } X + \frac{k}{4} = 0$

$$\Rightarrow x - \frac{8}{k} + \frac{k}{4} = 0$$

But the given equation of directrix is x - 1 = 0. Since, both equation are same

$$\therefore \quad \frac{8}{k} - \frac{k}{4} = 1$$
$$\Rightarrow 32 - k^2 = 4k \Rightarrow k = -8, 4$$

30. Since,
$$9y^2 - 16x - 12y - 57 = 0$$

 $\Rightarrow y^2 - \frac{16}{9}x - \frac{4}{3}y - \frac{57}{9} = 0$
 $\Rightarrow y^2 - \frac{4}{3}y + \frac{4}{9} = \frac{16}{9}x + \frac{57}{9} + \frac{4}{9}$
 $\Rightarrow \left(y - \frac{2}{3}\right)^2 = \frac{16}{9}\left(x + \frac{61}{16}\right)$

this equation can be written as

$$Y^2 = 4\left(\frac{4}{9}\right)X$$

Axis of the parabola is Y = 0

$$\Rightarrow y - \frac{2}{3} = 0$$
$$\Rightarrow 3y = 2$$

31. Distance between focus and directrix is $\begin{vmatrix} 2 & 4 & 2 \end{vmatrix} = 2$

$$\left|\frac{3-4-2}{\sqrt{2}}\right| = \frac{3}{\sqrt{2}}$$

=

Hence, latus rectum is $3\sqrt{2}$

....[Since, latus rectum is two times the distance between focus and directrix].

32. Since, a = distance between tangent at vertex and latus rectum

$$\therefore \qquad \mathbf{a} = \left| \frac{-8 - (-12)}{\sqrt{1+1}} \right| = \frac{4}{\sqrt{2}}$$

 \therefore Length of latus rectum = 4a = 4 $\times \frac{4}{\sqrt{2}} = 8\sqrt{2}$

33.
$$y^2 + 2Ax + 2By + C = 0$$

⇒ $y^2 + 2By + B^2 = -2Ax - C + B^2$
⇒ $(y + B)^2 = -2A\left(x + \frac{C}{2A} - \frac{B^2}{2A}\right)$
∴ focus $\equiv \left(\frac{-C + B^2}{2A} - \frac{A}{2}, -B\right)$

Equation of latus rectum is x = -a

$$=\frac{-C+B^2}{2A}-\frac{A}{2}=\frac{B^2-A^2-C}{2A}$$

34.

_

According to the figure, the length of latus rectum is

$$2(SM) = 2 \times \frac{u^2}{2g} (1 + \cos 2\alpha) = \frac{2u^2 \cos^2 \alpha}{g}$$

35. Given t = -2

$$2y^2 = 7x$$

 $\Rightarrow y^2 = \frac{7}{2}x$
Comparing with $y^2 = 4ax$, we get
 $4a = \frac{7}{2} \Rightarrow a = \frac{7}{8}$
∴ the point is
 $P = (at^2, 2at) = \left(\frac{7}{8} \times 4, 2 \times \frac{7}{8} \times (-2)\right)$
∴ $P = \left(\frac{7}{2}, \frac{-7}{2}\right)$

36. Here, $\frac{y}{2} = t$ and $x - 2 = t^2$ $\Rightarrow (x - 2) = \left(\frac{y}{2}\right)^2 \Rightarrow y^2 = 4(x - 2)$ 37. $x = 2 + t^2$ and y = 2t + 1

$$\Rightarrow t^{2} = (x - 2) \text{ and } t^{2} = \left(\frac{y}{2}\right)^{2} = \frac{y}{4}$$
$$\Rightarrow \frac{(y - 1)^{2}}{4} = (x - 2) \Rightarrow (y - 1)^{2} = 4(x - 2)$$

 \therefore Vertex is (2, 1)

38. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Since, it passes through (-3, 1) and (2, -2) ∴ $\frac{9}{a^2} + \frac{1}{b^2} = 1$ and $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4}$ $\Rightarrow a^2 = \frac{32}{3}, b^2 = \frac{32}{5}$

Hence, required equation of ellipse is $3x^2 + 5y^2 = 32$

39. Let point P (x₁, y₁)
∴
$$\sqrt{(x_1 + 2)^2 + y_1^2} = \frac{2}{3} \left(x_1 + \frac{9}{2} \right)$$

 $\Rightarrow (x_1 + 2)^2 + y_1^2 = \frac{4}{9} \left(x_1 + \frac{9}{2} \right)^2$
 $\Rightarrow 9(x_1^2 + y_1^2 + 4x_1 + 4) = 4 \left(x_1^2 + \frac{81}{4} + 9x_1 \right)$
 $\Rightarrow 5x_1^2 + 9y_1^2 = 45 \Rightarrow \frac{x_1^2}{9} + \frac{y_1^2}{5} = 1$
∴ Locus of (x₁, y₁) is $\frac{x^2}{9} + \frac{y^2}{5} = 1$ which i

:. Locus of (x_1, y_1) is $\frac{x}{9} + \frac{y}{5} = 1$, which is equation of an ellipse.

40. Foci = (3, -3)

$$\Rightarrow$$
 ae = 3 - 2 = 1
Vertex = (4, -3)
 \Rightarrow a = 4 - 2 = 2
 \Rightarrow e = $\frac{1}{2}$
 \Rightarrow b = 2 $\sqrt{\left(1 - \frac{1}{4}\right)} = \frac{2}{2}\sqrt{3} = \sqrt{3}$

Therefore, equation of ellipse with centre (2, -3) is $(x-2)^2 + (y+3)^2 = 1$

$$\frac{(x-2)^2}{4} + \frac{(x+3)^2}{3} = 1$$

Chapter 07: Circle and Conics 41. Vertices $(\pm 5, 0) \equiv (\pm a, 0)$ $\Rightarrow a = 5$ Foci $(\pm 4, 0) \equiv (\pm ae, 0)$ $\Rightarrow e = \frac{4}{5}$ $\therefore \qquad b = \sqrt{a^2 \left(1 - e^2\right)} = \sqrt{25 \times \frac{9}{25}} = 3$ Hence, equation is $\frac{x^2}{25} + \frac{y^2}{9} = 1$ i.e., $9x^2 + 25y^2 = 225$ 42. Foci $(\pm 5, 0) \equiv (\pm ae, 0)$, \Rightarrow ae = 5(i) Equation of directrix is $x = \frac{a}{a}$ Given, $x = \frac{36}{5}$ $\Rightarrow \frac{a}{e} = \frac{36}{5}$(ii) \Rightarrow a = 6 and e = $\frac{5}{6}$ [From (i) and (ii)] \therefore $b = a\sqrt{1-e^2} = 6\sqrt{1-\frac{25}{36}} = \sqrt{11}$ Hence, equation is $\frac{x^2}{36} + \frac{y^2}{11} = 1$ 43. Vertex (0,7) and directrix y = 12 \therefore b = 7 and $\frac{b}{e} = 12$ $\Rightarrow e = \frac{7}{12}$ Also, $a = b\sqrt{1-e^2}$ $\Rightarrow a = 7 \sqrt{\frac{95}{144}}$ $\Rightarrow a^2 = \frac{4655}{144}$ Hence, equation of ellipse is $\frac{x^2}{4655/144} + \frac{y^2}{49} = 1$ i.e, $144x^2 + 95y^2 = 4655$ 44. Let the equation of ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ÷ It passes through (-3, 1) $\therefore \quad \frac{9}{a^2} + \frac{1}{b^2} = 1$ $\Rightarrow 9 + \frac{a^2}{b^2} = a^2$(i)

MHT-CET Triumph Maths (Hints) Given, eccentricity is $\sqrt{\frac{2}{5}}$ $\therefore \qquad \frac{2}{5} = 1 - \frac{b^2}{a^2}$ $\Rightarrow \frac{b^2}{2} = \frac{3}{5}$(ii) From equation (i) and (ii), we get $a^2 = \frac{32}{3}, b^2 = \frac{32}{5}$ Hence, required equation of ellipse is $3x^2 + 5y^2 = 32$ Given, $\frac{2b^2}{a} = 10 \Rightarrow b^2 = 5a$ and 2b = 2ae45. $\Rightarrow \frac{b}{a} = e$ Also, $b^2 = a^2(1 - e^2)$ $\Rightarrow e^2 = (1 - e^2) \qquad \dots \left[\because e = \frac{b}{a} \right]$ $\Rightarrow e = \frac{1}{\sqrt{2}}$ \Rightarrow b = $\frac{a}{\sqrt{2}}$ or b = $5\sqrt{2}$, a = 10 Hence, equation of ellipse is $\frac{x^2}{(10)^2} + \frac{y^2}{(5\sqrt{2})^2} = 1$ i.e., $x^2 + 2y^2 = 100$ 46. We have, 2ae = 8, $\frac{2a}{e} = 18$ $\Rightarrow ae \times \frac{a}{2} = 4 \times 9$ \Rightarrow a = $\sqrt{4 \times 9}$ = 6 and e = $\frac{2}{3}$ Also, $b = a \sqrt{1 - e^2}$ \Rightarrow b = 6 $\sqrt{1-\frac{4}{9}} = \frac{6}{3}\sqrt{5} = 2\sqrt{5}$ Hence, the required equation is $\frac{x^2}{36} + \frac{y^2}{20} = 1$ i.e., $5x^2 + 9y^2 = 180$ 47. $\frac{x^2}{2-r} + \frac{y^2}{r-5} + 1 = 0$ $\Rightarrow \frac{x^2}{r-2} + \frac{y^2}{5-r} = 1$ Hence, r > 2 and r < 5

 $16x^2 + 25y^2 = 400$ 48. $\Rightarrow \frac{x^2}{25} + \frac{y^2}{16} = 1$ $\Rightarrow e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$ Therefore, directrices are $x = \pm \frac{5}{3}$ or $3x = \pm 25$ 49. Given that, $\frac{a}{a} - ae = 8$ and $e = \frac{1}{2}$ $\Rightarrow a = \frac{8e}{(1-e^2)}$ $=\frac{8.4}{2(3)}=\frac{16}{3}$ $\therefore \qquad b = \frac{16}{3} \sqrt{1 - \frac{1}{4}}$ $=\frac{16}{3}\frac{\sqrt{3}}{2}=\frac{8\sqrt{3}}{3}$ Hence, the length of minor axis is $\frac{16\sqrt{3}}{3}$ 50. $3x^2 + 4y^2 = 48$ $\Rightarrow \frac{x^2}{16} + \frac{y^2}{12} = 1$ $\therefore a^2 = 16, b^2 = 12$ $\Rightarrow e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{12}{16}} = \frac{1}{2}$ Distance between the foci = 2ae.... $= 2 \times 4 \times \frac{1}{2}$ = 451. We have, $\frac{2b^2}{2} = 2ae$ \Rightarrow b² = a²e $\Rightarrow e = \frac{b^2}{a^2}$(i) Also, $e = \sqrt{1 - \frac{b^2}{a^2}}$ $\Rightarrow e^2 = 1 - e$ $\Rightarrow e^2 + e - 1 = 0$[From (i)] \therefore $e = \frac{-1 \pm \sqrt{5}}{2}$ $\therefore e = \frac{\sqrt{5}-1}{2}$

88

 $\Rightarrow 2 < r < 5$

Chapter 07: Circle and Conics

- $a = 6, b = 2\sqrt{5}$ 52. Now, $b^2 = a^2(1 - e^2)$ $\Rightarrow \frac{20}{26} = (1 - e^2)$ $\Rightarrow e = \sqrt{\frac{16}{26}} = \frac{2}{2}$ Distance between directrix = $\frac{2a}{e} = \frac{2 \times 6}{\frac{2}{2}} = 18$ Comparing $\frac{x^2}{16} + \frac{y^2}{9} = 1$ with $\frac{x^2}{3^2} + \frac{y^2}{5^2} = 1$, 53. we get $a^2 = 16, b^2 = 9$ \Rightarrow a = 4, b = 3 Now, b² = a² (1 - e²) $\Rightarrow \frac{9}{16} = 1 - e^2$ $\Rightarrow e^2 = 1 - \frac{9}{16} = \frac{7}{16}$ $e = \frac{\sqrt{7}}{4}$ ÷ $S = (ae, 0) \equiv (\sqrt{7}, 0)$ Ŀ. radius of the circle = $\sqrt{\left(0 - \sqrt{7}\right)^2 + \left(3 - 0\right)^2}$ ÷. $=\sqrt{16} = 4$ $x = 3 (\cos t + \sin t), \quad y = 4 (\cos t - \sin t)$ 54 $\Rightarrow \frac{x}{2} = \cos t + \sin t, \frac{y}{4} = \cos t - \sin t$ $\Rightarrow \frac{x^2}{2} = 1 + \sin 2t, \frac{y^2}{16} = 1 - \sin 2t$ $\Rightarrow \frac{x^2}{2} + \frac{y^2}{16} = 2$ $\Rightarrow \frac{x^2}{10} + \frac{y^2}{22} = 1$ which is an ellipse. 55. $9x^2 + 4y^2 - 6x + 4y + 1 = 0$ $\Rightarrow 9\left(x^{2} - \frac{2}{3}x + \frac{1}{9}\right) + 4\left(y^{2} + y + \frac{1}{4}\right) = -1 + 1 + 1$ $\Rightarrow 9\left(x-\frac{1}{3}\right)^2 + 4\left(y+\frac{1}{2}\right)^2 = 1$ $\Rightarrow \frac{\left(x - \frac{1}{3}\right)^2}{1} + \frac{\left(y + \frac{1}{2}\right)^2}{1} = 1$
- Here, $a = \frac{1}{2}$, $b = \frac{1}{2}$ $\Rightarrow 2a = \frac{2}{3}, 2b = 1$ Length of axes are $1, \frac{2}{2}$ *.*.. 56. $3x^2 - 12x + 4y^2 - 8y = -4$ $\Rightarrow 3(x^2 - 4x + 4) + 4(y^2 - 2y + 1) = -4 + 12 + 4$ $\Rightarrow 3(x-2)^2 + 4(y-1)^2 = 12$ $\Rightarrow \frac{(x-2)^2}{4} + \frac{(y-1)^2}{3} = 1$ $\Rightarrow \frac{X^2}{A} + \frac{Y^2}{2} = 1$ \therefore $e = \sqrt{1 - \frac{3}{4}} = \frac{1}{2}$ Foci are $x = \pm$ ae, y = 0 $\Rightarrow x - 2 = \pm 1, y - 1 = 0$ $\Rightarrow x = 3 \text{ or } 1, y = 1$ i.e., (3, 1) and (1, 1)57. $4(x^2 + 2x + 1) + 9(y^2 + 4y + 4) = 36$ $\Rightarrow 4(x+1)^2 + 9(y+2)^2 = 36$ $\Rightarrow \frac{(x+1)^2}{9} + \frac{(y+2)^2}{4} = 1$ Comparing with standard form, we get $a^2 = 9, b^2 = 4$ Now, condition $b^2 = a^2 (1 - e^2)$ for eccentricity is $\Rightarrow 4 = 9(1 - e^2)$ $\Rightarrow e^2 = 1 - \frac{4}{9} = \frac{5}{9}$ $\Rightarrow e = \frac{\sqrt{5}}{2}$ Given, 2a = 6, 2b = 458. i.e., a = 3, b = 2Also, $e^2 = 1 - \frac{b^2}{a^2} = \frac{5}{0}$ $\Rightarrow e = \frac{\sqrt{5}}{2}$ Distance between the pins = $2ae = 2\sqrt{5}$ cm and length of string = $2a + 2ae = 6 + 2\sqrt{5}$ cm

...

MHT-CET Triumph Maths (Hints) $2a = 7 \text{ or } a = \frac{7}{2}$ 59. Also (5, -2) satisfies $\frac{4}{49}(25) - \frac{51}{196}(4) = 1$ and $a^2 = \frac{49}{4}$ $\Rightarrow a = \frac{7}{2}$ *.*.. option (C) is correct answer Centre (0, 0), vertex $(4, 0) \Rightarrow a = 4$ and 60. focus (6, 0) \Rightarrow ae = 6 $\Rightarrow e = \frac{3}{2}$ Also, $b^2 = a^2 (e^2 - 1)$ = 20 Hence, required equation is $\frac{x^2}{16} - \frac{y^2}{20} = 1$ i.e., $5x^2 - 4v^2 = 80$ 61. Given that, $e = \frac{3}{2}$ foci = $(\pm 2, 0) = (\pm ae, 0)$ \Rightarrow ae = 2 $\Rightarrow a = \frac{4}{2}$ $\Rightarrow a^2 = \frac{16}{9}$ Now, condition for eccentricity is $b^2 = a^2(e^2 - 1)$ $b^{2} = \frac{16}{9} \left(\frac{9}{4} - 1 \right) = \frac{16}{9} \left(\frac{5}{4} \right) = \frac{20}{9}$... Now, equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\Rightarrow \frac{9x^2}{16} - \frac{9y^2}{20} = 1 \Rightarrow \frac{x^2}{4} - \frac{y^2}{5} = \frac{4}{9}$ 62. Given, $\frac{2b^2}{a} = 8$ and $\frac{3}{\sqrt{5}} = \sqrt{1 + \frac{b^2}{a^2}}$ $\Rightarrow \frac{4}{5} = \frac{b^2}{a^2}$ \Rightarrow a = 5, b = 2 $\sqrt{5}$ Hence, the required equation of hyperbola is

63. Conjugate axis is 5 and distance between foci = 13 $\Rightarrow 2b = 5$ and 2ae = 13Also, $b^2 = a^2(e^2 - 1)$ $\Rightarrow \frac{25}{1} = \frac{(13)^2}{12}(e^2 - 1)$

$$\Rightarrow \frac{4}{4e^2} + \frac{4e^2}{4e^2} + \frac{169}{4e^2}$$
$$\Rightarrow \frac{25}{4} = \frac{169}{4e^2} - \frac{169}{4e^2}$$
$$\Rightarrow e = \frac{13}{12}$$
$$\Rightarrow a = 6, b = \frac{5}{2}$$

Hence, the required equation of hyperbola is $\frac{x^2}{36} - \frac{y^2}{\frac{25}{4}} = 1$ i.e., $25x^2 - 144y^2 = 900$

64. Equation of hyperbola passes through (x_1, y_1)

$$\Rightarrow \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1 \Rightarrow \frac{x_1^2}{a^2} - 1 = \frac{y_1^2}{b^2}$$
$$\Rightarrow \frac{x_1^2 - a^2}{a^2} = \frac{y_1^2}{b^2} \Rightarrow \frac{b^2}{a^2} = \frac{y_1^2}{x_1^2 - a^2}$$
Now, $\frac{b^2}{a^2} = e^2 - 1$
$$\Rightarrow \frac{y_1^2}{x_1^2 - a^2} = e^2 - 1$$
$$\Rightarrow e^2 = \frac{y_1^2 + (x_1^2 - a^2)}{x_1^2 - a^2}$$
$$\Rightarrow e = \sqrt{\frac{x_1^2 - a^2 + y_1^2}{x_1^2 - a^2}} = \sqrt{\frac{a^2 - x_1^2 - y_1^2}{a^2 - x_1^2}}$$

65. Center of the hyperbola is midpoint of foci.Hence, its center is (1, 5) also distance between foci is 2ae = 10

$$\Rightarrow a = 4 \qquad \dots \left[\because e = \frac{5}{4} \right]$$
$$\Rightarrow a^{2} = 16$$
Now, b² = a² (e² - 1)
= a²e² - a² = 25 - 16 \Rightarrow b² = 9
Hence, equation of hyperbola is

 $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$

Chapter 07: Circle and Conics

66. Let S(1, 1) be the focus and P(x, y) be a point on the hyperbola Now, PS = ePM

$$\Rightarrow \sqrt{(x-1)^{2} + (y-1)^{2}} = \sqrt{3} \frac{2x + y - 1}{\sqrt{2^{2} + 1^{2}}}$$

Squaring both sides, we get

$$(x-1)^{2} + (y-1)^{2} = \frac{3}{5}(2x+y-1)^{2}$$

On simplification, the required equation is $7x^2 + 12xy - 2y^2 - 2x + 4y - 7 = 0$

For ellipse, e < 1 and also e' < 167. $e^2 + e'^2 < 2$ *.*..

For parabola,
$$e = 1$$
 and $e' = 1$

- For parabola, e = 1 and e' $e^2 + {e'}^2 = 2$ *.*..
 - For hyperbola, e > 1 and e' > 1
- $e^2 + e'^2 > 2$ *.*.. Hence, it can be 3 in case of hyperbola.

68.
$$96x^2 - 16y^2 - 36x + 96y - 252 = 0$$

 $\Rightarrow \frac{(x-2)^2}{16} - \frac{(y-3)^2}{9} = 1$
 $\Rightarrow \frac{X^2}{16} - \frac{Y^2}{9} = 1$

... Vertices are
$$(X = \pm a, Y = 0)$$

i.e., $(x - 2 = \pm 4, y - 3 = 0)$

The vertices of the hyperbola are (6, 3) and (-2, 3)*.*..

69.
$$(x+1)^2 - y^2 - 1 + 5 = 0$$

$$\Rightarrow -\frac{(x+1)^2}{4} + \frac{y^2}{4} = 1$$

Equation of directrices of $\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$ are

$$y = \pm \frac{b}{e}$$

Here, b = 2, e = $\sqrt{1+1} = \sqrt{2}$

Hence,
$$y = \pm \frac{1}{\sqrt{2}}$$

 $\Rightarrow y = \pm \sqrt{2}$

70. Given, equation of hyperbola is $9x^2 - 16y^2 + 72x - 32y - 16 = 0$ $\Rightarrow 9(x^2 + 8x) - 16(y^2 + 2y) - 16 = 0$ $\Rightarrow 9(x+4)^2 - 16(y+1)^2 = 144$ $\Rightarrow \frac{(x+4)^2}{16} - \frac{(y+1)^2}{9} = 1$ Latus rectum = $\frac{2b^2}{a} = 2 \times \frac{9}{4} = \frac{9}{2}$ *.*..

71. Squaring and subtracting, we get $a^{2}x^{2} - b^{2}y^{2} = a^{2} - b^{2}$, which is the equation of hyperbola.

72.
$$2x = t + \frac{1}{t}$$
 and $2y = t - \frac{1}{t}$
 $\Rightarrow 4x^2 = t^2 + 2 + \frac{1}{t^2}$ (i)
and $4y^2 = t^2 - 2 + \frac{1}{t^2}$ (ii)

Subtracting (ii) from (i), we get $4x^2 - 4y^2 = 4 \Longrightarrow x^2 - y^2 = 1$ The equation is of hyperbola.

Multiplying both, we get 73. $(bx)^2 - (ay)^2 = (ab)^2$ $\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

which is the standard equation of hyperbola.

74.
$$e^2 = 1 - \frac{b^2}{a^2} = \frac{4}{9}$$

$$\Rightarrow e = \frac{2}{3}$$
and $e'^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{\frac{45}{4}}{9} = \frac{9}{4}$

$$\Rightarrow e' = \frac{3}{2}$$
∴ $ee' = 1$

75. Centres of the circles are (0, 0), (-3, 1) and (6, -2) respectively. Line passing through any two points say (0, 0) and (-3, 1) is $y = -\frac{1}{2}x$ point (6, -2) lies on it.

Hence, points are collinear.

Competitive Thinking

- Radius = Distance from origin = $\sqrt{\alpha^2 + \beta^2}$ 1.
- $(x-\alpha)^2 + (y-\beta)^2 = \alpha^2 + \beta^2$ ÷ $\Rightarrow x^2 + y^2 - 2\alpha x - 2\beta y = 0$
- 2. Centre (2, 2) and $r = \sqrt{(4-2)^2 + (5-2)^2}$ $=\sqrt{13}$ Hence, required equation is $(x-2)^{2} + (y-2)^{2} = (\sqrt{13})^{2}$ $\Rightarrow x^2 + y^2 - 4x - 4y - 5 = 0$

- 3. Let r be the radius of the circle. Given, circumference = 10π
- $\therefore \quad 2\pi r = 10\pi$ $\implies r = 5$
- $\therefore \quad \text{the equation of the circle is} \\ \frac{(x-2)^2 + (y+3)^2 = 5^2}{\Rightarrow x^2 + y^2 4x + 6y 12 = 0}$
- 4. The centre of the circle which touches each axis in first quadrant at a distance 5, will be (5, 5) and radius will be 5.
- $\therefore \quad \text{equation of the circle is}$ $(x-5)^2 + (y-5)^2 = (5)^2$ $\Rightarrow x^2 + y^2 - 10x - 10y + 25 = 0$
- 5. Since, circle touches the co-ordinate axes in III quadrant. Y

- $\therefore \quad \text{Radius} = -h = -k \\ \text{Hence, } h = k = -5$
- :. Equation of circle is $(x + 5)^2 + (y + 5)^2 = 25$
- 6. Since, the circle touches X-axis at (3, 0).
- :. centre of the circle is (3, k). Now, $CA^2 = CB^2$
- $\therefore (3-3)^2 + (k-0)^2 = (3-1)^2 + (k-4)^2$ $\therefore k^2 = 4 + k^2 - 8k + 16 = 0$ $A(3,0) \to X$
- \therefore $k = \frac{5}{2}$

 \therefore the required equation of circle is

$$(x-3)^{2} + \left(y - \frac{5}{2}\right)^{2} = \left(\frac{5}{2}\right)^{2}$$
$$\Rightarrow x^{2} + y^{2} - 6x - 5y + 9 = 0$$

7. Since, the circle has centre at (1, 2) and line x = y i.e. x - y = 0 as tangent,

$$\therefore \quad \text{Radius of circle} = \left| \frac{(1) - (2)}{\sqrt{(1)^2 + (-1)^2}} \right|$$
$$= \frac{1}{\sqrt{2}}$$
$$\therefore \quad \text{Area of circle} = \pi \times \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{\pi}{2}$$

8. Centre is $\left(\frac{a}{2}, \frac{b}{2}\right)$ and radius = $\sqrt{\frac{a^2 + b^2}{4}}$

Hence, equation of circle is $x^2 + y^2 - ax - by = 0$

- 9. diameter = $\sqrt{[4 (-2)]^2 + [7 (-1)]^2}$ = $\sqrt{6^2 + 8^2}$ = 10 Centre = $\left(\frac{4 + (-2)}{2}, \frac{7 + (-1)}{2}\right) = (1, 3)$
- $\therefore \quad \text{equation of the circle is} \\ (x-1)^2 + (y-3)^2 = (5)^2 \\ \text{If this circle cuts X-axis, then} \\ (x-1)^2 + (0-3)^2 = 25 \\ \Rightarrow (x-1)^2 = 16 \\ \Rightarrow (x-1)^2 = 16 \\ \Rightarrow x = 5, -3 \\ \therefore \quad \text{the points on X-axis are A}(5, 0) \text{ and B}(-3, 0)$
- $\therefore AB = \sqrt{(5+3)^2 + 0^2} = 8$
- 10. Since, the centre always lies on the diameter. Solving 2x + 3y + 1 = 0 and 3x - y - 4 = 0, the co-ordinates of the centre are (1, -1). Given, circumference = 10π
- $\therefore 2\pi r = 10\pi \Rightarrow r = 5$
- $\therefore \quad \text{the equation of the circle is} \\ (x-1)^2 + (y+1)^2 = 5^2 \\ \Rightarrow x^2 + y^2 2x + 2y 23 = 0$
- 11. Centre of circle = Point of intersection of diameters = (1, -1)Now, area = 154 $\Rightarrow \pi r^2 = 154 \Rightarrow r = 7$ Hence, the equation of required circle is $(x-1)^2 + (y+1)^2 = 7^2$ $\Rightarrow x^2 + y^2 - 2x + 2y = 47$
- 12. 3x y 4 = 0(i) x + 3y + 2 = 0(ii) solving equation (i) and (ii), we get (x, y) = (1, -1) Since, πr² = 154 ∴ r = 7

13. Since, the centre always lies on the diameter. Solving 2x + 3y = 3 and 16x - y = 4, we get co-ordinates of the centre $= \left(\frac{3}{10}, \frac{4}{5}\right)$.

The circle passes through (4, 6).

$$r^{2} = \left(4 - \frac{3}{10}\right)^{2} + \left(6 - \frac{4}{5}\right)^{2}$$
$$= \left(\frac{37}{10}\right)^{2} + \left(\frac{26}{5}\right)^{2} = \frac{4073}{100}$$

the equation of the circle is

$$\left(x - \frac{3}{10}\right)^2 + \left(y - \frac{4}{5}\right)^2 = \frac{4073}{100}$$

$$\Rightarrow 100x^2 + 100y^2 - 60x - 160y = 4000$$

$$\Rightarrow 5(x^2 + y^2) - 3x - 8y = 200$$

- 14. Let centre be (h, k). Then, $\sqrt{(h-2)^2 + (k-3)^2} = \sqrt{(h-4)^2 + (k-5)^2}$ $\Rightarrow -4h + 4 - 6k + 9 = -8h + 16 - 10k + 25$ $\Rightarrow 4h + 4k - 28 = 0$ $\Rightarrow h + k - 7 = 0 \qquad \dots(i)$ Since, centre lies on the given line.
- $\therefore \quad k-4h+3=0 \qquad \dots (ii)$ Solving (i) and (ii), we get (h, k) = (2, 5) $\therefore \quad \text{centre is } (2, 5) \text{ and}$
 - radius = $\sqrt{(2-2)^2 + (5-3)^2} = 2$
- $\therefore \quad \text{the required equation of the circle is}$ $(x-2)^2 + (y-5)^2 = (2)^2$ $\Rightarrow x^2 + y^2 - 4x - 10y + 25 = 0$

15.

...

C (3,-1)
A D B
$$2x - 5y + 18 = 0$$

Let AB be the chord cut off by the circle on the line 2x - 5y + 18 = 0. Let CD be the perpendicular drawn from

centre (3, -1) to AB.

:.
$$CD = \left| \frac{2(3) - 5(-1) + 18}{\sqrt{2^2 + (-5)^2}} \right| = \sqrt{29}$$

and $AD = 3$

:. $CA^2 = AD^2 + CD^2 = 3^2 + (\sqrt{29})^2 = 38$

Chapter 07: Circle and Conics

- :. the equation of the circle is $(x-3)^2 + (y+1)^2 = 38$.
- 16. $\triangle ABC$ is equilateral.

 \therefore O(0, 0) is the centroid.

O divides AD in the ratio 2 : 1

$$\frac{AO}{OD} = \frac{2}{1}$$

$$\Rightarrow \frac{AO}{AD - AO} = \frac{2}{1} \Rightarrow \frac{AO}{9 - AO} = \frac{2}{1}$$

$$\Rightarrow AO = 18 - 2 AO \Rightarrow AO = 6 \text{ units}$$

 \therefore radius = 6 units

..

- \therefore equation of circle is $x^2 + y^2 = 36$.
- 17. According to the figure, A(0, 0), B(a,0), C(a, a) and D(0, a). DCC

18. Since, the circle touches Y-axis at (0, 2). Y \therefore centre of the circle is (h, 2).

Now,
$$CA^{2} = CB^{2}$$

 $(h-0)^{2} + (2-2)^{2}$
 $= (h - (-1))^{2} + (2-0)^{2}$
 $\Rightarrow h^{2} = h^{2} + 2h + 1 + 4$
 $\Rightarrow 2h + 5 = 0 \Rightarrow h = -\frac{5}{2}$

$$\therefore \quad \text{equation of circle is} \\ \left(x + \frac{5}{2}\right)^2 + (y - 2)^2 = \left(-\frac{5}{2}\right)^2 \\ \Rightarrow x^2 + \frac{25}{4} + 5x + y^2 - 4y + 4 = \frac{25}{4} \\ \Rightarrow x^2 + y^2 + 5x - 4y + 4 = 0 \\ \text{Point (-4, 0) satisfies this equation.} \\ \therefore \quad \text{option (D) is the correct answer.} \end{cases}$$

R

Since, the circle touches X-axis at (1, 0).

- $\therefore \quad \text{centre of the circle is } (1, \text{ k}) \text{ and radius} = \text{ k}$ $\therefore \quad \text{equation of the circle is } (2-1)^2 + (3-\text{ k})^2 = \text{ k}^2$ $\Rightarrow 1 + \text{ k}^2 - 6\text{ k} + 9 = \text{ k}^2$ $\Rightarrow \text{ k} = \frac{5}{3}$
- \therefore diameter = 2k = $\frac{10}{3}$
- 20. The equation of circle touching the coordinate axes with centre (a, a) and radius 'a' is $x^2 + y^2 2ax 2ay + a^2 = 0$...(i) Since, line 3x - 4y - 12 = 0 touches the circle
- :. perpendicular distance from centre of the circle to the line = radius

$$\therefore \quad \left| \frac{3(a) - 4(a) - 12}{\sqrt{9 + 16}} \right| = a$$
$$\Rightarrow a = 3$$

Substituting, a = 3 in equation (i), we get $x^2 + y^2 - 6x - 6y + 9 = 0$ This is the required equation of the circle.

- 21. The given equation represents a circle having line segment joining (x_1, y_1) and (x_2, y_2) as a diameter.
- $\therefore \quad \text{the coordinates of its centre are} \\ \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).$
- 22. By diameter form, the required equation is $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$
- $\therefore \quad (x+4)(x-12) + (y-3)(y+1) = 0$
- $\therefore \qquad x^2 + y^2 8x 2y 51 = 0$
- 23. Circle whose diametric end points are (1, 0) and (0, 1) will be of smallest radius.
- ... By using diameter form, equation of circle is (x-1)(x-0) + (y-0)(y-1) = 0 $\Rightarrow x^2 + y^2 - x - y = 0$

Here, the diagonals AC and BD of rectangle ABCD are diameters of the circle passing through the vertices A, B, C and D. Considering diagonal AC with end points A(a, b) and C (-a, -b), we get Equation of circle in diameter form as,

$$(x-a)(x-(-a)) + (y-b)(y-(-b)) = 0$$

$$\therefore \quad x^2 - a^2 - y^2 - b^2 = 0$$

$$\therefore \quad x^2 + y^2 = a^2 + b^2$$

- 26. The given equation represents a circle, if coeff. of x^2 = coeff. of y^2 and coeff. of xy = 0
- $\therefore \quad a = 2 \text{ and } b = 0$ Also, it passes through origin.
- \therefore c = 0

27. Here,
$$g = 2$$
, $f = 3$ and $c = 13$
 \therefore $r = \sqrt{g^2 + f^2 - c}$

$$\therefore \qquad \mathbf{r} = \sqrt{4+9-13} = 0$$

- \therefore option (D) is the correct answer.
- 28. Consider option (A), $x^{2} + y^{2} + 2ax + 2by + 2b^{2} = 0$ Centre = (-a, -b)
- \therefore option (A) is the correct answer.
- 29. The given equation represents a circle, if coeff. of $x^2 = \text{coeff. of } y^2$ After solving the given equation , we get $\frac{K}{3} = \frac{1}{4} \Longrightarrow K = \frac{3}{4}$
- 30. The given equation represents a circle, if coeff. of xy = 0.

$$\therefore \quad 2 \text{ k} - 1 = 0 \Rightarrow \text{k} = \frac{1}{2}$$

radius = $\sqrt{(-1)^2 + (2)^2 - 3} = \sqrt{2}$

94

Chapter 07: Circle and Conics

- 31. The given equation represents a circle, if coeff. of xy = 0.
- $\therefore \quad h = 0$ and $\sqrt{(-3)^2 + (-1)^2 - k} = 2$ $\Rightarrow 10 - k = 4$ $\Rightarrow k = 6$
- 32. Circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is concentric with $x^2 + y^2 - 2x + 4y + 20 = 0$.
- ∴ centre is (1, -2) and radius = $\sqrt{(4-1)^2 + (-2+2)^2} = \sqrt{3^2 + 0^2} = 3$ Also, $r = \sqrt{g^2 + f^2 - c}$ ∴ $3 = \sqrt{(-1)^2 + (2)^2 - c}$ ∴ 9 = 1 + 4 - c∴ c = -4

33. Here,
$$g = \frac{-1}{4}$$
, $f = 0$ and $c = 0$

- :. centre $(-g, -f) = \left(\frac{1}{4}, 0\right)$ and $r = \sqrt{\frac{1}{16} + 0 - 0} = \frac{1}{4}$
- 34. Let another end of the diameter be (x, y). Centre of the given circle is (2, 3). Since, centre is the midpoint of the diameter
- $\therefore \quad 2 = \frac{3+x}{2}, \quad 3 = \frac{4+y}{2}$ $\Rightarrow x = 1, \quad y = 2$ $\Rightarrow (x, y) = (1, 2)$
- 35. Let A(x, y) be the required point.

given equation of circle is $x^2 + y^2 + 2x + 4y - 3 = 0$

 $\therefore \quad \text{Centre} = (-1, -2)$ Since, C is the midpoint of AP.

$$\therefore \quad A=(-3,-4)$$

36. Here, the centre of circle (3, -1) must lie on the line x + 2by + 7 = 0.

$$\therefore \quad 3-2b+7=0 \\ \implies b=5$$

- 37. Given equation of circle is $x^{2} + y^{2} - 4x - 6y + 9 = 0$ $\Rightarrow x^{2} - 4x + 4 + y^{2} - 6y + 9 - 4 = 0$ $\Rightarrow (x - 2)^{2} + (y - 3)^{2} = 4$
- :. centre = (2, 3), radius = 2 The diameter of this circle is a chord of circle with centre O(1, 1).

$$OP = \sqrt{(3-1)^2 + (2-1)^2} = \sqrt{5}$$

$$QP = 2$$

$$r^2 = (\sqrt{5})^2 + 2^2 \Rightarrow r = 3$$

38.

....

39. Consider option (A) $x^{2} + y^{2} + 8x + 2y - 8 = 0$ Point (-1, 3) is common to both circle and lies on above circle also Since, point (-1, 3) satisfies the equation of circle in option (A) correct answer is option (A) *.*.. $C_1: x^2 + y^2 - 6x = 0$ 40.(i) $C_2: x^2 + y^2 - 6y = 0$(ii) Solving (i) and (ii), we get x = y....(iii) Substituting (iii) in (i), we get v = 3*.*.. x = 3Point on circle is P(3, 3) and centre = $\left(\frac{3}{2}, \frac{3}{2}\right)$ Radius = $\sqrt{\left(3 - \frac{3}{2}\right)^2 + \left(3 - \frac{3}{2}\right)^2}$.**.**. $=\frac{3}{\sqrt{2}}$ equation of the circle is *.*.. $\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 = \frac{9}{2}$ $\Rightarrow x^2 + v^2 - 3x - 3v = 0$ Putting y = x in $x^2 + y^2 - 2x = 0$, we get 41.

- $2x^2 2x = 0$ $\Rightarrow x(x - 1) = 0 \Rightarrow x = 0 \text{ or } x = 1$
- $\therefore y = 0 \text{ or } y = 1$
- ∴ Points of intersection are (0, 0) and (1, 1).
 These are end points of a diameter of required circle.
- $\therefore \quad \text{equation of required circle is}$ (x - 0) (x - 1) + (y - 0) (y - 1) = 0 $\Rightarrow x^2 + y^2 - x - y = 0$
- 42. The centres of two circles are C₁(1, 0) and C₂(-2, -4) and their radii are 1 and 2 units respectively. Let C be the centre of the required circle. Then, CP = CQ = 1.
 ∴ CC₁ = 2 and CC₂ = 3. Clearly, C divides C₁ C₂ in the ratio 2 : 3. Therefore, coordinates of C are

$$\left(\frac{-4+3}{2+3}, \frac{-8+0}{2+3}\right) = \left(-\frac{1}{5}, -\frac{8}{5}\right)$$

 $\begin{array}{c|c} 1 & 1 & 2 \\ \hline C_1(1,0) & P & C & Q & C_2(-2,-4) \end{array}$

Hence, equation of the required circle is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}^2 \begin{pmatrix} 8 \\ 2 \end{pmatrix}^2$

$$\begin{pmatrix} x+\frac{1}{5} \end{pmatrix} + \begin{pmatrix} y+\frac{1}{5} \end{pmatrix} = 1^{2}$$
$$\Rightarrow 5x^{2} + 5y^{2} + 2x + 16y + 8 = 0$$

43. Let, P = (x, y) \therefore according to the given condition

$$\frac{\sqrt{x^2 + y^2 - 2x + 4y - 20}}{\sqrt{x^2 + y^2 - 2x - 8y + 1}} = \frac{2}{1}$$
$$\Rightarrow \frac{x^2 + y^2 - 2x - 8y + 1}{x^2 + y^2 - 2x - 8y + 1} = 4$$
$$\Rightarrow x^2 + y^2 - 2x - 12y + 8 = 0$$

44. Equation of the tangent at (1, 7) to $x^2 = y - 6$ is 2x - y + 5 = 0Centre of the given circle is (-8, -6).

Perpendicular from the centre (-8, -6) to 2x - y + 5 = 0 is equal to the radius of the circle.

$$\Rightarrow \left| \frac{2(-8) - (-6) + 5}{\sqrt{2^2 + 1^2}} \right| = \sqrt{8^2 + 6^2 - c}$$
$$\Rightarrow \left| \frac{-5}{\sqrt{5}} \right| = \sqrt{100 - c} \Rightarrow c = 95$$

45. Let, $x^2 + y^2 + 2gx + 2fy + c = 0$ be the required circle.

This circle passes through (1, 0)

... 1 + 2g + c = 0i.e. 2g + c = -1...(i) Also, this circle is orthagonal to the circle $x^2 + y^2 - 2x + 4y + 1 = 0$ and $x^2 + y^2 + 6x - 2y + 1 = 0$ 2g + 4f + c = -1...(ii), and *.*.. 6g - f - c = 1...(iii) Solving, (i), (ii) and (iii), we get g = f = 0 and c = -1Centre = (-g, -f) = (0, 0)*.*..

Chapter 07: Circle and Conics

46.
$$x^{2} + y^{2} - 4x - 6y - 12 = 0$$

 $C_{1} = (2, 3), r = \sqrt{2^{2} + 3^{2} + 12} = 5$
 $x^{2} + y^{2} + 6x + 18y + 26 = 0$
 $C_{2} = (-3, -9), r = \sqrt{9 + 81 - 26} = \sqrt{64} = 8$
 $l(C_{1}C_{2}) = r_{1} + r_{2}$

: The circles touch externally at a single point

 \therefore Number of common tangents is 3.

47.

 \therefore SP² = PM²

$$\Rightarrow (x-3)^2 + y^2 = \left|\frac{x+3}{\sqrt{1}}\right|^2$$
$$\Rightarrow x^2 + 9 - 6x + y^2 = x^2 + 9 + 6x$$
$$\Rightarrow y^2 = 12x$$

48.
$$\sqrt{(x-1)^2 + (y+1)^2} = \left| \frac{x_1 + y_1 + 3}{\sqrt{1+1}} \right|$$

 $x^2 + y^2 - 10x - 2y - 2xy - 5 = 0$

49. Equation of parabola having vertex (p, q) and focus (p, b + q) is given by; $(x - p)^2 = 4b(y - q)$ Given, vertex A = (1, 1) and focus S = (1, -1)

:. p = 1, q = 1, b = -2

- ... Equation of parabola is; $(x-1)^2 = 4(-2)(y-1)$ i.e. $x^2 - 2x + 8y - 7 = 0$ Only $\left(3, \frac{1}{2}\right)$ satisfies the above equation of parabola.
- 50. a = 4, vertex = (0, 0), focus = (0, -4)
- 51. Given, equation is $x^2 = -8ay$ Here, A = 2a Focus of parabola (0, - A) i.e., (0, -2a) Directrix y = A i.e., y = 2a

52.
$$y^2 - 4y - x + 3 = 0$$

 $\Rightarrow y^2 - 4y + 4 - x + 3 - 4 = 0$
 $\Rightarrow (y - 2)^2 - (x + 1) = 0$
 $\Rightarrow (y - 2)^2 = (x + 1)$

Comparing with $Y^2 = 4aX$, we have $a = \frac{1}{4}$, Y = y - 2, X = x + 1Focus of the parabola is Y = 0, X = a $\Rightarrow y - 2 = 0$, $x + 1 = \frac{1}{4} \Rightarrow y = 2$, $x = \frac{-3}{4}$

$$\therefore \quad \text{focus} = \left(\frac{-3}{4}, 2\right)$$

53. $(y+1)^2 = -8(x+2)$ Comparing this equation with $Y^2 = -4aX$, we get a = 2, X = x + 2 and Y = y + 1Focus of the parabola is, X = -a, Y = 0 $\Rightarrow x + 2 = -2, y + 1 = 0 \Rightarrow x = -4, y = -1$ ∴ focus = (-4, -1)

- 54. Parabola is $y^2 = -4ax$ (left handed parabola).
- \therefore its focus is (-a, 0).
- \therefore option (B) is false.
- 56. Since, $(a, -2a) \equiv (2, -8)$ \therefore another end $(a, 2a) \equiv (2, 8)$
- 57. Given $y^2 = 5x$ here $(x_1, y_1) = (a, 2a)$ and $(x_2, y_2) = (a, -2a)$

-25

$$\therefore \quad x_1 x_2 = a^2 = \left(\frac{16}{16}\right)$$

$$\therefore a = \frac{1}{4}$$

$$y_1 y_2 = -4a^2 = \frac{-2b}{4}$$

 $\therefore \quad 4 x_1 x_2 + y_1 y_2 = 0$

58.
$$x^{2} = 12y$$

$$\Rightarrow 4a = 12$$

$$\Rightarrow a = 3$$

$$X' \qquad \bigcirc \qquad Y$$

$$X' \qquad \bigcirc \qquad Y$$

$$X' \qquad \bigcirc \qquad Y'$$

Area of triangle = $\frac{1}{2}$ (base) (height)

$$= \frac{1}{2} \times AB \times OS = \frac{1}{2} \times 4a \times a$$

$$= \frac{1}{2}(12)(3) = 18$$
 sq. units

97

- 59. Equation of parabola is $y^2 = 12 x$ \therefore a = 3
- Given y = 6
- $\therefore \quad \text{substituting } y = 6 \text{ in } y^2 = 12x, \text{ we get} \\ 36 = 12 x \\ \Rightarrow x = 3 \\ \text{Now, focal distance} = |x + a| = |3 + 3| = 6$
- 60. Given, y = 3xSubstituting y = 3x in $y^2 = 18x$, we get $(3x)^2 = 18x$ $\Rightarrow 9x^2 = 18x$ $\Rightarrow x = 2$ and y = 6
- 61. Vertex = (0, 4), focus = (0, 2) \Rightarrow a = 2 Hence, equation of parabola is $(x-0)^2 = -4 \times 2(y-4)$ i.e., $x^2 + 8y = 32$
- 62. Given, vertex of parabola (h, k) = (1,1) and its focus (a + h, k) = (3, 1) or a + h = 3 or a = 2. The *y*-coordinates of vertex and focus are same, therefore axis of parabola is parallel to X-axis.Thus, equation of the parabola is $(y - k)^2 = 4a(x - h)$ or $(y - 1)^2 = 4 \times 2(x - 1)$ or $(y - 1)^2 = 8(x - 1)$
- 63. Directrix = x + 5 = 0Focus is (-3, 0) $\Rightarrow 2a = (5 - 3) = 2$ $\Rightarrow a = 1$ Vertex is $\left(\frac{-3 + (-5)}{2}, 0\right) = (-4, 0)$ Therefore, equation is $(y - 0)^2 = 4(x + 4)$ i.e., $y^2 = 4(x + 4)$
- 64. Let P(x, y) be any point on the parabola. \therefore SP² = PM²

$$\Rightarrow (x-5)^{2} + (y-3)^{2} = \left|\frac{3x-4y+1}{\sqrt{9+16}}\right|^{2}$$

$$\Rightarrow 25(x^{2}+25-10x+y^{2}+9-6y)$$

$$= 9x^{2}+16y^{2}+1-24xy+6x-8y$$

$$\Rightarrow 16x^{2}+9y^{2}-256x-142y+24xy+849=0$$

$$\Rightarrow (4x+3y)^{2}-256x-142y+849=0$$

65. Equation will be of the form $y^2 = 4A(x - a)$, where A = (a' - a) or $y^2 = 4(a' - a)(x - a)$.

- Equation of parabola 66. $y^2 = 8x$ *.*.. a = 2 $P(2t^2, 4t) A(1, 0)$ Mid point = $(x, y) = \left(\frac{2t^2 + 1}{2}, \frac{4t + 0}{2}\right)$ $\Rightarrow \frac{2x-1}{2} = t^2$ and $\frac{y^2}{4} = t^2$ $\Rightarrow \frac{y^2}{4} = \frac{2x-1}{2} \Rightarrow y^2 = 4\left(x-\frac{1}{2}\right)$ 67. Eccentricity of parabola is always 1 i.e., e = 1. 68. Since, vertex is the midpoint of focus and directrix. vertex = $\left(\frac{0+2}{2}, \frac{0+0}{2}\right) = (1, 0)$ *.*.. 69. $v^2 - 4v - x + 3 = 0$ $\Rightarrow y^2 - 4y + 4 - x + 3 - 4 = 0$ $\Rightarrow (y-2)^2 - (x+1) = 0 \Rightarrow (y-2)^2 = (x+1)$ Comparing with $(y - k)^2 = 4a (x - h)$, we get h = -1, k = 2vertex = (-1, 2)*.*.. 70. $x^2 + 4x + 2v - 7 = 0$ $\Rightarrow x^2 + 4x + 4 = -2y + 7 + 4$ $\Rightarrow (x+2)^2 = -2v+11$ $\Rightarrow (x+2)^2 = -2\left(y - \frac{11}{2}\right)$ Hence, vertex is $\left(-2,\frac{11}{2}\right)$
- 71. The given equation of parabola is $y = 2x^2 + x$ $\Rightarrow x^2 + \frac{x}{2} = \frac{y}{2}$ $\Rightarrow \left(x + \frac{1}{4}\right)^2 = \frac{y}{2} + \frac{1}{16} \Rightarrow \left(x + \frac{1}{4}\right)^2 = \frac{1}{2}\left(y + \frac{1}{8}\right)$ Let $X^2 = \frac{1}{2}Y$ (i) Here $A = \frac{1}{8}$, focus of (i) is $\left(0, \frac{1}{8}\right)$ i.e., X = 0, $Y = \frac{1}{8}$ $\Rightarrow x + \frac{1}{4} = 0$, $y + \frac{1}{8} = \frac{1}{8} \Rightarrow x = -\frac{1}{4}$, y = 0∴ focus of given parabola is $\left(-\frac{1}{4}, 0\right)$.

72. Given equation of conic $x^2 - 6x + 4y + 1 = 0$ $\Rightarrow x^2 - 6x + 9 + 4y + 1 - 9 = 0$ $\Rightarrow (x-3)^2 + 4(y-2) = 0$ $\Rightarrow (x-3)^2 = -4(y-2)$ Comparing with $X^2 = -4aY$, we get a = 1, X = x - 3, Y = y - 2Focus of the parabola is X = 0, Y = -a $\Rightarrow x - 3 = 0, y - 2 = -1 \Rightarrow x = 3, y = 1$... Focus = (3, 1)

	Chapter 07: Circle and Conics
74.	Given equation of parabola $x^{2} - 2x + 3y - 2 = 0$ $\Rightarrow x^{2} - 2x + 1 = -3y + 2 + 1$ $\Rightarrow (x - 1)^{2} = -3(y - 1)$
<i>.</i> .	vertex = (h, k) = (1, 1), focus = (h, k + b) = $(1, \frac{1}{4})$
	distance between focus and vertex = $\sqrt{0 + \left(1 - \frac{1}{4}\right)^2} = \sqrt{\left(\frac{3}{4}\right)^2}$ = $\frac{3}{4}$
75.	$x^{2} + 4x + 2y = 0$ $\Rightarrow x^{2} + 4x + 4 = -2y + 4$ $\Rightarrow (x + 2)^{2} = -2(y - 2)$
	Equation of directrix is $y - 2 = -\frac{1}{2}$ $\Rightarrow y = \frac{3}{2}$ $\Rightarrow 2y = 3$
76.	Given, equation of parabola is $x^2 + 8y - 2x = 7$ $\Rightarrow x^2 - 2x + 8y - 7 = 0$ $\Rightarrow x^2 - 2x + 1 + 8y - 7 - 1 = 0$ $\Rightarrow (x - 1)^2 + 8y = 8$ $\Rightarrow (x - 1)^2 = -8(y - 1)$ $\Rightarrow (x - 1)^2 = -4 \times 2(y - 1)$ Here, $a = 2$
÷	Equation of directrix is $y - 1 = 2$ i.e., $y = 3$
77.	y2 + 6y - 2x = -5 ⇒ y ² + 6y + 9 = 2x - 5 + 9 ⇒ (y + 3) ² = 2(x + 2)
<i>.</i>	vertex = $(-2, -3)$ Here, a = $\frac{1}{2}$
	Equation of directix is $x + 2 = -\frac{1}{2}$
	$\Rightarrow 2x + 5 = 0$
78.	Given, $x^2 = 4y$ (i) $y^2 = 4x$ (ii) $\Rightarrow \frac{x^4}{16} = 4x$ [From (i) and (ii)] $\Rightarrow x^4 = 64x$ $\Rightarrow x = 0, 4$ Substituting the values of x in (ii), we get
.:.	y = 0, 4 Other point is (4, 4).

79.
$$x^2 = 8y$$

 $\Rightarrow a = 4$
By internal division formula
 $P(x, y) = \left(t, \frac{t^2}{2}\right)$
 $\therefore x = t, y = \frac{t^2}{2}$
 $\Rightarrow x^2 = 2y$
80. $y^2 = -16x$
 $\Rightarrow a = -4$
 $t = \frac{1}{2}$... (given)
 $\therefore x = at^2 = (-4) \times \left(\frac{1}{2}\right)^2$
 $\Rightarrow x = -1$
 $y = 2at = 2 \times (-4) \times \left(\frac{1}{2}\right)$
 $\Rightarrow y = -4$

- \therefore The cartesian co-ordinates are (-1, -4).
- 81. Equation of the tangent at P(16, 16) is x 2y + 16 = 0Equation of the normal at P(16, 16) is 2x + y - 48 = 0Tangent and normal intersect the axis of parabola at A(-16, 0) and B(24, 0) respectively. AB is the diameter of the circle.

Centre of the circle is (4, 0).

82. Given, $y = \pm x$ (i) $y^2 = 8x$ (ii) Solving (i) and (ii),

the point of intersection are P(8, 8) and Q(8, -8)

83. Given parabolas are $y^2 = 4ax$ (i) $x^2 = 4ay$ (ii) Putting the value of y from (ii) in (i), we get $\frac{x^4}{16a^2} = 4ax$ $\Rightarrow x(x^3 - 64a^3) = 0$ $\Rightarrow x = 0, 4a$ From (ii), y = 0, 4aLet $A \equiv (0, 0), B \equiv (4a, 4a)$ Since, the given line 2bx + 3cy + 4d = 0 passes through A and B.

$$\therefore \quad d = 0 \text{ and } 8ab + 12ac = 0$$

$$\Rightarrow 2b + 3c = 0 \qquad \dots [\because a \neq 0]$$

$$\therefore \quad d^2 + (2b + 3c)^2 = 0$$

...

84.
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

Here $a^2 = 36, b^2 = 16$
 $b^2 = a^2 (1 - e^2)$
 $\Rightarrow 16 = 36 (1 - e^2)$
 $\Rightarrow e = \frac{\sqrt{5}}{3} = \frac{2\sqrt{5}}{6}$

85.
$$4x^2 + y^2 - 8x + 4y - 8 = 0$$

⇒ $4(x^2 - 2x) + y^2 + 4y = 8$
⇒ $4(x^2 - 2x + 1) + y^2 + 4y + 4 = 16$
⇒ $4(x - 1)^2 + (y + 2)^2 = 16$
⇒ $\frac{(x - 1)^2}{4} + \frac{(y + 2)^2}{16} = 1$
which is an ellipse with $a^2 = 4$ and b^2
∴ $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{4}{16}} = \sqrt{\frac{12}{16}}$

= 16

$$e = \frac{\sqrt{3}}{2}$$

...

Chapter 07: Circle and Conics

86.
$$x^{2} + 2y^{2} - 2x + 3y + 2 = 0$$

 $\therefore \quad (x^{2} - 2x + 1) + 2\left(y^{2} + \frac{3}{2}y + \frac{9}{16}\right) = \frac{1}{8}$
 $\therefore \quad (x - 1)^{2} + 2\left(y + \frac{3}{4}\right)^{2} = \frac{1}{8}$
 $\therefore \quad \frac{(x - 1)^{2}}{\frac{1}{8}} + \frac{\left(y + \frac{3}{4}\right)^{2}}{\frac{1}{16}} = 1$
 $x^{2} - x^{2}$

 \therefore Comparing this with $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$, we get

$$a^{2} = \frac{1}{8}, b^{2} = \frac{1}{16}$$

∴ $e = \sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 - \frac{1}{\frac{16}{16}}} = 1 - \frac{8}{16}$
∴ $e = \frac{1}{\sqrt{2}}$

- 87. Here, given that 2b = 10, 2a = 8 $\Rightarrow b = 5$, a = 4Hence, the required equation is $\frac{x^2}{16} + \frac{y^2}{25} = 1$
- 88. Given, centre (0,0), focus (0,3), b = 5 Focus (0,3) \Rightarrow be = 3 \Rightarrow e = $\frac{3}{5}$ Also, a = b $\sqrt{1-e^2}$ = $5\sqrt{1-\frac{9}{25}}$ = 4

Hence, the required equation is $\frac{x^2}{16} + \frac{y^2}{25} = 1$

- 89. Given, foci = $(\pm 2, 0) = (\pm ae, 0)$ $\Rightarrow ae = 2$ and $e = \frac{1}{2}$
- $\therefore \quad a = 4$ Now, $b^2 = a^2(1 - e^2)$ $\Rightarrow b^2 = 16\left(1 - \frac{1}{4}\right)$ $\Rightarrow b^2 = 12$ Hence, equation of ellipse is $\frac{x^2}{16} + \frac{y^2}{12} = 1$

 $\Rightarrow 3x^2 + 4y^2 = 48$

90. We have,
$$ae = \pm \sqrt{5}$$

 $\Rightarrow a = \pm \sqrt{5} \left(\frac{3}{\sqrt{5}}\right) \qquad \dots \left[\because e = \frac{\sqrt{5}}{3}\right]$
 $\Rightarrow a = \pm 3$
 $\Rightarrow a^2 = 9$
Now, $b^2 = a^2(1 - e^2) = 9\left(1 - \frac{5}{9}\right) = 4$
Hence, equation of ellipse is $\frac{x^2}{9} + \frac{y^2}{4} = 1$
 $\Rightarrow 4x^2 + 9y^2 = 36$
91. $b^2 = a^2(1 - e^2) = a^2\left(1 - \frac{2}{5}\right) = \frac{3a^2}{5}$
Let the equation of ellipse be
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 $\Rightarrow \frac{9}{a^2} + \frac{5}{3a^2} = 1$
 $\Rightarrow a^2 = \frac{32}{5}$
 \therefore the required equation of ellipse is
 $3x^2 + 5y^2 - 32 = 0$
92. Since point (-3, 1) satisfies equations in options (C) and (D) writing them in standard form, we have,
For option (C):
 $\frac{x^2}{32} + \frac{y^2}{32} = 1$, here $a^2 > b^2$
For option (D):
 $\frac{x^2}{48} + \frac{y^2}{16} = 1$, here, $a^2 < b^2$
Since, the ellipse has its major axis along Y-
axis,
 $\therefore a^2 < b^2$

- \therefore Option (D) is correct
- 93. Since, directrix is parallel to Y-axis, hence axes of the ellipse are parallel to X-axis. Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a > b)$ Now, $e^2 = 1 - \frac{b^2}{a^2}$

- $\Rightarrow \frac{b^2}{a^2} = 1 e^2 = 1 \frac{1}{4} \Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$ Also, one of the directrices is x = 4 $\Rightarrow \frac{a}{e} = 4 \Rightarrow a = 4e = 4 \times \frac{1}{2} = 2;$ $b^2 = \frac{3}{4}a^2 = \frac{3}{4} \times 4 = 3$
- $\therefore \quad \text{Required equation of ellipse is } \frac{x^2}{4} + \frac{y^2}{3} = 1$ $\Rightarrow 3x^2 + 4y^2 = 12$
- 95. Sum of focal distances of a point in an ellipse is always equal to length of major axis of that ellipse.
- 96. Equation of the curve is $\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1$ Here, a = 5, b = 4 \therefore PF₁ + PF₂ = 2a = 2 × 5 = 10
- 97. The equation of the ellipse is $16x^{2} + 25y^{2} = 400 \implies \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1$ Here, $a^{2} = 25$, $b^{2} = 16$ $e = \sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 - \frac{16}{25}} \implies e = \frac{3}{5}$ Hence, the foci are $(\pm ae, 0) = (\pm 3, 0)$
- 98. Since, $\angle FBF' = \frac{\pi}{2}$ (Given) $\therefore \ \angle FBC = \angle F'BC = \frac{\pi}{4}$ Now, CB = CF $\Rightarrow b = ae \Rightarrow b^2 = a^2e^2$ $\Rightarrow a^2(1 - e^2) = a^2e^2 \Rightarrow 1 - e^2 = e^2$ $\Rightarrow 2e^2 = 1 \Rightarrow e = \frac{1}{\sqrt{2}}$

99.

S = (ae, 0), S' = (-ae, 0) and b = ae Now, $a^2 e^2 = a^2 (1 - e^2)$ $\Rightarrow e = \frac{1}{\sqrt{2}}$ 100. Since, Δ SBS' is an isosceles right angled triangle,

- 101. Distance between the foci = 2ae = 16 and $e = \frac{1}{2}$
- ... Length of the major axis of the ellipse = $2a = \frac{2ae}{e} = \frac{16}{\frac{1}{2}} = 32$
- 102. According to the given condition,

$$\sqrt{1 - \frac{25}{169}} = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\Rightarrow \frac{144}{169} = 1 - \frac{b^2}{a^2}$$

$$\Rightarrow \frac{b^2}{a^2} = \frac{25}{169}$$

$$\Rightarrow \frac{b}{a} = \frac{5}{13} \qquad \dots [\because a > 0, b > 0]$$

$$\Rightarrow \frac{a}{b} = \frac{13}{5}$$
103. $5x^2 + 9y^2 = 45$

$$\Rightarrow \frac{x^2}{9} + \frac{y^2}{5} = 1$$

- $\therefore \quad \text{Length of latus rectum} = \frac{2b^2}{a} = \frac{2 \times 5}{3} = \frac{10}{3}$
- 104. Given, ellipse is $\frac{x^2}{\left(\frac{1}{3}\right)^2} + \frac{y^2}{\left(\frac{1}{2}\right)^2} = 1$

Here, b > a

$$\therefore \quad \text{Latus rectum} = \frac{2a^2}{b} = \frac{2 \times \frac{1}{9}}{\frac{1}{2}} = \frac{4}{9}$$

105. Latus rectum = $\frac{1}{3}$ (major axis) $\Rightarrow \frac{2b^2}{a} = \frac{2a}{3}$ $\Rightarrow a^2 = 3b^2$ $\Rightarrow a^2 = 3a^2(1 - e^2)$ $\Rightarrow e = \sqrt{\frac{2}{3}}$ 106. Given, $\frac{2b^2}{a} = b$ $\Rightarrow \frac{b}{a} = \frac{1}{2}$ $\Rightarrow \frac{b^2}{a^2} = \frac{1}{4}$ Hence, $e = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{3}}{2}$ 107. $x^2 = 9\cos^2\theta$ $y^2 = 16\sin^2\theta$

 $y^{2} = 16\sin^{2}\theta$ $\Rightarrow \frac{x^{2}}{9} + \frac{y^{2}}{16} = 1$ ∴ $e = \frac{\sqrt{7}}{4}$

Distance between foci = $2be = 2\sqrt{7}$

108. Let (x, y) be any point on ellipse. Then, by focus-directrix property of ellipse, $\sqrt{(x+1)^2 + (y-1)^2} = \frac{1}{2} \left| \frac{x-y+3}{\sqrt{1+1}} \right|$ ∴ $8(x^2 + 2x + 1 + y^2 - 2y + 1) = x^2 + y^2 + 9$ -2xy - 6y + 6x∴ $7x^2 + 2xy + 7y^2 + 10x - 10y + 7 = 0$ 109. solving x + y - 3 = 0 x - y + 1 = 0, we get (x, y) = (1, 2)110. Here, $a^2 = 9$, $b^2 = 25$ Since, b > a∴ $e = \sqrt{\frac{b^2 - a^2}{b^2}} = \sqrt{\frac{25 - 9}{25}} = \frac{4}{5}$ 111. $\frac{(x-1)^2}{2} + \left(y + \frac{3}{4}\right)^2 = \frac{1}{16}$ $\Rightarrow \frac{(x-1)^2}{2\left(\frac{1}{16}\right)} + \frac{\left(y + \frac{3}{4}\right)^2}{\left(\frac{1}{16}\right)} = 1$

$$\Rightarrow \frac{(x-1)^2}{\left(\frac{1}{8}\right)^2} + \frac{\left(\frac{y+\frac{3}{4}}{16}\right)^2}{\left(\frac{1}{16}\right)} = 1$$

$$\therefore \quad a^2 = \frac{1}{8}, b^2 = \frac{1}{16}$$

$$b^2 = a^2 (1-e^2)$$

$$\Rightarrow e^2 = 1 - \frac{1}{2}$$

$$\Rightarrow e^2 = 1 - \frac{1}{2}$$

$$\Rightarrow e^2 = \frac{1}{\sqrt{2}}$$

112. $4x^2 + y^2 - 8x + 4y - 8 = 0$

$$\Rightarrow 4(x^2 - 2x) + y^2 + 4y = 8$$

$$\Rightarrow 4(x^2 - 2x + 1) + y^2 + 4y + 4 = 16$$

$$\Rightarrow 4(x^2 - 1)^2 + (y + 2)^2 = 16$$

$$\Rightarrow \frac{(x-1)^2}{4} + \frac{(y+2)^2}{16} = 1$$

Comparing with $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, we get

$$h = 1, k = -2$$

$$\therefore \quad \text{centre of the ellipse = (1, -2)}$$

113. Given equation of ellipse is

$$25x^2 + 9y^2 - 150x - 90y + 225 = 0$$

$$\Rightarrow 25(x-3)^2 + 9(y-5)^2 = 225$$

$$\Rightarrow \frac{(x-3)^2}{9} + \frac{(y-5)^2}{25} = 1$$

Since, $b > a$

$$\therefore \quad e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

114. $x^2 + 2y^2 - 2x + 3y + 2 = 0$

$$\Rightarrow (x^2 - 2x + 1) + 2\left(y^2 + \frac{3}{2}y + \frac{9}{16}\right)$$

$$= -2 + 1 + \frac{9}{8}$$

$$\Rightarrow (x-1)^2 + 2\left(y + \frac{3}{4}\right)^2 = \frac{1}{8}$$

$$\Rightarrow \frac{(x-1)^2}{\frac{1}{8}} + \frac{\left(y + \frac{3}{4}\right)^2}{\frac{1}{16}} = 1,$$

which is an ellipse with $a^2 = \frac{1}{8}$ and $b^2 = \frac{1}{16}$

103

MHT-CET Triumph Maths (Hints) Also, $b^2 = a^2(1-e^2)$ $\Rightarrow \frac{1}{16} = \frac{1}{8}(1 - e^2)$ $\Rightarrow e^2 = 1 - \frac{1}{2}$ $\Rightarrow e = \frac{1}{\sqrt{2}}$ 115. $25x^2 + 4y^2 + 100x - 4y + 100 = 0$ $\Rightarrow 25(x^2 + 4x) + 4(y^2 - y) = -100$ $\Rightarrow 25(x^2+4x+4)+4\left(y^2-y+\frac{1}{4}\right)$ *.*.. = -100 + 100 + 1 $\Rightarrow 25(x+2)^2 + 4\left(y - \frac{1}{2}\right)^2 = 1$ $\Rightarrow \frac{(x+2)^2}{\underline{1}} + \frac{\left(y-\underline{1}\right)^2}{\underline{1}} = 1$ Here $a^2 = \frac{1}{25}$, $b^2 = \frac{1}{4}$, h = -2, $k = \frac{1}{25}$ $e = \frac{\sqrt{b^2 - a^2}}{b} = \frac{\sqrt{\frac{1}{4} - \frac{1}{25}}}{\frac{1}{5}} = \frac{\sqrt{21}}{5}$... Foci = $(h, k \pm be)$ *.*.. $= \left(-2, \frac{1}{2} \pm \frac{\sqrt{21}}{10}\right) = \left(-2, \frac{5 \pm \sqrt{21}}{10}\right)$ 116. $5x^2 + v^2 + v = 8$ $\Rightarrow 5x^2 + y^2 + y + \frac{1}{4} = 8 + \frac{1}{4}$ $\Rightarrow 5x^2 + \left(y + \frac{1}{2}\right)^2 = \frac{33}{4}$ *.*.. $\Rightarrow \frac{x^2}{\left(\frac{33}{20}\right)} + \frac{\left(y + \frac{1}{2}\right)^2}{\left(\frac{33}{4}\right)} = 1$ The equation represent an ellipse. 117. Here, 2a = 10m and 2ae = 8m $e = \frac{4}{5}$, a = 5m*.*.. Now, $b^2 = a^2(1 - e^2) = 9$ \Rightarrow b = 3 Thus, required area = $\pi ab = 15\pi$ sq. metre. ÷

118. We have, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\therefore \quad y = \frac{b}{a} \sqrt{a^2 - x^2} \qquad \dots (i)$ Now, area of $\triangle PF_1F_2 = \frac{1}{2}(F_1F_2) \times PL_4$ $=\frac{1}{2}(2ae) \times y$ $= ae. \frac{b}{\sqrt{a^2 - x^2}}$ [From (i)] A = $eb\sqrt{a^2 - x^2}$, which is maximum when x = 0Thus, the maximum value of A is abe. 119. Vertices = $(0, \pm 15)$, foci = $(0, \pm 20)$ \therefore b = 15 and be = 20 \Rightarrow e = $\frac{4}{2}$ $a^2 = b^2 (e^2 - 1)$ $=15^{2}\left(\frac{16}{9}-1\right)$ = 175 \therefore The equation of hyperbola is $\frac{-x^2}{175} + \frac{y^2}{225} = 1$ $\Rightarrow \frac{y^2}{225} - \frac{x^2}{175} = 1$ 120. Given, ae = 2, e = 2*.*. a = 1Now, $b^2 = a^2(e^2 - 1)$ $\Rightarrow b^2 = 1(4-1)$ $\Rightarrow b^2 = 3$ the equation of hyperbola is $\frac{x^2}{1} - \frac{y^2}{2} = 1$ $\Rightarrow 3x^2 - v^2 = 3$ 121. Given: $ae = 8, e = \sqrt{2}$ \therefore a = $4\sqrt{2}$ Now, $b^2 = a^2(e^2 - 1)$ $\Rightarrow b^2 = 32(2-1)$ $\Rightarrow b^2 = 32$ \therefore the equation of hyperbola is $\frac{x^2}{32} - \frac{y^2}{32} = 1$ $x^2 - y^2 = 32$

122. Given, ae = 8 and $\frac{2b^2}{2} = 24$ $\Rightarrow b^2 = 12a$ Now, $b^2 = a^2 (e^2 - 1)$ $\Rightarrow 12a = a^2e^2 - a^2$ $\Rightarrow 12a = 64 - a^2$ $\Rightarrow a^2 + 12 a - 64 = 0$ $\Rightarrow a = 4$ $\dots [:: a > 0]$ $b^2 = 12(4) = 48$ *.*.. the equation of hyperbola is *.*.. $\frac{x^2}{16} - \frac{y^2}{48} = 1 \implies 3x^2 - y^2 = 48$ 123. $16x^2 - 9y^2 - 64x + 18y - 90 = 0$ $16(x^2 - 4x + 4) - 9(y^2 - 2y + 1) = 145$ *.*.. $\frac{(x-2)^2}{\frac{145}{16}} - \frac{(y-1)^2}{\frac{145}{0}} = 1,$ *.*.. Comparing with $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$, we get X = x - 2 , Y = y - 1 $a^2 = \frac{145}{16}$, $b^2 = \frac{145}{9}$ $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{16}{9}} = \frac{\pm 5}{3}$ *:*. Focus of the hyperbola, $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ is, $(X = \pm ae, Y = 0)$ i.e. $x - 2 = \pm \left(\frac{\sqrt{145}}{4} \times \frac{5}{3}\right)$, y - 1 = 0i.e. $x - 2 = \pm \frac{5\sqrt{145}}{12}$, y = 1i.e. $x = \frac{24 \pm 5\sqrt{145}}{12}$, y = 1 $Focus = \left(\frac{24 \pm 5\sqrt{145}}{12}, 1\right)$ *.*.. 124. $\frac{x^2}{36} - \frac{y^2}{k^2} = 1$ is a hyperbola $\Rightarrow k^2 > 0$ Now, $\frac{y^2}{k^2} = \frac{x^2}{36} - 1 = \frac{x^2 - 36}{36}$ $\Rightarrow k^2 = \frac{36y^2}{x^2 - 36} > 0 \Rightarrow x^2 - 36 > 0$ $\Rightarrow x^2 > 36$ This is true only for point (10, 4). (10, 4) lies on given hyperbola.

125. $\frac{x^2}{12-k} + \frac{y^2}{8-k} = 1$ $\Rightarrow \frac{x^2}{12-k} - \frac{y^2}{k-8} = 1$ 12 > k and k > 8 $\Rightarrow 8 < k < 12$ the given equation represents a hyperbola, if

.... 8 < k < 12.

Chapter 07: Circle and Conics

126. Consider, $x^2 - v^2 + 3x - 2y - 43 = 0$ Comparing with $ax^{2} + 2hxv + bv^{2} + 2gx + 2fv + c = 0$, we get $a = 1, h = 0, b = -1, g = \frac{3}{2}, f = -1, c = -43$ $\therefore \qquad \Delta = abc + 2fgh - af^2 - bg^2 - ch^2$

$$\therefore \quad \Delta = 43 + 0 - 1 + \frac{9}{4} - 0 = \frac{177}{4}$$

$$\therefore \quad \Delta \neq 0$$

Also, $ab - h^2 = -1$

$$\therefore$$
 ab - h² < 0

...

 \therefore $x^2 - y^2 + 3x - 2y - 43 = 0$ is the equation of hyperbola.

127. The given equation can be written as $\frac{x^2}{32} - \frac{y^2}{8} = 1$

$$\Rightarrow \frac{x^2}{\left(\frac{4\sqrt{2}}{\sqrt{3}}\right)^2} - \frac{y^2}{(2\sqrt{2})^2} = 1$$
$$\Rightarrow a = \frac{4\sqrt{2}}{\sqrt{3}}$$

Length of transverse axis of a hyperbola *.*.. $=2a = 2 \times \frac{4\sqrt{2}}{\sqrt{3}} = \frac{8\sqrt{2}}{\sqrt{3}}$

128.
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
$$\Rightarrow a^2 = 9, b^2 = 4$$
$$e = \frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{9 + 4}}{3} = \frac{\sqrt{13}}{3}$$
directrix of hyperbola is $x = \frac{a}{e}$
$$\Rightarrow x = \frac{3}{\frac{\sqrt{13}}{3}} \Rightarrow x = \frac{9}{\sqrt{13}}$$

105

129.
$$x^{2} - 4y^{2} = 1$$
$$\Rightarrow \frac{x^{2}}{(1)^{2}} - \frac{y^{2}}{\left(\frac{1}{2}\right)^{2}} = 1$$
$$\Rightarrow a^{2} = 1, b^{2} = \left(\frac{1}{2}\right)^{2}$$
Also, $b^{2} = a^{2}(e^{2} - 1)$
$$\Rightarrow \frac{1}{4} + 1 = e^{2} \Rightarrow e = \frac{\sqrt{5}}{2}$$

- 130. Here a = b, so it is a rectangular hyperbola. Hence, eccentricity $e = \sqrt{2}$
- 131. Let the equation of hyperbola be $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ Since, hyperbola passes through the points $(3, 0), (3\sqrt{2}, 2)$

$$\therefore \quad \frac{9}{a^2} - 0 = 1 \text{ and } \frac{18}{a^2} - \frac{4}{b^2} = 1$$

$$\Rightarrow a^2 = 9 \text{ and } \frac{4}{b^2} = \frac{18}{a^2} - 1$$

$$\Rightarrow a^2 = 9 \text{ and } \frac{4}{b^2} = \frac{18}{9} - 1$$

$$\Rightarrow a^2 = 9 \text{ and } b^2 = 4$$

Now, $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4}{9}} = \frac{\sqrt{13}}{3}$

132. Given length of LR = 8

$$\Rightarrow \frac{2b^2}{a} = 8$$
Also, $2b = \frac{1}{2}2ae$

$$\Rightarrow 4b^2 = a^2e^2 \Rightarrow 4a^2(e^2 - 1) = a^2e^2$$

$$\Rightarrow 4e^2 - e^2 = 4 \Rightarrow e = \frac{2}{\sqrt{3}}$$

133. Eccentricity of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is 1 2

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$
$$\Rightarrow e^2 = \frac{a^2 + b^2}{a^2}$$

 $e_{1} = \sqrt{1 + \frac{a^2}{b^2}}$

Eccentricity of hyperbola $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ is

....(i)

$$\Rightarrow e_1^2 = \frac{b^2 + a^2}{b^2} \qquad \dots (ii)$$

From (i) and (ii), we get
$$\frac{1}{e_1^2} + \frac{1}{e^2} = 1$$

134. The hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$
 \therefore Difference of focal distance = 2a = 8
135. Since, distance between directrices = $\frac{2a}{e}$ and
eccentricity of rectangular hyperbola = $\sqrt{2}$.
 \therefore Distance between directrices = $\frac{2a}{\sqrt{2}}$

...

...

.... (ii)

Given,
$$\frac{2a}{\sqrt{2}} = 10$$

 $\Rightarrow 2a = 10\sqrt{2}$
Now, distance between foci = 2ae
 $= (10\sqrt{2})(\sqrt{2})$
 $= 20$

136. Given,
$$x = a\left(t + \frac{1}{t}\right)$$

 $\Rightarrow \frac{x}{a} = t + \frac{1}{t}$ (i)
and $y = b\left(t - \frac{1}{t}\right)$
 $\Rightarrow \frac{y}{b} = t - \frac{1}{t}$ (ii)

Squaring and subtracting equation (ii) from (i), we get

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = t^2 + 2 + \frac{1}{t^2} - t^2 + 2 - \frac{1}{t^2}$$
$$\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 4$$

which represents a hyperbola.

137.
$$x^2 - 2x - 4y^2 + 16y - 40 = 0$$

 $\Rightarrow (x^2 - 2x) - 4(y^2 - 4y) - 40 = 0$
 $\Rightarrow (x - 1)^2 - 1 - 4[(y - 2)^2 - 4] - 40 = 0$
 $\Rightarrow (x - 1)^2 - 4(y - 2)^2 = 25$
 $\Rightarrow \frac{(x - 1)^2}{25} - \frac{(y - 2)^2}{\frac{25}{4}} = 1$, which is a hyperbola.

106
138. Given equation of lines are $\sqrt{3} x - y - 4\sqrt{3} k = 0$ $\Rightarrow \sqrt{3} x - y = 4\sqrt{3} k \qquad \dots(i)$ and $\sqrt{3} k x + k y - 4\sqrt{3} = 0$ $\Rightarrow k(\sqrt{3} x + y) = 4\sqrt{3}$ $\Rightarrow \sqrt{3} x + y = \frac{4\sqrt{3}}{k} \qquad \dots(i)$

Multiplying equation (i) and (ii), we get

$$(\sqrt{3} x - y) (\sqrt{3} x + y) = 4\sqrt{3} k \times \frac{4\sqrt{3}}{k}$$
$$\Rightarrow 3x^2 - y^2 = 48$$
$$\Rightarrow \frac{x^2}{(48/3)} - \frac{y^2}{48} = 1, \text{ which is a hyperbola}$$

139. Given equation of hyperbola is

$$x^{2} - y^{2} + 1 = 0$$

$$\Rightarrow x^{2} - y^{2} = -1$$

$$\Rightarrow \frac{x^{2}}{1} - \frac{y^{2}}{1} = -1$$

$$\therefore \quad a^{2} = 1, b^{2} = 1$$

$$e = \sqrt{\frac{a^{2} + b^{2}}{b^{2}}} = \sqrt{\frac{1+1}{1}} = \sqrt{2}$$

- ... foci = $(0, \pm be) = (0, \pm \sqrt{2})$, and centre = (0, 0)Centre of circle = (0, 0), radius of circle = $\sqrt{2}$
- $\therefore \quad \text{Equation of circle is } x^2 + y^2 = 2.$

140. Hyperbola is
$$\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$$

 $a = \sqrt{\frac{144}{25}}$,
 $b = \sqrt{\frac{81}{25}}$
∴ $e_1 = \sqrt{1 + \frac{81}{144}} = \sqrt{\frac{225}{144}} = \frac{15}{12} = \frac{5}{4}$
∴ foci = $(ae_1, 0) = (\frac{12}{5} \times \frac{5}{4}, 0) = (3, 0)$
∴ focus of ellipse = $(4e, 0)$
Since, focus of ellipse and hyperbola is same
∴ $(4e, 0) = (3, 0)$
 $\Rightarrow e = \frac{3}{2}$

Hence,
$$b^2 = 16\left(1 - \frac{9}{16}\right) = 7$$

4

141. Eccentricity of ellipse $x^2 + 9y^2 = 9$ i.e. $\frac{x^2}{0} + \frac{y^2}{1} = 1$ $(e_1)^2 = 1 - \frac{1}{\alpha} = \frac{8}{\alpha}$ Now, eccentricity of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $(e_2)^2 = 1 + \frac{b^2}{a^2} = \frac{9}{8}$ $\therefore \qquad \frac{b^2}{a^2} = \frac{9}{8} - 1 \qquad \qquad \therefore \qquad \frac{a^2}{b^2} = \frac{8}{1}$ 142. The equation of the ellipse is $\frac{x^2}{4} + \frac{y^2}{1} = 1$ Let e be its eccentricity. Then, $e = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$ The foci of the ellipse are S $(\sqrt{3}, 0)$ and $S'(-\sqrt{3},0)$. Eccentricity of the hyperbola = $\frac{1}{e} = \frac{2}{\sqrt{2}}$ $b^2 = a^2 \left(\frac{4}{3} - 1\right) = \frac{a^2}{3}$... The hyperbola passes through $S(\sqrt{3},0)$. $\frac{3}{a^2} - 0 = 1 \Longrightarrow a^2 = 3 \Longrightarrow a = \sqrt{3}$ *.*.. the co-ordinates of the foci of hyperbola are *.*.. $(\pm 2, 0).$ 143. x - 3y = 1....(i) and $x^2 - 4y^2 = 1$ (ii) On solving (i) and (ii), we get A(1,0) and B $\left(-\frac{13}{5},-\frac{6}{5}\right)$ These are the points of intersection of the straight line and hyperbola. Length of straight line intercepted by the *.*.. hyperbola $=\sqrt{\left(-\frac{13}{5}-1\right)^2+\left(-\frac{6}{5}\right)^2}$ $=\sqrt{\left(-\frac{18}{5}\right)^2} + \left(-\frac{6}{5}\right)^2 = \sqrt{\frac{324+36}{25}}$ $=\sqrt{\frac{360}{25}}=\frac{6}{5}\sqrt{10}$ units

Chapter 07: Circle and Conics

- 144. Given equation of circle $x^2 + y^2 + 2x - 2y - 2 = 0$ $\Rightarrow (x + 1)^2 + (y - 1)^2 = 4$ ∴ centre = (-1, 1), and radius = 2
 - $\sin 45^\circ = \frac{OM}{OA}$
 - \Rightarrow OM = $\sqrt{2}$
- $\therefore \quad \text{locus of the mid-points of the chord is} \\ (x+1)^2 + (y-1)^2 = (\sqrt{2})^2 \\ \Rightarrow x^2 + 2x + 1 + y^2 2y + 1 = 2 \\ \Rightarrow x^2 + y^2 + 2x 2y = 0$

O(-1, 1)

45

М

145.

$$(1, 2)$$
r
$$x + y + k = 0$$
Since, $x + y + k = 0$ touches the given circle.

$$\therefore \qquad \left| \frac{l(1) + l(2) + k}{\sqrt{1 + 1}} \right| = \text{radius}$$
$$\Rightarrow \frac{3 + k}{\sqrt{2}} = \pm \sqrt{2} \Rightarrow k = -1 \text{ or } k = -5$$

146. The diameter of the circle is perpendicular distance between the parallel lines (tangents) Now, 3x - 4y + 4 = 0(i) 6x - 8y - 7 = 0i.e., $3x - 4y - \frac{7}{2} = 0$ (ii)

Since, equation (i) and (ii) are parallel to each other.

$$\therefore \quad \text{diameter} = \left| \frac{4 - \left(-\frac{7}{2}\right)}{\sqrt{(3)^2 + (-4)^2}} \right| = \frac{15}{2 \times 5} = \frac{3}{2}$$

$$\therefore \quad \text{radius} = \frac{3}{4}$$

147.
$$x^2 + 4x + (y - 3)^2 = 0$$

$$y + \frac{4x}{4x + (y - 3)^2} = 0$$

Let M = (x, y)Since, AM = 2ABAB = 1.... AM B is the mid point of seg AM. ... $\mathbf{B} = \left(\frac{x}{2}, \frac{y+3}{2}\right)$ Ŀ. Since, B lies on circle $x^2 + 4x + (v-3)^2 = 0$ $\left(\frac{x}{2}\right)^2 + 4\left(\frac{x}{2}\right) + \left(\frac{y+3}{2} - 3\right)^2 = 0$ *:*. i.e. $\frac{x^2}{4} + 2x + \frac{y - 6x + 9}{4} = 0$ i.e. $x^2 + y^2 + 8x - 6y + 9 = 0$ is the required locus of M. 148. For given circle, $x^2 + y^2 - 2ax - 2ay + a^2 = 0$ Centre = (a, a)Also, radius = $\sqrt{a^2 + a^2 - a^2} = a$

The above circle touches x = 0.

- 149. Given equation is $x^2 + y^2 6x + 2y = 0$. Centre = (3, -1) Since, diameter is passing through origin and (3, -1).
- \therefore option (A) is the correct answer.
- 150.

...

Given, $x^2 + y^2 - 8x - 8y - 4 = 0$ $(x^2 - 8x + 16) + (y^2 - 8y + 16) = 16 + 16 + 4$ $\Rightarrow (x - 4)^2 + (y - 4)^2 = 36$

Equation of circle touching X – axis $(x - h)^2 + (y - k)^2 = k^2$ Since, both circle touches externally \therefore distance between their centre = $r_1 + r_2$ $\sqrt{(4 - h)^2 + (4 - k)^2} = 6 + k$

 $\Rightarrow (4-h)^2 + (4-k)^2 = (6+k)^2$ $\Rightarrow (4-h)^2 = 36 + 12k + k^2 - 16 + 8k - k^2$ $\Rightarrow (4-h)^2 = 20k + 20$ This is equation of parabola answer is option (D) 151. Equations of tangents to the circle $x^{2} + y^{2} - 2x - 4y - 20 = 0$ with centre A(1, 2), At, B(1, 7) is y = 7At, C(4, -2) is 3x - 4y - 20 = 0These tangents intersect each other at D(16, 7). Area of quadrilateral BACD *.*.. = Area of $\triangle ABD$ + Area of $\triangle ACD$ $=\frac{1}{2}(AB)(BD) + \frac{1}{2}(AC)(CD)$...[$\because \angle ABD = \angle ACD = 90^{\circ}$] $= \frac{1}{2} \times (5) \times (15) + \frac{1}{2} \times (5) \times (15)$ = 75 sq. units 152. AB = $\sqrt{(3+3)^2 + (3-5)^2}$ $=\sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$ Centroid divides orthocentre and circumcentre in the ratio 2 : 1.

A
A
B
B
C
AB: BC = 2: 1
AC =
$$\frac{3}{2}$$
 AB
 $= \frac{3}{2} (2\sqrt{10}) = 3\sqrt{10}$
radius = $\frac{1}{2}$ AC = $\frac{1}{2} (3\sqrt{10}) = 3\sqrt{\frac{5}{2}}$
153. Given, $x + y = 0$ (i)

$$x^{2} + y^{2} + 4y = 0 \qquad \dots (i)$$

Solving (i) and (ii), we get
$$x = 0, y = 0; x = 2, y = -2$$

improved a passes through (0, 0)

... parabola passes through (0, 0) and (2, -2). These points are satisfied by the parabola $y^2 = 2x$.

154. Given equation of ellipse is
$$\frac{x^2}{144} + \frac{y^2}{25} = 1$$

⇒ a = 12, b = 5
Now, e = $\sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{25}{144}} = \frac{\sqrt{119}}{12}$
∴ focus = (ae, 0) = $(\sqrt{119}, 0)$

:. Radius =
$$\sqrt{(0 - \sqrt{119})^2 + (\sqrt{2} - 0)^2} = 11$$

155.
$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

∴ centre of ellipse = (0, 0)
∴ centre of circle = (0, 0)
 $y = 2x + \sqrt{76}$...(i)
 $2y + x = 8$...(ii)
On solving (i) and (ii), we get
 $x = \frac{8 - 2\sqrt{76}}{5}, y = \frac{16 + \sqrt{76}}{5}$
Since (x, y) lies on the circle,
∴ radius = $\sqrt{(x - 0)^2 + (y - 0)^2}$
 $= \sqrt{\left(\frac{8 - 2\sqrt{76}}{5}\right)^2 + \left(\frac{16 + \sqrt{76}}{5}\right)^2}$
 $= 2\sqrt{7}$

Chapter 07: Circle and Conics

- $\therefore \quad \text{Equation of circle is } x^2 + y^2 = \left(2\sqrt{7}\right)^2$ $\Rightarrow x^2 + y^2 = 28$
- 157. Midpoint of (4, 0) and (0, 4) is (2, 2). Distance between (2, 2) and centre (0, 0) $= \sqrt{2^2 + 2^2} = 2\sqrt{2}$
- 158. PQ is a chord of contact. Equation of PQ is

Equation of FQ is

$$\frac{xx_1}{9} - \frac{yy_1}{36} = 1$$

$$\Rightarrow 0 - \frac{3y}{36} = 1 \Rightarrow y = -12$$

$$y$$

$$T (0, 3)$$

$$T (0, 3)$$

$$Q$$

$$y = -12$$
Substituting $y = -12$ in $4x^2 - y^2 = 36$, we get $x = \pm 3\sqrt{5}$
P $(3\sqrt{5}, -12)$, Q $(-3\sqrt{5}, -12)$, T $(0, 3)$
PQ = $6\sqrt{5}$, TR = 15
Area of $\Delta PTQ = \frac{1}{2} \times PQ \times TR$

$$= \frac{1}{2} \times 6\sqrt{5} \times 15$$

$$= 45\sqrt{5}$$
 sq.units

A

Evaluation Test

- 1. Since the triangle is equilateral.
- ... centroid of the triangle is same as the circumcentre

and radius of the circumcircle = $\frac{2}{3}$ (median)

$$=\frac{2}{3}(3a)=2a$$

Hence, the equation of the circumcircle whose centre is at (0, 0) and radius 2a is $x^2 + y^2 = (2a)^2$ $\Rightarrow x^2 + y^2 = 4a^2$

- 2. Let the other end be (t, 3-t).
- $\therefore \text{ the equation of the circle in diameter form is}$ (x-1)(x-t) + (y-1)(y-3+t) = 0 $\Rightarrow x^2 + y^2 - (1+t)x - (4-t)y + 3 = 0$
- \therefore the centre (h, k) is given by

 $h = \frac{1+t}{2}, k = \frac{4-t}{2}$ $\Rightarrow 2h + 2k = 5$ Hence, the locus is 2x + 2y = 5.

3. We have, $x^2 - 8x + 12 = 0$ $\Rightarrow (x - 6) (x - 2) = 0$ $\Rightarrow x = 2, 6$ and $y^2 - 14y + 45 = 0$ $\Rightarrow (y - 5) (y - 9) = 0$ $\Rightarrow y = 5, 9$

Since, centre of circle is inscribed in square. BD is the diameter of circle

:. centre = (h, k) =
$$\left(\frac{2+6}{2}, \frac{5+9}{2}\right)$$
 = (4, 7)

4. Let $A \equiv (x_1, y_1)$ and $B \equiv (x_2, y_2)$. According to the given condition, $x_1 + x_2 = -2a$, $x_1x_2 = -b^2$ $y_1 + y_2 = -2p$, $y_1y_2 = -q^2$ The equation of the circle with A (x_1, y_1) and B (x_2, y_2) as the end points of diameter is $(x - x_1) (x - x_2) + (y - y_1) (y - y_2) = 0$ $\Rightarrow x^2 + y^2 - x(x_1 + x_2) - y(y_1 + y_2) + x_1x_2 + y_1y_2 = 0$ $\Rightarrow x^2 + y^2 + 2ax + 2py - b^2 - q^2 = 0$

Since, the triangle is equilateral, therefore centroid, orthocentre, circumcentre and incentre all coincide.

 \therefore radius of the inscribed circle $=\frac{p}{3} = \frac{a}{2\sqrt{3}} = r$

Let x be the side of the square inscribed, then angle in a semicircle being a right angle, $x^2 + x^2 = (2r)^2 = 4r^2$

$$\Rightarrow 2x^2 = \frac{4a^2}{12} = \frac{a^2}{3}$$

$$\therefore$$
 required area = $x^2 = \frac{a^2}{6}$

- 6. Given, parabola $y = x^2$ (i) Straight line y = 2x - 4(ii) From (i) and (ii), $x^2 - 2x + 4 = 0$ Let $f(x) = x^2 - 2x + 4$
- $\therefore \quad f'(x) = 2x 2$ For least distance, f'(x) = 0 $\Rightarrow 2x - 2 = 0 \Rightarrow x = 1$
- $\therefore \quad y = (1)^2 = 1 \qquad \dots [From (i)]$ So the point least distance from the line is (1, 1).
- 7. For parabola, $y^2 = 8x$ $\Rightarrow 4a = 8 \Rightarrow a = 2$ vertex of $y^2 = 8x$ is $O \equiv (0, 0)$ Now, end points of latus rectum are $L(a, 2a); L'(a, -2a) \Rightarrow L(2, 4); L'(2, -4)$
- ∴ the circle passes through the points (0,0), (2,4) and (2,-4).
 All the three points are satisfied by the option
 - (C).
- \therefore Option (C) is the correct answer.

...

Eccentricity of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $e = \sqrt{\frac{a^2 + b^2}{a^2}}$ 8. Eccentricity of conjugate hyperbola $e' = \sqrt{\frac{a^2 + b^2}{b^2}}$ The given equation of hyperbola can be written as $\frac{x^2}{1} - \frac{y^2}{1} = 1$ Here, $a^2 = 1$, $b^2 = \frac{1}{3}$ $e' = \sqrt{\frac{1 + \frac{1}{3}}{\frac{1}{2}}} = \sqrt{4} = 2$ Ŀ.

is

9. Let AB be the line of intersection of the two circles

Chapter 07: Circle and Conics Now, foci are (ae, 0), (-ae, 0)i.e., $(\sqrt{7}, 0)$, $(-\sqrt{7}, 0)$ Centre of the circle is (0, 3)*.*.. radius of the circle is $=\sqrt{\left(\sqrt{7}-0\right)^2+\left(0-3\right)^2}=\sqrt{7+9}=4$ The equation of the ellipse is $\frac{x^2}{4} + \frac{y^2}{1} = 1$. 11. Let e be its eccentricity. Then, $e = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$ The foci of the ellipse are $S(\sqrt{3},0)$ and $S'(-\sqrt{3},0)$. Eccentricity of the hyperbola = $\frac{1}{e} = \frac{2}{\sqrt{3}}$ $b^2 = a^2 \left(\frac{4}{3} - 1\right) = \frac{a^2}{3} \qquad \dots (i)$... The hyperbola passes through $S(\sqrt{3}, 0)$. $\therefore \qquad \frac{3}{a^2} - 0 = 1 \Rightarrow a^2 = 3$ Putting $a^2 = 3$ in (i), we get $b^2 = 1$ Hence, the equation of the hyperbola is $\frac{x^2}{2} - \frac{y^2}{1} = 1$ i.e., $x^2 - 3y^2 = 3$. 12. Semi minor axis = b = 2Semi major axis = a = 4Equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\Rightarrow \frac{x^2}{16} + \frac{y^2}{4} = 1$ $\Rightarrow x^2 + 4y^2 = 16$ Given equation of circle is 13. $x^2 + y^2 - 4x - 8y - 5 = 0$ Centre = (2, 4) and radius = $\sqrt{4+16+5} = 5$ *.*.. the circle is intersecting the line 3x - 4y = mat two distinct points. length of perpendicular from centre on the line *.*.. < radius $\Rightarrow \left| \frac{6-16-m}{5} \right| < 5$ $\Rightarrow |10 + m| < 25$

 $\Rightarrow -25 < m + 10 < 25 \Rightarrow -35 < m < 15$

14. Let P = (1, 0), Q(-1, 0) and A = (x, y)
Now,
$$\frac{AP}{AQ} = \frac{BP}{BQ} = \frac{CP}{CQ} = \frac{1}{3}$$

 $\Rightarrow \frac{AP}{AQ} = \frac{1}{3}$
 $\Rightarrow 3AP = AQ \Rightarrow 9AP^2 = AQ^2$
 $\Rightarrow 9(x - 1)^2 + 9y^2 = (x + 1)^2 + y^2$
 $\Rightarrow 9x^2 - 18x + 9 + 9y^2 = x^2 + 2x + 1 + y^2$
 $\Rightarrow 8x^2 - 20x + 8y^2 + 8 = 0$
 $\Rightarrow x^2 + y^2 - \frac{5}{2}x + 1 = 0$ (i)

Since, points A, B and C lies on the circle

 $=\left(\frac{5}{4},0\right)$

 \therefore Circumcentre of ABC = Centre of Circle (i)

Given equation of ellipse is

$$x^{2} + 4y^{2} = 4 \Rightarrow \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1 \Rightarrow a = 2, b = 1$$

 $\Rightarrow P(2, 1)$

Let the required equation of ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Since, the ellipse passes through (4, 0).

 \therefore a = 4

Also, it is passes through P(2, 1).

$$\therefore \quad \frac{4}{16} + \frac{1}{b^2} = 1$$
$$\Rightarrow \frac{1}{b^2} = 1 - \frac{1}{4}$$
$$\Rightarrow b^2 = \frac{4}{3}$$

 \therefore equation of ellipse becomes $\frac{x^2}{16} + \frac{3y^2}{4} = 1$

$$\Rightarrow x^2 + 12y^2 = 16$$

$$x - y + 2 = 0$$

$$x - y - 2 = 0$$

The lines x - y - 2 = 0 and x - y + 2 = 0 are parallel, and tangent to the circle.

Distance between them = diameter of the circle

$$=\frac{2-(-2)}{\sqrt{1^2+1^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}$$

Let (h, k) be the centre of the circle. Since, x + y = 0 is the diameter.

$$\therefore$$
 h + k = 0

 $\Rightarrow h = -k \qquad \dots(i)$ Now, perpendicular drawn from (h, k) to the x - y - 2 = 0 is equal to radius.

$$\therefore \quad \left|\frac{\mathbf{h} - \mathbf{k} - 2}{\sqrt{2}}\right| = \sqrt{2}$$

$$\therefore \quad \left|\frac{-\mathbf{k} - \mathbf{k} - 2}{\sqrt{2}}\right| = \sqrt{2} \qquad \dots [\text{From (i)}]$$

$$\Rightarrow 2\mathbf{k} + 2 = 2 \quad \mathbf{k} = 0$$

:.
$$h = 0$$
[From (i)]

$$\therefore$$
 required equation of circle is

$$(x-0)^{2} + (y-0)^{2} = (\sqrt{2})^{2}$$

 $\Rightarrow x^{2} + y^{2} = 2$

17. Centre of the given circle = C(-2, 5) Radius of the circle CN = CT = $\sqrt{g^2 + f^2 - c}$

We join the external point, (4, -3) to the centre of the circle (-2, 5). Then PT is the minimum distance, from external point P to the circle and PN is the maximum distance.

Minimum distance = PT = PC - CT = 10 - 6= 4

Maximum distance = PN = PC + CN = 10 + 6= 16

So, sum of minimum and maximum distance = 16 + 4 = 20

 \therefore Equation of circle is

$$\left(x - \frac{a}{2}\right)^2 + y^2 = a^2$$
(i)
Also, $y^2 = 2ax$ (ii)

Solving (i) and (ii), we get

$$x = \frac{a}{2}, -\frac{3a}{2}$$

Putting these values in $y^2 = 2ax$ we get $y = \pm a$ and x = -3a/2 gives imaginary values of y.

 \therefore Required points are $(a/2, \pm a)$.

21. Let the coordinates of P and Q are $(t_1^2, 2t_1), (t_2^2, 2t_2)$ on parabola $y^2 = 4x$.

Chapter 07: Circle and Conics

Slope of OQ =
$$\frac{2t_2 - 0}{t_2^2 - 0} = \frac{2}{t_2}$$

Slope of $OP \times slope of OQ = -1$

$$\Rightarrow \frac{2}{t_1} \cdot \frac{2}{t_2} = -1 \Rightarrow t_1 t_2 = -4 \qquad \dots (i)$$

Let the coordinates of mid point of PQ are (h, k)

 $\therefore \quad t_1^2 + t_2^2 = 2h \qquad \dots(ii)$ $t_1 + t_2 = k \qquad \dots(iii)$ Now, $(t_1 + t_2)^2 = t_1^2 + t_2^2 + 2t_1t_2$ $\Rightarrow k^2 = 2h + 2(-4) \qquad \dots[From (i), (ii) and (iii)]$ $\Rightarrow y^2 = 2x - 8, \text{ which is required locus.}$ 22. According to the given condition,

$$\sqrt{(x-2)^{2} + y^{2}} + \sqrt{(x+2)^{2} + y^{2}} = 8 \quad \dots(i)$$

Squaring on both sides, we get
 $(x-2)^{2} + y^{2} = 64 + (x+2)^{2} + y^{2}$
 $-2 \times 8 \sqrt{(x+2)^{2} + y^{2}}$
 $\Rightarrow -4x = 64 + 4x - 16 \sqrt{(x+2)^{2} + y^{2}}$
 $\Rightarrow -x - 8 = -2 \sqrt{(x+2)^{2} + y^{2}}$
Put $y = 3$ in (i), we get
 $-x - 8 = -2 \sqrt{(x+2)^{2} + 9}$
Squaring on both sides, we get
 $x^{2} + 64 + 16x = 4(x+2)^{2} + 36$
 $3x^{2} = 12$
 $\Rightarrow x^{2} = 4$
 $\Rightarrow x = \pm 2$

23. Equation of auxiliary circle is $x^2 + y^2 = 9$ (i) Equation of AB i.e., AM is $\frac{x}{3} + \frac{y}{1} = 1$ (ii) Solving (i) and (ii), we get $M\left(-\frac{12}{5}, \frac{9}{5}\right)$

- 24. In the given figure, S is focus whose coordinates are (ae, 0).
- ÷ ΔABS is an equilateral triangle.

$$\Rightarrow ae = \sqrt{3} b \qquad \dots (i)$$

Also, $b^2 = a^2 (1 - e^2)$
$$\Rightarrow \left(\frac{ae}{\sqrt{3}}\right)^2 = a^2 (1 - e^2) \qquad \dots [From (i)]$$

$$\Rightarrow e^2 = 3 - 3e^2$$

$$\Rightarrow e = \frac{\sqrt{3}}{2}$$

The auxiliary circle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 25. is $x^2 + y^2 = a^2$ Area of this circle = πa^2 $\pi a^2 = 2 \times \pi ab$ *.*.. $\Rightarrow a = 2b$ Eccentricity of ellipse = $\sqrt{1 - \frac{b^2}{a^2}}$ $=\sqrt{1-\frac{b^2}{4b^2}}=\frac{\sqrt{3}}{2}$

- 26. Locus of the point P, if A and B are fixed and PA + PB = constant, is an ellipse. We have, PA + PB = 4, which is a constant.
- Locus of the point P is an ellipse. ...
- 27. Locus of the point P, if A and B are fixed and $\angle APB = \frac{\pi}{2}$, is a circle with diameter AB. But, we have $PA^2 + PB^2 = constant$.

Locus of the point P is a circle. *:*..

28.
$$y = 7x - 25$$
(i)
and $x^2 + y^2 = 25$

$$x^{2} + (7x - 25)^{2} = 25$$

$$\Rightarrow x^{2} + 49x^{2} + 625 - 350x = 25$$

$$\Rightarrow 50x^{2} - 350x + 600 = 0$$

$$\Rightarrow x^{2} - 7x + 12 = 0 \Rightarrow x = 3, 4$$

Substituting $x = 3, 4$ in (i), we get
 $y = 21 - 25 \Rightarrow y = -4, y = 28 - 25 \Rightarrow y = 3$
Let $A \equiv (3, -4), B \equiv (4, 3)$
Using distance formula, we get
 $AB = \sqrt{(3-4)^{2} + (-4-3)^{2}}$
 $= \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$

Textbook Chapter No.

Sets, Relations and Functions

Hints

Classical Thinking

- 1. Adding 1 to even integers give odd integers.
- 6. $A \cup B = A$ if every element of B is contained in A i.e $B \subset A$
- 9. There is no real number which is both rational as well as irrational.
- 11. $A B = \{x: x \in A \text{ and } x \notin B\} = A \cap B'$
- 12. $A (B \cup C) = (A B) \cap (A C)$
- 15. $A = \{1, 2, 3, 4, 5, ...\}, B = \{2, 4, 6, 8, ...\}$
- :. $A \cap B = \{2, 4, 6, 8 \dots\}$
- 16. $B = \{2, 4, 6, 8, ...\}, C = \{1, 3, 5, 7, ...\}$ $B \cap C = \phi$
- 17. $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20,\}$ $B = \{4, 8, 12, 16, 20,\}$ $A \cup B = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20,\}.$
- 19. $B \cup C = \{1, 3, 4, 5, 6, 7, 8, 9\}$ $A \cap B = \{5, 7\}, A \cap C = \{4, 8\}$ $A \cap (B \cup C) = \{4, 5, 7, 8\}$ $(A \cap B) \cup (A \cap C) = \{4, 5, 7, 8\}$
- 20. $B \cap C = \{ \}$ $A \cup (B \cap C) = \{2, 4, 5, 7, 8\}$ $(A \cup B) \cap (A \cup C) = \{2, 4, 5, 7, 8\}$
- 21. A = {2, 4, 6, 8, 10,...}, B = {5, 10, 15, 20,...} C = {10, 20, 30, 40,...} and (A ∩ B) = {10, 20, 30,...} ∴ (A ∩ B) ∩ C = {10, 20, 30,...}
- $\dots \quad (\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C} = \{10, 20, 50, \dots, n\}$
- $22. \quad (A \cap B)' = A' \cup B'$
- 23. Since A and B are disjoint,
- $\therefore \quad A \cap B = \phi$
- $\therefore \quad n(A \cap B) = 0$ Now $n(A \cup B) = n(A) + n(B) - n(A \cup B)$ = n(A) + n(B) - 0= n(A) + n(B).
- 24. Since A, B, C are disjoint sets. \therefore n (A \cup B \cup C) = n(A) + n(B) + n(C) = 21
- 25. $n(A) = 25, n(B) = 20 \text{ and } n(A \cup B) = 35$ $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $35 = 25 + 20 - n(A \cap B)$ $\Rightarrow n(A \cap B) = 10$

- 26. n(U) = 100 A =Students who play cricket, n(A) = 60 B = Students who play volleyball, n(B) = 50 $A \cap B =$ Students who play both the games, $n(A \cap B) = 28$
- :. Number of students who play atleast one game = $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 82$
- 27. T = Set of members who like tea, n(T) = 11C = Set of members who like coffee, n(C) = 14∴ $n(T \cup C) = 20$
 - $T \cap C' =$ Set of members who like only tea and not coffee.
- $\therefore \quad n(T \cup C') = n(T) n(T \cap C)$ T \cap C = Set of members who like both tea and coffee
- $\therefore \quad n(T \cap C) = n(T) + n(C) n(T \cup C) = 5$
- \therefore n(T \cap C) = 5
- $\therefore \quad n(T \cup C') = n(T) n(T \cap C) = 11 5 = 6$
- 28. $A \times B = \{(1, 0), (1, 1), (2, 0), (2, 1)\}$
- 30. $n(A \times A \times B) = n(A)$. n(A). $n(B) = 3 \times 3 \times 4 = 36$
- 32. $A = \{2, 3\}, B = \{2, 4\}, C = \{4, 5\}$
- $\therefore \qquad (B \cap C) = \{4\}$
- $\therefore \quad A \times (B \cap C) = \{2, 3\} \times \{4\} = \{(2, 4), (3, 4)\}$
- 33. $A \cap B = \{3\}$ and $A = \{1, 2, 3\}$
- 35. $A B = \{1\}, B C = \{4\}$
- $\therefore \quad (A-B) \times (B-C) = \{(1,4)\}$
- 36. Since (a, 2), (b, 3), (c, 2), (d, 3), (e, 2) are elements of A × B
- \therefore a, b, c, d, e \in A and 2, 3 \in B
- 38. $A = \{a, b\}, B = \{1, 2, 3\}$

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$
$$B \times A = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, c)\}$$

- $\therefore \qquad (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{A}) = \phi$
- 39. $(Y \times A) \cap (Y \times B) = Y \times (A \cap B) = Y \times \phi = \phi$
- 40. Dom (R) = $\{1, 2, 3\}$
- 42. Since $x \not< x$ therefore R is not reflexive. Also x < y does not imply that y < x, So R is not symmetric. Let x Ry and y Rz. Then, x, y and $y < z \Rightarrow x < z$ i.e., x Rz. Hence, R is transitive.

- 44. $f(x) = x^2 3x + 2 \implies f(-1) = (-1)^2 3(-1) + 2$
- 45. $f(x) = x^{2} 3x + 2$ $f(a + h) = (a + h)^{2} - 3(a + h) + 2$ $= a^{2} + (2a - 3)h - 3a + 2 + h^{2}$

46.
$$f(x) = x^2 + \frac{1}{x}$$

 $f\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 + \frac{1}{\left(\frac{1}{x}\right)} = \frac{1}{x^2} + x$

- 47. $f(x) = x^2 6x + 9, \ 0 \le x \le 4$ $f(3) = (3)^2 - 6(3) + 9 = 0$
- 48. $f(x) = x^2 6x + 5, 0 \le x \le 4$ f(8) does not exist (since x = 8 does not belong to the domain of f).
- 49. $f(x) = ax + 6 \Rightarrow f(1) = a(1) + 6 = a + 6$ $f(1) = 11 \Rightarrow 11 = a + 6 \Rightarrow a = 5$
- 50. f(a + 1) f(a 1)= $4(a + 1) - (a + 1)^2 - [4(a - 1) - (a - 1)^2]$ = 4(2 - a)
- 52. $\frac{3x^2 + 7x 1}{3} = x^2 + \frac{7}{3}x \frac{1}{3}$ is a polynomial function.
- 55. As f(b) is not defined, f is not a function.

56.
$$y = 2x - 3 \Rightarrow x = \frac{y+3}{2}$$

 $\Rightarrow f^{-1}(y) = \frac{y+3}{2} \Rightarrow f^{-1}(x) = \frac{x+3}{2}$

- 57. $g[f(x)] = 5[f(x)] 6 = 5x^2 6$
- 58. Since f(x) = 3x 1, $g(x) = x^2 + 1$ ∴ $f[g(x)] = 3[g(x)] - 1 = 3[x^2 + 1] - 1 = 3x^2 + 2$
- 59. $f(f(x)) = f(x^2 + 1) = (x^2 + 1)^2 + 1 = x^4 + 2x^2 + 2$
- 60. (fog) $(x) = f[g(x)] = f(x^3 + 1) = (x^3 + 1)^2$
- 61. $f\left(f\left(\frac{1}{x}\right)\right) = f\left(1 \frac{1}{1/x}\right) = f(1 x) = \frac{x}{x 1}$
- 62. $f(x) = \frac{x-1}{x+1}$ $\Rightarrow f\left(\frac{1}{f(x)}\right) = f\left(\frac{x+1}{x-1}\right) = \frac{\frac{x+1}{x-1}-1}{\frac{x+1}{x-1}+1} = \frac{1}{x}$

63.
$$f[g(x)] = \frac{3[g(x)] + 4}{5[g(x)] - 7} = \frac{3[\frac{7x + 4}{5x - 3}] + 4}{5[\frac{7x + 4}{5x - 3}] - 7} = x$$

65. $-1 \le 5x \le \Rightarrow \frac{-1}{5} \le x \le \frac{1}{5}$
Hence, domain is $\left[\frac{-1}{5}, \frac{1}{5}\right]$.
66. For Dom(f), $5x - 7 > 0 \Rightarrow x > \frac{7}{5}$
Hence, $D_f = \left(\frac{7}{5}, \infty\right)$
67. $f(x) = \frac{(x - 2)(x - 1)}{(x - 2)(x + 3)}$
Hence, domain is $\{x : x \in \mathbb{R}, x \ne 2, x \ne -3\}$.
68. For $x = -3, 3, |x^2 - 9| = 0$
Therefore, $\log|x^2 - 9|$ does not exist at $x = -3, 3$.
Hence, domain of function is $\mathbb{R} - \{-3, 3\}$
69. $\log\left\{\frac{5x - x^2}{6}\right\} \ge 0 \Rightarrow \frac{5x - x^2}{6} \ge 1$
 $\Rightarrow x^2 - 5x + 6 \le 0$ or $(x - 2)(x - 3) \le 0$.
Hence, $2 \le x \le 3$.
(Critical Thinking

- 1. \subset is a relation between two sets and 0 is not a set.
- 2. There is no real number x such that $x^2 + 1 = 0$.
- 3. Q is not a null set because $Q = \{0\}$
- 4. Number of proper subsets of $A = 2^{n} 1$ = $2^{5} - 1$ [:: o(A) = 5] = 32 - 1 = 31
- 5. A B is the set of those elements of A which are not common with B.
- 6. A B = A iff A and B have no element in common.
- 7. A B and B A are always disjoint and hence A - B = B - A only if either of these is ϕ i.e., if $A \subset B$ and $B \subset A$ i.e., if A = B.
- 8. A B, B A and $A \cap B$ are pairwise disjoint and their union is $A \cup B$.
- 11. $A \cup B = \{1, 2, 3, 4, 6\}$ $\Rightarrow (A \cup B)' = \{5, 7, 8\}$

Chapter 01: Sets, Relations and Functions

13.
$$A = \{3, 4\}, B = \{-3, 4\}, A \cap B = \{4\}$$

14.
$$B = \{-3, 4\}, C = \{3, 5\}, B \cup C = \{-3, 3, 4, 5\}$$

- 15. $C = \{1, 3, 5, 7, ...\}, D = \{2, 3, 5, 7, 11, ...\}$ $C \cap D = \{3, 5, 7, 11, ...\}$
- 16. $A = \{2, 4, 6, 8, 10, ...\}, B = \{5, 10, 15, 20, ...\}, C = \{10, 20, 30, 40, ...\}$ and $(B \cup C) = \{5, 10, 15, 20, ...\}$
- :. $A \cap (B \cup C) = \{10, 20, 30, ...\}$
- 17. n(A) = n(X) n(A') = 19 n(B) = n(X) - n(B') = 14 $n(A \cap B) = n(X) - n(A \cap B)' = 5$ ∴ $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 28$
- 18. For any $(a, b) \in A \times B$, $a \in A$ and $b \in B$.
- Now (a, b) will belong to $B \times A$ only if $a \in B$ and $b \in A$ and that can happen only if $A \cap B \neq \phi$. But, in this case $A \cap B = \phi$.
- $\therefore \quad (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{B} \times \mathbf{A}) = \phi$

19.
$$A \cap (A \cup B)' = A \cap (A' \cap B'),$$

 $\dots [\because (A \cup B)' = A' \cap B']$
 $= (A \cap A') \cap B'$ $\dots [by associative law]$
 $= \phi \cap B'$

$$= \phi \cap B', \qquad \dots [\because A \cap A' = \phi]$$
$$= \phi.$$

20. From Venn-Euler's diagram,

$$\therefore \qquad (A-B)\cup (B-A)\cup (A\cap B)=A\ \cup B$$

21. From Venn-Euler's Diagram,

Clearly, $\{(A - B) \cup (B - C) \cup (C - A)\}' = A \cap B \cap C.$

22. $A = \{4, 5\}, B = \{-6, -7\}, C = \{-7, 10\}$ $(B \cap C) = \{-7\} \Rightarrow A \cap (B \cap C) = \phi$

$$\therefore \qquad x = -\frac{5}{3} \text{ or } x = \frac{3}{2}$$

$$\Rightarrow A = \left\{ -\frac{5}{3}, \frac{3}{2} \right\}$$

Similarly, B = $\left\{ 1, \frac{3}{2} \right\}$ and C = $\left\{ -1, \frac{3}{2} \right\}$
A \cap B \cap C = $\left\{ \frac{3}{2} \right\}$

- 24. Let A = set of persons who take tea and B = set of persons who take coffee $n(A \cup B) = 50, n(A) = 35, n(B) = 25$
- $\therefore \quad n (A \cap B) = 10$ Hence, $n (A - B) = n (A) - n (A \cap B)$ = 35 - 10 = 25
- 25. P = Set of children who like pizza B = Set of children who like burger $n(P) = 62, n(B) = 47, n(P \cap B) = 36$ $(P \cap B')$ = Set of children who like pizza but not burger

:.
$$n(P \cap B') = n(P) - n(P \cap B) = 62 - 36 = 26$$

26. A = Set representing no. of consumers using Brand A, n(A) = 15 B = Set representing no. of consumers using Brand B, n(B) = 20 A ∩ B = Set representing no. of consumers using both the brands, n(A ∩ B) = 5 A ∪ B = Set representing no. of consumers using atleast one brand.
∴ n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 30
27. Minimum value of x = 100 - (30+20+25+15)

27. Minimum value of
$$x = 100 - (30+20+25+15)$$

= 100 - 90 = 10.

- 28. U = Universal set of all adults M = Set of all males, F = Set of all females V = Set of all vegetarians Total number of adults = 20 Total number of males = 8
 Total number of females = 20
 8 = 12
- $\therefore \quad \text{Total number of females} = 20 8 = 12$ Total number of vegetarian = 9 Total number of male vegetarian = 5

:..

- \therefore Total number of female vegetarian = 9 5 = 4
 - Total number of female non-vegetarian = 12 - 4 = 8
- 29. C = Set of students who play chess T = Set of students who play table tennis M = Set of students who play carrom

$$\therefore \quad n(X) = 120, n(C) = 46, n(T) = 30, n(M) = 40$$
$$n(C \cap T) = 14, n(T \cap M) = 10, n(C \cap M) = 8,$$
$$n(C \cup T \cup M)' = 30$$

 $\therefore \quad n(C \cup T \cup M) = n(X) - n(C \cup T \cup M)' = 90$

 $(C \cap T \cap M) =$ Set of students who play chess, table tennis and carrom. $n(C \cup T \cup M)$ *.*.. $= n(C) + n(T) + n(M) - n(C \cap T) - n(T \cap M)$ $-n(C \cap M) + n(C \cap T \cap M)$ 90 = 46 + 30 + 40 - 14 - 10 - 8*.*.. + n (C \cap T \cap M) $n(C \cap T \cap M) = 6$ *.*.. Since, $y = e^x$, $y = e^{-x}$ will meet, when $e^x = e^{-x}$ 30. $\Rightarrow e^{2x} = 1$, *.*.. x = 0, y = 1A and B meet on (0, 1)*.*.. *.*.. $A \cap B \neq \phi$ Let A denote the set of Americans, who like 31. cheese and let B denote the set of Americans, who like apples. Let Population of Americans be 100. Then n(A) = 63, n(B) = 76Now, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $= 63 + 76 - n(A \cap B)$ $n(A \cup B) + n(A \cap B) = 139$ \Rightarrow n(A \cap B) = 139 - n(A \cup B) But, $n(A \cup B) \le 100$ $-n(A \cup B) \ge -100$ *.*.. $139 - n(A \cup B) \ge 139 - 100 = 39$ *.*.. $n(A \cap B) \ge 39$ i.e., $39 \le n(A \cap B)$ *.*.. Again, $A \cap B \subseteq A$, $A \cap B \subseteq B$ *.*.. $n(A \cap B) \le n(A) = 63$ and $n(A \cap B) \le n(B) = 76$ $n(A \cap B) \le 63$ *.*.. Then, $39 \le n(A \cap B) \le 63 \implies 39 \le x \le 63$ Since, $8^n - 7n - 1 = (7 + 1)^n - 7n - 1$ 32. $= 7^{n} + {}^{n}C_{1}7^{n-1} + {}^{n}C_{2}7^{n-2} + \dots$ $+ {}^{n}C_{n-1}7 + {}^{n}C_{n} - 7n - 1$ = ${}^{n}C_{2}7^{2} + {}^{n}C_{3}7^{3} + \dots + {}^{n}C_{n}7^{n},$ (${}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1}$ etc.) $= 49[{}^{n}C_{2} + {}^{n}C_{3}(7) + \dots + {}^{n}C_{n}7^{n-2}]$ $8^n - 7n - 1$ is a multiple of 49 for $n \ge 2$ *.*.. For n = 1, $8^n - 7n - 1 = 8 - 7 - 1 = 0$ For n = 2, $8^n - 7n - 1 = 64 - 14 - 1 = 49$ $8^n - 7n - 1$ is a multiple of 49 for $n \in N$. *.*.. X contains elements which are multiples of 49 *.*.. and clearly Y contains all multiples of 49. *.*.. $X \subset Y$ The given set is a cartesian product containing 6 33. elements. Only A \times (B \cup C) contains 6 elements. Here 1, 2, $3 \in A \& 3, 5 \in B$ 34. $A \times B = \{1, 2, 3\} \times \{3, 5\}$ *.*.. *.*.. The remaining elements are : (1, 5), (2, 3), (3, 5)

- 35. Clearly, A is the set of all first elements in ordered pairs in $A \times B$ and B is the set of all second elements in $A \times B$. 36. $(1, 4), (2, 6), (3, 6) \in A \times B$ \Rightarrow {1, 2, 3} \subset A and {4, 6} \subset B A has 3 elements and B has 2 elements. *.*.. 37. Number of relations on the set A = Number of subsets of $(A \times A) = 2^{n^2}$, [:: $n(A \times A) = n^2$]. $n(A \times A) = n(A)$. $n(A) = 3^2 = 9$ 38. So, the total number of subsets of A \times A is 2⁹ and a subset of $A \times A$ is a relation over the set A. 39. Since, $(-1, 0) \in A \times A$ and $(0, 1) \in A \times A$ $(-1, 0) \in A \times A \Longrightarrow -1, 0 \in A$ *.*.. and $(0, 1) \in A \times A \Rightarrow 0, 1 \in A$ *.*.. $\{-1, 0, 1\} \in A$ 41. $R_2 \subseteq A \times B$, so it is a relation from A to B. Number of relations from A to $B = 2^{o(A).o(B)}$ 42. Since, $R = \{(x, y) | x, y \in Z, x^2 + y^2 \le 4\}$ 43. $R = \{(-2, 0), (-1, 0), (-1, 1), (0, -1), (0, 1), (0, -1$ *.*.. (0, 2), (0, -2), (1, 0), (1, 1), (2, 0)Hence, Domain of $R = \{-2, -1, 0, 1, 2\}$. 46. Since R is an equivalence relation on set A, therefore $(a, a) \in R$ for all $a \in A$. Hence, R has at least n ordered pairs. 47. Let $(a, b) \in \mathbb{R}$
- Then, $(a, b) \in \mathbb{R}$ Then, $(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}^{-1}$ $\Rightarrow (b, a) \in \mathbb{R}$ [$\because \mathbb{R} = \mathbb{R}^{-1}$] So, \mathbb{R} is symmetric.
- 48. For any a ∈ N, we find that a|a, therefore R is reflexive but R is not symmetric, because aRb does not imply that bRa.
- 49. The relation is not symmetric, because A ⊆ B does not imply that B ⊂ A. But it is antisymmetric because A ⊂ B and B ⊂ A ⇒ A = B
- 50. The given relation is not reflexive and transitive but it is symmetric, because $x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$.
- 51. R is a relation from {11, 12, 13} to {8, 10, 12} defined by $y = x - 3 \Rightarrow x - y = 3$
- $\therefore \quad R = \{11, 8\}, \{13, 10\}.$ Hence, $R^{-1} = \{(8, 11), (10, 13)\}$
- 52. We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$ $R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3); (5, 4)\}$ Hence, $RoR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$

53. f(x) = f(x + 1) $x^{2}-2x+3 = (x + 1)^{2} - 2(x + 1) + 3$ *.*.. $x^{2} - 2x = x^{2} + 2x + 1 - 2x - 2 \Longrightarrow x = 1/2$ *.*.. $f(x) = ax^2 + bx + 2$ 54. $f(1) = a(1)^2 + b(1) + 2 = a + b + 2$ *.*.. But $f(1) = 3 \Rightarrow 3 = a + b + 2 \Rightarrow a + b = 1$ (i) and $f(4) = a(4)^2 + b(4) + 2 = 16a + 4b + 2$ But $f(4) = 42 \implies 42 = 16a + 4b + 2$ $40 = 16a + 4b \Longrightarrow 4a + b = 10$ *.*..(11) By solving, (i) & (ii) a = 3 and b = -2 $f(x) = x + \frac{1}{r} \implies f(x^3) = x^3 + \frac{1}{r^3}$ 55. $[f(x)]^3 = \left(x + \frac{1}{x}\right)^3 = \left(x^3 + \frac{1}{x^3}\right) + 3\left(x + \frac{1}{x}\right)$ *.*.. $[f(x)]^3 = f(x^3) + 3f(x)$ *.*.. $[f(x)]^3 = f(x^3) + 3f\left(\frac{1}{r}\right) \Longrightarrow \lambda = 3$ *.*.. 56. $a.f(x) + b.f\left(\frac{1}{x}\right) = \frac{1}{x} - 5$ On replacing x by $\frac{1}{r}$, b.f (x) + a.f $\left(\frac{1}{r}\right) = x - 5$ Solving two equations, $f(x) = \frac{1}{a^2 + b^2} \left(\frac{a}{x} - bx\right) - \frac{5}{a+b}$ $f(2) = \frac{3(2b - 3a)}{2(a^2 - b^2)}$ *.*.. 58. As f (a) is not unique, f is not a function. [x] = I (Integers only). 60. Let $f(x) = x^2 + \sin^2 x$ 61. Here, f(-x) = f(x)*.*.. f(x) is an even function. If $f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$, then 62. $f(-x) = \sqrt{1-x+x^2} - \sqrt{1+x+x^2}$ f(-x) = -f(x)*.*.. So, f(x) is an odd function. The general expression for the function 63. satisfying f(x + y) = f(x) f(y) for all $x, y \in R$ is $f(x) = [f(1)]^x = a^x$ for all $x, y \in R$. [:: f(1) = a] $f^{-1}(y) = \{x \in \mathbb{R}: y = f(x)\}$ 64. \Rightarrow f⁻¹(2) = {x \in \mathbb{R}: 2 = f(x)} $= \{x \in \mathbb{R} : x^2 - 3x + 4 = 2\}$

 $= \{x \in \mathbb{R}: x^2 - 3x + 2 = 0\} = \{1, 2\}$

65. $f(f(x)) = \frac{1}{1-f(x)} = \frac{1}{1-\frac{1}{1-x}} = \frac{x-1}{x}$ $\therefore \quad f[f(f(x))] = f\left(\frac{x-1}{x}\right) = \frac{x}{x-x+1} = x$ 66. $f(x) = \frac{x+3}{x-x+1}$

Chapter 01: Sets, Relations and Functions

$$\therefore \quad f(t) = \frac{t+3}{4t-5} = \frac{\left(\frac{3+5x}{4x-1}\right)+3}{4\left(\frac{3+5x}{4x-1}\right)-5} = x$$

67. (gof) (1) = g (f (1)) = g (4) = 8,(gof) (2) = g (f (2)) = g (5) = 7and (gof) (3) = g (f (3)) = g (6) = 9

68.
$$f(x) = \frac{x-1}{x+1} \Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$$
$$\Rightarrow x = \frac{1+f(x)}{x+1}$$

$$\therefore \quad f(\alpha x) = \frac{\alpha x - 1}{\alpha x + 1} = \frac{(\alpha + 1)f(x) + \alpha - 1}{(\alpha - 1)f(x) + \alpha + 1}$$

69. Given,
$$(gof)\left(-\frac{5}{3}\right) - (fog)\left(-\frac{5}{3}\right)$$

= $g\left\{f\left(\frac{-5}{3}\right)\right\} - f\left\{g\left(\frac{-5}{3}\right)\right\}$
= $g(-2) - f\left(\frac{5}{3}\right) = 2 - 1 = 1$

70.
$$f(-1) = f(1) = 1$$

 \therefore function is many-one function.

 \therefore f is neither one-one nor onto.

71.
$$f'(x) = \frac{1}{(1+x)^2} > 0 \ \forall x \in [0,\infty)$$

and range $\in [0,1)$ \Rightarrow function is one-one but not onto.

72.
$$f(x) = \frac{x-2}{x-3}, x \neq 3$$

Let
$$y = f(x) \Rightarrow y = \frac{x-2}{x-3} \Rightarrow x = \frac{2-3y}{1-y}$$

 $\Rightarrow y \neq 1 \Rightarrow$ Range of $f(x)$ is $R - \{1\}$
So, f is onto
For one-one, let $f(x_1) = f(x_2)$
 $\Rightarrow \frac{x_1-2}{x_1-3} = \frac{x_2-2}{x_2-3} \Rightarrow x_1 = x_2$
Hence, f is one-one.

- 73. Let $f(x_1) = f(x_2) \Rightarrow [x_1] = [x_2] \Rightarrow x_1 = x_2$ {For example, if $x_1 = 1.4$, $x_2 = 1.5$, then [1.4] = [1.5] = 1}
- ∴ f is not one-one. Also, f is not onto as its range I (set of integers) is a proper subset of its co-domain R.
- 74. Let $x_1, x_2 \in \mathbb{R}$, then $f(x_1) = \cos x_1$, & $f(x_2) = \cos x_2$, Now $f(x_1) = f(x_2)$ $\Rightarrow \cos x_1 = \cos x_2 \Rightarrow x_1 = 2n\pi \pm x_2$ $\Rightarrow x_1 \neq x_2$,

... it is not one-one. Again the value of f-image of x lies in between -1 to 1 \Rightarrow f[R] = {f(x) : -1 \le f(x) \le 1}} So other numbers of co-domain (besides -1 and 1) is not f-image. f[R] \in R, so it is also not onto. So this mapping is neither one-one nor onto.

75. $x^2 - 6x + 7 = (x - 3)^2 - 2$

Here, minimum value is -2 and maximum ∞ . Hence, range of function is $[-2, \infty)$.

For domain, take $\frac{x}{1+x} \ge 0$ 76. $D_f = (-\infty, -1) \cup [0, \infty)$ *.*.. 77. $1 + x \ge 0$ \Rightarrow $x \ge -1$; $1 - x \ge 0$ $\Rightarrow x \leq 1, x \neq 0$ Hence, domain is $[-1, 1] - \{0\}$. 78. $y = \sin^{-1} \left| \log_3 \left(\frac{x}{3} \right) \right|$ $-1 \le \log_3\left(\frac{x}{3}\right) \le 1$ \therefore $\frac{1}{3} \le \frac{x}{3} \le 3$... $1 \leq x \leq 9$ $x \in [1, 9]$ *.*.. 79. f(x) is defined, if $x^{2}-5x+6 \ge 0$ and $2x + 8 - x^{2} \ge 0$ \Rightarrow (x - 2)(x - 3) \ge 0 and (x - 4)(x + 2) \le 0 $x \in (-\infty, 2] \cup [3, \infty)$ and $x \in [-2, 4]$ *.*.. $x \in [-2, 2] \cup [3, 4]$ *.*.. Domain of $f(x) = R - \{3\}$, 80. and for Range : $x \neq 3 \Rightarrow x < 3$ or x > 3Now, $x < 3 \Rightarrow x - 3 < 0 \Rightarrow |x - 3| = -(x - 3)$ \Rightarrow f(x) = $\frac{-(x-3)}{x-3} = -1$ Similarly, for x > 3, f(x) = 1Range (f) = $\{1, -1\}$. *.*..

Dom(f) = R - $\left\{-\frac{2}{3}\right\}$ 81. For Range(f), let $y = f(x) = \frac{1}{2x+2}$ $3x+2=\frac{1}{y} \Rightarrow x=\frac{1}{3}\left(2-\frac{1}{y}\right)$.:. x is real if $y \neq 0$. Hence, $R_f = R - \{0\}$ f(x) is defined for all $x \in R - \{0\}$. 82. So, dom(f) = $R - \{0\}$ Let $y = \frac{1+x^2}{2}$ $\Rightarrow x = \pm \sqrt{\frac{1}{v-1}}$ For x to be real, $y - 1 \ge 0 \Rightarrow y \in (1, \infty)$ f(x) is defined for all $x \in R$. So, dom(f) = R. 83. Let $y = f(x) \Rightarrow y = \frac{x}{1+x^2}$ $x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y}$ *.*.. For x to be real, $1 - 4y^2 \ge 0$ and $y \ne 0$ $\Rightarrow -\frac{1}{2} \le y \le \frac{1}{2}$ and $y \ne 0$ f(x) is defined for $x^2 + x - 6 \neq 0$, i.e., $x \neq -3$, 2 84. $Dom(f) = R - \{-3, 2\}$ *.*.. Let $y = \frac{x^2 - 3x + 2}{x^2 + x - 6} = \frac{x - 1}{x + 3}$ $\Rightarrow x = \frac{3y+1}{y-1}$ x is real for $y - 1 \neq 0$, i.e., $y \neq 1$ Hence, range(f) = $R - \{1\}$ 85. Here, $f(x) = \sqrt{x^2 + x + 1}$ $\Rightarrow v^2 = x^2 + x + 1$ $\Rightarrow x^2 + x + (1 - y^2) = 0$ $\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1 - y^2)}}{2}$ $\Rightarrow x = \frac{-1 \pm \sqrt{4y^2 - 3}}{2}$ For x real, $4y^2 - 3 \ge 0$ $\therefore \quad y \ge \pm \frac{\sqrt{3}}{2}$ $R_{f} = \left[\frac{\sqrt{3}}{2}, \infty\right]$ *.*:.

...

...

Chapter 01: Sets, Relations and Functions

Competitive Thinking

- $x^2 = 16 \Longrightarrow x = \pm 4$ 4 and $2x = 6 \Rightarrow x = 3$ There is no value of x which satisfies both the above equations. Thus, $A = \phi$.
- $|2x+3| < 7 \implies -7 < 2x+3 < 7$ 5. $\Rightarrow -10 < 2x < 4 \Rightarrow -5 < x < 2 \Rightarrow 0 < x + 5 < 7$
- **Case I:** $0 \le x < 9$ 6. $2\left(3-\sqrt{x}\right)+\sqrt{x}\left(\sqrt{x}-6\right)+6=0$ $\Rightarrow \left(\sqrt{x}\right)^2 - 8\sqrt{x} + 12 = 0$ $\Rightarrow \sqrt{x} = 6.2$ $\Rightarrow x = 36, 4 \Rightarrow x = 4$ Case II: $x \ge 9$ $2\left(\sqrt{x}-3\right) + \sqrt{x}\left(\sqrt{x}-6\right) + 6 = 0$ $\Rightarrow \left(\sqrt{x}\right)^2 - 4\sqrt{x} = 0$ $\Rightarrow \sqrt{x} = 0, 4$ $\Rightarrow x = 0, 16 \Rightarrow x = 16$ \Rightarrow S contains exactly two elements.
- The number of non- empty subsets = $2^n 1$ 7. $= 2^4 - 1$[::: n = 4] = 15
- Power set is the set of all subsets. 8. $n(A) = 5 \implies n(P(A)) = 2^5 = 32$
- $A = \{4, 8, 12, 16, 20, 24, \ldots\}$ 9. $B = \{6, 12, 18, 24, 30, \dots\}$
- *.*.. $A \subset B = \{12, 24, ...\} = \{x : x \text{ is a multiple of } 12\}.$
- Given set is $\{(a, b) : 2a^2 + 3b^2 = 35, a, b \in Z\}$ 10. We can see that, $2(\pm 2)^2 + 3(\pm 3)^2 = 35$ and $2(\pm 4)^2 + 3(\pm 1)^2 = 35$
- (2, 3), (2, -3), (-2, -3), (-2, 3), (4, 1), (4, -1),*.*.. (-4, -1), (-4, 1) are 8 elements of the set.
- n = 8.*.*..
- 11. Let, $S = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}\}$
- A = { $(x, y) : x, y \in S, x \neq y$ } •.•
- $A = \{(a_1, a_1), (a_1, a_2), (a_1, a_3), \dots, (a_1, a_{10}), \dots, (a_{10}, a_{10}), \dots, (a_{10},$ $(a_2, a_1), (a_2, a_2), (a_2, a_3), \dots (a_2, a_{10}),$

 $(a_{10}, a_1), (a_{10}, a_2), (a_{10}, a_3), \dots (a_{10}, a_{10})$

 $x \neq y$, removing groups with same elements ... i.e. $(a_1, a_1), (a_2, a_2) \dots (a_{10}, a_{10})$, we get $n(A) = 9 \times 10 = 90$

- 12.
- n(S) = 10Number of subsets of S which do not contain the element 6 = number of subsets containing the remaining nine elements $=2^9=512$ Since $2^{m} - 2^{n} = 56 = 8 \times 7 = 2^{3} \times 7$ 13. $\Rightarrow 2^n(2^{m-n}-1)=2^3\times 7$ n = 3 and $2^{m-n} = 8 = 2^3$ *.*.. \Rightarrow m - n = 3 \Rightarrow m - 3 = 3 \Rightarrow m = 6 m = 6, n = 3 $O(S) = O\left(\bigcup_{i=1}^{30} A_i\right) = \frac{1}{10}(5 \times 30) = 15$ 14. Since, element in the union S belongs to 10 of Ai's Also, O(S) = O $\left(\bigcup_{i=1}^{n} B_{i}\right) = \frac{3n}{9} = \frac{n}{3}$ $\frac{n}{2} = 15 \Longrightarrow n = 45$ *.*.. $A - (A - B) = A \cap (A \cap B^{c})^{c} = A \cap (A^{c} \cup B)$ 15. $= \phi \cup (A \cap B) = A \cap B$ 16. $A = B \cap C, B = C \cap A$ \Rightarrow A, B are equivalent sets.[:: A and B are interchangeable in both equations] $A \cap X = B \cap X = \phi$ 18. A and X, B and X are disjoint sets *.*.. Also, $A \cup X = B \cup X \Rightarrow A = B$ 19. If $A \subset B$, then $A \cup B = B$ *.*.. $n(A \cup B) = n(B) = 6$ 20. $n[(A \cap B)' \cap A]$ $= n[(A' \cup B') \cap A]$[By DeMorgan's law] = n(A' \cap A) \cup n(B' \cap A)[By distributive law]
- 21. A = {x | x is a root of $x^2 1 = 0$ } $= \{x \mid x \text{ is a root of } (x-1)(x+1) = 0\}$ $\Rightarrow x = \pm 1$ B = {x | x is a root of $x^2 - 2x + 1 = 0$ } $= \{x \mid x \text{ is a root of } (x-1)^2 = 0\}$ $\Rightarrow x = 1$ $\Rightarrow A \cup B = A$

 $= n(A) - n(A \cap B) = 8 - 2 = 6$

22. Since,
$$4^{n} - 3n - 1 = (3 + 1)^{n} - 3n - 1$$

= $3^{n} + {}^{n}C_{1} \cdot 3^{n-1} + {}^{n}C_{2} \cdot 3^{n-2}$
+ ... + ${}^{n}C_{n-1} \cdot 3 + {}^{n}C_{n} - 3n - 1$
= ${}^{n}C_{2}3^{2} + {}^{n}C_{3} \cdot 3^{3} + ... + {}^{n}C_{n} \cdot 3^{3}$
... $[{}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1}, \text{ etc.}]$
= $9[{}^{n}C_{2} = {}^{n}C_{3}(3) + ... + {}^{n}C_{n} \cdot 3^{n-1}]$

- $\therefore \quad 4^2 3n 1 \text{ is a multiple of 9 for } n \ge 2.$ for $n = 1, 4^n - 3n - 1 = 4 - 3 - 1 = 0,$ for $n = 2, 4^n - 3n - 1 = 16 - 6 - 1 = 9,$
- \therefore 4ⁿ-3n-1 is a multiple of 9 for all $n \in N$.
- : X contains elements, which are multiples of 9, and clearly Y contains all multiples of 9.
- $\therefore \qquad X \subseteq Y \text{ i.e. } X \cap Y = X$
- 23. $N_5 \cap N_7 = N_{35}$,

24.

[:: 5 and 7 are relatively prime numbers].

 $\therefore \qquad (B-A) \cap (A \cup B)' = \phi$

25.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 12 + 9 - 4 = 17
Now, $n((A \cup B)^c) = n(U) - n(A \cup B)$
= 20 - 17 = 3

26.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 200 + 300 - 100
= 400

:. $n(A' \cap B') = n(U) - n(A \cup B)$ = 700 - 400 = 300

27.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 3 + 6 - n(A \cap B)
Since, maximum number of elem

Since, maximum number of elements in $A \cap B = 3$

 $\therefore \quad \text{Minimum number of elements in} \\ A \cup B = 9 - 3 = 6$

28.
$$(A \cup B)^{C} \cup (A^{C} \cap B)$$

= $(A^{C} \cap B^{C}) \cup (A^{C} \cap B)$
= $A^{C} \cap (B^{C} \cup B)$
= $A^{C} \cap U = A^{C}$

A B U

29.

Since, $A - B = A - (A \cap B)$ and $B - A = B - (A \cap B)$ Option (D) is the correct answer.

$$30. \quad i. \qquad A \cup B \cup C$$

iii.
$$(A \cap B^c \cap C^c)^c$$

v. $(A \cup B \cup C) \cap (A \cap B^c \cap C^c)^c \cap C^c = B \cap C^c$

= 100 - 28 - 30 + 18 = 6038. n(C) = 224, n(H) = 240, n(B) = 336 $n(H \cap B) = 64, n(B \cap C) = 80$ $n(H \cap C) = 40, n(C \cap H \cap B) = 24$ $n(C^{c} \cap H^{c} \cap B^{c}) = n(C \cup H \cup B)^{c}]$ $= n(U) - n(C \cup H \cup B)$ $= 800 - [n(C) + n(H) + n(B) - n(H \cap C) - n(H \cap B) - n(C \cap B) + n(C \cap H \cap B)]$ = 800 - [224 + 240 + 336 - 64 - 80 - 40 + 24]= 800 - 640 = 160

Chapter 01: Sets, Relations and Functions 39. Given n(N) = 12, n(P) = 16, n(H) = 18, $n(N \cup P \cup H) = 30$ and $n(N \cap P \cap H) = 0$ From, $n(N \cup P \cup H)$ $= n(N) + n(P) + n(H) - n(N \cap P) - n(P \cap H)$ $-n(N \cap H) + n(N \cap P \cap H)$ $n(N \cap P) + n(P \cap H) + n(N \cap H) = 16$ *.*.. Now, number of pupils taking two subjects $= n(N \cap P) + n(P \cap H) + n(N \cap H)$ $-3n(N \cap P \cap H)$ = 16 - 0 = 16. $n(S \cup P \cup D) = 265, n(S) = 200, n(D) = 110,$ 40. n(P) = 55, $n(S \cap D) = 60$, $n(S \cap P) = 30$, $n(S \cap D \cap P) = 10$, $n(S \cup P \cup D) = n(S) + n(D) + n(P) - n(S \cap D)$ $-n(D \cap P) - n(P \cap S) + n(S \cap D \cap P)$ 265 = 200 + 110 + 55 - 60 - 30*.*.. $-n(P \cap D) + 10$... $n(P \cap D) = 285 - 265 = 20$ *.*.. $n(P \cap D) - n(P \cap D \cap S) = 20 - 10 = 10$ 41. n(A) = 40% of 10,000 = 4,000n(B) = 20% of 10,000 = 2,000n(C) = 10% of 10,000 = 1,000 $n (A \cap B) = 5\% \text{ of } 10,000 = 500$ $n (B \cap C) = 3\% \text{ of } 10,000 = 300$ $n(C \cap A) = 4\%$ of 10,000 = 400 $n(A \cap B \cap C) = 2\%$ of 10,000 = 200 We want to find, $n(A \cap B^c \cap C^c) = n[A \cap (B \cup C)^c]$ $= n(A) - n[A \cap (B \cup C)]$ $= n(A) - n[(A \cap B) \cup (A \cap C)]$ = n(A) – [n(A \cap B) + n(A \cap C) $- n(A \cap B \cap C)$] =4000 - [500 + 400 - 200]=4000-700=3300.42. Since, $y = e^x$ and y = x do not meet for any $x \in \mathbb{R}$ $A \cap B = \phi$ *.*..

43. |a-5| < 1 and |b-5| < 1 $\Rightarrow 4 < a < 6 \text{ and } 4 < b < 6$ $4(a-6)^2 + 9(b-5)^2 \le 36$ $\Rightarrow \frac{(a-6)^2}{9} + \frac{(b-5)^2}{4} \le 1$

Set A represents square EFGH and Set B represents an ellipse.

 $\Rightarrow A \subset B$

44. A = Set of all values $(x, y) : x^2 + y^2 = 25 = 5^2$

B =
$$\frac{x^2}{144} + \frac{y^2}{16} = 1$$
 i.e., $\frac{x^2}{(12)^2} + \frac{y^2}{(4)^2} = 1$

Clearly, $A \cap B$ consists of four points.

- 45. Let the original set contains (2n + 1) elements, then subsets of this set containing more than n elements, i.e., subsets containing (n + 1)elements, (n + 2) elements,(2n + 1)elements.
- $\therefore \quad \text{Required number of subsets} \\ &= {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + \dots + {}^{2n+1}C_{2n} + {}^{2n+1}C_{2n+1} \\ &= {}^{2n+1}C_n + {}^{2n+1}C_{n-1} + \dots + {}^{2n+1}C_1 + {}^{2n+1}C_0 \\ &= {}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_{n-1} + {}^{2n+1}C_n \\ &= \frac{1}{2} \Big[(1+1)^{2n+1} \Big] = \frac{1}{2} [2^{2n+1}] = 2^{2n} .$
- 46. Since, $4^{n} 3n 1 = (3 + 1)^{n} 3n 1$ = $3^{n} + {}^{n}C_{1}3^{n-1} + {}^{n}C_{2}3^{n-2} + \dots + {}^{n}C_{n-1}3 + {}^{n}C_{n} - 3n - 1$ = ${}^{n}C_{2}3^{2} + {}^{n}C_{3}.3^{3} + \dots + {}^{n}C_{n}3^{n}$[${}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1}$ etc] = $9[{}^{n}C_{2} + {}^{n}C_{3}(3) + \dots + {}^{n}C_{n}3^{n-1}]$ ∴ $4^{n} - 3n - 1$ is a multiple of 9 for $n \ge 2$. For $n = 1, 4^{n} - 3n - 1 = 4 - 3 - 1 = 0$, For $n = 2, 4^{n} - 3n - 1 = 16 - 6 - 1 = 9$ ∴ $4^{n} - 3n - 1$ is a multiple of 9 for all $n \in N$ ∴ X contains elements, which are multiples of 9, and clearly Y contains all multiples of 9. ∴ $X \subseteq Y$ i.e., $X \cup Y = Y$.

- 47. $R = A \times B$.
- 48. A B = {a}, B ∩ C = {c, d} ∴ (A - B) × (B ∩ C) = {a} × {c, d} = {(a, c), (a, d)}
- 49. $R \times (P^{c} \cup Q^{c})^{c} = R \times [(P^{c})^{c} \cap (Q^{c})^{c}]$ $= R \times (P \cap Q) = (R \times P) \cap (R \times Q)$
- 50. A = {2, 4, 6}; B = {2, 3, 5}
 ∴ A × B contains 3 × 3 = 9 elements. Hence, number of relations from A to B = 2⁹.

51.
$$n((A \times B) \cap (B \times A)) = n^2 = 99^2$$
.

- 52. n(A) = 4, n(B) = 2
- :. $n(A \times B) = 4 \times 2 = 8$ Required numbers $= {}^{8}C_{3} + {}^{8}C_{4} + \dots + {}^{8}C_{8}$ $= 2^{8} - ({}^{8}C_{0} + {}^{8}C_{1} + {}^{8}C_{2})$ = 256 - 37= 219
- 53. In option (D), ordered pair (a, d) \notin A × B. Thus it is not a relation from A to B.
- 54. A relation is equivalence if it is reflexive, symmetric and transitive.
- 56. Total number of reflexive relations in a set with n elements = 2^n . Therefore, total number of reflexive relation set with 4 elements = 2^4 .
- 57. $x^2 4x^2 + 3x^2 = 0$
- \therefore xRx \Rightarrow Reflexive
- 58. Given A = $\{2, 4, 6, 8\}$; R = $\{(2, 4)(4, 2) (4, 6) (6, 4)\}$ (a, b) $\in R \Rightarrow$ (b, a) $\in R$ and also R⁻¹ = R. Hence, R is symmetric.
- 59. For any a ∈ N, we find a|a, therefore R is reflexive.
 But, R is not symmetric, because aRb does not imply that bRa.
- 60. Here, (3, 3), (6, 6), (9, 9), (12, 12), [Reflexive];
 (3, 6), (6, 12), (3, 12), [Transitive].
 Hence, reflexive and transitive only.
- 61. since $(5, 5) \notin S$.
- The relation S is not reflexive. It is symmetric and transitive.

62.

Equivalence classes	Product
(1, 11)	1
(3, 13)	3
(5, 15)	5
(7, 17)	7
(9, 19)	9
(10, 20)	0
(12, 21) (2, 12) (2, 21)	2
(4, 14) (4, 22) (14, 22)	4
(16, 23) (6, 16) (6, 23)	6
(8, 18) (8, 24) (18, 24)	8
(9, 19) $(10, 20)$ $(12, 21) (2, 12) (2, 21)$ $(4, 14) (4, 22) (14, 22)$ $(16, 23) (6, 16) (6, 23)$ $(8, 18) (8, 24) (18, 24)$	9 0 2 4 6 8

- \therefore There are 10 different equivalence classes.
- 63. Given $A = \{1, 2, 3, 4\}$ $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ $(2, 3) \in R$ but $(3, 2) \notin R$. Hence, R is not symmetric. R is not reflexive as $(1, 1) \notin R$. R is not a function as $(2, 4) \in R$ and $(2, 3) \in R$. R is not transitive as $(1, 3) \in R$ and $(3, 1) \in R$ but $(1, 1) \notin R$.
- 64. For any a ∈ R, we have a ≥ a. Therefore the relation R is reflexive, but it is not symmetric, as (2, 1) ∈ R but (1, 2) ∉ R. The relation R is transitive also, because (a, b) ∈ R, (b, c) ∈ R imply that a ≥ b and b ≥ c which is turn imply that a ≥ c.
- 65. |a a| = 0 < 1
- $\therefore \quad a \operatorname{Ra} \forall a \in R$
- $\therefore \quad R \text{ is reflexive.} \\ Again, a R b \Rightarrow |a b| \le 1 \Rightarrow |b a| \le 1 \Rightarrow bRa$
- $\therefore \quad \text{R is symmetric,} \\ \text{Again, } 1\text{R}\frac{1}{2} \text{ and } \frac{1}{2}\text{R1 but } \frac{1}{2} \neq 1 \\ \end{cases}$
- $\therefore R is not anti-symmetric.$ Further, 1 R 2 and 2 R 3 but 1 R 3,[::<math>|1-3|=2>1]
- \therefore R is not transitive.
- 66. $x \rho y, y \rho z \Rightarrow 2x + y = 41$ and 2y + z = 41 which do not imply 2x + z = 41
- 67. for option D, x > |x| is not true hence not reflexive Take x = 2, y = -1, clearly x > |y| but y > |x|does not hold, hence not symmetric Now, Let x > |y| and $y > |z| \Rightarrow x, y > 0$. \therefore Rewriting, x > |y| and $y > |z| \Rightarrow x > |z|$ Hence transitive.

- Chapter 01: Sets, Relations and Functions
- $r = \{(a, b) | a, b \in R \text{ and } a b + \sqrt{3} \text{ is an} \}$ 68. irrational no.} Here, r is reflexive as $aRa = a - a + \sqrt{3} = \sqrt{3}$ which is an irrational no. $\sqrt{3}$ r1 = $\sqrt{3} - 1 + \sqrt{3} = 2\sqrt{3} - 1$, which is an irrational number. But $1r\sqrt{3} = 1 - \sqrt{3} + \sqrt{3} = 1$ which is not an irrational number. $\sqrt{3}$ r 1 $\Rightarrow \frac{1}{\sqrt{3}}$ *.*.. *.*.. r is not symmetric. Also, r is not transitive. Since, $\sqrt{3}$ r 1 and 1 r $2\sqrt{3} \neq \sqrt{3}$ r $2\sqrt{3}$ *.*.. Option (B) is the correct answer. 69. On the set R; $x \rho y \Leftrightarrow x - y = 0 \text{ or } x - y \in Q'$ ÷ $x - x = 0 \Rightarrow x \rho x$ (Reflexive) if $x - y = 0 \Rightarrow y - x = 0$ or $x - y \in Q^{c}$ $\Rightarrow y - x \in Q'$ (Symmetric) Take $x = 1 + \sqrt{2}$; $y = \sqrt{2} + \sqrt{3}$; $z = \sqrt{2} + 2$ $x - y = 1 - \sqrt{3} \in Q'$ and $y - z = \sqrt{3} - 2 \in Q'$ Here $x \rho y$ and $y \rho z$ but x is not related to z. Not transitive *.*.. 70. Since, G. C. D. of a and a is 'a' ÷. if $a \neq 2$, then G. C. D. $\neq 2$ *.*.. R is not reflexive. Let aRb G. C. D. of a, b = 2*.*.. i.e., (a, b) = 2 \Rightarrow (b, a) = 2 \Rightarrow G. C. D. of b, a = 2 R is symmetric. *.*.. Again, let aRb and bRc G. C. D. of a, b = 2and G. C. D. of b, c = 2= 2*.*.. *.*.. R is not transitive 71. Here, $R = \{(x, y) \in W \times W : \text{the words } x \text{ and } y\}$ have at least one letter in common} R is reflexive as the words x and x have all letters in common. Hence, R is reflexive. Also, if $(x, y) \in \mathbb{R}$ i.e., x and y have a common letter, then y and x also have a letter in common
- \therefore R is symmetric.

R is not transitive as $(x, y) \in R$ and $(y, z) \in R$ need not imply $(x, z) \in \mathbb{R}$ For example, let x = CANE, y = NEST and z = WITHthen $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$, but $(x, z) \notin \mathbb{R}$ R is reflexive and symmetric but not transitive. *.*.. For reflexive, $\theta = \phi$, so sec² θ – tan² $\theta = 1$, 72. *.*.. R is reflexive. For symmetric, $\sec^2\theta - \tan^2\phi = 1$ so, $(1 + \tan^2 \theta) - (\sec^2 \phi - 1) \Longrightarrow \sec^2 \phi - \tan^2 \theta = 1$ R is symmetric *.*.. For transitive, Let $\sec^2\theta - \tan^2\phi = 1$ (i) and $\sec^2 \phi - \tan^2 \gamma = 1$ $1 + \tan^2 \phi - \tan^2 \gamma = 1$ *.*.. $\Rightarrow \sec^2 \theta - \tan^2 \gamma = 1$[From (i)] R is transitive. *.*.. $f(x) = \sqrt{x} \Rightarrow \frac{f(25)}{f(16) + f(1)} = \frac{\sqrt{25}}{\sqrt{16} + \sqrt{1}} = \frac{5}{5} = 1$ 73. 74. $f(x) = 2x, \qquad x > 3$ $= x^2, \qquad 1 < x \le 3$ = 3x $x \leq 1$ as, x = -1, f(x) = f(-1) = 3(-1) = -3*.*.. as, x = 2, $f(x) = f(2) = (2)^2 = 4$ as, x = 4, f(x) = f(4) = 2(4) = 8f(-1) + f(2) + f(4) = 9*.*.. 75. Since, f(x) f(y) = f(xy)*.*.. f(1).f(2) = f(2)f(1).4 = 4.... f(1) = 1*.*.. ...(i) Also, $f(2).f(\frac{1}{2}) = f(1)$ $4 \times f\left(\frac{1}{2}\right) = 1$...[From (i)] *.*.. $f\left(\frac{1}{2}\right) = \frac{1}{4}$ *:*.. Given, $f(x) = \cos(\log x) \Rightarrow f(y) = \cos(\log y)$ 76. Then, $f(x).f(y) - \frac{1}{2} \left| f\left(\frac{x}{y}\right) + f(xy) \right|$ $= \cos(\log x) \cos(\log y)$ $\frac{1}{2} \left| \cos \left(\log \frac{x}{v} \right) + \cos \left(\log xy \right) \right|$ $= \cos(\log x) \cos(\log y)$

 $\frac{1}{2}[2\cos(\log x)\cos(\log y)] = 0$

77. f(x+1) - f(x) = 8x + 3 $\Rightarrow [b(x+1)^2 + c(x+1) + d] - (bx^2 + cx + d)$ = 8x + 3 \Rightarrow (2b)x + (b + c) = 8x + 3 $\Rightarrow 2b = 8, b + c = 3$ \Rightarrow b = 4, c = -1 78. f(x+y) + f(x-y) $=\frac{1}{2}\left[a^{x+y}+a^{-x-y}+a^{x-y}+a^{-x+y}\right]$ $=\frac{1}{2}\left[a^{x}(a^{y}+a^{-y})+a^{-x}(a^{y}+a^{-y})\right]$ $= \frac{1}{2}(a^{x} + a^{-x})(a^{y} + a^{-y}) = 2f(x)f(y)$ 79. $f(x) = \log \left| \frac{1+x}{1-x} \right|$ $f\left(\frac{2x}{1+x^{2}}\right) = \log \left|\frac{1+\frac{2x}{1+x^{2}}}{1-\frac{2x}{1-x^{2}}}\right| = \log \left[\frac{x^{2}+1+2x}{x^{2}+1-2x}\right]$ $= \log \left[\frac{1+x}{1-x} \right]^2 = 2 \log \left[\frac{1+x}{1-x} \right] = 2f(x)$ 80. $e^{f(x)} = \frac{10+x}{10-r}, x \in (-10, 10)$ $\Rightarrow f(x) = \log\left(\frac{10+x}{10-x}\right)$ $\Rightarrow f\left(\frac{200x}{100+x^2}\right) = \log\left|\frac{10 + \frac{200x}{100+x^2}}{10 - \frac{200x}{100-x^2}}\right|$ $= \log \left[\frac{10(10+x)}{10(10-x)} \right]^{2}$ $=2\log\left(\frac{10+x}{10-x}\right)=2f(x)$ $\therefore \qquad \mathbf{f}(x) = \frac{1}{2} \mathbf{f}\left(\frac{200x}{100 + x^2}\right) \Longrightarrow \mathbf{k} = \frac{1}{2} = 0.5$ $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$ 81. $f(x) = \cos(9x) + \cos(-10x)$ $[:: \pi = 3.14]$ [9.85] = 9 and [-9.85] = -10]*.*.. $=\cos(9x)+\cos(10x)$

 $=2\cos\left(\frac{19x}{2}\right)\cos\left(\frac{x}{2}\right)$

 $\therefore \qquad f\left(\frac{\pi}{2}\right) = 2\cos\left(\frac{19\pi}{4}\right)\cos\left(\frac{\pi}{4}\right);$ $\therefore \qquad f\left(\frac{\pi}{2}\right) = 2 \times \frac{-1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = -1$ 83. $f(x) = f(-x) \Longrightarrow f(0+x) = f(0-x) \text{ is }$

- 85. $f(x) f(-x) \Rightarrow f(0 + x) f(0 x)$ is symmetrical about x = 0. \therefore f(2 + x) = f(2 - x) is symmetrical about x = 2.
- 84. $f = \{(1, 1), (2, 4), (0, -2), (-1, -5)\}$ be a linear function from Z to Z. The function satisfies the above points, if f(x) = 3x 2

85. Here,
$$f(x) = \log \frac{1+x}{1-x}$$

and $f(-x) = \log \left(\frac{1-x}{1+x}\right) = \log \left(\frac{1+x}{1-x}\right)^{-1}$
$$= -\log \left(\frac{1+x}{1-x}\right) = -f(x) = f(-x)$$

 \Rightarrow f(x) is an odd function.

86. Since,
$$f(x)$$
 is even.

$$\therefore \quad f(-x) = f(x)$$

$$\therefore \quad \frac{a^{-x} - 1}{(-x)^n (a^{-x} + 1)} = \frac{a^x - 1}{x^n (a^x + 1)}$$

$$\Rightarrow \frac{1 - a^x}{(-1)^n x^n (1 + a^x)} = \frac{a^x - 1}{x^n (a^x + 1)}$$

$$\Rightarrow \frac{-1}{(-1)^n} = 1 \Rightarrow -1 = (-1)^n$$

$$\therefore \quad n = -\frac{1}{3} \text{ can satisfy the equation.}$$
87. $f(-x) = \sec\left[\log\left(-x + \sqrt{1 + (-x)^2}\right)\right]$

$$= \sec\left[\log\left(-x + \sqrt{1 + x^2}\right)\right]$$

$$= \sec\left[\log\left(\sqrt{1 + x^2} - x\right)\right]$$

$$= \sec\left[\log\left(\frac{1 + x^2 - x^2}{\sqrt{1 + x^2} + x}\right)\right]$$

$$= \sec\left[\log\left(\frac{1 - x^2}{\sqrt{1 + x^2} + x}\right)\right]$$

$$= \sec\left[-\log\left(\sqrt{1 + x^2} + x\right)\right]$$

$$= \sec\left[-\log\left(\sqrt{1 + x^2} + x\right)\right]$$

 $= \sec \left\lfloor \log \left(\sqrt{1 + x^2} + x \right) \right\rfloor$ ∴ f(x) is an even function.

$$F(x) = \sin\left(\log\left(x + \sqrt{1 + x^2}\right)\right)$$

$$\Rightarrow f(-x) = \sin\left[\log\left(-x + \sqrt{1 + x^2}\right)\right]$$

$$\Rightarrow f(-x) = \sin\left[\log\left(-x + \sqrt{1 + x^2}\right)\right]$$

$$\Rightarrow f(-x) = \sin\left[\log\left(x + \sqrt{1 + x^2}\right)\right]$$

$$\Rightarrow f(-x) = \sin\left[-\log(x + \sqrt{1 + x^2})\right]$$

$$\Rightarrow f(-x) = \sin\left[\log(x + \sqrt{1 + x^2})\right]$$

$$\Rightarrow f(-x) = -\sin\left[\log(x + \sqrt{1 + x^2})\right]$$

$$\Rightarrow f(-x) = -\sin\left[\log(x + \sqrt{1 + x^2})\right]$$

$$\Rightarrow f(-x) = -f(x)$$

$$\therefore \quad f(x) \text{ is odd function.}$$

$$89. \quad f(x) + 2f\left(\frac{1}{x}\right) = 3x \qquad \dots (i)$$

$$\therefore \quad f\left(\frac{1}{x}\right) + 2f(x) = \frac{3}{x} \qquad \dots (i)$$
From (i) and (ii), we get
$$3f(x) = \frac{6}{x} - 3x$$

$$\Rightarrow f(x) = \frac{2}{x} - x \Rightarrow f(-x) = -\frac{2}{x} + x$$
Since, $f(x) = f(-x)$

$$\therefore \quad \frac{2}{x} - x = -\frac{2}{x} + x$$

$$\Rightarrow \frac{4}{x} = 2x \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2}$$

$$\therefore \quad \text{option (B) is the correct answer.}$$

$$90. \quad \text{Given expression} = \sum_{i=0}^{96} \left[\frac{2}{3} + \frac{i}{99}\right]$$

$$= 0 + \sum_{i=33}^{26} \left[\frac{2}{3} + \frac{i}{99}\right]$$

[:: each term in the summation is one or more

but less than 2 when i = 33, 34, 35,,98]

MHT-CET Triumph Maths (Hints) 91. $f(x) = \frac{1}{2}(1 + \cos 2x) + \frac{1}{2}\left[1 + \cos\left(\frac{2\pi}{3} + 2x\right)\right]$ $-\frac{2\cos x\cos\left(\frac{\pi}{3}+x\right)}{2}$ $=1+\frac{1}{2}\left[\cos 2x+\cos \left(\frac{2\pi}{3}+2x\right)\right]$ $-\cos\left(2x+\frac{\pi}{3}\right)-\cos\left(\frac{\pi}{3}\right)$ $=\frac{3}{4}+\frac{1}{2}\left[\cos 2x+\cos \left(2x+\frac{2\pi}{3}\right)\right]$ $-\cos\left(2x+\frac{\pi}{3}\right)$ $=\frac{3}{4}+\frac{1}{2}\left[\cos 2x-2\sin \left(2x+\frac{\pi}{2}\right)\sin \left(\frac{\pi}{6}\right)\right]$ $= \frac{3}{4} + \frac{1}{2} \left[\cos 2x - 2\sin \left(\frac{\pi}{2} + 2x \right) \cdot \frac{1}{2} \right]$ $=\frac{3}{4}+\frac{1}{2}[\cos 2x-\cos 2x]=\frac{3}{4}$ 92. $y = \frac{x+2}{x-1} \Rightarrow x = \frac{3}{y-1} + 1 = \frac{y+2}{y-1} = f(y).$ Function given by f(x) = ax + b93. $f^{-1}(x) = \frac{x - b}{a}$

So,
$$g(y) = y - 3$$

94. $f(x) = |x|$
 $f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

Therefore, the function $f^{-1}(x)$ does not exist.

95. Let
$$f(x) = y \Rightarrow x = f^{-1}(y)$$

Now, $y = 3x - 5$
 $\Rightarrow x = \frac{y+5}{3}$
 $\Rightarrow f^{-1}(y) = x = \frac{y+5}{3}$
 $\therefore f^{-1}(x) = \frac{x+5}{3}$
Also f is one-one and onto, so f^{-1} exists and is given by $f^{-1}(x) = \frac{x+5}{3}$.

96. Let
$$f(x) = y \Rightarrow x = f^{-1}(y)$$

Now, $y = 2x + 6$
 $\Rightarrow 2x = y - 6$
 $\Rightarrow x = \frac{y}{2} - 3$
 $\Rightarrow f^{-1}(y) = \frac{y}{2} - 3$
 $\Rightarrow f^{-1}(x) = \frac{x}{2} - 3$
97. Let $f(x) = y \Rightarrow x = f^{-1}(y)$

97. Let
$$f(x) = y \Rightarrow x = f^{-1}(y)$$

Now, $y = x^3 + 5$
 $\Rightarrow y - 5 = x^3$
 $\Rightarrow x = (y - 5)^{\frac{1}{3}}$
 $\Rightarrow f^{-1}(y) = (y - 5)^{\frac{1}{3}}$
 $\Rightarrow f^{-1}(x) = (x - 5)^{\frac{1}{3}}$

98. Let
$$f(x) = y \Rightarrow x = f^{-1}(y)$$
. Now,
 $y = \frac{2x-1}{x+5}, (x \neq -5)$
 $xy + 5y = 2x - 1 \Rightarrow 5y + 1 = 2x - xy$
 $\Rightarrow x(2-y) = 5y + 1 \Rightarrow x = \frac{5y+1}{2-y}$
 $\Rightarrow f^{-1}(y) = \frac{5y+1}{2-y}$
 $\therefore f^{-1}(x) = \frac{5x+1}{2-x}, x \neq 2$

99. We have,
$$f(x) = \frac{5x}{4x+5}, x \in \mathbb{R} - \left\{\frac{5}{4}\right\}$$

Let
$$f(x) = y$$

$$\Rightarrow x = f^{-1}(y)$$

$$y = \frac{5x}{4x+5}$$

$$\Rightarrow 4xy + 5y = 5x$$

$$\Rightarrow 5y = 5x - 4xy = x(5 - 4y)$$

$$\Rightarrow x = \frac{5y}{5 - 4y}$$

$$g(y) = f^{-1}(y) = \frac{5y}{5 - 4y}, x \in \mathbb{R} - \left\{\frac{5}{4}\right\}$$

100. Given, $f(x) = 2^{x(x-1)}$ $\Rightarrow x(x-1) = \log_2 f(x)$ $\Rightarrow x^2 - x - \log_2 f(x) = 0$ $\Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_2 f(x)}}{2}$ Only $x = \frac{1 + \sqrt{1 + 4\log_2 f(x)}}{2}$ lies in the domain \therefore $f^{-1}(x) = \frac{1}{2} [1 + \sqrt{1 + 4 \log_2 x}].$ 101. Let $y = f(x) = \frac{e^x - e^{-x}}{e^{x} + e^{-x}} + 2$ $\therefore \qquad y-2 = \frac{e^{2x}-1}{e^{2x}+1}$ \Rightarrow (v - 2) $e^{2x} + v - 2 = e^{2x} - 1$ $\Rightarrow e^{2x} = \frac{1-y}{y-3} = \frac{y-1}{3-y}$ $\Rightarrow 2x = \log_e \left(\frac{y-1}{3-y} \right)$ $\Rightarrow x = \frac{1}{2}\log_e\left(\frac{y-1}{3-y}\right)$ \Rightarrow f⁻¹(y) = $\frac{1}{2} \log_e \left(\frac{y-1}{3-y} \right)$ \Rightarrow f⁻¹ (x) = log_e $\left(\frac{x-1}{3-x}\right)^{\frac{1}{2}}$ 102. Let $y = f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ $\therefore y = \frac{10^{2x} - 1}{10^{2x} + 1}$ $\Rightarrow 10^{2x} = \frac{1+y}{1-y}$ $\Rightarrow 2x = \log_{10} \frac{1+y}{1-y}$ $\Rightarrow x = \frac{1}{2} \log_{10} \frac{1+y}{1-y}$ $\Rightarrow f^{-1}(y) = \frac{1}{2} \log_{10} \frac{1+y}{1-y}$ \Rightarrow f⁻¹(x) = $\frac{1}{2} \log_{10} \frac{1+x}{1-x}$

Chapter 01: Sets, Relations and Functions 103. Let $y = f(x) = \frac{16^x - 16^{-x}}{16^x + 16^{-x}}$ $\therefore \qquad y = \frac{16^{2x} - 1}{16^{2x} + 1}$ $\Rightarrow 16^{2x} = \frac{1+y}{1-y}$ $\Rightarrow 2x = \log_{16} \frac{1+y}{1-y}$ $\Rightarrow x = \frac{1}{2} \log_{16} \frac{1+y}{1-y} \Rightarrow f^{-1}(y) = \frac{1}{2} \log_{16} \frac{1+y}{1-y}$ \Rightarrow f⁻¹(x) = $\frac{1}{2} \log_{16} \frac{1+x}{1-x}$ 104. f(g(-1)) = f(-3 - 4) = f(-7) = 5 - 49 = -44105. $f(2) = \frac{2}{2^2 + 1} = \frac{2}{5}$:. $f(f(2)) = f\left(\frac{2}{5}\right) = \frac{\frac{2}{5}}{\left(\frac{2}{5}\right)^2 + 1} = \frac{10}{29}$ 106. Here, $f(2) = \frac{2+1}{2-1} = 3$:. $f(f(2)) = f(3) = \frac{3+1}{3-1} = \frac{4}{2} = 2$:. $f(f(f(2))) = f(2) = \frac{2+1}{2-1} = 3$ 107. $(fog)(x) = f(g(x)) = f(x^2) = \sin x^2$ 108. $f(x) = \sin x + \cos x, g(x) = x^2$ \therefore fog(x) = sin x² + cos x² 109. $f[f(\cos 2\theta)] = f\left[\frac{1-\cos 2\theta}{1+\cos 2\theta}\right] = f(\tan^2 \theta)$ $=\frac{1-\tan^2\theta}{1+\tan^2\theta}=\cos 2\theta$ 110. Here, $f\left(\frac{1}{2}\right) = \left(25 - \frac{1}{16}\right)^{\frac{1}{4}} = \left(\frac{399}{16}\right)^{\frac{1}{4}}$ $\Rightarrow f\left[f\left(\frac{1}{2}\right)\right] = f\left[\left(\frac{399}{16}\right)^{\frac{1}{4}}\right]$ $=\left(25-\frac{399}{16}\right)^{\frac{1}{4}}=\left(\frac{1}{16}\right)^{\frac{1}{4}}=\frac{1}{2}$

MHT-CET Triumph Maths (Hints) 111. $f(x) = \frac{x-1}{x+1}$ $\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$ $\Rightarrow x = \frac{f(x)+1}{1-f(x)}$ $\therefore \quad f(2x) = \frac{2x-1}{2x+1} = \frac{2\left\lfloor \frac{f(x)+1}{1-f(x)} \right\rfloor - 1}{2\left\lfloor \frac{f(x)+1}{1-f(x)} \right\rfloor + 1} = \frac{3f(x)+1}{f(x)+3}$ 112. $f(x) = \frac{\alpha x}{x+1};$ $f(f(x)) = f\left(\frac{\alpha x}{x+1}\right) = \frac{\alpha\left(\frac{\alpha x}{x+1}\right)}{\frac{\alpha x}{x+1}+1}$ But f(f(x)) = x $\therefore \qquad \frac{\alpha^2 x}{\alpha x + x + 1} = x$ L.H.S. Put $\alpha = -1$, $\therefore \qquad \frac{(-1)^2 x}{(-1)x + x + 1} = \frac{x}{-x + x + 1} = x;$ $\alpha = -1$ *.*.. 113. Given, f(x) = a x + b, g(x) = cx + dand f(g(x)) = g(f(x)) \Rightarrow f(c x + d) = g(a x + b) \Rightarrow a(c x + d) + b = c(a x + b) + d \Rightarrow ad + b = cb + d \Rightarrow f(d) = g(b) 114. fog (x) = f[g(x)] $= f\left(x^{\frac{1}{3}}\right) = 8\left(x^{\frac{1}{3}}\right)^3$ =8x115. (fog) $(x) = f(g(x)) = f\left(\frac{x-1}{2}\right)$ $=2\left(\frac{x-1}{2}\right)+1=x$ \Rightarrow (fog) (x) = x \Rightarrow x = (fog)⁻¹(x) Hence, $(fog)^{-1}\left(\frac{1}{r}\right) = \frac{1}{r}$

116. $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos x \cos \left(x + \frac{\pi}{3} \right)$ $=\sin^2 x + \left|\sin\left(x+\frac{\pi}{3}\right)\right|^2$ $+\cos x \left| \cos x \cos \frac{\pi}{3} - \sin x \sin \frac{\pi}{3} \right|$ $=\sin^2 x + \left[\sin x \cos \frac{\pi}{2} + \cos x \sin \frac{\pi}{2}\right]^2$ $+\cos x \left| \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x \right|$ $=\sin^2 x + \left[\frac{\sin x}{2} + \frac{\sqrt{3}}{2}\cos x\right]^2$ $+\frac{\cos^2 x}{2}-\frac{\sqrt{3}}{2}\sin x\cos x$ $=\sin^{2}x + \frac{\sin^{2}x}{4} + \frac{3}{4}\cos^{2}x + \frac{\cos^{2}x}{2}$ $+\frac{\sqrt{3}}{2}\sin x\cos x-\frac{\sqrt{3}}{2}\sin x\cos x$ $=\frac{5}{4}(\sin^2 x + \cos^2 x) = \frac{5}{4}$ $(gof)(x) = g[f(x)] = g\left(\frac{5}{4}\right) = 1$ 117. As $x - [x] \in [0, 1), \forall x \in \mathbb{R}$ $0 \leq x - [x] \leq 1, \forall x \in \mathbb{R}$ *.*.. $\Rightarrow 1 \le 1 + x - [x] < 2, \forall x \in \mathbb{R}$ $\Rightarrow 1 \leq g(x) \leq 2, \forall x \in \mathbb{R}$ Hence, $f(g(x)) = 1 \forall x \in \mathbb{R}$ 118. $(gof)(e) + (fog)(\pi) = g(f(e)) + f(g(\pi))$ = g(1) + f(0)= -1 + 0= -1119. $g(f(x)) = g(|x|) = \lceil |x| \rceil$ and f(g(x)) = f([x]) = [[x]]When $x \ge 0$, $\lceil |x| \rceil = \lceil x \rceil = \lceil x \rceil$ \Rightarrow f(g(x)) = g(f(x)) When x < 0, $[x] \le x < 0$ $\Rightarrow \|x\| \ge |x|$ $\Rightarrow |[x]| \ge |x| \ge [|x|] \qquad \dots [\because [t] \le t \text{ for all } t]$ \Rightarrow f(g(x)) \ge g(f(x)) $g(f(x)) \le f(g(x))$ for all $x \in \mathbb{R}$

120.
$$(hofog)(x) = (hof)(g(x))$$

 $= (hof)(\sqrt{x^2 + 1})$
 $= h(f(\sqrt{x^2 + 1}))$
 $= h[(\sqrt{x^2 + 1})^2 - 1]$
 $= h(x^2 + 1 - 1)$
 $= h(x^2) = \begin{cases} 0, \text{ if } x = \\ x^2, \text{ if } x \neq \end{cases}$

121. Given,

$$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3} \right) + \cos \left(x + \frac{\pi}{3} \right) \cos x$$
$$= \frac{1}{2} \left\{ 1 - \cos 2x + 1 - \cos \left(2x + \frac{2\pi}{3} \right) + \cos \left(2x$$

0

0

$$= \frac{1}{2} \left[\frac{5}{2} - \left\{ \cos 2x + \cos \left(2x + \frac{2\pi}{3} \right) \right\} + \cos \left(2x + \frac{\pi}{3} \right) \right]$$
$$= \frac{1}{2} \left[\frac{5}{2} - 2\cos \left(2x + \frac{\pi}{3} \right) \cos \frac{\pi}{3} + \cos \left(2x + \frac{\pi}{3} \right) \right]$$
$$= \frac{5}{4}$$

$$gof(x) = g[f(x)] = g\left(\frac{5}{4}\right)$$
$$= 1 \qquad \dots \left[\because g\left(\frac{5}{4}\right) = 1 \right]$$

Hence, gof(x) is a constant function.

122. $(gof)(x) = \sin x^2 \Rightarrow (gogof)(x) = \sin(\sin x^2)$ \Rightarrow (fogogof) (x) = (sin(sin x²))² = sin² (sin x²) Now, $\sin^2(\sin x^2) = \sin(\sin x^2)$ $\Rightarrow \sin(\sin x^2) = 0, 1$ $\Rightarrow \sin x^2 = n\pi, (4n+1)\frac{\pi}{2} \ n \in I$ $\Rightarrow \sin x^2 = 0 \Rightarrow x^2 = n\pi$ $\Rightarrow x = \pm \sqrt{n\pi} n \in W$ 123. |x| = -x, if x < 0if $x \ge 0$ =x,Now, (fog) (x) = f[g(x)]= |g(x)| + g(x)= ||x| - x| + |x| - xWhen, x < 0(fog) (x) = |-x - x| + (-x) - x= -2x - 2x = -4x

Chapter 01: Sets, Relations and Functions

- 124. Let f(x) be periodic with period T. Then, f(x + T) = f(x) for all $x \in R$ $\Rightarrow x + T - [x + T] = x - [x]$. for all $x \in R$ $\Rightarrow x + T - x = [x + T] - [x]$ $\Rightarrow [x + T] - [x] = T$ for all $x \in R$ $\Rightarrow T = 1, 2, 3, 4, \dots$ The smallest value of T satisfying f(x + T) = f(x) for all $x \in R$ is 1. Hence, f(x) = x - [x] has period 1.
- 125. g(x) is neither injective nor surjective (gof) (x) = $(e^x)^2 = e^{2x}$

This is an injective function.

- 126. At x = 0, f(x) is not defined.
- 128. f(x) = f(y) $\Rightarrow x + 2 = y + 2 \Rightarrow x = y$
- \therefore Function f is one-one
- 129. Total number of distinct functions from $A \rightarrow A = n^n = 6^6$ Number of bijections = n! = 6!
- :. Number of functions which are not bijections = $6^6 - 6!$
- 130. Number of bijective function from a set of 10 elements to itself is ${}^{10}P_{10}$. So, required number = 10!
- 131. The total number of injective functions from a set A containing 3 elements to a set B containing 4 elements is equal to the total number of arrangements of 4 by taking 3 at a time i.e., ${}^{4}P_{3} = 24$.
- 132. Number of injective mapping = ${}^{5}P_{4}$ = 120
- 133. |x| is not one-one; x^2 is not one-one; $x^2 + 1$ is not one-one. But 2x - 5 is one-one because $f(x) = f(y) \Rightarrow 2x - 5 = 2y - 5 \Rightarrow x = y$ Now, f(x) = 2x - 5 is onto.
- \therefore f(x) = 2x 5 is bijective.
- 134. Let $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$ $\Rightarrow x_1 = \pm x_2$
- \therefore f(x₁) = f(x₂) does not impty that x₁ = x₂
- ... f is not one-one. Consider an element 2 in the co-domain R. There does not exist any x is domain R such that f(x) = 2.
- \therefore f is not onto.
- 135. $f'(x) = 2 + \cos x > 0$. So, f(x) is strictly monotonic increasing so, f(x) is one-to-one and onto.

136. Let $x, y \in N$ such that f(x) = f(y)Then, $f(x) = f(y) \Rightarrow x^2 + x + 1 = y^2 + y + 1$ $\Rightarrow (x - y) (x + y + 1) = 0$ $\Rightarrow x = y \text{ or } x = (-y - 1) \notin \mathbb{N}$ f is one-one. *.*..

Again, since for each $y \in N$, there exist $x \in N$ f is onto. *.*..

137. We have f(x) = (x - 1) (x - 2) (x - 3) and $f(1) = f(2) = f(3) = 0 \implies f(x)$ is not one-one. For each $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that f(x) = y. Therefore f is onto. Hence, $f : \mathbb{R} \to \mathbb{R}$ is onto but not one-one.

138. f: N → I

$$f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5)$$

and $f(6) = -3$ so on.

In this type of function every element of set A has unique image in set B and there is no element left in set B. Hence f is one-one and onto function.

= 2

139. $f: N \rightarrow N$

$$f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

Now for n = 1, f (1) =
$$\frac{1+1}{2}$$
 = 1
and if n = 2, f (2) = $\frac{2}{2}$ = 1
f (1) = f (2), But 1 \neq 2.

... f(x) is not one-one.

$$f(x) = \frac{n+1}{2} \text{ if n is odd}$$

if $y = \frac{n+1}{2}$ then $n = 2y - 1$, $\forall y$
Also, $f(x) = \frac{n}{2}$ if n is even i.e., $y = \frac{n}{2}$
or $n = 2y \forall y$
∴ $f(x)$ is onto.
140. $\sigma : N \rightarrow Z$

$$\sigma(1) = 0, \sigma(2) = 1, \sigma(3) = -1, \sigma(4) = 2,$$

 $\sigma(5) = -2, \sigma(6) = 3, \sigma(7) = -3$
 σ is one one and onto

 σ is one-one and onto.

141. Function f : R \rightarrow R is defined by f(x) = e^x. Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$ or $e^{x_1} = e^{x_2}$ or $x_1 = x_2$. Therefore f is one-one. Let $f(x) = e^x = y$. Taking log on both sides, we get $x = \log y$. We know that negative real numbers have no pre-image or the function is not onto and zero is not the image of any real number. Therefore function f is into.

142. Here,
$$(f - g)(x) = f(x) - g(x)$$

$$\therefore \quad (f-g)(x) = \begin{cases} x-0=x, & \text{if } x \text{ is rational} \\ 0-x=-x, & \text{if } x \text{ is irrational} \end{cases}$$

Let $k = f - g$
Let x, y be any two distinct real numbers.
Then, $x \neq y$
 $\Rightarrow x \neq y$

$$y = -x \neq -y$$

Now, $x \neq y$
⇒ $k(x) \neq k(y) \Rightarrow (f - g) (x) \neq (f - g) (y)$
⇒ $f - g$ is one-one.
Let y be any real number
If y is a rational number, then
 $k(y) = y$
⇒ $(f - g) (y) = y$
If y is an irrational number, then
 $k(-y) = y$
⇒ $(f - g) (-y) = y$
Thus, every $y \in R$ (co-domain) has its pre-
image in R (domain)

 $f - g : R \rightarrow R$ is onto. *.*.. Hence, f - g is one-one and onto.

143. Let x, y ∈ R be such that
f(x) = f(y)
⇒ x³ + 5x + 1 = y³ + 5y + 1
⇒ (x³ - y³) + 5(x - y) = 0
⇒ (x - y) (x² + xy + y² + 5) = 0
⇒ (x - y)
$$\left[\left(x + \frac{y}{2}\right)^2 + \frac{3y^2}{4} + 5\right] = 0$$

⇒ x = y and $\left(x + \frac{y}{2}\right)^2 + \frac{3y^2}{4} + 5 \neq 0$
∴ f : R → R is one-one
Let y be an arbitrary element in
R (co-domain).
Then, f(x) = y i.e., x³ + 5x + 1 = y has at least
one real root, say β in R

 $\beta^3 + 5\beta + 1 = y$ *.*.. $\Rightarrow f(\beta) = y$ Thus, for each $y \in R$ there exists $\beta \in R$ such that $f(\beta) = y$ $f: R \rightarrow R$ is onto *.*..

Hence, f: $R \rightarrow R$ is one-one onto.

...

...

144. Since, f(x) and g(x) has same domain and co-domain A and B and $f(1) = (1)^2 - 1 = 0$ $g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2 \times \frac{1}{2} - 1 = 0$ f(1) = 0 = g(1), f(0) = 0 = g(0)f(-1) = 2 = g(-1), f(2) = 2 = g(2) $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ By definition, the two function are equal f = g*.*.. 145. $-\sqrt{1+(-\sqrt{3})^2} \le (\sin x - \sqrt{3} \cos x) \le \sqrt{1+(-\sqrt{3})^2}$ $-2 \leq (\sin x - \sqrt{3} \cos x) \leq 2$ *.*.. $-2+1 \le (\sin x - \sqrt{3} \cos x + 1) \le 2+1$ ÷. $-1 \leq (\sin x - \sqrt{3}\cos x + 1) \leq 3$ *.*.. i.e., range = [-1, 3]For f to be onto S = [-1, 3]. *.*.. 146. Given, $f(x) = \sin x$ $f: R \rightarrow R$ is neither one-one nor onto as *.*.. $R_f = [-1, 1].$ $f: \left\lceil -\frac{\pi}{2}, \frac{\pi}{2} \right\rceil \to [-1, 1]$ is both one-one and onto. $f: [0, \pi] \rightarrow [-1, 1]$ is neither one-one nor onto as $R_f = [0, 1].$ $f: \left[0, \frac{\pi}{2}\right] \to [-1, 1]$ is one-one but not onto as $R_f = [0, 1].$ 147. Let $f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{x^2 + 1 - 2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$ $x^{2} + 1 > 1$: •.• $\therefore \qquad \frac{2}{x^2+1} \le 2$ So $1 - \frac{2}{r^2 + 1} \ge 1 - 2$; $-1 \le f(x) < 1$ *.*.. Thus, f(x) has the minimum value equal to -1. 148. The quantity under root is positive, when $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$. 149. The function $f(x) = \sqrt{\log(x^2 - 6x + 6)}$ is defined, when $\log(x^2 - 6x + 6) \ge 0$ $\Rightarrow x^2 - 6x + x \ge 1 \Rightarrow (x - 5) (x - 1) \ge 0$ This inequality holds, if $x \le 1$ or $x \ge 5$. Hence, the domain of the function will be $(-\infty, 1] \cup [5, \infty).$

Chapter 01: Sets, Relations and Functions 150. Here, x + 3 > 0 and $x^2 + 3x + 2 \neq 0$ x > -3 and $(x + 1) (x + 2) \neq 0$, i.e., $x \neq -1, -2$. Domain = $(-3, \infty) - \{-1, -2\}$. 151. $D_f = D_g \cap D_h$ where $g(x) = \frac{1}{\log_{10} (1-x)}$ and $h(x) = \sqrt{2+x}$ Now, $D_g = \{x \in \mathbb{R} : 1 - x > 0, \log_{10} (1 - x) \neq 0\}$ $= \{x \in \mathbb{R} : x < 1, 1 - x \neq 1\}$ $= \{x \in \mathbb{R} : x < 1, x \neq 0\}$ and $D_h = \{x \in \mathbb{R} : x + 2 \ge 0\}$ $= \{x \in \mathbb{R} : x \ge -2\}$ $D_f = [(-\infty, 1) - \{0\}] \cap [-2, \infty)$ $= [-2, 1) - \{0\}$

152. $f(x) = \log |\log x|$, f(x) is defined if $|\log x| > 0$ and x > 0 i.e., if x > 0 and $x \neq 1$ $(:: |\log x| > 0 \text{ if } x \neq 1)$

$$\Rightarrow x \in (0, 1) \cup (1, \infty).$$

ċ.

...

...

...

153.
$$\frac{1-|x|}{2-|x|} \ge 0$$
$$\Rightarrow \frac{|x|-1}{|x|-2} \ge 0$$
$$\Rightarrow |x| \le 1 \text{ as } |x| > 2$$
$$\Rightarrow x \in (-\infty, -2) \cup (2, \infty) \cup [-1, 1]$$
154.
$$f(x) = \sqrt{\log \frac{1}{1-2}}$$

$$\begin{array}{l} 104. \quad I(x) & \sqrt{10g} |\sin x| \\ \Rightarrow \sin x \neq 0 \Rightarrow x \neq n\pi + (-1)^n 0 \\ \Rightarrow x \neq n\pi. \text{ Domain of } f(x) = R - \{n\pi, n \in I\}. \end{array}$$

155. f(x) is to be defined when $x^2 - 1 > 0$ $\Rightarrow x^2 > 1$, $\Rightarrow x < -1$ or x > 1 and 3 + x > 0x > -3 and $x \neq -2$ *.*..

$$\therefore \quad D_f = (-3, -2) \cup (-2, -1) \cup (1, \infty).$$

156.
$$f(x) = e^{\sqrt{5x-3-2x^2}}$$

 $\Rightarrow 5x-3-2x^2 \ge 0$
 $\Rightarrow (x-1)\left(x-\frac{3}{2}\right) \le 0$
 $+ve$
 0
 1
 $-ve$
 $\frac{3}{2}$
∴ $D_f = \left[1, \frac{3}{2}\right]$

- 157. To define f(x), $9 x^2 > 0 \Rightarrow |x| < 3$ $\Rightarrow -3 < x < 3$,(i) and $-1 \le (x - 3) \le 1$ $\Rightarrow 2 \le x \le 4$ (ii) From (i) and (ii), $2 \le x < 3$ i.e., [2, 3).
- 158. $-1 \le 1 + 3x + 2x^2 \le 1$ **Case I**: $2x^2 + 3x + 1 \ge -1$; $2x^2 + 3x + 2 \ge 0$ $x = \frac{-3 \pm \sqrt{9 - 16}}{6} = \frac{-3 \pm i\sqrt{7}}{6}$ (imaginary). **Case II**: $2x^2 + 3x + 1 \le 1$ $\Rightarrow 2x^2 + 3x \le 0 \Rightarrow 2x\left(x + \frac{3}{2}\right) \le 0$ $\Rightarrow \frac{-3}{2} \le x \le 0 \Rightarrow x \in \left[-\frac{3}{2}, 0\right]$

In case I, we get imaginary value hence, rejected

$$\therefore$$
 Domain of function = $\left[\frac{-3}{2}, 0\right]$

159.
$$f(x) = \sqrt{\cos^{-1}\left(\frac{1-|x|}{2}\right)}$$
$$\therefore \quad -1 \le \frac{1-|x|}{2} \le 1$$
$$\Rightarrow -2 - 1 \le -|x| \le 2 - 1$$
$$\Rightarrow -3 \le |x| \le 1$$
$$\Rightarrow -1 \le |x| \le 3$$
$$\Rightarrow x \in [-3, 3]$$

$$\Rightarrow \frac{1}{2} \le (x^2 + 5x + 8) \le 1$$
$$\Rightarrow \frac{1}{2} \le (x^2 + 5x + 8) \le 2$$
$$\Rightarrow x^2 + 5x + \frac{15}{2} \ge 0$$
$$\Rightarrow x^2 + 2\left(\frac{5}{2}\right)x + \left(\frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{15}{2} \ge 0$$
$$\Rightarrow \left(x + \frac{5}{2}\right)^2 + \frac{5}{4} \ge 0 \text{ and } x^2 + 5x + 6 \le 0$$
$$\Rightarrow (x + 3) (x + 2) \le 0 \Rightarrow x \in [-3, -2]$$

161.
$$f(x) = \sqrt{9 - x^2}$$

 $f(0) = 3, f(3) = 0$
 ∴ $0 \le f(x) \le 3$

$$\therefore$$
 $x \in [0, 3]$

 $f(x) = \begin{cases} -1, & x < -2\\ 1, & x > -2 \end{cases}$ *.*.. Range of f(x) is $\{-1, 1\}$. 163. Let $\frac{x^2 + 34x - 71}{x^2 + 2x - 7} = y$ $\Rightarrow x^{2} (1 - y) + 2(17 - y) x + (7y - 71) = 0$ For real value of x, $b^2 - 4ac \ge 0$ $\Rightarrow v^2 - 14v + 45 \ge 0 \Rightarrow v \ge 9, v \le 5.$ 164. Dom (f) = $R - \{2\}$ For Range (f), let $y = f(x) = \frac{x^2 - 4}{x - 2}$ $y = \frac{(x-2)(x+2)}{(x-2)}$ *.*.. y = (x + 2).... Since, Dom (f) = $R - \{2\}$ *.*.. $x \neq 2$ *.*.. $y \neq (2+2)$ i.e. $y \neq 4$ Range (f) = $R - \{4\}$ *.*.. 165. Let $y = \frac{x^2 - x + 4}{x^2 + x + 4}$ \Rightarrow (y - 1) x^{2} + (y + 1) x + 4y - 4 = 0 For real value of *x*, $b^2 - 4ac \ge 0$ $\Rightarrow (y+1)^2 - 4(y-1)(4y-4) \ge 0$ $\Rightarrow -15y^2 + 34y - 15 \ge 0$ $\Rightarrow 15y^2 - 34y + 15 \ge 0$ $\Rightarrow \left(y - \frac{3}{5}\right) \left(y - \frac{5}{3}\right) \le 0$

162. $f(x) = \frac{x+2}{|x+2|}$

166. Since maximum and minimum values of
$$\cos - \sin x$$
 are $\sqrt{2}$ and $-\sqrt{2}$ respectively, therefore range of $f(x)$ is $[-\sqrt{2}, \sqrt{2}]$.

 $\Rightarrow \frac{3}{5} \le y \le \frac{5}{3}$

167.
$$\cos 2x + 7 = a(2 - \sin x) \Rightarrow a = \frac{\cos 2x + 7}{2 - \sin x}$$

 $\Rightarrow a = \frac{1 - 2\sin^2 x + 7}{2 - \sin x} = \frac{2(4 - \sin^2 x)}{2 - \sin x}$
 $\Rightarrow a = 2(2 + \sin x)$
 $\therefore a \in [2, 6]$ $\dots [\because -1 \le \sin x \le 1]$

				Chapter 01: Sets, Relations and Functions
168.	$\operatorname{Let} y = \log_{\mathrm{e}}(3x^2 + 4)$		171	$f(x) = \tan \left[\frac{\pi^2}{\pi^2} \right]^2$
	$\Rightarrow 3x^2 + 4 = e^y \Rightarrow x^2 = \frac{e^y - 4}{3}$		1/1.	$I(x) - \tan \sqrt{\frac{9}{9}} - x$
	Since, $x^2 \ge 0$			$f(x)$ is real valued function when $\frac{\pi^2}{9} - x^2 \ge 0$
<i>.</i>	$\frac{e^{y}-4}{3} \ge 0 \Rightarrow e^{y}-4 \ge 0 \Rightarrow y \ge \log_{e} 4$			$\Rightarrow x^2 \le \frac{\pi^2}{9} \Rightarrow x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] = \text{Domain of } f(x)$
	$\Rightarrow y \ge 2 \log_e 2$ So, range = [2 log _e 2, ∞)			When domain is in closed interval, we use differentiation method.
169.	Let $y = \log_e \sqrt{4 - x^2} \Rightarrow e^y = \sqrt{4 - x^2}$ $\Rightarrow e^{2y} = 4$ $x^2 \Rightarrow x^2 = 4$ $e^{2y} \Rightarrow x = \sqrt{4 - e^{2y}}$			$f'(x) = \sec^2 \sqrt{\frac{\pi^2}{9} - x^2} \cdot \frac{1}{\sqrt{\pi^2}} (-2x)$
	$\Rightarrow e^{y} - 4 - x \Rightarrow x - 4 - e^{y} \Rightarrow x - \sqrt{4 - e^{y}}$ $4 - e^{2y} \ge 0$			$2\sqrt{\frac{\pi}{9}-x^2}$
	$\Rightarrow e^{2y} \le 4 \Rightarrow 2y \le \log_e 4$			When $f'(x) = 0, x = 0$
	$\Rightarrow y \le \frac{1}{2} \log_{e} 4 \Rightarrow y \le \log_{e} 2$			Finding values of $f(x)$ when $x = 0, -\frac{\pi}{3}, \frac{\pi}{3}$
<i>.</i>	$y \in (-\infty, \log_e 2]$			[End points of domain] π^2 π (π) (π)
	1 $\tan \theta$ 1			$f(0) = \tan \sqrt{\frac{\pi}{9}} = \sqrt{3}$ and $f\left(-\frac{\pi}{3}\right) = f\left(\frac{\pi}{3}\right) = 0$
170.	$f(\theta) = -\tan \theta \qquad 1 \qquad \tan \theta$		<i>.</i>	Range of function = $\begin{bmatrix} 0, \sqrt{3} \end{bmatrix}$
<i>.</i>	$f(\theta) = 2\sec^2\theta \ge 2$			[Taking least value and greatest value for range]
	range of f is $[2, \infty)$.			Tungo]
	Eval	uatior	ı Tes	st
1.	Given, $g(x) = x^2 + x - 2$			$f(\sigma(r)) = (r - \frac{1}{2})^3 + 3(r - \frac{1}{2})$
	and $\frac{1}{2}(gof)(x) = 2x^2 - 5x + 2$		••	$(g(x)) = \begin{pmatrix} x \\ x \end{pmatrix} + S \begin{pmatrix} x \\ x \end{pmatrix}$
	$\Rightarrow g(f(x)) = 4x^2 - 10x + 4$			$f\left(x-\frac{1}{x}\right) = \left(x-\frac{1}{x}\right)^3 + 3\left(x-\frac{1}{x}\right)$
	$\Rightarrow (f(x))^{2} + f(x) - 2 = 4x^{2} - 10x + 4$ $\Rightarrow (f(x))^{2} + f(x) - (4x^{2} - 10x + 6) = 0$			Put $r - \frac{1}{r} = t$
	$\Rightarrow (1(x)) + 1(x) - (4x - 10x + 6) - 0$ $1 + \sqrt{1 + 16x^2 - 40x + 24}$			$\frac{1}{x} = \frac{1}{x}$
	$\Rightarrow f(x) = \frac{-1 \pm \sqrt{1+10x^2 - 40x + 24}}{2}$		 	$f(t) = t^3 + 3t$ \therefore $f(x) = x^3 + 3x$ $f'(x) = 3x^2 + 3$
	$=\frac{-1\pm(4x-5)}{2}=2x-3, -2x+2$		3.	Given, $f(x + y) = f(x) + f(y) \forall x, y \in \mathbb{R}$
2.	$fog(x) = x^3 - \frac{1}{3}$			$\Rightarrow f(2) = f(1+1) = f(1) + f(1) = 2f(1)$ $f(3) = f(2+1) = f(2) + f(1)$
	Since, $\left(x - \frac{1}{x}\right)^3 = x^3 - \frac{1}{x^2} - 3x \cdot \frac{1}{x} \left(x - \frac{1}{x}\right)$			= 2f(1) + f(1) = 3f(1) Continuing in this way, we get
	$\frac{1}{\left(\begin{array}{c}x\right)} x^{3} x\left(\begin{array}{c}x\right)$		•	$f(\mathbf{r}) = \mathbf{r}f(1) \in \mathbf{N}$ $\sum_{n=1}^{n} f(\mathbf{r}) = \sum_{n=1}^{n} \mathbf{r}f(1) = f(1) \sum_{n=1}^{n} \mathbf{r}$
<i>.</i> .	$x^{3} - \frac{1}{x^{3}} = \left(x - \frac{1}{x}\right) + 3\left(x - \frac{1}{x}\right)$			$= 7(1 + 2 + 3 + \dots + n)$
	Given, $f(g(x)) = x^3 - \frac{1}{x^3}$			$=\frac{7n(n+1)}{2}$

135

		_	
МНТ	-CET Triumph Maths (Hints)	TM	
4.	Given, $f(x) = x^2 - 3$		Let $(x, y) \in T$ and $(y, z) \in T$.
<i>:</i> .	$f(-1) = (-1)^2 - 3 = -2$		Then, $x - y$ is an integer and $y - z$ is an integer
	\Rightarrow (fof)(-1) = f(-2) = (-2)^2 - 3 = 1		\Rightarrow x – z is an integer
	\Rightarrow (fofof)(-1) = f(1) = 1 ² - 3 = -2(i)		\Rightarrow (<i>x</i> , <i>z</i>) \in T
	Similarly, $(fofof)(0) = 33$ (ii)		T is transitive on R.
	and $(fofof)(1) = -2$ (iii)		So, T is an equivalence relation on R.
	From (i), (ii) and (iii), we get	8.	Here, $(0, 3) \in \mathbb{R}$, because $0 = 0 \times 3$
	(fofof)(-1) + (fofof)(0) + (fofof)(1)		But, $(3, 0) \notin \mathbb{R}$,
	$= -2 + 33 - 2 = 29 = f(4\sqrt{2})$		because $3 \neq$ (any rational number) $\times 0$
			So, R is not a symmetric relation and hence it
5.	$x = \left(\sqrt{3} + 1\right)^5$		is not an equivalence relation.
	$= {}^{5}C_{0} \left(\sqrt{3}\right)^{5} + {}^{5}C_{1} \left(\sqrt{3}\right)^{4} + {}^{5}C_{2} \left(\sqrt{3}\right)^{3}$		$S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) : m, n, p \text{ and } q \text{ are integers} \right.$
	$+{}^{5}C(\sqrt{3})^{2}+{}^{5}C(\sqrt{3})^{1}+{}^{5}C$		such that $n, q \neq 0$ and $qm = pn$
	$(\overline{z})^{5} \qquad (\overline{z})^{-5}$		Let m, $n \in Z$ such that $n \neq 0$. Then,
	$= (\sqrt{3}) + 5(9) + 10(3\sqrt{3}) + 30 + 5\sqrt{3} + 1$		$mn = nm \rightarrow \frac{m}{m} = \frac{m}{m} \rightarrow \left(\frac{m}{m}, \frac{m}{m}\right) \in S$
	$= 76 + 44\sqrt{3} = 152.20$		$\lim_{n \to \infty} -\lim_{n \to \infty} -\frac{1}{n} \rightarrow \left(\frac{1}{n}, \frac{1}{n}\right) \in S$
<i>.</i>	[x] = [152.20] = 152		So, S is reflexive.
6.	f(x + y) = f(x) + f(y)(i)		Let $\left(\frac{\mathbf{m}}{\mathbf{p}}, \frac{\mathbf{p}}{\mathbf{p}}\right) \in \mathbf{S}$. Then,
	Putting $x = y = 1$ in (i), we get		(n q)
	I(2) = 2I(1)		$qm = pn \Longrightarrow np = mq$
	$\Rightarrow f(2) = 2(5) \dots [\because f(1) = 5(given)]$		$\Rightarrow \left(\frac{p}{m}, \frac{m}{m}\right) \in S$
	Futting $x - 2$ and $y - 1$ in (1), we get f(3) = f(2) + f(1) = 3(5)		$\left(q \cdot n \right)$
	Similarly, $f(4) = 4(5)$		So, S is symmetric.
	f(5) = 5(5)		Let $\left(\frac{m}{n}, \frac{p}{q}\right) \in S$ and $\left(\frac{p}{q}, \frac{r}{s}\right) \in S$.
			Then, $qm = pn$ and $sp = rq$
			\Rightarrow (qm) (sp) = (pn) (rq)
7	I(100) = 100(5) = 500 For any $r \in (0, 2)$, $r \neq r + 1$		\Rightarrow sm = rn \Rightarrow $\begin{pmatrix} m & r \\ r \end{pmatrix} \in S$
/. 	For any $x \in (0, 2), x \neq x + 1$ $(x, x) \notin S.$		\Rightarrow sin - in \Rightarrow $\left(\frac{-}{n}, \frac{-}{s}\right) \in S$
	S is not a reflexive relation.		So, S is transitive.
	So, S is not an equivalence relation.		Hence, S is an equivalence relation.
	$T = \{(x, y): x - y \text{ is an integer}\}\$	9.	$\theta \in P$
	For any $x \in \mathbb{R}$,		$\Rightarrow \sin \theta - \cos \theta = \sqrt{2} \cos \theta$
	x - x = 0, which is an integer.		$\Rightarrow (\sin \theta - \cos \theta)^2 = 2 \cos^2 \theta$
	$\rightarrow (x, x) \in I$ T is reflexive on R		$\Rightarrow \sin^2 \theta + \cos^2 \theta - 2 \sin \theta \cos \theta = 2 \cos^2 \theta$
••	Let $(x, v) \in T$. Then		$\Rightarrow \cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = 2\sin^2\theta$
	x - y is an integer		$\Rightarrow (\cos \theta + \sin \theta)^2 = 2 \sin^2 \theta$
	$\Rightarrow y - x$ is an integer		$\Rightarrow \cos \theta + \sin \theta = \sqrt{2} \sin \theta$
	$\Rightarrow (y, x) \in \mathbf{T}$		$\Rightarrow \theta \in Q$
.:.	T is symmetric on R.		$\mathbf{P} = \mathbf{Q}$

10. f(x) is defined for $-1 \le \frac{8 \cdot 3^{x-2}}{1 - 3^{2(x-1)}} \le 1$ $\Rightarrow -1 \le \frac{(3^2 - 1)(3^{x-2})}{1 - 3^{2x-2}} \le 1$ $\Rightarrow -1 \le \frac{3^x - 3^{x-2}}{1 - 3^{2x-2}} \le 1$

$$\Rightarrow \frac{3^{x} - 3^{x-2}}{1 - 3^{2x-2}} + 1 \ge 0 \text{ and } \frac{3^{x} - 3^{x-2}}{1 - 3^{2x-2}} - 1 \le 0$$

$$\Rightarrow \frac{1 + 3^{x} - 3^{x-2} - 3^{2x-2}}{1 - 3^{2x-2}} \ge 0$$
and $\frac{3^{x} - 3^{x-2} - 1 + 3^{2x-2}}{1 - 3^{2x-2}} \le 0$

$$\Rightarrow \frac{(3^{x} + 1)(3^{x-2} - 1)}{(3^{x} \cdot 3^{x-2} - 1)} \ge 0 \text{ and } \frac{(3^{x} - 1)(3^{x-2} + 1)}{(3^{2x-2} - 1)} \ge 0$$

$$\Rightarrow \frac{(3^{x-2} - 1)}{(3^{x} \cdot 3^{x-2} - 1)} \ge 0 \text{ and } \frac{(3^{x} - 1)}{(3^{2x-2} - 1)} \ge 0$$

$$\Rightarrow \frac{(3^{x} - 3^{2})}{(3^{2x} - 3^{2})} \ge 0 \text{ and } \frac{(3^{x} - 1)}{(3^{2x} - 3^{2})} \ge 0$$

$$\Rightarrow \frac{(3^{x} - 3^{2})}{(3^{x} - 3)} \ge 0 \text{ and } \frac{(3^{x} - 1)}{(3^{x} - 3)} \ge 0$$

$$\Rightarrow x \in (-\infty, 1] \cup [2, \infty) \text{ and } x \in (-\infty, 0] \cup (1, \infty)$$

$$\Rightarrow x \in (-\infty, 0] \cup [2, \infty)$$

11.
$$f(x - y) = f(x) f(y) - f(a - x) f(a + y)$$

Putting $x = 0$ and $y = 0$, we get
 $f(0) = \{f(0)\}^2 - \{f(a)\}^2$
 $\Rightarrow 1 = 1 - \{f(a)\}^2 \Rightarrow f(a) = 0$
Now, $f(2a - x) = f(a - (x - a))$
 $= f(a) f(x - a) - f(a - a) f(a + x - a)$
 $= f(a) f(x - a) - f(0) f(x)$
 $= f(a) f(x - a) - f(x)$
....[$\because f(0) = 1$ (given)]
 $= - f(x)$

12.
$$n[(A \times B) \cap (B \times A)] = n[(A \cap B) \times (B \cap A)]$$

= $n(A \cap B) \times n(B \cap A) = 3 \times 3 = 9$

13. Given,
$$2\cos^2 \theta + \sin \theta \le 2$$
 and $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$
 $\Rightarrow 2 - 2\sin^2 \theta + \sin \theta \le 2$
 $\Rightarrow 2\sin^2 \theta - \sin \theta \ge 0$
 $\Rightarrow \sin \theta (2\sin \theta - 1) \ge 0$
 $\Rightarrow \sin \theta \ge 0$ and $2\sin \theta - 1 \ge 0$ or
 $\sin \theta \le 0$ and $2\sin \theta - 1 \le 0$

Chapter 01: Sets, Relations and Functions

Case I:

$$\sin \theta \ge 0 \text{ and } 2 \sin \theta - 1 \ge 0$$

 $\Rightarrow \sin \theta \ge 0 \text{ and } \sin \theta \ge \frac{1}{2}$
 $\Rightarrow \frac{\pi}{6} \le \theta \le \frac{5\pi}{6}$
 $A \cap B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{5\pi}{6} \right\}$
 $\dots \left[\because B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{3\pi}{2} \right\} \right]$

Case II: $\sin \theta \le 0 \text{ and } 2 \sin \theta - 1 \le 0$ $\Rightarrow \sin \theta \le 0 \text{ and } \sin \theta \le \frac{1}{2}$ $\Rightarrow \pi \le \theta \le 2\pi$ $\therefore \quad A \cap B = \left\{ \theta : \pi \le \theta \le \frac{3\pi}{2} \right\}$ $\dots \left[\because B = \left\{ \theta : \frac{\pi}{2} \le \theta \le \frac{3\pi}{2} \right\} \right]$

From Case I and II, we get

:..

$$\mathbf{A} \cap \mathbf{B} = \left\{ \boldsymbol{\theta} : \frac{\pi}{2} \le \boldsymbol{\theta} \le \frac{5\pi}{6} \right\} \cup \left\{ \boldsymbol{\theta} : \pi \le \boldsymbol{\theta} \le \frac{3\pi}{2} \right\}$$

14. Given,
$$f(x) = \sqrt{\log_{10} \left\{ \frac{\log_{10} x}{2(3 - \log_{10} x)} \right\}}$$

Now, f(x) is defined, if

$$\log_{10}\left\{\frac{\log_{10} x}{2(3-\log_{10} x)}\right\} \ge 0, \ \frac{\log_{10} x}{2(3-\log_{10} x)} > 0$$

and $x > 0$

$$\Rightarrow \frac{\log_{10} x}{2(3 - \log_{10} x)} \ge 10^0 = 1, \ \frac{\log_{10} x}{(3 - \log_{10} x)} > 0$$

and $x \ge 0$

$$\Rightarrow \frac{3(\log_{10} x - 2)}{2(\log_{10} x - 3)} \le 0, \ \frac{\log_{10} x}{\log_{10} x - 3} < 0 \text{ and } x > 0$$
$$\Rightarrow 2 \le \log_{10} x < 3, \ 0 < \log_{10} x < 3 \text{ and } x > 0$$
$$\Rightarrow 10^2 \le x < 10^3, \ 10^0 < x < 10^3 \text{ and } x > 0$$
$$\Rightarrow 10^2 \le x < 10^3$$

$$\Rightarrow x \in [10^2, 10^3)$$

Textbook Chapter No.

Sequence and Series

Hints

Classical Thinking a = 21, d = 16 - 21 = -51. $t_n = a + (n-1)d$ $t_{15} = 21 + (15 - 1)(-5) = 21 - 70 = -49$ *.*.. $a = \sqrt{3}$, $d = \sqrt{12} - \sqrt{3} = \sqrt{3}$ 2. $t_{10} = \sqrt{3} + 9\sqrt{3} = 10\sqrt{3} = \sqrt{300}$ *.*.. Given series 3. $\left(3-\frac{1}{n}\right)+\left(3-\frac{2}{n}\right)+\left(3-\frac{3}{n}\right)+\dots(A.P.)$ Therefore, common difference $d = \left(3 - \frac{2}{n}\right) - \left(3 - \frac{1}{n}\right) = -\frac{1}{n}$ and first term $a = \left(3 - \frac{1}{n}\right)$ Now, p^{th} term of the series = a + (p - 1)d $= \left(3 - \frac{1}{n}\right) + (p-1)\left(-\frac{1}{n}\right)$ $=3-\frac{1}{n}+\frac{1}{n}-\frac{p}{n}=\left(3-\frac{p}{n}\right)$ 4. d-c=e-d $\Rightarrow 2d = e + c$ $\Rightarrow 2d - 2c = e + c - 2c$ $\Rightarrow 2(d-c) = e-c$ 5. a, b, c are in A.P., dividing by bc we get $\frac{a}{bc}$, $\frac{1}{c}$, $\frac{1}{b}$ are in A.P. a = 3, d = 36. Let there be n terms. *.*.. 3 + (n-1)3 = 111 \Rightarrow n = 37 a = 72, d = -27. Let nth term be 40. $\mathbf{t}_{n} = \mathbf{a} + (n-1)\mathbf{d}$ *.*.. 40 = 72 + (n - 1)(-2)*.*.. \Rightarrow n = 17 d = -1 + 2i, $t_4 = t_3 + d = 6 - 2i + (-1 + 2i) = 5$ 8.

9. Given that, 9th term = a + (9 - 1)d = 0 \Rightarrow a + 8d = 0 Now, ratio of 29th and 19th terms $= \frac{a + 28d}{a + 18d} = \frac{(a + 8d) + 20d}{(a + 8d) + 10d} = \frac{20d}{10d} = \frac{2}{1}$

10. Let the first term and common difference of an A.P. be A and D respectively. Now, pth term = A + (p - 1)D = a qth term = A + (q - 1)D = b and rth term = A + (r - 1)D = c ∴ a(q - r) + b(r - p) + c(p - q) = a { b - c D + $b { c - a}$ + $c { a - b}$ D = $\frac{1}{D} (ab - ac + bc - ab + ca - bc) = 0$

11.
$$S_n = 3(4^n - 1)$$

∴ $S_{n-1} = 3(4^{n-1} - 1)$
∴ $t_n = S_n - S_{n-1} = 3(4^n - 1) - 3(4^{n-1} - 1) = 9(4^{n-1})$

12. Required sum
$$= 1 + 3 + 5 + \dots$$
 upto n terms

$$= \frac{n}{2} [2 \times 1 + (n-1)2]$$

= n²

13. Given that first term a = 10, last term l = 50and sum S = 300

$$S = \frac{n}{2} (a+l) \Longrightarrow 300 = \frac{n}{2} (10+50) \Longrightarrow n = 10$$

14.
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

 $\Rightarrow 406 = \frac{n}{2} [6 + (n-1)4]$
 $\Rightarrow 812 = n[6 + 4n - 4] \Rightarrow 812 = 2n + 4n^2$
 $\Rightarrow 406 = 2n^2 + n \Rightarrow 2n^2 + n - 406 = 0$
 $\Rightarrow n = \frac{-1 \pm \sqrt{1 + 4.2.406}}{2.2} = \frac{-1 \pm \sqrt{3249}}{4}$
 $= \frac{-1 \pm 57}{4}$
Taking (+) sign, $n = \frac{-1 + 57}{4} = 14$

which is purely real.

Chapter 04: Sequence and Series

15.
$$S_n = 3n^2 - n$$
$$\Rightarrow 3n^2 - n = \frac{n}{2} [2a + (n-1)6]$$
$$\Rightarrow a = 2$$

16.
$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

∴
$$S_{16} = \frac{16}{2} [2(4) + (15)d]$$

⇒ 784 = 8 (8 + 15d)
⇒ 8 + 15d = $\frac{784}{8}$
⇒ 15d = 90
⇒ d = 6

17.
$$t_7 = 40 \Rightarrow a + 6d = 40$$

 $S_{13} = \frac{13}{2} [2a + (13 - 1)d] = 13(a + 6d) = 520$

18. $t_4 = a + 3d = 4$ and

$$S_7 = \frac{7}{2} [2a + (7 - 1)d] = \frac{7}{2} [2a + 6d]$$

= 7(a + 3d)
= 7(4) = 28

19. The terms of given sequence are in A.P. with a = 1, d = 5 and $S_n = 148$

$$\therefore \quad \frac{n}{2} [2a + (n-1)d] = 148 \Longrightarrow n = 8$$

Now, $x = n^{\text{th}} \text{ term} \Longrightarrow x = a + (n-1)d = 36$

20. $(x + 1) + (x + 4) + \dots + (x + 28) = 155$ Let n be the number of terms in the A.P. on L.H.S. Then, $x + 28 = (x + 1) + (n - 1) \ 3 \Rightarrow n = 10$. $(x + 1) + (x + 4) + \dots + (x + 28) = 155$

$$\therefore \quad (x+1) + (x+4) + \dots + (x+28) = 153$$
$$\Rightarrow \frac{10}{2} [(x+1) + (x+28)] = 155$$
$$\Rightarrow x = 1$$

21.
$$S_5 = \frac{1}{4} (S_{10} - S_5) \Rightarrow 5S_5 = S_{10}$$

$$\therefore \quad 5 \times \frac{5}{2} (2 \times 2 + 4d) = \frac{10}{2} (2 \times 2 + 9d)$$

$$\Rightarrow d = -6$$

22. Here,
$$\frac{1}{3}$$
, A₁, A₂, $\frac{1}{24}$ will be in A.P.,
then A₁ - $\frac{1}{3} = \frac{1}{24} - A_2$
 $\Rightarrow A_1 + A_2 = \frac{3}{8}$ (i)

Now, A_1 is a arithmetic mean of $\frac{1}{2}$ and A_2 . $2A_1 = \frac{1}{2} + A_2 \Longrightarrow 2A_1 - A_2 = \frac{1}{2}$ (ii) *.*.. From (i) and (ii), we get $A_1 = \frac{17}{72}$ and $A_2 = \frac{5}{36}$ Let the two numbers be a and b and let 23. A_1, A_2, \ldots, A_n be the n A.M.'s between them. Then a, A_1 , A_2 , ..., A_n , b are in A.P. and let d be the common difference. Now, $T_{n+2} = b = a + (n+2-1)d$ \Rightarrow d = $\frac{b-a}{n+1}$ Also, $A_1 + A_2 + \dots + A_n = S_{n+1} - a$ $=\frac{1}{2}(n+1)\left|2a+(n+1-1)\frac{(b-a)}{(n+1)}\right|-a$ $=\frac{n}{2}[2a+(b-a)]=\frac{n}{2}(a+b)=n\left(\frac{a+b}{2}\right)$ S = Na*.*.. 24. Let the three numbers be a + d, a, a - d. therefore, a + d + a + a - d = 33 $\Rightarrow a = 11$ and a(a + d)(a - d) = 792 $\Rightarrow 11(121 - d^2) = 792 \Rightarrow d = 7$ The required numbers are 4, 11, 18. Hence, the smallest number is 4. $t_n = ar^{n-1} = 1.(2)^{n-1} = 2^{n-1}$ 25. Given sequence is $\sqrt{2}, \sqrt{10}, \sqrt{50}$ 26. Common ratio $r = \sqrt{5}$, first term $a = \sqrt{2}$, then 7th term $t_7 = \sqrt{2}(\sqrt{5})^{7-1} = \sqrt{2}(\sqrt{5})^6 = \sqrt{2}(5)^3 = 125\sqrt{2}$ 28. $t_n = ar^{n-1} = 1\left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-1}$ 29. $a = 3, r = \frac{\left(\frac{-3}{2}\right)}{3} = \frac{-1}{2}$ \Rightarrow t_n = arⁿ⁻¹ = 3 $\left(\frac{-1}{2}\right)^{n-1}$ 30. Let r be common ratio of G.P. \Rightarrow t₃ = r², t₅ = r⁴

МНТ	-CET Triumph Maths (Hints)		
31.	Accordingly, $ar^9 = 9$ and $ar^3 = 4$		$o(r^{n} 1)$
	3 3 8	41.	$S_n = \frac{a(1 - 1)}{2}, r = 2$
	$r^{2} = -\frac{1}{2}$ and $a = -\frac{1}{3}$		r-1
÷	7 th term i.e., $ar^6 = \frac{8}{3} \left(\frac{3}{2}\right)^2 = 6$	÷	$S_8 = \frac{a(2^8 - 1)}{2 - 1} \implies a(2^8 - 1) = 510 \implies a = 2$
	Trick : 7 th term is equidistant from 10 th and 4 th		$t_3 = 2(2)^{3-1} = 2(2)^2 = 8$
	so it will be $\sqrt{9 \times 4} = 6$.	42.	$S_n = 2 + 22 + 222 + \dots n$ terms
33.	$t_3 = ar^{3-1} = ar^2 = 20$ and		$= 2 [1 + 11 + 111 + \dots n \text{ terms}]$
	$t_7 = ar^{7-1} = ar^6 = 320$		$=\frac{2}{100}[(10-1)+(100-1)+(1000-1)]$
	Solving, $a = 5$ and $r = 2$		$-\frac{1}{9}\left[(10-1)+(100-1)+(1000-1)\right]$
34	a 8 b are in G P and a \neq b		+ n terms]
51.	$\Rightarrow \frac{8}{a} = \frac{b}{8} \Rightarrow ab = 64$		$= \frac{2}{9} \left[10 \left(\frac{10^{n} - 1}{10 - 1} \right) - n \right] = \frac{2}{9} \left[\frac{10}{9} (10^{n} - 1) - n \right]$
	and a, b, -8 are in A.P.		2
	\Rightarrow b - a = -8 - b		$=\frac{2}{91}[10(10^{n}-1)-9n]$
<i>.</i>	$\mathbf{b} = \left(\frac{\mathbf{a} - 8}{2}\right)$	43.	$S_n = 0.9 + 0.99 + 0.999 + \dots n$ terms
	Solving, $a = 16$ and $b = 4$		= 1 - 0.1 + 1 - 0.01 + 1 - 0.001
35	a = 5 r = 3		$+ \dots$ if terms
	$a(r^{n}-1) = 5(3^{n}-1)$		-[0 1 + 0 01 + 0 001 + n terms]
	$S_n = \frac{r}{r-1} = \frac{r}{2}$		$\begin{bmatrix} 1 - (0 \ 1)^n \end{bmatrix}$
	12		$= n - 0.1 \left \frac{1 - (0.1)}{1 - 0.1} \right $
36.	$a = 3$ and $r = \frac{12}{3} = 4 > 1$		
	5 [n 1] [4n 1]		$= n - \frac{1}{2} [1 - (0.1)^{n}]$
<i>.</i> .	$S_n = a \left \frac{r-1}{r-1} \right = 3 \left \frac{4-1}{4-1} \right = 4^n - 1$		9
20			$=\frac{9n-[1-(0.1)^n]}{2}$
38.	a = 1, r = 3		9
	$S_n = \frac{a(r^2 - 1)}{r^2}$	44.	$a = 2, S_{\infty} = 6$
	r-1		Now S = ^a
	$3280 = \frac{3^{n} - 1}{2}$		Now, $S_{\infty} = \frac{1-r}{1-r}$
	$\frac{2}{2}$		$\rightarrow 6 = 2$
	0301 - 3 $\Rightarrow 2^8 - 2^n \Rightarrow n - 9$		$\rightarrow 0 - \frac{1-r}{1-r}$
• •	$\rightarrow 3 - 3 \rightarrow 11 - 8$		$\rightarrow 1$ $r = 1$
39.	Let n be the number of terms needed.		$\rightarrow 1 - 1 - \frac{1}{3}$
	For G.P. 2, 2, 2 ^r ,, $a = 2$, $r = 2$ and $S_n = 30$		$\rightarrow r = 1$ 1
	$S_n = \frac{a(r^n - 1)}{2} \Longrightarrow 30 = \frac{2(2^n - 1)}{2} \Longrightarrow n = 4$		\Rightarrow r - r - $\frac{1}{3}$
	r-1 $2-1$ $r-1$		2
40.	$S_8 = 82 (S_4)$		$\Rightarrow r = \frac{1}{3}$
	Let the G.P. be $a + ar + ar^2 + \dots$, then		2/4 4
	$a(r^{3}-1) = \left[a(r^{4}-1)\right]$	45.	According to condition, $\frac{5/4}{1-\pi} = \frac{4}{2}$
	$\frac{1}{(r-1)} = 82\left\{\frac{1}{r-1}\right\}$		1-r 3
	$(r^4 - 1)(r^4 + 1) = 92(r^4 - 1)$		\Rightarrow r = $\frac{1}{16}$
	$(1 - 1)(1 + 1) - \delta 2(1 - 1)$ $\rightarrow r^4 + 1 = 82$		10
	$r^4 = 81$	46	$\frac{g_1}{g_1} = \frac{q}{g_1} \rightarrow g_1 g_2 = pq$
	\Rightarrow r = 3	10.	$p g_2 F_1 = F_2 F_1 = F_2$

47. Let 1,a, b, 64 $\Rightarrow a^2 = b \text{ and } b^2 = 64a$ $\Rightarrow a = 4 \text{ and } b = 16$

- 48. Let the numbers be a, ar, ar^2 Sum = 70 $\Rightarrow a(1 + r + r^2) = 70$ It is given that 4a, 5ar, 4ar² are in A.P.
- $\therefore \quad 2(5ar) = 4a + 4ar^2 \Rightarrow r = 2 \text{ or } r = \frac{1}{2}$ Substituting values of r, a = 10 and a = 40 $\therefore \quad \text{The numbers are 10, 20, 40 or 40, 20, 10}$
- 49. Let numbers are $\frac{a}{r}$, a, ar According to given conditions,

 $\frac{a}{r} \cdot a \cdot ar = 216$ $\Rightarrow a = 6$ And, sum of product pairwise = 156 $\Rightarrow \frac{a}{r} \cdot a + \frac{a}{r} \cdot ar + a \cdot ar = 156$ $\Rightarrow r = 3$ Hence, numbers are 2, 6, 18. **Trick :** Since 2 × 6 × 18 = 216 (as given) and

50. Considering corresponding A.P. a + 6d = 10 and $a + 11d = 25 \Rightarrow d = 3$, a = -8 $\Rightarrow t_{20} = a + 19d = -8 + 57 = 49$ Hence, 20th term of the corresponding H.P. is $\frac{1}{49}$.

no other option gives the value.

53. \therefore H < G < A

- 54. (A.M.) (H.M.) = $(G.M)^2$ $\Rightarrow 9.36 = (G.M)^2 \Rightarrow G.M. = 18$
- 56. $G^2 = AH$ $\Rightarrow 144 = 25H$ $\Rightarrow H = 5.76$

...

58. Let S = 1 + 3x + 5x² + 7x³ + Then, xS = 1x + 3x² + 5x³ + S - xS = 1 + 2x + 2x² + 2x³ + to ∞ ∴ S(1 - x) = 1 + 2x + 2x² + 2x³ + to ∞

$$= 1 + \frac{2x}{1-x} = \frac{1-x+2x}{1-x}$$
$$S = \frac{1+x}{(1-x)^2}$$

Chapter 04: Sequence and Series 59. Here a = 3, d = 2 and r = rNow $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} (|r| < 1)$ $S_{\infty} = \frac{3}{1-r} + \frac{2r}{(1-r)^2}$ \therefore $\frac{44}{9} = \frac{3-r}{(1-r)^2}$ *.*.. $\therefore 44r^2 - 79r + 17 = 0$ \therefore r = $\frac{1}{4}$ or $\frac{17}{11}$ But, $r \neq \frac{17}{11}$ \therefore r = $\frac{1}{4}$ 60. $\sum_{r=1}^{n} (2r+5) = 2 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 5 = \frac{2(n)(n+1)}{2} + 5n$ 61. $(2^2 - 1^2) + (4^2 - 3^2) + (6^2 - 5^2) + \dots$ = $(2^2 + 4^2 + 6^2 + \dots) - (1^2 + 3^2 + 5^2 + \dots)$ $=\sum_{n=1}^{n} (2r)^{2} - \sum_{n=1}^{n} (2r-1)^{2} = \sum_{n=1}^{n} 4r - \sum_{n=1}^{n} 1$ $=4\left\lfloor\frac{n(n+1)}{2}\right\rceil - n = n(2n+1)$ 62. $\frac{n(n+1)(2n+1)}{6} = 1015$... n(n+1)(2n+1) = 6090 \Rightarrow n(n + 1)(2n + 1) = 14 × 15 × 29 \Rightarrow n = 14 63. $(31)^2 + (32)^2 + (33)^2 + \dots + (60)^2$ = $[(1)^2 + (2)^2 + (3)^2 + \dots + (60)^2]$ $-[(1)^2 + (2)^2 + (3)^2 + (30)^2]$

$$= \sum_{r=1}^{60} r^2 - \sum_{r=1}^{30} r^2 = 64355$$

The first factors of the terms of the

- 64. The first factors of the terms of the given series is 1, 2, 3, 4,, n and second factors of the terms of the given series is 2, 3, 4,(n + 1)
- ∴ n^{th} term of the given series = $n(n + 1) = n^2 + n$ Hence, sum =

$$\Sigma n^{2} + \Sigma n = \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}(n+1)$$
$$= \frac{1}{6}n(n+1)(2n+1+3)$$
$$= \frac{1}{3}n(n+1)(n+2)$$

MHT-CET Triumph Maths (Hints) $1^{3} + 2^{3} + 3^{3} + \dots + 25^{3} = \sum_{i=1}^{25} r^{3}$ 65. $=\frac{(25)^2(25+1)^2}{4}$ = 1056252(1)² + 3(2)² + 4(3)² + ... upto 10 terms 66. $= \sum_{r=1}^{10} (r+1)r^2 = \sum_{r=1}^{10} r^3 + \sum_{r=1}^{10} r^2 = 3410$ 67. $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ $= \log_{e} (1 + x)$ $1 + x = e^{y} \Longrightarrow x = e^{y} - 1$ *.*.. Sum of given series = $y + \frac{y^2}{2} + \frac{y^3}{3} + \dots$, 68. where $v = x^2$. Sum of given series = $-\log(1 - y)$ *.*.. $= -\log_{2}(1 - x^{2})$ $\log_e 3 - \frac{\log_e 3^2}{2^2} + \frac{\log_3 3^3}{2^2} - \frac{\log_e 3^4}{4^2} + \dots$ 69. $= \log_{e} 3 \left\{ 1 - \frac{2}{2^{2}} + \frac{3}{3^{2}} - \frac{4}{4^{2}} + \dots \right\}$ $= \log_{e} 3 \left\{ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \right\}$ $= \log_{e} 3 \log_{e} (1 + 1) = \log_{e} 3 \log_{e} 2$ **Critical Thinking** $\frac{1}{1+\sqrt{r}}, \frac{1}{1-r}, \frac{1}{1-\sqrt{r}}, \dots$ 1. i.e., $\frac{1-\sqrt{x}}{1-r}$, $\frac{1}{1-r}$, $\frac{1+\sqrt{x}}{1-r}$, ..., which is an A.P. with $d = \frac{\sqrt{x}}{1-r}$ The fourth term = $t_3 + d = \frac{1 + \sqrt{x}}{1 - r} + \frac{\sqrt{x}}{1 - r}$ Ŀ. $=\frac{1+2\sqrt{x}}{1-x}$ Here, $T_n = 3n - 1$, putting n = 1, 2, 3, 4, 5 we 2. get first five terms, 2, 5, 8, 11, 14 Hence, sum is 2 + 5 + 8 + 11 + 14 = 40. Given series 3.8 + 6.11 + 9.14 + 12.17 + 3. First factors are 3, 6, 9, 12 whose nth term is 3n and second factors are 8, 11, 14, 17

 $t_n = [8 + (n-1)3] = (3n+5)$

Hence n^{th} term of given series = 3n(3n + 5).

4. Required number n is the number of terms in the series $105 + 112 + 119 + \dots + 994$

$$\therefore \quad 994 = n^{\text{th}} \text{ term of the above A.P.}$$

$$\Rightarrow 994 = 105 + (n - 1) \times 7$$

$$\Rightarrow n = \frac{994 - 98}{7}$$

 \Rightarrow n = 128

- 5. Given sequence is in A.P.
- : a = 8 6i, d = -1 + 2i

$$\therefore \quad t_n = a + (n - 1)d = (9 - n) + i(2n - 8)$$

For purely imaginary term, $9 - n = 0$
 $\Rightarrow n = 9$

6. First term = a, d = b - a and last term = c If the no. of terms is n, then

$$t_n = c = a + (n-1)(b-a) \Longrightarrow \frac{c-a}{b-a} = n-1$$

Solving, $n = \frac{b+c-2a}{b-a}$

- 7. d = b a and if the number of terms is n, then 2a = a + (n - 1)(b - a) $\Rightarrow \frac{a}{b-a} + 1 = n \Rightarrow n = \frac{b}{b-a}$
- 8. a, b, c are in A.P.

$$\Rightarrow b - a = c - b \Rightarrow \frac{b - a}{c - b} = 1$$

9. If D is the common difference of the A.P. a, b, c, d, e, then b = a + D, c = a + 2D, d = a + 3D, e = a + 4D

$$\therefore \quad a - 4b + 6c - 4d + e \\ = a - 4(a + D) + 6(a + 2D) \\ - 4(a + 3D) + a + 4D = 0$$

- 10. Suppose that $\angle A = x^{\circ}$, then $\angle B = x + 10^{\circ}$, $\angle C = x + 20^{\circ}$ and $\angle D = x + 30^{\circ}$ So, we know that $\angle A + \angle B + \angle C + \angle D = 2\pi$ Putting these values, we get $(x^{\circ}) + (x^{\circ} + 10^{\circ}) + (x^{\circ} + 20^{\circ}) + (x^{\circ} + 30^{\circ}) = 360^{\circ}$ $\Rightarrow x = 75^{\circ}$ Hence, the angles of the quadrilateral are 75° , 85° , 95° , 105° .
- 11. As we know $T_n = S_n S_{n-1}$ = $(2n^2 + 5n) - \{2(n-1)^2 + 5(n-1)\}\)$ = $2n^2 + 5n - 2n^2 + 4n - 2 - 5n + 5$ = 4n + 3
Chapter 04: Sequence and Series

12.
$$t_n = S_n - S_{n-1}$$

= $\left\{ nP + \frac{n(n-1)}{2}Q \right\}$
- $\left\{ (n-1)P + \frac{(n-1)(n-2)}{2}Q \right\}$

$$= \mathbf{P} + (\mathbf{n} - 1)\mathbf{Q}$$

- $\therefore \quad \text{Common difference} = t_n t_{n-1}$ = [P + (n-1)Q] [P + (n-2)Q] = Q
- 13. $d = \frac{1}{3} \frac{1}{2} = \frac{-1}{6}$ $\therefore S_9 = \frac{9}{2} \left\{ 2 \times \frac{1}{2} + (9-1) \left(\frac{-1}{6} \right) \right\} = -\frac{3}{2}$
- 14. Required sum = 10 + 13 + 16 + ... + 97= $\frac{n}{2}(10 + 97)(i)$ Here, $97 = 10 + (n - 1)3 \Rightarrow n = 30$

:. From (i),
$$S_n = \frac{30}{2}(10+97) = 1605$$

- 15. The smallest 3 digit no. divisible by 7 is 105 and greatest is 994.Given sequence is in A.P. with d = 7
- $\therefore \qquad 994 = 105 + (n-1)7 \Longrightarrow n = 128$

$$\therefore \quad S_n = \frac{11}{2} [2a + (n-1)d] \\ = \frac{128}{2} [2(105) + (128 - 1)7] = 70336$$

16. According to the given condition

 $\frac{15}{2}[10 + 14 \times d] = 390 \implies d = 3$ Hence, middle term i.e., 8th term is given by $5 + 7 \times 3 = 26$

17. l = a + (n - 1)d and

$$S_n = \frac{n}{2} \left(a + l \right)$$

Eliminating a, we get

$$S_n = \frac{n}{2} \{l - (n-1)d + l\} = \frac{n}{2} \{2l - (n-1)d\}$$

18. Suppose work is completed in n days $\frac{n}{2} [2 \times 150 + (n-1)(-4)] = n(152 - 2n)$

Had no worker dropped from work, total no. of workers who would have worked all the n days is 150 (n - 8)

 $\therefore \quad n(152 - 2n) = 150(n - 8) \Longrightarrow n = 25$

19. d = -2, sum = -5
∴ -5 =
$$\frac{5}{2}$$
 {2 a + 4(-2)} ⇒ a = 3
Hence, the actual sum (when d = 2) is
 $\frac{5}{2}$ {2×3+(5-1)×2} = $\frac{5}{2}$ (6+8) = 35
21. Here a = S₁ = 6
S₇ = 105 ⇒ $\frac{7}{2}$ [2×6+(7-1)d] = 105 ⇒ d = 3
∴ $\frac{S_n}{S_{n-3}} = \frac{\frac{n}{2}$ {2×6+(n-1)3}}{\frac{(n-3)}{2}{2×6+(n-4)3} = $\frac{n+3}{n-3}$

22.
$$S_{2n} = 3S_n$$

 $\therefore \frac{2n}{2} [2a + (2n - 1)d] = \frac{3n}{2} [2a + (n - 1)d]$
 $\Rightarrow 2a = (n + 1)d$
 $\therefore \frac{S_{3n}}{S_n} = \frac{\frac{3n}{2} [2a + (3n - 1)d]}{\frac{n}{2} [2a + (n - 1)d]} = 6$

23. Let S_n and S'_n be the sum of n terms of two A.P.'s and t_{11} and t'_{11} be the respective 11^{th} terms, then

$$\frac{S_n}{S'_n} = \frac{\frac{n}{2}[2a + (n-1)d]}{\frac{n}{2}[2a' + (n-1)d']} = \frac{7n+1}{4n+27}$$
$$\Rightarrow \frac{a + \frac{(n-1)}{2}d}{a' + \frac{(n-1)}{2}d'} = \frac{7n+1}{4n+27}$$
Now put n = 21,

we get
$$\frac{a+10d}{a'+10d'} = \frac{t_{11}}{t'_{11}} = \frac{148}{111} = \frac{4}{3}$$

24. a, b, c, are in A.P \Rightarrow 2b = a + c Also, $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. $\Rightarrow \frac{2}{b} = \frac{1}{a} + \frac{1}{c}$

$$\therefore \qquad \frac{2}{\frac{a+c}{2}} = \frac{a+c}{ac} \Rightarrow a = c \text{ and } b = a$$

25.
$$(a + 2b - c) (2b + c - a) (c + a - b)$$

= $(a + a + c - c)(a + c + c - a)(2b - b)$
= 4abc
(::a b c are in A P : 2b = a + c)

- 26. The sum of n arithmetic mean between a and b $= \frac{n}{2}(a+b)$ 27. $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{a+b}{2}$ $\Rightarrow a^{n+1} - ab^n + b^{n+1} - ba^n = 0$ $\Rightarrow (a-b) (a^n - b^n) = 0$ If $a^n - b^n = 0$. Then $\left(\frac{a}{b}\right)^n = 1 = \left(\frac{a}{b}\right)^0$ Hence, n = 0
- 28. The resulting progression will have n + 2 terms with 2 as the first term and 38 as the last term.

Therefore, the sum of the progression

$$= \frac{n+2}{2}(2+38)$$

= 20(n + 2)
By hypothesis, 20(n + 2) = 200
 \Rightarrow n = 8

29. As, log 2, log(2ⁿ - 1) and log(2ⁿ + 3) are in A.P. Therefore, $2 \log(2^n - 1) = \log 2 + \log(2^n + 3)$ $2^{2n} - 4.2^n - 5 = 0$ $\Rightarrow (2^n - 5)(2^n + 1) = 0$ As 2ⁿ cannot be negative, hence 2ⁿ - 5 = 0 $\Rightarrow 2^n = 5$ or n = log₂ 5

The given numbers are in A.P. 30. $2 \log_9 (3^{1-x} + 2) = \log_3 (4 \cdot 3^x - 1) + 1$ *.*.. $\Rightarrow 2 \log_{2} (3^{1-x} + 2) = \log_3 (4 \cdot 3^x - 1) + \log_3 3$ $\Rightarrow \frac{2}{2} \log_3 (3^{1-x} + 2) = \log_3 [3(4 \cdot 3^x - 1)]$ $\Rightarrow 3^{1-x} + 2 = 3(4 \cdot 3^x - 1)$ $\Rightarrow \frac{3}{y} + 2 = 12y - 3$, where $y = 3^x$ $\Rightarrow 12v^2 - 5v - 3 = 0$ $y = \frac{-1}{3}$ or $\frac{3}{4} \Rightarrow 3^{x} = \frac{-1}{3}$ or $3^{x} = \frac{3}{4}$ *.*.. $x = \log_3\left(\frac{3}{4}\right) \Rightarrow x = 1 - \log_3 4$... 31. Let the three numbers be a - d, a, a + dWe get a - d + a + a + d = 15

 $\Rightarrow a = 5$ and $(a - d)^{2} + a^{2} + (a + d)^{2} = 83$ $\Rightarrow a^{2} + d^{2} - 2ad + a^{2} + a^{2} + d^{2} + 2ad = 83$ $\Rightarrow 2(a^{2} + d^{2}) + a^{2} = 83$

Putting a = 5 $\Rightarrow 2(25 + d^2) + 25 = 83$ $\Rightarrow 2d^2 = 8$ \Rightarrow d = 2 Thus, numbers are 3, 5, 7. Trick : Since 3 + 5 + 7 = 15 and $3^2 + 5^2 + 7^2 = 83$ 32. $\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\dots$ \therefore $t_n = 1 - \left(n^{\text{th}} \text{ term of G.P. } \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \right)$ $=1-\frac{1}{2}\left(\frac{1}{2}\right)^{n-1}$ $=1-\frac{1}{2^{n}}$ 33. $t_3 = 4 \implies ar^2 = 4$ $a \times ar \times ar^2 \times ar^3 \times ar^4 = (ar^2)^5 = 4^5$ ÷. 34. $t_3 = ar^{3-1} = ar^2 = 36$ and $t_6 = ar^{6-1} = ar^5 = 972$ Solving, a = 4 and r = 3 $t_8 = ar^7 = 4(3)^7 = 8748$ *.*.. 35. $t_n = ar^{n-1}$ and r = 2 $\therefore \qquad t_n = a(2)^{n-1} \Longrightarrow t_9 = a(2)^8$ $a(2)^8 = 128 \implies a = \frac{128}{256} = \frac{1}{2}$ *.*.. 36. $ab^2 = a(ac)$ and $cb^2 = c(ac)$ $ab^2 - cb^2 = a^2c - ac^2$ ÷ \Rightarrow a (b² + c²) = c(a² + b²) a + ar = -4 and $ar^4 = 4ar^2 \Longrightarrow r^2 = 4 \Longrightarrow r = \pm 2$ 37. Substituting $r = \pm 2$, we get $a = \frac{-4}{3}$ and a = 4Required G.P. is $\frac{-4}{3}$, $\frac{-8}{3}$, $\frac{-16}{3}$, *.*.. or 4, -8, 16, -32, The common ratio of the G.P. is x^{n+4} 38. $8^{\text{th}} \text{ term} = x^{52} = x^{-4} (x^{n+4})^7$ *.*.. $\Rightarrow 7n = 28$ \Rightarrow n = 4 Let $AR^{p-1} = a$, 39. $AR^{q-1} = b.$ $AR^{r-1} = c$ So $a^{q-r}b^{r-p}c^{p-q} = (AR^{p-1})^{q-r}(AR^{q-1})^{r-p}(AR^{r-1})^{p-q}$ $= \mathbf{A}^{(q-r+r-p+p-q)} \mathbf{R}^{(pq-pr-q+r+qr-pq-r+p+pr-rq-p+q)}$

 $= A^0 R^0 = 1$

40.	$a = \frac{5}{2}, r = \frac{1}{2} < 1$
÷	$S_n = \frac{a(1-r^n)}{1-r} = 5\left[\frac{2^n-1}{2^n}\right]$
41.	Given series is a G.P. with $a = \sqrt{2}$ and $r = \sqrt{3}$
÷	$S_{10} = \frac{\sqrt{2}\left(\left(\sqrt{3}\right)^{10} - 1\right)}{\sqrt{3} - 1} = \frac{\sqrt{2}(243 - 1)}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$ $= 121\sqrt{6} + 121\sqrt{2}$
	$= 121 (\sqrt{6} + \sqrt{2})$
42.	$\left(1-\frac{1}{2}\right) + \left(1-\frac{1}{4}\right) + \left(1-\frac{1}{8}\right) + \dots$
	$S_n = n - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \text{ upto n terms}\right)$
	$= n - \frac{\frac{1}{2} \left(1 - \left(\frac{1}{2}\right)^n \right)}{1 - \frac{1}{2}} = n - \left(1 - \frac{1}{2^n} \right)$
42	$= n - 1 + 2^{-n}$
43.	$t_4 = 24$ and $t_9 = 768$ $t_4 = ar^3 \rightarrow ar^3 = 24$
	and $t_9 = ar^8 \Rightarrow ar^8 = 768$ Solving, $a = 3$ and $r = 2 > 1$
<i>.</i>	$S_{10} = \frac{a[r-1]}{r-1} = \frac{3[2^{-1}]}{2-1} = 3(2^{10}-1)$
44.	$S_{10} = 244 S_5$
	$\Rightarrow (1 - r^{10}) = 244 (1 - r^5)$ $\Rightarrow r^{10} - 244 r^5 + 243 = 0$ $\Rightarrow r^5 = 243 \text{ or } r^5 = 1$ $\Rightarrow r = 3 \text{ or } r = 1$
45.	$a_1 = 3, a_n = 96$ $\Rightarrow a_1 r^{n-1} = 96$
	$\Rightarrow r^{n-1} = 32$ $r^{n-1} = 2^5$
	$2^{n-1} = 2^{5}$ $\implies n - 1 = 5$
	$\Rightarrow n = 6$
46.	$a = 7$ and $ar^{n-1} = 448$
	Now, $S_n = \frac{a(r^n - 1)}{r - 1} = 889$
	$\Rightarrow \frac{(ar^{n-1}.r-a)}{r-1} = 889 \Rightarrow \frac{448r-7}{r-1} = 889$
	\Rightarrow r = 2

Chapter 04: Sequence and Series Given that $\frac{a(r^n - 1)}{r - 1} = 255$ (:: r > 1)(i) 47. $ar^{n-1} = 128$(ii) and common ratio r = 2....(iii) From (i), (ii) and (iii), we get $a(2)^{n-1} = 128$(iv) and $\frac{a(2^n - 1)}{2 - 1} = 255$(v) Dividing (v) by (iv), we get $\frac{2^{n}-1}{2^{n-1}} = \frac{255}{128}$ $\Rightarrow 2 - 2^{-n+1} = \frac{255}{128}$ $\Rightarrow 2(1-2^{-n}) = \frac{255}{128}$ $\Rightarrow 2^{-n} = 2^{-8}$ \Rightarrow n = 8 Putting n = 8 in equation (iv), we get $a \cdot 2^7 = 128 = 2^7$ or a = 148. $\frac{S_3}{S_c - S_2} = \frac{125}{27} \Rightarrow \frac{S_3}{S_c} = \frac{125}{152}$ $\therefore \qquad \frac{a(1-r^3)}{a(1-r^6)} = \frac{125}{152} \Rightarrow \frac{1}{1+r^3} = \frac{125}{152}$ \Rightarrow r³ = $\frac{27}{125}$ \Rightarrow r = $\frac{3}{5}$ 49. $r = \frac{t_2}{t_1} = \frac{b}{a}$; last term = c $\Rightarrow ar^{n-1} = c$ $\Rightarrow \frac{\operatorname{ar}^{n}}{r} = c$ \Rightarrow arⁿ = cr $\therefore \qquad \mathbf{S}_{n} = \frac{\mathbf{a}(1-\mathbf{r}^{n})}{1-\mathbf{r}} = \frac{\mathbf{a}-\mathbf{a}\mathbf{r}^{n}}{1-\mathbf{r}} = \frac{\mathbf{a}-\mathbf{c}\mathbf{r}}{1-\mathbf{r}} = \frac{\mathbf{a}-\mathbf{c}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)}{1-\frac{\mathbf{b}}{\mathbf{b}}}$ 50. We have $1 + a + a^{2} + \dots + a^{x} = (1 + a)(1 + a^{2})(1 + a^{4})$ $\Rightarrow \frac{(1-a^{x+1})}{(1-a)} = (1+a)(1+a^2) + (1+a^4)$ $\Rightarrow (1 - a^{x+1}) = (1 - a)(1 + a)(1 + a^{2})(1 + a^{4})$

 $\Rightarrow (1 - a^{x+1}) = (1 - a^8)$

 $\Rightarrow x + 1 = 8$ $\Rightarrow x = 7$

145

MHT-CET Triumph Maths (Hints) 51. $S_n = 4 + 44 + 444 + \dots$ to n terms $= \frac{4}{9} \left[(10-1) + (10^2 - 1) + (10^3 - 1) + \dots + (10^n - 1) \right]$

- $=\frac{4}{9}\left\{\left(10+10^{2}+10^{3}+\ldots+10^{n}\right)-(1+1+1+\ldots+n \text{ times})\right\}$ $=\frac{4}{9}\left\{\frac{10(10^{n}-1)}{10-1}-n\right\}=\frac{4}{9}\left\{\frac{10}{9}(10^{n}-1)-n\right\}$
- 52. $1 + (1 + x) + (1 + x + x^{2}) + \dots + (1 + x + x^{2} + \dots + x^{n-1})$ $= \frac{1 x}{1 x} + \frac{1 x^{2}}{1 x} + \frac{1 x^{3}}{1 x} + \dots + \frac{1 x^{n}}{1 x}$ $= \frac{1}{1 x} [(1 + 1 + \dots n \text{ times}) (x + x^{2} + \dots + x^{n})]$ $= \frac{1}{1 x} \left[n \frac{x(1 x^{n})}{1 x} \right]$ $= \frac{n}{1 x} \frac{x(1 x^{n})}{(1 x)^{2}}$
- 53. Infinite series 9 3 + 1 $\frac{1}{3}$ +∞ is a G.P. with a = 9, r = $\frac{-1}{3}$ ∴ $S_{\infty} = \frac{a}{1-r} = \frac{9}{1+(\frac{1}{3})} = \frac{9 \times 3}{4} = \frac{27}{4}$

54. Let the G.P. be
$$a + ar + ar^2 + ..., |r| < 1$$
,

then ar = 2 and $\frac{a}{1-r} = 8$ $\therefore \qquad \frac{ar(1-r)}{a} = \frac{2}{8} \Rightarrow r = \frac{1}{2}$ and a = 4

55.
$$\frac{1}{7} + \frac{2}{7^2} + \frac{1}{7^3} + \frac{2}{7^4} + \dots \text{ upto } \infty$$
$$= \left(\frac{1}{7} + \frac{1}{7^3} + \frac{1}{7^5} + \dots\right) + 2\left(\frac{1}{7^2} + \frac{1}{7^4} + \frac{1}{7^6} + \dots\right)$$
$$= \frac{\frac{1}{7}}{1 - \frac{1}{7^2}} + \frac{2\left(\frac{1}{7^2}\right)}{1 - \frac{1}{7^2}}$$
$$= \frac{3}{16}$$

56. $2.3\overline{45} = 2.3 + 0.045 + 0.00045 + \dots$ $= \frac{23}{10} + \frac{45}{1000} + \frac{45}{100000} + \dots$ From 2nd term onwards, the terms are in G.P.

$$s_{\infty} = \frac{a}{1-r} = \frac{\frac{45}{1000}}{1-\frac{1}{100}} = \frac{1}{22}$$

$$c_{\infty} = 2.3\overline{45} = \frac{23}{10} + \frac{1}{22} = \frac{129}{55}$$

Alternate Method:

$$2.3\overline{45} = 2 + \frac{345 - 3}{990} = 2 + \frac{342}{990} = \frac{129}{55}$$

57.
$$4^{1/3} \cdot 4^{1/9} \cdot 4^{1/27} \dots \infty$$

 $\therefore S = 4^{1/3 + 1/9 + 1/27 \dots \infty}$
 $\Rightarrow S = 4^{\left(\frac{1/3}{1-1/3}\right)} = 4^{\frac{1/3}{2/3}}$
 $\Rightarrow S = 4^{1/2}$
 $\Rightarrow S = 2$

58.
$$5 = \frac{x}{1-r} \Longrightarrow 5 - 5r = x \Longrightarrow r = 1 - \frac{x}{5}$$

As $|r| < 1$ i.e., $\left| 1 - \frac{x}{5} \right| < 1$
 $\therefore \quad -1 < 1 - \frac{x}{5} < 1$
 $\therefore \quad -5 < 5 - x < 5$
 $\therefore \quad -10 < -x < 0$
 $\therefore \quad 10 > x > 0$

$$\therefore \quad 0 < x < 10$$

59. $A = 1 + r^{z} + r^{2z} + r^{3z} + \dots \infty$ $A = 1 + [r^{z} + r^{2z} + r^{3z} + \dots \infty]$ We know that sum of infinite G.P. is $S_{\infty} = \frac{a}{1 - r} (-1 < r < 1)$ Therefore, $A = 1 + \left[\frac{r^{z}}{1 - r^{z}}\right]$ $\Rightarrow A = \frac{1 - r^{z} + r^{z}}{1 - r^{z}} \Rightarrow A = \frac{1}{1 - r^{z}}$

$$\Rightarrow 1 - r^{z} = \frac{1}{A} \Rightarrow r^{z} = \frac{A - r^{z}}{A}$$

Hence, $r = \left[\frac{A - 1}{A}\right]^{\frac{1}{z}}$

60. We have, $x = \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \Rightarrow a = \frac{x-1}{x}$ $y = \sum_{n=0}^{\infty} b^n = \frac{1}{1-b} \Rightarrow b = \frac{y-1}{y}$ $z = \sum_{n=0}^{\infty} a^n b^n = \frac{1}{1-ab} \Rightarrow ab = \frac{z-1}{z}$ $\therefore \quad \frac{x-1}{x} \cdot \frac{y-1}{y} = \frac{z-1}{z}$ a = 3, r = 3 $G.M. = (3.3^2.3^3.....3^n)^{1/n}$ $= (3^{1+2+3.....+n})^{1/n} = \left(3^{\frac{n(n+1)}{2}}\right)^{1/n} = 3^{\frac{(n+1)}{2}}$

62. As given, $G = \sqrt{xy}$

$$\therefore \qquad \frac{1}{G^2 - x^2} + \frac{1}{G^2 - y^2} = \frac{1}{xy - x^2} + \frac{1}{xy - y^2}$$
$$= \frac{1}{x - y} \left\{ -\frac{1}{x} + \frac{1}{y} \right\} = \frac{1}{xy} = \frac{1}{G^2}$$

63. a,
$$g_1$$
, g_2 , b are in G.P. $\Rightarrow \frac{g_1}{a} = \frac{g_2}{g_1} = \frac{b}{g_2}$
 $\therefore \qquad \frac{g_1}{a} = \frac{g_2}{g_1} \text{ and } \frac{g_2}{g_1} = \frac{b}{g_2} \Rightarrow a = \frac{g_1^2}{g_2} \text{ and } b = \frac{g_2^2}{g_1}$
 $\therefore \qquad \frac{g_1^2}{g_2} + \frac{g_2^2}{g_1} = a + b$

64.
$$G.M = b = \sqrt{ac}$$
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{\sqrt{ac}-a} + \frac{1}{\sqrt{ac}-c}$$
$$= \frac{1}{\sqrt{a}\left[\sqrt{c}-\sqrt{a}\right]} + \frac{1}{\sqrt{c}\left[\sqrt{a}-\sqrt{c}\right]}$$
$$= \frac{1}{\sqrt{a}\left[\sqrt{c}-\sqrt{a}\right]} - \frac{1}{\sqrt{c}\left[\sqrt{c}-\sqrt{a}\right]}$$
$$= \frac{1}{\sqrt{ac}} = \frac{1}{b}$$

65. Let the 9 terms of a G.P. be

$$\frac{a}{r^4}, \frac{a}{r^3}, \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2, ar^3, ar^4$$

Given, fifth term $a = 2$
Hence, product of 9 terms is $a^9 = (2)^9 = 512$

Chapter 04: Sequence and Series Let the terms of given G.P. be $\frac{a}{r}$, a, ar 66. then product = $\frac{a}{r} \times a \times ar = 1000$ $\frac{a}{r}$, a + 6, ar + 7 are in A.P. \therefore 2(a+6) = $\frac{a}{r}$ + ar + 7 \therefore 25 = $\frac{10}{r}$ + 10 r $\therefore \qquad 2r^2 - 5r + 2 = 0$ \therefore (2r-1)(r-2) = 0 \therefore r = 2, $\frac{1}{2}$ Hence, the G.P is 5, 10, 20,.... or 20, 10, 5.... Suppose that x to be added then numbers 13, 15, 67. 19 so that new numbers x + 13, 15 + x, 19 + xwill be in H.P. $\Rightarrow (15+x) = \frac{2(x+13)(19+x)}{x+13+x+19}$ $\Rightarrow x^2 + 31x + 240 = x^2 + 32x + 247 \Rightarrow x = -7$ 68. a, b, c are in H.P. $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. $\therefore \qquad \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} \Rightarrow \frac{a-b}{b-c} = \frac{a}{c}$ 7^{th} term of corresponding A.P. is $\frac{1}{8}$ and 8^{th} 69. term will be $\frac{1}{7}$ \Rightarrow a + 6d = $\frac{1}{8}$ and a + 7d = $\frac{1}{7}$ Solving these, we get $d = \frac{1}{56}$ and $a = \frac{1}{56}$ Therefore, 15th term of this A.P. $=\frac{1}{56}+14\times\frac{1}{56}=\frac{15}{56}$ Hence, the required 15th term of the H.P. is 15 70. Let a be the first term and d be the common difference of the corresponding A.P. p^{th} term of A.P. $(T_p) = a + (p-1)d$ $=\frac{1}{q}$ (i) q^{th} term of A.P. $(T_q) = a + (q - 1) d$

 $=\frac{1}{p}$ (ii)

MHT-CET Triumph Maths (Hints) From (i) – (ii), $(p-q)d = \frac{1}{q} - \frac{1}{p} = \frac{p-q}{pq}$ $\Rightarrow d = \frac{1}{pq}$ From (i), $a + (p-1)\frac{1}{pq} = \frac{1}{q} \Rightarrow a = \frac{1}{pq}$ $T_{pq} = a + (pq - 1)d$ *.*.. $=\frac{1}{pq}+(pq-1)\frac{1}{pq}=1$ Therefore, pqth term is 1. H.M. = $\frac{2\left(\frac{a^2}{1-a^2b^2}\right)}{a} = \frac{2a^2}{2a} = a$ 71. 1-ah 1+ah72. $c = \frac{2ab}{a+b} \Rightarrow \frac{c}{a} = \frac{2b}{a+b}$ and $\frac{c}{b} = \frac{2a}{a+b}$ $\therefore \qquad \frac{c}{a} + \frac{c}{b} = \frac{2b}{a+b} + \frac{2a}{a+b} = 2$ 73. $H = \frac{2ab}{a+b}$ \Rightarrow H - a = $\frac{2ab}{a+b}$ - a = $\frac{ab-a^2}{a+b}$ and H - b = $\frac{2ab}{a+b} - b = \frac{ab - b^2}{a+b}$ $\therefore \qquad \frac{1}{H-a} + \frac{1}{H-b} = \frac{a+b}{ab-a^2} + \frac{a+b}{ab-b^2}$ $=\frac{(a+b)}{(b-a)}\left[\frac{(b-a)}{ab}\right]$ $=\frac{1}{a}+\frac{1}{b}$ 74. $H = \frac{2ab}{a+b} \Rightarrow \frac{H}{a} = \frac{2b}{a+b}$ $\therefore \qquad \frac{H+a}{H-a} = \frac{3b+a}{b-a}$ Similarly, $\frac{H+b}{H-b} = \frac{3a+b}{a-b} = -\frac{3a+b}{b-a}$ $\frac{H+a}{H-a} + \frac{H+b}{H-b} = \frac{2b-2a}{b-a} = 2$ *.*..

a, b, c are in H.P. 75. $b = \frac{2ac}{a+c}$ *.*.. Also b, c, d are in H.P. \Rightarrow c = $\frac{2bd}{b+d}$ Multiplying we get, bc = $\frac{4abcd}{(a+c)(b+d)}$ *.*.. ab + bc + cd + ad = 4ad \Rightarrow ab + bc + cd = 3ad We know that A > G > H76. Where A is arithmetic mean, G is geometric mean and H is harmonic mean, then A > G $\Rightarrow \frac{a+b}{2} > \sqrt{ab}$ or $(a+b) > 2\sqrt{ab}$ 77. Let the numbers be a and b, then $4 = \frac{2ab}{a+b} \Rightarrow a+b = \frac{ab}{2}$ A= $\frac{a+b}{2}$ and G = \sqrt{ab} Also, $2A + G^2 = 27$ $\therefore \qquad a+b+ab=27 \Rightarrow \frac{ab}{2}+ab=27 \Rightarrow ab=18$ and hence a + b = 9. Only option A satisfies this condition. As given, $2b = a + c \Longrightarrow 3^{2b} = 3^{a+c}$ 78. or $(3^b)^2 = 3^a \cdot 3^c$ i.e $3^a \cdot 3^b \cdot 3^c$ are in G.P. 79. $\frac{T_2}{T_1} = \frac{T_3}{T_2}$ $\Rightarrow 2^{(b-a)x} = 2^{(c-b)x}$ \Rightarrow (b - a)x = (c - b)x \Rightarrow (b - a) = (c - b) $\forall x, x \neq 0$ $2^{ax+1}, 2^{bx+1}, 2^{cx+1}$ is a G.P., $\forall x \neq 0$ *.*.. a, b, c are in A.P. $\Rightarrow 2b = a + c$ 80. Now. $(10^{bx+10})^2 = (10^{ax+10}, 10^{cx+10})$ $\Rightarrow 10^{2 (bx+10)} = 10^{ax+cx+20}$ $\Rightarrow 2(bx + 10) = ax + cx + 20, \forall x$ \Rightarrow 2b = a + c i.e. a, b, c are in A.P. Hence, these are in G.P. $\forall x$ **Alternate Method :** As we know if a, b, c are in A.P., then x^{an+r} , x^{bn+r} , x^{cn+r} are in G.P. for every n and r.

81. \therefore a, b, c are in G.P. \Rightarrow b² = ac(i) Let $a^{x} = b^{y} = c^{z} = k$ \Rightarrow a = k^{1/x}, b = k^{1/y}, c = k^{1/z} Putting these values in (i), $k^{2/y} = k^{1/x} \cdot k^{1/z} = k^{\frac{1}{x} + \frac{1}{z}} i.e., \ \frac{2}{v} = \frac{1}{x} + \frac{1}{z}$ $\therefore \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. or x, y, z are in H.P. Here, $\frac{\log x}{\log a}$, $\frac{\log x}{\log b}$, $\frac{\log x}{\log c}$ are in H.P. 82. $\Rightarrow \frac{\log a}{\log x}, \frac{\log b}{\log x}, \frac{\log c}{\log x}$ are in A.P. $\Rightarrow \log_x a, \log_x b, \log_x c$ are in A.P. \Rightarrow a, b, c are in G.P. Clearly, $x = \frac{1}{1-a}$, $y = \frac{1}{1-b}$, $z = \frac{1}{1-c}$ 83. Since a, b, c are in A.P. \Rightarrow 1 – a, 1 – b, 1 – c are also in A.P. $\Rightarrow \frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c}$ are in H.P. x, y, z are in H.P *.*.. Given that $\frac{a}{b} = \frac{9}{1}$ or a = 9b84. Here, $H = \frac{2ab}{a+b}$ and $G = \sqrt{ab}$ $\Rightarrow H: G = \frac{2ab}{a+b}: \sqrt{ab} = \frac{2.9b^2}{10b}: 3b = \frac{3}{5}$ Hence, G : H = 5 : 3Given that $\frac{\text{H.M.}}{\text{G M}} = \frac{12}{13}$ 85. 2ab $\Rightarrow \frac{\overline{a+b}}{\sqrt{ab}} = \frac{12}{13}$ or $\frac{a+b}{2\sqrt{ab}} = \frac{13}{12}$ $\Rightarrow \frac{(a+b)+2\sqrt{ab}}{(a+b)-2\sqrt{ab}} = \frac{13+12}{13-12} = \frac{25}{1}$ $\Rightarrow \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{5}{1}$ $\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} + \sqrt{b}) - (\sqrt{a} - \sqrt{b})} = \frac{5+1}{5-1}$ $\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{6}{4}$ $\Rightarrow \left(\frac{a}{b}\right)^{1/2} = \frac{6}{4} \Rightarrow a: b = 9:4$

Chapter 04: Sequence and Series Let S = $1 + 2.2 + 3.2^2 + 4.2^3 + \dots + 100.2^{99}$ 86. $2S = 1.2 + 2.2^2 + 3.2^3 + \dots + 100.2^{100}$ $S - 2S = 1 + (1.2 + 1.2^{2} + 1.2^{3})$ + upto 99 terms) – 100.2^{100} $\therefore \qquad S = -1 - \frac{2(2^{99} - 1)}{2 - 1} + 100.2^{100}$ $= -1 - 2^{100} + 2 + 100.2^{100}$ $= 1 + 99 \times 2^{100}$ 87. Given series, let $S_n = 1 + \frac{2}{5} + \frac{3}{5^2} + \frac{4}{5^3} + \dots + \frac{n}{5^{n-1}}$ $\frac{1}{5}S_n = -\frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3} + \dots + \frac{n}{5^n}$ Subtracting. $\left(1-\frac{1}{5}\right)S_n = 1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}$ ++ upto n terms $-\frac{n}{5^n}$ $\Rightarrow \frac{4}{5} S_n = \frac{1 - \frac{1}{5^n}}{\frac{4}{5}} - \frac{n}{5^n}$ \Rightarrow S_n = $\frac{25}{16} - \frac{4n+5}{16 \times 5^{n-1}}$ Let $S_n = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1}$ (i) 88. $xS_n = x + 2x^2 + 3x^3 + \dots + nx^n$(ii) Subtracting (ii) from (i), we get (1 - x) S_n = 1 + x + x² + x³+....to n terms - nxⁿ $=\frac{(1-x^{n})}{1-x^{n}}-nx^{n}$ $\Rightarrow S_n = \frac{(1-x^n) - nx^n(1-x)}{(1-x)^2}$ $=\frac{1-(n+1)x^{n}+nx^{n+1}}{(1-x)^{2}}$ 89. Let $S = 2 + 4 + 7 + 11 + 16 + \dots + t_n$ $S = 2 + 4 + 7 + 11 + 16 + \dots + t_{n-1} + t_n$ Subtracting, we get $0 = 2 + \{2 + 3 + 4 + \dots + (t_n - t_{n-1})\} - t_n$ \Rightarrow t_n = 1 + {1 + 2 + 3 + 4 + upto n terms) $\Rightarrow t_n = 1 + \frac{1}{2}n(n+1)$ $=\frac{2+n^2+n}{2}=\frac{n^2+n+2}{2}$

MHT-CET Triumph Maths (Hints) We have $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$ 96 90. $= 1\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \dots$ $=\sqrt{2}$ [1 + 2 + 3 + 4 + upto 24 terms] $=\sqrt{2} \times \frac{24 \times 25}{2}$ $= 300 \sqrt{2}$ 91. $t_r = \frac{1+2+3+\ldots+r}{r} = \frac{\frac{r(r+1)}{2}}{r} = \frac{r+1}{2}$ 97 \therefore $S_n = \sum_{r=1}^n t_r = \sum_{r=1}^n \frac{r+1}{2} = \frac{1}{2} \left| \sum_{r=1}^n r + \sum_{r=1}^n 1 \right|$ $=\frac{1}{2}\left[\frac{n(n+1)}{2}+n\right]$ $=\frac{1}{4}(n^2+3n)=\frac{n(n+3)}{4}$ 98 93. $S_n = \sum_{r=1}^n (4r-3)(4r-1)$ $= \sum_{i=1}^{n} (16r^2 - 16r + 3)$ $=\frac{16n(n+1)(2n+1)}{6}-\frac{16n(n+1)}{2}+3n$ $=n\left(\frac{16n^2-7}{3}\right)$ 94. $\sum n^2 = 330 + \sum n$ $\Rightarrow \frac{n(n+1)(2n+1)}{6} = 330 + \frac{n(n+1)}{2}$ 99 $\Rightarrow \frac{n(n+1)}{2} \left[\frac{2n+1}{3} - 1 \right] = 330$ $\Rightarrow \frac{n(n+1)}{2} \cdot \frac{2(n-1)}{3} = 330$ \Rightarrow n(n + 1)(n - 1) = 990 \Rightarrow n = 10 10 95. $t_r = \frac{1^3 + 2^3 + \dots + r^3}{(r+1)^2} = \frac{r^2}{4}$ \therefore $S_n = \sum_{r=1}^n t_r = \sum_{r=1}^n \frac{r^2}{4} = \frac{1}{4} \sum_{r=1}^n r^2$ $=\frac{1}{4}\frac{n(n+1)(2n+1)}{6}$

 $=\frac{n(n+1)(2n+1)}{24}$

5.
$$I^{3} + 3^{3} + 5^{3} + \dots + 2I^{3} = (1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + 2I^{3}) - (2^{3} + 4^{3} + 6^{3} + \dots + 20^{3}) = \sum_{r=1}^{21} r^{3} - 8\sum_{r=1}^{10} r^{3} = \frac{(21)^{2} (21 + 1)^{2}}{4} - \frac{8 \times 10^{2} (10 + 1)^{2}}{4} = 29161$$
7.
$$\sum_{n=1}^{20} (n^{3}) - \sum_{n=1}^{10} (n^{3}) = \left[\frac{n(n+1)}{2}\right]_{n=20}^{2} - \left[\frac{n(n+1)}{2}\right]_{n=10}^{2} = \frac{20 \times 21}{2}\right]^{2} - \left[\frac{10 \times 11}{2}\right]^{2} = 44100 - 3025 = 41075$$
8. Here $T_{n} = \frac{1^{3} + 2^{3} + 3^{3} + \dots + n^{3}}{1 + 3 + 5 + \dots + 10^{3}} = \frac{2n^{3}}{\frac{n}{2}[2 + (n-1)2]} = \frac{1}{4} \frac{n^{2}(n+1)^{2}}{n^{2}} = \frac{1}{4}(n^{2} + 2n + 1)$
7. Given fraction
$$\frac{\sum_{n=1}^{12} n^{3}}{\sum_{n=1}^{2} n^{2}} = \frac{\left\{\frac{12(12+1)}{2}\right\}^{2}}{\frac{12(12+1)(2 \times 12+1)}{6}} = \frac{12 \times 13}{4} \times \frac{6}{25} = \frac{234}{25}$$
70. $S_{1} = \frac{n(n+1)}{2}, S_{2} = \frac{n(n+1)(2n+1)}{6} = \frac{12 \times 13}{4} \times \frac{6}{25} = \frac{234}{25}$
71. For, $S_{3}(1 + 8S_{1}) = \frac{n^{2}(n+1)^{2}}{4} \left(1 + \frac{8n(n+1)}{2}\right) = \left(\frac{n(n+1)(2n+1)}{6}\right)^{2} \times 9 = 9S_{2}^{2}$

$$\begin{array}{ll} 101. \quad \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots \\ \text{which is the expansion of } e^{-1} \\ 102. \quad e^{-x} = (1 - x) + \frac{x^2}{2!} \left(1 - \frac{x}{3}\right) + \frac{x^4}{4!} \left(1 - \frac{x}{5}\right) + \dots \\ \hline & \vdots \quad e^{-1} = (1 - 1) + \frac{1}{2!} \left(1 - \frac{1}{3}\right) + \frac{1}{4!} \left(1 - \frac{1}{5}\right) + \dots \\ & = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots \\ & = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots \\ 103. \quad \text{Let } t_n = \frac{1}{(n+1)!} \\ & S_n = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots \\ & = \left[1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots\right] - \left[1 + \frac{1}{1!}\right] \\ & = e - (1 + 1) = e - 2 \\ 104. \quad \text{Given ratio} = \frac{\frac{1}{2} \left(e + \frac{1}{e}\right) - 1}{\frac{1}{2} \left(e - \frac{1}{e}\right)} = \frac{(e - 1)^2}{(e - 1)(e + 1)} \\ & = \frac{e - 1}{e + 1} \\ 105. \quad \frac{1}{1 \times 2} + \frac{1}{3 \times 4} + \frac{1}{5 \times 6} + \dots \infty \\ & = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots \text{ to } \infty \\ & = \log 2 \\ 106. \quad T_n = \frac{3^n - 1}{3^n} = 1 - \left(\frac{1}{3}\right)^n \\ & S_n = n - \sum_{n=1}^n \left(\frac{1}{3}\right)^n = n - \frac{\frac{1}{3} \left[1 - \left(\frac{1}{3}\right)^n\right]}{\left(1 - \frac{1}{3}\right)} \\ & = n - \frac{1}{2} (1 - 3^{-n}) = n + \frac{1}{2} (3^{-n} - 1) \\ 107. \quad \text{The series is} \\ & \frac{2}{1!} + \frac{(2 + 5)}{2!} + \frac{(2 + 5 + 8)}{3!} + \frac{(2 + 5 + 8 + 11)}{4!} + \dots \\ & \text{Hence, } T_n = \frac{n}{2} \frac{[2 \cdot 2 + (n - 1)3]}{n!} \\ & = \frac{n}{2} \frac{[2 \cdot 2 + (n - 1)3]}{n!} \\ & T_n = \frac{n}{2(n!)!} \end{array}$$

 $\Rightarrow S = i + 2i^{2} + 3i^{3} + 4i^{4} + 5i^{5} + \dots + 100i^{100}$ $\Rightarrow iS = i^{2} + 2i^{3} + 3i^{4} + 4i^{5} + \dots + 99i^{100} + 100i^{101}$ $\Rightarrow S(1 - i) = 0 - 100i^{101} = -100 i$ $\therefore S = \frac{-100i}{1 - i} = -50i(1 + i) = -50(i - 1)$ = 50(1 - i) $109. Here, T_{r} = \frac{1}{r(r+1)}, r = 1, 2, \dots n$ $\Rightarrow T_{r} = \frac{1}{r} - \frac{1}{r+1}$ $\therefore Required sum = \sum_{r=1}^{n} T_{r}$ $= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$ $= 1 - \frac{1}{n+1} = \frac{n}{n+1}$

108. Let $S = i - 2 - 3i + 4 + 5i + \dots + 100i^{100}$

Chapter 04: Sequence and Series

- 110. sin A, cos A and tan A are in G.P. ∴ $\cos^2 A = \sin A \tan A = \frac{\sin^2 A}{\cos A}$ $\Rightarrow \cos^3 A = \sin^2 A$ $\Rightarrow \cos^3 A = 1 - \cos^2 A$ $\Rightarrow \cos^3 A + \cos^2 A = 1$
- 111. $\cos^4 \theta \sec^2 \alpha$, $\frac{1}{2}$ and $\sin^4 \theta \csc^2 \alpha$ are in A.P.

$$\therefore \quad 1 = \cos^4 \theta \sec^2 \alpha + \sin^4 \theta \csc^2 \alpha$$

$$\Rightarrow \cos^4 \theta \sin^2 \alpha + \sin^4 \theta \cos^2 \alpha = \sin^2 \alpha \cos^2 \alpha$$

$$\Rightarrow (1 - \sin^2 \theta) \cos^2 \theta \sin^2 \alpha + \sin^4 \theta (1 - \sin^2 \alpha)$$

$$= \sin^2 \alpha (1 - \sin^2 \alpha)$$

$$\Rightarrow \cos^2 \theta \sin^2 \alpha + \sin^4 \theta - \sin^2 \theta \sin^2 \alpha (\cos^2 \theta + \sin^2 \theta)$$

$$= \sin^2 \alpha - \sin^4 \alpha$$

$$\Rightarrow \sin^4 \theta + \sin^4 \alpha - 2\sin^2 \theta \sin^2 \alpha = 0$$

$$\Rightarrow \sin^4 \theta + \sin^4 \alpha - 2\sin^2 \theta \sin^2 \alpha = 0$$

$$\Rightarrow (\sin^2 \theta - \sin^2 \alpha)^2 = 0$$

$$\Rightarrow \sin^2 \theta = \sin^2 \alpha \text{ and } \cos^2 \theta = \cos^2 \alpha$$

$$\therefore \quad \cos^8 \theta \sec^6 \alpha + \sin^8 \theta \csc^6 \alpha$$

$$= \cos^2 \theta + \sin^2 \theta = 1$$

$$\Rightarrow \cos^8 \theta \sec^6 \alpha, \frac{1}{2} \text{ and } \sin^8 \theta \csc^6 \alpha \text{ are in}$$

$$A P$$

112. (0.05) $\log_{\sqrt{20}} (0.1+0.01+...) = \left(\frac{1}{20}\right)^{2\log_{20}\left(\frac{0.1}{1-0.1}\right)}$ $=20^{-2\log_{20}(1/9)}=20^{2\log_{20}9}$ $=20^{\log_{20} 9^2} = 9^2 = 81$ 113. If $\log_{ax} x$, $\log_{bx} x$, $\log_{cx} x$ are in H.P Then $\frac{1}{\log_{ax} x}$, $\frac{1}{\log_{bx} x}$, $\frac{1}{\log_{cx} x}$ are in A.P. i.e., $\log_{x} ax$, $\log_{x} bx$, $\log_{x} cx$ are in A.P. $2 \log_{x} bx = \log_{x} ax + \log_{x} cx$ *.*.. $\log_x b^2 x^2 = \log_x ac. x^2$ *.*.. $b^2 x^2 = ac_x^2$ *.*.. $b^2 = ac$ *.*.. *.*... a, b, c, are in G.P 114. A.M. \geq G.M. $\frac{27^{\cos x} + 81^{\sin x}}{2} \ge \sqrt{27^{\cos x} \times 81^{\sin x}}$ *.*.. $\Rightarrow 27^{\cos x} + 81^{\sin x} \ge 2\sqrt{3^{3\cos x + 4\sin x}}$ $\Rightarrow 27^{\cos x} + 81^{\sin x} > 2 \times \sqrt{3^{-5}}$ $\dots [\because -5 \le 3 \cos x + 4 \sin x \le 5]$ $\Rightarrow 27^{\cos x} + 81^{\sin x} \ge \frac{2}{9\sqrt{3}}$ Hence, the minimum value of $27^{\cos x} + 81^{\sin x}$ is $\frac{2}{q_3/3}$. 115. Since, $\tan \frac{2\pi}{18}$, x, $\tan \frac{7\pi}{18}$ are in A.P. and $\tan \frac{2\pi}{18}$, y, $\tan \frac{5\pi}{18}$ are in A.P. $2x = \tan \frac{2\pi}{18} + \tan \frac{7\pi}{18}$ and $2y = \tan \frac{2\pi}{18} + \tan \frac{5\pi}{18}$ *.*.. \Rightarrow 2*x* = tan 20°+ tan 70° and $2y = \tan 20^{\circ} + \tan 50^{\circ}$ $\Rightarrow 2x = \frac{\sin(20^\circ + 70^\circ)}{\cos 20^\circ \cos 70^\circ} \text{ and } 2y = \frac{\sin(20^\circ + 50^\circ)}{\cos 20^\circ \cos 50^\circ}$ $\Rightarrow 2x = \frac{\sin 90^\circ}{\sin 20^\circ \cos 20^\circ}$ and $2y = \frac{\sin 70^\circ}{\cos 20^\circ \cos 50^\circ}$ $\Rightarrow x = \frac{1}{2 \sin 20^\circ \cos 20^\circ}$ and $2y = \frac{1}{\cos 50^\circ}$ $\Rightarrow x = \frac{1}{\sin 40^\circ}$ and $2y = \frac{1}{\sin 40^\circ}$ $\Rightarrow x = 2y \Rightarrow \frac{x}{y} = 2$

116. Given, $\cos (\theta - \alpha)$, $\cos \theta$ and $\cos (\theta + \alpha)$ are in H.P. $\Rightarrow \frac{1}{\cos(\theta - \alpha)}, \frac{1}{\cos \theta}, \frac{1}{\cos(\theta + \alpha)}$ will be in A.P. $\Rightarrow \frac{2}{\cos\theta} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)}$ $=\frac{\cos(\alpha+\theta)+\cos(\theta-\alpha)}{\cos^2\theta-\sin^2\alpha}$ $\Rightarrow \frac{2}{\cos \theta} = \frac{2 \cos \theta \cos \alpha}{\cos^2 \theta - \sin^2 \alpha}$ $\Rightarrow \cos^2 \theta - \sin^2 \alpha = \cos^2 \theta \cos \alpha$ $\Rightarrow \cos^2 \theta (1 - \cos \alpha) = \sin^2 \alpha$ $\Rightarrow \cos^2 \theta \left(2\sin^2 \frac{\alpha}{2}\right) = 4\sin^2 \frac{\alpha}{2}\cos^2 \frac{\alpha}{2}$ $\Rightarrow \cos^2 \theta \sec^2 \frac{\alpha}{2} = 2$ $\Rightarrow \cos \theta \sec \frac{\alpha}{2} = \pm \sqrt{2}$ 117. $\sin \theta = \sqrt{\sin \phi \cos \phi}$ $\Rightarrow \sin \phi \cos \phi = \sin^2 \theta$ $\Rightarrow \sin 2 \phi = 2 \sin^2 \theta$ $\Rightarrow 1 - 2 \sin^2 \theta = 1 - \sin 2 \phi$ $\Rightarrow \cos 2 \theta = 1 - \cos \left(\frac{\pi}{2} - 2\phi \right)$ $=2\sin^2\left(\frac{\pi}{4}-\phi\right)$ 118. $\cos 2B = \frac{\cos(A+C)}{\cos(A-C)} = \frac{\cos A \cos C - \sin A \sin C}{\cos A \cos C + \sin A \sin C}$ $\Rightarrow \frac{1 - \tan^2 B}{1 + \tan^2 B} = \frac{1 - \tan A \tan C}{1 + \tan A \tan C}$ \Rightarrow 1+ tan² B – tanA tan C – tan A tan C tan² B $= 1 - \tan^2 B + \tan A \tan C - \tan A \tan C \tan^2 B$

- $\Rightarrow 2 \tan^2 B = 2 \tan A \tan C$ $\Rightarrow \tan^2 B = \tan A \tan C$
- \therefore tan A, tan B, tan C are in G.P.

Competitive Thinking

1. The given sequence is an A.P. a = 10, d = -3 $t_{30} = 10 + (30 - 1) (-3)$ = -77

Given series $27 + 9 + 5\frac{2}{5} + 3\frac{6}{7} + \dots$ 2. $=27+\frac{27}{3}+\frac{27}{5}+\frac{27}{7}+\ldots+\frac{27}{2n-1}+\ldots$ Hence, nth term of given series $t_n = \frac{27}{2n-1}$ So, $t_9 = \frac{27}{2 \times 9 - 1} = \frac{27}{17} = 1\frac{10}{17}$ 3. Since, a, 9, 3a - b and 3a + b are in A.P. 9 - a = (3a + b) - (3a - b)*.*.. \Rightarrow 9 - a = 2b \Rightarrow a + 2b = 9(i) Also, 9 - a = (3a - b) - 9 \Rightarrow 4a - b = 18(ii) Eliminating b from (i) and (ii), we get 4a - 18 = (9 - a)/2 \Rightarrow 8a - 36 = 9 - a \Rightarrow 9a = 45 \Rightarrow a = 5 So, first 2 terms of the A.P. are 5 and 9 So, a = 5, d = 4 $2011^{\text{th}} \text{ term} = a + 2010 \text{ d}$ *.*.. $= 5 + 2010 \times 4$ = 8045According to the given condition, 4. 100 (a + 99d) = 50(a + 49d) \Rightarrow 2a + 198d = a + 49d \Rightarrow a + 149d = 0 $T_{150} = a + 149d = 0$ *.*.. 5. a + 1, 2a + 1, 4a - 1 are in AP. 2a + 1 - (a + 1) = 4a - 1 - (2a + 1)*.*.. $\Rightarrow a = 2a - 2$ $\Rightarrow a = 2$ It is not possible to express a + b + 4c - 4d + e6. in terms of a. Required ratio is $\frac{44}{99} = \frac{4}{9}$ 7. 8. Given series $63 + 65 + 67 + 69 + \dots$ (i) and $3 + 10 + 17 + 24 + \dots$ (ii) Now from (i), m^{th} term = (2m + 61) and m^{th} term of (ii) series = (7m - 4)According to the given condition, 7m - 4 = 2m + 61 $\Rightarrow 5 \text{ m} = 65 \Rightarrow \text{m} = 13$ 9. According to the given condition, $p \{a+(p-1)d\} = q \{a+(q-1)d\}$ $\Rightarrow a(p-q) + (p^2 - q^2)d + (q-p)d = 0$ \Rightarrow (p - q) {a + (p + q - 1)d} = 0 \Rightarrow a + (p + q - 1)d = 0[∵p≠q] $\Rightarrow t_{p+q} = 0$

Chapter 04: Sequence and Series 10. Given that, $t_p = a + (p - 1)d = q$ (i) and $t_q = a + (q - 1)d = p$ (ii) From (i) and (ii), we get $d = -\frac{(p-q)}{(p-q)} = -1$ Putting the value of d in equation (i), we get a = p + q - 1 $t_r = a + (r - 1)d = (p + q - 1) + (r - 1)(-1)$ = p + q - r11. $t_m = a + (m-1)d = \frac{1}{n}$ and $t_n = a + (n-1)d = -\frac{1}{2}$ On solving, $a = \frac{1}{mn}$ and $d = \frac{1}{mn}$ $t_{mn} = a + (mn - 1)d = \frac{1}{mn} + (mn - 1)\frac{1}{mn} = 1$ *.*.. 12. Let the first term be a and common difference be d. The last 3 terms are T_{23} , T_{22} and T_{21} . According to the given condition, $T_{21} + T_{22} + T_{23} = 261$ \Rightarrow (a + 20d) + (a + 21d) + (a + 22d) = 261 \Rightarrow 3a + 63d = 261(i) Also, sum of 3 middle terms = 141 $\Rightarrow T_{11} + T_{12} + T_{13} = 141$ \Rightarrow (a + 10d) + (a + 11d) + (a + 12d) = 141 \Rightarrow 3a + 33d = 141(ii) Solving (i) and (ii), we get a = 3 $164 = (3m^2 + 5m) - \{3(m-1)^2 + 5(m-1)\}$ 13. $=(3m^{2}+5m)-3m^{2}+6m-3-5m+5$ $\Rightarrow 164 = 6m + 2 \Rightarrow m = 27$ a = 3, d = 214. $S_n = \frac{n}{2} [2a + (n-1)d]$ $=\frac{n}{2}[6+(n-1)2]$ = n(n + 2)15. Series 108 + 117 + ... + 999 is an A.P. Here, a = 108, d = 9, $t_n = l = 999$ Before 108, there are 11 multiples of 9 (and 108 is 12th multiple. 999 is 111th multiple of 9). \Rightarrow From 108 to 999 there are 100 terms. \Rightarrow Required sum $= \frac{100}{2} (108 + 999) \qquad \dots \left[\because S_n = \frac{n}{2} (a+l) \right]$

 $= 50 \times 1107 = 55350$

The series of all natural numbers is 16. 3, 6, 9, 12, 99 Here $n = \frac{99}{3} = 33$, a = 3, d = 3l = 99 $S = \frac{33}{(2 + 00)}$ *.*..

$$S_{33} = \frac{1}{2} \{3 + 99\}$$
$$= \frac{33}{2} \times 102$$
$$= 33 \times 51 = 1683$$

Series, 2 + 5 + 8 + 11 + 17. a = 2, d = 3 and let number of terms be n, then sum of A.P. = $\frac{n}{2} \{2a + (n-1)d\}$

$$\Rightarrow 60100 = \frac{n}{2} \{2 \times 2 + (n-1)3\} \\\Rightarrow 120200 = n(3n+1) \\\Rightarrow 3n^2 + n - 120200 = 0 \\\Rightarrow (n - 200)(3n + 601) = 0 \\\text{Hence, } n = 200$$

12, 19, ..., 96 is the series of numbers which 18. are of two digits and leave remainder 5 when divided by 7. Here, a = 12, d = 7Last term (l) = 96 $S_{13} = \frac{13}{2} [12 + 96]$

$$= \frac{13}{2} \times 108$$
$$= 702$$

For given series, 19. a = 1

$$d = 2$$

 $a_n = a + (n-1)d$ *.*..

$$\therefore$$
 2001 = 1 + (n - 1)(2)

$$\therefore$$
 n = 1001

$$S_{1001} = \frac{1001}{2} [2(1) + (1001 - 1) \times (2)]$$

$$S_{1001} = (1001)^2$$

C1 1

20. k^m term = 5k + 1
∴ 1st term = a = 6
2nd term = 11
3rd term = 16
∴ d = 5
∴ S₁₀₀ =
$$\frac{100}{2}$$
 [2 × 6 + (100 - 1) × 5]

$$\therefore$$
 S₁₀₀ = 50 (507)

Saving in first two months = ₹ 400 Remained saving = $200 + 240 + 280 + \dots$ upto n terms $\Rightarrow \frac{n}{2} [400 + (n-1)40] = 11040 - 400$ $\Rightarrow 200n + 20n^2 - 20n = 10640$ $\Rightarrow 20n^2 + 180n - 10640 = 0$ \Rightarrow n² + 9n - 532 = 0 $\Rightarrow (n+28) (n-19) = 0$ \Rightarrow n = 19 Number of months = 19 + 2 = 21*.*.. 22. According to the given condition, $4500 = 150 \times 10$ $+ \{148 + 146 + \dots \text{ upto n terms}\}\$ $= 1500 + \frac{n}{2} \{296 + (n-1) (-2)\}$ \Rightarrow n² -149n + 3000 = 0 \Rightarrow (n-24)(n-125) = 0

Here, a = ₹ 200, d = ₹ 40

21.

$$\Rightarrow n = 24 \qquad \qquad \dots [\because n \neq 125]$$

So, total time taken = 10 + 24 = 34 min.

23. Let the number of sides of the polygon be n. Then the sum of interior angles of the polygon

$$=(2n-4)\frac{\pi}{2}=(n-2)\pi$$

Since, the angles are in A.P.and $a = 120^{\circ}, d = 5$ therefore,

$$\frac{n}{2} [2 \times 120 + (n-1)5] = (n-2)180$$

$$\Rightarrow n^{2} - 25n + 144 = 0$$

$$\Rightarrow (n-9) (n-16) = 0$$

$$\Rightarrow n = 9, 16$$

But n = 16 gives,
T₁₆ = a + 15d
= 120^{\circ} + 15.5^{\circ}
= 195° which is impossible, as in

nterior 180°. angle cannot be greater than Hence, n = 9.

24. We have
$$\frac{S_{n_1}}{S_{n_2}} = \frac{2n+3}{6n+5}$$

$$\Rightarrow \frac{\frac{n}{2}[2a_1 + (n-1)d_1]}{\frac{n}{2}[2a_2 + (n-1)d_2]} = \frac{2n+3}{6n+5}$$

154

$$\Rightarrow \frac{2\left[a_{1} + \left(\frac{n-1}{2}\right)d_{1}\right]}{2\left[a_{2} + \left(\frac{n-1}{2}\right)d_{2}\right]} = \frac{2n+3}{6n+5}$$
$$\Rightarrow \frac{a_{1} + \left(\frac{n-1}{2}\right)d_{1}}{a_{2} + \left(\frac{n-1}{2}\right)d_{2}} = \frac{2n+3}{6n+5}$$
Put n = 25 then $\frac{a_{1} + 12d_{1}}{a_{2} + 12d_{2}} = \frac{2(25) + 3}{6(25) + 5}$
$$\Rightarrow \frac{t_{13_{1}}}{t_{13_{2}}} = \frac{53}{155}$$

25. Let the first term be a and common difference be d.

Given,
$$\frac{a_1 + a_2 + ... + a_p}{a_1 + a_2 + ... + a_q} = \frac{p^2}{q^2}$$

 $\Rightarrow \frac{pa + d[1 + 2 + ... + (p-1)]}{qa + d[1 + 2 + ... + (q-1)]} = \frac{p^2}{q^2}$
 $\Rightarrow \frac{pa + \frac{p(p-1)}{2}d}{qa + \frac{q(q-1)}{2}d} = \frac{p^2}{q^2} \Rightarrow \frac{a + (\frac{p-1}{2})d}{a + (\frac{q-1}{2})d} = \frac{p}{q}$
We have to find, $\frac{a_6}{a_{21}} = \frac{a + 5d}{a + 20d}$
Put $\frac{p-1}{2} = 5$ and $\frac{q-1}{2} = 20$
 $\Rightarrow p = 11$ and $\Rightarrow q = 41$

$$\therefore \qquad \frac{a+5d}{a+20d} = \frac{11}{41}$$

26. Acording to the given condition,

$$\frac{n}{2} \{2a + (n-1)d\} = \frac{m}{2} \{2a + (m-1)d\}$$

$$\Rightarrow 2a(m-n) + d(m^2 - m - n^2 + n) = 0$$

$$\Rightarrow (m-n)\{2a + d(m+n-1)\} = 0$$

$$\Rightarrow 2a + (m+n-1)d = 0 \quad \dots [\because m \neq n]$$

$$S_{m+n} = \frac{m+n}{2} \{2a + (m+n-1)d\}$$

:.
$$S_{m+n} = \frac{m+n}{2} \{2a + (m+n-1)d\}$$

= $\frac{m+n}{2} \{0\} = 0$

Chapter 04: Sequence and Series

- 27. Given that $S_n = nA + n^2B$ Putting n = 1, 2, 3, ... we get $S_1 = A + B$, $S_2 = 2A + 4B$, $S_3 = 3A + 9B$ Therefore, $\mathbf{T}_1 = \mathbf{S}_1 = \mathbf{A} + \mathbf{B},$ $T_2 = S_2 - S_1 = A + 3B$, $T_3 = S_3 - S_2 = A + 5B$, Hence, the sequence is (A + B), (A + 3B), (A + 5B)....Here, a = A + B and common difference d = 2B28. $S_1 = a_2 + a_4 + a_6 + a_8 + \dots + a_{100}$ $S_2 = a_1 + a_3 + a_5 + a_7 + \ldots + a_{99}$ $S_1 - S_2 = (a_2 - a_1) + (a_4 - a_3) + ... + (a_{100} - a_{99})$ *.*.. $= d + d + \dots + d = 50d \Longrightarrow d = \frac{S_1 - S_2}{50}$ 29. As given $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$
- 29. As given $a_2 a_1 = a_3 a_2 = ... = a_n a_{n-1} = d$ Where d is the common difference of the given A.P. Also $a_n = a_1 + (n-1)d$

Then by rationalising each term,

$$\begin{aligned} \frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}} \\ &= \frac{\sqrt{a_2} - \sqrt{a_1}}{a_2 - a_1} + \frac{\sqrt{a_3} - \sqrt{a_2}}{a_3 - a_2} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}} \\ &= \frac{1}{d} \left(\sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_n} \right) \\ &= \frac{1}{d} \left(\sqrt{a_n} - \sqrt{a_1} \right) = \frac{1}{d} \left(\frac{a_n - a_1}{\sqrt{a_n} + \sqrt{a_1}} \right) \\ &= \frac{1}{d} \left\{ \frac{(n-1)d}{\sqrt{a_n} + \sqrt{a_1}} \right\} = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}} \\ 30. \quad \frac{1}{S_1 S_2} + \frac{1}{S_2 S_3} + \dots + \frac{1}{S_{100} S_{101}} = \frac{1}{6} \\ &\Rightarrow \frac{1}{d} \left[\frac{S_2 - S_1}{S_1 S_2} + \frac{S_3 - S_2}{S_2 S_3} + \dots + \frac{S_{101} - S_{100}}{S_{100} S_{101}} \right] = \frac{1}{6} \\ &\dots [\because S_2 - S_1 = S_3 - S_2 = \dots = d] \\ &\Rightarrow \frac{1}{d} \left[\frac{1}{S_1} - \frac{1}{S_2} + \frac{1}{S_2} - \frac{1}{S_3} + \dots + \frac{1}{S_{100}} - \frac{1}{S_{101}} \right] = \frac{1}{6} \end{aligned}$$

$$\Rightarrow \frac{1}{d} \left[\frac{1}{S_1} - \frac{1}{S_{101}} \right] = \frac{1}{6} \Rightarrow \frac{1}{d} \left[\frac{1}{S_1} - \frac{1}{S_1 + 100d} \right] = \frac{1}{6}$$

$$\Rightarrow \frac{1}{d} \left[\frac{100d}{S_1 \cdot (S_1 + 100d)} \right] = \frac{1}{6}$$

$$\Rightarrow S_1 \cdot (S_1 + 100d) = 600 \qquad \dots (i)$$

Given, $S_1 + S_{101} = 50$

$$\Rightarrow S_1 + (S_1 + 100d) = 50 \Rightarrow 2S_1 + 100d = 50$$

$$\Rightarrow S_1 + 50d = 25$$

$$\Rightarrow S_1 = 25 - 50d \qquad \dots (ii)$$

Putting (ii) in (i), we get
 $(25 - 50d) \cdot (25 + 50d) = 600$

$$\Rightarrow d^2 = \frac{1}{100} \Rightarrow d = \pm \frac{1}{10}$$

 $|S_1 - S_{101}| = |S_1 - (S_1 + 100d)|$

$$\therefore |S_1 - S_{101}| = |S_1 - (S_1 + 100d)|$$

= |-100d| = 100 |d|[:: |xy| = |x|.[y|]
$$\therefore |S_1 - S_{101}| = 10[:: d = \pm 1/10]$$

31. $a_1, a_2, a_3, \ldots, a_{n+1}$ are in A.P. and common difference = d

Let
$$S = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_n a_{n+1}}$$

 $\Rightarrow S = \frac{1}{d} \left\{ \frac{d}{a_1 a_2} + \frac{d}{a_2 a_3} + \dots + \frac{d}{a_n a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{a_2 - a_1}{a_1 a_2} + \frac{a_3 - a_2}{a_2 a_3} + \dots + \frac{a_{n+1} - a_n}{a_n a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_2} - \frac{1}{a_3} + \dots + \frac{1}{a_n} - \frac{1}{a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{1}{a_1} - \frac{1}{a_{n+1}} \right\} = \frac{1}{d} \left\{ \frac{a_{n+1} - a_1}{a_1 a_{n+1}} \right\}$
 $\Rightarrow S = \frac{1}{d} \left\{ \frac{nd}{a_1 a_{n+1}} \right\} = \frac{1}{a_1 a_{n+1}}$
Trick: Check for $n = 2$.

32. Since, $a_1 = 0$ $a_2 = d$ $a_3 = 2d$

$$\therefore \quad a_{2} - d, a_{3} - 2d, \dots$$

$$\therefore \quad \left(\frac{a_{3}}{a_{2}} + \frac{a_{4}}{a_{3}} + \dots + \frac{a_{n}}{a_{n-1}}\right) - a_{2}\left(\frac{1}{a_{2}} + \frac{1}{a_{3}} + \dots + \frac{1}{a_{n-2}}\right)$$

$$= \left(\frac{2d}{d} + \frac{3d}{2d} + \dots + \frac{(n-1)d}{(n-2)d}\right)$$

$$-d\left(\frac{1}{d} + \frac{1}{2d} + \dots + \frac{1}{(n-3)d}\right)$$

$$= \left(\frac{2}{1} + \frac{3}{2} + \dots + \frac{n-1}{n-2}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-3}\right)$$

$$= \left[(1+1) + \left(1 + \frac{1}{2}\right) + \dots + \left(\frac{n-1}{n-2}\right) \right]$$
$$- \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-3}\right)$$
$$= (n-3) + \frac{n-1}{n-2} = (n-3) + 1 + \frac{1}{n-2}$$
$$= (n-2) + \frac{1}{n-2}$$

33. As given $d = a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1}$ $\therefore \quad \sin d \{ \operatorname{cosec} a_1 \operatorname{cosec} a_2 + \dots + \operatorname{cosec} a_{n-1} \}$

$$= \frac{\sin(a_2 - a_1)}{\sin a_1 \cdot \sin a_2} + \dots + \frac{\sin(a_n - a_{n-1})}{\sin a_{n-1} \sin a_n}$$

= (cot a₁ - cot a₂) + (cot a₂ - cot a₃) + +
(cot a_{n-1} - cot a_n)
= cot a₁ - cot a_n

34. $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2} \right)$ are in A.P. $\Rightarrow 2\log_3 (2^x - 5) = \log_3 \left[(2) \left(2^x - \frac{7}{2} \right) \right]$ $\Rightarrow (2^x - 5)^2 = 2^{x+1} - 7$ $\Rightarrow 2^{2x} - 12.2^x + 32 = 0$ $\Rightarrow x = 2,3$ But x = 2 does not hold, hence x = 3

35.
$$2\tan^{-1}y = \tan^{-1}x + \tan^{-1}z$$
$$\Rightarrow \tan^{-1}\left(\frac{2y}{1-y^2}\right) = \tan^{-1}\left(\frac{x+z}{1-xz}\right)$$
$$\Rightarrow \frac{2y}{1-y^2} = \frac{x+z}{1-xz}$$
But $2y = x + z$...[$\because x, y, z$ are in A.P.]
 $\therefore \quad 1-y^2 = 1-xz$
$$\Rightarrow y^2 = xz$$
 $\therefore x, y, z$ are both in G.P. and A.P.,

$$\therefore x = y = z$$

36. Since, a,b,c are in A.P., we get

$$b - c = -d$$
, ...(i)
 $c - a = 2d$, ...(ii)
 $a - b = -d$...(iii)
Also, since x, y, z are in G.P., we get
 $y^2 = x.z$...(iv)
Now, $x^{b-c}.y^{c-a}.z^{a-b}$
 $= x^{-d}.y^{2d}.z^{-d}$...[From (i), (ii), (iii)]
 $= x^{-d}.(x.z)^{d}.z^{-d}$
 $= 1$

37. If a, b, c are in A.P., then
$$2b = a + c$$

So, $\frac{(a-c)^2}{(b^2 - ac)} = \frac{(a-c)^2}{\left\{ \left(\frac{a+c}{2} \right)^2 - ac \right\}}$
$$= \frac{4(a-c)^2}{[a^2 + c^2 + 2ac - 4ac]}$$
$$= \frac{4(a-c)^2}{(a-c)^2} = 4$$

Trick: Put a = 1, b = 2, c = 3, then the required value is $\frac{4}{1} = 4$.

- 38. Let a - d, a, a + d be the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ Then, (a - d) + a + (a + d) = 12 and (a-d)a(a+d) = 28 \Rightarrow 3a = 12 and a(a² - d²) = 28 \Rightarrow a = 4 and a(a² - d²) = 28 $\Rightarrow 16 - d^2 = 7$ \Rightarrow d = \pm 3
- Arithmetic mean of ⁿC₀, ⁿC₁, ⁿC₂, ..., ⁿC_n 39. i.e. (n + 1) terms $= \frac{{}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ...{}^{n}C_{n}}{n+1}$ $=\frac{2^n}{n+1}$
- 40. For set a to 2b, 2b is the $(n+2)^{th}$ term

$$\therefore \quad 2b = a + (n+1)d$$
$$\Rightarrow d = \frac{2b-a}{n+1}$$

$$\therefore \qquad m^{th} mean = a + md = a + m\left(\frac{2b - a}{n + 1}\right) \qquad \dots(i)$$

For set 2a to b, b is the $(n+2)^{th}$ term

∴
$$b = 2a + (n + 1)d$$

 $\Rightarrow d = \frac{b - 2a}{n + 1}$

$$\therefore \qquad m^{th} mean = 2a + md = 2a + m\left(\frac{b-2a}{n+1}\right) \quad ...(ii)$$

... From (i) and (ii) $a + m\left(\frac{2b-a}{n+1}\right) = 2a + m\left(\frac{b-2a}{n+1}\right)$ $\Rightarrow \frac{a}{b} = \frac{m}{n+1-m}$

Chapter 04: Sequence and Series

$$a = 3, r = \frac{1}{3}$$
$$t_6 = 3\left(\frac{1}{3}\right)^{6-1}$$
$$= 3\left(\frac{1}{3}\right)^5$$
$$= \frac{1}{81}$$

42.
$$r = \frac{1}{3}\sqrt{\frac{20}{3}} \cdot \frac{9}{10} = \frac{\sqrt{60}}{10} = \sqrt{\frac{6}{10}} = \sqrt{\frac{3}{5}}$$

 $\therefore \quad t_5 = ar^4 = \left(\frac{10}{9}\right) \left(\frac{3}{5}\right)^2 = \frac{10}{9} \cdot \frac{9}{25} = \frac{2}{5}$

43. Given that x,
$$2x + 2$$
, $3x + 3$ are in G.P.
Therefore,
 $(2x + 2)^2 = x(3x + 3)$
 $\Rightarrow x^2 + 5x + 4 = 0$
 $\Rightarrow (x + 4)(x + 1) = 0$
 $\Rightarrow x = -1, -4$
Now, first term: $a = x$
and second term: $ar = 2(x + 1)$
 $\Rightarrow r = \frac{2(x + 1)}{x}$
then 4th term = $ar^3 = x \left[\frac{2(x + 1)}{x}\right]^3 = \frac{8}{x^2}(x + 1)^3$
Putting, $x = -4$
We get, $t_4 = \frac{8}{16}(-3)^3 = -\frac{27}{2} = -13.5$
44. Let the first four terms be a, $-ar$, ar^2 , $-ar^3$,
where $r > 0$, $a > 0$
According to the given conditions,
 $a - ar = 12$ and $ar^2 - ar^3 = 48$
By solving, we get $r = 2$ ($r > 0$)

So,
$$a = -12$$

45. $t_5 = ar^4 = \frac{1}{3}$ (i)
and $t_9 = ar^8 = \frac{16}{243}$ (ii)
Solving (i) and (ii) we get $r = \frac{2}{3}$ and $a = \frac{2}{3}$

Solving (i) and (ii), we get
$$r = \frac{2}{3}$$
 and $a = \frac{27}{16}$
Now 4th term = $ar^3 = \frac{3^3}{2^4} \cdot \frac{2^3}{3^3} = \frac{1}{2}$

46.
$$t_{n} = t_{n+1} + t_{n+2}$$

$$\Rightarrow a r^{n-1} = a r^{n} + a r^{n+1}$$

$$\Rightarrow r^{n-1} = r^{n} (1+r)$$

$$\Rightarrow r^{2} + r = 1$$

$$\Rightarrow r^{2} + r - 1 = 0$$

$$\therefore r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1 + 4}}{2}$$

$$= \frac{-1 \pm \sqrt{5}}{2}$$

47. Let first term and common ratio of G.P. are respectively a and r, then under condition,

$$t_{n} = t_{n-1} + t_{n-2}$$

$$\Rightarrow ar^{n-1} = ar^{n-2} + ar^{n-3}$$

$$\Rightarrow ar^{n-1} = ar^{n-1} r^{-1} + ar^{n-1} r^{-2}$$

$$\Rightarrow 1 = \frac{1}{r} + \frac{1}{r^{2}}$$

$$\Rightarrow r^{2} - r - 1 = 0$$

$$\Rightarrow r = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 + \sqrt{5}}{2}$$

Taking only (+) sign (\because r > 1)

48. Let the G.P. be a, ar, ar², ar³, ar⁴, ... $t_2 + t_5 = ar + ar^4 = 216$ $\frac{t_4}{t_6} = \frac{ar^3}{ar^5} = \frac{1}{4}$ $\Rightarrow r^2 = 4 \Rightarrow r = \pm 2$ For r = 2, $a(2 + 2^4) = 216$ $\Rightarrow a(18) = 216$ $\Rightarrow a = \frac{216}{18} = 12$ For r = -2, $a(-2 + 2^4) = 216$ $\Rightarrow a(14) = 216$ $\Rightarrow a = \frac{216}{14} = \frac{108}{7}$

 \therefore a = 12

49. Let first term of G.P.= A and common ratio = r We know that nth term of G.P. = Ar^{n-1} Now $t_4 = a = Ar^3$, $t_7 = b = Ar^6$ and $t_{10} = c = Ar^9$ Relation $b^2 = ac$ is true because $b^2 = (Ar^6)^2 = A^2r^{12}$ and $ac = (Ar^3)(Ar^9) = A^2r^{12}$ Alternate method : As we know, if p, q, r in A.P., then p^{th} , q^{th} , r^{th} terms of a G.P. are always in G.P., therefore, a, b, c will be in G.P. i.e. $b^2 = ac$.

50. The given series is a G.P. with a = i, r = -i
∴ S₁₀₀ =
$$\frac{i(1-i^{100})}{1+i}$$

= $\frac{i(1-(i^2)^{50})}{1+i}$
= $\frac{i(1-1)}{1+i} = 0$
51. $\frac{ar^n - a}{r-1} = 364$ (i)
 $\Rightarrow \frac{3 \times 243 - a}{2} = 364$
 $\Rightarrow a = 1$
Now, putting this in (i), n = 6
52. ∴ nth term of series = $ar^{n-1} = a(3)^{n-1}$
= 486(i)
and sum of n terms of series.
S_n = $\frac{a(3^n - 1)}{3-1} = 728$ (∵ r > 1)(ii)
From (i), $a(\frac{3^n}{3}) = 486$ or $a.3^n = 3 \times 486$
= 1458
From (ii), $a.3^n - a = 728 \times 2$
or $a.3^n - a = 1456$
 $\Rightarrow a = 2$
53. $t_2 = ar = 24$
 $t_5 = ar^4 = 3$
 $\frac{t_5}{t_2} = \frac{1}{8} = r^3$
 $\Rightarrow r = \frac{1}{2}$ & $a = 48$
S₆ = $\frac{a(1-r^6)}{1-r}$
((1)⁶)

 $\frac{189}{2}$

54. $9 + 99 + 999 + \dots 10 \text{ terms}$ = (10 - 1) + (100 - 1) + (1000 - 1) $+ \dots 10 \text{ terms}$ $= (10 + 100 + 1000 + \dots 10 \text{ terms})$ $- (1 + 1 + 1 + \dots 10 \text{ terms})$ $= (10 + 10^2 + 10^3 + \dots 10 \text{ terms}) - (10)$ $= \frac{10 (10^{10} - 1)}{10 - 1} - 1$ $= \frac{10 (10^{10} - 1)}{9} - 10$ $= \frac{10 (10^{10} - 1) - 90}{9}$ $= \frac{100}{9} (10^9 - 1)$

55. Series 3 + 33 + 333 +.....+ n terms Given series can be written as,

$$= \frac{1}{3} [9 + 99 + 999 + \dots + n \text{ terms}]$$

= $\frac{1}{3} [(10 - 1) + (10^{2} - 1) + (10^{3} - 1) + \dots + n \text{ terms}]$
= $\frac{1}{3} [10 + 10^{2} + \dots + 10^{n}] - \frac{1}{3} [1 + 1 + 1]$

$$= \frac{1}{3} [10 + 10^{2} + \dots + 10^{n}] - \frac{1}{3} [1 + 1 + 1 + \dots + n \text{ terms}]$$

$$= \frac{1}{3} \cdot \frac{10(10^{n} - 1)}{10 - 1} - \frac{1}{3} \cdot n$$

$$= \frac{1}{3} \left[\frac{10^{n+1} - 10}{9} - n \right]$$

$$= \frac{1}{3} \left[\frac{10^{n+1} - 9n - 10}{9} \right]$$

$$= \frac{1}{27} [10^{n+1} - 9n - 10]$$

56. Let the G.P. be a, ar, ar^2 , ar^3 ,, ar^{48} , ar^{49} i.e., $a_1 = a$, $a_2 = ar$, $a_3 = ar^2$, ..., $a_{49} = ar^{48}$ and $a_{50} = ar^{49}$

$$\therefore \qquad \frac{a_1 - a_3 + a_5 - \dots + a_{49}}{a_2 - a_4 + a_6 - \dots + a_{50}} \\ = \frac{a - ar^2 + ar^4 - \dots + ar^{48}}{ar - ar^3 + ar^5 - \dots + ar^{49}} \\ = \frac{\frac{a(1 - (-r^2)^{25})}{1 - (-r^2)}}{\frac{ar(1 - (-r^2)^{25})}{1 - (-r^2)}} = \frac{1}{r} = \frac{a}{ar} = \frac{a_1}{a_2}$$

57. Since
$$n^m + 1$$
 divides $1 + n + n^2 + \dots + n^{127}$
Therefore, $\frac{1 + n + n^2 + \dots + n^{127}}{n^m + 1}$ is an integer
 $\Rightarrow \frac{1 - n^{128}}{1 - n} \times \frac{1}{n^m + 1}$ is an integer
 $\Rightarrow \frac{(1 - n^{64})(1 + n^{64})}{(1 - n)(n^m + 1)}$
is an integer, when largest $m = 64$.
58. $\frac{\sqrt{2} + 1}{\sqrt{2} - 1}, \frac{1}{\sqrt{2}(\sqrt{2} - 1)}, \frac{1}{2}, \dots$
Common ratio of the series $= \frac{1}{\sqrt{2}(\sqrt{2} + 1)}$
 \therefore sum $= \frac{a}{1 - r} = \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right) / \left(1 - \frac{1}{\sqrt{2}(\sqrt{2} + 1)}\right)$
 $= \frac{(\sqrt{2} + 1)}{(\sqrt{2} - 1)} \cdot \frac{\sqrt{2}(\sqrt{2} + 1)}{(1 + \sqrt{2})}$
 $= \sqrt{2}(\sqrt{2} + 1)^2$

Chapter 04: Sequence and Series

59. Clearly it is a infinite G.P. whose common ratio is 0.24.

$$\therefore S_{\infty} = \frac{a}{1-r} = \frac{5.05}{1-0.24} = 6.64474$$
60. (32) (32)^{1/6}(32)^{1/36} $\infty = (32)^{1+\frac{1}{6}+\frac{1}{36}+...\infty}$

$$= (32)^{\frac{1}{1-(1/6)}} = (32)^{\frac{1}{5/6}} = (32)^{\frac{6}{5}}$$

$$= 2^{6} = 64$$

61. According to the given condition,

$$\frac{a}{1-r} = \frac{4}{3}$$
$$\Rightarrow \frac{3}{4} \left(\frac{1}{1-r} \right) = \frac{4}{3}$$
$$\Rightarrow r = 1 - \frac{9}{16} = \frac{7}{16}$$

62. According to the given condition,

$$4 = \frac{a}{1-r}$$

$$\Rightarrow 4 \Rightarrow a = 4 - 4r$$

$$\Rightarrow 4r = 4 - a$$

Only option (D) satisfies this condition.

63.
$$3 + 3\alpha + 3\alpha^2 + 3\alpha^3 + \dots = \frac{45}{8}$$

 $\Rightarrow 3\left[\frac{1}{1-\alpha}\right] = \frac{45}{8} \Rightarrow 8 = 15(1-\alpha) \Rightarrow \alpha = \frac{7}{15}$

MHT-CET Triumph Maths (Hints)64.
$$y = x - x^2 + x^3 - x^4 - \dots \infty$$

Adding, $y + xy = x^3 - x^4 + \dots \infty$
 $d ding, y + xy = x + 0 + 0 \dots + 0$
 $\Rightarrow x - xy = y$
 $\Rightarrow x(1 - y) = y$
 $\Rightarrow x(1 - y) = y$
 $\Rightarrow x = $\frac{y}{1 - y}$ 68. Since the series are in G.P., therefore
 $x = \frac{1}{1 - a}$ and $y = \frac{1}{1 - b}$
 \therefore
 $a = \frac{x - 1}{x}, b = \frac{y - 1}{y}$
 \therefore
 $a + a^{b} + a^{b} + \dots \infty$
 $= \frac{1}{1 - ab} = \frac{1}{1 - ab} = \frac{1}{1 - b}$
 \therefore
 $a = \frac{x - 1}{x}, b = \frac{y - 1}{y}$
 \therefore
 $a + a^{b} + a^{b} + \dots \infty$
 $= \frac{1}{1 - ab} = \frac{1}{1 - \frac{1}{x}}, \frac{y - 1}{y}$ 65. Common ratio $(r) = \frac{2}{x}$
 $\Rightarrow y + yx = x \Rightarrow x = \frac{y}{1 - y}$ 69. $1 - \cos a = \frac{1}{-2 - \sqrt{2}} = 1 + \frac{1}{\sqrt{2}}, \dots \left[\because \frac{a}{1 - r} = \frac{x}{2} - \sqrt{2} + \frac{1}{\sqrt{2}}, \dots \left[\because \frac{a}{1 - r} = \frac{x}{2} - \sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}, \dots \left[\because \frac{a}{1 - r} = \frac{x}{2} - \sqrt{2} + \frac{1}{\sqrt{2}} +$$

 $\frac{\frac{-1}{y}}{\frac{-1}{y}} = \frac{xy}{x+y-1}$ $\frac{1}{\sqrt{2}} \qquad \dots \left[\because \frac{a}{1-r} = 2 - \sqrt{2} \right]$ $\frac{3\pi}{4}$ upto $\infty = 4 + 2\sqrt{3}$ <u>,</u> $\frac{\pi}{3}, \frac{2\pi}{3}$ 2<u>32</u> 90 419 990 00000189 + $\frac{1}{8} + ... \infty$ ³ $\frac{7}{50} + \frac{7}{3700}$

Alternate Method: 0 14 1 8 9 $=\frac{14189-14}{99900}=\frac{14175}{99900}=\frac{21}{148}$ 74. Let α and β be the roots of equation $x^2 - 18x + 9 = 0$ G.M. of α and $\beta = \sqrt{\alpha\beta} = \sqrt{9} = 3$ [$\because \alpha\beta = 9$] *.*.. Let G_1 , G_2 , G_3 , G_4 , G_5 be the G.M.'s are 75. inserted between 486 and $\frac{2}{3}$. So total terms are 7. $t_n = ar^{n-1}$ $\Rightarrow \frac{2}{2} = 486(r)^6 \Rightarrow r = \frac{1}{2}$ Hence, 4^{th} G.M. will be, $t_5 = ar^4$ $=486\left(\frac{1}{3}\right)^4$ = 6 Let a - d, a, a + d be three numbers in A.P. 76. a + d + a + a - d = 15*.*.. $\Rightarrow a = 5$ a - d + 1, a + 4, a + d + 19 are in G.P. \Rightarrow 6 - d, 9, 24 + d are in G.P. 81 = (6 - d)(24 + d).... \Rightarrow 81 = 144 + 6d - 24d - d² \Rightarrow d² + 18d - 63 = 0 d = 3, -21*.*.. the numbers are 2, 5, 8 and 26, 5, -16 *.*.. 77. x, y, z are in G.P., then $y^2 = x.z$ Now $a^x = b^y = c^z = m$ $\Rightarrow x \log_e a = y \log_e b = z \log_e c = \log_e m$ $\Rightarrow x = \log_a m, y = \log_b m, z = \log_c m$ Again as x, y, z are in G.P., so $\frac{y}{r} = \frac{z}{v}$ $\Rightarrow \frac{\log_{b} m}{\log_{a} m} = \frac{\log_{c} m}{\log_{b} m}$ $\Rightarrow \log_{b} a = \log_{c} b$ 78. Let $a^{1/x} = b^{1/y} = c^{1/z}$ \Rightarrow a = k^x, b = k^y, c = k^z Now, a, b, c are in G.P. \Rightarrow b² = ac \Rightarrow k^{2y} = k^x.k^z = k^{x+z} $\Rightarrow 2y = x + z$

 \Rightarrow x, y, z are in A.P.

Chapter 04: Sequence and Series 79. Since, a, b, c are in G.P. $b^2 = ac$ *.*.. $\Rightarrow \log_e b^2 = \log_e ac$ $\Rightarrow \log_e a - 2 \log_e b + \log_e c = 0$ Given, $(\log_{e} a)x^{2} - (2 \log_{e} b)x + \log_{e} c = 0$ Since, 1 satisfies this equation. Therefore, 1 is one root and other root say β . $1.\beta = \frac{\log_e c}{\log_e a}$ *.*.. ÷ $\beta = \log_a c$ 80. $\frac{x^{n+1} + y^{n+1}}{x^n + y^n} = \sqrt{xy} \Longrightarrow x^{n+1} + y^{n+1} = \sqrt{xy} (x^n + y^n)$ $\Rightarrow x^{n+\frac{1}{2}} \left(x^{\frac{1}{2}} - y^{\frac{1}{2}} \right) = y^{n+\frac{1}{2}} \left(x^{\frac{1}{2}} - y^{\frac{1}{2}} \right)$ $\Rightarrow \left(\frac{x}{y}\right)^{n+\frac{1}{2}} = 1 \Rightarrow n = -\frac{1}{2}$ 81. a + d, a + 4d, a + 8d, are in G.P. \Rightarrow (a + 4d)² = (a + d) (a + 8d) $\Rightarrow 8d^2 = ad \Rightarrow \frac{a}{d} = 8$ common ratio = $\frac{a+4d}{a+d}$ *.*.. $=\frac{8+4}{8+1}=\frac{4}{2}$ 82. Series, 2, $2\frac{1}{2}$, $3\frac{1}{2}$, are in H.P. $\Rightarrow \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \dots$ will be in A.P. Now, first term $a = \frac{1}{2}$ and common difference d = $-\frac{1}{10}$ So, 5th term of the A.P. $=\frac{1}{2}+(5-1)\left(-\frac{1}{10}\right)=\frac{1}{10}$ Hence, 5th term of the H.P. is 10. Here, 5th term of the corresponding 83. A.P. = a + 4d = 45.....(i) and 11th term of the corresponding A.P. = a + 10d = 69.....(ii) From (i) and (ii), we get a = 29, d = 4Therefore, 16th term of the corresponding A.P. $= a + 15d = 29 + 15 \times 4 = 89$ Hence, 16^{th} term of the H.P. is $\frac{1}{90}$.

84. Since $a_1, a_2, a_3, \ldots, a_n$ are in H.P Therefore $\frac{1}{a_1}$, $\frac{1}{a_2}$, $\frac{1}{a_2}$, \dots , $\frac{1}{a_n}$ will be in A.P. Which gives, $\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = \dots$ $=\frac{1}{a}-\frac{1}{a}=d$ $\Rightarrow \frac{a_1 - a_2}{a_1 a_2} = \frac{a_2 - a_3}{a_2 a_3} = \dots = \frac{a_{n-1} - a_n}{a_{n-1} a_n} = d$ \Rightarrow $a_1 - a_2 = da_1a_2, a_2 - a_3 = da_2a_3$ and $a_{n-1} - a_n = da_{n-1}a_n$ Adding these, we get $d(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n)$ $= (a_1 + a_2 + \dots + a_{n-1}) - (a_2 + a_3 + \dots + a_n)$ $= a_1 - a_n$(i) Also nth term of this A.P. is given by $\frac{1}{a_n} = \frac{1}{a_1} + (n-1)d \implies d = \frac{a_1 - a_n}{a_1 a_n (n-1)}$ Substituting this value of d in (i) $(a_1 - a_n) = \frac{a_1 - a_n}{a_1 a_1 (n-1)} (a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n)$ $(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n) = a_1a_n(n-1)$ We know that, $x_n = \frac{(n+1)ab}{na+b}$ 85. Sixth H.M. i.e. $x_6 = \frac{7 \cdot 3 \cdot \left(\frac{6}{13}\right)}{\left(6 \cdot 3 + \frac{6}{13}\right)}$ *.*.. $=\frac{126}{240}$ $=\frac{63}{120}$ 86. Let roots be α , β then $\alpha + \beta = -\frac{b}{-10} = 10$ $\alpha\beta = \frac{c}{-} = 11$ $H.M. = \frac{2\alpha\beta}{\alpha+\beta} = \frac{11\times2}{10} = \frac{11}{5}$ a,b,c are in H.P. \Rightarrow b = $\frac{2ac}{a+c}$ 87. By inspection, we get (A) False (B) False

88. Since, a, b, c are in H.P. $\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \Rightarrow b = \frac{2ac}{a+c}$ *.*.. Consider option (B), $\frac{1}{ca} = \frac{2\left(\frac{1}{bc}, \frac{1}{ab}\right)}{\frac{1}{bc} + \frac{1}{ab}} = \frac{\left(\frac{2}{ab^2c}\right)}{\frac{a+c}{abc}}$ $=\frac{2(abc)}{ab^2c(a+c)}=\frac{2}{b(a+c)}$ \Rightarrow ca = $\frac{b(a+c)}{2}$ \Rightarrow b = $\frac{2ac}{ac}$ $\therefore \frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab}$ are in H.P. 89. As given $H = \frac{2pq}{p+q}$ $\therefore \qquad \frac{H}{p} + \frac{H}{q} = \frac{2q}{p+q} + \frac{2p}{p+q} = \frac{2(p+q)}{p+q} = 2$ 90. Let, the distance of school from home = d and time taken are t_1 and t_2 . \therefore $t_1 = \frac{d}{v}$ and $t_2 = \frac{d}{v}$ Avg. velocity = $\frac{\text{Total distance}}{\text{Total time}}$ $=\frac{2d}{\left(\frac{d}{x}+\frac{d}{y}\right)}=\frac{2xy}{x+y}, \text{ which is the H.M. of } x \text{ and } y.$ 91. If x, y, z are in H.P., then $y = \frac{2xz}{x+z}$ $\log_e(x+z) + \log_e(x-2y+z)$ *.*.. $= \log_{e} \{ (x + z) (x - 2y + z) \}$ $= \log_{e} \left((x+z) \left(x+z - \frac{4xz}{x+z} \right) \right)$ $= \log_{e}[(x+z)^{2} - 4xz]$ $= \log_{e}(x-z)^{2}$ $= 2 \log_{e}(x-z)$ 92. We have $\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{2ab}{a+b}$ $\Rightarrow a^{n+2} + ab^{n+1} + ba^{n+1} + b^{n+2} = 2a^{n+1}b + 2b^{n+1}a$ $\Rightarrow a^{n+1}(a-b) = b^{n+1}(a-b)$ or $\left(\frac{a}{b}\right)^{n+1} = (1) = \left(\frac{a}{b}\right)^n$

Hence, n = -1

162

(C) False

93.
$$f(x) = x + \frac{1}{2} = \frac{2x+1}{2}$$

$$f(2x) = \frac{4x+1}{2}$$

$$f(4x) = \frac{8x+1}{2}$$

$$f(x), f(2x), f(4x) \text{ are in H.P.}$$

$$\therefore \quad f(2x) = \frac{2f(x)f(4x)}{f(x) + f(4x)}$$

$$\Rightarrow x = 0, \frac{1}{4}$$
At $x = 0$, terms are equal, so only solution is
$$x = \frac{1}{4}$$

94. Given
$$x_1.x_2.x_3....x_n = 1$$

 $\therefore A.M. \ge G.M.$
 $\therefore \left(\frac{x_1 + x_2 + x_3 +x_n}{n}\right) \ge (x_1.x_2.x_3...x_n)^{\frac{1}{n}}$
 $= (1)^{\frac{1}{n}}$

$$\therefore \quad x_1 + x_2 + x_3 + \dots + x_n \ge n$$

$$\therefore \quad x_1 + x_2 + x_3 + \dots + x_n \text{ can never be less than n.}$$

95. A.M. \geq G.M. $\Rightarrow \frac{a_1 + a_2 + \dots + a_{n-1} + 2a_n}{n}$

$$\geq (a_1.a_2,...a_{n-1}2a_n)^{\frac{1}{n}} \geq (2c)^{\frac{1}{n}}$$

: Minimum value of

4

$$a_1 + a_2 + \ldots + a_{n-1} + 2a_n = n(2c)^{\frac{1}{n}}$$

- 96. Since, p, q, r are in G.P.
- $\therefore q^2 = pr$ Also, tan⁻¹ p, tan⁻¹ q, tan⁻¹ r are in A.P. $\Rightarrow tan^{-1} p + tan^{-1} r = 2 tan^{-1} q$ $\Rightarrow p + r = 2q$ $\Rightarrow p, q, r are in A.P.$ Here, p, q, r are both in A.P. and G.P., which is possible only, if p = q = r.

97.
$$\frac{x+y}{2} = 3$$
$$\Rightarrow x+y=6$$
$$xy = 1^2 = 1$$
$$x^2 + y^2 = (x+y)^2 - 2xy$$
$$= 36 - 2$$
$$= 34$$

98. Given that A.M. = 8 and G.M. = 5, if α , β are roots of quadratic equation, then quadratic equation is $x^2 - x(\alpha + \beta) + \alpha\beta = 0$ A.M. = $\frac{\alpha + \beta}{2} = 8 \Rightarrow \alpha + \beta = 16$ and G.M. = $\sqrt{\alpha\beta} = 5 \Rightarrow \alpha\beta = 25$ So the required quadratic equation will be $x^2 - 16x + 25 = 0.$ $\frac{x+y}{2} = 9$ 99. $\Rightarrow x + y = 18$ $xv = 4^2 = 16$ x and y are the roots. *.*.. The equation is $x^2 - 18x + 16 = 0$ 100. GM = $\sqrt{ab} = 2$ \Rightarrow ab = 4 $HM = \frac{2ab}{a+b} = \frac{-8}{5}$ $\Rightarrow \frac{8}{a+b} = \frac{-8}{5}$ \Rightarrow a + b = -5 $\Rightarrow 2a + 2b = -10$ $ab = 4 \Longrightarrow (2a) (2b) = 16$ The required quadratic equation is *.*.. $x^{2} - (2a + 2b)x + (2a)(2b) = 0$ $\Rightarrow x^2 + 10x + 16 = 0$ 101. Sum of the roots of $x^2 - 2ax + b^2 = 0$ is 2a, Therefore, A = A.M. of the roots = a. Product of the roots of $x^2 - 2bx + a^2 = 0$ is a^2 Therefore, G.M. of the roots is G = aThus, A = G102. We have, $\tan n\theta = \tan m\theta$ \Rightarrow n θ = N π + (m θ) $\Rightarrow \theta = \frac{N\pi}{n-m}$, putting N = 1,2,3...., we get $\frac{\pi}{n-m}, \frac{2\pi}{n-m}, \frac{3\pi}{n-m}$ which are in A.P. Since, common difference, $d = \frac{\pi}{n-m}$. 103. Let three numbers a, b and c in G.P., then $b^2 = ac$ $\Rightarrow 2 \log_e b = \log_e a + \log_e c$ or $\log_e b = \frac{\log_e a + \log_e c}{2}$

Chapter 04: Sequence and Series

Thus, their logarithms are in A.P.

MHT-CET Triumph Maths (Hints)	
104.	$225 = 3^{2} \times 5^{2} = d (225) = 3 \times 3 = 9$ $1125 = 3^{2} \times 5^{3} = d (1125) = 3 \times 4 = 12$ $640 = 2^{7} \times 5 = d (640) = 8 \times 2 = 16$ 9, 12, 16 are in G.P
105.	If $\frac{x+y}{2}$, y , $\frac{y+z}{2}$ are in H.P., then $2\left(\frac{x+y}{2}, \frac{y+z}{2}\right)$
	$y = \frac{\frac{x+y}{2} + \frac{y+z}{2}}{\frac{z}{4}}$ $= \frac{\frac{2}{4}(x+y)(y+z)}{\frac{1}{4}(x+2-y)}$
	$\frac{-(x+2y+z)}{2}$ $y = \frac{xy+xz+y^2+yz}{x+2y+z}$ $\Rightarrow xy+2y^2+yz = xy+xz+y^2+yz$
	$\Rightarrow y^2 = xz$ Thus, x, y, z will be in G.P.
106.	(y-x), $2(y-a)$, $(y-z)$ are in H.P.
	$\Rightarrow \frac{1}{y-x}, \frac{1}{2(y-a)}, \frac{1}{y-z}$ are in A.P.
	$\Rightarrow \frac{1}{2(y-a)} - \frac{1}{(y-x)} = \frac{1}{(y-z)} - \frac{1}{2(y-a)}$
	$\Rightarrow \frac{y - x - 2y + 2a}{y - x} = \frac{2y - 2a - y + z}{y - z}$
	$\Rightarrow \frac{-x-y+2a}{(y-x)} = \frac{y+z-2a}{(y-z)}$
	$\Rightarrow \frac{(x-a)+(y-a)}{(x-a)-(y-a)} = \frac{(y-a)+(z-a)}{(y-a)-(z-a)}$
	$\Rightarrow \frac{(x-a)}{(y-a)} = \frac{(y-a)}{(z-a)}$
107	$\Rightarrow (x - a), (y - a), (z - a) \text{ are in G. P.}$
107.	and $4 = xz$ (i) Divide (ii) by (i) we get
	$\frac{x \cdot z}{x \cdot z} = \frac{4}{2} \text{ or } \frac{2xz}{z} = 4$
	x + z = 2 $x + zHence, x, 4, z will be in H.P.$
108.	Given, a, b, c are in G.P. $\Rightarrow \log_{a} \log_{b} \log_{c} c$ are in A P
	$\Rightarrow \frac{\log a}{1}, \frac{\log b}{1}, \frac{\log c}{1}, \frac{\log c}{1} \text{ are in A.P.}$
	$\log x - \log x - \log x$ $\log x - \log x - \log x$
	$\Rightarrow \frac{\log x}{\log a}, \frac{\log x}{\log b}, \frac{\log x}{\log c} \text{ are in H.P.}$
	i.e., $\log_a x$, $\log_b x$, $\log_c x$ are in H.P.

109. *x*, *y*, *z* are in G.P. Hence, $y^2 = xz$ *.*. $2 \log y = \log x + \log z$ $\Rightarrow 2 (\log y + 1) = (1 + \log x) + (1 + \log z)$ \Rightarrow 1 + log x, 1 + log y, 1 + log z are in A.P. $\Rightarrow \frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ are is H.P. 110. Since, b², a², c² are in A.P. ∴ $a^2 - b^2 = c^2 - a^2$ $\Rightarrow (a-b) (a+b) = (c-a) (c+a)$ $\Rightarrow \frac{1}{b+c} - \frac{1}{a+b} = \frac{1}{c+a} - \frac{1}{b+c}$ $\Rightarrow \frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a} \text{ are in A.P.}$ (a + b), (b + c), (c + a) are in H.P. *.*.. 111. Given, a, b, c are in A.P. $\Rightarrow 2b = a + c \Rightarrow b - c = a - b$ Also, a^2 , b^2 , c^2 are in H.P. $\frac{1}{b^2} - \frac{1}{a^2} = \frac{1}{c^2} - \frac{1}{b^2}$ $\Rightarrow \frac{a^2 - b^2}{a^2 b^2} = \frac{b^2 - c^2}{b^2 c^2}$ $\Rightarrow (a-b) [c^{2}(a+b) - a^{2}(b+c)] = 0$ \dots [:: (b-c) = (a-b)] \Rightarrow a = b or c²a + c²b - a²b - a²c = 0 $\Rightarrow c^2a + c^2b - a^2b - a^2c = 0$ \Rightarrow ac(c - a) = b(a² - c²) \Rightarrow ac = -b(c + a) $\Rightarrow -ac = b.2b$ $\Rightarrow b^2 = -\left(\frac{a}{2}\right)c$ $\therefore -\frac{a}{2}$, b, c are in G.P. 112. x + y + z = 15, if 9, x, y, z, a are in A.P. Sum = 9 + 15 + a = $\frac{5}{2}(9 + a)$

 $\Rightarrow 24 + a = \frac{5}{2}(9 + a)$

 \Rightarrow 48 + 2a = 45 + 5a

and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$, if 9, x, y, z, a are in H.P.

Sum = $\frac{1}{9} + \frac{5}{3} + \frac{1}{a} = \frac{5}{2} \left[\frac{1}{9} + \frac{1}{a} \right] \Rightarrow a = 1$

 $\Rightarrow 3a = 3$ $\Rightarrow a = 1$

113. Given, a, b, c are in G.P.

$$\therefore \quad b^2 = ac$$

$$x = \frac{a+b}{2}, \quad y = \frac{b+c}{2}$$

$$\therefore \quad \frac{a}{x} + \frac{c}{y} = \frac{2a}{a+b} + \frac{2c}{b+c}$$

$$= \frac{2(ab+bc+2ca)}{ab+ac+b^2+bc}$$

$$= \frac{2(ab+bc+2ca)}{(ab+ac+ac+bc)}$$

$$= 2 \qquad \dots [\because b^2 = ac]$$

114. Given that a, A_1 , A_2 , b are in A.P.

Therefore,
$$A_1 = \frac{a + A_2}{2}$$
, $A_2 = \frac{A_1 + b}{2}$
 $\Rightarrow A_1 + A_2 = \frac{1}{2}(a + b + A_1 + A_2)$
 $\Rightarrow \frac{1}{2}(A_1 + A_2) = \frac{1}{2}(a + b)$ or
 $A_1 + A_2 = a + b$
and a, G_1, G_2 , b are in G.P.
Therefore, $G_1^2 = aG_2, G_2^2 = bG_1$
 $\Rightarrow G_1^2G_2^2 = abG_1G_2 \Rightarrow G_1G_2 = ab$
Hence, $\frac{A_1 + A_2}{G_1G_2} = \frac{a + b}{ab}$
Trick : Let $a = 1, b = 2$,
then $A_1 + A_2 = 1 + 2 = 3$
and $G_1, G_2 = 2 \times 1 = 2$
 $\frac{A_1 + A_2}{G_1G_2} = \frac{3}{2}$, which is given by (A).

115. Given numbers a and 2.

....

÷.

A.M. =
$$\frac{a+2}{2}$$
 and G.M. = $\sqrt{2a}$
According to the given condition,
A.M. - G.M. = 1
 $\Rightarrow \frac{a+2}{2} - \sqrt{2a} = 1$
 $\Rightarrow \frac{a}{2} + 1 - 1 = \sqrt{2a}$
 $\Rightarrow a = 2\sqrt{2a} \Rightarrow a^2 = 8a$
 $\Rightarrow a(a-8) = 0$
 $\Rightarrow a = 0$ or 8
Since, $a \neq 0$
 $a = 8$

Chapter 04: Sequence and Series 116. Let the two numbers be x, y. x - y = 48....(i) *.*.. and $\frac{x+y}{2} - \sqrt{xy} = 18$ $\Rightarrow x + y - 2\sqrt{xy} = 36$ $\Rightarrow 48 + y + y - 2\sqrt{(48 + y)y} = 36 \dots [From (i)]$ $\Rightarrow 12 + 2y = 2\sqrt{y(48+y)}$ $\Rightarrow 6 + y = \sqrt{y(48 + y)}$ $\Rightarrow 36 + y^2 + 12y = 48y + y^2$ \Rightarrow 36y = 36 \Rightarrow y = 1 x = 48 + 1 = 49*.*.. 117. Since, H_1 , H_2 are two harmonic means between a and b. $\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{b}$ are in A.P. *.*.. We know that 2A = a + b and $G^2 = ab$ $2 \times \frac{1}{H_1} = \frac{1}{a} + \frac{1}{H_2}$:. Similarly, $2 \times \frac{1}{H_2} = \frac{1}{b} + \frac{1}{H_1}$ On adding and solving we get, $2\left(\frac{1}{H_1} + \frac{1}{H_2}\right) - \left(\frac{1}{H_1} + \frac{1}{H_2}\right) = \frac{1}{a} + \frac{1}{b}$ $\frac{1}{H_1} + \frac{1}{H_2} = \frac{a+b}{ab} = \frac{2A}{G^2}$ 118. Let a and b be two numbers. Sum of n A.M.'s = $n \times single A.M$. $\Rightarrow A_1 + A_2 = 2 \times \left(\frac{a+b}{2}\right) = a+b$ Product of n G.M.'s = $(Single G.M.)^n$

$$\Rightarrow G_1.G_2 = \left(\sqrt{ab}\right)^2 = ab$$

$$\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{b} \text{ are in A.P.}$$

$$\Rightarrow \frac{1}{H_1} + \frac{1}{H_2} = \frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$$

$$\Rightarrow \frac{H_1H_2}{H_1 + H_2} = \frac{G_1G_2}{A_1 + A_2}$$

$$\Rightarrow \frac{G_1G_2}{H_1H_2} \times \frac{H_1 + H_2}{A_1 + A_2} = 1$$

MHT-CET Triumph Maths (Hints) 119. Given, $\sqrt{ab} = 10$ \Rightarrow ab = 100 and $\frac{2ab}{a+b} = 8$ \Rightarrow a + b = 25 a = 5, b = 20*.*.. 120. Let the positive numbers be a_1 and a_2 . a_1, A, a_2, \dots are in A.P. then $A = \frac{a_1 + a_2}{2}$ Also, a₁, G, a₂, are in G.P. $G = \sqrt{a_1 a_2}$ *.*.. $\frac{1}{a_1}, \frac{1}{H}, \frac{1}{a_2}, \dots$ are in H.P. $\therefore \qquad \frac{2}{H} = \frac{1}{a_1} + \frac{1}{a_2} \Longrightarrow H = \frac{2a_1a_2}{a_1 + a_2} \Longrightarrow H = \frac{G^2}{A}$ 121. Given A.M. = 2(G.M.) or $\frac{1}{2}(a+b) = 2\sqrt{ab}$ or $\frac{a+b}{2\sqrt{ab}} = \frac{2}{1}$ $\Rightarrow \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{2+1}{2-1} = \frac{3}{1}$ $\Rightarrow \frac{(\sqrt{a} + \sqrt{b})^2}{(\sqrt{a} - \sqrt{b})^2} = \frac{3}{1}$ $\Rightarrow \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{\sqrt{3}}{1} \Rightarrow \frac{a}{b} = \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\right)^2$ $\Rightarrow \frac{a}{b} = \frac{2+\sqrt{3}}{2-\sqrt{3}}$ or $a: b = (2+\sqrt{3}): (2-\sqrt{3})$. 122. We have H.M. = $\frac{2ab}{a+b}$ and G.M. = \sqrt{ab} So $\frac{\text{H.M.}}{\text{H.M.}} = \frac{4}{2ab/(a+b)} = \frac{4}{2ab/(a+b)} = \frac{4}{2ab/(a+b)}$

$$30 \quad \text{G.M.} \quad 5 \xrightarrow{} \sqrt{ab} \quad 5$$

$$\Rightarrow \frac{2\sqrt{ab}}{(a+b)} = \frac{4}{5} \Rightarrow \frac{a+b}{2\sqrt{ab}} = \frac{5}{4}$$

$$\Rightarrow \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{5+4}{5-4}$$

$$\Rightarrow \frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{9}{1} \Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{3}{1}$$

$$\Rightarrow \frac{(\sqrt{a}+\sqrt{b})+(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})-(\sqrt{a}-\sqrt{b})} = \frac{3+1}{3-1}$$

$$\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{4}{2} \Rightarrow \left(\frac{a}{b}\right) = 2^2 = 4$$

$$\Rightarrow a: b=4:1 \text{ or } b: a=1:4$$

123. According to the given condition,

$$\frac{x+y}{2} = \frac{p}{q}$$

$$\Rightarrow \frac{x+y}{2(\sqrt{xy})} = \frac{p}{q} \qquad \dots(i)$$

$$\Rightarrow \frac{x^2+y^2+2xy}{4xy} = \frac{p^2}{q^2}$$

$$\Rightarrow \frac{x^2+y^2+2xy-4xy}{4xy} = \frac{p^2-q^2}{q^2}$$

$$\Rightarrow \frac{(x-y)^2}{4xy} = \frac{p^2-q^2}{q^2} \qquad \dots(ii)$$
Dividing (ii) by (i), we get
$$\frac{x+y}{x-y} = \frac{p}{\sqrt{p^2-q^2}} \Rightarrow \frac{x}{y} = \frac{p+\sqrt{p^2-q^2}}{p-\sqrt{p^2-q^2}}$$
124. $\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \dots + \frac{1}{t_{2003}}$

$$= 4\left[\frac{1}{3.4} + \frac{1}{4.5} + \frac{1}{5.6} + \dots + \frac{1}{(2005).(2006)}\right]$$

$$= 4\left[\frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2005} - \frac{1}{2006}\right]$$

$$= 4\left[\frac{1}{3} - \frac{1}{2006}\right]$$

$$= 4.\frac{2003}{3(2006)}$$

$$= \frac{4006}{3009}$$

$$\therefore \quad S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} = \frac{1}{1-\frac{1}{2}} + \frac{2 \times \frac{1}{2}}{\left(1-\frac{1}{2}\right)^2}$$
$$= 2+4$$
$$= 6$$

126. \quad S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}Here, $a = 1, r = \frac{1}{5}, d = 3$
$$\therefore \quad S_{\infty} = \frac{1}{1-\frac{1}{5}} + \frac{3 \times \frac{1}{5}}{\left(1-\frac{1}{5}\right)^2} = \frac{35}{16}$$

Chapter 04: Sequence and Series

127. Let
$$S = 1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots + \cos \infty$$

 $\Rightarrow (S-1) = \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots + \cos \infty \dots (i)$
 $\Rightarrow (S-1) \frac{1}{3} = \frac{2}{3^2} + \frac{6}{3^3} + \frac{10}{3^4} + \dots + \cos \infty \dots (ii)$
Subtracting (ii) from (i), we get
 $\frac{2}{3}(S-1) = \frac{2}{3} + \frac{4}{3^2} + \frac{4}{3^3} + \frac{4}{3^4} + \dots + \cos \infty$
 $\Rightarrow \frac{2}{3}(S-1) = \frac{2}{3} + \frac{\frac{4}{3^2}}{1 - \frac{1}{3}}$
 $\Rightarrow \frac{2}{3}(S-1) = \frac{2}{3} + \frac{2}{3} \Rightarrow S = 3$
128. $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots + \frac{1}{2^4} \left(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots + \frac{1}{2^6}\right)$
 $\therefore \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots + \frac{1}{16} \times \frac{\pi^4}{90} = \frac{\pi^4}{90}$
 $\therefore \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \dots + \infty$
 $= \frac{\pi^4}{-1} \left(\frac{\pi^4}{9}\right)$

$$= \frac{\pi}{90} - \frac{1}{16} \left(\frac{\pi}{90} \right)$$
$$= \frac{15}{16} \left(\frac{\pi^4}{90} \right) = \frac{\pi^4}{96}$$

129. The sequence can be written as $\log a$, (2 $\log a - \log b$), (3 $\log a - 2 \log b$), which are in A.P. having common difference as $\log a - \log b$.

130.
$$\sum_{k=1}^{n} k (k+2) = \sum_{k=1}^{n} k^{2} + 2 \sum_{k=1}^{n} k$$
$$= \frac{n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$$
$$= \frac{n(n+1)}{6} [2n+1+6]$$
$$= \frac{n(n+1)(2n+7)}{6}$$
131. Given series $\frac{1}{1} + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots$ So, nth term of series is given by

$$t_{n} = \frac{1+2+3+\dots+n}{n}$$

$$= \frac{\frac{1}{2}n(n+1)}{n} = \frac{n+1}{2}$$
132. Here $t_{n} = \frac{n(n+1)}{2}$

$$\therefore \quad S_{n} = \frac{1}{2}(\Sigma n^{2} + \Sigma n) = \frac{n(n+1)(n+2)}{6}$$
133. $t_{n} = \frac{(2n+1)}{\frac{n(n+1)(2n+1)}{6}}$

$$= \frac{6}{n(n+1)}$$

$$S_{n} = \sum(t_{n})$$

$$= \sum 6 \left[\frac{1}{n} - \frac{1}{n+1}\right]$$

$$= 6 \left[1 - \frac{1}{n+1}\right]$$

$$S_{n} = \frac{6n}{n+1}$$

134. General term
$$t_n = \frac{1^2 + 2^2 + \dots + n^2}{1 + 2 + \dots + n}$$

$$\Rightarrow t_{n} = \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}} = \frac{1}{3}.(2n+1)$$

$$\therefore \qquad \sum t_{n} = \frac{2}{3}\sum n + \frac{1}{3}n$$
$$= \frac{2}{3}.\frac{n(n+1)}{2} + \frac{1}{3}n$$
$$= \frac{1}{3}n.(n+1) + \frac{1}{3}n$$
$$= \frac{n(n+2)}{3}$$

3

135. Mean,
$$\overline{x} = \frac{1.(1) + 2.(2) + 3.(3) + ... + n.(n)}{1 + 2 + 3 + ... + n}$$

$$= \frac{\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}}$$
$$= \frac{2n+1}{3}$$

136. S = 3.6 + 4.7 + upto n - 2 terms
= (1.4 + 2.5 + 3.6 + 4.7 +....upto n terms) - 14
=
$$\Sigma n(n + 3) - 14$$

= $\frac{1}{6} (2n^3 + 12n^2 + 10n) - 14$
= $\left(\frac{2n^3 + 12n^2 + 10n - 84}{6}\right)$,

where $n = 3, 4, 5 \dots$ **Trick :** $S_1 = 18, S_2 = 46$ Now put in options (n - 2) = 1, 2 i.e. n = 3, 4Option (B) gives the values.

137.
$$\left(\frac{8}{5}\right)^2 + \left(\frac{12}{5}\right)^2 + \left(\frac{16}{5}\right)^2 + \dots$$

$$= \frac{1}{5^2} [8^2 + 12^2 + 16^2 + \dots]$$

$$= \frac{1}{5^2} [(4 \times 2)^2 + (4 \times 3)^2 + (4 \times 4)^2 + \dots]$$

$$= \frac{4^2}{5^2} [2^2 + 3^2 + 4^2 + \dots + 11^2]$$

$$= \frac{4^2}{5^2} [1^2 + 2^2 + \dots + 11^2 - 1^2]$$

$$= \frac{4^2}{5^2} \left[\frac{11(12)(23)}{6} - 1\right] = \frac{16}{5} m$$
∴ $m = \frac{1}{5} \left[\frac{3036 - 6}{6}\right] = \frac{3030}{30}$
∴ $m = 101$
138. $\sum_{k=0}^{12} a_{4k+1} = 416$

$$\Rightarrow a_1 + a_5 + a_9 + \dots + a_{49} = 416$$

$$\Rightarrow a_1 + 24d = 32 \qquad \dots(i)$$
 $a_9 + a_{43} = 66$

$$\Rightarrow 2a_1 + 50d = 66$$

$$\Rightarrow a_1 + 25d = 33 \qquad \dots(ii)$$
Solving (i) and (ii), we get
 $a_1 = 8$ and $d = 1$
 $a_1^2 + a_2^2 + \dots + 24^2 = 140m$

$$\Rightarrow (1^2 + 2^2 + \dots + 24^2) - (1^2 + 2^2 + \dots + 7^2) = 140m$$

$$\Rightarrow \frac{24 \times 25 \times 49}{6} - \frac{7 \times 8 \times 15}{6} = 140m$$

$$\Rightarrow 140m = 4760$$

$$\Rightarrow m = 34$$

139. $S_n = cn^2$ $S_{n-1} = c(n-1)^2 = cn^2 + c - 2 cn$ $T_n = 2cn - c$ $T_n^2 = (2cn - c)^2 = 4c^2 n^2 + c^2 - 4c^2 n$ Required sum = $\sum T_n^2$ *.*.. $=\frac{4c^{2}.n(n+1)(2n+1)}{6}+nc^{2}-2c^{2}n(n+1)$ $=\frac{2c^{2}n(n+1)(2n+1)+3nc^{2}-6c^{2}n(n+1)}{3}$ $=\frac{nc^{2}(4n^{2}+6n+2+3-6n-6)}{2}$ $=\frac{nc^2(4n^2-1)}{2}$ 140. $\sum_{i=1}^{n} \sum_{j=1}^{1} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{1} j$ $=\sum_{i=1}^{n}\left(\frac{i(i+1)}{2}\right)$ $=\frac{1}{2}\left[\sum_{i=1}^{n}i^{2}+\sum_{i=1}^{n}i\right]$ $=\frac{1}{2}\left[\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}\right]$ $=\frac{1}{4}n(n+1)\left[\frac{2n+1}{3}+1\right]$ $=\frac{n(n+1)}{4}\left[\frac{2n+1+3}{3}\right]=\frac{n(n+1)(n+2)}{6}$ 141. We have $S = 2 + 4 + 7 + 11 + 16 + \dots + t_n$ Again, $S = 2 + 4 + 7 + 11 + \dots + t_{n-1} + t_n$ Subtracting, we get $0 = 2 + \{2 + 3 + 4 + 5 + \dots + (t_n - t_{n-1})\} - t_n$ $t_n = 2 + \frac{1}{2}(n-1)\{(4+(n-2))\}$ $=\frac{1}{2}(n^2+n+2)$ Now. $S = \Sigma t_n = \frac{1}{2} \sum (n^2 + n + 2)$ $=\frac{1}{2}(\Sigma n^2 + \Sigma n + 2\Sigma 1)$ $= \frac{1}{2} \left\{ \frac{1}{6} n(n+1)(2n+1) + \frac{1}{2} n(n+1) + 2n \right\}$ $= \frac{n}{12} \{ (n+1)(2n+1+3) + 12 \}$ $= \frac{n}{6} \{ (n+1)(n+2) + 6 \} = \frac{n}{6} (n^2 + 3n + 8)$

142. Sum of cubes of 'n' natural number $= \frac{n^{2}(n+1)^{2}}{4}$ $= \frac{15^{2}(16)^{2}}{4} = 14,400$ 143. $t_{n} = n(n+1)(n+2) = n(n^{2} + 3n + 2)$ $= n^{3} + 3n^{2} + 2n$ $\therefore S_{n} = \Sigma(n^{3}) + \Sigma(3n^{2}) + \Sigma(2n)$ $S_{n} = \left[\frac{n(n+1)}{2}\right]^{2} + \frac{3.n(n+1)(2n+1)}{6} + \frac{2.n(n+1)}{2}$ $S_{n} = \frac{1}{4}n(n+1)(n+2)(n+3)$

- 144. Here, t_n of the A.P. 1, 2, 3, = n and t_n of the A.P. 3, 5, 7, = 2n + 1
- $\therefore \quad t_n \text{ of given series} = n(2n+1)^2 = 4n^3 + 4n^2 + n$ Hence,

$$S = \sum_{1}^{20} t_n = 4 \sum_{1}^{20} n^3 + 4 \sum_{1}^{20} n^2 + \sum_{1}^{20} n$$
$$= 4 \cdot \frac{1}{4} 20^2 \cdot 21^2 + 4 \cdot \frac{1}{6} 20 \cdot 21 \cdot 41 + \frac{1}{2} 20 \cdot 21$$
$$= 188090$$

145.
$$1^{3} + 3^{3} + 5^{3} + 7^{3} + ... = \sum (2n-1)^{3}$$

$$= \sum (8n^{3} - 3.4n^{2} + 3.2n - 1)$$

$$= 2n^{2}(n+1)^{2} - 2n(n+1)(2n+1) + 3n(n+1) - n$$

$$= 2n^{4} + 4n^{3} + 2n^{2} - 2n(2n^{2} + 3n + 1)$$

$$+ 3n^{2} + 3n - n$$

$$= 2n^{4} + 4n^{3} + 2n^{2} - 4n^{3} - 6n^{2} - 2n$$

$$+ 3n^{2} + 3n - n$$

$$= 2n^{4} - n^{2} = n^{2} (2n^{2} - 1)$$

146.
$$(n^2 - 1^2) + 2(n^2 - 2^2) + \dots$$

$$= n^2 (1 + 2 + 3 + \dots) - (1 \cdot 1^2 + 2 \cdot 2^2 + 3 \cdot 3^2 + \dots)$$

$$= n^2 \sum_{r=1}^n r - \sum_{r=1}^n r^3$$

$$= \frac{n^3 (n+1)}{2} - \left[\frac{n(n+1)}{2}\right]^2$$

$$= \frac{n^2 (n+1)}{2} \left(\frac{n-1}{2}\right) = \frac{1}{4} n^2 (n^2 - 1)$$

$$\begin{aligned} & \text{Chapter 04: Sequence and Series} \\ \hline 147. S_n = 1(1!) + 2(2!) + 3(3!) + \dots + n(n!) \\ &= (2 - 1)(1!) + (3 - 1)(2!) + (4 - 1)(3!) + \dots + [(n + 1) - 1](n!) \\ &= (2 - 1!) + (3.2! - 2!) + (4.3! - 3!) + \dots + [(n + 1)! - (n!)] \\ &= (2! - 1!) + (3.2! - 2!) + (4.3! - 3!) + \dots + [(n + 1)(n!) - (n!)] \\ &= (n + 1)! - 1! \\ \hline 148. 1^2 - 2^2 + 3^2 - 4^2 + \dots + 11^2 \\ &= (1^2 - 2^2) + (3^2 - 4^2) + \dots + (9^2 - 10^2) + 11^2 \\ &\text{Now, a}^2 - b^2 = (a - b) (a + b) \\ \therefore 1^2 - 2^2 + 3^2 - 4^2 + \dots + 11^2 \\ &= (1 - 2) (1 + 2) + (3 - 4) (3 + 4) \\ &+ \dots + (9 - 10) (9 + 10) + 11^2 \\ &= (-1) [1 + 2 + 3 + \dots + 9 + 10] + 11^2 \\ &= (-1) [1 + 2 + 3 + \dots + 9 + 10] + 11^2 \\ &= (-1) \frac{10 \times 11}{2!} + 11^2 = 66 \\ \hline 149. G.M. of 1, 2, 2^2, 2^3, \dots, 2^n \\ \text{Here, no. of terms = (n + 1)} \\ \therefore G.M. = (1 \cdot 2 \cdot 2^2 \cdot 2^3 \dots 2^n) \frac{1}{(n+1)} \\ &= (2^{0+1+2+\dots+n})^{\frac{1}{(n+1)}} = \left[2^{\frac{n(n+1)}{2}}\right]^{\frac{1}{n(n+1)}} \\ &= (2^{0+1+2+\dots+n})^{\frac{1}{(n+1)}} = \left[2^{\frac{n(n+1)}{2}}\right]^{\frac{1}{n(n+1)}} \\ \therefore G.M. = 2^{\frac{n}{2}} \\ \hline 150. 1 + 3 + 7 + \dots + t_n \\ &= 2 - 1 + 2^2 - 1 + 2^3 - 1 + \dots + 2^n - 1 \\ &= (2 + 2^2 + \dots + 2^n) - n = 2^{n+1} - 2 - n \\ \hline 151. \text{ Let n}^{th} \text{ term of series is t_n, then } \\ &S_n = 12 + 16 + 24 + 40 + \dots + t_n \\ &\text{ Again S}_n = 12 + 16 + 24 + \dots + t_n \\ &\text{ Again S}_n = 12 + 16 + 24 + \dots + t_n \\ &\text{ On subtraction } \\ 0 = (12 + 4 + 8 + 16 + \dots + upto n \text{ terms}) - t_n \\ &\Rightarrow t_n = 12 + [4 + 8 \\ &+ 16 + \dots + upto (n-1) \text{ terms}] \\ &= 12 + \frac{4(2^{n-1} - 1)}{2 - 1} = 2^{n+1} + 8 \\ &\text{ On putting n = 1, 2, 3 \dots } \\ t_1 = 2^2 + 8, t_2 = 2^3 + 8, t_3 = 2^4 + 8 \dots \text{ etc.} \\ &S_n = t_1 + t_2 + t_3 + \dots + t_n \\ &= (2^2 + 2^3 + 2^4 + \dots + upto n \text{ terms}) \\ &+ (8 + 8 + 8 + \dots upto n \text{ terms}) \\ &= \frac{2^2(2^n - 1)}{2 - 1} + 8n = 4(2^n - 1) + 8n \end{aligned}$$

$$152. (1 + 2) + (1 + 2 + 2^{2}) + \dots \text{ upto n terms}$$

$$\therefore T_{n} = 1 + 2 + 2^{2} + \dots + 2^{n}$$

$$\therefore T_{n} = \frac{1(2^{n+1} - 1)}{2 - 1} = 2^{n+1} - 1$$

$$\therefore S_{n} = \sum T_{n} = \sum (2^{n+1} - 1)$$

$$\therefore S_{n} = \sum 2^{n+1} - \sum 1$$

$$= 2^{2} + 2^{3} + 2^{4} + \dots + 2^{n} - (n)$$

$$= 2^{n+2} - 4 - n$$

$$153. S = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{3} \right) - \frac{1}{4} \left(\frac{1}{2^{2}} + \frac{1}{3^{2}} \right) + \frac{1}{6} \left(\frac{1}{2^{3}} + \frac{1}{3^{3}} \right) - \frac{1}{2^{n+2}} - \frac{1}{2^{n+2}} + \frac{1}{3^{n+2}} + \frac{1}{$$

•••

154. Let,
$$S = 2 + 7 + 14 + 23 + 34 + \dots + t_n + \dots (i)$$

and $S = 2 + 7 + 14 + \dots + t_{n-1} + t_n + \dots (ii)$

From (i) and (ii), we get $0 = 2 + [5 + 7 + 9 + 11 \dots + t_n - t_{n-1}] - t_n$ $\Rightarrow t_n = 2 + \left[\frac{n-1}{2}\{2 \times 5 + (n-2)2\}\right]$ $\Rightarrow t_n = 2 + (n-1)(n+3)$ Now,

Now, put n = 99 \Rightarrow t₉₉ = 2 + 98 × 102 = 9998

155.
$$A = 1^{2} + 2.2^{2} + 3^{2} + 2.4^{2} + \dots + 2.20^{2}$$
$$= (1^{2} + 2^{2} + 3^{2} + \dots + 20^{2})$$
$$+ (2^{2} + 4^{2} + \dots + 20^{2})$$
$$= (1^{2} + 2^{2} + 3^{2} + \dots + 20^{2})$$
$$+ 4 (1^{2} + 2^{2} + \dots + 10^{2})$$
$$= \frac{20 \times 21 \times 41}{6} + 4 \left(\frac{10 \times 11 \times 21}{6}\right)$$
$$= 2870 + 4(385)$$
$$= 4410$$
$$B = 1^{2} + 2.2^{2} + 3^{2} + 2.4^{2} + \dots + 2.40^{2}$$
$$= (1^{2} + 2^{2} + 3^{2} + \dots + 40^{2})$$
$$+ (2^{2} + 4^{2} + \dots + 40^{2})$$
$$= (1^{2} + 2^{2} + 3^{2} + \dots + 40^{2})$$
$$+ 4(1^{2} + 2^{2} + \dots + 20^{2})$$
$$= \frac{40 \times 41 \times 81}{6} + 4 \left(\frac{20 \times 21 \times 41}{6}\right)$$
$$= 22140 + 4(2870)$$
$$= 33620$$
$$B - 2A = 33620 - 2(4410) = 24800$$
$$\Rightarrow 100 \lambda = 24800 \Rightarrow \lambda = 248$$

156. Since, $\sin \theta$, $\cos \theta$ and $\tan \theta$ are in G.P.

$$\therefore \frac{\cos\theta}{\sin\theta} = \frac{\tan\theta}{\cos\theta} = \frac{\sin\theta}{\cos^2\theta}$$
$$\Rightarrow \cos^3\theta = \sin^2\theta \qquad \dots(i)$$
$$\therefore \quad \cot^6\theta - \cot^2\theta = \frac{\cos^6\theta}{\sin^6\theta} - \frac{\cos^2\theta}{\sin^2\theta}$$
$$= \frac{\cos^6\theta}{\cos^9\theta} - \frac{\cos^2\theta}{\cos^3\theta} \qquad \dots[From (i)]$$
$$= \frac{1}{\cos^3\theta} - \frac{1}{\cos\theta} = \frac{1 - \cos^2\theta}{\cos^3\theta} = \frac{\sin^2\theta}{\cos^3\theta}$$
$$= 1 \qquad \dots[From (i)]$$

157. Let 1 - cos θ = x
∴ the given series = 1 + 2x + 3x² + 4x³ + ∞
= (1 - x)⁻²
= (1 - 1 + cos θ)⁻² = sec² θ
= 1 + tan² θ = 1 +
$$\frac{3}{2} = \frac{5}{2}$$
[: tan θ = $\sqrt{\frac{3}{2}}$

158.
$$\cos (\theta - \alpha), \cos \theta, \cos (\theta + \alpha) \text{ are in HP}$$

$$\therefore \frac{1}{\cos(\theta - \alpha)}, \frac{1}{\cos \theta}, \frac{1}{\cos(\theta + \alpha)} \text{ are in AP}$$

$$\therefore \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)} = \frac{2}{\cos \theta}$$

$$\Rightarrow \frac{\cos(\theta + \alpha) + \cos(\theta - \alpha)}{\cos(\theta + \alpha)\cos(\theta - \alpha)} = \frac{2}{\cos \theta}$$

$$\Rightarrow 2\cos\theta \cos\alpha . \cos\theta = 2\cos(\theta + \alpha)\cos(\theta - \alpha)$$

$$\Rightarrow \cos^{2}\theta \cos\alpha = \cos^{2}\theta - \sin^{2}\alpha$$

$$\Rightarrow \cos^{2}\theta (\cos\alpha - 1) = -(1 - \cos^{2}\alpha)$$

$$\Rightarrow \cos^{2}\theta - 1 + \cos\alpha$$

159.
$$\sum_{k=1}^{n} f(a+k) = f(a+1) + f(a+2) + f(a+3) + \dots f(a+n)$$

Eva

$$= f(a) f(1) + f(a) f(2) + f(a) f(3) + ... f(a) f(n)...[∵ f(x + y) = f(x) f(y)]$$

∴
$$\sum_{k=1}^{n} f(a+k) = f(a)[f(1) + f(2) + f(3) + ... f(n)]$$

...(i)
∴
$$f(1) = 2$$

∴
$$f(2) = f(1 + 1) = f(1).f(1) = 4$$

∴
$$f(3) = f(2 + 1) = f(2).f(1) = 8$$

and so on.
∴ substituting above values in (i), we get
$$\sum_{k=1}^{n} f(a+k) = f(a)[2 + 4 + 8 + ... f(n)]$$

$$= f(a).2(2^{n} - 1)$$

∴
$$f(a) = 8$$

Since,
$$f(3) = 8$$

∴
$$a = 3$$

Evaluation Test

1.
$$a_1, a_2, a_3, ..., a_n$$
 are in A.P. with common
difference = 5
i.e., $a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_n - a_{n-1} = 5$
 \therefore $\tan^{-1}\left(\frac{5}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{5}{1+a_2a_3}\right)$
 $+ ...+ \tan^{-1}\left(\frac{5}{1+a_{n-1}a_n}\right)$
 $= \tan^{-1}\left(\frac{a_2 - a_1}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{a_3 - a_2}{1+a_2a_3}\right)$
 $+ ...+ \tan^{-1}\left(\frac{a_n - a_{n-1}}{1+a_{n-1}a_n}\right)$
 $= \tan^{-1}(a_2) - \tan^{-1}(a_1) + \tan^{-1}(a_3) - \tan^{-1}(a_2)$
 $++ \tan^{-1}(a_n) - \tan^{-1}(a_{n-1})$
 $= \tan^{-1}(a_n) - \tan^{-1}(a_1) = \tan^{-1}\left(\frac{a_n - a_1}{1+a_1a_n}\right)$
 $= \tan^{-1}\left(\frac{(n-1)5}{1+a_1a_n}\right) \dots [\because a_n = a_1 + (n-1)5]$
 $= \tan^{-1}\left(\frac{5n-5}{1+a_1a_n}\right)$

2. Since,
$$a_1, a_2, a_3, \dots$$
 are in H.P.

$$\therefore \quad \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots$$
 are in A.P.

$$\therefore \quad \frac{1}{25} = \frac{1}{5} + 19d$$

$$\Rightarrow d = \frac{1}{19} \left(\frac{-4}{25} \right) = -\frac{4}{19 \times 25}$$
Since, $a_n < 0$

$$\therefore \quad \frac{1}{5} - \frac{4}{19 \times 25} \times (n-1) < 0$$

$$\Rightarrow \frac{19 \times 5}{4} < n-1$$

$$\Rightarrow n > 24.75$$
3. p, q, r are positive and are in A.P.

$$\therefore \quad q = \frac{p+r}{2} \qquad \dots(i)$$
Since, the roots of $px^2 + qx + r = 0$ are real

$$\therefore \quad q^2 \ge 4pr \Rightarrow \left[\frac{p+r}{2} \right]^2 \ge 4pr \qquad \dots[From (i)]$$

$$\Rightarrow p^2 + r^2 - 14pr \ge 0$$

$$\Rightarrow \left(\frac{\mathbf{r}}{\mathbf{p}}\right)^2 - 14\left(\frac{\mathbf{r}}{\mathbf{p}}\right) + 1 \ge 0$$

....[:: $\mathbf{p} > 0 \text{ and } \mathbf{p} \neq 0$]
$$\Rightarrow \left(\frac{\mathbf{r}}{\mathbf{p}} - 7\right)^2 - 48 \ge 0$$

$$\Rightarrow \left(\frac{\mathbf{r}}{\mathbf{p}} - 7\right)^2 - (4\sqrt{3})^2 \ge 0$$

$$\Rightarrow \left|\frac{\mathbf{r}}{\mathbf{p}} - 7\right| \ge 4\sqrt{3}$$

- 4. Let A be the first term and R be the common ratio of the G.P. Then, $a = AR^{p-1}$ $\Rightarrow \log a = \log A + (p-1) \log R \dots(i)$ $b = AR^{q-1}$ $\Rightarrow \log b = \log A + (q-1) \log R \dots(ii)$ $c = AR^{r-1}$ $\Rightarrow \log c = \log A + (r-1) \log R \dots(iii)$ Multiplying (i), (ii) and (iii) by (q-r), (r-p)and (p-q) respectively and adding, we get $(q-r) \log a + (r-p) \log b + (p-q) \log c = 0$ Expanding along first row, we get $\Delta = (q-r) \log a + (r-p) \log b + (p-q) \log c$ $\Rightarrow \Delta = 0$
- 5. Let x_1, x_2, x_3 be a, ar, ar² and y_1, y_2, y_3 be b, br, br².
- \therefore A, B, C are (a,b), (ar, br), (ar², br²) resp.

Now Slope of AB = $\frac{b}{a}$ = slope of BC. Hence, the points are collinear.

i.e., lie on a straight line

Alternate method:

Given
$$x_2 = rx_1, x_3 = r^2 x_1, y_2 = ry_1, y_3 = r^2 y_1$$

Area of $\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
 $= \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ rx_1 & ry_1 & 1 \\ r^2 x_1 & r^2 y_1 & 1 \end{vmatrix}$
 $= \frac{1}{2} x_1 y_1 \begin{vmatrix} 1 & 1 & 1 \\ r & r & 1 \\ r^2 & r^2 & 1 \end{vmatrix} = 0$
i.e., lie on a straight line.

We have, Length of a side of S_n = Length of a diagonal of S_{n+1} \Rightarrow Length of a side of S_n = $\sqrt{2}$ (Length of a side of S_{n+1}) $\Rightarrow \frac{\text{Length of a side of } S_{n+1}}{\text{Length of a side of } S_n} = \frac{1}{\sqrt{2}}$ for all $n \ge 1$ sides of S_1 , S_2 ,, S_n form a G.P. with common ratio $\frac{1}{\sqrt{2}}$ and first term 10. length of the side of $S_n = 10 \left(\frac{1}{\sqrt{2}}\right)^{n-1}$ $= \frac{10}{2^{\frac{n-1}{2}}}$

Now, area of
$$S_n = (side)^2 = \left(\frac{10}{2^{\frac{n-1}{2}}}\right)^2$$

- 100

But, area of $S_n < 1$

$$\Rightarrow \frac{100}{2^{n-1}} < 1$$
$$\Rightarrow 2^{n-1} > 100$$

. . .

6.

...

...

The above inequality is satisfied if $n-1 \geq 7$ i.e., $n \geq 8$

 2^{n-1}

7. We have,
$$T_p = a + (p-1)d = \frac{1}{q}$$
(i)

and
$$T_q = a + (q-1)d = \frac{1}{p}$$
(ii)

From (i) and (ii), we get
$$a = \frac{1}{pq}$$
 and $d = \frac{1}{pq}$

sum of
$$(pq)^{th}$$
 terms $= \frac{pq}{2} \left\lfloor \frac{2}{pq} + (pq-1) \frac{1}{pq} \right\rfloor$

$$= \frac{pq}{2} \cdot \frac{2}{pq} \left[1 + \frac{1}{2}(pq-1) \right]$$
$$= \frac{2 + pq - 1}{2} = \frac{pq + 1}{2}$$

x+1 x+2 x+a $\begin{vmatrix} x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$ 8. Applying $C_1 \rightarrow C_1 - C_2$, $= \begin{vmatrix} -1 & x+2 & x+a \\ -1 & x+3 & x+b \\ -1 & x+4 & x+c \end{vmatrix}$ $= (-1) \begin{vmatrix} 1 & x+2 & x+a \\ 1 & x+3 & x+b \\ 1 & x+4 & x+c \end{vmatrix}$ Applying $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$, $= (-1) \begin{vmatrix} 1 & x+2 & x+a \\ 0 & 1 & b-a \\ 0 & 2 & c-a \end{vmatrix}$ = (-1) (c + a - 2b) = 0....[\because a, b, c are in A.P. $\Rightarrow 2b = a + c$] Let S = $1 + \frac{1.3}{6} + \frac{1.3.5}{6.8} + \dots \infty$ 9. $\therefore \frac{S}{4} = \frac{1}{4} + \frac{1.3}{46} + \frac{1.3.5}{468} + \dots \infty$ Multiplying on both sides by $\frac{1}{2}$, we get $\frac{S}{8} = \frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + \dots \infty$

 $\therefore \qquad \frac{1}{2} - \frac{8}{8} = \frac{1}{2} - \left[\frac{1}{24} + \frac{1.3}{246} + \frac{1.3.5}{2468} + \dots \right]$

 $\Rightarrow \frac{1}{2} - \frac{S}{8} = (1 - 1)^{\frac{1}{2}} = 0$

 $\therefore \qquad \frac{S}{8} = \frac{1}{2} \implies S = 4$

 $\Rightarrow \frac{1}{2} - \frac{S}{8} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{4} - \frac{1}{2} \cdot \frac{1 \cdot 3}{4 \cdot 6} - \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot 5}{4 \cdot 6 \cdot 8} - \dots \infty$

 $\Rightarrow \frac{1}{2} - \frac{S}{8} = 1 - \frac{1}{2} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{12} - \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{122}$

 $+ \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\left(\frac{1}{2}-3\right)}{1224} - \dots^{\infty}$

Chapter 04: Sequence and Series 10. Let the first installment be a and common difference of A.P. be d. Given, 3600 = sum of 40 terms $=\frac{40}{2}[2a+(40-1)d]$ 3600 = 20(2a + 39d)*.*.. 180 = 2a + 39d*.*..(i) After 30 installments one third of the debt is unpaid $\frac{3600}{2}$ = 1200 is unpaid and 2400 is paid. *:*.. Now, $2400 = \frac{30}{2} [2a + (30 - 1)d]$ *.*.. 160 = 2a + 29d....(ii) Subtracting (ii) from (i), we get 20 = 10d*.*.. d = 2From (i), 180 = 2a + 39(2)÷. 2a = 180 - 78 = 102*.*.. a = 51 value of the 8th installment *.*. = a + (8 - 1) d = 51 + 7(2) = ₹ 65

11 Probability

Hints

Classical Thinking

- 5. Here, P(A) = 1
- $\therefore \quad P(\overline{A}) = 1 P(A) = 0$
- 6. Here, $n(S) = 2 \times 2 \times 2 \times 2 = 16$ A: Event of getting all heads $\Rightarrow A = \{(HHHH)\}$
- $\therefore \quad n(A) = 1$
 - $\Rightarrow P(A) = \frac{1}{16}$
- Here, n(S) = 52There is one queen of club and one king of heart
- \therefore Favourable ways = 1 + 1 = 2
- $\therefore \quad \text{Required Probability} = \frac{2}{52} = \frac{1}{26}$
- 8. Required probability = $\frac{12}{52} = \frac{3}{13}$.
- 9. Total number of outcomes = 36 Favourable number of outcomes = 6 i.e., {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
- \therefore Required probability = $\frac{6}{36} = \frac{1}{6}$
- 10. Required probability = $\frac{3}{36} = \frac{1}{12}$ 11. Required probability = $\frac{5}{25} = \frac{1}{5}$
- 12. Odd and perfect square (< 10) are 1, 9. Hence, required probability = $\frac{2}{10} = \frac{1}{5}$
- 13. Since there are one A, two I and one O, hence the required probability $=\frac{1+2+1}{11}=\frac{4}{11}$
- 14. Two fruits out of 6 can be chosen in ${}^{6}C_{2} = 15$ ways. One mango and one apple can be chosen in ${}^{3}C_{1} \times {}^{3}C_{1} = 9$ ways

$$\therefore \quad \text{Probability} = \frac{9}{15} = \frac{3}{5}$$

15. Three persons can be chosen out of 8 in
$${}^{8}C_{3} = 56$$
 ways.
The number of girls is more than that of the boys if either 3 girls are chosen or two girls and one boy is chosen. This can be done in ${}^{3}C_{3} + {}^{3}C_{2} \times {}^{5}C_{1}$ ways

$$= 1 + 3 \times 5 = 16$$
 ways.

:. Required probability =
$$\frac{16}{56} = \frac{2}{7}$$

16. Number of tickets, numbered such that it is divisible by 20 are $\frac{10000}{20} = 500$

Hence, required probability $=\frac{500}{10000}=\frac{1}{20}$.

- 17. In a non-leap year, we have 365 days i.e., 52 weeks and one day. So, we may have any day of seven days.
- 18. Total no. of ways = 3! = 6Favourable ways = 1 \Rightarrow Probability = $\frac{1}{6}$
- 19. Probability of keeping at least one letter in wrong envelope = $1 - \frac{1}{n!}$
- \therefore option (B) is the correct answer.
- 20. Sample space when six dice are thrown = 6^6 All dice show the same face means we are getting same number on all six dice which can be any one of the six numbers 1, 2, ..., 6.
- \therefore No. of ways of selecting a number is ${}^{6}C_{1}$.

$$\therefore \qquad \text{Required probability} = \frac{{}^{6}C_{1}}{6^{6}} = \frac{1}{6^{5}}$$

21.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\therefore \quad \frac{5}{8} = \frac{1}{4} + \frac{1}{2} - P(A \cap B)$$

$$\therefore \quad P(A \cap B) = \frac{1}{8}$$

22. Since, events are mutually exclusive, therefore $P(A \cap B) = 0$ i.e., $P(A \cup B) = P(A) + P(B)$ $\Rightarrow 0.7 = 0.4 + x \Rightarrow x = \frac{3}{10}$

Chapter 11: Probability

- 23. $P(A \text{ or } B) = P(A \cup B)$ = $P(A) + P(B) - P(A \cap B)$ = 0.25 + 0.5 - 0.15 = 0.6
- 24. $P(A) = P(A \cap B) + P(A \cup B) P(B)$ = $\frac{1}{3} + \frac{5}{6} - \frac{2}{3} = \frac{3}{6} = \frac{1}{2}$
- 25. $P(A) = 0.28, P(B) = 0.55, P(A \cap B) = 0.14$ $P(A' \cap B') = P[(A \cup B)'] = 1 - P(A \cup B)$ $= 1 - [P(A) + P(B) - P(A \cap B)]$ = 1 - (0.28 + 0.55 - 0.14) = 0.31
- 26. Here, $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.3$
- $\therefore P(A) + P(B) = P(A \cup B) + P(A \cap B) = 0.9$
- :. P(A') + P(B') = 1 P(A) + 1 P(B)= 2 - 0.9 = 1.1
- 27. Probability of getting either first class or second class or third class = P(A)

$$= \frac{2}{7} + \frac{3}{5} + \frac{1}{10}$$
$$= \frac{69}{70}$$

Probability of failing = $P(A') = 1 - P(A) = \frac{1}{70}$

- 28. There are 4 kings, 13 hearts and a king of hearts is common to the two blocks.
- $\therefore \qquad \text{Required probability} = \frac{4+13-1}{52} = \frac{16}{52}$
- 29. Total number of ways = {HH, HT, TH, TT} ∴ P (head on first toss) = $\frac{2}{4} = \frac{1}{2} = P(A)$, P (head on second toss) = $\frac{2}{4} = \frac{1}{2} = P(B)$ and P (head on both toss) = $\frac{1}{4} = P(A \cap B)$ Hence, required probability is, P(A ∪ B) = P(A) + P(B) - P(A ∩ B) = $\frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$
- 31. If A and B are independent, A' and B' are also independent.

33.
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Since, A and B are mutually exclusive. So, $P(A \cap B) = 0$.

Hence,
$$P(A/B) = \frac{0}{P(B)} = 0$$

34.
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.5}{0.6} = \frac{5}{6}$$

35.
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{(3/8) + (5/8) - (3/4)}{(5/8)}$$

$$= \frac{2}{5}$$

36.
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

37.
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{1 - P(B')} = \frac{0.15}{1 - 0.10}$$

$$= \frac{1}{6}$$

38.
$$P\left(\frac{\overline{A}}{\overline{B}}\right) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} = \frac{P(\overline{A \cup B})}{P(\overline{B})} = \frac{1 - P(A \cup B)}{P(\overline{B})}$$

39. Let E_1 be the event that man will be selected and E_2 be the event that woman will be selected. Then

$$P(E_1) = \frac{1}{2}$$
, So $P(\overline{E_1}) = 1 - \frac{1}{2} = \frac{1}{2}$ and
 $P(E_2) = \frac{1}{3}$, So $P(\overline{E_2}) = 1 - \frac{1}{3} = \frac{2}{3}$

Clearly, E_1 and E_2 are independent events.

- $\therefore \quad P(\overline{E}_1 \cap \overline{E}_2) = P(\overline{E}_1) \times P(\overline{E}_2)$ $= \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$
- 40. Let A be the event of selecting bag X, B be the event of selecting bag Y and E be the event of drawing a white ball, then

$$P(A) = \frac{1}{2}, P(B) = \frac{1}{2}, P(E/A) = \frac{2}{5}$$

and $P(E/B) = \frac{4}{6} = \frac{2}{3}$
$$P(E) = P(A) P(E/A) + P(B) P(E/B)$$

$$= \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{2}{3} = \frac{8}{15}$$

41. Required probability = $\frac{3}{5}$

...

.... \because The probability of the occurrence $=\frac{b}{a+b}$

- 42. Required probability $= \frac{6}{6+5} = \frac{6}{11}$ $\left[\because$ The probability of the occurrence $= \frac{a}{a+b} \right]$
- 43. Here, P(A) = $\frac{3}{7}$, P(B) = $\frac{7}{12}$ ∴ P(A') = $\frac{4}{7}$ and P(B') = $\frac{5}{12}$
- ∴ P(Problem will be considered solved even if one person solves it)

$$= 1 - [P(A') \cdot P(B')] = 1 - \frac{5}{21} = \frac{16}{21}$$

》Critical Thinking

- 1. Here, $n(S) = 2 \times 2 = 4$ A: Event of getting 2 heads or 2 tails
- $\therefore \quad A = \{(H H), (T T)\} \\ \Rightarrow n(A) = 2 \\ \Rightarrow P(A) = \frac{2}{4} = \frac{1}{2}$
- 2. One card can be selected from a pack in ${}^{52}C_1$ ways.
- $\therefore \quad n(S) = {}^{52}C_1 = 52$ A: Event of getting a red queen
- $\therefore P(A) = P(\text{diamond queen or heart queen})$ $= \frac{{}^{2}C_{1}}{{}^{52}C_{2}}$
- 3. Favourable ways = {29, 92, 38, 83, 47, 74, 56, 65} Hence, required probability = $\frac{8}{100} = \frac{2}{25}$
- 4. Two digits, one from each set can be selected in $9 \times 9 = 81$ ways. Favourable outcomes are (1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2) and (9, 1).
- $\therefore \quad n(S) = 81$ and n(A) = 9
- $\therefore \quad P(A) = \frac{9}{81} = \frac{1}{9}$
- 5. When six dice are thrown, the total number of outcomes is 6^6 . They can show different number in ${}^6P_6 = 6!$ ways

 $\therefore \quad \text{Required probability} = \frac{6!}{6^6} = \frac{5!}{6^5} = \frac{5}{324}$

6. The sum 2 can be found in one way i.e., $\{(1, 1)\}$

The sum 8 can be found in five ways i.e., $\{(6, 2), (5, 3), (4, 4), (3, 5), (2, 6)\}$. Similarly, the sum twelve can be found in one way i.e., $\{(6, 6)\}$.

Hence, required probability = $\frac{7}{36}$.

7. Between 1 and 100, there are 25 prime numbers.

25

$$\therefore$$
 n(S) = 98 and n(A) =

$$\therefore \quad P(A) = \frac{25}{98}$$

8. Total cases = 4

So, probability of correct answer = $\frac{1}{4}$

9. In a leap year, there are 366 days in which 52 weeks and two days. The combination of 2 days may be: Sun – Mon, Mon – Tue, Tue – Wed, Wed – Thu, Thu – Fri, Fri – Sat, Sat – Sun.

$$\therefore \quad P(53 \text{ Sun}) = \frac{2}{7}$$

- 10. When a coin is tossed, there are two outcomes and when a dice is rolled, there are six possible outcomes.
 Hence, there are 8 (2 corresponding to head and six corresponding to tail at first toss) sample points in the sample space.
 Sample space is {HH, HT, T1, T2, T3, T4, T5, T6}.
- 11. It six does not appear on either dice then, there are only five possible outcomes associated with one dice, the number of sample points is 5×5 .
- 12. Since, the total '13' can't be found.
- 13. Probabilities of H_1 , H_2 and H_3 winning a race must be in the ratio 4 : 2 : 1 (due to given condition) and should also add up to 1.
- 14. Here, $n(S) = {}^{6}C_{2} = 15$ If both are vowels, then they are selected in ${}^{2}C_{2}$ ways = 1.
- \therefore Required probability = $\frac{1}{15}$
- 15. Here, $n(S) = {}^{10}C_2$ A: Event that the watches selected are defective $n(A) = {}^{2}C_2 = 1$

$$\therefore \quad P(A) = \frac{1}{10} = \frac{1}{45}$$

Chapter 11: Probability

16. Total no. of ways in which 2 socks can be drawn out of 9 is ${}^{9}C_{2}$. The two socks match if either they are both black or they are both blue. So, two matching socks can be drawn in ${}^{5}C_{2} + {}^{4}C_{2}$ ways.

$$\therefore \quad \text{Required probability} = \frac{{}^{5}C_{2} + {}^{4}C_{2}}{{}^{9}C_{2}}$$
$$= \frac{10 + 6}{36} = \frac{4}{9}$$

 Ace is not drawn in 26 cards. It means 26 cards are drawn from 48 cards.

$$\therefore \quad \text{Required Probability} = \frac{{}^{48}\text{C}_{26}}{{}^{52}\text{C}_{26}}$$

18. $n(S) = {}^{16}C_{11}$ A: Event that the team has exactly four bowlers.

$$\therefore \quad n(A) = {}^{6}C_{4} \cdot {}^{10}C_{7}$$
$$\Rightarrow P(A) = \frac{{}^{6}C_{4} \cdot {}^{10}C_{7}}{{}^{16}C_{11}} = \frac{75}{182}$$

- 19. We have to select exactly 2 children
- ∴ selection contain 2 children out of 4 children and remaining 2 person can be selected from 2 women and 4 men i.e., 4C₂ × 6C₂ ways

$$\therefore$$
 Total favourable ways = $6 \times 15 = 90$

- $\therefore \qquad \text{Required probability} = \frac{90}{210} = \frac{3}{7}$
- A committee of 4 can be formed in ²⁵C₄ ways
 A: Event that the committee contains at least 3 doctors
- $\therefore \quad n(A) = {}^{4}C_{3} \cdot {}^{21}C_{1} + {}^{4}C_{4} = 85$ $\therefore \quad P(A) = \frac{85}{{}^{25}C_{4}} = \frac{85}{12650} = \frac{17}{2530}$
- 21. Since, cards are drawn with replacement.
- $\therefore \quad \text{Total no. of ways} = 52 \times 52.$ Now, we can choose one suit out of four in ${}^{4}C_{1}$ ways and two cards in 13 × 13 ways.
- $\therefore \quad \text{Required Probability} = \frac{{}^{4}C_{1} \times 13 \times 13}{52 \times 52} = \frac{1}{4}$
- 22. Besides ground floor, there are 7 floors. Since a person can leave the cabin at any of the seven floors, total no. of ways in which each of the five persons can leave the cabin at any of the 7 floors = 7^5

Five persons can leave the cabin at five different floors in ${}^{7}C_{5} \times 5!$ ways

Hence, required probability =
$$\frac{{}^{\prime}C_5 \times 5!}{7^5}$$

23. Here,
$$n(S) = 2 \times 2 \times 2 = 8$$

If A is the event that there is no tail, then
 $A = \{(HHH)\}$
 $\Rightarrow n(A) = 1$
 $\Rightarrow P(A) = \frac{1}{8}$
 $\therefore P(A') = 1 - P(A) = 1 - \frac{1}{8} = \frac{7}{8}$

- 24. Required probability = $\left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{5}\right) = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} = \frac{2}{5}$
- 25. Out of 30 numbers from 1 to 30, three numbers can be chosen in ${}^{30}C_3$ ways. Three consecutive numbers can be chosen in one of the following ways: {(1, 2, 3), (2, 3, 4),...,(28, 29, 30)} = 28 ways
- $\therefore \quad \text{Probability that numbers are consecutive} \\ = \frac{28}{1} = \frac{1}{1}$

$$=\frac{28}{^{30}C_3}=\frac{1}{145}$$

Hence, required probability = $1 - \frac{1}{145} = \frac{144}{145}$

26. Total no. of ways = 7! Arrangement of boys and girls in alternate seats is B G B G B G B
Boys can occupy seat in 4! ways and girls in 3! ways.

$$\therefore \quad \text{Required Probability} = \frac{3! \times 4!}{7!} = \frac{1}{35}$$

- 27. Two 3s, one 6 and one 8 can be dialled in $\frac{4!}{2!} = 12$ ways of which only one is the correct way of dialling.
- \therefore Required probability = $\frac{1}{12}$
- 28. As {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)} are only favourable outcomes

$$\Rightarrow$$
 Required probability = $\frac{6}{216}$

29. Since there are 3 A's and 2 N's. Total no. of arrangements = $\frac{10!}{3!2!}$

Hence, the number of arrangements in which ANAND occurs without any split = 6!

 $\therefore \quad \text{Required probability} = \frac{6!3!2!}{10!} = \frac{1}{420}$

- 30. 15 places are occupied. This includes the owner's car also. 14 cars are parked in 24 places of which 22 places are available (excluding the neighbouring places) and so the required probability $\frac{^{22}C_{14}}{^{24}C_{14}} = \frac{15}{92}$
- 31. Three numbers can be chosen out of 10 numbers in ${}^{10}C_3$ ways.

The product of two numbers, out of the three chosen numbers, will be equal to the third number, if the numbers are chosen in one of the following ways:

{(2, 3, 6), (2, 4, 8), (2, 5, 10)} = 3 ways
Hence, required probability =
$$\frac{3}{{}^{10}C_2} = \frac{1}{40}$$

32. 4 cards can drop out of 52 in ${}^{52}C_4$ ways. They can be one from each suit in ${}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 \times {}^{13}C_1 = (13 \times 13 \times 13 \times 13)$ ways.

$$\therefore \quad \text{Required probability} = \frac{13 \times 13 \times 13 \times 13}{{}^{52}\text{C}_4}$$
$$= \frac{13 \times 13 \times 13 \times 13 \times 13 \times 4!}{52 \times 51 \times 50 \times 49}$$
$$= \frac{2197}{20825}$$

- 33. 0.7 = 0.4 + x 0.4x $\Rightarrow x = \frac{1}{2}$
- 34. Since, we have $P(A \cup B) + P(A \cap B) = P(A) + P(B)$ $= P(A) + \frac{P(A)}{2}$ $\Rightarrow \frac{7}{8} = \frac{3P(A)}{2}$

$$8 \qquad 2 \\ \Rightarrow P(A) = \frac{7}{12}$$

35. Since, $A \cup B = S$.

 $P(B) = \frac{2}{3}$

 $\therefore P(A \cup B) = P(S) = 1$ $\therefore 1 = P(A) + 2P(A) [::P(A \cup B) = P(A) + P(B)]$ $\Rightarrow 3(P(A)) = 1$ $\Rightarrow P(A) = \frac{1}{3}$

$$\therefore \quad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$=\frac{18}{36}+\frac{6}{36}-\frac{4}{36}=\frac{5}{9}$$

[:: there are 18 ways to get an even sum i.e

 $\{(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)\}$ and there are 6 ways to get a sum < 5 i.e., $\{(1, 3), (3, 1), (2, 2), (1, 2), (2, 1), (1, 1)\}$ and 4 ways to get an even sum < 5 i.e., $\{(1, 3), (3, 1), (2, 2), (1, 1)\}$]

37. Here, A = {4, 5, 6}

$$\Rightarrow P(A) = \frac{3}{6} = \frac{1}{2}$$
and B = {4, 3, 2, 1}

$$\Rightarrow P(B) = \frac{4}{6} = \frac{2}{3}$$

$$\therefore A \cap B = {4}$$

$$\Rightarrow P(A \cap B) = \frac{1}{6}$$

$$\therefore P(A \cup B) = \frac{1}{2} + \frac{2}{3} - \frac{1}{6} = 1$$

38. A is independent of itself, if

$$P(A \cap A) = P(A).P(A)$$

$$\Rightarrow P(A) = P(A)^{2}$$

$$\Rightarrow P(A) = 0, 1$$
39. We have $P(A + B) = P(A) + P(B) - P(AB)$

$$\Rightarrow \frac{5}{6} = \frac{1}{2} + P(B) - \frac{1}{3} \Rightarrow P(B) = \frac{4}{6} = \frac{2}{3}$$
Thus, $P(A).P(B) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3} = P(AB)$
Hence, events A and B are independent.
40. Let $P(A) = \frac{20}{100} = \frac{1}{5}$, $P(B) = \frac{10}{100} = \frac{1}{10}$
Since, events are independent and we have to find $P(A \cup B) = P(A) + P(B) - P(A).P(B)$

$$= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \times \frac{1}{2}$$

$$5 \cdot 10 \quad 5 \cdot 10$$
$$= \frac{3}{10} - \frac{1}{50} = \frac{14}{50} \times 100 = 28\%$$

178

...
Chapter 11: Probability

- 41. In a leap year, there are 366 days in which 52 weeks and two days. The combination of 2 days may be: Sun-Mon, Mon-Tue, Tue-Wed, Wed-Thu, Thu-Fri, Fri-Sat, Sat-Sun.
- $\therefore P(53 \text{ fri}) = \frac{2}{7}; P(53 \text{ Sat}) = \frac{2}{7}$ There is one combination in common i.e., (Fri-Sat) $\therefore P(53 \text{ Fri and } 53 \text{ Sat}) = \frac{1}{7}$
- :. P(53 Fri or 53 Sat) = P(53 Fri) + P(53 Sat)- P(53 Fri and Sat) $= \frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$
- 42. Here, P(A) = P(B) = 2 P(C), and P(A) + P(B) + P(C) = 1 $\Rightarrow P(C) = \frac{1}{5}$ and $P(A) = P(B) = \frac{2}{5}$ Hence, $P(A \cup B) = P(A) + P(B) = \frac{2}{5} + \frac{2}{5} = \frac{4}{5}$
- 43. For both to be boys, the probability = $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}$
- 44. We have to consider order for IIT

$$\therefore \quad \text{Required probability} = \frac{10}{20} \times \frac{9}{19} \times \frac{10}{18} = \frac{5}{38}$$

45. In the word 'MULTIPLE' there are 3 vowels, out of total of 8, 1 vowel can be chosen in ${}^{3}C_{1}$ ways. In the word 'CHOICE' there are 3 vowels, out of the total of 6, 1 vowel can be chosen in ${}^{3}C_{1}$ ways.

$$\therefore \qquad \text{Required probability} = \frac{{}^{3}C_{1}}{8} \times \frac{{}^{3}C_{1}}{6} = \frac{3}{16}$$

- 46. A total of 7 and a total of 9 cannot occur simultaneously.
- \therefore P(total of 7 or 9)

= P(total of 7) + P(total of 9) =
$$\frac{6}{36} + \frac{4}{36} = \frac{5}{18}$$

(A total of 7 and a total of 9 cannot occur simultaneously)

47.
$$\frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{3}{10} = \frac{7}{20}$$

48. P(G) = $\frac{25}{80}$, P(R) = $\frac{10}{80}$, P(I) = $\frac{20}{80}$
Since events are independent,
∴ P(selecting rich and intelligent girls)
= P(G)·P(R)·P(I) = $\frac{5}{20}$

$$P(G) \cdot P(R) \cdot P(I) = \frac{5}{512}$$

.
$$P(A' \cup B') = P[(A \cap B)']$$

= $1 - P(A \cap B) = 1 - \frac{1}{4} = \frac{3}{4}$

49

- 50. P(A' ∩ B') = $\frac{1}{3}$ ⇒ P[(A ∪ B)'] = $\frac{1}{3}$ ∴ 1 - P(A ∪ B) = $\frac{1}{3}$ ⇒ P(A ∪ B) = 1 - $\frac{1}{3} = \frac{2}{3}$ ∴ P(A) + P(B) - P(A ∩ B) = $\frac{2}{3}$ ∴ p + 2p - $\frac{1}{2} = \frac{2}{3}$ ⇒ 3p = $\frac{2}{3} + \frac{1}{2} = \frac{7}{6}$ ⇒ p = $\frac{7}{18}$
- 51. Required Probability $= P[(A \cap B') \cup (A' \cap B)]$ $= P(A \cap B') + P(A' \cap B)$ $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$ $= P(A) + P(B) - 2P(A \cap B)$
- 52. P(neither A nor B) = 1 - P(either A or B) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)] = 1 - 0.25 - 0.50 + 0.14 = 0.39
- 53. M: Event that student passed in Mathematics.E: Event that student passed in Electronics
- :. $n(M) = 30, n(E) = 20, n(M \cap E) = 10,$ n(S) = 80.

:.
$$P(M) = \frac{30}{80}, P(E) = \frac{20}{80}, P(M \cap E) = \frac{10}{80}$$

$$\therefore \quad P(M \cup E) = P(M) + P(E) - P(M \cap E)$$
$$= \frac{30}{80} + \frac{20}{80} - \frac{10}{80} = \frac{1}{2}$$

 \therefore P(Student has passed in none of the subject)

$$= P[(M \cup E)'] = 1 - P(M \cup E) = 1 - \frac{1}{2} = \frac{1}{2}$$

54. P(neither E₁ nor E₂ occurs) = P(E'_1 \cap E'_2) = P(E'_1)P(E'_2)

$$(1-p_1)(1-p_2)$$

55. P(M) =
$$\frac{1}{4}$$
 ⇒ P(M') = $\frac{3}{4}$
and P(W) = $\frac{1}{3}$ ⇒ P(W') = $\frac{2}{3}$
Both events are independent so that probability that no one will be alive is
P(W' ∩ M') = P(W') P(M') = $\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$
56. Here, P(A) = p
⇒ P(\overline{A}) = 1 − p
and P(B) = q ⇒ P(\overline{B}) = 1 − q
Probability that one person is alive is the sum of two cases A dies B lives and A lives B dies
= p(1 − q) + q(1 − p) = p + q − 2pq
57. Here, P(A) = 0.6 ; P(B) = 0.9
∴ Required pobability
= P(A)·P(\overline{B})+P(B)·P(\overline{A}) = (0.6) (0.1)+(0.9) (0.4)
= 0.06 + 0.36 = 42
58. Since, E and F are independent
∴ P(E) ∩ F) = P(E) P(F)
⇒ P(E) P(F) = $\frac{1}{12}$
Now, E and F are independent
∴ $P(E ∩ F') = P(E') \cdot P(F') = \frac{1}{2}$
∴ $[1 - P(E)] \cdot [1 - P(F)] = \frac{1}{2}$
∴ $1 - P(E) - P(F) + P(E) \cdot P(F') = \frac{1}{2}$
∴ $1 - P(E) - P(F) + P(E) \cdot P(F) = \frac{1}{2}$
∴ $1 - P(E) - P(F) + \frac{1}{12} = \frac{1}{2}$
⇒ $P(E) + P(F) = \frac{7}{12}$
Solving, $P(E) = \frac{1}{4}$, $P(F) = \frac{1}{3}$
59. $P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(A)} = P(A)$.
60. Since, $A \subseteq B \Rightarrow A \cap B = B \cap A = A$
Hence, $P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$

61.
$$P\left(\frac{\overline{B}}{\overline{A}}\right) = \frac{1 - P(A \cup B)}{P(\overline{A})} = \frac{1 - \frac{23}{60}}{1 - \frac{1}{3}} = \frac{37}{60} \times \frac{3}{2} = \frac{37}{40}$$

62. A: Brown hair

$$\Rightarrow P(A) = \frac{40}{100}$$
B: Brown eyes

$$\Rightarrow P(B) = \frac{25}{100}$$

$$\therefore P(A \cap B) = \frac{15}{100}$$

$$\therefore P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{15}{100}}{\frac{40}{100}} = \frac{3}{8}$$
63. $P(A \cap B) = P(A) \cdot P(B/A) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$
Since, $P(A \cap B) = P(B) P(A/B)$

$$\therefore \frac{1}{8} = P(B) \times \frac{1}{4}$$

$$\Rightarrow P(B) = \frac{1}{2}$$

$$\therefore P(A) \cdot P(B) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8} = P(A \cap B)$$

$$\therefore A \text{ and B are independent}$$
64. It is based on Baye's theorem.
Probability of picked bag A, i.e., $P(A) = \frac{1}{2}$
Probability of green ball picked from bag A

$$= P(A) \cdot P(\frac{G}{A}) = \frac{1}{2} \times \frac{4}{7} = \frac{2}{7}$$
Probability of green ball picked from bag B

$$= P(B) \cdot P(\frac{G}{B}) = \frac{1}{2} \times \frac{3}{7} = \frac{3}{14}$$

$$\therefore Total probability of fact that green ball is drawn from bag B$$

$$\frac{P(B)P\left(\frac{G}{B}\right)}{P(A)P\left(\frac{G}{A}\right) + P(B)P\left(\frac{G}{B}\right)} = \frac{\frac{1}{2} \times \frac{3}{7}}{\frac{1}{2} \times \frac{4}{7} + \frac{1}{2} \times \frac{3}{7}} = \frac{3}{7}$$

=

Chapter 11: Probability

65. Consider the following events :
A → Ball drawn is black;
E₁ → Bag I is chosen;
E₂ → Bag II is chosen and
E₃ → Bag III is chosen.

Then
$$P(E_1) = (E_2) = P(E_3) = \frac{1}{3}$$
, $P\left(\frac{A}{E_1}\right) = \frac{3}{5}$
 $P\left(\frac{A}{E_2}\right) = \frac{1}{5}$, $P\left(\frac{A}{E_3}\right) = \frac{7}{10}$

 $\therefore \quad \text{Required probability} = P\left(\frac{E_3}{A}\right)$ $P(E_3)P\left(\frac{A}{A}\right)$

$$= \frac{P(E_3)P\left(\frac{1}{E_3}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)}$$
$$= \frac{7}{15}$$

66. Let E denote the event that a six occurs and A is the event that the man reports that it is a '6', we have

$$P(E) = \frac{1}{6}$$
, $P(E') = \frac{5}{6}$, $P(A/E) = \frac{3}{4}$ and
 $P(A/E') = \frac{1}{4}$

... From Baye's theorem,

$$P(E/A) = \frac{P(E).P\left(\frac{A}{E}\right)}{P(E).P\left(\frac{A}{E}\right) + P(E').P\left(\frac{A}{E'}\right)}$$
$$= \frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{4}} = \frac{3}{8}$$

- 67. We define the following events :
 - A_1 : He knows the answer.
 - A_2 : He does not know the answer.
 - E : He gets the correct answer.

Then
$$P(A_1) = \frac{9}{10}$$
, $P(A_2) = 1 - \frac{9}{10} = \frac{1}{10}$,
 $P\left(\frac{E}{A_1}\right) = 1$ and $P\left(\frac{E}{A_2}\right) = \frac{1}{4}$

... Required probability is

$$P\left(\frac{A_2}{E}\right) = \frac{P(A_2)P\left(\frac{E}{A_2}\right)}{P(A_1)P\left(\frac{E}{A_1}\right) + P(A_2)P\left(\frac{E}{A_2}\right)} = \frac{1}{37}$$

- 68. We define the following events :
 - A₁ : Selecting a pair of consecutive letter from the word LONDON.
 - A_2 : Selecting a pair of consecutive letters from the word CLIFTON.
 - E : Selecting a pair of letters 'ON'.

Then $P(A_1 \cap E) = \frac{2}{5}$; as there are 5 pairs of consecutive letters out of which 2 are ON.

 $P(A_2 \cap E) = \frac{1}{6}$; as there are 6 pairs of consecutive letters of which one is ON.

 \therefore The required probability is

$$P\left(\frac{A_{1}}{E}\right) = \frac{P(A_{1} \cap E)}{P(A_{1} \cap E) + P(A_{2} \cap E)} = \frac{\frac{2}{5}}{\frac{2}{5} + \frac{1}{6}}$$
$$= \frac{12}{17}$$

69. Required probability =
$$\frac{5}{5+3} = \frac{5}{8}$$

$$\therefore \text{ If odds in favours of an event are a : b,} \\ \text{then the probability of non - occurrence} \\ \text{of that event is} \frac{b}{a+b}$$

- 70. Required probability = $\frac{4}{4+5} = \frac{4}{9}$
- 71. Let p be the probability of the other event. Then the probability of the first event is $\frac{2}{3}$ p.

$$\therefore \qquad \frac{p}{p+\frac{2}{3}p} = \frac{3}{3+2}$$

 \therefore odds in favour of the other are 3 : 2

- 72. Probabilities of winning the race by three horses are ¹/₃, ¹/₄ and ¹/₅. Hence, required probability = ¹/₃ + ¹/₄ + ¹/₅ = ⁴⁷/₆₀
 73. Required probability = ¹/₂ × ⁴/₇ + ¹/₂ × ⁶/₈ = ³⁷/₅₆
 74. Probability of the card being a spade or an ace = ¹⁶/₅₂ = ⁴/₁₃. Hence, odds in favour is 4 : 9. So, the odds against his winning is 9: 4
 75. We have ratio of the ships A, B and C for arriving safely are 2 : 5 3 : 7 and 6 : 11
- arriving safely are 2 : 5, 3 : 7 and 6 : 11 respectively.
- \therefore The probability of ship A for arriving safely
 - $=\frac{2}{2+5}=\frac{2}{7}$

Similarly, for B = $\frac{3}{3+7} = \frac{3}{10}$ and for

$$C = \frac{0}{6+11} = \frac{0}{17}$$

 $\therefore \quad \text{Probability of all the ships for arriving safely} \\ = \frac{2}{7} \times \frac{3}{10} \times \frac{6}{17} = \frac{18}{595}.$

76. Let A and B be two given events. The odds against A are 5:2, therefore $P(A) = \frac{2}{7}$. And the odds in favour of B are 6:5,

therefore
$$P(B) = \frac{6}{11}$$

 \therefore The required probability = 1 – P (\overline{A}) P(\overline{B})

$$= 1 - \left(1 - \frac{2}{7}\right) \left(1 - \frac{6}{11}\right) = \frac{52}{77}$$

Competitive Thinking

1. n(S) = 36 E = {(1, 4), (4, 1), (2, 3), (3, 2)} ∴ P(E) = $\frac{4}{36} = \frac{1}{9}$

2. Required probability = $\frac{26}{36} = \frac{13}{18}$

- 3. Required probability $=\frac{4}{36}=\frac{1}{9}$
- 4. Total number of ways = 36 and Favourable number of cases are $\{(1, 4), (2, 3), (3, 2), (4, 1), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\} = 9$ Hence, the required probability = $\frac{9}{36} = \frac{1}{4}$.

5. Required probability =
$$\frac{15}{36} = \frac{5}{12}$$

6. Prime numbers are {2, 3, 5, 7, 11}. Hence, required probability $= \frac{1+2+4+6+2}{5} = \frac{15}{5} = \frac{5}{5}$

$$=$$
 $\frac{36}{36}$ $=$ $\frac{36}{12}$ $=$ $\frac{12}{12}$

7. n(S) = 36A: Event that product of numbers is even n(A) = 27 $P(A) = \frac{27}{36} = \frac{3}{4}$ 8. $9 \stackrel{10}{10} \stackrel{11}{11} \stackrel{12}{12}$ Ways $\stackrel{9}{\downarrow} \stackrel{10}{\downarrow} \stackrel{11}{\downarrow} \stackrel{12}{\downarrow}$

4 3 2 1
Hence, required probability =
$$\frac{10}{36} = \frac{5}{18}$$

10.
$$n(S) = 6$$

$$P(T) = P(R) = \frac{1}{6}$$

. $P(T \text{ or } R) = P(T) + P(R)$
 $= \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$

- 11. Total number of ways = 2^n If head comes odd times, then favourable ways = 2^{n-1} .
- $\therefore \qquad \text{Required probability} = \frac{2^{n-1}}{2^n} = \frac{1}{2}.$
- For m sided die, which is thrown n times, the probability that the number on the top is increasing is given by ^mC_n/mⁿ Here 6-faced die is thrown three times.
 ∴ Required probability = ⁶C₃/_{6³} = ⁵/₅₄

13. 3 coins are tossed ∴ S = {HHH, HHT, HTH, THH, THH, THT, HTT, TTT} A: Event of getting 2 heads ⇒ A = {HHT, HTH, THH} ∴ n (A) = 3 ⇒ P(A) = $\frac{3}{8}$ 14. n(S) = 8 P(2 tails) = $\frac{3}{8}$ P(3 tails) = $\frac{1}{8}$ P(at least 2 tails) = P(2 tails) + P(3 tails) 3 1 1

- $=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$
- 15. Three dice can be thrown in $6 \times 6 \times 6 = 216$ ways. A total 17 can be obtained as $\{(5, 6, 6), (6, 5, 6), (6, 6, 5)\}$. A total 18 can be obtained as (6, 6, 6).

Hence, the required probability = $\frac{4}{216} = \frac{1}{54}$

- 16. Required combinations are {(2, 2, 1), (1, 2, 2), (2, 1, 2), (1, 3, 1,), (3, 1, 1), (1, 1, 3)}
- $\therefore \quad \text{Required probability} = \frac{6}{4^3} = \frac{6}{64} = \frac{3}{32}$
- 17. Required probability = $\frac{2}{10} = \frac{1}{5}$
- 18. $n(S) = {}^{4}C_{2}$ P(no black ball) = P(red ball) $= \frac{{}^{2}C_{2}}{{}^{4}C_{2}} = \frac{1}{6}$
- 19. 3 batteries can be selected from 10 batteries in ¹⁰C₃ ways.
 3 dead batteries can be selected from 4 dead batteries in ⁴C₃ ways.

 $\therefore \quad \text{Probability that the all 3 selected batteries are} \\ \text{dead} = \frac{{}^{4}\text{C}_{3}}{{}^{10}\text{C}_{2}} = \frac{4 \times 3 \times 2}{10 \times 9 \times 8} = \frac{1}{30}$

20. $n(S) = {}^{10}C_4$

A: Event of getting 2 red balls $p(A) = {}^{4}C - {}^{6}C$

$$∴ P(A) = \frac{{}^{4}C_{2} \cdot {}^{6}C_{2}}{{}^{10}C_{4}} = \frac{9}{21}$$

Chapter 11: Probability STATISTICS \Rightarrow SSS TTT A II C ASSISTANT \Rightarrow SSS TT AA I N S, T, A and I are the common letters.

 $\therefore \quad \text{Probability of choosing S} = \frac{{}^{3}C_{1}}{10} \times \frac{{}^{3}C_{1}}{9} = \frac{1}{10}$ $\text{Probability of choosing T} = \frac{{}^{3}C_{1}}{10} \times \frac{{}^{2}C_{1}}{9} = \frac{1}{15}$ $\text{Probability of choosing A} = \frac{{}^{1}C_{1}}{10} \times \frac{{}^{2}C_{1}}{9} = \frac{1}{45}$ $\text{Probability of choosing I} = \frac{{}^{2}C_{1}}{10} \times \frac{{}^{1}C_{1}}{9} = \frac{1}{45}$ $\therefore \quad \text{Required probability} = \frac{1}{10} + \frac{1}{15} + \frac{1}{45} + \frac{1}{45}$ $= \frac{19}{90}$

22. $n(S) = {}^{12}C_3$

21.

...

P(not of same colour) = 1 - P (Same colour)= 1 - [P(red ball) + P(black ball) + P(white ball)]

$$= 1 - \left[\frac{{}^{5}C_{3}}{{}^{12}C_{3}} + \frac{{}^{3}C_{3}}{{}^{12}C_{3}} + \frac{{}^{4}C_{3}}{{}^{12}C_{3}}\right]$$
$$= 1 - \left(\frac{60 + 6 + 24}{1320}\right)$$
$$= \frac{41}{44}$$

- 23. Total rusted items = 3 + 5 = 8; unrusted nails = 3.
- $\therefore \quad \text{Required probability} = \frac{3+8}{6+10} = \frac{11}{16}.$
- 24. If both integers are even, then product is even. If both integers are odd, then product is odd. If one integer is odd and other is even, then product is even.
- \therefore Required probability = $\frac{2}{3}$.
- 25. Number which are cubes $1^3 = 1, 2^3 = 8, 3^3 = 27, 4^3 = 64$
- $\therefore \quad \text{Required probability} = \frac{4}{100} = \frac{1}{25}$
- 26. $S = \{-18, -16, -14, ..., 20\}$ n(S) = 20A : no. divisible by both 4 and 6 $A = \{-12, 0, 12\}$ $P(A) = \frac{n(A)}{n(S)} = \frac{3}{20}$

- 27. In a non leap year, there are 365 days which has 52 weeks and 1 day.
- $P(53 \text{ Sundays}) = \frac{1}{7}$ *.*..
- 28. Here, n(S) = 36Also, n(F), where F is the set of favourable cases. $\mathbf{F} = \{(6, 1), (5, 2), (4, 3)\}$ where 1st number in ordered pair gives the number of black die and 2nd number gives the
- required probability = $\frac{3}{36} = \frac{1}{12}$ *.*..

number on white die.

- Here, $n(S) = {}^{52}C_1 \times {}^{51}C_1 = 52 \times 51$ 29. A: Event that both cards chosen are Ace.
- $n(A) = {}^{4}C_{1} \times {}^{3}C_{1} = 12$ *.*.. $P(A) = \frac{12}{52 \times 51} = \frac{1}{221}$ *.*..
- 30. There are 8 even numbers from 1 to 17
- Probability of selecting 1 even number = $\frac{8}{17}$ *.*..

Remaining number of tickets = 16There are 7 even numbers in the remaining tickets.

- Probability of selecting second even number *.*.. $=\frac{7}{16}$
- Required probability = $\frac{8}{17} \times \frac{7}{16} = \frac{7}{34}$ *.*..
- Required probability = $\frac{2!}{11!} = \frac{2}{11}$ 31.
- 32. HULULULU \Rightarrow contains 4U, 3L, 1H Consider 3L together i.e. we have to arrange 6 units which contains 4U. Hence number of possible arrangements
 - $=\frac{6!}{4!}=6\times 5=30$

Number of ways of arranging all letters of given word = $\frac{8!}{8 \times 7 \times 6 \times 5}$

 $=\frac{6}{8 \times 7} = \frac{3}{28}$

Hence required probability =
$$\frac{30}{3 \times 2}$$

 $\overline{8 \times 7 \times 5}$

- 33. Let E be the event that the numbers are divisible by 4.
- $E = \{4, 8, 12, 16, 20, 24\}$ *.*..
- n(E) = 6*.*..
- $n(\overline{E}) = 20$ *.*..
- Required probability = $P(\overline{E}) = \frac{20}{26} = \frac{10}{13}$ *.*..
- 34. P (at least 1H) = 1 - P (No head)

$$= 1 - P \text{ (four tail)} = 1 - \frac{1}{16} = \frac{15}{16}$$

35. Required probability is 1 - P (no die show up 1)

$$= 1 - \left(\frac{5}{6}\right)^3 = \frac{216 - 125}{216} = \frac{91}{216}$$

- We have $P(\overline{A}) = 0.05 \Rightarrow P(A) = 0.95$ 36. Hence, the probability that the event will take place in 4 consecutive occasions $= {P(A)}^{4} = (0.95)^{4} = 0.81450625$
- 37. Probability that A does not solve the problem

$$=1-\frac{1}{2}=\frac{1}{2}$$

Probability that B does not solve the problem

$$=1-\frac{1}{3}=\frac{2}{3}$$

Probability that C does not solve the problem $=1-\frac{1}{5}=\frac{4}{5}$

Probability that at least one of them solve problem = 1 - no one solves the problem

$$= 1 - \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) \left(\frac{4}{5}\right)$$
$$= 1 - \frac{4}{15} = \frac{11}{15}$$

38. The probability of A, B, and C not finishing the game is, $1 - \frac{1}{2} = \frac{1}{2}$, $1 - \frac{1}{3} = \frac{2}{3}$ and $1 - \frac{1}{4} = \frac{3}{4}$ respectively.

The probability that the game is not finished *.*.. by any one of them $=\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{4}$ The probability that the game is finished

$$1 - \frac{1}{4} = \frac{3}{4}$$

Chapter 11: Probability

39. Total balls = 5 + xTwo balls are drawn.

÷.

 $\therefore \quad n(S) = {}^{5+x}C_2$ Given, probability of red balls drawn = $\frac{5}{14}$

$$\frac{5}{14} = \frac{{}^{5}C_{2}}{{}^{5+x}C_{2}}$$

$$\Rightarrow \frac{5}{14} = \frac{5!}{3!2!} \times \frac{(3+x)! \, 2!}{(5+x)!}$$

$$\Rightarrow \frac{5}{14} = \frac{20}{1} \times \frac{1}{(5+x)(4+x)}$$

$$\Rightarrow (5+x) \, (4+x) = \frac{20 \times 14}{5}$$

$$\Rightarrow (5+x) \, (4+x) = 56 \Rightarrow x = 3$$

40. Number of ways in which two faulty machines may be detected (depending upon the test done to identify the faulty machines) $= {}^{4}C_{2} = 6$

> and Number of favourable cases = 1 [When faulty machines are identified in the first and the second test]

Hence, required probability = $\frac{1}{6}$.

- 41. Favorable number of cases = ${}^{20}C_1 = 20$ Sample space = ${}^{62}C_1 = 62$
- $\therefore \quad \text{Required probability} = \frac{20}{62} = \frac{10}{31}$
- 42. The number of ways to arrange 7 white and 3 black balls in a row $=\frac{10!}{7!.3!} = \frac{10.9.8}{1.2.3} = 120$

Numbers of blank places between 7 balls are 6. There is 1 place before first ball and 1 place after last ball. Hence, total number of places are 8.

Hence, 3 black balls are arranged on these 8 places so that no two black balls are together in number of ways

$$= {}^{8}C_{3} = \frac{8 \times 7 \times 6}{1 \times 2 \times 3} = 56$$

So required probability = $\frac{56}{120} = \frac{7}{15}$

43. Since, we have

$$P(A + B) = P(A) + P(B) - P(AB)$$

$$\Rightarrow 0.7 = 0.4 + P(B) - 0.2$$

$$\Rightarrow P(B) = 0.5.$$

44.
$$0.8 = 0.3 + x - 0.3x \Longrightarrow x = \frac{5}{7}$$
.

- 45. Since events are mutually exclusive, therefore $P(A \cap B) = 0$ i.e., $P(A \cup B) = P(A) + P(B)$ $\Rightarrow 0.7 = 0.4 + x \Rightarrow x = \frac{3}{10}$
- 46. Since, P(A + B + C)= P(A) + P(B) + P(C)= $\frac{2}{3} + \frac{1}{4} + \frac{1}{6} = \frac{13}{12}$, which is greater than 1.

Hence, the statement is wrong.

- 48. If P(A) = P(B)As this gives, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ or P(A) = 2P(A) - P(A) $\Rightarrow P(A \cup B) = P(A \cap B)$
- 49. A: Student who know lesson I B: Student who know lesson II $P(A) = 0.6, P(B) = 0.4, P(A \cap B) = 0.2$ Required probability = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)] = 1 - (0.6 + 0.4 - 0.2) = 0.2 = $\frac{1}{5}$
- 50. Set of even numbers that can come up on die $= \{2, 4, 6\}$
- $\therefore \quad \text{Probability of it being either 2 or 4} \\ = \frac{1}{2} + \frac{1}{2} = \frac{2}{2}$
- 51. Here, $P(A) = \frac{3}{6} = \frac{1}{2}$, $P(B) = \frac{4}{6} = \frac{2}{3}$
 - and $P(A \cap B)$ = Probability of getting a number greater than 3 and less than 5

= Probability of getting
$$4 = \frac{1}{6}$$

P(A \cup B) = P(A) + P(B) - P(A \cap B)
 $= \frac{1}{2} + \frac{2}{3} - \frac{1}{6} = 1$

52.
$$n(S) = {}^{10}C_3$$

A: event that minimum of chosen numbers is 3 B: event that maximum of chosen number is 7.

$$P(A) = \frac{{}^{7}C_{2}}{{}^{10}C_{3}}, P(B) = \frac{{}^{6}C_{2}}{{}^{10}C_{3}}, P(A \cap B) = \frac{{}^{3}C_{1}}{{}^{10}C_{3}}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{{}^{7}C_{2}}{{}^{10}C_{3}} + \frac{{}^{6}C_{2}}{{}^{10}C_{3}} - \frac{{}^{3}C_{1}}{{}^{10}C_{3}}$$

$$= \frac{33}{120}$$

$$= \frac{11}{40}$$

53. Let R_1 be the event that the first ball drawn is red,

 B_1 be the event that the first ball drawn is black,

 R_2 be the event that the second ball drawn is red.

Required probability

$$= P(R_1) \cdot P\left(\frac{R_2}{R_1}\right) + P(B_1) \cdot P\left(\frac{R_2}{B_1}\right)$$
$$= \frac{4}{10} \times \frac{6}{12} + \frac{6}{10} \times \frac{4}{12}$$
$$= \frac{2}{5}$$

- 54. Given, $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.2$ We know that, if A and B are any two events, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow 0.6 = 1 - P(\overline{A}) + 1 - P(\overline{B}) - 0.2$ $\Rightarrow P(\overline{A}) + P(\overline{B}) = 2 - 0.8 = 1.2$
- 55. Given $P(A \cup B) = \frac{3}{5}$ and $P(A \cap B) = \frac{1}{5}$ We know $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\therefore \quad \frac{3}{5} = 1 - P(\overline{A}) + 1 - P(\overline{B}) - \frac{1}{5}$ $\therefore \quad 2 - \frac{4}{5} = P(\overline{A}) + P(\overline{B})$ $\Rightarrow P(\overline{A}) + P(\overline{B}) = \frac{6}{5}$. 56. $P(A \cap B') = P(A) - P(A \cap B)$ $= \frac{4}{5} - \frac{1}{2} = \frac{3}{10}$

57.
$$P(A \cap B') = P(A) - P(A \cap B)$$

= 0.7 - 0.3 = 0.4 = $\frac{2}{5}$

58.
$$P(A \cap B) = P(B) - P(A \cap B) = y - z.$$

59.
$$P(\overline{A} \cap \overline{B}) = P(A \cup B)'$$

= 1 - P(A \cup B)
= 1 - P(A) - P(B) + P(A \cup B)
= 1 - 0.25 - 0.50 + 0.14 = 0.39

60.
$$P(A' \cap B') = 1 - P(A \cup B)$$
$$\Rightarrow P(A \cup B) = \frac{2}{3}$$
Now
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$\Rightarrow \frac{2}{3} = x + x - \frac{1}{3} \Rightarrow x = \frac{1}{2}$$

- 61. Since A and B are mutually exclusive, P(A∪B) = P(A) + P(B) = 3/5 + 1/5 = 4/5 = 0.8
 62. Probability of getting head = 1/2 Probability of die showing 3 = 1/6 Since both events are independent, the required probability = 1/2 × 1/6 = 1/12
- 63. When two dice are thrown simultaneously, n (S) = 36
 A: Event that both the numbers on top are prime number
 ∴ A = {(2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5), (5, 2), (5, 3), (5, 5)}
 ∴ n (A) = 9

:.
$$P(A) = \frac{9}{36} = \frac{1}{4}$$

- When two coins are tossed simultaneously, n(S) = 4
- B : Event that we get one head and one tail p(B) = 2

∴
$$h(B) = 2$$

∴ $P(B) = \frac{2}{4} = \frac{1}{2}$

Since both the events are independent of each other,

 \therefore Required probability = P (A) . P (B) = $\frac{1}{8}$

Chapter 11: Probability

- 64. $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 P(A \cup B)$ Since A and B are mutually exclusive, so $P(A \cup B) = P(A) + P(B)$ Hence, required probability = 1 - (0.5 + 0.3) = 0.2.
- 65. Consider option (B) $P(A' \cap B') = [1 - P(A)] [1 - P(B)]$ $\Rightarrow P(A' \cap B') = P(A') \cdot P(B')$
- \therefore A and B are independent events.

66. P(neither A nor B) = P
$$(\overline{A} \cap \overline{B})$$

= P $(\overline{A}) . P(\overline{B}) = 0.6 \times 0.5$
= 0.3

67.
$$P(A' \cap B') = 1 - P(A \cup B)$$
$$= 1 - [P(A) + P(B) - P(A \cap B)]$$
$$= 1 - 1 = 0$$

- 68. Here, P(X) = 0.3; P(Y) = 0.2Now $P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$ Since, these are independent events
- $\therefore P(X \cap Y) = P(X).P(Y)$ Thus, required probability = 0.3 + 0.2 - 0.06 = 0.44
- 69. Let A be the event that a man will live 10 more years.
- \therefore P(A) = $\frac{1}{4}$

Let B be the event that his wife will live 10 more years.

$$\therefore \quad P(B) = \frac{1}{3}$$

 $\therefore \quad \text{Required probability} = P(A' \cap B')$ = P(A') P(B') $= \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$

70. P(A) =
$$\frac{3}{8}$$
 and P(B) = $\frac{1}{2}$
∴ P(A) P(B) = $\frac{3}{8} \cdot \frac{1}{2} = \frac{3}{16}$
and P(A ∩ B) = $\frac{2}{8} = \frac{1}{4} \neq$ P(A).P(B)
∴ A and B are dependent.

71. Since, A and B are independent events $P(A \cap B) = P(A).P(B)$ *.*.. $= [1 - P(\overline{A})] [1 - P(\overline{B})]$ = [1 - 2/3] [1 - 2/7] $=\frac{1}{3}\cdot\frac{5}{7}=\frac{5}{21}$ 72. $P(A \cup \overline{B}) = 0.8 \text{ and } P(B) = \frac{2}{7} \Longrightarrow P(\overline{B}) = \frac{5}{7}$ $\Rightarrow P(A) + P(\overline{B}) - P(A \cap \overline{B}) = 0.8$ $\Rightarrow P(A) + \frac{5}{7} - \frac{5}{7}P(A) = 0.8$ $\Rightarrow \frac{2}{7}P(A) = \frac{3}{35} \Rightarrow P(A) = 0.3$ 73. Since $\overline{E_1} \cap \overline{E_2} = \overline{E_1 \cup E_2}$ and $(E_1 \cup E_2) \cap (\overline{E_1 \cup E_2}) = \phi$ $P\{(E_1 \cup E_2) \cap (\overline{E_1} \cap \overline{E_2})\} = P(\phi) = 0 < \frac{1}{4}$ *.*.. 74. $P(\overline{A \cup B}) = \frac{1}{6}$ $\Rightarrow 1 - P(A \cup B) = \frac{1}{4}$ $\Rightarrow P(A \cup B) = \frac{5}{6}$ $\Rightarrow P(A) + P(B) - P(A \cap B) = \frac{5}{4}$ $\Rightarrow \frac{3}{4} + P(B) - \frac{1}{4} = \frac{5}{6} \Rightarrow P(B) = \frac{1}{3}$ Clearly, $P(A \cap B) = \frac{1}{4} = \frac{3}{4} \times \frac{1}{2} = P(A) P(B)$ So, A and B are independent. Also, $P(A) \neq P(B)$. So, A and B are not equally likely. 75. $P(A \cap B) = \frac{1}{6}$ and $P(\overline{A} \cap \overline{B}) = \frac{1}{2}$ \Rightarrow P(A) P(B) = $\frac{1}{6}$ and P(A) P(B) = $\frac{1}{3}$ $\Rightarrow xy = \frac{1}{6}$ and $(1 - x)(1 - y) = \frac{1}{2}$,

where P(A) = x, P(B) = y

 $\Rightarrow xy = \frac{1}{6} \text{ and } 1 - x - y + \frac{1}{6} = \frac{1}{2}$

MHT-CET Triumph Maths (Hints) $\Rightarrow xy = \frac{1}{6}$ and $x + y = \frac{5}{6}$ $\Rightarrow x = \frac{1}{2}$ and $y = \frac{1}{2}$ or $x = \frac{1}{2}$ and $y = \frac{1}{2}$ Let A_i (i = 1, 2) denote the event that ith plane 76. hits the target. Clearly, A_1 and A_2 are independent events. Required probability = $P(\overline{A_1} \cap A_2)$ $= P(\overline{A}_1)P(A_2)$ =(1-0.3)(0.2)=0.1477. Total number defective of items $=\frac{2}{100}\times2500+\frac{3}{100}\times3500+\frac{5}{100}\times4000$ Number of defective items from machine C $=\frac{5}{100} \times 4000 = 200$ Required probability = $\frac{200}{355} = \frac{40}{71}$ *.*.. 78. $P[(A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$ $= P(A \cap B) + P(A \cap C) - P[(A \cap B) \cap (A \cap C)]$ $= P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$ $P(B \cap C) = P(B) - \left[P(A \cap B \cap \overline{C}) + P(\overline{A} \cap B \cap \overline{C}) \right]$ 79. $=\frac{3}{4}-\frac{2}{3}=\frac{1}{12}$ Let A_1 – student passes in Test - I 80. A₂ – student passes in Test - II A₃ - student passes in Test - III A – student is successful $\mathrm{A}-(\mathrm{A}_1\cap\mathrm{A}_2\cap\mathrm{A}'_3)\cup(\mathrm{A}_1\cap\mathrm{A}'_2\cap\mathrm{A}_3)\cup$ $(A_1 \cap A_2 \cap A_3)$ $P(A) = P(A_1) \cdot P(A_2) \cdot P(A'_3)$ $+ P(A_1) \cdot P(A'_2) \cdot P(A_3) + P(A_1) \cdot P(A_2) \cdot P(A_3)$ $\frac{1}{2} = p \cdot q \cdot \frac{1}{2} + p \cdot (1 - q) \cdot \frac{1}{2} + p \cdot q \cdot \frac{1}{2}$ *.*.. $p + pq = 1 \implies p(1 + q) = 1$ *.*.. Probability of first card to be a king = $\frac{4}{52}$ 81. and probability of also second to be a king $=\frac{3}{51}$ Hence, required probability = $\frac{4}{52} \times \frac{3}{51} = \frac{1}{221}$.

82. Required probability = P(Diamond).P(king) $=\frac{13}{52}\cdot\frac{4}{52}=\frac{1}{52}$ 83. Second white ball can draw in two ways. First is white and second is white i. Probability = $\frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$ ii. First is black and second is white Probability = $\frac{3}{7} \times \frac{4}{6} = \frac{2}{7}$ Hence, required probability $=\frac{2}{7}+\frac{2}{7}=\frac{4}{7}$. 84. The sample space is [LWW, WLW] P(LWW) + P(WLW)*.*.. = Probability that in 5 match series, it is India's second win = P(L)P(W)P(W) + P(W)P(L)P(W) $=\frac{1}{8}+\frac{1}{8}=\frac{2}{8}=\frac{1}{4}$ 85. Here, $P(A) = \frac{3}{4}$, $P(B) = \frac{4}{5}$ $P(\overline{A}) = \frac{1}{4} \text{ and } P(\overline{B}) = \frac{1}{\epsilon}$ *.*.. *.*.. Required probability = P(A).P(\overline{B}) + P(\overline{A}).P(B) = $\frac{7}{20}$ 86. $P(A) = \frac{4}{5}, P(A') = \frac{1}{5}$ $P(B) = \frac{3}{5}, P(B') = \frac{2}{5}$ *.*.. $P(both are false) = P(A') \cdot P(B')$ $=\frac{1}{5}\cdot\frac{2}{5}$ P (atleast one of them is true) ... = 1 - P (both are false) $=1-\frac{2}{25}=\frac{23}{25}$ 87. Consider the following events: A = 'X' speaks truth, B = 'Y' speaks truth.

Chapter 11: Probability

Required probability =
$$P((A \cap \overline{B}) \cup (\overline{A} \cap B))$$

= $P(A \cap \overline{B}) + P(\overline{A} \cap B)$
= $\frac{3}{5} \times \frac{1}{2} + \frac{2}{5} \times \frac{1}{2} = \frac{1}{2}$

88. Consider the following events: $X = {}^{\circ}A' \text{ speaks truth, } Y = {}^{\circ}B' \text{ speaks truth}$ Then, $P(X) = \frac{70}{100} = \frac{7}{10} \text{ and } P(Y) = \frac{80}{100} = \frac{4}{5}$ Required probability = $P[(X \cap \overline{Y}) \cup (\overline{X} \cap Y)]$ $= \frac{7}{10} \times \frac{1}{5} + \frac{3}{10} \times \frac{4}{5}$ $= \frac{19}{50} = 0.38$

89. Consider the following events: A = family who owns a car, B = family who owns a house Required probability = P(A \cup B) – P(A \cap B) = $\frac{60+30-20}{100} - \frac{20}{100} = \frac{70-20}{100} = 0.5$

90. The probability of husband is not selected = $1 - \frac{1}{7} = \frac{6}{7}$

The probability that wife is not selected

 $=1-\frac{1}{5}=\frac{4}{5}$

The probability that only husband selected

$$=\frac{1}{7}\times\frac{4}{5}=\frac{4}{35}$$

The probability that only wife selected

$$=\frac{1}{5}\times\frac{6}{7}=\frac{6}{35}$$

Hence, required probability = $\frac{6}{35} + \frac{4}{35} = \frac{10}{35}$

- 7
- 91. The probability of students not solving the problem are $1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$ and $1 - \frac{1}{5} = \frac{4}{5}$ Therefore, the probability that the problem is not solved by any one of them $= \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} = \frac{2}{5}$ Hence, the probability that problem is solved $= 1 - \frac{2}{5} = \frac{3}{5}$.

- ii. This question can be solved by two students simultaneously
- ii. This question can be solved by three students all together.

We have,
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{4}$, $P(C) = \frac{1}{6}$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) -[P(A).P(B) + P(B).P(C) + P(C).P(A)] + [P(A).P(B).P(C)] = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} - \left[\frac{1}{2} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{2}\right] + \left[\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6}\right]$$

$$=\frac{33}{48}$$

93.
$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{\left(\frac{1}{10}\right)}{\left(\frac{1}{4}\right)} = \frac{2}{5}$$

$$P(S/T) = P(S)$$
. Thus, $P(S/T) = 0.3$.

95.
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{7}{10}}{\frac{17}{20}} = \frac{7}{10} \times \frac{20}{17} = \frac{14}{17}$$

96.
$$P(A \cap B) = P(A) P(B/A)$$

$$\therefore \quad P(A \cap B) = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$$

Now,
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow \frac{1}{2} = \frac{1}{6} \times \frac{1}{P(B)}$$
$$\Rightarrow P(B) = \frac{1}{2}$$

97.
$$P(B / (A \cup B^{c})] = \frac{P(B \cap (A \cup B^{c}))}{P(A \cup B^{c})}$$
$$= \frac{P(A \cap B)}{P(A) + P(B^{c}) - P(A \cap B^{c})}$$
$$= \frac{P(A) - P(A \cap B^{c})}{P(A) + P(B^{c}) - P(A \cap B^{c})}$$
$$= \frac{0.7 - 0.5}{0.8} = \frac{1}{4}$$

$$\therefore \quad n(E) = 4, n(F) = 4 \text{ and } n(E \cap F) = 3$$
$$\therefore \quad P\left(\frac{E}{F}\right) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{3}{8}}{\frac{4}{8}} = \frac{3}{4}$$

99. Event that at least one of them is a boy → A,
Event that other is girl → B,
So, required probability

$$P(B/A) = \frac{P(B \cap A)}{P(A)}$$

1

Now, total cases are 3 (BG, BB, GG)

$$\therefore \qquad \frac{P(B \cap A)}{P(A)} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$$
$$\dots [\because B \cap A = \{BG\} \text{ and } A = \{BG, BB\}]$$

100. Consider the following events:

A = Sum of the digits on the selected tickets is 8.

B = Product of the digits on the selected ticket is zero.

There are 14 tickets having product of digits appearing on them as zero. The numbers on such tickets are 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30, 40.

14

:.
$$P(B) = \frac{14}{50}$$
 and $P(A \cap B) = \frac{1}{50}$

$$\therefore \quad \text{Required probability} = P(A/B) = \frac{P(A \cap B)}{P(B)}$$

$$P(M \cap S) = 40\% = 0.4$$

$$P(M) = 60\% = 0.6$$

$$Probability of student studying science given the student is already studying maths
$$= P(S/M) = P(M \cap S) / P(M)$$

$$= \frac{0.4}{0.6} = \frac{2}{3}$$
102. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow P(A \cap B) = P(A) + P(B) - P(A \cap B)$$

$$\{\because P(A \cap B) = P(A) + P(B) - P(A \cup B)\}$$

$$\Rightarrow 2 P(A \cap B) = P(A) + P(B)$$

$$\Rightarrow 2 P(A \cap B) = P(A) + P(B)$$

$$\Rightarrow 2 P(A) \cdot \frac{P(A \cap B)}{P(A)} = P(A) + P(B)$$

$$\Rightarrow 2 P(A) \cdot P\left(\frac{B}{A}\right) = P(A) + P(B)$$
103. We know that $P(A / B) = \frac{P(A \cap B)}{P(B)}$
Also we know that $P(A \cup B) \le 1$$$

101. M: student studying maths

S: student studying science

Also we know that
$$P(A \cup B) \le 1$$

$$\Rightarrow P(A) + P(B) - P(A \cap B) \le 1$$

$$\Rightarrow P(A \cap B) \ge P(A) + P(B) - 1$$

$$\Rightarrow \frac{P(A \cap B)}{P(B)} \ge \frac{P(A) + P(B) - 1}{P(B)}$$

$$\Rightarrow P(A / B) \ge \frac{P(A) + P(B) - 1}{P(B)}$$

1

04.
$$P(E \cap F) = P(E).P(F)$$

Now,
$$P(E \cap F^{c}) = P(E) - P(E \cap F)$$

$$= P(E)[1 - P(F)]$$

$$= P(E).P(F^{c})$$

and
$$P(E^{c} \cap F^{c}) = 1 - P(E \cup F)$$

$$= 1 - [P(E) + P(F) - P(E \cap F)]$$

$$= [1 - P(E)][1 - P(F)] = P(E^{c})P(F^{c})$$

Also
$$P\left(\frac{E}{F}\right) = P(E) \text{ and } P\left(\frac{E^{c}}{F^{c}}\right) = P(E^{c})$$

$$\Rightarrow P\left(\frac{E}{F}\right) + P\left(\frac{E^{c}}{F^{c}}\right) = 1.$$

Chapter 11: Probability

105.
$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} \Rightarrow \frac{1}{2} = \frac{P(A \cap B)}{1/4}$$

 $\Rightarrow P(A \cap B) = \frac{1}{8}$
Hence, events A and B are not m

Hence, events A and B are not mutually exclusive.

:. Statement II is incorrect.

Now,
$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(B) = \frac{1}{2}$$

.... $\left[\because P(A \cap B) = \frac{1}{8} = P(A).P(B)\right]$

 \therefore events A and B are independent events.

$$\therefore \qquad P\left(\frac{A^{c}}{B^{c}}\right) = \frac{P(A^{c} \cap B^{c})}{P(B^{c})} = \frac{P(A^{c})P(B^{c})}{P(B^{c})}$$
$$= \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{2}{1} = \frac{3}{4}$$

Hence, statement I is correct.

Again
$$P\left(\frac{A}{B}\right) + P\left(\frac{A}{B^c}\right) = \frac{1}{4} + \frac{P(A \cap B^c)}{P(B^c)}$$

$$= \frac{1}{4} + \frac{P(A) - P(A \cap B)}{P(B^c)}$$
$$= \frac{1}{4} + \frac{\frac{1}{4} - \frac{1}{8}}{\frac{1}{2}}$$
$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Hence, statement III is incorrect.

106. Consider the following events: S = person is smoker, NS = person is non smoker, D = death due to lung cancer P(D) = P(S) · P $\left(\frac{D}{S}\right)$ + P(NS) · P $\left(\frac{D}{NS}\right)$ $\Rightarrow 0.006 = \frac{20}{100} \times P\left(\frac{D}{S}\right) + \frac{80}{100} \times \frac{1}{10} \times P\left(\frac{D}{S}\right)$ $\Rightarrow P\left(\frac{D}{S}\right) = \frac{1000 \times 0.006}{280} = \frac{6}{280} = \frac{3}{140}$ 107. Let E denote the event that a five occurs and A be the event that the man reports it as '6'.

Then, $P(E) = \frac{1}{6}$, $P(E') = \frac{5}{6}$ $P(A/E) = \frac{2}{3}$, $P(A/E') = \frac{1}{3}$

From Baye's theorem,

$$P(E|A) = \frac{P(E) \cdot P(A|E)}{P(E) \cdot P(A|E) + P(E') \cdot P(A|E')}$$
$$= \frac{\frac{1}{6} \times \frac{2}{3}}{\frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3}}$$
$$= \frac{2}{7}$$

108. Let E_1 be the event that the ball is drawn from bag A, E_2 the event that it is drawn from bag B and E that the ball is red. We have to find $P(E_2/E)$.

Since both the bags are equally likely to be

selected, we have $P(E_1) = P(E_2) = \frac{1}{2}$

Also
$$P(E/E_1) = \frac{3}{5}$$
, $P(E/E_2) = \frac{5}{9}$

Hence by Baye's theorem, we have

$$P(E_2/E) = \frac{P(E_2)P(E/E_2)}{P(E_1)P(E/E_1) + P(E_2)P(E/E_2)}$$
$$= \frac{\frac{1}{2} \cdot \frac{5}{9}}{\frac{1}{2} \cdot \frac{3}{5} + \frac{1}{2} \cdot \frac{5}{9}} = \frac{25}{52}$$

109. Let A be the event of selecting bag X, B be the event of selecting bag Y and E be the event of drawing a white ball, the P(A) = 1/2, P(B) = 1/2, P(E/A) = 2/5, P(E/B) = 4/6 = 2/3 ∴ P(E) = P(A) P(E/A) + P(B)P(E/B) $= \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{2}{3} = \frac{8}{15}$

110. K = He knows the answers, NK = He randomly ticks the answers, C = He is correct

$$P\left(\frac{K}{C}\right) = \frac{P(K).P\left(\frac{C}{K}\right)}{P(K).P\left(\frac{C}{K}\right) + P(NK).P\left(\frac{C}{NK}\right)}$$
$$= \frac{p \times 1}{p \times 1 + (1-p) \times \frac{1}{5}} = \frac{5p}{4p+1}$$

111. Consider the following events:

 $E_1 \rightarrow$ He knows the answer, $E_2 \rightarrow$ He guesses the answer

 $A \rightarrow He$ gets the correct answer.

We have,

$$P(E_1) = \frac{90}{100} = \frac{9}{10}, P(E_2) = \frac{1}{10},$$
$$P(A/E_1) = 1, P(A/E_2) = \frac{1}{4}$$

 \therefore Required probability = P(E₂/A)

$$= \frac{P(E_2)P(A/E_2)}{P(E_1)P(A/E_1) + P(E_2)P(A/E_2)}$$
$$= \frac{\frac{1}{10} \times \frac{1}{4}}{\frac{9}{10} \times 1 + \frac{1}{10} \times \frac{1}{4}} = \frac{1}{37}$$

112. Required probability

$$=\frac{\frac{1}{7}\times\frac{7}{9}}{\frac{1}{7}\times\frac{7}{9}+\frac{3}{7}\times\frac{8}{9}+\frac{2}{7}\times\frac{5}{9}+\frac{1}{7}\times\frac{8}{9}}=\frac{1}{7}$$

113. Required probability $=\frac{(21)!2!}{(22)!} = \frac{1}{11} = \frac{1}{1+10}$

 \therefore Odds against = 10 : 1.

114. Required probability =
$$\frac{0.1}{0.1+0.32}$$

= $\frac{0.1}{0.42} = \frac{5}{21}$

115. Probability [Person A will die in 30 years]

$$=\frac{8}{8+5}$$

$$\therefore P(A) = \frac{8}{13} \Rightarrow P(\overline{A}) = \frac{5}{13}$$

Similarly, $P(B) = \frac{4}{7} \Rightarrow P(\overline{B}) = \frac{3}{7}$

There are two ways in which one person is alive after 30 years. \overline{AB} and \overline{AB} are independent events.

So, required probability

$$= P(\overline{A}).P(B) + P(A).P(\overline{B})$$
$$= \frac{5}{13} \times \frac{4}{7} + \frac{8}{13} \times \frac{3}{7} = \frac{44}{91}$$

116. The probability of solving the question by these three students are $\frac{1}{3}, \frac{2}{7}$ and $\frac{3}{8}$ respectively.

.
$$P(A) = \frac{1}{3}; P(B) = \frac{2}{7}; P(C) = \frac{3}{8}$$

Then, probability of question solved by only one student = P(ABC or \overline{ABC} or \overline{ABC}) = P(A) P(\overline{B}) P(\overline{C}) + P(\overline{A}) P(B) P(\overline{C})

$$= \frac{1}{3} \cdot \frac{5}{7} \cdot \frac{5}{8} + \frac{2}{3} \cdot \frac{2}{7} \cdot \frac{5}{8} + \frac{2}{3} \cdot \frac{5}{7} \cdot \frac{5}{8}$$
$$= \frac{25 + 20 + 30}{168} = \frac{25}{56}$$

117. The quadratic equation ax² + bx + c = 0 has real roots when, Δ = b² - 4ac ≥ 0 Since a, b, c are chosen from the numbers 2, 3, 5.
6 different equations having distinct coefficients can be formed. Of these, only two equations having b = 5 will have real roots.
∴ Required probability = ²/₂ = ¹/₂

Required probability =
$$\frac{2}{6} = \frac{1}{3}$$

- $=\frac{28}{{}^{30}C_3}=\frac{1}{145}$
- $\therefore \quad \text{required probability} = 1 \frac{1}{145} = \frac{144}{145}$
- 2. We have,

$$P(E) + P(F) - 2P(E \cap F) = \frac{11}{25} \text{ and}$$

$$P(\overline{E} \cap \overline{F}) = \frac{2}{25}$$

$$\Rightarrow P(E) + P(F) - 2P(E)P(F) = \frac{11}{25} \text{ and}$$

$$P(\overline{E})P(\overline{F}) = \frac{2}{25}$$

 $\Rightarrow x + y = 2xy = \frac{1}{25} \text{ and } 1 = x - y + xy = \frac{1}{25},$ Where, P(E) = x and P(F) = y $\Rightarrow x + y + 2 - 2x - 2y = \frac{11}{25} + 2 \times \frac{2}{25}$[On eliminating xy] $\Rightarrow x + y = \frac{7}{5} \Rightarrow y = \frac{7}{5} - x$ Substituting $y = \frac{7}{5} - x$ in $1 - x - y + xy = \frac{2}{25},$ we get $1 - \frac{7}{5} + x(\frac{7}{5} - x) = \frac{2}{25}$ $\Rightarrow 25x^2 - 35x + 12 = 0$ $\Rightarrow x = \frac{3}{5}, \frac{4}{5}$ When $x = \frac{3}{5}, y = \frac{4}{5}$ and $y = \frac{3}{5}$ for $x = \frac{4}{5}$ Hence, P(E) = $\frac{3}{5}, P(F) = \frac{4}{5}$ or P(E) = $\frac{4}{5},$ P(F) = $\frac{3}{5}$

- 3. Let A denote the event that each American man is seated adjacent to his wife and B denote the event that Indian man is seated adjacent to his wife. Then, required probability = P(B/A) Number of ways in which Indian man sits adjacent to his wife when each $= \frac{\text{man is sited adjacents to his wife}}{\text{Number of ways in which each}}$ American man is seated adjacent to his wife $= \frac{(2!)^5 \times (5-1)!}{(2!)^4 (6-1)!} = \frac{2}{5}$
- 4. We have 13 denominations Ace, 2, 3, 4, ..., 10, J, Q, K. For selecting exactly one pair, we select first any 3 denominations, 2 cards from 1 and one each from the other two Thus, favourable ways = ${}^{13}C_3 \cdot 3 \cdot {}^4C_2 \cdot {}^4C_1 \cdot {}^4C_1$ Total ways = ${}^{52}C_4$

$$\therefore \quad \text{required probability} = \frac{13.12.11.3.6.4.4.24}{6.52.51.50.49} \\ = \frac{6336}{20825} = 0.3042 = 0.3$$

- 5. Let event A that minimum of the chosen number is 3 and B be the event that maximum of the chosen number is
- $\therefore P(A) = P \text{ (choosing 3 and two other numbers} from 4 to 10)$

$$= \frac{{}^{7}C_{2}}{{}^{10}C_{3}} = \frac{7 \times 6 \times 3}{10 \times 9 \times 8} = \frac{7}{40}$$

P(B) = P(choosing 7 and choosing two other numbers from 1 to 6)

$$= \frac{{}^{6}C_{2}}{{}^{10}C_{3}} = \frac{6 \times 5 \times 3}{10 \times 9 \times 7} = \frac{1}{8}$$

 $P(A \cap B) = P$ (choosing 3 and 7 and one other from 4 to 6)

$$= \frac{3}{{}^{10}C_3} = \frac{3 \times 3 \times 2}{10 \times 9 \times 8} = \frac{1}{40}$$

∴ P(A \cap B) = P(A) + P(B) - P(A \cap B)
$$= \frac{7}{40} + \frac{1}{8} - \frac{1}{40} = \frac{11}{40}$$

6. In the 22nd century there are 25 leap years viz. 2100, 2104,, 2196 and 75 non-leap years. Consider the following events:

 E_1 = Selecting a leap year from 22^{nd} century E_2 = Selecting a non-leap year from 22^{nd} century

A = There are 53 Sundays in a year of 22^{nd} century

We have,

$$P(E_1) = \frac{25}{100}, P(E_2)$$

= $\frac{75}{100}$
$$P(A/E_1) = \frac{2}{7} \text{ and } P(A/E_2)$$

= $\frac{1}{7}$

$$P(A) = P((A \cap E_1) \cup (A \cap E_2))$$

$$= P(A \cap E_1) + P(A \cap E_2)$$

$$= P(E_1) P(A/E_1) + P(E_2) P(A/E_2)$$

$$= \frac{25}{100} \times \frac{2}{7} + \frac{75}{100} \times \frac{1}{7}$$

$$= \frac{5}{28}$$

- 7. We know that the probability of occurrence of an event is always less than or equal to 1 and it is given that $P(A \cup B \cup C) \ge 0.75$
- $\begin{array}{ll} \therefore & 0.75 \leq P(A \cup B \cup C) \leq 1 \\ \Rightarrow 0.75 \leq P(A) + P(B) + P(C) P(A \cap B) \\ & P(B \cap C) P(A \cap C) + P(A \cap B \cap C) \leq 1 \\ \Rightarrow 0.75 \leq 0.3 + 0.4 + 0.8 0.08 P(B \cap C) \\ & 0.28 + 0.09 \leq 1 \\ \Rightarrow 0.75 \leq 1.23 P(B \cap C) \leq 1 \\ \Rightarrow 0.48 \leq P(B \cap C) \leq 0.23 \\ \Rightarrow 0.23 \leq P(B \cap C) \leq 0.48 \end{array}$
- 8. From the tree diagram, P(B_G) = $\frac{4}{5} \times \frac{3}{4} \times \frac{3}{4} + \frac{4}{5} \times \frac{1}{4} \times \frac{1}{4} + \frac{1}{5} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{5} \times \frac{1}{4} \times \frac{3}{4}$ = $\frac{23}{40}$

Chapter 11: Probability

Textbook Chapter No.

Mathematical Logic

Hints

Classical Thinking

- 1. 'Bombay is the capital of India' is a statement. The other options are exclamatory and interrogative sentences.
- 2. 'Two plus two is four' is a statement. The other options are imperative sentences.
- 3. Even though 2 = 3 is false, it is a statement in logic with truth value F.
- ~q: Ram studies on holiday, 'and' is expressed by '∧' symbol
- \therefore Symbolic form is $p \land \sim q$.
- 6. p: There are clouds in the sky, ~q: It is not raining, 'and' is expressed by '∧' symbol.
- $\therefore p \land \sim q$
- ~p: The sun has not set, ~q: The moon has not risen, 'or' is expressed by '∨' symbol.
- $\therefore \qquad {\sim} p \lor {\sim} q$
- 8. ~p: Rohit is short, 'or' is expressed by ' \lor ' symbol, 'and' is expressed by ' \land ' symbol.
- 9. p: Candidates are present,
 q: Voters are ready to vote
 r: Ballot papers ⇒ ~r : no Ballot papers
 'and 'but' are represented by '∧' symbol.
- 10. $\sim p$: She is not beautiful, ' \vee ' indicates 'or'.
- ~p: Ram is not lazy, ~q: Ram does not fail in the examination, '∨' indicates 'or'.
- 15. "Implies" is expressed as ' \rightarrow '.
- $\therefore \quad \text{symbolic form is } p \to q$
- 16. (~d: Driver is not drunk) implies (~a: He cannot meet with an accident).
- 17. "if and only if" is expressed as ' \leftrightarrow '
- \therefore symbolic form is a \leftrightarrow b.
- 19. p: A, B,C, are distinct points q: Points are collinear r: Points form a triangle
- $\therefore \quad \text{p implies (q or r) i.e. } p \rightarrow (q \lor r)$
- 20. 'm \rightarrow n' means 'If m then n',
- \therefore option (C) is correct.

- 23. Let $p: x^2$ is not even, q: x is not even Converse of $p \rightarrow q$ is $q \rightarrow p$ i.e., If x is not even then x^2 is not even
- 24. Converse of $p \rightarrow q$ is $q \rightarrow p$.
- 25. Let p: x > y q: x + a > y + aConverse of $p \rightarrow q$ is $q \rightarrow p$ i.e., If x + a > y + a, then x > y
- 26. Let p: You access the internet
 q: You have to pay the charges
 Given statement is written symbolically as,
 p → q
 Inverse of p → q is ~p → ~q
 i.e. If you do not access the internet then you do not have to pay the charges.
- 27. Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$.
- ~p: Sita does not get promotion and '↔' symbol indicates 'if and only if'.
- 33. r: It is raining, c: I will go to college. The given statement is $r \rightarrow c \equiv \sim c \rightarrow \sim r$

36.

р	q	$p \wedge q$	$(p \land q) \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

37.

р	q	~q	$p \land q$	$p \rightarrow \sim q$	$(p \land q) \land (p \rightarrow \neg q)$
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

38.

р	q	~q	$p \wedge \sim q$	~(p ^~q)	$p \rightarrow \sim (p \land \sim q)$
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	Т	Т
F	F	Т	F	Т	Т

Г

Chapter 01: Mathematical Logic

39.

p	q	$p \rightarrow q$	~p	~q	$\sim p \rightarrow \sim q$	$(p \rightarrow q) \leftrightarrow$ $(\sim p \rightarrow \sim q)$
Т	Т	Т	F	F	Т	Т
Т	F	F	F	Т	Т	F
F	Т	Т	Т	F	F	F
F	F	Т	Т	Т	Т	Т

- 40. Option (C) is a true statement, since, $x = 3 \in N$ satisfies x + 5 = 8.
- 41. Option (D) is the required true statement since $x = 6 \in W$ satisfies $x^2 4 = 32$
- 43. p: Manoj has the job, q: he is not happy Symbolic form is p ∧ q.
 Its dual is p ∨ q.
- \therefore Manoj has the job or he is not happy.
- 44. $\sim (p \land q) \equiv \sim p \lor \sim q$

45.
$$\sim [p \lor (\sim q)] \equiv \sim p \land \sim (\sim q) \equiv \sim p \land q$$

- 46. p: I like Mathematics q: I like English. $\sim (p \land q) \equiv \sim p \lor \sim q$
- \therefore Option (D) is correct.
- 47. We know that,
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $\therefore \quad \sim (p \leftrightarrow q) \equiv \sim [(p \rightarrow q) \land (q \rightarrow p)]$ $\equiv \sim (p \rightarrow q) \lor \sim (q \rightarrow p)$[By Demorgan's Law] $\equiv (p \land \sim q) \lor (q \land \sim p)$[:: $\sim (p \rightarrow q) = p \land \sim q]$
- 48. p : It is Sunday q : It is a holiday
- $\therefore Symbolic form p \to q$ $\sim (p \to q) \equiv p \land \sim q$ i.e. It is Sunday, but it is not a holiday
- 49. Given statement is '∀ $x \in N, x + 5 > 4$ ' ∴ ~ [∀ $x \in N, x + 5 > 4$] ≡ ∃ $x \in N$, such that $x + 5 \le 4$ i.e., there exists a natural number x, for which $x + 5 \le 4$
- 51. Current will flow in the circuit if switch p and q are closed or switch r is closed. It is represented by (p ∧ q) ∨ r.
 ∴ option (A) is correct

 \therefore option (A) is correct.

Critical Thinking

1 'Incorrect statement' means a statement in logic with truth value false. Options (A) and (C) are not statements in logic. Option (D) has truth value True. Option (B) is a statement in logic with truth value false. 2. p: One being lucky, q: One should stop working Symbolic form: $(p \lor \neg p) \land \neg q$... 3. p: Physics is interesting. q: Physics is difficult. Symbolic form: \sim (\sim p \vee q) ... 4. p: Intelligent persons are polite. q: Intelligent persons are helpful. Symbolic form: $\sim (\sim p \land \sim q)$... 5. $\sim p \land (q \lor \sim r)$ and $(p \rightarrow q) \land r$ $\sim T \land (T \lor \sim F)$ and $(T \rightarrow T) \land F$ *.*.. \Rightarrow F \land (T \lor T) and (T \land F) \Rightarrow F \land T and T \land F \Rightarrow F and F $(\sim p \lor q) \leftrightarrow \sim (p \land q) \text{ and } \sim p \leftrightarrow (p \rightarrow \sim q)$ 6. $(\sim F \lor F) \leftrightarrow \sim (F \land F)$ and $\sim F \leftrightarrow (F \rightarrow \sim F)$ *.*.. \Rightarrow (T \lor F) \leftrightarrow \sim F and T \leftrightarrow (F \rightarrow T) \Rightarrow T \leftrightarrow T and T \leftrightarrow T \Rightarrow T and T 7. $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ and $(\neg p \lor q) \land (\neg q \lor p)$ $(T \rightarrow F) \leftrightarrow (\sim F \rightarrow \sim T)$ and $(\sim T \lor F) \land (\sim F \lor T)$ *.*. \Rightarrow F \leftrightarrow (T \rightarrow F) and (F \vee F) \wedge (T \vee T) \Rightarrow F \leftrightarrow F and F \land T \Rightarrow T and F 8. $p \land q \equiv F \land T \equiv F$ $p \lor \sim q \equiv F \lor \sim T \equiv F \lor F \equiv F$ $q \rightarrow p \equiv T \rightarrow F \equiv F$ $p \rightarrow q \equiv F \rightarrow T \equiv T$ $\sim p \rightarrow \sim q \equiv \sim F \rightarrow \sim T \equiv T \rightarrow F \equiv F$ 9. $p \rightarrow (q \land p) \equiv F \rightarrow (T \land F) \equiv F \rightarrow F \equiv T$ $p \rightarrow \sim q \equiv F \rightarrow \sim T \equiv F \rightarrow F \equiv T$ $q \rightarrow \sim p \equiv T \rightarrow \sim F \equiv T \rightarrow T \equiv T$ Consider option (C) 10. $(p \lor q) \land (p \lor r) \equiv (T \lor T) \land (T \lor F)$ $\equiv T \wedge T$ $\equiv T$ option (C) is correct. *.*..

11.

р	q	~q	${\sim}q \lor p$	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т
F	Т	F	F	F	Т	F
F	F	Т	Т	Т	Т	Т

Alternate Method:

 $\sim q \lor p$: F

- $\therefore \sim q \text{ is } F, p \text{ is } F$
- i.e., q is T, p is F
- $\therefore \qquad p \to q \equiv F \to T \equiv T$
- 12. p: Seema solves a problem q: She is happy i. $p \rightarrow q$ ii. $\sim p \rightarrow \sim q$
 - iii. $\sim q \rightarrow \sim p$ iv. $q \rightarrow p$
 - (i) and (iii) have the same meaning,
 - (ii) and (iv) have the same meaning.

13. i. $b \rightarrow r$

- ii. $\sim b \rightarrow \sim r$
- iii. $r \rightarrow b$
- iv. $\sim r \rightarrow \sim b$

(i) and (iv) are the same and (ii) and (iii) are the same.

14. $p \land (p \rightarrow q)$

$\equiv \mathbf{p} \land (\sim \mathbf{p} \lor \mathbf{q})$	[Conditional law]
$\equiv (p \land {\sim} p) \lor (p \land q)$	[Distributive law]
$\equiv F \lor (p \land q)$	[Complement law]
$\equiv p \land q$	[Identity law]

15.
$$\sim [p \rightarrow (p \lor \sim q)] \equiv \sim [\sim p \lor (p \lor \sim q)]$$

....[$\because p \rightarrow q \equiv \sim p \lor q]$
 $\equiv p \land \sim [p \lor (\sim q)]$
 $\equiv p \land [\sim p \land \sim (\sim q)]$
 $\equiv p \land (\sim p \land q)$

- 16. $(\sim q) \rightarrow (\sim p)$ is contrapositive of $p \rightarrow q$ and hence both are logically equivalent of each other.
- 17.

р	~p	~(~p)	$\sim (\sim p) \leftrightarrow p$
Т	F	Т	Т
F	Т	F	Т

All the entries in the last column of the above truth table is T.

 \therefore ~(~p) \leftrightarrow p is a tautology.

18.

р	q	r	~ p	~ q	~p ^~q	$q \wedge r$	$(\sim p \land \sim q)$ $\land (q \land r)$
Т	Т	Т	F	F	F	Т	F
Т	Т	F	F	F	F	F	F
Т	F	Т	F	Т	F	F	F
Т	F	F	F	Т	F	F	F
F	Т	Т	Т	F	F	Т	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	Т	Т	F	F
F	F	F	Т	Т	Т	F	F

: Given statement is contradiction.

19. Consider option (C)

р	q	~q	p→q	~(p→q)	p∧~q	\sim (p \rightarrow q) \leftrightarrow (p \wedge \sim q)
Т	Т	F	Т	F	F	Т
Т	F	Т	F	Т	Т	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	F	F	Т

 \therefore option (C) is correct.

20. consider option (B)

Р	q	$\sim q$	$p \wedge \sim q$	$p \rightarrow q$	$(p \land \sim q) \land (p \rightarrow q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

- \therefore option (B) is correct.
- 21. Consider option (B)

р	q	~p	~q	p∧q	$\sim p \rightarrow \sim q$	$(p \land q) \leftrightarrow (\sim p \rightarrow \sim q)$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	F

 \therefore option (B) is correct.

- 22. Since, x = 4, 5, 7, 9 satisfies $x + 1 \le 10$
- \therefore option (B) is correct.
- 23. Option (A) is the true statement since square of every natural number is positive.
- 24. Option (C) is false, since for every natural number the statement $x 1 \ge 0$ is always true.
- 25. Dual of $(p \lor q) \lor s$ is $(p \land q) \land s$.
- 27. Negation of $(p \lor q) \land (\neg q \land r)$ is $\sim [(p \lor q) \land (\neg q \land r)]$ $\equiv \sim (p \lor q) \lor \sim (\neg q \land r)$ $\equiv (\neg p \land \neg q) \lor [\sim (\neg q) \lor \neg r]$ $\equiv (\neg p \land \neg q) \lor (q \lor \neg r)$

28. $\sim [p \lor (\sim q \land \sim p)]$ $\equiv \sim p \land \sim (\sim q \land \sim p) \dots [By De Morgan's law]$ $\equiv \sim p \land [\sim (\sim q) \lor \sim (\sim p)]$ $\equiv \sim p \land (q \lor p)$ $\equiv (\sim p \land q) \lor (\sim p \land p)$ $\dots [Distributive property]$ $\equiv (\sim p \land q) \lor F$ $\dots [Complement law]$ $\equiv \sim p \land q$ $\dots [Identity law]$

29.
$$\sim [p \rightarrow (p \lor \sim q)] \equiv p \land \sim [p \lor (\sim q)]$$

 $\equiv p \land (\sim p \land q)$

30. ~
$$[\exists x \in \mathbf{R}, \text{ such that } x^2 + 3 > 0]$$

= $\forall x \in \mathbf{R}, x^2 + 3 \le 0$

- 31. p: Saral Mart does not reduce the prices.
 q: I will not shop there any more.
 Symbolic form is p → q
 ~ (p → q) ≡ p ∧ ~ q
 i.e. Saral Mart does not reduce the prices and still I will shop there.
- 36. The symbolic form of circuit is $(p \land q) \lor (\neg p \land q) \equiv (p \lor \neg p) \land q$ $\equiv T \land q$ $\equiv q$
- 37. The symbolic form of circuit is $[(\sim p \land \sim q) \lor p \lor q] \land r$ $\equiv [\sim (p \lor q) \lor (p \lor q)] \land r$ $\equiv T \land r$ $\equiv r$
- 00

Competitive Thinking

- 2. Man is not rich : ~ q Man is not happy : ~ p
- $\therefore \quad \text{The symbolic representation of the given statement is } \sim q \rightarrow \sim p.$
- 3. ~ p : Ram is not rich ~ q : Ram is not successful ~ r : Ram is not talented
- :. The symbolic form of the given statement is $\sim p \land \sim q \land \sim r$.
- 4. "Not a correct statement" means it is a statement whose truth value is false. Option (A) is not a statement. Options (C) and (D) are statements with truth value true.
 '√3 is a prime' is false statement.
 - Hence, option (B) is correct.

 The symbol p ∧ q means Mathematics is interesting and Mathematics is difficult.

Chapter 01: Mathematical Logic

- 6. p : roses are red
 q : The sun is a star
 (~p) ∨ q : roses are not red or the sun is a star.
- 7. $\sim p$: Boys are not playing The symbol ' \vee ' means 'or'.
- 8. Consider option (C), $(p \land \neg q) \rightarrow q \equiv (T \land \neg T) \rightarrow T$ $\equiv (T \land F) \rightarrow T$ $\equiv F \rightarrow T$ $\equiv T$
- \therefore option (C) is correct.
- 9.

р	q	~p	$\sim p \lor q$	$p \rightarrow (\sim p \lor q)$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

- ... From the table $p \rightarrow (\sim p \lor q)$ is false when p is true and q is false.
- 10. Since, $(p \land \sim q) \rightarrow (\sim p \lor r) \equiv F$ $\Rightarrow p \land \sim q \equiv T \text{ and } \sim p \lor r \equiv F$ $\Rightarrow p \equiv T, \sim q \equiv T \text{ and } \sim p \equiv F, r \equiv F$ $\Rightarrow p \equiv T, q \equiv F, r \equiv F$
- \therefore The truth values of p, q and r are T, F, F respectively.
- 11. Since, both the given statements p and q have truth values T,
- $\begin{array}{ll} \therefore & p \to q \equiv T \to T \equiv T, \text{ and} \\ & p \leftrightarrow q \equiv T \leftrightarrow T \equiv T \end{array}$
- 12. Contrapositive of $(p \lor q) \rightarrow r$ is $\sim r \rightarrow \sim (p \lor q)$ i.e. $\sim r \rightarrow \sim p \land \sim q$
- 13. Given $p \rightarrow q$ Its contrapositive is $\sim q \rightarrow \sim p$ and its converse is $\sim p \rightarrow \sim q$
- 14. Let p : Ram secures 100 marks in maths q : Ram will get a mobile
 Converse of p → q is q → p
 i.e., If Ram will get a mobile, then he secures 100 marks in maths.

- 15. Inverse of q → p is ~q → ~p
 i.e., If a triangle is not equiangular then it is not equilateral.
- 16. Let p : It is raining q : I will not come
 Contrapositive of p → q is ~q → ~p
 i.e., If I will come, then it is not raining.
- 17. Let p = x is a prime number, q = x is odd. Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$
- 18. p: The weather is fine.q: My friends will come and we will go for a picnic.
- ∴ Statement is p → q
 Contrapositive of p → q is ~ q → ~ p
 i.e., if my friends do not come or we do not go for a picnic then weather will not be fine.
- 19. Let p: x is prime number q: x is odd
- $\therefore \quad \text{Statement is } p \to q \\ \text{Converse of } p \to q \text{ is } q \to p \\ \text{Contrapositive of } q \to p \text{ is } \sim p \to \sim q.$
- 21.

1	2	3	4	5	6
р	q	~p	~p ∧ q	$q \rightarrow p$	$\sim (q \rightarrow p)$
Т	Т	F	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	F	Т	F

The entries in the columns 4 and 6 are identical.

$$\therefore \qquad \sim p \land q \equiv \sim (q \to p)$$

22. Consider option (B)

$$(p \lor q) \land \sim p \equiv (p \land \sim p) \lor (q \land \sim p)$$
$$\equiv F \lor (q \land \sim p)$$
$$\equiv q \land \sim p$$
$$\equiv \sim p \land q$$

23.
$$(p \land q) \lor (\sim q \land p) \equiv (p \land q) \lor (p \land \sim q)$$

 $\equiv p \land (q \lor \sim q)$
 $\equiv p \land T \equiv p$

24.
$$\sim (p \lor q) \lor (\sim p \land q)$$

 $\equiv (\sim p \land \sim q) \lor (\sim p \land q)$
 $\equiv \sim p \land (\sim q \lor q)$
 $\equiv \sim p \land T$
 $\equiv \sim p$

25. $(p \land \neg q) \lor q \lor (\neg p \land q)$ $\equiv [(p \lor q) \land (\neg q \lor q)] \lor (\neg p \land q)$

$$= [(p \lor q) \land (\neg p \land q)]$$

$$= [(p \lor q) \land (\neg p \land q)]$$

$$= (p \lor q) \lor (\neg p \land q)$$

$$= (p \lor q \lor \neg p) \land (p \lor q \lor q)$$

$$= (T \lor q) \land (p \lor q) \equiv T \land (p \lor q)$$

$$\equiv p \lor q$$

26.

1	2	3	4	5	6
р	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$	$q \lor p$	$p \rightarrow (q \lor p)$
Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	F	Т

The entries in the columns 4 and 6 are identical.

$$\therefore \qquad p \to (q \to p) \equiv p \to (p \lor q)$$

27.
$$p \rightarrow (\sim q) \equiv \sim p \lor \sim q$$

 $\equiv \sim q \lor \sim p$

28. $\sim (p \lor q) \equiv \sim p \lor \sim q$ is not true as it contradicts De Morgan's law.

 \therefore option (D) is not true.

29.
$$p \land (\sim p \land q) \equiv (p \land \sim p) \land q$$

 $\equiv F \land q$
 $\equiv F$

30.

р	~ p	$p \rightarrow \sim p$	$\sim p \rightarrow p$	$(p \rightarrow p) \land (p \rightarrow p)$
Т	F	F	Т	F
F	Т	Т	F	F

31.

p	q	~ p	~ q	(p ∧~q)	$(\sim p \land q)$	$(p \land \sim q) \\ \land (\sim p \land q)$
Т	Т	F	F	F	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	F
F	F	Т	Т	F	F	F

- \therefore Given statement is contradiction.
- 32. Since, $p \lor \sim p \equiv T$

$$\therefore \quad (\sim q \land p) \lor (p \lor \sim p) \equiv (\sim q \land p) \lor T \equiv T$$

 \therefore (~q \land p) \lor (p \lor ~p) is a tautology.

33. Consider option (C)

А	В	$A \rightarrow B$	$A \land (A \rightarrow B)$	$[A \land (A \to B)] \to B$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т
		(a) .		

 \therefore option (C) is correct.

Chapter 01: Mathematical Logic

34. Consider option (C)

р	q	$q \rightarrow p$	~p	~p↔ q	$(q \rightarrow p) \lor (\sim p \leftrightarrow q)$
Т	Т	Т	F	F	Т
Т	F	Т	F	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	F	Т

- 35. $p \rightarrow q$ is logically equivalent to $\sim q \rightarrow \sim p$
- $\therefore \quad (p \to q) \leftrightarrow (\sim q \to \sim p) \text{ is tautology}$ But, it is given contradiction. Hence, it is false statement.

36.

1	2	3	4	5	6
р	q	~q	$p \leftrightarrow \sim q$	$\sim (p \leftrightarrow \sim q)$	$p \leftrightarrow q$
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	Т

The entries in the columns 5 and 6 are identical.

$$\therefore \qquad \sim (p \leftrightarrow \sim q) \equiv p \leftrightarrow q$$

37.

р	q	~p	p→q	~p→q	$(\sim p \rightarrow q)$	$(p \rightarrow q) \rightarrow$
					\rightarrow q	$[(\sim p \rightarrow q) \rightarrow q]$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т

- 38. Option (C) is the correct answer since there exists a real number x = 0, such that $x^2 = 0$. Zero is neither positive nor negative.
- 39. Dual of $\sim p \land (q \lor c) = \sim p \lor (q \land t)$
- 40. Negation of $q \lor \sim (p \land r)$ is $\sim [q \lor \sim (p \land r)] \equiv \sim q \land \sim (\sim (p \land r))$ $\equiv \sim q \land (p \land r)$

41.
$$\sim [(p \lor \sim q) \land q] \equiv \sim (p \lor \sim q) \lor \sim q$$

....[De Morgan's Law]
 $\equiv (\sim p) \land [\sim (\sim q)] \lor \sim q$
 $\equiv (\sim p \land q) \lor \sim q$

42. p: A is rich, q: A is silly

- $\therefore \qquad \sim (p \land q) \equiv \sim p \lor \sim q$
- 43. $\sim (p \land q) \equiv \sim p \lor \sim q$
- 44. p: 72 is divisible by 2. q: 72 is divisible by 3.
- $\therefore \quad \text{Statement is } p \land q$

 $\sim (p \land q) \equiv \sim p \lor \sim q$

45. $\sim (p \lor q) \equiv (\sim p) \land (\sim q)$ i.e., 7 is greater than 4 and Paris is not in France.

- 46. $\sim [\sim s \lor (\sim r \land s)]$ $\equiv \sim (\sim s) \land \sim (\sim r \land s)$ [De Morgan's Law] $\equiv s \land (r \lor \sim s)$ $\equiv (s \land r) \lor (s \land \sim s)$ [Distributive property] $\equiv (s \land r) \lor F$ [Complement law] $\equiv s \land r$ [Identity law]
- 47. $p \rightarrow q \equiv \sim p \lor q$

$$\therefore \qquad \sim (p \to q) \equiv p \land \sim q$$

48. Since, $p \to q \equiv \neg p \lor q$ $\therefore \quad \neg p \to q \equiv p \lor q$

$$\therefore \quad \sim (\sim p \to q) \equiv \sim (p \lor q)$$
$$\equiv \sim p \land \sim q$$

49.
$$\sim [p \rightarrow (\sim p \lor q)] \equiv p \land \sim (\sim p \lor q)$$

 $\equiv p \land (p \land \sim q)$
 $\equiv (p \land p) \land \sim q$
 $\equiv p \land \sim q$

- 50. Since, $p \rightarrow q \equiv \neg p \lor q$ $\therefore \sim [(p \land q) \rightarrow (\neg p \lor r)]$ $\equiv \sim [\sim (p \land q) \lor (\sim p \lor r)]$ $\equiv \sim [(\sim p \lor \sim q) \lor (\sim p \lor r)]$
- $\equiv \sim (\sim p \lor \sim q) \land \sim (\sim p \lor r)$ $\equiv (p \land q) \land (p \land \sim r)$
- 52. Let p: 2 is prime, q: 3 is odd
- \therefore Symbolic form $p \rightarrow q$
- $\therefore \quad \sim (p \to q) \equiv p \land \sim q$ i.e., 2 is prime and 3 is not odd.
- 53. p: Hema gets admission in good college.q: Hema gets above 95% marks.
- $\therefore \quad \text{Statement is } p \to q \\ \sim (p \to q) \equiv p \land \sim q$
- 54. Given statement is $\exists x \in S$, such that x > 0
- $\therefore \quad \sim (\exists x \in \mathbf{S}, \text{ such that } x > 0)$ $\equiv \forall x \in \mathbf{S}, x \le 0$

i.e., Every rational number $x \in S$ satisfies $x \le 0$.

- 55. The current will flow through the circuit if p, q, r are closed or p, q', r are closed.
- \therefore option (C) is the correct answer.

MHT-CET Triumph Maths (Hints) 56. Let p : switch s_1 is closed. 58. The symbolic form of the given circuit is q: switch s_2 is closed. $(p \lor \sim p) \land q \equiv T \land q$ $\sim p$: switch s₁ is open ≡q \sim q : switch s₂ is open 59. Symbolic form of the circuit is The current can flow in the circuit iff either $(p \land \neg q) \lor (\neg p \land q) \equiv (p \land \neg q) \lor (q \land \neg p)$ s_1' and s_2 are closed or s_1 and s_2' are closed. $\equiv \sim (p \leftrightarrow q)$ It is represented by $(\sim p \land q) \lor (p \land \sim q)$. **Evaluation Test** 1. x + 3 = 10 is an open sentence. 8. 2 4 It is not a statement. 1 3 5 6 *.*.. option (C) is correct. *.*.. р q ~q $p \leftrightarrow q$ $p \leftrightarrow \sim q$ $\sim (p \leftrightarrow \sim q)$ Т Т F F Т Т 2. Since $p \rightarrow q$ is false, when p is true and q is Т F Т F Т F false. F F Т F F Т $p \rightarrow (q \lor r)$ is false, F F Т Т F Т p is true and $q \vee r$ is false *.*.. The entries in the columns 4 and 6 are \Rightarrow p is true and both q and r are false. identical. Since, contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. 3. *.*.. $\sim (p \leftrightarrow \sim q) \equiv p \leftrightarrow q$ contrapositive of $(\sim p \land q) \rightarrow \sim r$ is *.*.. statement-l is true. *.*.. $\sim (\sim r) \rightarrow \sim (\sim p \land q) \equiv r \rightarrow (p \lor \sim q)$ Also, all the entries in the last column of the 4. ~p: Rohit is short. above truth table are not T. The given statement can be written *.*.. \sim (p $\leftrightarrow \sim$ q) is not a tautology. symbolically as $p \lor (\sim p \land q)$. statement-2 is false. *.*.. Let p: \sqrt{x} is a complex number 5. *.*.. option (B) is correct. q: *x* is a negative number 9. Consider option (C) *.*.. Logical statement is $p \rightarrow q$ $(p \lor q) \land (p \lor r) \equiv (T \lor T) \land (T \lor F)$ converse of $p \rightarrow q$ is $q \rightarrow p$ *.*.. $\equiv T \land T \equiv T$ option (B) is correct. *.*.. *.*.. option (C) is correct. Consider option (C) 6. The statement "Suman is brilliant and 11. dishonest iff suman is rich" can be expressed r р q ~q $p \wedge \sim q$ $(p \land \sim q) \rightarrow r$ as $Q \leftrightarrow (P \land \sim R)$ Т Т Т F F Т The negation of this statement is Т Т F F Т F $\sim (Q \leftrightarrow (P \land \sim R))$ Т F Т Т Т Т Т F F Т Т F 12. $(\sim q) \rightarrow (\sim p)$ is contrapositive of $p \rightarrow q$. F Т Т F F Т $p \rightarrow q \equiv (\sim q) \rightarrow (\sim p)$ *.*.. F Т F F F Т option (D) is true. *.*.. F Т Т F Т F 13. $(\sim p \land \sim q) \lor (p \land q) \lor (\sim p \land q)$ F F F Т F Т $\equiv \sim p \land (\sim q \lor q) \lor (p \land q)$ $(p \land \neg q) \rightarrow r$ is a contingency *.*.. $\equiv (\sim p \land T) \lor (p \land q)$ *.*.. option (C) is correct. $\equiv \sim p \lor (p \land q)$ Consider option (A) 7. $\equiv (\sim p \lor p) \land (\sim p \lor q)$ $p \land q | p \lor q | \sim (p \lor q) | (p \land q) \land (\sim (p \lor q))$ $\equiv T \land (\sim p \lor q)$ р q Т F Т Т Т F $\equiv \sim p \lor q$ ΤF F Т F F option (B) is correct. *.*.. F Т F Т F F

14. Since, inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$. ∴ inverse of $(p \land \sim q) \rightarrow r$

is $\sim (p \land \sim q) \rightarrow \sim r$ i.e., $\sim p \lor q \rightarrow \sim r$

202

...

...

F F

F

option (A) is correct.

F

Т

 $(p \land q) \land (\sim (p \lor q))$ is a contradiction.

F

Textbook Chapter No.

4. If $|A| \neq 0$, then A^{-1} exists \therefore |A| is non zero

- 5. $M_{11} = \text{minor of } a_{11} = |a_{22}| = a_{22}$[By leaving first row and first column]
- 6. The minor of element $a_{21} = M_{21} = -1$[By leaving R_2 and C_1]
- 7. $M_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 2 \end{vmatrix}$ [By leaving R_3 and C_1] = -8

8.
$$M_{23} = \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} = 3$$

Hints

9.
$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (-3) = 3$$

10.
$$A_{21} = (-1)^3 M_{21} = -(3) = -3$$

11.
$$A_{32} = (-1)^{3+2} \cdot M_{32} = (-1)^5 \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2$$

12.
$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 1 & -3 \end{vmatrix} = -3 - 1 = -4$$

 $A_{32} = -(-3 - 2) = -(-5) = 5$
 $A_{33} = 1 - 2 = -1$

$$\therefore$$
 Co-factors are $-4, 5, -1$

13. Matrix of co-factors

$$= \begin{bmatrix} A_{ij} \end{bmatrix}_{2\times 2} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 2 & -(-3) \\ -5 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 \\ -5 & -1 \end{bmatrix}$$
∴ adj A = $\begin{bmatrix} A_{ij} \end{bmatrix}_{2\times 2}^{T} = \begin{bmatrix} 2 & 3 \\ -5 & -1 \end{bmatrix}^{T} = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$
14. Let A = $\begin{bmatrix} 1 & -4 \\ 3 & 2 \end{bmatrix}$
Matrix of co-factors is:

$$\begin{bmatrix} A_{ij} \end{bmatrix}_{2\times 2} = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$$
∴ adj A = $\begin{bmatrix} A_{ij} \end{bmatrix}_{2\times 2}^{T} = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$

MHT-CET Triumph Maths (Hints) 15. Matrix of co-factors is : 22. Let $A = \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} \Rightarrow |A| = 14 \neq 0$ $\begin{bmatrix} A_{ij} \end{bmatrix}_{3\times 3} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{bmatrix}$ adj A = $\begin{vmatrix} 4 & 2 \\ -1 & 3 \end{vmatrix}$ adj A = $\begin{bmatrix} A_{ij} \end{bmatrix}_{3\times 3}^{T} = \begin{bmatrix} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{bmatrix}^{T}$ ÷ $\therefore \quad \mathbf{A}^{-1} = \begin{bmatrix} \frac{4}{14} & \frac{2}{14} \\ \frac{-1}{2} & \frac{3}{2} \end{bmatrix}$ $adj A = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$... The inverse of the given diagonal matrix is 23. 16. Matrix of co-factors is : $\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{a} & \mathbf{0} \end{bmatrix}$ $\begin{bmatrix} A_{ij} \end{bmatrix}_{3\times 3} = \begin{vmatrix} -4 & 1 & 3 \\ -5 & 4 & 1 \end{vmatrix}$ adj A = $[A_{ij}]_{3\times 3}^{T} = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$ 24. $|\mathbf{A}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{vmatrix} = 4 \neq 0$ adj A = $\begin{vmatrix} -2 & 5 & 1 \\ 0 & -2 & 2 \\ 2 & -1 & -1 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{vmatrix}$ 17. | adj (adj A) | = | A | = 12 - 10 = 2 $|A| = a^{3}$ 18. |A| |adj A| = |A (adj A)| = |A| I $= \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix} = |A|^3 = (a^3)^3 = a^9$ $\therefore \quad \mathbf{A}^{-1} = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ 19. $|\mathbf{A}| = \begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} = 12 - 12 = 0$ 25. Let $A = \begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{vmatrix} \Rightarrow |A| = 1 \neq 0$ A^{-1} does not exist. *.*.. 20. Let $A = \begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}$ $adj A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ $\therefore \qquad |\mathbf{A}| = \begin{vmatrix} 1 & 3 \\ 3 & 10 \end{vmatrix} = 1$ adj A = $\begin{bmatrix} 10 & -3 \\ -3 & 1 \end{bmatrix}$ $\therefore \quad \mathbf{A}^{-1} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 2 & 4 & 5 \end{vmatrix}$ $A^{-1} = \frac{1}{|A|} adj A = \begin{vmatrix} 10 & -3 \\ -3 & 1 \end{vmatrix}$ The multiplicative inverse of $A = A^{-1}$ 21. 26. The inverse of the given diagonal matrix is, $\left|\mathbf{A}\right| = \begin{vmatrix} 2 & 1 \\ 7 & 4 \end{vmatrix} = 1 \neq 0$ $\begin{vmatrix} \frac{1}{a} & 0 & 0 \end{vmatrix}$ adj A = $\begin{vmatrix} 4 & -1 \\ -7 & 2 \end{vmatrix}$ $\mathbf{A}^{-1} = \left| \begin{array}{cc} 0 & \frac{1}{b} & 0 \end{array} \right|$ $A^{-1} = \frac{1}{|A|} adj A = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$ $\begin{vmatrix} 0 & 0 & \frac{1}{2} \end{vmatrix}$ *.*..

27.	$ \mathbf{A} = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = -1$
	adj A = $\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
<i>.</i>	$\mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
28.	Given, $A^{-1} = \frac{1}{k} adj A$
<i>.</i>	$\mathbf{k} = \mathbf{A} $
÷	$ \mathbf{A} = \begin{vmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{vmatrix}$
	= 3(2+1) - 2(1-0) + 4(1-0) = 9 - 2 + 4 = 11
	\Rightarrow k = 11
29.	AB = AC $\Rightarrow A^{-1} AB = A^{-1} AC$ $\Rightarrow IB = IC$
	$\Rightarrow B - C$ For B = C, A ⁻¹ must exist $\Rightarrow A \text{ is non-singular}$
30.	Consider option (B), A^{-1} is a matrix and $ A ^{-1}$ is a number
<i>.</i>	option (B) is not true.
32.	$(\mathbf{A}^2 - 4\mathbf{A}) \mathbf{A}^{-1} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}^{-1} - 4 \mathbf{A} \cdot \mathbf{A}^{-1}$
	$\begin{bmatrix} -A - 4I \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \end{bmatrix}$
	$= \begin{vmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} - \begin{vmatrix} 0 & 4 & 0 \\ 0 & 0 & 4 \end{vmatrix}$
	$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$ $\begin{bmatrix} -3 & 2 & 2 \end{bmatrix}$
	$= \begin{vmatrix} 3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{vmatrix}$
33.	The given system of equations can be written in matrix form $AX = B$ where
	A = $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \end{bmatrix}$ and B = $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$
	Now, $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Chapter 02: Matrices
Applying
$$R_2 \rightarrow R_2 - 2 R_1$$
,
 $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
 $\Rightarrow x + 2y = 3$, and(i)
 $-y = -2$ (ii)
 $\Rightarrow y = 2$
putting $y = 2$ in (i), we get
 $x + 2(2) = 3$
 $\Rightarrow x = -1$
Alternate method:
 $AX = B \Rightarrow X = A^{-1} B$
 $|A| = -1 \neq 0$
 $A^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$
 $X = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 $\therefore x = -1, y = 2$
34. $AX = B$
 $\therefore \begin{bmatrix} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$
 $R_2 - 5R_3 \Rightarrow \begin{bmatrix} 3 & -4 & 2 \\ -3 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -5 \\ -3 \\ 2 \end{bmatrix}$
 $\Rightarrow x - 4y = -5$, and(i)
 $-3x + 3y = -3$ (ii)
Solving (i) and (ii), we get $x = 3$
35. $\begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $Applying R_1 \rightarrow R_1 - R_3$,
 $\begin{bmatrix} a -1 & 0 & 0 \\ 1 & a & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $\therefore (a - 1)x + 0 + 0 = 0$
 $\Rightarrow a - 1 = 0$
 $\Rightarrow a = 1$

:..

...

:.

МНТ	-CET Triumph Maths (Hints)	
36.	$ \mathbf{A} = -\frac{1}{2} \neq 0$	
	$adj A = \begin{bmatrix} i & 0 \\ 2 & 0 \\ 0 & i \end{bmatrix}$	
÷	$\mathbf{A}^{-1} = \frac{1}{\frac{-1}{2}} \begin{bmatrix} \mathbf{i} & 0 \\ 2 & \mathbf{i} \end{bmatrix} = \begin{bmatrix} -\mathbf{i} & 0 \\ 0 & -2\mathbf{i} \end{bmatrix}$	
37.	\therefore adj (AB) = adj (B) adj (A)	
Ó	Critical Thinking	
1.	$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} = \mathbf{A} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	Applying $C_2 \rightarrow C_2 - 3C_1$ and $C_3 \rightarrow C_3 + 2C_1$, $\begin{bmatrix} 1 & 3-3 & -2+2 \\ -3 & 0+9 & -5-6 \\ 2 & 5-6 & 0+4 \end{bmatrix} = A \begin{bmatrix} 1 & 0-3 & 0+2 \\ 0 & 1-0 & 0+0 \\ 0 & 0-0 & 1+0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -3 & 9 & -11 \\ 2 & -1 & 4 \end{bmatrix} = A \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
2.	$\mathbf{A} = \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$	
÷	Applying $C_2 \to C_2 + 2 C_1$, $A \sim \begin{bmatrix} 2 & 1 & 3 \\ 2 & 6 & 3 \\ 3 & 4 & 2 \end{bmatrix}$	
	Applying $R_1 \to R_1 + R_3$, $A \sim \begin{bmatrix} 5 & 5 & 5 \\ 2 & 6 & 3 \\ 3 & 4 & 2 \end{bmatrix}$	
3.	$a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$ = 1(4 - 3) + 3[-(4 - 1)] + 2(6 - 2) = 0 and A = 1(4 - 3) - 2(6 - 6) + 1(3 - 4) = 0	

4. Matrix of co-factors, $\begin{bmatrix} A_{ij} \end{bmatrix}_{3\times 3} = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}$ $\therefore \quad \text{adj N} = [A_{ij}]_{3\times 3}^{T} = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} = N$ $AB = \begin{bmatrix} 34 & 39 \\ 82 & 94 \end{bmatrix} \Rightarrow adj (AB) = \begin{bmatrix} 94 & -39 \\ -82 & 34 \end{bmatrix}$ 5. A is a 2×2 matrix 6. |adjA| = |A| = 10*.*.. A is a 3×3 Matrix 7. $| adj A | = | A |^2 = (12)^2 = 144$ *.*. 8. A (Adj A) = $|A| \cdot (I_n)$ $\therefore \qquad \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = |\mathbf{A}| \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} |A| & 0 \\ 0 & |A| \end{bmatrix}$ $\Rightarrow |A| = 10$ 9. A(adj A) = |A| I $|A (adj A)| = |A|^n$ (If A is of order $n \times n$) *.*. \Rightarrow |A| |adj A| = |A|ⁿ \Rightarrow |Adj A| = |A|ⁿ⁻¹ Since, A is singular |A| = 0*.*.. \Rightarrow |Adj A| = 0 Hence, adj A is a singular matrix. 10. A is a Singular matrix. *.*.. |A| = 0 and A.(adj A) = |A|. I = 0.I = 0 \Rightarrow A (adj A) is a zero matrix. 11. $\operatorname{adj} A = \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$ \therefore adj (adj A) = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$ 12. $|\mathbf{A}| = \begin{vmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = 1 \neq 0$ $adj A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$

...

 $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} = |A|$

 $\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$

MHT-CET Triumph Maths (Hints) 1 2 -1 $|A| = \begin{vmatrix} 3 & 4 & 5 \end{vmatrix} = -34$ 22. 2 6 7 Co-factor of element a_{23} of $A = A_{23}$ $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} = 2$ *.*.. Element a_{32} of $A^{-1} = \frac{A_{23}}{|A|} = \frac{2}{-34} = \frac{-1}{17}$.**.**. $A^2 - 3A - 7I = 0$ 23. \Rightarrow A - 3I - 7A⁻¹ = 0 \Rightarrow A⁻¹ = $\frac{1}{7}$ (A - 3I) $\mathbf{A}^{-1} = \frac{1}{7} \left\{ \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \right\}$ *:*. $= \begin{vmatrix} \frac{2}{7} & \frac{3}{7} \\ -\frac{1}{7} & -\frac{5}{7} \end{vmatrix}$ 24. $A^2 = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow x = 0$ $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$:. $A^2 = I$ $A^{-1} A.A = A^{-1} I$ ÷. \Rightarrow I.A = A⁻¹ I $\Rightarrow A^{-1} = A$ 25 AB = 3I $\Rightarrow A^{-1} AB = 3 A^{-1} I$ $\Rightarrow B = 3A^{-1}$ $A^{-1} = \frac{1}{3}B$ *.*.. $A^2 - A + 2I = 0$ 26. \Rightarrow A.A - A + 2I = 0 $\Rightarrow A^{-1}.A.A - A^{-1}.A + 2 A^{-1}.I = 0$ \Rightarrow A - I + 2 A⁻¹ = 0 $\Rightarrow 2 A^{-1} = I - A$ $\Rightarrow A^{-1} = \frac{1}{2} (I - A)$ $A^2 + mA + nI = 0$ 27. \Rightarrow A.A + mA + nI = 0 $\Rightarrow A^{-1}.A.A + mA^{-1}.A + nA^{-1}.I = 0$ \Rightarrow A + mI + nA⁻¹ = 0 \Rightarrow nA⁻¹ = -A - mI $\Rightarrow A^{-1} = \frac{-1}{n} (A + mI)$

- 28. $4A^3 + 2A^2 + 7A + I = 0$ $\Rightarrow 4A^{-1}A^3 + 2A^{-1}A^2 + 7A^{-1}A + A^{-1}I = 0$ $\Rightarrow 4A^2 + 2A + 7I + A^{-1} = 0$ $\Rightarrow A^{-1} = -(4A^2 + 2A + 7I)$
- 29. The given system of equations can be written in the matrix form as AX = B, where

$$A = \begin{bmatrix} 5 & -7 \\ 7 & -5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 5 & -7 \\ 7 & -5 \end{vmatrix} = 24 \neq 0$$
$$AX = B$$
$$\therefore \qquad \begin{bmatrix} 5 & -7 \\ 7 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$R_1 \rightarrow R_1 - \frac{5}{7}R_2$$
$$\Rightarrow \begin{bmatrix} 0 & \frac{-24}{7} \\ 7 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 3 \end{bmatrix}$$
$$\therefore \qquad \frac{-24}{7}y = \frac{-1}{7} \Rightarrow y = \frac{1}{24}$$
$$7x - 5y = 3 \Rightarrow x = \frac{11}{24}$$

Alternate method:

the given system of equations has a unique solution which is given by $X = A^{-1} B$.

adj A =
$$\begin{bmatrix} -5 & 7 \\ -7 & 5 \end{bmatrix}$$

 \therefore A⁻¹ = $\frac{1}{24} \begin{bmatrix} -5 & 7 \\ -7 & 5 \end{bmatrix}$
 \therefore X = A⁻¹ B = $\frac{1}{24} \begin{bmatrix} -5 & 7 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \frac{1}{24} \begin{bmatrix} 11 \\ 1 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{11}{24} \\ \frac{1}{24} \end{bmatrix}$
 $\Rightarrow x = \frac{11}{24}, y = \frac{1}{24}$
30. AX = B
 $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$

Chapter 02: Matrices 32. $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1 \end{vmatrix}$ $R_1 \rightarrow 2R_1 + R_3$ $\begin{bmatrix} 5 & 0 & 5 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \\ 4 \end{bmatrix}$ Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we get $\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \end{vmatrix} = \begin{vmatrix} 0 & \omega^{n} & \omega^{2n} \\ 0 & 1 & \omega^{n} \\ 0 & \omega^{2n} & 1 \end{vmatrix}$ $R_1 \rightarrow R_1 - 5R_2$ $\begin{bmatrix} -5 & 0 & 0 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$[:: $1 + \omega^n + \omega^{2n} = 0$, if n is not multiple of 3] $\therefore \Delta = 0$ $-5x_1 = 5 \implies x_1 = -1$... $2x_1 + x_3 = 1 \implies x_3 = 3$ 33. $|\mathbf{A}| = \begin{vmatrix} 1 & \sin \alpha \\ -\sin \alpha & -1 \end{vmatrix} = -1 + \sin^2 \alpha \neq 0$ $3x_1 + 2x_2 + x_3 = 4 \implies x_2 = 2$ adj A = $\begin{bmatrix} -1 & -\sin\alpha \\ \sin\alpha & 1 \end{bmatrix}$ $\therefore \qquad \mathbf{X} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ $\therefore \qquad A^{-1} = \frac{1}{|A|} (adj A) = \frac{1}{-1 + \sin^2 \alpha} \begin{bmatrix} -1 & -\sin \alpha \\ \sin \alpha & 1 \end{bmatrix}$ 31. $X = A^{-1} D$ $=\frac{1}{\cos^{2}\alpha}\begin{bmatrix}1&\sin\alpha\\-\sin\alpha&-1\end{bmatrix}=\sec^{2}\alpha\begin{bmatrix}1&\sin\alpha\\-\sin\alpha&-1\end{bmatrix}$ $\Rightarrow AX = D$ $\begin{bmatrix} 1 & -1 & -2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}$ Competitive Thinking 1. $|\mathbf{A}| = \begin{vmatrix} 2 & -2 \\ -2 & 2 \end{vmatrix}$ $R_1 \rightarrow R_1 + R_2, R_3 \rightarrow R_3 + R_2$ =4-4=0 $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 1 & 1 \\ 6 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \\ 16 \end{bmatrix}$ $|\mathbf{B}| = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 0$ A^{-1} and B^{-1} does not exist *.*.. $R_3 \rightarrow R_3 - R_1$ The matrix is not invertible if $\begin{vmatrix} 1 & a & 2 \\ 1 & 2 & 5 \end{vmatrix} = 0$ $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 1 & 1 \\ 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \\ 8 \end{bmatrix}$ 2. $\Rightarrow 1(2-5) - a(1-10) + 2(1-4) = 0$ \therefore $3x = 8 \implies x = \frac{8}{3}$ $\Rightarrow -3 + 9a - 6 = 0$ $\Rightarrow a = 1$ $3x - z = 8 \implies z = 0$ $|\mathbf{A}| = \mathbf{k}^2 + 1$, which can be never zero. 3. Hence matrix A is invertible for all real k. $2x + y + z = 5 \Rightarrow y = \frac{-1}{2}$ 4. The given matrix will be invertible, if $|\lambda -1 4|$ $\therefore \quad \mathbf{X} = \begin{vmatrix} \frac{8}{3} \\ -1 \\ \frac{-1}{3} \\ 0 \end{vmatrix}$ $|-3 \quad 0 \quad 1| \neq 0$ -1 1 2 $\Rightarrow \lambda(0-1) + 1(-6+1) + 4(-3) \neq 0$ $\Rightarrow -\lambda - 5 - 12 \neq 0$ $\Rightarrow \lambda \neq -17$

MHT-CET Triumph Maths (Hints) $[\alpha \ 14 \ -1]$ Let $A = \begin{bmatrix} 2 & 3 & 1 \\ 6 & 2 & 3 \end{bmatrix} = 0$ 10 5. Since, A^{-1} does not exist |A| = 0*.*.. $\Rightarrow \begin{vmatrix} \alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3 \end{vmatrix}$ $\Rightarrow \alpha (9-2) - 14 (6-6) - 1 (4-18) = 0$ \Rightarrow 7 α = -14 $\Rightarrow \alpha = -2$ *.*.. $a_{11} = 1, a_{12} = 1, a_{13} = 0$ 6. $A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = -1$ 11 $\mathbf{A}_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1$ $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = -1$ *:*.. $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 1 \times -1 + 1 \times 1 + 0 \times -1$ = 0*.*.. 7. $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$... $a_{31} A_{31} + a_{32} A_{32} + a_{33} A_{33}$ = 2(10-3) + 4[-(5-3)] + 7(1-2)= 14 - 8 - 7 = -112 Co-factor matrix of X = $\begin{bmatrix} t & -z \\ v & -x \end{bmatrix}$ 8. *.*.. Transpose of adj X = co-factor matrix of X*.*.. $=\begin{bmatrix} t & -z \\ y & -z \end{bmatrix}$ 13 Since, A (adj A) = |A|.I Matrix of co-factors is 9. A(adj A) = 1 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} A_{ij} \end{bmatrix}_{3\times 3} = \begin{bmatrix} 2 & -5 & 32 \\ 0 & 1 & -6 \\ 0 & 0 & 2 \end{bmatrix}$ *.*.. 14. Since, A(adj A) = |A|. I $\Rightarrow \operatorname{adj} \mathbf{A} = \begin{bmatrix} \mathbf{A}_{ij} \end{bmatrix}_{3\times 3}^{\mathrm{T}} = \begin{bmatrix} 2 & 0 & 0 \\ -5 & 1 & 0 \\ 32 & -6 & 2 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = (\cos^2 \alpha + \sin^2 \alpha) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \Rightarrow k = 1

$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$

$$3A^{2} = 3\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$

$$= 3\begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix} = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix}$$

$$3A^{2} + 12A = \begin{bmatrix} 48 & -27 \\ -36 & 39 \end{bmatrix} + \begin{bmatrix} 24 & -36 \\ -48 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$$

$$adj (3A^{2} + 12A) = \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$

$$B = adj A = \begin{bmatrix} 3 & 1 & 1 \\ -6 & -2 & 3 \\ -4 & -3 & 2 \end{bmatrix}$$

$$adj B = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 5A$$

$$adj B = \begin{bmatrix} 5 & -5 & 5 \\ 0 & 10 & -15 \\ 10 & 5 & 0 \end{bmatrix} = 5A$$

$$adj B = \begin{bmatrix} C \\ \Rightarrow \frac{|adj B|}{|C|} = 1$$

$$A (adj A) = |A| I_{n}$$
Where, n = order of the matrix
$$A (adj A) = \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

$$A (adj A) = \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

15. Let
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then $kI = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$
 $\Rightarrow adj(kI) = \begin{bmatrix} k^2 & 0 & 0 \\ 0 & k^2 & 0 \\ 0 & 0 & k^2 \end{bmatrix} = k^2I$
16. $adj(\lambda X) = \lambda^{3^{-1}} (adj X)$
 $\dots [\because adj(kA) = k^{n-1} (adj A)]$
 $= \lambda^2 adj X$
17. Given, A is a singular matrix.
 $\therefore |A| = 0$
Since, $|adjA| = |A|^{n-1}$
 $\Rightarrow |adjA| = 0$
 $\Rightarrow adj A$ is also singular.
18. $|Adj A| = |A|^{n-1} = d^{n-1}$
19. $|A| = \begin{vmatrix} 4 & 2 \\ 3 & 4 \end{vmatrix} = 16 - 6 = 10$
 $\because |adj A| = |A|^{n-1}$
where n \Rightarrow order of matrix.
 $\therefore |adj A| = |A|^{n-1}$
where n \Rightarrow order of matrix.
 $\therefore |adj A| = |A| = 10$
20. A (adj A) = |A| I_n
 $\Rightarrow \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} = |A| I_n$
 $\Rightarrow 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A| I_n$
 $\Rightarrow 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A| I_n$
 $\Rightarrow |A| = 10$
21. Since, A(Adj A) = |A| I
 $\therefore |A| = 10$
 $|Adj A| = |A|^{n-1} = |A|^2 = 10^2 = 100$
22. $adj P = \begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$
 $|adj P| = |P|^2$ [$\because |adj A| = |A|^{n-1}]$
 $\Rightarrow |P|^2 = 1(-4) - 4(-1) + 4(1)$
 $\Rightarrow |P|^2 = 1(-4) - 1(-1) + 4(1)$

Chapter 02: Matrices $|adj A| = |A|^{n-1} = |A|^{2-1} = |A|$ 23. $Adj(adj A) = |A|^{n-2} A = |A|^0 A = A$ ÷ option (B) is the correct answer. 24. adj AB – (adj B) (adj A) = (adj B) (adj A) - (adj B) (adj A) \dots [::adj AB = (adj B) (adj A)] = O 25. Since, $AA^{-1} = I$ $\therefore \qquad \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \quad \begin{bmatrix} 2x & 0 \\ 0 & 2x \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ By equality of matrices, $x = \frac{1}{2}$ 26. Since, $AA^{-1} = I$ $\therefore \qquad \begin{bmatrix} x & -2 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} \frac{7}{34} & \frac{1}{17} \\ \frac{-3}{24} & \frac{2}{17} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \frac{7x+6}{34} & \frac{x-4}{17} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ By equality of matrices, $\frac{x-4}{17} = 0 \Longrightarrow x-4 = 0$ $\Rightarrow x = 4$ 27. $10 \text{ A}^{-1} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ [:: $B = A^{-1}$] $\Rightarrow 10 \text{ A}^{-1} \text{ A} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} \text{ A}$ $\Rightarrow 10 \text{ I} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ -5 + \alpha & 5 + \alpha & -5 + \alpha \\ 0 & 0 & 10 \end{bmatrix}$ *.*.. $-5 + \alpha = 0 \implies \alpha = 5$

мнт	-CET Triumph Maths (Hints)	
28.	$ \mathbf{A} = \begin{vmatrix} 5 & 4 \\ 3 & 2 \end{vmatrix} = -2$	÷
	adj A = $\begin{bmatrix} 2 & -4 \\ -3 & 5 \end{bmatrix}$	
	$A^{-1} = -\frac{1}{2} \begin{bmatrix} 2 & -4 \\ -3 & 5 \end{bmatrix}$	
29.	$ A = \begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix} = -8$	
	adj A = $\begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$	33.
	$\mathbf{A}^{-1} = -\frac{1}{8} \begin{bmatrix} 2 & 3\\ 4 & 2 \end{bmatrix}$	
30.	$ \mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = 1 \neq 0$	<i>.</i>
	$adj U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$	
÷	$U^{-1} = \frac{1}{ U } (adj U) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ $= U^{T}$	÷
31.	$ \mathbf{A} = \begin{vmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{d} & \mathbf{b} \end{vmatrix} = \mathbf{a}\mathbf{b} - \mathbf{c}\mathbf{d}$	34.
	adj A = $\begin{bmatrix} b & -c \\ -d & a \end{bmatrix}$	
	$A^{-1} = \frac{1}{ab - cd} \begin{bmatrix} b & -c \\ -d & a \end{bmatrix}$	
32.	The inverse of diagonal matrix $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ is	
	$\begin{bmatrix} \frac{1}{a} & 0 & 0 \end{bmatrix}$	35.
	$\begin{vmatrix} 0 & \frac{1}{b} & 0 \end{vmatrix}$	
	$\begin{bmatrix} 0 & 0 & \frac{1}{c} \end{bmatrix}$	

The inverse of the given diagonal matrix is $\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$ If B = $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, then B⁻¹ = $\begin{vmatrix} \frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c} \end{vmatrix}$ $\mathbf{A}^{-1} = \begin{bmatrix} \frac{2}{\mathbf{k}} & 0 & 0\\ 0 & \frac{3}{l} & 0\\ 0 & 0 & \frac{4}{\mathbf{m}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{3} & 0\\ 0 & 0 & \frac{1}{4} \end{bmatrix}$ $\Rightarrow \frac{2}{k} = \frac{1}{2} \Rightarrow k = 4,$ $\frac{3}{l} = \frac{1}{3} \Longrightarrow l = 9$ and $\frac{4}{m} = \frac{1}{4} \Rightarrow m = 16$ k + l + m = 4 + 9 + 16 = 29 $|\mathbf{A}| = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \neq 0$ $adj A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ $\mathbf{A}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{A}$ $|\mathbf{A}| = \begin{vmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix} = -1 \neq 0$ $adj A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

				Chapter 02: Matrices
<i>.</i>	$A^{-1} = \frac{1}{ A } (adj A)$	3	9.	$ \mathbf{A} = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1 \end{vmatrix} = 1 \neq 0$
	$= \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \mathbf{A}^{\mathrm{T}}$			$ 0 - 1 - 1 $ $ adj A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & -2 & -4 \end{bmatrix} $
36.	Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$			$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & -4 \end{bmatrix}$
	$ A = -3 \neq 0$ adj A = $\begin{bmatrix} -3 & 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3 \end{bmatrix}$			$A^{2} = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix}$
	$A^{-1} = \frac{1}{ A } \operatorname{adj} A$ $-1 \begin{bmatrix} -3 & 0 & 0 \\ 2 & -1 & 0 \end{bmatrix}$			$A^{3} = A^{2}. A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} = A^{-1}$
	$= \frac{3}{3} \begin{bmatrix} 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$	4	0.	$\mathbf{A} = [\mathbf{a}_{ij}]_{2 \times 2} \Longrightarrow \mathbf{A} = \begin{bmatrix} -1 & 3 \\ 3 & 0 \end{bmatrix}$
37.	$ \mathbf{A} = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{vmatrix} = -2 \neq 0$	•	•	$ \mathbf{A} = -9$ adj $\mathbf{A} = \begin{bmatrix} 0 & -3 \\ -3 & -1 \end{bmatrix}$
	adj A = $\begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$			$A^{-1} = \frac{-1}{9} \begin{bmatrix} 0 & -3 \\ -3 & -1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$
.:.	$A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$	4	1.	Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \Rightarrow A = -2 \neq 0$
	$\begin{bmatrix} -5 & 5 & -1 \end{bmatrix}$			Now, co-factor of element a_{32} of $A = A_{32}$ $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 2$
	$\begin{bmatrix} -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix}$			Element a_{23} of $A^{-1} = \frac{A_{32}}{ A } = \frac{2}{-2} = -1$ Alternate method:
38.	Let $A = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} \implies A = 1 \neq 0$			$ \mathbf{A} = -2 \neq 0$ adj $\mathbf{A} = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 2 & 2 \\ 1 & -2 & -2 \end{bmatrix}$
	$adj A = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ ac - b & -c & 1 \end{bmatrix}$			$ \begin{bmatrix} 1 & -2 & -3 \end{bmatrix} $ $ A^{-1} = \begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & -1 & -1 \end{bmatrix} $
<i>.</i>	$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -\mathbf{a} & 1 & 0 \\ \mathbf{a}\mathbf{c} - \mathbf{b} & -\mathbf{c} & 1 \end{bmatrix}$			$\begin{bmatrix} -\frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix}$ Element a_{23} of $A^{-1} = -1$.

мнт	-CET Triumph Maths (Hints)		
42.	Let $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A = \begin{vmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$	47.	A =
	$A_{21} = (-1)^{3+1} \begin{vmatrix} 2 & -3 \end{vmatrix} = 7$		$\mathbf{A}^{-1} = \frac{1}{ \mathbf{A} ^2}$
<i>.</i>	Element a_{13} of $A^{-1} = \frac{A_{31}}{ A } = 7$		$\lambda = \frac{1}{ \mathbf{A} }$
43.	$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	48.	$\left \mathbf{A}\right = \begin{vmatrix} 1\\0\\0 \end{vmatrix}$
	$\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ 5 & -3 & 1 \end{bmatrix}$		adj A =
	$\begin{bmatrix} \frac{3}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$	<i>.</i> .	$A^{-1} = \frac{1}{6}$
<i>.</i>	sum of all the diagonal entries $=\frac{1}{2} + 3 + \frac{1}{2} = 4$		[1
44.	$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$		$A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	$Ax = I \implies A^{-1}Ax = A^{-1} I$ $\implies x = A^{-1}$		$A^2 + cA$
÷	$ \mathbf{A} = -5$ $\mathbf{A}^{-1} = \frac{-1}{5} \begin{bmatrix} 3 & -2 \\ -4 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -3 & 2 \\ 4 & -1 \end{bmatrix}$		$=\begin{bmatrix}1\\0\\0&-\end{bmatrix}$
45.	$A\begin{bmatrix} 1 & 5\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1\\ 6 & 0 \end{bmatrix}$		$=\begin{bmatrix} 1+c\\0\\0 \end{bmatrix}$
	$\Rightarrow \mathbf{A} = \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}^{T}$		Since, 6
	$= \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -16 \\ 6 & -30 \end{bmatrix}$		$\begin{bmatrix} 6 & 0 \\ 0 & 4 \\ 0 & 2 \end{bmatrix}$
46.	$ \mathbf{A} = \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} = 3$, adj $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$	<i>.</i>	by equa
<i>∴</i>	$A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix}$		1 + c + c = -6
	$(A^{-1})^{3} = \frac{1}{27} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}^{3}$	49.	By defining $I_3I_3^{-1} = 1$ $rac{1}{2}I_3^{-1} = 1$
	$= \frac{1}{27} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$	50.	$\Rightarrow I_3$ $A^3 = I$ $\Rightarrow A^{-1}A$
	$=\frac{1}{27}\begin{bmatrix}1 & -26\\0 & 27\end{bmatrix}$		$\Rightarrow (A^{-1})$ $\Rightarrow IA^{2} =$

 $\begin{vmatrix} 0 & 3 \\ 2 & 0 \end{vmatrix} = -6 \neq 0$ $\frac{1}{|A|} adj A = \lambda(adj A) \qquad \dots [Given]$ $=-\frac{1}{6}$ 0 0 $1 \quad 1 = 6 \neq 0$ -2 4 $\begin{bmatrix} 6 & 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{bmatrix}$ $\frac{1}{6} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix}$ +dI $\begin{bmatrix} 0 & 0 \\ -1 & 5 \\ -10 & 14 \end{bmatrix} + \begin{bmatrix} c & 0 & 0 \\ 0 & c & c \\ 0 & -2c & 4c \end{bmatrix} + \begin{bmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{bmatrix}$ c+d = 0 = 0 0 = -1+c+d = 5+c0 -10 - 2c 14 + 4c + d $6A^{-1} = A^2 + cA + dI$ 0] [1+c+d] 0 0-1 = 0 -1 + c + d -5 + c1 0 -10-2c 14+4c+dlity of matrices, d = 6 and 5 + c = -1, and d = 11inition of inverse, I3 $= I_3$ $A^3 = A^{-1}.I$ \Rightarrow (A⁻¹A)A² = A⁻¹ \Rightarrow IA² = A⁻¹ \Rightarrow A² = A⁻¹
		T	
51.	$A^2 - A + I = 0$		
	\Rightarrow A.A - A + I = 0		59
	$\Rightarrow A^{-1}.A.A - A^{-1}.A + A^{-1}.I = 0$		
	$\Rightarrow A - I + A^{-1} = 0$		
	$\Rightarrow A^{-1} = I - A$		
52.	Given, $B = -A^{-1}BA$		
	$AB = -AA^{+}BA$		
	$\Rightarrow AB = -I(BA) \Rightarrow AB = -BA$ Now $(A + D)^2 = (A + D)(A + D)$		
	Now $(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{B})$ = $\mathbf{A}^2 + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A} + \mathbf{B}^2$		
	$= A^2 + B^2 \qquad [:: BA = -AB]$		
50	$-\mathbf{A} + \mathbf{D} \qquad \begin{bmatrix} \mathbf{D}\mathbf{A} - \mathbf{A}\mathbf{D} \end{bmatrix}$		
53.	$(A^{-1}BA)^{2} = (A^{-1}BA) (A^{-1}BA)$		
	$= A^{-1}B(AA^{-1})BA$		
	$= \mathbf{A} \mathbf{B} \mathbf{I} \mathbf{B} \mathbf{A}$ $= \mathbf{A}^{-1} \mathbf{P}^2 \mathbf{A}$		
	$(A^{-1}BA)^3 = (A^{-1}B^2A)(A^{-1}BA)$		••
	(A BA) = (A B A) (A BA) = $A^{-1}B^{2}(AA^{-1})BA$		
	$= A^{-1}B^{2}IBA$		
	$= A^{-1}B^3A$		••
	In general,		60.
	$(A^{-1}BA)^n = A^{-1}B^nA$		
54.	$(M^{-1})^{-1} \neq (M^{-1})^{1}$		
	$(M^{-1})^{-1} = (M^{-1})^{1}$ is not true		
55.	$(\mathbf{B}^{-1}\mathbf{A}^{-1})^{-1} = (\mathbf{A}^{-1})^{-1} \cdot (\mathbf{B}^{-1})^{-1} = \mathbf{A} \cdot \mathbf{B}$		
	$\mathbf{A} \mathbf{B} = \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \end{bmatrix}$		
••	$\begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$		
56.	$(A^2 - 5A) A^{-1} = A.A.A^{-1} - 5A \cdot A^{-1}$		
	= A - 5I		
	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}$		÷
	$= \begin{vmatrix} -1 & 1 & 2 \end{vmatrix} - \begin{vmatrix} 0 & 5 & 0 \end{vmatrix}$		
	$\begin{bmatrix} -4 & 2 & 3 \end{bmatrix}$		
			÷
			61
57	$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$		01.
57.	$\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}^{-} \begin{bmatrix} 4 \end{bmatrix}$		
	$\Rightarrow x + y = 2$ and $-x + y = 4$		
	$\Rightarrow x = -1, y = 3$		
	$\begin{bmatrix} 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$		
58.	$\begin{vmatrix} 0 & 4 & 5 \end{vmatrix} \begin{vmatrix} v \end{vmatrix} = \begin{vmatrix} 1 \end{vmatrix}$		
	-2 = 1 4y + 5z = 1		•
	$\Rightarrow v = -1$		••
	x + 2y - 3z = 1		
	$\Rightarrow x = 6$		<i>.</i> :.

Chapter 02: Matrices 1 0 1 x Let $A = \begin{vmatrix} -1 & 1 & 0 \end{vmatrix}$, $X = \begin{vmatrix} y \end{vmatrix}$ and $B = \begin{vmatrix} 1 \end{vmatrix}$ 2 0 -1 1 z Now AX = BApplying $R_1 \rightarrow R_1 + R_2$, 0 1 $1 \begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 2 \end{bmatrix}$ -1 1 0 || y | = | 10 -1 1 ||z| |2Applying $R_1 \rightarrow R_1 + R_3$, $0 \quad 0 \quad 2] [x]$ 4 -1 0 || y | = | 11 | 0 -1 1 || z || 2 $2z = 4 \implies z = 2$ $-y + z = 2 \Longrightarrow y = 0$ $-x + y = 1 \implies x = -1$ (x, y, z) = (-1, 0, 2)Applying $R_2 \rightarrow R_2 + 2 R_1$, $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ 3 0 || y | = | 30 1 3 1 z 4 Applying $R_1 \rightarrow R_1 - R_3$, $\begin{bmatrix} 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ | -4 | 3 0 0 || y | = | 31 3 1 || z || 4 $-2 v = -4 \Rightarrow v = 2$ $3x = 3 \implies x = 1$ $x + 3y + z = 4 \Longrightarrow z = -3$ $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ = 2 y __3 z Applying $R_1 \rightarrow R_1 - R_3$ $\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$ 1 4 4 || y | = | 151 3 4 z 13 Applying $R_2 \rightarrow R_2 - R_3$ $\begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$ 0 1 0 || y | = | 21 3 4 || z | 13 $-z = -1 \Longrightarrow z = 1$ y = 2 $x + 3y + 4z = 13 \Longrightarrow x = 3$ (x, y, z) = (3, 2, 1)

TM

62. Let
$$M = \begin{bmatrix} a & b & c \\ x & y & z \\ l & m & n \end{bmatrix}$$
, then

$$M \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} b \\ y \\ m \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$

$$\therefore \quad \text{by the equality of matrices,}$$

$$b = -1, y = 2, m = 3$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a - b \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

:.

$$M \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \begin{bmatrix} x - y \\ l - m \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

by the equality of matrices,
$$a - b = 1, x - y = 1, l - m = -1$$

$$\Rightarrow a = 0, x = 3, l = 2$$

$$M\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix} \Rightarrow \begin{bmatrix}a+b+c\\x+y+z\\l+m+n\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix}$$

... by the equality of matrices,

$$a + b + c = 0, x + y + z = 0, l + m + n = 12$$

 $\Rightarrow c = 1, z = -5, n = 7$

:. sum of diagonal elements of
$$M = a + y + n$$

= $0 + 2 + 7 = 9$

63. Let
$$U_1 = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$$
, $U_2 = \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix}$ and $U_3 = \begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix}$
 $AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $\therefore \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $\therefore \begin{bmatrix} a_1 \\ 2a_1 + b_1 \\ 3a_1 + 2b_1 + c_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 $\therefore by \text{ the equality of matrices,}$
 $a_1 = 1, b_1 = -2 \text{ and } c_1 = 1$
Similarly $a_2 = 2, b_2 = -1 \text{ and } c_2 = -4$
 $a_3 = 2, b_3 = -1 \text{ and } c_3 = -3$
 $\therefore U = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix}$

$$\begin{aligned} \sup_{i=1}^{\infty} f(1-A) &= \left[\frac{1}{-4n\alpha} \frac{\tan \alpha}{1} \right]^{2} = \left[\frac{1}{4n\alpha} \frac{-\tan \alpha}{1} \right] \\ &= \left[\cos^{3} \alpha - \sin \alpha \cos \alpha - \cos^{3} \alpha - \sin \alpha \cos \alpha - \sin \alpha \cos \alpha - \sin \alpha \cos \alpha - \sin^{3} \alpha - \sin^{3} \alpha - \sin \alpha \cos \alpha - \sin^{3} \alpha - \sin^$$

6.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 2 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ 14 \end{bmatrix}$$
$$R_{2} \rightarrow R_{2} - 2R_{1}, R_{3} \rightarrow R_{3} - 3R_{1}$$
$$\therefore \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -5 \\ 0 & -4 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ -4 \end{bmatrix}$$
$$\therefore -5z = -5 \Rightarrow z = 1$$
$$-4y = -4 \Rightarrow y = 1$$
$$x + 2y + 3z = 6 \Rightarrow x = 1$$

7. Let $A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & \lambda & 3 \\ -1 & 0 & 3 \end{bmatrix}$

Matrix will not be invertible if |A| = 0

$$\therefore \quad \begin{vmatrix} 1 & -2 & -1 \\ 2 & \lambda & 3 \\ -1 & 0 & 3 \end{vmatrix} = 0$$
$$\Rightarrow 1(3\lambda) + 2(9) - 1(\lambda) = 0$$
$$\Rightarrow \lambda = -9$$

8. Given,
$$|\mathbf{A}| \neq 0$$
 and $|\mathbf{B}| = 0$

$$\therefore |AB| = |A| |B| = 0$$

and $|A^{-1} B| = |A^{-1}| |B|$
 $= \frac{1}{|A|} |B| \quad \dots \left[\because |A^{-1}| = \frac{1}{|A|} \right]$
 $= 0$

 \therefore AB and A⁻¹ B are singular.

9.
$$(AB)^{-1} = B^{-1} A^{-1}$$

 $\therefore B^{-1} A^{-1} = \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} \\ \frac{1}{4} & 0 \end{bmatrix}$
10. $(A^2 - 8A)A^{-1} = A.A.A^{-1} - 8A.A^{-1}$
 $= A - 8I$
 $= \begin{bmatrix} 1 & 4 & 4 \\ 4 & 1 & 4 \\ 4 & 4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$
 $= \begin{bmatrix} -7 & 4 & 4 \\ 4 & -7 & 4 \\ 4 & 4 & -7 \end{bmatrix}$

 $det A = \begin{vmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{vmatrix}$ = 1311. $\det (\operatorname{adj} (\operatorname{adj} A)) = (\det A)^{(3-1)^2}$ *.*.. $\dots \left[\because \left| \mathrm{adj}(\mathrm{adj}\,\mathbf{A}) \right| = \left| \mathbf{A} \right|^{(n-1)^2} \right]$ $= (\det A)^4 = (13)^4$ A. (adj A) = $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ 12.(i) $=4\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix}$ = 4.1Since, A(adj A) = |A|.I*.*.. |A| = 4From (i), $|A| \cdot |adj A| = 64$ \Rightarrow |adj A| = $\frac{64}{4}$ = 16 Also, $|adj (adj A)| = |A|^{(n-1)^2}$ $= |\mathbf{A}|^{(3-1)^2}$ $= (4)^4 = 256$ $\frac{\left|\operatorname{adj}(\operatorname{adj} A)\right|}{\left|\operatorname{adj} A\right|} = \frac{256}{16} = 16$ *.*.. 13. Since, A(adj A) = |A|.IReplacing A by adj A, we get adj A (adj(adj A)) = |adj A|I \Rightarrow A⁻¹.|A| (adj(adj A)) = |adj A|I $\dots \left[\because A^{-1} = \frac{1}{|A|} (adjA) \right]$ $\Rightarrow \alpha A^{-1} (adj (adj A)) = |A|^2.I$[:: $|adj A| = |A|^{n-1}$] $\Rightarrow \alpha A^{-1}(adj (adj A)) = \alpha^2 I$ $\Rightarrow A^{-1} (adj (adj A)) = \alpha I$ Given, $A^{-1}(adj (adj A)) = kI$

 \therefore k = α

Textbook Chapter No.

3 Trigonometric Functions

Hints

	Classical Thinking
2.	$\tan\theta = \cot\alpha \Longrightarrow \tan\theta = \tan\left(\frac{\pi}{2} - \alpha\right)$
	$\Rightarrow \theta = n\pi + \frac{\pi}{2} - \alpha$
	$\dots [\because \tan \theta = \tan \alpha \Longrightarrow \theta = n\pi + \alpha]$
3.	$\tan 3x = 1$
	$\tan 3x = \tan \frac{\pi}{4} \Longrightarrow 3x = n\pi + \frac{\pi}{4}$
	$\cdots \begin{bmatrix} \because \tan \theta = \tan \alpha \\ \Rightarrow \theta = n\pi + \alpha \end{bmatrix}$
<i>:</i>	$x = \frac{n\pi}{3} + \frac{\pi}{12}, n \in I$
4.	$\tan 3x = \cot x \Longrightarrow \tan 3x = \tan\left(\frac{\pi}{2} - x\right)$
	$3x = n\pi + \frac{\pi}{2} - x \Longrightarrow 4x = n\pi + \frac{\pi}{2}$
	$x = \frac{n\pi}{4} + \frac{\pi}{8} = (2n+1) \frac{\pi}{8}$
5.	$\sin^2\theta + \sin\theta = 2$
	$(\sin\theta - 1)(\sin\theta + 2) = 0$ $\sin\theta = 1 - 2$
••	Since, $\sin \theta \neq -2$
<i>.</i>	$\sin \theta = 1 = \sin \left(\frac{\pi}{2}\right)$
<i>.</i>	$\theta = n\pi + (-1)^n \frac{\pi}{2}, n \in I$
	$\dots \left[\begin{array}{c} \because \sin \theta = \sin \alpha \\ \Rightarrow \theta = n\pi + (-1)^{n} \alpha \end{array} \right]$
6.	$\cot \theta - \tan \theta = 2 \Longrightarrow \frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta} = 2$
	$\cos^2 \theta - \sin^2 \theta = \sin 2\theta \Longrightarrow \cos 2\theta = \sin 2\theta$
<i>.</i>	$\tan 2\theta = \tan \frac{\pi}{4} \Longrightarrow 2\theta = n\pi + \frac{\pi}{4}$
<i>.</i>	$\theta = \frac{n\pi}{2} + \frac{\pi}{8}$

7. $\sin^2 \theta = \frac{1}{4} = \sin^2 \frac{\pi}{6} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$ $\dots [\because \sin^2 \theta = \sin^2 \alpha \Longrightarrow \theta = n\pi \pm \alpha]$ 8. $4\cos^2 x + 6\sin^2 x = 5$ $\therefore \quad 4 + 2\sin^2 x = 5$ $\therefore \qquad \sin^2 x = \frac{1}{2} = \sin^2 \frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4}$ 9. $\sec^2 \theta + \tan^2 \theta = \frac{5}{3}$(i) \therefore 1 + tan² θ + tan² θ = $\frac{5}{3}$ \therefore $2 \tan^2 \theta = \frac{2}{3}$ \therefore $\tan^2 \theta = \frac{1}{3} = \tan^2 \left(\frac{\pi}{6}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$[:: $\tan^2 \theta = \tan^2 \alpha \Longrightarrow \theta = n\pi \pm \alpha$] 10. $\tan \theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}$ $\therefore \quad \tan \theta + \tan 2\theta = \sqrt{3} (1 - \tan \theta \tan 2\theta)$ $\therefore \qquad \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta} = \sqrt{3} \Rightarrow \tan 3\theta = \tan \frac{\pi}{3}$ $3\theta = n \pi + \frac{\pi}{3} \Longrightarrow \theta = (3n+1) \frac{\pi}{9}$ *:*. 11. By sine rule, $\frac{\sin A}{a} = \frac{\sin B}{b}$ $\Rightarrow \frac{2/3}{2} = \frac{\sin B}{3}$ $\Rightarrow \sin B = 1 = \sin 90^{\circ} \Rightarrow B = 90^{\circ}$ sin B sin B b 12.

$$\frac{1}{\sin(A+B)} = \frac{1}{\sin C} = \frac{1}{c}$$
$$\dots [\because A+B+C = \pi, A+B = \pi - C]$$

13. 2s = a + b + c = 16 + 24 + 20 = 60 ⇒ s = 30
∴ cos
$$\frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}} = \sqrt{\frac{30 \times 6}{320}} = \frac{3}{4}$$

MHT-0	CET Triumph Maths (Hints)	
14.	Let $a = 4 \text{ cm}, b = 5 \text{ cm}, c = 6 \text{ cm}$	
;	$s = \frac{a+b+c}{2} = \frac{4+5+6}{2} = \frac{15}{2}$	
	$A(\Delta ABC) = \sqrt{s(s-a)(s-b)(s-c)}$	
:	$=\sqrt{\frac{15}{2}\left(\frac{15}{2}-4\right)\left(\frac{15}{2}-5\right)\left(\frac{15}{2}-6\right)} = \frac{15}{4}\sqrt{7}$	
15.	$2 \arcsin \frac{A-B+C}{2} = 2 \arcsin \frac{\pi - 2B}{2}$	
	$= 2ac \cos B$	
	$=2ac \frac{c^2+a^2-b^2}{2ca}$	
	[By cosine rule]	
	$= c^2 + a^2 - b^2$	
16.	$s-a=3 \Rightarrow b+c-a=6$ (i)	
	$s-c=2 \Rightarrow a+b-c=4$ (ii)	
	Adding (i) and (ii), we get $b = 5$	
•	Since, $\angle B = 90^{\circ}$ $b^2 = a^2 + a^2 \Rightarrow a^2 + a^2 = 25$ (iii)	
••	Solving, we get $a = 3$, $c = 4$	
17	We know that	
17.	$\frac{a}{b} = \frac{b}{c} = k$	
	$\sin A = \sin B = \sin C = \kappa$	
:	$\Rightarrow \frac{b}{1} = \frac{c}{1} \Rightarrow c - \sqrt{2} \ b = 0 \dots(i)$	
	$2 \sqrt{2}$	
	By projection rule, $a = b \cos C + c \cos B$	
	$\Rightarrow \sqrt{3} + 1 = b + \sqrt{3}$	
	$\Rightarrow \sqrt{3} + 1 - \frac{1}{\sqrt{2}} + \frac{1}{2}c$	
:	$\Rightarrow 2(\sqrt{3}+1) = \sqrt{2}b + \sqrt{3}c$ (ii)	
•	From (1) and (11), we get $2(\sqrt{2}+1) = (\sqrt{2}+1) a \implies a = 2$	
	$2(\sqrt{3}+1) - (\sqrt{3}+1) C \rightarrow C - 2$	
18.	$s = \frac{a+b+c}{2} = \frac{12}{2} = 6$	
;	$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}} = \sqrt{\frac{2 \times 3}{12}} = \sqrt{\frac{1}{2}}$	
	$\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}} = \sqrt{\frac{6 \times 1}{12}} = \sqrt{\frac{1}{2}}$	
<i>.</i>	$\sin \frac{B}{2} + \cos \frac{B}{2} = \frac{2}{\sqrt{2}} = \sqrt{2}$	

19.	$\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\sin\frac{B}{2}} = \sqrt{\frac{ac(s-b)(s-c)(s-b)(s-a)}{(s-a)(s-c)bc \times ab}}$
	$=\frac{s-b}{b}$
	But a, b and c are in A. P. $\Rightarrow 2b = a + c$ $\Rightarrow 2b + b = a + b + c$
	$\Rightarrow 3b = 2s \Rightarrow s = \frac{3b}{2}$
÷	$\frac{s-b}{b} = \frac{\frac{3b}{2}-b}{b} = \frac{1}{2}$
20.	By Napier's analogy, we have
	$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} \Longrightarrow x = \frac{b-c}{b+c}$
21.	$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$
	$=\frac{a-b}{a+b}\tan\left(\frac{A+B}{2}\right)$
÷	$\lim_{n \to \infty} \frac{A - B}{2} \cot \frac{A + B}{2} = \frac{a - b}{a + b}$
26.	$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{1}{2}\right) = 60^{\circ} - 30^{\circ} = 30^{\circ}$
27.	$\sin^{-1}\frac{1}{2} = \tan^{-1}x$
	$\Rightarrow \frac{\pi}{6} = \tan^{-1}x \Rightarrow \tan \frac{\pi}{6} = x$
	$\Rightarrow x = \frac{1}{\sqrt{3}}$
28.	Let $\theta = \sin^{-1}\left(\frac{3}{5}\right)$
	$\sin\left(2\sin^{-1}\left(\frac{3}{5}\right)\right) = \sin 2\theta$
	$= 2\sin\theta\cos\theta$
	$= 2\sin\left(\sin^{-1}\left(\frac{3}{5}\right)\right)\cos\left(\sin^{-1}\left(\frac{3}{5}\right)\right)$
	$= 2 \times \frac{3}{5} \sqrt{1 - \left(\frac{3}{5}\right)^2} \dots [\because \cos(\sin^{-1}x) = \sqrt{1 - x^2}]$
	$= 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}$

29.
$$\sin\left(3\sin^{-1}\left(\frac{2}{5}\right)\right) = \sin 3\theta$$
,
Where $\theta = \sin^{-1}\left(\frac{2}{5}\right)$
 $\dots \left[\theta = \sin^{-1}\left(\frac{2}{5}\right), \sin \theta = \frac{2}{5}\right]$
 $= 3\sin \theta - 4\sin^{3} \theta$
 $= 3\left(\frac{2}{5}\right) - 4\left(\frac{2}{5}\right)^{3}$
 $\dots \left[\theta = \sin^{-1}\left(\frac{2}{5}\right), \sin \theta = \frac{2}{5}\right]$
 $= \frac{6}{5} - \frac{32}{125} = \frac{118}{125}$
30. $\cos^{-1}(\cos 12) - \sin^{-1}(\sin 14) = 12 - 14 = -2$
31. $\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right)$
 $= \tan^{-1}\left(-\tan\frac{\pi}{4}\right)$
 $= -\tan^{-1}\left(\tan\frac{\pi}{4}\right) = -\frac{\pi}{4}$
32. If $x = \sec \theta$, then $\sqrt{x^{2} - 1} = \sqrt{\sec^{2}\theta - 1} = \tan \theta$
 $\therefore \cot^{-1}\frac{1}{\sqrt{x^{2} - 1}} = \cot^{-1}(\cot \theta) = \theta = \sec^{-1}x$
33. $\cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3})$
 $= \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
34. $\cos^{-1}(-1) = \pi - \cos^{-1}1 = \pi - 0 = \pi$
35. $\sin\left(\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right) = \sin\left(\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right)$
 $= \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right) = \sin\frac{\pi}{2} = 1$
37. $\cos^{-1}\left[\cos\frac{5\pi}{3}\right] + \sin^{-1}\left[\cos\frac{5\pi}{3}\right] = \frac{\pi}{2}$
 $\dots \left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$
38. $\cos\left\{\cos^{-1}\left(\frac{-1}{7}\right) + \sin^{-1}\left(\frac{-1}{7}\right)\right\} = \cos\frac{\pi}{2} = 0$

Chapter 03: Trigonometric Functions
39.
$$\cot^{-1} x + \cot^{-1} y = \left(\frac{\pi}{2} - \tan^{-1} x\right) + \left(\frac{\pi}{2} - \tan^{-1} y\right)$$

 $\dots \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}\right]$
 $= \pi - (\tan^{-1} x + \tan^{-1} y)$
 $= \pi - \frac{4\pi}{5} = \frac{\pi}{5}$
40. $\tan^{-1} (\sqrt{3}) = \cot^{-1} (-\sqrt{3})$

40.
$$\tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3})$$

= $\tan^{-1}\sqrt{3} - \left[\pi - \cot^{-1}\sqrt{3}\right]$
= $\tan^{-1}\sqrt{3} + \cot^{-1}\sqrt{3} - \pi$
= $\frac{\pi}{2} - \pi = -\frac{\pi}{2}$

41.
$$\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{\frac{1}{2} + \frac{2}{11}}{1 - \frac{1}{2} \times \frac{2}{11}}$$

= $\tan^{-1} \frac{15}{20} = \tan^{-1} \frac{3}{4}$

42.
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} A$$

 $\Rightarrow \tan^{-1} \left(\frac{x - y}{1 + xy} \right) = \tan^{-1} A$
 $\Rightarrow A = \frac{x - y}{1 + xy}$

43.
$$\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right)$$

= $\sin^{-1}\left(\frac{3}{5}\sqrt{1-\left(\frac{8}{17}\right)^2} + \frac{8}{17}\sqrt{1-\left(\frac{3}{5}\right)^2}\right)$
... $\left[\because \sin^{-1}x + \sin^{-1}y = \sin^{-1}x\sqrt{1-y^2} + y\sqrt{1-x^2}\right]$
= $\sin^{-1}\left(\frac{3}{5} \times \frac{15}{17} + \frac{8}{17} \times \frac{4}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right)$

44.
$$\cos^{-1} \frac{3}{5} - \sin^{-1} \frac{4}{5} = \cos^{-1} x$$

 $\therefore \quad \cos^{-1} \frac{3}{5} - \cos^{-1} \sqrt{1 - \frac{16}{25}} = \cos^{-1} x$
 $\therefore \quad \cos^{-1} \frac{3}{5} - \cos^{-1} \frac{3}{5} = \cos^{-1} x$
 $\therefore \quad \cos^{-1} x = 0 \Rightarrow x = 1$

Critical Thinking 1. $\tan \theta + \frac{1}{\sqrt{3}} = 0 \Rightarrow \tan \theta = -\frac{1}{\sqrt{3}}$ $\Rightarrow \tan \theta = -\tan 30^{\circ}$ $\Rightarrow \tan \theta = \tan (180^{\circ} - 30^{\circ}) \text{ and}$ $\tan \theta = \tan (360^{\circ} - 30^{\circ})$ $\Rightarrow \tan \theta = \tan 150^{\circ} \text{ and } \tan \theta = \tan 330^{\circ}$ $\Rightarrow \theta = 150^{\circ} \text{ and } 330^{\circ}$

- 2. $\cos \theta = 1 2x^2$ $\therefore \quad \cos \theta = 1 - 2 \cos^2 40^\circ \quad \dots [\because \cos 40^\circ = x]$ $= -(2 \cos^2 40^\circ - 1)$ $= -\cos (2 \times 40^\circ) = -\cos 80^\circ$ $\therefore \quad \cos \theta = \cos(180^\circ + 80^\circ) = \cos 260^\circ$ and $\cos \theta = \cos (180^\circ - 80^\circ) = \cos 100^\circ$ $\therefore \quad \theta = 100^\circ \text{ and } 260^\circ$ 3. $\tan \theta = \sqrt{3} = \tan \frac{\pi}{3} \Longrightarrow \theta = n\pi + \frac{\pi}{3}$ For $-\pi < \theta < 0$, Put n = -1, we get $\theta = -\pi + \frac{\pi}{3} = \frac{-2\pi}{3} = \frac{-4\pi}{6}$
- 4. $\cot\theta + \tan\theta = 2 \csc\theta \Rightarrow \frac{1}{\sin\theta\cos\theta} = \frac{2}{\sin\theta}$ $\Rightarrow \cos\theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}$
- 5. $\tan \theta + \tan \left(\frac{\pi}{2} \theta\right) = 2$ $\Rightarrow \tan \theta + \frac{1}{\tan \theta} = 2 \Rightarrow \tan^2 \theta - 2\tan \theta + 1 = 0$ $\Rightarrow \tan \theta = 1 = \tan \frac{\pi}{4} \Rightarrow \theta = n\pi + \frac{\pi}{4}$ 6. $\sin \theta = -\frac{1}{2} = -\sin \left(\frac{\pi}{6}\right) = \sin \left(\pi + \frac{\pi}{6}\right)$
 - $\sin \theta = -\frac{\pi}{2} \sin \left(\frac{\pi}{6}\right) \sin \left(\pi + \frac{\pi}{6}\right)$ $\tan \theta = \frac{1}{\sqrt{3}} = \tan \left(\frac{\pi}{6}\right) = \tan \left(\pi + \frac{\pi}{6}\right)$ $\Rightarrow \theta = \left(\pi + \frac{\pi}{6}\right)$

Hence, general value of θ is $2n\pi + \frac{7\pi}{6}$

- 7. $\cos x \sin x = \frac{1}{\sqrt{2}}$ Dividing both sides by $\sqrt{2}$, we get $\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x = \frac{1}{2}$ $\Rightarrow \cos \left(\frac{\pi}{4} + x\right) = \cos \frac{\pi}{3} \Rightarrow \frac{\pi}{4} + x = 2n\pi \pm \frac{\pi}{3}$ $\Rightarrow x = 2n\pi + \frac{\pi}{3} - \frac{\pi}{4} = 2n\pi + \frac{\pi}{12}$ or $x = 2n\pi - \frac{\pi}{3} - \frac{\pi}{4} = 2n\pi - \frac{7\pi}{12}$ 8. $1 + \cot \theta = \csc \theta$ $\Rightarrow \frac{1}{\sin \theta} = 1 + \frac{\cos \theta}{\sin \theta} \Rightarrow \sin \theta + \cos \theta = 1$ Dividing both sides by $\sqrt{2}$, we get $\sin \theta \sin \frac{\pi}{4} + \cos \theta \cos \frac{\pi}{4} = \cos \frac{\pi}{4}$ $\Rightarrow \cos \left(\theta - \frac{\pi}{4}\right) = \cos \frac{\pi}{4} \Rightarrow \theta - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$ $\Rightarrow \theta = 2n\pi$ or $\theta = 2n\pi + \frac{\pi}{2}$
- 9. $\sin x \cos x = \sqrt{2}$ $\Rightarrow \sin x. \frac{1}{\sqrt{2}} \cos x. \frac{1}{\sqrt{2}} = 1$ $\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = -1 = \cos \pi$ $\Rightarrow x + \frac{\pi}{4} = 2n\pi \pm \pi$ $\Rightarrow x = 2n\pi + \frac{3\pi}{4} \text{ or } 2n\pi \frac{5\pi}{4}$
- 10. $\cot \theta + \cot \left(\frac{\pi}{4} + \theta\right) = 2$

$$\therefore \qquad \frac{\cos\theta}{\sin\theta} + \frac{\cos\left(\frac{\pi}{4} + \theta\right)}{\sin\left(\frac{\pi}{4} + \theta\right)} = 2$$

 $\therefore \quad \sin\left(\frac{\pi}{4} + 2\theta\right) = 2\sin\theta\sin\left(\frac{\pi}{4} + \theta\right)$ $= \cos\left(\theta - \frac{\pi}{4} - \theta\right) - \cos\left(\theta + \frac{\pi}{4} + \theta\right)$

$$\therefore \quad \sin\left(\frac{\pi}{4} + 2\theta\right) = \cos\left(\frac{-\pi}{4}\right) - \cos\left(2\theta + \frac{\pi}{4}\right)$$

$$\Rightarrow \sin\left(\frac{\pi}{4} + 2\theta\right) + \cos\left(\frac{\pi}{4} + 2\theta\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \left(\frac{1}{\sqrt{2}}\cos 2\theta + \frac{1}{\sqrt{2}}\sin 2\theta\right)$$

$$+ \left(\frac{1}{\sqrt{2}}\cos 2\theta - \frac{1}{\sqrt{2}}\sin 2\theta\right) = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{2}{\sqrt{2}}\cos 2\theta = \frac{1}{\sqrt{2}} \Rightarrow \cos 2\theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$$

$$\Rightarrow 2\theta = 2n\pi \pm \frac{\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$$
11. $\sin^2 x - 2\cos x + \frac{1}{4} = 0$

$$\Rightarrow 1 - \cos^2 x - 2\cos x + \frac{1}{4} = 0$$
Putting $\cos x = t$, we get
 $1 - t^2 - 2t + \frac{1}{4} = 0 \Rightarrow 4t^2 + 8t - 5 = 0$

$$\therefore \quad t = \frac{1}{2} \text{ or } t = -\frac{5}{2}$$
Since, $\cos x \neq \frac{-5}{2}$

$$\therefore \quad \cos x = \frac{1}{2} = \cos \frac{\pi}{3} \Rightarrow x = 2n\pi \pm \frac{\pi}{3}$$
12. We have, $\sec \theta + \tan \theta = \sqrt{3} \dots (i)$

$$\Rightarrow \sec \theta - \tan \theta = \frac{1}{\sqrt{3}} \dots (ii)$$

$$\lim_{\dots [\because} \sec^2 \theta - \tan^2 \theta = 1]$$
By solving (i) and (ii), we get
 $\tan \theta = \frac{1}{2} \left(\sqrt{3} - \frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}}$

$$\therefore \quad \tan \theta = \tan\left(\frac{\pi}{6}\right)$$

$$\Rightarrow \theta = n\pi + \frac{\pi}{6}$$

$$\therefore \quad \theta = \frac{\pi}{6} \text{ and } \frac{7\pi}{6} \text{ in } [0, 2\pi]$$
Hence, there are two solutions.

Chapter 03: Trigonometric Functions 13. $r \sin \theta = 3$, $r = 4 (1 + \sin \theta)$ Eliminating r, we get $\frac{3}{\sin \theta} = 4 + 4 \sin \theta$ $\therefore \quad \sin\theta = \frac{1}{2}, -\frac{3}{2}$ $\therefore \quad \sin\theta = \frac{1}{2} \qquad \qquad \dots \left[\because \sin\theta \neq \frac{-3}{2} \right]$ $\Rightarrow \theta = \frac{\pi}{6}, \pi - \frac{\pi}{6} = \frac{5\pi}{6} \text{ in } [0, 2\pi]$ $14. \quad 2\sin^2\theta - 3\sin\theta - 2 = 0$ $\therefore \qquad \sin \theta = \frac{3 \pm \sqrt{9 + 16}}{4} = \frac{3 \pm 5}{4} = 2, -\frac{1}{2}$ $\therefore \quad \sin \theta = -\frac{1}{2} \qquad \qquad \dots [\because |\sin \theta| \le 1]$ $\therefore \quad \sin \theta = \sin \left(\frac{-\pi}{6}\right)$ $\therefore \qquad \theta = n\pi + (-1)^n \left(\frac{-\pi}{6}\right) = n\pi + (-1)^{n+1} \left(\frac{\pi}{6}\right)$ 15. $2\cos^2 x + 3\sin x - 3 = 0$ $\Rightarrow 2 - 2\sin^2 x + 3\sin x - 3 = 0$ $\Rightarrow (2 \sin x - 1) (\sin x - 1) = 0$ $\Rightarrow \sin x = \frac{1}{2} \text{ or } \sin x = 1$ $\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2}$ i.e., 30°, 150°, 90°. 16. $4\sin^2\theta + 2(\sqrt{3}+1)\cos\theta = 4 + \sqrt{3}$ $\Rightarrow 4 - 4\cos^2 \theta + 2(\sqrt{3} + 1)\cos\theta = 4 + \sqrt{3}$ $\Rightarrow 4\cos^2\theta - 2(\sqrt{3}+1)\cos\theta + \sqrt{3} = 0$ $\Rightarrow \cos \theta = \frac{2(\sqrt{3}+1) \pm \sqrt{4(\sqrt{3}+1)^2 - 16\sqrt{3}}}{2}$ $\Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \text{ or } \frac{1}{2}$ $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{6} \text{ or } 2n\pi \pm \frac{\pi}{3}$ 17. $\sin (A + B) = 1$ and $\cos (A - B) = \frac{\sqrt{3}}{2}$ \Rightarrow A + B = $\frac{\pi}{2}$ and A - B = $\frac{\pi}{6}$ $\Rightarrow A = \frac{\pi}{3}, B = \frac{\pi}{6}$

MHT-CET Triumph Maths (Hints) $\cos 7\theta = \cos \theta - \sin 4\theta$ 18. $\Rightarrow \sin 4\theta = \cos \theta - \cos 7\theta$ $\Rightarrow \sin 4\theta = 2 \sin (4\theta) \sin (3\theta)$ $\Rightarrow \sin 4\theta = 0 \Rightarrow 4\theta = n\pi$ or $\sin 3\theta = \frac{1}{2} = \sin \left(\frac{\pi}{6}\right)$ $\Rightarrow 3\theta = n\pi + (-1)^n \frac{\pi}{6}$ $\theta = \frac{n\pi}{4}, \frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$ *.*.. 19. $\frac{1-\tan^2\theta}{\sec^2\theta} = \frac{1}{2} \Rightarrow \cos^2\theta - \sin^2\theta = \frac{1}{2}$ $\Rightarrow \cos 2\theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$ $\Rightarrow 2\theta = 2n\pi \pm \frac{\pi}{2} \Rightarrow \theta = n\pi \pm \frac{\pi}{6}$ $\sqrt{3}$ tan 20 + $\sqrt{3}$ tan 30 + tan 20 tan 30 = 1 20. $\Rightarrow \frac{\tan 2\theta + \tan 3\theta}{1 - \tan 2\theta \tan 3\theta} = \frac{1}{\sqrt{3}} \Rightarrow \tan 5\theta = \tan \frac{\pi}{6}$ $\Rightarrow 5\theta = n\pi + \frac{\pi}{6} \Rightarrow \theta = \left(n + \frac{1}{6}\right)\frac{\pi}{5}$ 21. $\tan \theta + \tan 2\theta = \tan 3\theta (\tan \theta \tan 2\theta - 1)$ $\Rightarrow \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta} = -\tan 3\theta$ $\Rightarrow 2 \tan 3\theta = 0 \Rightarrow 3\theta = n\pi$ $\Rightarrow \theta = \frac{n\pi}{2}$ $2\tan^2 \theta = \sec^2 \theta \Longrightarrow 2\tan^2 \theta = \tan^2 \theta + 1$ 22. $\Rightarrow \tan^2 \theta = 1 = \tan^2 \left(\frac{\pi}{4}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{4}$ 23. $\tan \theta \tan 2\theta = 1$ $\tan \theta \, \frac{2 \tan \theta}{1 - \tan^2 \theta} = 1$ *.*.. $2 \tan^2 \theta = 1 - \tan^2 \theta$ *.*.. $3\tan^2 \theta = 1$ *.*.. $\tan^2 \theta = \frac{1}{3} = \tan^2 \left(\frac{\pi}{6}\right)$ *.*.. $\theta = n\pi \pm \frac{\pi}{c}$ *.*.. $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha) \sin (x - \alpha)$ 24. $\sin 3\alpha = 4\sin \alpha (\sin^2 x \cos^2 \alpha - \cos^2 x \sin^2 \alpha)$ *.*..

 $3\sin\alpha - 4\sin^3\alpha = 4\sin\alpha (\sin^2 x - \sin^2 \alpha)$

\therefore $\sin^2 x = \left(\frac{3}{4}\right) \Rightarrow \sin^2 x = \sin^2 \frac{\pi}{3}$ $\therefore x = n\pi \pm \frac{\pi}{3}$ $(\cos \theta + \cos 7\theta) + (\cos 3\theta + \cos 5\theta) = 0$ 25. $\Rightarrow 2 \cos 4\theta \cos 3\theta + 2 \cos 4\theta \cos \theta = 0$ $\Rightarrow 2 \cos 4\theta (\cos 3\theta + \cos \theta) = 0$ $\Rightarrow 4 \cos 4\theta \cos 2\theta \cos \theta = 0$ $\Rightarrow 4 \frac{\sin 2^3 \theta}{2^3 \sin \theta} = 0$ \therefore cosAcos 2Acos 2²Acos 2³A....cos 2ⁿ⁻¹A $=\frac{\sin 2^{n} A}{2^{n} \sin A}$| $\Rightarrow \sin 8\theta = 0$ $\Rightarrow 8\theta = n\pi$ $\Rightarrow \theta = \frac{n\pi}{2}$ Given, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ 26.(i) By sine rule, $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$(ii) From (i) and (ii), we get $\frac{\cos A}{=} \frac{\sin A}{-}$ *.*.. cos B sin B $sin (A - B) = 0 \implies A = B$ *.*.. Similarly, we get, B = C*.*.. A = B = CThus, Δ ABC is an equilateral triangle. 27. We know that, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$ $\Rightarrow \frac{2}{\underline{2}} = \frac{3}{\sin B} = \frac{c}{\sin C} = k$ $\Rightarrow k = 3$ $\frac{3}{\sin B} = 3$ *.*.. $\Rightarrow \sin B = 1$ С В 2 \Rightarrow B = 90° Hence, the triangle is a right angled triangle. From the figure, $\cos C = \frac{BC}{AC} = \frac{2}{3}$

224

...

Chapter 03: Trigonometric Functions

28. Since the angles are in A.P., therefore $B = 60^{\circ}$ By sine rule,

$$\frac{b}{c} = \frac{\sin B}{\sin C} \Rightarrow \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3}}{2\sin C} \Rightarrow C = 45^{\circ}$$
$$A = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$$

- 29. $B = 60^{\circ}, C = 75^{\circ}$ $\Rightarrow A = 180^{\circ} 60^{\circ} 75^{\circ} = 45^{\circ}$ By sine rule, $\frac{b}{\sin B} = \frac{a}{\sin A} \Rightarrow \frac{b}{\sin 60^{\circ}} = \frac{2}{\sin 45^{\circ}} \Rightarrow b = \sqrt{6}$
- 30. Let the angles of the triangle be 2x, 3x and 7x.
- $\therefore \qquad 2x + 3x + 7x = 180^\circ \Longrightarrow 12x = 180^\circ \Longrightarrow x = 15^\circ$
- \therefore the angles are 30°, 45° and 105°

...

 \therefore a: b: c = sin 30° : sin 45° : sin 105°

$$= \frac{1}{2} : \frac{1}{\sqrt{2}} : \frac{\sqrt{3}+1}{2\sqrt{2}}$$
$$= \sqrt{2} : 2 : (\sqrt{3}+1)$$

31.
$$\frac{b-c}{a} = \frac{\sin B - \sin C}{\sin A}$$
$$= \frac{2\sin \frac{B-C}{2} \cos \frac{B+C}{2}}{2\sin \frac{A}{2} \cos \frac{A}{2}}$$
$$= \frac{\sin \left(\frac{B-C}{2}\right) \cos \left(\frac{B+C}{2}\right)}{\cos \left(\frac{B+C}{2}\right) \cos \frac{A}{2}}$$
$$= \frac{\sin \frac{B-C}{2}}{\cos \frac{A}{2}}$$
$$\Rightarrow (b-c) \cos \frac{A}{2} = a \sin \frac{B-C}{2}$$

32.
$$\frac{1+\cos C \cos (A-B)}{1+\cos (A-C) \cos B} = \frac{1-\cos (A+B) \cos (A-B)}{1-\cos (A-C) \cos (A+C)}$$
$$= \frac{1-\frac{1}{2} (\cos 2A + \cos 2B)}{1-\frac{1}{2} (\cos 2A + \cos 2C)}$$
$$= \frac{1-\frac{1}{2} (1-2\sin^2 A + 1-2\sin^2 B)}{1-\frac{1}{2} (1-2\sin^2 A + 1-2\sin^2 C)}$$
$$= \frac{\sin^2 A + \sin^2 B}{\sin^2 A + \sin^2 C} = \frac{a^2 + b^2}{a^2 + c^2}$$

33.
$$\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}} = \frac{\sin \frac{B+C}{2} \cos \frac{B-C}{2}}{\sin \frac{B+C}{2} \sin \frac{A}{2}}$$
$$= \frac{2\sin \frac{B+C}{2} \cos \frac{B-C}{2}}{2\sin(\frac{\pi}{2}-\frac{A}{2})\sin \frac{A}{2}}$$
$$= \frac{\sin B+\sin C}{\sin A} = \frac{b+c}{a}$$
34.
$$\cos\theta = \frac{36+100-(14)^2}{2.6.10}$$
$$\Rightarrow \theta = 120^\circ \Rightarrow Obtuse angled triangle
35. Since A, B and C are in A.P., therefore
$$B = 60^\circ \dots \left[\begin{array}{c} \because A+B+C = 180^\circ \\ \Rightarrow A+C = 2B \Rightarrow B = 60^\circ \end{array} \right]$$
Since sides a, b and c are in G.P., therefore
$$b^2 = ac$$
$$\cos B = \frac{a^2+c^2-b^2}{2ac}$$
$$\Rightarrow \frac{1}{2} = \frac{a^2+c^2-b^2}{2b^2}, \qquad \dots [\because b^2 = ac]$$
$$\Rightarrow b^2 = a^2+c^2 - b^2$$
$$\Rightarrow a^2, b^2, c^2 \text{ are in A.P.}$$
36. A, B, C are in A. P. then angle B = 60°,
$$\dots \left[\begin{array}{c} \because A+B+C = 180^\circ \\ \Rightarrow A+C = 2B \Rightarrow B = 60^\circ \end{array} \right]$$
$$\therefore \cos B = \frac{a^2+c^2-b^2}{2ac}, \qquad \dots [\because b^2 = ac]$$
$$\Rightarrow b^2 = a^2+c^2-b^2$$
$$\Rightarrow a^2, b^2, c^2 \text{ are in A.P.}$$
36. A, B, C are in A. P. then angle B = 60°,
$$\dots \left[\begin{array}{c} \because A+B+C = 180^\circ \\ \Rightarrow A+C = 2B \Rightarrow B = 60^\circ \end{array} \right]$$
$$\therefore \cos B = \frac{a^2+c^2-b^2}{2ac}, \qquad \dots [\because b^2 = ac]$$
$$\Rightarrow b^2 = a^2+c^2-b^2$$
$$\Rightarrow a^2+c^2-b^2 = ac$$
$$\Rightarrow b^2 = a^2+c^2-b^2$$$$

38. We have,
$$a : b : c = 1 : \sqrt{3} : 2$$

i.e. $a = \lambda$, $b = \sqrt{3} \lambda$, $c = 2 \lambda$
 $\cos A = \frac{3\lambda^2 + 4\lambda^2 - \lambda^2}{2(\sqrt{3}\lambda)(2\lambda)} = \frac{6\lambda^2}{4\sqrt{3}\lambda^2} = \frac{\sqrt{3}}{2}$
 $\Rightarrow A = 30^\circ$

Similarly,
$$\cos B = \frac{1}{2} \Rightarrow B = 60^{\circ}$$
,
 $\cos C = 0 \Rightarrow C = 90^{\circ}$.
Hence, $A : B : C = 1 : 2 : 3$
39. $(a^{2} + b^{2} - 2ab) \cos^{2} \frac{C}{2} + (a^{2} + b^{2} + 2ab) \sin^{2} \frac{C}{2}$
 $= (a^{2} + b^{2}) \left(\cos^{2} \frac{C}{2} + \sin^{2} \frac{C}{2} \right)$
 $-2ab \left(\cos^{2} \frac{C}{2} - \sin^{2} \frac{C}{2} \right)$
 $= a^{2} + b^{2} - 2ab \cos C$
 $= a^{2} + b^{2} - (a^{2} + b^{2} - c^{2}) = c^{2}$
40. $\cos A = \frac{\sin B}{2 \sin C} \Rightarrow \frac{b^{2} + c^{2} - a^{2}}{2bc} = \frac{b}{2c}$
 $\Rightarrow b^{2} + c^{2} - a^{2} - b^{2} = 0 \Rightarrow c^{2} = a^{2}$
 $\Rightarrow c = a \Rightarrow \text{Triangle is isosceles}$
41. $a = \sin \theta, b = \cos \theta$ and $c = \sqrt{1 + \sin \theta \cos \theta}$
Since $\sqrt{1 + \sin \theta \cos \theta}$ is greater than $\sin \theta$ and $\cos \theta$.
 \therefore C is the greatest angle,
 \therefore cos $C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
 $= \frac{\sin^{2} \theta + \cos^{2} \theta - (1 + \sin \theta \cos \theta)}{2 \sin \theta \cos \theta}$
 $= -\frac{1}{2} = \cos 120^{\circ}$
 \therefore C = 120°
42. $1 - \tan \frac{A}{2} \tan \frac{B}{2} = \frac{\cos \frac{A}{2} \cos \frac{B}{2} - \sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}$
 $= \frac{\cos \left(\frac{A}{2} + \frac{B}{2}\right)}{\cos \frac{A}{2} \cos \frac{B}{2}}$
 $= \frac{\sin \frac{C}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}}$
 $= \frac{\left[\frac{(s - a)(s - b)bc.ac}{abs(s - a)s(s - b)}\right]^{1/2}}{cos \frac{A}{2} \cos \frac{B}{2}}$

43.
$$\frac{s(s-a)}{bc} - \frac{(s-b)(s-c)}{bc}$$

$$= \cos^{2} \frac{A}{2} - \sin^{2} \frac{A}{2} = \cos \frac{2A}{2} = \cos A$$
44.
$$a \cos^{2} \frac{C}{2} + c \cos^{2} \frac{A}{2} = \frac{3b}{2}$$

$$\therefore a \frac{s(s-c)}{ab} + c \frac{s(s-a)}{bc} = \frac{3b}{2}$$

$$\therefore 2s(s - c + s - a) = 3b^{2}$$

$$\therefore 2s(b) = 3b^{2} \Rightarrow 2s = 3b \Rightarrow a + b + c = 3b$$

$$\therefore a + c = 2b \Rightarrow a, b, c are in A.P.$$
45.
$$\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} = 1$$

$$\Rightarrow \tan \frac{C}{2} = \tan 45^{o} \Rightarrow \frac{C}{2} = 45^{o}$$

$$\Rightarrow C = 90^{o}$$
46.
$$\frac{\tan \frac{A}{2} - \tan \frac{B}{2}}{\tan \frac{A}{2} + \tan \frac{B}{2}} = \frac{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} - \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}}{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$$

$$= \frac{(s-b)\sqrt{s(s-c)} - (s-a)\sqrt{s(s-c)}}{(s-b)\sqrt{s(s-c)} + (s-a)\sqrt{s(s-c)}}$$

$$= \frac{\sqrt{s(s-c)}(s-b+s-a)}{\sqrt{s(s-c)}(s-b+s-a)} = \frac{a-b}{c}$$
47.
$$\frac{1}{\sin^{2} \frac{A}{2}}, \frac{1}{\sin^{2} \frac{B}{2}}, \frac{1}{\sin^{2} \frac{C}{2}} = \frac{1}{\sin^{2} \frac{B}{2}} - \frac{1}{\sin^{2} \frac{A}{2}}$$

$$\Rightarrow \frac{ab}{(s-a)(s-b)} - \frac{ac}{(s-a)(s-c)}$$

$$= \frac{ac}{(s-a)(s-c)} - \frac{bc}{(s-b)(s-c)}$$

$$\Rightarrow (\frac{a}{s-a}) (\frac{b(s-c)-c(s-b)}{(s-b)(s-c)})$$

$$= (\frac{(s-b)(s-c)}{(s-b)(s-c)})$$

$$\Rightarrow abs - abc - acs + abc = acs - abc - bcs + abc}$$

 $\Rightarrow \frac{1}{c} + \frac{1}{a} = \frac{2}{b} \Rightarrow a,b,c \text{ are in H. P.}$

Chapter 03: Trigonometric Functions

- $\therefore \quad \text{the sides are } (2x), \left(\sqrt{6}x\right), \left(\sqrt{3}+1\right)x$
- $\therefore \quad (\sqrt{3}+1)x$ is the largest side.

If θ is the angle opposite to side $(\sqrt{3}+1)x$, then

$$\cos \theta = \frac{(2x)^2 + (\sqrt{6}x)^2 - [(\sqrt{3}+1)x]^2}{2 \times (2x) \times (\sqrt{6}x)}$$
$$= \frac{3 - \sqrt{3}}{2\sqrt{6}}$$
$$\therefore \quad \cos \theta = \frac{\sqrt{3} - 1}{2\sqrt{2}} \Longrightarrow \theta = 75^\circ$$

50. We have,

$$\tan\left(\frac{A-B}{2}\right) = \sqrt{\frac{1-\cos(A-B)}{1+\cos(A-B)}} = \sqrt{\frac{1-\left(\frac{31}{32}\right)}{1+\left(\frac{31}{32}\right)}}$$
$$\Rightarrow \frac{a-b}{a+b}\cot\frac{C}{2} = \frac{1}{\sqrt{63}}$$
$$\Rightarrow \frac{1}{9}\cot\frac{C}{2} = \frac{1}{\sqrt{63}}$$
$$\Rightarrow \tan\frac{C}{2} = \frac{\sqrt{7}}{3}$$
Now, $\cos C = \frac{1-\tan^2\left(\frac{C}{2}\right)}{1+\tan^2\left(\frac{C}{2}\right)}$
$$\Rightarrow \cos C = \frac{1-\left(\frac{7}{9}\right)}{1+\left(\frac{7}{9}\right)} = \frac{1}{8}$$

 $\therefore \quad c^2 = a^2 + b^2 - 2ab \cos C$ $\Rightarrow c^2 = 25 + 16 - 40 \times \frac{1}{8} = 36 \Rightarrow c = 6$

- 51. Since $\sin^{-1} x$ cannot be greater than $\frac{\pi}{2}$.
- $\therefore \qquad \sin^{-1} x = \sin^{-1} y = \sin^{-1} z = \frac{\pi}{2}$ Therefore, x = y = z = 1Putting these values in the expression, we get $1 + 1 + 1 - \frac{9}{1 + 1 + 1} = 0$

52.
$$A = \tan^{-1}\left(\frac{2}{3}\right) \Rightarrow \tan A = \frac{2}{3}$$

 $B = \csc^{-1}\left(\frac{5}{3}\right) \Rightarrow \tan B = \frac{3}{4}$
 $\cot (A + B) = \frac{1 - \tan A \tan B}{4}$

$$\frac{\cot(A+B)}{\tan A + \tan B} = \frac{1-2}{3} \frac{3}{6}$$

$$= \frac{\frac{3}{2} \cdot \frac{3}{4}}{\frac{2}{3} + \frac{3}{4}} = \frac{12}{\frac{17}{12}} = \frac{6}{17}$$

53. $\sin^2\left(2\tan^{-1}\sqrt{\frac{1+x}{1-x}}\right)$

$$= \sin^{2} (2\theta), \text{ where } \theta = \tan^{-1} \sqrt{\frac{1+x}{1-x}}$$
$$= \left(\frac{2\tan\theta}{1+\tan^{2}\theta}\right)^{2}, \text{ where } \tan\theta = \sqrt{\frac{1+x}{1-x}}$$
$$= \left(\frac{2\sqrt{1+x}}{\sqrt{1-x}}\right)^{2} - \frac{4(1+x)(1-x)}{1-x} = 1$$

$$= \left\{ \frac{\overline{\sqrt{1-x}}}{1 + \left(\frac{1+x}{1-x}\right)} \right\} = \frac{4(1+x)(1-x)}{(1-x+1+x)^2} = 1 - x^2$$

54. The principal value of
$$\sin^{-1}\left[\sin\left(\frac{2\pi}{3}\right)\right]$$
$$= \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left[\sin\left(\frac{\pi}{3}\right)\right] = \frac{\pi}{3}$$

55. Let
$$\sin^{-1} \frac{5}{13} = x \Rightarrow \sin x = \frac{5}{13}$$

 $\Rightarrow \cos x = \sqrt{1 - \frac{25}{169}} = \frac{12}{13}$
 $\Rightarrow \cos \left(\sin^{-1} \frac{5}{13}\right) = \cos \left(\cos^{-1} \frac{12}{13}\right) = \frac{12}{13}$

Solution 1.5 Matrix (Hints)
56.
$$\theta = \sin^{-1}[\sin(-600^{\circ})]$$

 $\Rightarrow \theta = \sin^{-1}[-\sin(180^{\circ} + 60^{\circ})]$
 $\Rightarrow \theta = \sin^{-1}(\sin60^{\circ}) = \sin^{-1}\left[\sin\left(\frac{\pi}{3}\right)\right] = \frac{\pi}{3}$
57. $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right) = \tan^{-1}\left(\frac{1 - \tan x}{1 + \tan x}\right)$
 $= \tan^{-1}\left(\tan\left(\frac{\pi}{4} - x\right)\right)$
 $= \frac{\pi}{4} - x$
58. $\tan^{-1}\left[\frac{a\cos x - b\sin x}{b\cos x}\right] = \tan^{-1}\left[\frac{a}{b} - \tan x\right]$
 $= \tan^{-1}\left[\frac{a}{b} - \tan x\right]$
 $= \tan^{-1}\left[\frac{a}{b} - \tan^{-1}(\tan x)\right]$
 $= \tan^{-1}\left[\frac{2\sin(\frac{\pi}{4} - \frac{x}{2})\cos(\frac{\pi}{4} - \frac{x}{2})}{1 + \cos(\frac{\pi}{2} - x)}\right]$
 $= \tan^{-1}\left[\frac{2\sin(\frac{\pi}{4} - \frac{x}{2})\cos(\frac{\pi}{4} - \frac{x}{2})}{2\cos^{2}(\frac{\pi}{4} - \frac{x}{2})}\right]$
 $= \tan^{-1}\left[\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right] = \frac{\pi}{4} - \frac{x}{2}$
60. $\tan^{-1}\left\{\frac{3a^{2}x - x^{3}}{a(a^{2} - 3x^{2})}\right\} = \tan^{-1}\left\{\frac{3a^{2}x - x^{3}}{a^{3} - 3ax^{2}}\right\}$
 $= \tan^{-1}\left[\frac{3\left(\frac{x}{a}\right) - \left(\frac{x}{a}\right)^{3}}{1 - 3\left(\frac{x}{a}\right)^{2}}\right]$
Put $\frac{x}{a} = \tan \theta$
 \therefore The given expression becomes
 $\tan^{-1}\left(\frac{3\tan \theta - \tan^{3} \theta}{1 - 3\tan^{2} \theta}\right) = \tan^{-1}(\tan 3\theta)$
 $= 3\theta = 3\tan^{-1}\frac{x}{a}$

61.
$$3\sin^{-1} \frac{2x}{1+x^2} - 4\cos^{-1} \frac{1-x^2}{1+x^2} + 2\tan^{-1} \frac{2x}{1-x^2} = \frac{\pi}{3}$$
Putting $x = \tan \theta$, we get
$$3\sin^{-1} \left(\frac{2\tan \theta}{1+\tan^2 \theta}\right) - 4\cos^{-1} \left(\frac{1-\tan^2 \theta}{1+\tan^2 \theta}\right) + 2\tan^{-1} \left(\frac{2\tan \theta}{1-\tan^2 \theta}\right) = \frac{\pi}{3}$$

$$\Rightarrow 3\sin^{-1} (\sin 2\theta) - 4\cos^{-1} (\cos 2\theta) + 2\tan^{-1} (\tan 2\theta) = \frac{\pi}{3}$$

$$\Rightarrow 3(2\theta) - 4(2\theta) + 2(2\theta) = \frac{\pi}{3}$$

$$\Rightarrow 6\theta - 8\theta + 4\theta = \frac{\pi}{3}$$

$$\Rightarrow \theta = \frac{\pi}{6} \Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$
62.
$$\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x}\right)$$

$$= \tan^{-1} \left[\frac{\sqrt{1+\tan^2 \theta}-1}{1}\right]$$
(Putting $x = \tan \theta$)
$$= \tan^{-1} \left[\frac{\sqrt{1+\tan^2 \theta}-1}{1}\right]$$
(Putting $x = \tan \theta$)
$$= \tan^{-1} \left[\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}\right]$$

$$= \tan^{-1} \left[\frac{2\sin^2 \frac{\theta}{2}}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}\right]$$

$$= \tan^{-1} \left(\tan \frac{\theta}{2}\right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$$
63. Let $x = \sin \theta$ and $\sqrt{x} = \sin \phi$
Hence
$$\therefore \sin^{-1} (x \sqrt{1-x} - \sqrt{x} \sqrt{1-x^2})$$

$$= \sin^{-1} (\sin \theta \sqrt{1-\sin^2 \theta} - \sin \phi \sqrt{1-\sin^2 \theta})$$

$$= \sin^{-1} (\sin \theta \cos \phi - \sin \phi \cos \theta)$$

= $\sin^{-1} \sin (\theta - \phi)$
= $\theta - \phi = \sin^{-1} (x) - \sin^{-1} (\sqrt{x})$

	chapter 05. Higohometric runction
70.	$\cos\left[\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}\right] = \cos\left[\tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \times \frac{1}{2}}\right)\right]$ $= \cos\left\{\tan^{-1}(1)\right\}$ $= \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
71.	Let $\alpha = \cos^{-1}\left(\frac{4}{5}\right)$
÷	$\cos \alpha = \left(\frac{4}{5}\right) \Rightarrow \tan \alpha = \left(\frac{3}{4}\right)$
	$\alpha = \tan^{-1}\left(\frac{3}{4}\right)$
<i>.</i>	$\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5}$
	$= \tan^{-1}\left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}}\right) = \tan^{-1}\left(\frac{27}{11}\right)$
72.	$\tan^{-1} \frac{x-1}{x+2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$
÷	$\tan^{-1} \left \frac{\frac{x-1}{x+2} + \frac{x+1}{x+2}}{1 - \left(\frac{x-1}{x+2}\right) \left(\frac{x+1}{x+2}\right)} \right = \frac{\pi}{4}$
<i>.</i>	$\left[\frac{2x(x+2)}{x^2+4+4x-x^2+1}\right] = \tan \frac{\pi}{4}$
	$\frac{2x(x+2)}{4x+5} = 1$
÷	$2x^2 + 4x = 4x + 5 \Longrightarrow x = \pm \sqrt{\frac{5}{2}}$
73.	$\tan^{-1}\left[\frac{1}{\sqrt{\cos\alpha}}\right] - \tan^{-1}\left[\sqrt{\cos\alpha}\right] = x$
	$\Rightarrow \tan^{-1} \left[\frac{\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}}{1 + \frac{\sqrt{\cos \alpha}}{\sqrt{\cos \alpha}}} \right] = x$
	$\Rightarrow \tan x = \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}}$
	$\sin x = \frac{1 - \cos \alpha}{1 + \cos \alpha} = \frac{2 \sin^2 \frac{\alpha}{2}}{2 \cos^2 \frac{\alpha}{2}} = \tan^2 \left(\frac{\alpha}{2}\right)$

MHT-CET Triumph Maths (Hints) 74. $\tan^{-1} \frac{a+x}{a} + \tan^{-1} \frac{a-x}{a} = \frac{\pi}{6}$ $\therefore \quad \tan^{-1} \left(\frac{\frac{a+x}{a} + \frac{a-x}{a}}{1 - \frac{a+x}{a} \cdot \frac{a-x}{a}} \right) = \frac{\pi}{6}$ $\therefore \quad \frac{2a^2}{x^2} = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \Rightarrow x^2 = 2\sqrt{3} a^2$ 75. $\tan^{-1} \left(\frac{a}{b+c} \right) + \tan^{-1} \left(\frac{b}{c+a} \right)$ $= \tan^{-1} \left(\frac{ac+bc+a^2+b^2}{ac+bc+c^2} \right)$ $\dots \left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right) \right]$ $= \tan^{-1} (1) \qquad \dots \left[\because c^2 = a^2 + b^2 \right]$ $= \frac{\pi}{4}$

76.
$$\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19}$$

$$= \tan^{-1} \left[\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \times \frac{3}{5}} \right] - \tan^{-1} \frac{8}{19}$$

$$= \tan^{-1} \frac{27}{11} - \tan^{-1} \frac{8}{19} = \tan^{-1} \left[\frac{\frac{27}{11} - \frac{8}{19}}{1 + \frac{27}{11} \times \frac{8}{19}} \right]$$

$$= \tan^{-1} \left(\frac{425}{425} \right) = \tan^{-1} (1) = \frac{\pi}{4}$$
77. $\tan^{-1} \left(\frac{xy}{zr} \right) + \tan^{-1} \left(\frac{yz}{xr} \right) + \tan^{-1} \left(\frac{xz}{yr} \right)$

$$= \tan^{-1} \left[\frac{\frac{xy}{zr} + \frac{yz}{xr} + \frac{xz}{yr} - \frac{xyz}{r^3}}{1 - \left(\frac{x^2 + y^2 + z^2}{r^2} \right)} \right] = \tan^{-1} (\infty) = \frac{\pi}{2}$$
78. $\tan^{-1} \left(\frac{c_1 x - y}{c_1 y + x} \right) + \tan^{-1} \left(\frac{c_2 - c_1}{1 + c_2 c_1} \right)$

$$+ \tan^{-1} \left(\frac{c_3 - c_2}{1 + c_3 c_2} \right) + \dots + \tan^{-1} \frac{1}{c_n}$$

$$= \tan^{-1} \left(\frac{\frac{x}{y} - \frac{1}{c_{1}}}{1 + \frac{x}{y} \cdot \frac{1}{c_{1}}} \right) + \tan^{-1} \left(\frac{1}{c_{1}} - \frac{1}{c_{2}}}{1 + \frac{1}{c_{1}c_{2}}} \right) \\ + \tan^{-1} \left(\frac{1}{c_{2}} - \frac{1}{c_{3}}}{1 + \frac{1}{c_{2}c_{3}}} \right) + \dots + \tan^{-1} \frac{1}{c_{n}} \\ = \tan^{-1} \left(\frac{x}{y} \right) - \tan^{-1} \left(\frac{1}{c_{1}} \right) + \tan^{-1} \left(\frac{1}{c_{1}} \right) - \tan^{-1} \left(\frac{1}{c_{2}} \right) \\ + \tan^{-1} \left(\frac{1}{c_{2}} \right) - \tan^{-1} \left(\frac{1}{c_{3}} \right) + \dots + \tan^{-1} \left(\frac{1}{c_{n-1}} \right) \\ - \tan^{-1} \left(\frac{1}{c_{n}} \right) + \tan^{-1} \left(\frac{1}{c_{n-1}} \right) \\ = \tan^{-1} \left(\frac{x}{y} \right) \\ 79. \quad \tan^{-1} \left(\frac{d}{1 + a_{1}a_{2}} \right) + \tan^{-1} \left(\frac{d}{1 + a_{2}a_{3}} \right) \\ + \dots + \tan^{-1} \left(\frac{d}{1 + a_{n-1}a_{n}} \right) \\ = \tan^{-1} \left(\frac{a_{2} - a_{1}}{1 + a_{1}a_{2}} \right) + \tan^{-1} \left(\frac{a_{3} - a_{2}}{1 + a_{2}a_{3}} \right) \\ + \dots + \tan^{-1} \left(\frac{a_{n} - a_{n-1}}{1 + a_{n-1}a_{n}} \right) \\ = (\tan^{-1} a_{2} - \tan^{-1} a_{1}) + (\tan^{-1} a_{3} - \tan^{-1} a_{2}) \\ + \dots + (\tan^{-1} \left(\frac{a_{n} - a_{1}}{1 + a_{n-1}a_{n}} \right) \\ = (\tan^{-1} a_{2} - \tan^{-1} a_{1}) + (\tan^{-1} \left(\frac{a_{n} - a_{1}}{1 + a_{n-1}a_{n}} \right) \\ = \tan^{-1} a_{n} - \tan^{-1} a_{1} = \tan^{-1} \left(\frac{a_{n} - a_{1}}{1 + a_{n}a_{1}} \right) \\ = \tan^{-1} \left(\frac{1}{c_{3}} \right) - \frac{\pi}{4} \right] \\ = \tan \left[\tan^{-1} \left(\frac{2}{5} \right) - \frac{\pi}{4} \right] \\ = \tan \left[\tan^{-1} \left(\frac{2}{5} \right) - \tan^{-1} (1) \right] \\ = \tan \left[\tan^{-1} \left(\frac{512}{12} - 1a^{-1} \right) \right] \\ = \tan \left[\tan^{-1} \left(\frac{512}{12} - 1a^{-1} \right) \right] \\ = \tan \left[\tan^{-1} \left(\frac{512}{12} - 1a^{-1} \right) \right] \\ = \tan \left[\tan^{-1} \left(\frac{512}{12} - 1a^{-1} \right) \right] \\ = \tan \left[\tan^{-1} \left(\frac{512}{12} - 1a^{-1} \right) \right]$$

81.
$$\sin\left[3\sin^{-1}\left(\frac{1}{5}\right)\right] = \sin\left[\sin^{-1}\left\{3\left(\frac{1}{5}\right) - 4\left(\frac{1}{5}\right)^3\right\}\right]$$
$$= \sin\left[\sin^{-1}\left\{\frac{3}{5} - \frac{4}{125}\right\}\right] = \sin\left[\sin^{-1}\left(\frac{75 - 4}{125}\right)\right]$$
$$= \sin\left[\sin^{-1}\frac{71}{125}\right] = \frac{71}{125}$$
82.
$$\cot\left[\cos^{-1}\left(\frac{7}{25}\right)\right] = \cot\left[\cot^{-1}\left(\frac{7}{24}\right)\right] = \frac{7}{24}$$
$$\ldots\left[\because\cos^{-1}x = \cot^{-1}\frac{x}{\sqrt{1 - x^2}}\right]$$
83. Let $\sin^{-1}x = \theta \Rightarrow x = \sin\theta$

$$\cos (2\sin^{-1} x) = \frac{1}{9} \qquad \Rightarrow \cos 2\theta = \frac{1}{9}$$
$$\Rightarrow 1 - 2\sin^2\theta = \frac{1}{9} \qquad \Rightarrow 1 - 2x^2 = \frac{1}{9}$$
$$\Rightarrow 2x^2 = 1 - \frac{1}{9} = \frac{8}{9} \qquad \Rightarrow x^2 = \frac{4}{9}$$
$$\Rightarrow x = \pm \frac{2}{3}$$

84.
$$\sin\left[2\tan^{-1}\left(\frac{1}{3}\right)\right] + \cos\left[\tan^{-1}\left(2\sqrt{2}\right)\right]$$

= $\sin\left[\tan^{-1}\frac{2/3}{1-1/9}\right] + \cos\left[\tan^{-1}\left(2\sqrt{2}\right)\right]$
= $\sin\left[\tan^{-1}\frac{3}{4}\right] + \cos\left[\tan^{-1}2\sqrt{2}\right]$
 $\left[\frac{3}{4}\right] = 1$

$$= \sin \left[\sin^{-1} \frac{(4)}{\sqrt{1 + (\frac{3}{4})^2}} \right] + \cos \left[\cos^{-1} \frac{1}{\sqrt{1 + (2\sqrt{2})^2}} \right]$$
$$= \frac{3}{5} + \frac{1}{3} = \frac{14}{15}$$

85. Given,
$$\tan^{-1} x = \sin^{-1} \left[\frac{3}{\sqrt{10}} \right]$$

$$\Rightarrow x = \tan \left\{ \sin^{-1} \left[\frac{3}{\sqrt{10}} \right] \right\} = \tan \left\{ \tan^{-1} 3 \right\}$$

$$\Rightarrow x = 3$$

86.
$$\tan\left(\cos^{-1}\frac{1}{5\sqrt{2}} - \sin^{-1}\frac{4}{\sqrt{17}}\right)$$

= $\tan(\tan^{-1}7 - \tan^{-1}4)$
= $\tan\left[\tan^{-1}\left(\frac{7-4}{1+28}\right)\right] = \frac{3}{29}$

Chapter 03: Trigonometric Functions
87.
$$\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \cot^{-1} \left(\frac{\sqrt{1 - \frac{1}{5}}}{\frac{1}{\sqrt{5}}} \right) + \cot^{-1} 3$$

 $= \cot^{-1}(2) + \cot^{-1}(3)$
 $= \cot^{-1} \left(\frac{2 \times 3 - 1}{3 + 2} \right)$
 $= \cot^{-1}(1) = \frac{\pi}{4}$

88. On expanding determinant,

$$\cos^2 (A + B) + \sin^2 (A + B) + \cos 2B = 0$$

 $\therefore 1 + \cos 2B = 0 \Rightarrow \cos 2B = \cos \pi$

$$\Rightarrow 2\mathbf{B} = 2\mathbf{n}\pi + \pi \Rightarrow \mathbf{B} = (2\mathbf{n} + 1) \frac{\pi}{2}, \mathbf{n} \in \mathbb{Z}.$$

Competitive Thinking

- 1. $\tan^2 x = 1$ $\Rightarrow \tan^2 x = \tan^2 \frac{\pi}{4} \Rightarrow x = n\pi \pm \frac{\pi}{4}$
- 2. No solution as $|\sin x| \le 1$, $|\cos x| \le 1$ and both of them do not attain their maximum value for the same angle.

3.
$$\cot \theta + \tan \theta = 2$$

$$\therefore \quad \frac{1}{\tan\theta} + \tan\theta = 2 \implies 1 + \tan^2\theta = 2 \tan\theta$$

$$\therefore \quad \frac{2\tan\theta}{1+\tan^2\theta} = 1 \Rightarrow \sin 2\theta = 1$$

 $\Rightarrow 2\theta = n\pi + (-1)^n \frac{\pi}{2}$ $\Rightarrow \theta = \frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$

- 4. $\tan 2\theta = 1$ The value of $\tan \theta$ is positive if θ is in 1st and 3rd quadrant.
- \therefore Option (B) is the correct answer.
- 5. The given equation is defined for $x \neq \frac{\pi}{2}$, $\frac{3\pi}{2}$. Now, sec $x \cos 5x + 1 = 0$ $\Rightarrow \sec x \cos 5x = -1$ $\Rightarrow \cos 5x = -\cos x$ $\Rightarrow \cos 5x + \cos x = 0$ $\Rightarrow 2 \cos 3x \cdot \cos 2x = 0$ $\Rightarrow \cos 3x = 0 \text{ or } \cos 2x = 0$ $\Rightarrow 3x = (2n+1)\frac{\pi}{2} \text{ or } 2x = (2n+1)\frac{\pi}{2}$

MHT-CET Triumph Maths (Hints)

$$\Rightarrow x = \frac{(2n+1)\pi}{6} \text{ or } x = \frac{(2n+1)\pi}{4}$$

$$\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \text{ in } [0, 2\pi]$$

$$\therefore \text{ number of solutions} = 8$$
6. $\cos\theta = \frac{-1}{2} \text{ and } 0^{\circ} < \theta < 360^{\circ}$

$$\therefore \cos\theta = -\cos 60^{\circ}$$

$$\therefore \cos\theta = \cos (180^{\circ} - 60^{\circ}) \text{ and} \cos\theta = \cos 240^{\circ}$$

$$\Rightarrow \theta = 120^{\circ} \text{ and } 240^{\circ}$$
7. $\cos\theta + \sqrt{3} \sin\theta = 2$

$$\Rightarrow \frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta = 1$$

$$\Rightarrow \sin\left(\theta + \frac{\pi}{6}\right) = 1 = \sin\left(\frac{\pi}{2}\right) \Rightarrow \theta = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$$
8. $\csc \theta + 2 = 0$

$$\Rightarrow \sin \theta = -\sin 30^{\circ}$$

$$\Rightarrow \sin \theta = \sin (180^{\circ} + 30^{\circ}) \text{ and} \sin \theta = \sin 330^{\circ}$$

$$\Rightarrow \sin \theta = \sin 210^{\circ} \text{ and } \sin \theta = \sin 330^{\circ}$$

$$\Rightarrow \sin \theta = \sin 210^{\circ} \text{ and } \sin \theta = \sin 330^{\circ}$$
9. $\sin x + \sin y + \sin z = -3$ is satisfied only when $x = y = z = \frac{3\pi}{2}, \text{ for } x, y, z \in [0, 2\pi].$

$$\therefore \text{ option (A) is the correct answer.}$$
10. The given equation is defined for $x \neq \frac{\pi}{2}, \frac{3\pi}{2}$.

Now,
$$\tan x + \sec x = 2 \cos x$$

$$\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2 \cos x$$

$$\Rightarrow (\sin x + 1) = 2 \cos^2 x$$

$$\Rightarrow (\sin x + 1) = 2 (1 - \sin^2 x)$$

$$\Rightarrow (\sin x + 1) = 2(1 - \sin x)(1 + \sin x)$$

$$\Rightarrow (1 + \sin x)[2(1 - \sin x) - 1] = 0$$

$$\Rightarrow 2(1 - \sin x) - 1 = 0$$

$$\dots \left[\because \sin x \neq -1 \text{ otherwise } \cos x = 0 \text{ and} \right]$$

$$\Rightarrow \sin x = \frac{1}{2}$$

$$\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6} \text{ in } (0, 2\pi)$$

$$\therefore \text{ number of solutions} = 2$$

11. tan (π cos θ) = cot (π sin θ)
⇒ tan (π cos θ) = tan
$$\left(\frac{\pi}{2} - \pi \sin \theta\right)$$

⇒ π cos θ = $\frac{\pi}{2} - \pi \sin \theta$
⇒ sin θ + cos θ = $\frac{1}{2}$
⇒ $\frac{1}{\sqrt{2}} \sin \theta + \frac{1}{\sqrt{2}} \cos \theta = \frac{1}{2\sqrt{2}}$
⇒ cos θ cos $\frac{\pi}{4} + \sin \theta \sin \frac{\pi}{4} = \frac{1}{2\sqrt{2}}$
⇒ cos $\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$
12. cos² θ + sin θ + 1 = 0
⇒ sin² θ - sin θ - 2 = 0
⇒ (sin θ + 1) (sin θ - 2) = 0
⇒ sin θ = 2, which is not possible and
sin θ = -1 = sin $\frac{3\pi}{2}$
Therefore, solution of the given equation lies
in the interval $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$.
13. 2 sin² θ = 4 + 3 cos θ
⇒ 2 - 2 cos² θ = 4 + 3 cos θ
⇒ 2 cos² θ + 3 cos θ + 2 = 0
⇒ cos θ = $\frac{-3 \pm \sqrt{9 - 16}}{4}$,
which are imaginary, hence no solution.
14. cos 2x + k sin x = 2k - 7
⇒ 1 - 2 sin²x + k sin x - 2k + 7 = 0
⇒ 2 sin²x - k sin x + 2k - 8 = 0
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$
⇒ sin x = $\frac{k \pm \sqrt{k^2 - 8(2k - 8)}}{4}$

 $\Rightarrow \tan(\theta + \phi) = 1 \Rightarrow \theta + \phi = \frac{\pi}{4} = 45^{\circ}$

232

16. $(1 + \tan \alpha) (1 + \tan 4\alpha) = 2$ *.*.. $1 + \tan \alpha + \tan 4\alpha + \tan \alpha \tan 4\alpha = 2$ $\tan \alpha + \tan 4\alpha = 1 - \tan \alpha \tan 4\alpha$ *.*.. $\frac{\tan\alpha + \tan 4\alpha}{2} = 1$ *.*.. $1 - \tan \alpha \cdot \tan 4\alpha$ $\tan(\alpha + 4\alpha) = 1$ *.*.. $\tan 5\alpha = 1$ *.*.. $5\alpha = \frac{\pi}{4}$ $\left[\because \alpha \in \left(0, \frac{\pi}{16}\right)\right]$ *.*.. $\alpha = \frac{\pi}{20}$ *.*.. 17. $\cos x + \cos y = \frac{3}{2}$ $\Rightarrow 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = \frac{3}{2}$ $\Rightarrow 2\cos\frac{\pi}{3}\cos\left(\frac{x-y}{2}\right) = \frac{3}{2}$ \dots $\therefore x + y = \frac{2\pi}{3}$ (given) $\Rightarrow \cos\left(\frac{x-y}{2}\right) = \frac{3}{2}$, which is not possible $\ldots \left| \because \frac{3}{2} > 1 \right|$ Hence, the system of equations has no solution. $81^{\sin^2 x} + 81^{\cos^2 x} = 30$(i) 18. Check by options, put $x = \frac{\pi}{6}$ in (i), $81^{\sin^2\frac{\pi}{6}} + 81^{\cos^2\frac{\pi}{6}} = 30$ $\Rightarrow (81)^{\frac{1}{4}} + (81)^{\frac{3}{4}} = 30 \Rightarrow 30 = 30$ option (A) is the correct answer. *.*.. 19. $4\sin^4 x + \cos^4 x = 1$ $\Rightarrow 4 \sin^4 x = 1 - \cos^4 x$ $\Rightarrow 4 \sin^4 x = (1 - \cos^2 x) (1 + \cos^2 x)$ $\Rightarrow 4\sin^4 x - (\sin^2 x) (1 + 1 - \sin^2 x) = 0$ $\Rightarrow \sin^2 x \left[4 \sin^2 x - 2 + \sin^2 x \right] = 0$ $\Rightarrow \sin^2 x (5 \sin^2 x - 2) = 0$ $\Rightarrow \sin x = 0 \text{ or } \sin x = \pm \sqrt{\frac{2}{5}}$ Hence $x = n\pi$ is the required answer. 20. $1 - \cos \theta = \sin \theta . \sin \frac{\theta}{2}$ $\Rightarrow 2\sin^2\frac{\theta}{2} = 2\sin\frac{\theta}{2}.\cos\frac{\theta}{2}.\sin\frac{\theta}{2}$

Chapter 03: Trigonometric Functions

$$\Rightarrow 2 \sin^{2} \frac{\theta}{2} - 2 \sin^{2} \frac{\theta}{2} \cos \frac{\theta}{2} = 0$$

$$\Rightarrow 2 \sin^{2} \frac{\theta}{2} \left(1 - \cos \frac{\theta}{2}\right) = 0$$

$$\Rightarrow 2 \sin^{2} \frac{\theta}{2} \left(2 \sin^{2} \frac{\theta}{4}\right) = 0$$

$$\Rightarrow 2 \sin^{2} \frac{\theta}{2} = 0 \text{ or } 2 \sin^{2} \frac{\theta}{4} = 0$$

$$\Rightarrow \sin \frac{\theta}{2} = 0 \text{ or } \sin \frac{\theta}{4} = 0$$

$$\Rightarrow \theta = 2k\pi \text{ or } \theta = 4k\pi, k \in I$$

$$\therefore \text{ option (B) is the correct answer.}$$
21. $\sin 5x = \cos 2x$

$$\Rightarrow \sin 5x = \sin \left(\frac{\pi}{2} - 2x\right)$$

$$\Rightarrow 5x = n\pi + (-1)^{n} \left(\frac{\pi}{2} - 2x\right)$$

$$\Rightarrow 5x + (-1)^{n} 2x = [2n + (-1)^{n}] \frac{\pi}{2}$$

$$\Rightarrow x [5 + 2 (-1)^{n}] = [2n + (-1)^{n}] \frac{\pi}{2}$$
22. $\tan 5\theta = \cot 2\theta$

$$\Rightarrow \tan 5\theta = \tan \left(\frac{\pi}{2} - 2\theta\right)$$

$$\Rightarrow 5\theta = n\pi + \frac{\pi}{2} - 2\theta$$

$$\Rightarrow 7\theta = n\pi + \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{n\pi}{7} + \frac{\pi}{14}$$
23. $\tan \theta = -1 \Rightarrow \tan \theta = \tan \left(2\pi - \frac{\pi}{4}\right)$

$$= and \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \cos \theta = \cos \left(2\pi - \frac{\pi}{4}\right)$$

$$\therefore \text{ general value is } 2n\pi + \left(2\pi - \frac{\pi}{4}\right) = 2n\pi + \frac{7\pi}{4}$$

$$\dots \left[\text{If } \tan \theta = \tan \alpha \text{ and } \cos \theta = \cos \alpha \right]$$

МНТ	-CET Triumph Maths (Hints)	WIN
24.	$\tan \theta = -\frac{1}{\sqrt{3}} = \tan\left(\pi - \frac{\pi}{6}\right),$	
	$\sin \theta = \frac{1}{2} = \sin \left(\pi - \frac{\pi}{6} \right)$	
	and $\cos \theta = -\frac{\sqrt{3}}{2} = \cos\left(\pi - \frac{\pi}{6}\right)$	
	principal value of $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$	
25.	$\cos p\theta = \cos q\theta \Rightarrow p\theta = 2n\pi \pm q\theta$ $\Rightarrow \theta = \frac{2n\pi}{p \pm q}$	
26.	$(2\cos x - 1)(3 + 2\cos x) = 0$	
	$\Rightarrow \cos x = \frac{1}{2} \qquad \qquad \dots \left[\because \cos x \neq \frac{-3}{2} \right]$	
	$\Rightarrow x = 2n\pi \pm \frac{\pi}{3}$	
	$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3} \text{ in } [0, 2\pi]$	
27.	$\sin\left(\frac{\pi}{4}\cot\theta\right) = \cos\left(\frac{\pi}{4}\tan\theta\right)$	
	$\Rightarrow \sin\left(\frac{\pi}{4}\cot\theta\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{4}\tan\theta\right)$	
	$\Rightarrow \frac{\pi}{4} \cot \theta = \frac{\pi}{2} - \frac{\pi}{4} \tan \theta$	
	$\Rightarrow \tan \theta + \cot \theta = 2$	
	$\Rightarrow \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 2$	
	$\Rightarrow \frac{1}{\sin\theta\cos\theta} = 2$	
	$\Rightarrow \sin 2\theta = 1 = \sin \frac{\pi}{2}$	
	$\Rightarrow 2\theta = (4n+1) \frac{\pi}{2}$	
	$\Rightarrow \theta = n\pi + \frac{\pi}{4}$	
28.	$\tan 2\theta \tan \theta = 1$	
	$\Rightarrow \frac{\tan 2\theta}{\cot \theta} = 1$	
	$\Rightarrow \tan 2\theta = \cot \theta$	
	$\Rightarrow \tan 2\theta = \tan\left(\frac{\pi}{2} - \theta\right)$	

$$\Rightarrow 2\theta = n\pi + \frac{\pi}{2} - \theta$$

$$\Rightarrow 3\theta = n\pi + \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{n\pi}{3} + \frac{\pi}{6} = \left(n + \frac{1}{2}\right)\frac{\pi}{3}$$

29. $\cos 2\theta = \sin\alpha$

$$\Rightarrow \cos 2\theta = \cos\left(\frac{\pi}{2} - \alpha\right)$$

$$\Rightarrow 2\theta = 2n\pi \pm \left(\frac{\pi}{2} - \alpha\right)$$

$$\Rightarrow \theta = n\pi \pm \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$$

30. $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$

$$\Rightarrow \sin 6\theta + \sin 2\theta + \sin 4\theta = 0$$

$$\Rightarrow \sin 6\theta + \sin 2\theta + \sin 4\theta = 0$$

$$\Rightarrow \sin 4\theta \cos 2\theta + \sin 4\theta = 0$$

$$\Rightarrow \sin 4\theta \cos 2\theta + \sin 4\theta = 0$$

$$\Rightarrow \sin 4\theta = 0 \text{ or } 2\cos 2\theta + 1 = 0$$

$$\Rightarrow 4\theta = n\pi \text{ or } \cos 2\theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{n\pi}{4} \text{ or } \cos 2\theta = -\cos\frac{\pi}{3}$$

$$\cos 2\theta = \cos\left(\pi - \frac{\pi}{3}\right)$$

$$\cos 2\theta = \cos\left(\frac{2\pi}{3}\right)$$

$$2\theta = 2n\pi \pm \frac{\pi}{3}$$

31. $\sin 5x + \sin 3x + \sin x = 0$

$$\Rightarrow -\sin 3x = \sin 5x + \sin x = 2 \sin 3x \cos 2x$$

$$\Rightarrow \sin 3x = 0 \Rightarrow x = 0$$

or $\cos 2x = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right)$

$$\Rightarrow 2x = 2n\pi \pm \left(\pi - \frac{\pi}{3}\right) \Rightarrow x = n\pi \pm \left(\frac{\pi}{3}\right)$$

$$\Rightarrow x = \frac{\pi}{3} \qquad \dots \left[\because 0 \le x \le \frac{\pi}{2}\right]$$

32.
$$\sin x + \sin 3x + \sin 5x = 0$$

$$\Rightarrow \sin 5x + \sin x + \sin 3x = 0$$

$$\Rightarrow 2 \sin 3x \cos 2x + \sin 3x = 0$$

$$\Rightarrow \sin 3x (2 \cos 2x + 1) = 0$$

$$\Rightarrow \sin 3x = 0 \text{ or } 2 \cos 2x = -1$$

 $\cos 2x = \frac{-1}{2}$ $\Rightarrow 3x = n\pi$ or $\Rightarrow x = \frac{n\pi}{2}$ or $\cos 2x = -\cos \frac{\pi}{2}$ $\cos 2x = \cos \left(\pi - \frac{\pi}{3} \right)$ $\cos 2x = \cos \frac{2\pi}{2}$ $2x = 2n\pi \pm \frac{2\pi}{2}$ $x = n\pi \pm \frac{\pi}{2}$ $\Rightarrow x = \pi, \frac{2\pi}{3}, \frac{4\pi}{3} \qquad \dots \qquad \therefore \qquad x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ $\sin x - \sin 2x + \sin 3x = 2\cos^2 x - \cos x$ 33. $\Rightarrow \sin x + \sin 3x - \sin 2x = \cos x (2 \cos x - 1)$ $\Rightarrow 2 \sin 2x \cos x - \sin 2x = \cos x (2 \cos x - 1)$ $\Rightarrow \sin 2x (2 \cos x - 1) = \cos x (2 \cos x - 1)$ $\Rightarrow 2 \sin x \cos x = \cos x \text{ or } 2 \cos x - 1 = 0$ $\Rightarrow \sin x = \frac{1}{2}$ or $\cos x = 0$ or $\cos x = \frac{1}{2}$ $\Rightarrow \sin x = \sin \frac{\pi}{6}$ or $\cos x = 0$ or $\cos x = \cos \frac{\pi}{2}$ $\Rightarrow x = n\pi + (-1)^n \frac{\pi}{6} \text{ or } x = (2n+1) \frac{\pi}{2}$ or $x = 2n\pi \pm \frac{\pi}{2}$ $\Rightarrow x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6} \qquad \dots [\because x \in (0, \pi)]$ 34. $\sin x \cos x = \frac{1}{4}$ $\Rightarrow \sin 2x = \frac{1}{2} = \sin \frac{\pi}{6}$ $\Rightarrow 2x = n\pi + (-1)^n \frac{\pi}{\epsilon}$ $\Rightarrow x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$ \dots $\therefore x \in \left(0, \frac{\pi}{2}\right)$ $\Rightarrow x = \frac{\pi}{12}$ $\sin\theta + \cos\theta = 1$ 35. Dividing both sides by $\sqrt{1^2 + 1^2} = \sqrt{2}$, we get $\frac{1}{\sqrt{2}}$ $\sin\theta + \frac{1}{\sqrt{2}}\cos\theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin \theta \cos \frac{\pi}{4} + \cos \theta \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$

Chapter 03: Trigonometric Functions $\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} = \sin\frac{\pi}{4}$ \dots [\because sin (A+B) = sin A cos B + cos A sin B] $\Rightarrow \theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$ 36. $\sqrt{2} \sec\theta + \tan\theta = 1 \Rightarrow \frac{\sqrt{2}}{\cos\theta} + \frac{\sin\theta}{\cos\theta} = 1$ $\Rightarrow \sin \theta - \cos \theta = -\sqrt{2}$ $\Rightarrow \frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta = 1$ $\Rightarrow \cos\left(\theta + \frac{\pi}{4}\right) = \cos\left(0\right)$ $\Rightarrow \theta + \frac{\pi}{4} = 2n\pi \pm 0 \Rightarrow \theta = 2n\pi - \frac{\pi}{4}$ 37. $\sqrt{3} \cos \theta + \sin \theta = \sqrt{2}$ Dividing both sides by $\sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$, we get $\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta = \frac{\sqrt{2}}{2}$ $\Rightarrow \sin \theta \cos \frac{\pi}{3} + \cos \theta \sin \frac{\pi}{3} = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin\left(\theta + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4}\right)$ $\Rightarrow \theta + \frac{\pi}{2} = n\pi + (-1)^n \frac{\pi}{4}$ $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{3}$ 38. $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$ $\Rightarrow 2\sin 4\theta \cos 2\theta + \sin 4\theta = 0$ $\Rightarrow \sin 4\theta (2 \cos 2\theta + 1) = 0$ $\Rightarrow \sin 4\theta = 0 \text{ or } 2 \cos 2\theta + 1 = 0$ Now, $\sin 4\theta = 0 \Rightarrow 4\theta = n\pi \Rightarrow \theta = \frac{n\pi}{4}$ and $2\cos 2\theta = -1 \Rightarrow \cos 2\theta = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right)$ $\Rightarrow 2\theta = 2n\pi \pm \frac{2\pi}{2} \Rightarrow \theta = n\pi \pm \frac{\pi}{2}$ $\theta = \frac{n\pi}{4}$ or $n\pi \pm \frac{\pi}{3}$ *.*..

39. $\sin 7\theta = \sin 4\theta - \sin \theta$ $\Rightarrow \sin 7\theta + \sin \theta - \sin 4\theta = 0$ $\Rightarrow 2\sin 4\theta \cos 3\theta - \sin 4\theta = 0$ $\Rightarrow \sin 4\theta (2\cos 3\theta - 1) = 0$ $\Rightarrow \sin 4\theta = 0 \text{ or } \cos 3\theta = \frac{1}{2}$ Now, $\sin 4\theta = 0 \Rightarrow 4\theta = \pi \Rightarrow \theta = \frac{\pi}{4}$ and $\cos 3\theta = \frac{1}{2} \Rightarrow 3\theta = \frac{\pi}{3} \Rightarrow \theta = \frac{\pi}{9}$ 40. $\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x} = 1$ $\Rightarrow \tan (3x - 2x) = 1 \Rightarrow \tan x = 1$ $\Rightarrow \tan x = \tan \frac{\pi}{4}$ $\Rightarrow x = n\pi + \frac{\pi}{4}$

But this value does not satisfy the given equation. Hence, option (A) is the correct answer.

 $\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}$ 41. $\Rightarrow \frac{\tan 3\theta - \tan\left(\frac{\pi}{4}\right)}{1 + \tan 3\theta \tan\left(\frac{\pi}{4}\right)} = \sqrt{3}$ $\Rightarrow \tan\left(3\theta - \frac{\pi}{4}\right) = \tan\frac{\pi}{4}$ $\Rightarrow 3\theta - \frac{\pi}{4} = n\pi + \frac{\pi}{3} \Rightarrow 3\theta = n\pi + \frac{7\pi}{12}$ $\Rightarrow \theta = \frac{n\pi}{3} + \frac{7\pi}{36}$ $\cos 3\theta = \sin 2\theta$ 42. $\Rightarrow \cos 3\theta = \cos \left(\frac{\pi}{2} - 2\theta\right)$ $\Rightarrow 3\theta = 2n\pi \pm \left(\frac{\pi}{2} - 2\theta\right)$ $\Rightarrow \theta = \frac{2n\pi}{3} \pm \left(\frac{\pi}{6} - \frac{2\theta}{3}\right)$ $\Rightarrow \theta = \frac{2n\pi}{5} + \frac{\pi}{10} \text{ or } \theta = 2n\pi - \frac{\pi}{2}$ Since, θ is acute $\Rightarrow \theta = \frac{\pi}{10} = 18^{\circ}$ $\Rightarrow \sin \theta = \frac{\sqrt{5} - 1}{4} \qquad \dots \qquad \left[\because \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \right]$

43. $\sin x - 3 \sin 2x + \sin 3x$ $= \cos x - 3 \cos 2x + \cos 3x$ \Rightarrow (sin x + sin 3x) - 3 sin 2x - (cos x + cos 3x) $+ 3\cos 2x = 0$ $\Rightarrow 2 \sin 2x \cos x - 3 \sin 2x - 2 \cos 2x \cos x$ $+3\cos 2x = 0$ $\Rightarrow \sin 2x(2\cos x - 3) - \cos 2x(2\cos x - 3) = 0$ $\Rightarrow (\sin 2x - \cos 2x)(2\cos x - 3) = 0$ \ldots $\because \cos x \neq \frac{3}{2}$ $\Rightarrow \cos 2x = \sin 2x$ $\Rightarrow \cos 2x = \cos \left(\frac{\pi}{2} - 2x\right)$ $\Rightarrow 2x = 2n\pi \pm \left(\frac{\pi}{2} - 2x\right)$ Neglecting (-) sign, we get $x = \frac{n\pi}{2} + \frac{\pi}{8}$ 44. $\cot(\alpha + \beta) = 0 \Longrightarrow \cos(\alpha + \beta) = 0$ $\Rightarrow \alpha + \beta = (2n+1)\frac{\pi}{2}$ $sin(\alpha + 2\beta) = sin(2\alpha + 2\beta - \alpha)$ *.*.. $= \sin[(2n+1)\pi - \alpha]$ $=\sin(2n\pi+\pi-\alpha)$ $=\sin(\pi - \alpha) = \sin \alpha$ 45. $\tan \theta + \tan 2\theta + \tan \theta$. $\tan 2\theta = 1$ $\Rightarrow \tan \theta + \tan 2\theta = 1 - \tan \theta$. $\tan 2\theta$ $\Rightarrow \frac{\tan \theta + \tan 2\theta}{1 \tan \theta \tan 2\theta} = 1$ $\Rightarrow \tan(\theta + 2\theta) = 1$ $\Rightarrow \tan(3\theta) = 1 = \tan \frac{\pi}{4}$ $\Rightarrow 3\theta = n\pi + \frac{\pi}{4} \Rightarrow \theta = \frac{n\pi}{3} + \frac{\pi}{12}$ 46. $\sec 4\theta - \sec 2\theta = 2$ $\Rightarrow \frac{1}{\cos 4\theta} - \frac{1}{\cos 2\theta} = 2$ $\Rightarrow \cos 2\theta - \cos 4\theta = 2\cos 4\theta \cos 2\theta$ $\Rightarrow \cos 2\theta - \cos 4\theta = \cos 6\theta + \cos 2\theta$ $\dots [:: 2 \cos A \cos B = \cos (A + B) + \cos (A - B)]$ $\Rightarrow \cos 6\theta + \cos 4\theta = 0$ $\Rightarrow 2\cos 5\theta \cos \theta = 0$ $\dots \left| \because \cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right) \right|$

$$\Rightarrow \cos \theta = 0 \text{ or } \cos 5\theta = 0$$
$$\Rightarrow \theta = (2n+1) \frac{\pi}{2} \text{ or } 5\theta = (2n+1) \frac{\pi}{2}$$
$$\Rightarrow \theta = n\pi + \frac{\pi}{2} \text{ or } \theta = \frac{n\pi}{5} + \frac{\pi}{10}$$

- 47. $\sin 2x + \sin 4x = 2 \sin 3x$ $\Rightarrow 2 \sin 3x \cos x 2 \sin 3x = 0$ $\Rightarrow \sin 3x = 0 \text{ or } \cos x = 1 \Rightarrow 3x = n\pi \text{ or } x = 2n\pi$ $\Rightarrow x = \frac{n\pi}{3} \text{ or } x = 2n\pi$
- 48. $a \sin x + b \cos x = c$
 - $\Rightarrow \frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$ $\Rightarrow \cos \alpha \sin x + \sin \alpha \cos x = \frac{c}{\sqrt{a^2 + b^2}}$ $\Rightarrow \sin (x + \alpha) = \frac{c}{\sqrt{a^2 + b^2}} > 1, \text{ which is not}$

possible.

 \therefore there is no solution.

49.
$$\tan\left(\frac{p\pi}{4}\right) = \cot\left(\frac{q\pi}{4}\right)$$
$$\Rightarrow \tan\left(\frac{p\pi}{4}\right) = \tan\left(\frac{\pi}{2} - \frac{q\pi}{4}\right)$$
$$\Rightarrow \frac{p\pi}{4} = n\pi + \frac{\pi}{2} - \frac{q\pi}{4}$$
$$\Rightarrow \frac{p}{4} = n + \frac{1}{2} - \frac{q}{4}$$
$$\Rightarrow \frac{p+q}{4} = \frac{2n+1}{2}$$
$$\Rightarrow p+q=2(2n+1)$$
50.
$$2\sin^{2} x + \sin^{2} 2x = 2$$
$$\Rightarrow (1 - \cos 2x) + (1 - \cos^{2} 2x) = 2$$
$$\dots [\because \sin^{2} \theta + \cos^{2} \theta = 1 \text{ and } 2\sin^{2} \theta = 1 - \cos 2\theta]$$
$$\Rightarrow \cos 2x (\cos 2x + 1) = 0$$
$$\Rightarrow \cos 2x = 0 \text{ or } \cos 2x = -1$$
$$\Rightarrow 2x = (2n+1)\frac{\pi}{2} \text{ or } (2n+1)\pi$$
$$\Rightarrow x = (2n+1)\frac{\pi}{4} \text{ or } (2n+1)\frac{\pi}{2}$$
Putting n = -2, -1, 0, 1, 2, we get
$$x = \frac{-3\pi}{4}, \frac{-\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$$
$$\text{and } \frac{-3\pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$$

Chapter 03: Trigonometric Functions

Since,
$$-\pi < x < \pi$$

:
$$x = \pm \frac{\pi}{4}, \pm \frac{\pi}{2}, \pm \frac{3\pi}{4}$$

 \therefore option (B) is the correct answer.

51.
$$\tan (\cot x) = \cot (\tan x)$$

 $\Rightarrow \tan (\cot x) = \tan \left(\frac{\pi}{2} - \tan x\right)$
 $\Rightarrow \cot x = n\pi + \frac{\pi}{2} - \tan x$
 $\Rightarrow \cot x + \tan x = n\pi + \frac{\pi}{2}$
 $\Rightarrow \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = n\pi + \frac{\pi}{2}$
 $\Rightarrow \frac{2(\cos^2 x + \sin^2 x)}{2\sin x \cos x} = n\pi + \frac{\pi}{2}$
 $\Rightarrow \frac{2}{\sin 2x} = n\pi + \frac{\pi}{2}$
 $\Rightarrow \sin 2x = \frac{2}{n\pi + \frac{\pi}{2}} = \frac{4}{(2n+1)\pi}$

52. Let
$$\sqrt{3} + 1 = r \cos \alpha$$
 and $\sqrt{3} - 1 = r \sin \alpha$.
Then $r = \sqrt{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2} = 2\sqrt{2}$
 $\tan \alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{1 - (\frac{1}{\sqrt{3}})}{1 + (\frac{1}{\sqrt{3}})} = \tan(\frac{\pi}{4} - \frac{\pi}{6})$
 $\Rightarrow \alpha = \frac{\pi}{12}$
The given equation reduces to
 $2\sqrt{2} \cos(\theta - \alpha) = 2$
 $\Rightarrow \cos(\theta - \frac{\pi}{12}) = \cos\frac{\pi}{4}$
 $\Rightarrow \theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12}$
53. $\sec \theta - \csc \theta = \frac{4}{3}$

 \Rightarrow 3(sin θ - cos θ) = 4 sin θ cos θ

 \Rightarrow 3(sin θ - cos θ) = 2 sin 2 θ

Squaring on both sides, we get $9(1 - s) = 4s^2$, where $s = sin2\theta$ $\Rightarrow 4s^2 + 9s - 9 = 0$ $\Rightarrow (s + 3) (4s - 3) = 0 \Rightarrow s = \frac{3}{4}$[$\because sin 2\theta \neq -3$]

$$\Rightarrow \sin 2\theta = \frac{3}{4} = \sin \alpha$$
$$\Rightarrow 2\theta = n\pi + (-1)^{n} \alpha$$
$$\Rightarrow \theta = \frac{1}{2} \left[n\pi + (-1)^{n} \sin^{-1} \left(\frac{3}{4} \right) \right]$$

54. Using $\sec 2\theta = \frac{1}{\cos 2\theta} = \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}$, we can write the given equation as $\tan^2 \theta + \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = 1$ $\Rightarrow \tan^2 \theta (1 - \tan^2 \theta) + 1 + \tan^2 \theta = 1 - \tan^2 \theta$ $\Rightarrow 3\tan^2 \theta - \tan^4 \theta = 0$ $\Rightarrow \tan^2 \theta (3 - \tan^2 \theta) = 0$ $\Rightarrow \tan \theta = 0 \text{ or } \tan^2 \theta = 3$ $\Rightarrow \tan \theta = 0 \text{ or } \tan^2 \theta = \tan^2 \frac{\pi}{3}$ $\Rightarrow \theta = m\pi \text{ or } \theta = n\pi \pm \frac{\pi}{2}$,

where m and n are integers.

55.
$$2\sqrt{3} \cos \theta = \tan \theta$$

 $\Rightarrow 2\sqrt{3} \cos^2 \theta = \sin \theta$
 $\Rightarrow 2\sqrt{3} \sin^2 \theta + \sin \theta - 2\sqrt{3} = 0$
 $\Rightarrow \sin \theta = \frac{-1\pm7}{4\sqrt{3}} \Rightarrow \sin \theta = \frac{-8}{4\sqrt{3}},$
which is not possible
and $\sin \theta = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$
 $\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{3}$
56. $3\sin^2 x - 7\sin x + 2 = 0$
 $\Rightarrow 3\sin^2 x - 6\sin x - \sin x + 2 = 0$

$$\Rightarrow 3\sin^2 x - 6\sin x - \sin x + 2 = 0$$

$$\Rightarrow 3\sin^2 x - 6\sin x - \sin x + 2 = 0$$

$$\Rightarrow 3\sin x (\sin x - 2) - (\sin x - 2) = 0$$

$$\Rightarrow (3\sin x - 1) (\sin x - 2) = 0$$

$$\Rightarrow \sin x = \frac{1}{3} \text{ or } 2$$

$$\Rightarrow \sin x = \frac{1}{3} \text{}[\because \sin x \neq 2]$$

Let $\sin^{-1}\frac{1}{3} = \alpha$, $0 < \alpha < \frac{\pi}{2}$ are the solutions in $[0, 5\pi]$. Then, α , $\pi - \alpha$, $2\pi + \alpha$, $3\pi - \alpha$, $4\pi + \alpha$, $5\pi - \alpha$ are the solutions in [0, 5π]. number of solutions = 6*.*.. $\sin 2x + \cos 2x = 0$ 57. $\Rightarrow (\sin 2x + \cos 2x)^2 = 0$ $\Rightarrow \sin^2 2x + \cos^2 2x + 2 \sin 2x \cos 2x = 0$ $\Rightarrow 1 + \sin 4x = 0 \Rightarrow \sin 4x = -1$ \therefore $4x = n\pi + (-1)^n \left(\frac{-\pi}{2}\right)$ $4x = n\pi + (-1)^{n+1} \frac{\pi}{2}$ *.*.. $\therefore x = \frac{n\pi}{4} + (-1)^{n+1} \frac{\pi}{8}$ For $\pi < x < 2\pi$, the values of x are $\frac{11\pi}{8}$, $\frac{15\pi}{8}$. *.*.. 58. $2\sin^2\theta = 3\cos\theta$ $\Rightarrow 2 - 2\cos^2 \theta = 3\cos\theta$ $\Rightarrow 2\cos^2 \theta + 3\cos \theta - 2 = 0$ $\Rightarrow \cos \theta = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4}$ Neglecting (-) sign, we get $\cos \theta = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}$ The values of θ between 0 and 2π are $\frac{\pi}{2}$, $\frac{5\pi}{3}$. 59. $5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0$ $\Rightarrow 5(2\cos^2\theta - 1) + (1 + \cos\theta) + 1 = 0$ $\Rightarrow 10 \cos^2 \theta + \cos \theta - 3 = 0$ $\Rightarrow (5\cos\theta + 3) (2\cos\theta - 1) = 0$ $\Rightarrow \cos \theta = \frac{1}{2}, \cos \theta = -\frac{3}{5}$ $\Rightarrow \theta = \frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right)$ 60. $2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0$ $\Rightarrow 2 - 2\cos^2 \theta + \sqrt{3} \cos \theta + 1 = 0$ $\Rightarrow 2\cos^2\theta - \sqrt{3}\cos\theta - 3 = 0$ $\Rightarrow \cos \theta = \frac{\sqrt{3} \pm \sqrt{3 + 24}}{4} = \frac{\sqrt{3}(1 \pm 3)}{4} = \sqrt{3} \left(-\frac{1}{2}\right)$ $\Rightarrow \theta = \frac{5\pi}{6}$

61. $3\sin^{2} x + 10 \cos x - 6 = 0$ $\Rightarrow 3 (1 - \cos^{2} x) + 10 \cos x - 6 = 0$ $\Rightarrow 3 - 3 \cos^{2} x + 10 \cos x - 6 = 0$ $\Rightarrow 3 \cos^{2} x - 10 \cos x + 3 = 0$ $\Rightarrow 3 \cos^{2} x - 9 \cos x - \cos x + 3 = 0$ $\Rightarrow 3 \cos x (\cos x - 3) - 1 (\cos x - 3) = 0$ $\Rightarrow (\cos x - 3) (3 \cos x - 1) = 0$ $\Rightarrow \cos x = 3, \text{ (which is not possible)}$ or $\cos x = \frac{1}{3}$ $\Rightarrow \cos x = \frac{1}{3} = \cos \alpha \text{ (say)}$ $\Rightarrow x = 2n\pi \pm \alpha$ $\Rightarrow x = 2n\pi \pm \cos^{-1}\left(\frac{1}{3}\right)$

 $\cos^2 x - 2\cos x = 4\sin x - \sin 2x$ 62. $\Rightarrow \cos^2 x - 2 \cos x = 4 \sin x - 2 \sin x \cos x$ $\Rightarrow \cos x (\cos x - 2) = 2 \sin x (2 - \cos x)$ $\Rightarrow \cos x(\cos x - 2) - 2 \sin x (2 - \cos x) = 0$ $\Rightarrow \cos x(\cos x - 2) + 2 \sin x (\cos x - 2) = 0$ $\Rightarrow (\cos x - 2)(\cos x + 2 \sin x) = 0$ $\Rightarrow \cos x + 2 \sin x = 0$ \ldots [$\because \cos x \neq 2$] $\Rightarrow \cos x = -2 \sin x$ $\Rightarrow \tan x = -\frac{1}{2} = \tan \alpha \text{ (say)}$ $\Rightarrow x = n\pi + \alpha$ $\Rightarrow x = n\pi + \tan^{-1}\left(-\frac{1}{2}\right), n \in I$ Since, $0 \le x \le \pi$ $x = \pi + \tan^{-1}\left(-\frac{1}{2}\right)$ *:*. 63. $\cos 2\theta = (\sqrt{2} + 1) \left(\cos \theta - \frac{1}{\sqrt{2}} \right)$ $\Rightarrow 2\cos^2\theta - 1 = \frac{\sqrt{2}+1}{\sqrt{2}}(\sqrt{2}\cos\theta - 1)$ $\Rightarrow 2\cos^2\theta - 1 - \frac{\sqrt{2}+1}{\sqrt{2}}(\sqrt{2}\cos\theta - 1) = 0$ $\Rightarrow (\sqrt{2}\cos\theta - 1) \left\{ \left(\sqrt{2}\cos\theta + 1\right) - \left(\frac{\sqrt{2}+1}{\sqrt{2}}\right) \right\} = 0$ $\Rightarrow \sqrt{2} \cos \theta - 1 = 0 \text{ or } \sqrt{2} \cos \theta + 1 = \frac{\sqrt{2} + 1}{\sqrt{2}}$ $\Rightarrow \sqrt{2} \cos \theta = 1 \text{ or } \sqrt{2} \cos \theta = \frac{\sqrt{2} + 1 - \sqrt{2}}{\sqrt{2}}$

Chapter 03: Trigonometric Functions $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ or } \sqrt{2} \cos \theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \text{ or } \cos \theta = \frac{1}{2}$ $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \qquad \dots \qquad \because \cos \theta \neq \frac{1}{2}$ $\Rightarrow \cos \theta = \cos \frac{\pi}{4}$ $\Rightarrow \theta = 2n\pi \pm \frac{\pi}{4}$ 64. $\cos 2\theta = \frac{1}{2}$ $\Rightarrow \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1}{3}$ $\Rightarrow 3 - 3 \tan^2 \theta = 1 + \tan^2 \theta \Rightarrow 2 = 4 \tan^2 \theta$ $\Rightarrow \tan^2 \theta = \frac{1}{2}$ $\Rightarrow \tan^8 \theta = \frac{1}{16}$ Now, $32 \tan^8 \theta = 2 \cos^2 \alpha - 3 \cos \alpha$ $\Rightarrow 32\left(\frac{1}{16}\right) = 2\cos^2 \alpha - 3\cos \alpha$ $\Rightarrow 2 \cos^2 \alpha - 3 \cos \alpha - 2 = 0$ $\Rightarrow (2 \cos \alpha + 1)(\cos \alpha - 2) = 0$ But $\cos \alpha - 2 \neq 0$ *.*.. $2\cos\alpha + 1 = 0$ $\Rightarrow \cos \alpha = -\frac{1}{2}$ $\Rightarrow \cos \alpha = \cos \frac{2\pi}{2}$ $\Rightarrow \alpha = 2n\pi \pm \frac{2\pi}{2}$ $\cos 2\theta = \sin \theta \Rightarrow 1 - 2 \sin^2 \theta = \sin \theta$ 65. $\Rightarrow 2 \sin^2 \theta + \sin \theta - 1 = 0$ \Rightarrow (2 sin θ – 1) (sin θ + 1) = 0 $\Rightarrow \sin \theta = \frac{1}{2} \text{ or } \sin \theta = -1$ $\sin \theta = \frac{1}{2} = \sin \frac{\pi}{6} \Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{6}$ *.*.. and $\sin \theta = -1 = \sin \frac{3\pi}{2}$ $\Rightarrow \theta = m\pi + (-1)^m \frac{3\pi}{2}$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ *:*. number of solutions = 3*.*..

66. $\tan \theta = \cot 5\theta$ $\Rightarrow \tan \theta - \cot 5\theta = 0$ $\Rightarrow \frac{\sin \theta}{\cos \theta} - \frac{\cos 5\theta}{\sin 5\theta} = 0$ $\Rightarrow \cos 5\theta \cos \theta - \sin 5\theta \sin \theta = 0$ $\Rightarrow \cos(5\theta + \theta) = 0$ $\Rightarrow \cos 6\theta = 0 = \cos \frac{\pi}{2}$ $\Rightarrow 6\theta = 2n\pi \pm \frac{\pi}{2}$ $\Rightarrow 6\theta = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \frac{5\pi}{2}$ $\Rightarrow \theta = \pm \frac{\pi}{12}, \pm \frac{\pi}{4}, \frac{5\pi}{12}$ and $\sin 2\theta = \cos 4\theta$ $\Rightarrow \sin 2\theta = 1 - 2 \sin^2 2\theta$ $\Rightarrow 2 \sin^2 2\theta + \sin 2\theta - 1 = 0$ $\Rightarrow (2 \sin 2\theta - 1)(\sin 2\theta + 1) = 0$ $\Rightarrow \sin 2\theta = \frac{1}{2} \text{ or } \sin 2\theta = -1$ $\Rightarrow \sin 2\theta = \sin \left(\frac{\pi}{6}\right)$ or $\sin 2\theta = -1$ $\Rightarrow 2\theta = n\pi + (-1)^n \frac{\pi}{6}$ or $2\theta = (4n-1)\frac{\pi}{2}$ $\Rightarrow 2\theta = \frac{\pi}{6}, \frac{5\pi}{6} \text{ or } 2\theta = -\frac{\pi}{2}$ $\Rightarrow \theta = \frac{\pi}{12}, \frac{5\pi}{12} \text{ or } \theta = -\frac{\pi}{4}$

 $\therefore \quad \text{the common values of } \theta \text{ are } -\frac{\pi}{4}, \frac{\pi}{12} \text{ and } \frac{5\pi}{12}.$ Hence, there are 3 values of θ satisfying the given equation.

67.
$$\cos^{2}\left(x+\frac{\pi}{6}\right) + \cos^{2}x - 2\cos\left(x+\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)$$
$$= \sin^{2}\frac{\pi}{6}$$
$$\Rightarrow \cos^{2}\left(x+\frac{\pi}{6}\right) + \left(\cos^{2}x - \sin^{2}\frac{\pi}{6}\right)$$
$$- 2\cos\left(x+\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) = 0$$
$$\Rightarrow \cos^{2}\left(x+\frac{\pi}{6}\right) + \cos\left(x+\frac{\pi}{6}\right)\cos\left(x-\frac{\pi}{6}\right)$$
$$- 2\cos\left(x+\frac{\pi}{6}\right)\cos\left(x-\frac{\pi}{6}\right)$$

$$\Rightarrow \cos\left(x + \frac{\pi}{6}\right) \left\{ \cos\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right) - 2\cos\frac{\pi}{6} \right\} = 0$$
$$\Rightarrow \cos\left(x + \frac{\pi}{6}\right) \left\{ 2\cos x \cos\frac{\pi}{6} - 2\cos\frac{\pi}{6} \right\} = 0$$
$$\Rightarrow 2\cos\left(x + \frac{\pi}{6}\right) \cos\frac{\pi}{6} (\cos x - 1) = 0$$
$$\Rightarrow \cos\left(x + \frac{\pi}{6}\right) (\cos x - 1) = 0$$
$$\Rightarrow \cos\left(x + \frac{\pi}{6}\right) = 0 \text{ or } \cos x = 1$$
$$\Rightarrow x + \frac{\pi}{6} = (2n + 1) \frac{\pi}{2} \text{ or } x = 2n\pi$$
$$\Rightarrow x + \frac{\pi}{6} = \pm \frac{\pi}{2} \text{ or } x = 0$$
$$\Rightarrow x = \frac{\pi}{3}, \frac{-2\pi}{3}, 0$$
$$\Rightarrow x = 0, \frac{\pi}{3} \qquad \dots \left[\because x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \right]$$
number of solutions = 2.

0

68.
$$8 \cos x \left[\cos\left(\frac{\pi}{6} + x\right) \cdot \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2} \right] = 1$$
$$\Rightarrow 8 \cos x \left(\cos^2 \frac{\pi}{6} - \sin^2 x - \frac{1}{2} \right) = 1$$
$$\Rightarrow 8 \cos x \left(\frac{3}{4} - \sin^2 x - \frac{1}{2} \right) = 1$$
$$\Rightarrow 8 \cos x \left(\frac{1}{4} - (1 - \cos^2 x) \right) = 1$$
$$\Rightarrow 2 (4 \cos^3 x - 3 \cos x) = 1$$
$$\Rightarrow 2 \cos 3x = 1$$
$$\Rightarrow \cos 3x = \frac{1}{2}$$
$$\Rightarrow \cos 3x = \cos \frac{\pi}{3}$$
$$\Rightarrow x = \frac{2n\pi}{3} \pm \frac{\pi}{9}$$
$$\Rightarrow x = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9} \qquad \dots [\because x \in [0, \pi]]$$
$$\operatorname{Sum} = \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} = \frac{13\pi}{9}$$
$$\Rightarrow k = \frac{13}{9}$$

...

69. $\sec^2 \theta = \frac{4}{2}$ $\Rightarrow \cos^2 \theta = \frac{3}{4} = \left(\frac{\sqrt{3}}{2}\right)^2$ $\Rightarrow \cos^2 \theta = \cos^2 \left(\frac{\pi}{6}\right)$ $\Rightarrow \theta = n\pi \pm \frac{\pi}{\epsilon}$ \dots [$\because \cos^2 \theta = \cos^2 \alpha \Rightarrow \theta = n\pi \pm \alpha$] $\cot \theta = \sin 2\theta$, $(\theta \neq n\pi)$ 70. $\Rightarrow \frac{\cos\theta}{\cos\theta} = 2\sin\theta\cos\theta$ $\Rightarrow 2 \sin^2 \theta \cos \theta = \cos \theta$ $\Rightarrow \cos \theta (2 \sin^2 \theta - 1) = 0$ $\Rightarrow \cos \theta = 0 \text{ or } \sin^2 \theta = \frac{1}{2}$ $\Rightarrow \cos \theta = 0 \text{ or } \sin^2 \theta = \sin^2 \left(\frac{\pi}{4}\right)$ $\Rightarrow \theta = (2n+1) \frac{\pi}{2} \text{ or } \theta = n\pi \pm \frac{\pi}{4}$ $\Rightarrow \theta = 90^{\circ} \text{ and } 45^{\circ}$ $\dots \begin{bmatrix} \because \text{ at } \theta = 90^{\circ} \text{ and } 45^{\circ}, \\ \text{the given equation is satisfied.} \end{bmatrix}$ We have, $x - y = \frac{\pi}{4}$ 71.(i) and $\cot x + \cot y = 2$ $\Rightarrow \frac{1}{\tan x} + \frac{1}{\tan y} = 2$(ii) From (i) and (ii), we get $\frac{1}{\tan\left(y+\frac{\pi}{4}\right)} + \frac{1}{\tan y} = 2$ \Rightarrow (1 – tan y) tan y + 1 + tan y $= 2 \tan y (1 + \tan y)$ \Rightarrow 3 tan² v = 1 $\Rightarrow \tan^2 y = \frac{1}{3} = \tan^2 \frac{\pi}{6}$ $\Rightarrow y = \frac{\pi}{\epsilon}$[smallest +ve value] From (i) $x = \frac{\pi}{4} + y = \frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$ 72. $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ $\cos x + \cos 4x + \cos 2x + \cos 3x = 0$

Chapter 03: Trigonometric Functions $2\cos\frac{5x}{2}\cdot\cos\frac{3x}{2}+2\cos\frac{5x}{2}\cdot\cos\frac{x}{2}=0$ *:*.. $\Rightarrow \cos \frac{5x}{2} \cdot \left| \cos \frac{3x}{2} + \cos \frac{x}{2} \right| = 0$ $\Rightarrow \cos\frac{5x}{2} \cdot 2\cos x \cdot \cos\frac{x}{2} = 0$ $\Rightarrow x = (2n+1) \frac{\pi}{5}, (2k+1) \frac{\pi}{2} \text{ or } (2m+1) \pi$ $\Rightarrow x = \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}, \frac{\pi}{2}, \frac{3\pi}{2} \text{ in } 0 \le x < 2\pi$ 73. Let the angles of the triangle be x, 2x and 3x. Then, $x + 2x + 3x = 180^{\circ} \Rightarrow x = 30^{\circ}$ angles of the triangle are 30°, 60° and 90°. *.*.. a : b : c = $\sin 30^\circ$: $\sin 60^\circ$: $\sin 90^\circ$ *.*.. $=\frac{1}{2}:\frac{\sqrt{3}}{2}:1=1:\sqrt{3}:2$ 74. Let x be the common multiple. $A + B + C = 12x = 180^{\circ} \Longrightarrow x = 15^{\circ}$ $A = 45^{\circ}, B = 75^{\circ}, C = 60^{\circ}$ $\frac{a}{\sin 45^{\circ}} = \frac{b}{\sin 75^{\circ}} = \frac{c}{\sin 60^{\circ}} = k$ $a = \frac{1}{\sqrt{2}}k, \ b = \frac{\sqrt{3}+1}{2\sqrt{2}}k, \ c = \frac{\sqrt{3}}{2}k$ *.*.. $a + b + c\sqrt{2} = \frac{3 + 3\sqrt{3}}{2\sqrt{2}} = 3b$ *.*.. 75. Let the angles of the triangle be 4x, x and x. $4x + x + x = 180^{\circ} \Longrightarrow 6x = 180^{\circ} \Longrightarrow x = 30^{\circ}$ • $\frac{\sin 120^\circ}{a} = \frac{\sin 30^\circ}{b} = \frac{\sin 30^\circ}{c}$ *.*.. a:(a+b+c) $= (\sin 120^\circ) : (\sin 120^\circ + \sin 30^\circ + \sin 30^\circ)$ $=\frac{\sqrt{3}}{2}:\frac{\sqrt{3}+2}{2}=\sqrt{3}:\sqrt{3}+2$ 76. Given, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$(i) By Sine rule $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$(ii) From (i) and (ii), we get $\Rightarrow \frac{\cos A}{\sin A} = \frac{\cos B}{\sin B} = \frac{\cos C}{\sin C}$ $\Rightarrow \cot A = \cot B = \cot C$ \Rightarrow A = B = C = 60° $\Rightarrow \Delta ABC$ is equilateral. $\Delta = \frac{\sqrt{3}}{4} a^2 = \frac{\sqrt{3}}{4} (2)^2 = \sqrt{3}$ ÷

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ 81. According to the given condition, In \triangle ABC, a = 2b and $A - B = 60^{\circ} \Longrightarrow A = 60^{\circ} + B$ $\Rightarrow \frac{\sin(60^\circ + B)}{2b} = \frac{\sin B}{b}$ $\Rightarrow \frac{\sin B}{\sin(B+60^\circ)} = \frac{1}{2}$ $\Rightarrow 2 \sin B = \sin B \cos 60^\circ + \cos B \sin 60^\circ$ $\Rightarrow \frac{3}{2} \sin B = \frac{\sqrt{3}}{2} \cos B$ $\tan B = \frac{1}{\sqrt{3}} \Rightarrow B = 30^{\circ}$ *.*.. $A = 30^{\circ} + 60^{\circ} = 90^{\circ}$ *.*.. $\triangle ABC$ is right angled. 82. $\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2}$ $=\frac{1-2\sin^2 A}{a^2}-\frac{1-2\sin^2 B}{b^2}$ $= \frac{1}{a^2} - \frac{1}{b^2} - \frac{2\sin^2 A}{a^2} + \frac{2\sin^2 B}{b^2}$ $=\frac{1}{a^2}-\frac{1}{b^2}-2\left(\frac{\sin^2 A}{a^2}-\frac{\sin^2 B}{b^2}\right)$ $=\frac{1}{a^2}-\frac{1}{b^2}$ By sine rule, $\frac{a}{\sin A}=\frac{b}{\sin B}$. 83. $\cos C = \frac{3^2 + 5^2 - 7^2}{2 \times 3 \times 5}$ $\Rightarrow \cos C = -\frac{1}{2}$ \Rightarrow C = 120° option (B) is the correct answer. *.*.. 84. $2 \cos A = \frac{\sin B}{\sin C} \Rightarrow \frac{2(c^2 + b^2 - a^2)}{2bc} = \frac{b}{c}$ \Rightarrow c² = a² \Rightarrow c = a 85. $\cos B = \frac{c^2 + a^2 - b^2}{2ac} \Rightarrow \cos B = \frac{1}{2} \Rightarrow B = \frac{\pi}{3}$ 86. (a+b+c)(a-b+c) = 3ac \Rightarrow a² + 2ac + c² - b² = 3ac $\Rightarrow a^2 + c^2 - b^2 = ac$ But $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2} \Longrightarrow B = 60^{\circ}$

87.
$$\cos A = \frac{8^2 + 10^2 - 6^2}{2.8.10} = \frac{128}{160} = \frac{4}{5}$$

 $\therefore \sin A = \frac{3}{5}$
 $\therefore \sin 2A = 2 \sin A. \cos A = 2, \frac{3}{5}, \frac{4}{5} = \frac{24}{25}$
88. $\cos C = \frac{81 + 64 - x^2}{2.9.8} \Rightarrow \frac{2}{3} = \frac{145 - x^2}{144}$
 $\Rightarrow x^2 = 49 \Rightarrow x = 7$
89. $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{9 + 16 - 4}{2 \times 3 \times 4} = \frac{7}{8}$
 $\Rightarrow A = \cos^{-1}\left(\frac{7}{8}\right)$
90. Let $a = 3, b = 5, c = 7$
 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{9 + 25 - 49}{2 \times 3 \times 5} = \frac{-15}{30} = -\frac{1}{2}$
 $\therefore \angle C = \frac{2\pi}{3}$
91. Since, $c = \sqrt{13}$ is the smallest side.
 $\therefore C \text{ is the smallest angle.}$
 $\therefore \cos C = \frac{b^2 + a^2 - c^2}{2ab} = \frac{48 + 49 - 13}{2 \times 7 \times 4\sqrt{3}}$
 $\Rightarrow \cos C = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$
 $\Rightarrow C = 30^{\circ}$
92. $\frac{\sin(A - B)}{\sin(A + B)} = \frac{\sin A \cos B - \sin B \cos A}{\sin C}$
 $= \frac{a}{c} \cos B - \frac{b}{c} \cos A$
But $\cos B = \frac{a^2 + c^2 - b^2}{2ac}, \cos A = \frac{b^2 + c^2 - a^2}{2bc}$
 $\therefore \frac{\sin(A - B)}{\sin(A + B)} = \frac{1}{2c^2} (a^2 + c^2 - b^2 - b^2 - c^2 + a^2)$
 $= \frac{a^2 - b^2}{c^2}$
93. $\frac{1}{a + c} + \frac{1}{b + c} = \frac{3}{a + b + c}$
 $\Rightarrow (a + b + 2c) = \frac{3}{a + b + c}$
 $\Rightarrow (a + b + 2c) = \frac{3}{a + b + c}$
 $\Rightarrow (a + b + 2c) = \frac{a^3}{2ab} = \frac{1}{2} = \cos 60^{\circ}$

P4. ∠C = 60°,
$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$

∴ $\frac{3}{a+b+c} - \frac{1}{a+c} = \frac{1}{b+c}$
P5. A + C = 2B ⇒ B = 60°
 $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$
 $\Rightarrow \cos 60° = \frac{a^2 + c^2 - b^2}{2ac}$
 $\Rightarrow b^2 = a^2 + c^2 - ac$
∴ $\frac{a+c}{\sqrt{a^2 - ac + c^2}} = \frac{a+c}{b} = \frac{\sin A + \sin C}{\sin B}$
 $= \frac{2\sin \frac{A+C}{2}\cos \frac{A-C}{2}}{2\sin \frac{B}{2}\sin \frac{A+C}{2}} = \frac{\cos \frac{A-C}{2}}{\sin \frac{B}{2}}$
P6. $ab^2 \cos A + ba^2 \cos B + ac^2 \cos A + ca^2 \cos C$
 $+ bc^2 \cos B + bc^2 \cos C = bc^2 \cos B + ac^2 \cos A + ca^2 \cos C$
 $= ab(b \cos A + a \cos B) + ac(c \cos A + ca \cos C)$
 $+ bc (c \cos B + bc \cos C)$
 $= abc + abc + abc = 3abc$
97. Let $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = k$
∴ $b + c = 11k$ (i)
 $c + a = 12k$ (ii)
 $and a + b = 13k$ (iii)
From (i) + (ii) + (iii), 2(a + b + c) = 36k
∴ $a + b + c = 18k$ (iv)
Now, (iv) - (i) gives, $a = 7k$
(iv) - (ii) gives, $b = 6k$
(iv) - (ii) gives, $c = 5k$
Now,
 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(7k)^2 + (6k)^2 - (5k)^2}{2x(7k) \times (6k)}$
 $= \frac{49k^2 + 36k^2 - 25k^2}{2ab} = \frac{60k^2}{84k^2} = \frac{5}{7}$
98. $a(b \cos C - c \cos B)$
 $= a\left(b\frac{a^2 + b^2 - c^2}{2a} - \frac{c^2 + a^2 - b^2}{2a}\right)$
 $= a\left(\frac{a^2 + b^2 - c^2}{2a} - \frac{c^2 + a^2 - b^2}{2a}\right)$

99.
$$a^{2} \cos^{2}A - b^{2} - c^{2} = 0$$

 $\Rightarrow \cos^{2}A = \frac{b^{2} + c^{2}}{a^{2}}$
Since, $\cos^{2}A \le 1$ i.e., $\cos^{2}A < 1$
 $\therefore \qquad \frac{b^{2} + c^{2}}{a^{2}} < 1 \Rightarrow b^{2} + c^{2} - a^{2} < 0$
 $\therefore \qquad \frac{b^{2} + c^{2} - a^{2}}{2bc} < 0 \qquad \dots [\because 2bc > 0]$
 $\therefore \qquad \cos A < 0 \Rightarrow A \in \left(\frac{\pi}{2}, \pi\right)$

100. Let
$$a = \alpha - \beta$$
, $b = \alpha + \beta$, $c = \sqrt{3\alpha^2 + \beta^2}$
Since $\sqrt{3\alpha^2 + \beta^2}$ is the largest side, the largest
angle is C.
 $\therefore \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab}$
 $\Rightarrow \cos C = \frac{\alpha^2 + \beta^2 - 2\alpha\beta + \alpha^2 + \beta^2 + 2\alpha\beta - 3\alpha^2 - \beta^2}{2(\alpha^2 - \beta^2)}$
 $\Rightarrow \cos C = -\frac{(\alpha^2 - \beta^2)}{2(\alpha^2 - \beta^2)} = \cos\left(\frac{2\pi}{3}\right)$
 $\Rightarrow C = \frac{2\pi}{3}$

101.
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

 $\Rightarrow \cos 60^\circ = \frac{1}{2} = \frac{9 + c^2 - 16}{2 \times 3 \times c}$
 $\Rightarrow 3c = c^2 - 7$
 $\Rightarrow c^2 - 3c - 7 = 0$

102. We have,
$$b = \sqrt{3}$$
, $c = 1$, $\angle A = 30^{\circ}$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
 $\Rightarrow \frac{\sqrt{3}}{2} = \frac{(\sqrt{3})^2 + 1^2 - a^2}{2 \cdot \sqrt{3} \cdot 1}$
 $\Rightarrow a = 1, b = \sqrt{3}, c = 1$

∴ b is the largest side. Therefore, the largest angle B is given by $\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1+1-3}{2.1.1} = -\frac{1}{2} = \cos 120^\circ$ $\Rightarrow B = 120^\circ$

103.
$$a^4 + b^4 + c^4 = 2 c^2 (a^2 + b^2)$$

 $\Rightarrow a^4 + b^4 + c^4 - 2a^2c^2 - 2b^2c^2 + 2a^2b^2 = 2a^2b^2$
 $\Rightarrow (a^2 + b^2 - c^2)^2 = 2a^2b^2$

$$\Rightarrow a^{2} + b^{2} - c^{2} = \pm \sqrt{2}ab$$

$$\Rightarrow \frac{a^{2} + b^{2} - c^{2}}{2ab} = \pm \frac{\sqrt{2}ab}{2ab} = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos C = \cos 45^{\circ} \text{ or } \cos 135^{\circ}$$

$$\Rightarrow C = 45^{\circ} \text{ or } 135^{\circ}$$
104. We have, $b + c = 2a$ (i)

$$\cos 60^{\circ} = \frac{b^{2} + c^{2} - a^{2}}{2bc} = \frac{(b + c)^{2} - 2bc - a^{2}}{2bc}$$

$$\Rightarrow \frac{1}{2} = \frac{4a^{2} - 2bc - a^{2}}{2bc} \Rightarrow \frac{1}{2} = \frac{3a^{2}}{2bc} - 1$$

$$\Rightarrow \frac{3}{2} = \frac{3a^{2}}{2bc}$$

$$\Rightarrow bc = a^{2} \qquad \dots (ii)$$
From (i) and (ii), we get

$$b + c = 2\sqrt{b}\sqrt{c}$$

$$\Rightarrow (\sqrt{b} - \sqrt{c})^{2} = 0 \Rightarrow b = c$$
From (i), $a = b = c$

$$\therefore \quad \Delta ABC \text{ is equilateral.}$$
105.
$$\frac{\sin A}{\sin C} = \frac{\sin A \cos B - \cos A \sin B}{\sin B \cos C - \cos B \sin C}$$

$$\Rightarrow \frac{a}{c} = \frac{a \cos B - b \cos A}{b \cos C - c \cos B}$$

$$\Rightarrow ab \cos C - ac \cos B = ac \cos B - bc \cos A$$

$$\Rightarrow ab \cos C + bc \cos A = 2ac \cos B$$

$$\Rightarrow \frac{a^{2} + b^{2} - c^{2}}{2} + \frac{b^{2} + c^{2} - a^{2}}{2} = \frac{c^{2} + a^{2} - b^{2}}{1}$$

$$\Rightarrow b^{2} = c^{2} + a^{2} - b^{2} \Rightarrow b^{2} = \frac{c^{2} + a^{2} - b^{2}}{1}$$

$$\Rightarrow b^{2} = c^{2} + a^{2} - b^{2} \Rightarrow b^{2} = \frac{c^{2} + a^{2} - b^{2}}{2}$$

$$\Rightarrow a^{2}, b^{2}, c^{2} \text{ are in } A.P.$$
106.
$$\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca}$$

$$\Rightarrow \frac{3b^{2} + c^{2} - a^{2}}{2abc} + \frac{a^{2} + c^{2} - b^{2}}{2abc} + \frac{2(a^{2} + b^{2} - c^{2})}{2abc}$$

$$= \frac{a}{bc} + \frac{b}{ca}$$

$$\Rightarrow \frac{3b^{2} + c^{2} + a^{2}}{2abc} = \frac{a}{bc} + \frac{b}{ca}$$

$$\Rightarrow \frac{3b^{2} + c^{2} + a^{2}}{2abc} = \frac{a}{bc} + \frac{b}{ca}$$

Hence, $\angle A = 90^{\circ}$

107. 4 sin A = 4 sin B = 3 sin C
∴ 4a = 4b = 3c or a = b
∴ cos C =
$$\frac{a^2 + b^2 - c^2}{2ab} = \frac{a^2 + a^2 - \left(\frac{4a}{3}\right)^2}{2 \times a \times a}$$

 $= \frac{2a^2 - \frac{16a^2}{9}}{2a^2} = \frac{a^2 - \frac{8a^2}{9}}{a^2} = 1 - \frac{8}{9} = \frac{1}{9}$
108.

108.

From the figure,
cos $120^\circ = \frac{x^2 + x^2 - AB^2}{2x^2}$
 $\Rightarrow \frac{2x^2 - AB^2}{2x^2} = \frac{-1}{2}$
 $\Rightarrow 4x^2 - 2AB^2 = -2x^2$
 $\Rightarrow 3x^2 = AB^2 \Rightarrow AB = x\sqrt{3}$
 $\Rightarrow a^2 : b^2 : c^2 = (2x)^2 : x^2 : (x\sqrt{3})^2$
 $= 4x^2 : x^2 : 3x^2 = 4 : 1 : 3.$
109. $\frac{\sqrt{3}}{2} < \frac{b}{a} < 1$
 $\Rightarrow b < a$
 $\Rightarrow c < b < a$
 $\Rightarrow c < b < a$
 $\Rightarrow \frac{\sqrt{3}}{2} < \frac{b}{a}$
 $\Rightarrow \sqrt{3} a < 2b$
 $\Rightarrow 3a^2 < 4b^2$
 $\Rightarrow 4b^2 - 3a^2 > 0$
Now, $b^2 = a^2 + c^2 - 2ac \cos 60^\circ$
 $\Rightarrow c^2 - ac + (a^2 - b^2) = 0$
 $\therefore c = \frac{a \pm \sqrt{4b^2 - 3a^2}}{2}$

Chapter 03: Trigonometric Functions

110. cot A, cot B and cot C are in A. P.
⇒ cot A + cot C = 2 cot B
⇒
$$\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = \frac{2 \cos B}{\sin B}$$

⇒ $\frac{b^2 + c^2 - a^2}{2bc(ka)} + \frac{a^2 + b^2 - c^2}{2ab(kc)} = 2\frac{a^2 + c^2 - b^2}{2ac(kb)}$
⇒ $a^2 + c^2 = 2b^2$
Hence, a^2, b^2, c^2 , are in A. P.
111. $\frac{\sin 3B}{\sin B} = \frac{3 \sin B - 4 \sin^3 B}{\sin B} = 3 - 4 \sin^2 B$
 $= 3 - 4 + 4 \cos^2 B$
 $= -1 + \frac{4(a^2 + c^2 - b^2)^2}{4(ac)^2}$
 $= -1 + \frac{(a^2 + c^2)^2}{4(ac)^2}$ [$\because 2b^2 = a^2 + c^2$]
 $= -1 + \frac{(a^2 + c^2)^2}{4(ac)^2}$
 $= (\frac{a^2 + c^2)^2 - 4a^2c^2}{4(ac)^2} = (\frac{c^2 - a^2}{2ac})^2$
112. cot B + cot C - cot A = $\frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} - cot A$
 $= \frac{\sin C \cos B + \cos C \sin B}{\sin B \sin C} - cot A$
 $= \frac{\sin C \cos B + \cos C \sin B}{\sin B \sin C} - cot A$
 $= \frac{\sin (B + C)}{\sin B \sin C} - \frac{\cos A}{\sin A}$
 $= \frac{\sin^2 A - \sin B \sin C \cos A}{\sin A \sin B \sin C} = \frac{a^2 - bc \cos A}{(abc)}$
 $= \frac{a^2 - bc \frac{(b^2 + c^2 - a^2)}{2bc}}{(abc)}$
 $= \frac{3a^2 - b^2 - c^2}{2(abc)} = \frac{3a^2 - (b^2 + c^2)}{2(abc)} = 0$
....[$\because b^2 + c^2 = 3a^2$]

113. Largest side is $\sqrt{p^2 + pq + q^2}$. If largest angle is θ , then $\cos \theta = \frac{p^2 + q^2 - p^2 - pq - q^2}{2pq} = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right)$ $\Rightarrow \theta = \frac{2\pi}{3}$

MHT-CET Triumph Maths (Hints) 114. B(c, d) $O^{4} \Theta^{4} A(a,b)$ $(AB)^2 = (a - c)^2 + (b - d)^2$ $(OA)^2 = (a - 0)^2 + (b - 0)^2 = a^2 + b^2$ and $(OB)^2 = c^2 + d^2$ Now from triangle AOB, $\cos \theta = \frac{(OA)^2 + (OB)^2 - (AB)^2}{2OA.OB}$ $=\frac{a^2+b^2+c^2+d^2-\{(a-c)^2+(b-d)^2\}}{2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}}$ $=\frac{ac+bd}{\sqrt{(a^2+b^2)(c^2+d^2)}}$ 115. 2x + 1 $\pi/6$ $\cos C = \frac{b^2 + a^2 - c^2}{2ba}$ $\Rightarrow \cos\frac{\pi}{6} = \frac{(x^2 - 1)^2 + (x^2 + x + 1)^2 - (2x + 1)^2}{2(x^2 - 1)(x^2 + x + 1)}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{(x^2 - 1)^2 + (x^2 + 3x + 2)(x^2 - x)}{2(x^2 + x + 1)(x^2 - 1)}$ $\Rightarrow \frac{\sqrt{3}}{2} = \frac{(x^2 - 1)^2 + (x + 1)(x + 2)x(x - 1)}{2(x^2 + x + 1)(x^2 - 1)}$ $\Rightarrow \sqrt{3} = \frac{(x^2 - 1)^2 + x(x^2 - 1)(x + 2)}{(x^2 + x + 1)(x^2 - 1)}$ $\Rightarrow \sqrt{3} = \frac{x^2 - 1 + x(x+2)}{x^2 + x + 1}$ $\Rightarrow \sqrt{3}(x^2 + x + 1) = 2x^2 + 2x - 1$ $\Rightarrow \left(\sqrt{3}-2\right)x^{2}+\left(\sqrt{3}-2\right)x+\left(\sqrt{3}+1\right)=0$ On solving, $x^2 + x - (3\sqrt{3} + 5) = 0$ $\Rightarrow x = \sqrt{3} + 1, -(2 + \sqrt{3})$ Since, *x* cannot be negative. $x = 1 + \sqrt{3}$ *.*..

116. Let the fourth side be of length d.

1

1

From the figure,
In
$$\triangle$$
 ADC,
AC² = CD² + DA² - 2.CD.DA.cos 120°
....[By Cosine rule]
In \triangle BAC,
AC² = AB² + BC² - 2.AB.BC.cos 60°
....[By Cosine rule]
. $3^2 + d^2 - 2 \times 3 \times d \cos 120^\circ = 2^2 + 5^2$
 $-2 \times 2 \times 5 \cos 60^\circ$
 $\Rightarrow d^2 + 3d - 10 = 0 \Rightarrow d = -5 \text{ or } d = 2$
. $d = 2$
17. By sine rule,
 $\frac{a}{\sin A} = \frac{b}{\sin B}$
 $\Rightarrow \frac{a}{\sin 2B} = \frac{b}{\sin B}$
 $\Rightarrow \sin 2B = \frac{a}{b} \sin B$
 $\Rightarrow 2 \sin B \cos B = \frac{a}{b} \sin B$
 $\Rightarrow \frac{a}{2\cos B} = b$
 $\Rightarrow \frac{a}{2(\frac{a^2 + c^2 - b^2}{2ac})} = b$
 $\Rightarrow \frac{a^2 c = b(a^2 + c^2 - b^2)}{2ac}$
 $\Rightarrow a^2 (b - c) - (b + c)(b - c) b = 0$
 $\Rightarrow a^2 - b(b + c) = 0$
 $\Rightarrow a^2 - 5\alpha = 0 \Rightarrow \alpha (\alpha - 5) = 0$
 $\Rightarrow \alpha = 0, 5$
18. $(b + c) \cos A + (c + a) \cos B + (a + b) \cos C$
 $= a + b + c$
....[By projection rule]

Chapter 03: Trigonometric Functions

119.
$$\frac{\sin B \cos C}{\sin A} + \frac{\cos B \sin C}{\sin A}$$
$$= \left(\frac{b}{a} \cos C + \frac{c}{a} \cos B\right)$$
$$= 1 \qquad \dots [By \text{ projection rule}]$$
120.
$$\frac{\cos C + \cos A}{c + a} + \frac{\cos B}{b}$$
$$= \frac{(b \cos C + c \cos B) + (b \cos A + a \cos B)}{b(c + a)}$$
$$= \frac{a + c}{b(c + a)} \qquad \dots [By \text{ projection rule}]$$
$$= \frac{1}{b}$$

121. Since, a, b, c are in A. P., ∴ 2b = a + c a cos² $\left(\frac{C}{2}\right)$ + c cos² $\left(\frac{A}{2}\right)$ = $\frac{a(1 + \cos C)}{2}$ + $\frac{c(1 + \cos A)}{2}$ = $\frac{a + c + a \cos C + c \cos A}{2}$ = $\frac{a + c + b}{2}$ = $\frac{2b + b}{2}$ = $\frac{3b}{2}$

122.
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
$$\Rightarrow bc \sin^2 \frac{A}{2} = (s-b) (s-c)$$
$$\Rightarrow x = bc$$

123.
$$\sin \frac{A}{2} \cdot \sin \frac{C}{2} = \sin \frac{B}{2}$$

$$\therefore \quad \sqrt{\frac{(s-b)(s-c)}{bc}} \times \sqrt{\frac{(s-a)(s-b)}{ab}} = \sqrt{\frac{(s-a)(s-c)}{ac}}$$

$$\Rightarrow \frac{(s-b)}{b} \sqrt{\frac{(s-a)(s-c)}{ac}} = \sqrt{\frac{(s-a)(s-c)}{ac}}$$

$$\Rightarrow s - b = b \Rightarrow s = 2b$$

124.
$$s = \frac{a+b+c}{2} = \frac{16+24+20}{2} = 30$$

 $\cos\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}$
 $= \sqrt{\frac{30(30-24)}{16\times20}} = \sqrt{\frac{9}{16}} = \frac{3}{4}$
125. $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2}$
 $= (a^2+b^2-2ab) \cos^2 \frac{C}{2} + (a^2+b^2+2ab) \sin^2 \frac{C}{2}$
 $= (a^2+b^2) \left[\cos^2 \frac{C}{2} + \sin^2 \frac{C}{2} \right]$
 $-2ab \left[\cos^2 \frac{C}{2} - \sin^2 \frac{C}{2} \right]$
 $= a^2 + b^2 - 2ab \cos C$
 $= c^2$ [By cosine rule]
126. $a, b, c \text{ are in } A.P. \Rightarrow 2b = a + c$
 $\Rightarrow 2s - 2b = 2s - (a+c)$
 $\Rightarrow 2(s-b) = s(s-a) + s(s-c)$
 $\Rightarrow 2(s-b) = s(s-a) + s(s-c)$
 $\Rightarrow 4s^2(s-b)^2 = s^2(s-a)^2 + s^2(s-c)^2$
 $+ 2s^2(s-a)(s-c)$
 $+ \frac{s^2(s-c)^2}{s(s-a)(s-b)(s-c)} = \frac{s^2(s-a)^2}{s(s-a)(s-b)(s-c)}$
Taking square root on both sides, we get
 $2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$
 $+ \sqrt{\frac{s(s-c)}{(s-b)(s-c)}} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$
Taking square root on both sides, we get
 $2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$
 $+ \sqrt{\frac{s(s-c)}{(s-b)(s-a)}}$
 $\Rightarrow 2 \cot \frac{B}{2} = \cot \frac{A}{2} + \cot \frac{C}{2}$
127. $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \tan \frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
 $(a+b+c)\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$
 $= (a+b+c)\left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}\right]$
 $= 2s \sqrt{\frac{s-c}{s}} \left[\sqrt{\frac{s-b}{s-a}} + \sqrt{\frac{s-a}{s-b}}\right]$

MHT-CET Triumph Maths (MCQs) $= 2s \sqrt{\frac{s-c}{s}} \left| \frac{s-b+s-a}{\sqrt{(s-a)(s-b)}} \right|$ $= 2\sqrt{s(s-c)} \left| \frac{2s-a-b}{\sqrt{(s-a)(s-b)}} \right|$ $=2c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \qquad \dots [\because 2s-a-b=c]$ $= 2c \cot \frac{C}{2}$ $\therefore \qquad \tan\frac{A}{2} + \tan\frac{B}{2} = \frac{2c \cot\frac{C}{2}}{a + b + c}$ 128. $\left\{\cot\frac{A}{2} + \cot\frac{B}{2}\right\} \left\{a\sin^2\frac{B}{2} + b\sin^2\frac{A}{2}\right\}$ $= \left\{ \frac{\cos\frac{C}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}} \right\} \left\{ a\sin^2\frac{B}{2} + b\sin^2\frac{A}{2} \right\}$ $= \left\{ \cos\frac{C}{2} \right\} \left\{ a\frac{\sin\frac{B}{2}}{\sin\frac{A}{2}} + b\frac{\sin\frac{A}{2}}{\sin\frac{B}{2}} \right\}$ $=\sqrt{\frac{s(s-c)}{ab}} \left\{ a \frac{\sqrt{\frac{(s-a)(s-c)}{ac}}}{\sqrt{\frac{(s-b)(s-c)}{bc}}} + b \frac{\sqrt{\frac{(s-b)(s-c)}{bc}}}{\sqrt{\frac{(s-a)(s-c)}{ac}}} \right\}$ $= \sqrt{\frac{s(s-c)}{ab}} \left\{ \sqrt{\left(\frac{s-a}{s-b}\right)ab} + \sqrt{\left(\frac{s-b}{s-a}\right)ab} \right\}$ $=\sqrt{s(s-c)}\left\{\frac{s-a+s-b}{\sqrt{(s-a)(s-b)}}\right\}$ $=\sqrt{s(s-c)}\left\{\frac{2s-a-b}{\sqrt{(s-a)(s-b)}}\right\}$ $= c \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} = c \cot \frac{C}{2}$ **Alternate Method :** Let a = 1, $b = \sqrt{3}$, c = 2 and $A = 30^{\circ}$,

 $B = 60^{\circ}, C = 90^{\circ}.$ Hence, the given expression is equal to 2, which is given by option (D).

129. Let
$$\cot \frac{A}{2}$$
, $\cot \frac{B}{2}$ and $\cot \frac{C}{2}$ be in A.P.
Then, 2 $\cot \frac{B}{2} = \cot \frac{C}{2} + \cot \frac{A}{2}$
∴ we need to prove that
 $2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} + \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$
R.H.S. $= \sqrt{\frac{s}{(s-b)}} \left(\sqrt{\frac{(s-c)}{(s-a)}} + \sqrt{\frac{(s-a)}{(s-c)}}\right)$
 $= \sqrt{\frac{s}{s-b}} \left(\frac{s-c+s-a}{\sqrt{(s-a)(s-c)}}\right)$
 $= \sqrt{\frac{s}{s-b}} \left(\frac{2s-a-c}{\sqrt{(s-a)(s-c)}}\right)$
 $= 2\sqrt{\frac{s}{(s-b)}} \sqrt{\frac{(s-b)^2}{(s-a)(s-c)}}$
.... $\begin{bmatrix} \because 2b = a + c \\ \Rightarrow 2s-2b = 2s-(a+c) \\ \Rightarrow 2(s-b) = 2s-a-c \end{bmatrix}$
 $= 2\sqrt{\frac{s(s-b)}{(s-a)(s-c)}} = L.H.S.$

130. Δ is right angled, ∠C = 90°
∴ Δ =
$$\frac{1}{2}$$
 ab sin90° = $\frac{1}{2}$ ab
∴ 4Δ² = 4 $\left(\frac{1}{2}ab\right)^2$ = a^2b^2

...

131.
$$\Delta = \frac{1}{2} \operatorname{bc} \sin A \Longrightarrow 9 = \frac{1}{2}.36 \sin A$$
$$\Longrightarrow \sin A = \frac{1}{2} \Longrightarrow A = 30^{\circ}$$

132. We have,
$$a = 1$$
, $b = 2$, $\angle C = 60^{\circ}$
Area of triangle $= \frac{1}{2}ab\sin C$
 $= \frac{1}{2}(1)(2)\sin 60^{\circ} = \frac{\sqrt{3}}{2}$

133.
$$\Delta = \frac{1}{2} \text{ ab sin C}$$
$$= \frac{1}{2} \times 1 \times 2 \times \sin 60^{\circ}$$
$$= \frac{\sqrt{3}}{2}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
$$\Rightarrow \cos 60^\circ = \frac{1 + 4 - c^2}{2(1)(2)}$$
$$\Rightarrow \frac{1}{2} = \frac{5 - c^2}{4}$$
$$\Rightarrow c^2 = 3$$
$$\therefore \quad 4\Delta^2 + c^2 = 4\left(\frac{\sqrt{3}}{2}\right)^2 + 3$$
$$= 3 + 3$$

= 6

134.
$$a^{2} \sin 2C + c^{2} \sin 2A$$

 $= a^{2}(2 \sin C \cos C) + c^{2} (2 \sin A \cos A)$
 $= 2a^{2} \left(\frac{2\Delta}{ab} \cos C\right) + 2c^{2} \left(\frac{2\Delta}{bc} \cos A\right)$
 $\dots \left[\because \Delta = \frac{1}{2} ab \sin C = \frac{1}{2} bc \sin A, \\ \therefore \sin C = \frac{2\Delta}{ab}, \sin A = \frac{2\Delta}{bc} \right]$
 $= 4\Delta \left\{ \frac{a \cos C + c \cos A}{b} \right\} = 4\Delta \left(\frac{b}{b}\right) = 4\Delta$

135.
$$\Delta = a^{2} - (b - c)^{2}$$

$$= 2bc - (b^{2} + c^{2} - a^{2})$$

$$= 2bc - 2bc \left(\frac{b^{2} + c^{2} - a^{2}}{2bc}\right) = 2bc (1 - \cos A)$$

$$\therefore \quad \Delta = 2bc \cdot 2 \sin^{2} \frac{A}{2} \qquad \dots (i)$$

$$Also, \quad \Delta = \frac{1}{2}bc \sin A$$

$$= \frac{1}{2}bc \cdot 2 \sin \frac{A}{2} \cos \frac{A}{2}$$

$$\therefore \quad \Delta = bc \cdot \sin \frac{A}{2} \cos \frac{A}{2} \qquad \dots (ii)$$

$$\therefore \quad \tan \frac{A}{2} = \frac{1}{4} \qquad \dots [From (i) and (ii)]$$
136.
$$a = 2 = QR,$$

$$b = \frac{7}{2} = PR,$$

$$c = \frac{5}{2} = PQ$$

$$s = \frac{a+b+c}{2} = \frac{8}{2} = 4$$

$$Q \xrightarrow{a} R$$

Chapter 03: Trigonometric Functions $\frac{2\sin P - 2\sin P\cos P}{2\sin P + 2\sin P\cos P} = \frac{2\sin P(1 - \cos P)}{2\sin P(1 + \cos P)}$ $= \frac{1 - \cos P}{1 + \cos P} = \frac{2 \sin^2 \frac{P}{2}}{2 \cos^2 \frac{P}{2}} = \tan^2 \frac{P}{2}$ $=\frac{(s-b)(s-c)}{s(s-a)}=\frac{(s-b)^{2}(s-c)^{2}}{\Lambda^{2}}$ $=\frac{\left(4-\frac{7}{2}\right)^{2}\left(4-\frac{5}{2}\right)^{2}}{\Lambda^{2}}=\left(\frac{3}{4\Lambda}\right)^{2}$ 137. $\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\frac{A}{2}$ $\Rightarrow \tan\left(\frac{90^{\circ}}{2}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1}\cot\frac{A}{2}$ $\Rightarrow \tan\left(\frac{A}{2}\right) = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{3+1-2\sqrt{3}}{2} = 2-\sqrt{3}$ $\Rightarrow \frac{A}{2} = 15^{\circ} \Rightarrow A = 30^{\circ}$ 139. $\sin^{-1}\left(\frac{2x+1}{3}\right)$ is defined for $-1 \le \frac{2x+1}{3} \le 1$ $\Rightarrow -3 \le 2x + 1 \le 3 \Rightarrow -4 \le 2x \le 2$ $\Rightarrow -2 \le x \le 1$ 140. Given, $\sin^{-1} x = 2 \sin^{-1} 2a$ Since, $-\frac{\pi}{2} \leq \sin^{-1} x \leq \frac{\pi}{2}$ $\Rightarrow -\frac{\pi}{2} \le 2 \sin^{-1} 2a \le \frac{\pi}{2}$

$$\Rightarrow -\frac{\pi}{4} \le \sin^{-1} 2a \le \frac{\pi}{4}$$
$$\Rightarrow \sin\left(-\frac{\pi}{4}\right) \le \sin\left(\sin^{-1} 2a\right) \le \sin\frac{\pi}{4}$$
$$\Rightarrow \frac{-1}{\sqrt{2}} \le 2a \le \frac{1}{\sqrt{2}}$$
$$\Rightarrow \frac{-1}{2\sqrt{2}} \le a \le \frac{1}{2\sqrt{2}} \quad \text{i.e., } |a| \le \frac{1}{2\sqrt{2}}$$
141. Let $\cot^{-1}\left(\frac{1}{2}\right) = \theta$
$$\Rightarrow \cot \theta = \frac{1}{2} \qquad \therefore \qquad \sin \theta = \frac{2}{\sqrt{5}}$$

MHT-CET Triumph Maths (MCQs) Let $\cos^{-1} x = \phi$ $\Rightarrow x = \cos \phi$ Now, $\tan(\cos^{-1} x) = \sin\left(\cot^{-1}\left(\frac{1}{2}\right)\right)$ $\Rightarrow \tan \phi = \sin \theta$ $\Rightarrow \tan \phi = \frac{2}{\sqrt{5}}$ $x = \cos \phi = \frac{\sqrt{5}}{3}$ *.*.. 142. Let $\tan^{-1} 2 = \alpha \Rightarrow \tan \alpha = 2$ and $\cot^{-1} 3 = \beta \Longrightarrow \cot \beta = 3$ $\sec^{2}(\tan^{-1}2) + \csc^{2}(\cot^{-1}3)$ *.*.. $= \sec^2 \alpha + \csc^2 \beta = 1 + \tan^2 \alpha + 1 + \cot^2 \beta$ $= 2 + (2)^{2} + (3)^{2} = 15$ 143. $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{\pi}{2}$ Put $\sin^{-1} x = \alpha$, $\sin^{-1} y = \beta$, $\sin^{-1} z = \gamma$ $\alpha + \beta + \gamma = \frac{\pi}{2}$ *.*.. $\Rightarrow \alpha + \beta = \frac{\pi}{2} - \gamma \Rightarrow \cos(\alpha + \beta) = \cos\left(\frac{\pi}{2} - \gamma\right)$ $\Rightarrow \cos \alpha \cos \beta - \sin \alpha \sin \beta = \sin \gamma$(i) and, we have $\sin \alpha = x \Rightarrow \cos \alpha = \sqrt{1 - x^2}$ Similarly, $\cos\beta = \sqrt{1 - v^2}$ *.*.. From (i), we get $\sqrt{1-x^2}$. $\sqrt{1-y^2} = xy + z$ Squaring on both sides, we get $x^{2} + y^{2} + z^{2} + 2xyz = 1$ 144. Let $\sin^{-1} a = A$, $\sin^{-1} b = B$, $\sin^{-1} c = C$ $\sin A = a$, $\sin B = b$, $\sin C = c$ *.*.. and $A + B + C = \pi$ then $\sin 2A + \sin 2B + \sin 2C$ $= 4 \sin A \sin B \sin C$ \Rightarrow sin A cos A + sin B cos B + sin C cos C $= 2 \sin A \sin B \sin C$ $\Rightarrow \sin A \sqrt{(1-\sin^2 A)} + \sin B \sqrt{(1-\sin^2 B)}$ $+\sin C\sqrt{1-\sin^2 C} = 2\sin A\sin B\sin C$

 $\Rightarrow a \sqrt{(1-a^2)} + b \sqrt{(1-b^2)} + c \sqrt{(1-c^2)} = 2abc$

145.	Given $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$
\therefore	$0 \le \cos^{-1} x \le \pi$
	$0 \le \cos^{-1} y \le \pi$ and $0 \le \cos^{-1} z \le \pi$ Here, $\cos^{-1} x = \cos^{-1} y = \cos^{-1} z = \pi$
<i>.</i>	$\Rightarrow x = y = z = \cos \pi = -1$ xy + yz + zx = (-1) (-1) + (-1)(-1) + (-1) (-1) = 1 + 1 + 1 = 3
146.	Let $\alpha = \cos^{-1} \sqrt{p}$, $\beta = \cos^{-1} \sqrt{1-p}$
	and $\gamma = \cos^{-1} \sqrt{1-q} \therefore \cos \alpha = \sqrt{p}$,
	$\cos \beta = \sqrt{1-p}$
	and $\cos \gamma = \sqrt{1-q}$
<i>.</i> :.	$\sin \alpha = \sqrt{1-p}$, $\sin \beta = \sqrt{p}$ and $\sin \gamma = \sqrt{q}$
	The given equation can be written as
	$\alpha + \beta + \gamma = \frac{3\pi}{4} \Longrightarrow \alpha + \beta = \frac{3\pi}{4} - \gamma$
	$\Rightarrow \cos\left(\alpha + \beta\right) = \cos\left(\frac{3\pi}{4} - \gamma\right)$
	$\Rightarrow \cos \alpha \cos \beta - \sin \alpha \sin \beta$
	$= \cos\left\{\pi - \left(\frac{\pi}{4} + \gamma\right)\right\} = -\cos\left(\frac{\pi}{4} + \gamma\right)$
	$\Rightarrow \sqrt{p} \ \sqrt{1\!-\!p} -\!\sqrt{1\!-\!p} \ \sqrt{p}$
	$= -\left(\frac{1}{\sqrt{2}}\sqrt{1-q} - \frac{1}{\sqrt{2}}\sqrt{q}\right)$
	$\Rightarrow 0 = \sqrt{1-q} - \sqrt{q} \Rightarrow 1-q = q \Rightarrow q = \frac{1}{2}$
147.	$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{2}$
	$\tan^{-1}\sqrt{x(x+1)}$ is defined when
	$x(x+1) \ge 0 \qquad \qquad \dots \dots (i)$
	$\sin^{-1}\sqrt{x^2+x+1}$ is defined when
	$x(x + 1) + 1 \le 1$ or $x(x + 1) \le 0$ (ii) From (i) and (ii)
	x(x + 1) = 0 or $x = 0$ and -1 .
	Hence, number of solutions is 2.
148.	Let $\cot^{-1} x = \theta \Rightarrow x = \cot \theta$
	Now cosec $\theta = \sqrt{1 + \cot^2 \theta} = \sqrt{1 + x^2}$
	$\sin\theta = \frac{1}{\csc\theta} = \frac{1}{\sqrt{1+x^2}}$
$$\Rightarrow \theta = \sin^{-1} \frac{1}{\sqrt{1 + x^2}}$$

$$\therefore \quad \sin\left(\cot^{-1} x\right) = \sin\left(\sin^{-1} \frac{1}{\sqrt{1 + x^2}}\right)$$
$$= \frac{1}{\sqrt{1 + x^2}}$$
$$= (1 + x^2)^{\frac{-1}{2}}$$

149.
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}x$$

Putting $a = \tan \theta$ and $b = \tan \phi$, we get

$$\sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) + \sin^{-1}\left(\frac{2\tan\phi}{1+\tan^2\phi}\right) = 2\tan^{-1}x$$
$$\Rightarrow \sin^{-1}\left[\sin\left(2\theta\right)\right] + \sin^{-1}\left[\sin\left(2\phi\right)\right] = 2\tan^{-1}x$$
$$\Rightarrow 2(\theta+\phi) = 2\tan^{-1}x$$
$$\Rightarrow x = \tan\left(\theta+\phi\right)$$
$$\Rightarrow x = \frac{\tan\theta + \tan\phi}{1-\tan\theta\tan\phi}$$

Resubstituting the values of a and b, we get

$$x = \frac{a+b}{1-ab}$$

150.
$$\cos (2 \tan^{-1} x) = \frac{1}{2}$$

 $\Rightarrow 2 \tan^{-1} x = \frac{\pi}{3}, \frac{-\pi}{3}$
 $\Rightarrow \tan^{-1} x = \frac{\pi}{6}, \frac{-\pi}{6}$
 $\Rightarrow x = \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
151. $\cos \left[\cot^{-1} \left(\frac{1}{2} \right) \right] = \cos (\tan^{-1} 2)$
 $= \cos \left[\cos^{-1} \left(\frac{1}{\sqrt{1 + (2)^2}} \right) \right] = \frac{1}{\sqrt{5}}$
and $\cot (\cos^{-1} x) = \cot \left[\tan^{-1} \frac{\sqrt{1 - x^2}}{x} \right]$
 $= \cot \left[\cot^{-1} \frac{x}{\sqrt{1 - x^2}} \right] = \frac{x}{\sqrt{1 - x^2}}$

Given, cos
$$\left[\cot^{-1}\left(\frac{1}{2}\right)\right] = \cot(\cos^{-1}x)$$

 $\Rightarrow \frac{1}{\sqrt{5}} = \frac{x}{\sqrt{1-x^2}} \Rightarrow \frac{1}{5} = \frac{x^2}{1-x^2}$
 $\Rightarrow 6x^2 = 1$
 $\Rightarrow x = \pm \frac{1}{\sqrt{6}}$
152. Let cos⁻¹ $x = \theta \Rightarrow x = \cos \theta \Rightarrow \sec \theta = \frac{1}{x}$
 $\Rightarrow \tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{\frac{1}{x^2} - 1} = \frac{1}{x}\sqrt{1-x^2}$
Now,
 $\sin \left[\cot^{-1}(\tan \theta)\right] = \sin \left[\cot^{-1}\left(\frac{1}{x}\sqrt{1-x^2}\right)\right]$
Again, putting $x = \sin \theta$
 $\therefore \sin \cot^{-1}\left(\frac{1}{x}\sqrt{1-x^2}\right) = \sin \cot^{-1}\left(\frac{\sqrt{1-\sin^2 \theta}}{\sin \theta}\right)$
 $= \sin \cot^{-1}(\cot \theta)$
 $= \sin \theta = x$
153. $\cos^{-1} x + \cos^{-1}(2x) = -\pi$
 $\Rightarrow \cos^{-1} 2x = -\pi - \cos^{-1}x$
 $\Rightarrow 2x = \cos(\pi + \cos^{-1}x)$
 $\Rightarrow 2x = (\cos \pi) \cos((\cos^{-1}x) - (\sin\pi) \sin(\cos^{-1}x))$
 $\Rightarrow 2x = -x \Rightarrow x = 0$
But $x = 0$ does not satisfy the given equation.
 \therefore No solution will exist.
154. $\cos \frac{7\pi}{6} = \cos\left(2\pi - \frac{7\pi}{6}\right) = \cos\frac{5\pi}{6}$
 $\Rightarrow \cos\frac{7\pi}{6} = \cos\left(\frac{2\pi - \frac{7\pi}{6}}{6}\right) = \cos\frac{5\pi}{6}$
155. $\cos\frac{53\pi}{5} = \cos\left(\frac{50\pi}{5} + \frac{3\pi}{5}\right)$
 $= \cos\left(10\pi + \frac{3\pi}{5}\right)$
 $= \cos\left(\frac{10\pi + \frac{3\pi}{5}}{5}\right)$
 $= \cos\left(\frac{10\pi + \frac{3\pi}{5}}{5}\right)$
 $= \sin\left(\frac{\pi}{2} - \frac{3\pi}{5}\right)$
 $= \sin\left(\frac{\pi}{10}\right)$
 $\therefore \sin^{-1}\left(\cos\frac{53\pi}{5}\right) = \sin^{-1}\left(\sin\frac{-\pi}{10}\right) = -\frac{\pi}{10}$

251

Γ

MHT-CET Triumph Maths (MCQs)
156.
$$\tan^{-1}(\cot x) + \cot^{-1}(\tan x)$$

 $= \tan^{-1}\left[\tan\left(\frac{\pi}{2} - x\right)\right] + \cot^{-1}\left[\cot\left(\frac{\pi}{2} - x\right)\right]$
 $= \frac{\pi}{2} - x + \frac{\pi}{2} - x$
 $= \pi - 2x$
157. Let $\theta = \cos^{-1}\frac{2}{\sqrt{5}} \Rightarrow \cos \theta = \frac{2}{\sqrt{5}}$
 $\tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right) = \tan\frac{\theta}{2}$
 $= \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$
 $= \sqrt{\frac{1 - \frac{2}{\sqrt{5}}}{1 + \frac{2}{\sqrt{5}}}}$
 $= \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}}$
 $= \sqrt{\frac{(\sqrt{5} - 2)^2}{(\sqrt{5} + 2)(\sqrt{5} - 2)}}$
 $= \sqrt{(\sqrt{5} - 2)^2}$
 $= \sqrt{(\sqrt{5} - 2)^2}$
 $= \sqrt{5 - 2}$

158. Putting

a = tan θ , b = tan ϕ and x = tan ψ in the given expression, we get $\sin^{-1}(\sin 2\theta) - \cos^{-1}(\cos 2\phi) = \tan^{-1}(\tan 2\psi)$ $\Rightarrow 2\theta - 2\phi = 2\psi \Rightarrow \theta - \phi = \psi$ Taking 'tan'on both sides, we get tan $(\theta - \phi) = \tan \psi$ $\Rightarrow \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} = \tan \psi$ $\Rightarrow \frac{a - b}{1 + ab} = x$ 159. Putting x = tan θ , we get $\sin \left[\tan^{-1} \left(\frac{1 - x^2}{2} \right) + \cos^{-1} \left(\frac{1 - x^2}{2} \right) \right]$

$$\sin\left[\tan^{-1}\left(\frac{1-x}{2x}\right) + \cos^{-1}\left(\frac{1-x}{1+x^{2}}\right)\right]$$
$$= \sin\left[\tan^{-1}\left(\frac{1-\tan^{2}\theta}{2\tan\theta}\right) + \cos^{-1}\left(\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta}\right)\right]$$
$$= \sin\left[\tan^{-1}\left(\cot 2\theta\right) + \cos^{-1}\left(\cos 2\theta\right)\right]$$

$$= \sin [\tan^{-1} \{ \tan (\frac{\pi}{2} - 2\theta) \} + \cos^{-1} (\cos 2\theta)]$$

$$= \sin \frac{\pi}{2} = 1$$
160. $\cot^{-1} \left[\frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right]$

$$= \cot^{-1} \left[\frac{(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})}{(\sqrt{1 - \sin x} - \sqrt{1 + \sin x})} \times \frac{(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})}{(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})} \right]$$

$$= \cot^{-1} \left[\frac{(1 - \sin x) + (1 + \sin x) + 2\sqrt{1 - \sin^2 x}}{(1 - \sin x) - (1 + \sin x)} \right]$$

$$= \cot^{-1} \left[\frac{2(1 + \cos x)}{-2\sin x} \right]$$

$$= \cot^{-1} \left[-\frac{2\cos^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} \right]$$

$$= \cot^{-1} \left[-\frac{\cos^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} \right]$$

$$= -\frac{1}{2} \left[-\frac{1}{2} \left$$

161. Putting $x = \tan \theta$ in the given equation, we get

$$\cot^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) = \cot^{-1}\left(\frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}\right)$$
$$= \cot^{-1}\left(\frac{\sec\theta-1}{\tan\theta}\right)$$
$$= \cot^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right)$$
$$= \cot^{-1}\left(\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}\right)$$
$$= \cot^{-1}\left(\tan\frac{\theta}{2}\right)$$
$$= \cot^{-1}\left(\tan\frac{\theta}{2}\right)$$
$$= \cot^{-1}\left[\cot\left(\frac{\pi}{2}-\frac{\theta}{2}\right)\right]$$
$$= \frac{\pi}{2} - \frac{\theta}{2} = \frac{\pi}{2} - \frac{\tan^{-1}x}{2}$$

$$162. \tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} \left[\frac{1-\tan \theta}{1+\tan \theta} \right] = \frac{1}{2} \cdot \theta \qquad \dots [\operatorname{Put} x = \tan \theta]$$

$$\Rightarrow \tan^{-1} \left[\frac{\tan \frac{\pi}{4} - \tan \theta}{1+\tan \frac{\pi}{4} \tan \theta} \right] = \frac{\theta}{2}$$

$$\Rightarrow \tan^{-1} \tan \left(\frac{\pi}{4} - \theta \right) = \frac{\theta}{2} \Rightarrow \frac{\pi}{4} - \theta = \frac{\theta}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6} = \Rightarrow \tan^{-1} x = \frac{\pi}{6} \Rightarrow x = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

$$163. \tan \left[\sin^{-1} \left\{ \frac{x + \sqrt{1-x^2}}{\sqrt{2}} \right\} - \sin^{-1} x \right]$$

$$= \tan \left[\sin^{-1} \left\{ \frac{x + \sqrt{1-x^2}}{\sqrt{2}} \right\} - \sin^{-1} x \right]$$

$$= \tan \left[\sin^{-1} \left\{ \frac{\sin \theta + \cos \theta}{\sqrt{2}} \right\} - \theta \right]$$

$$\dots \left[\operatorname{Put} \sin^{-1} x = \theta \right]$$

$$= \tan \left[\sin^{-1} \left\{ \frac{\sin \theta + \cos \theta}{\sqrt{2}} \right\} - \theta \right]$$

$$= \tan \left[\sin^{-1} \left\{ \sin \left(\theta + \frac{\pi}{4} \right) \right] - \theta \right]$$

$$= \tan \left[\theta + \frac{\pi}{4} - \theta \right] = \tan \frac{\pi}{4} = 1$$

$$164. \sec^{-1} [\sec (-30^{\circ})]$$

$$= \sec^{-1} (\sec 30^{\circ}) \qquad \dots [\because \sec (-\theta) = \sec \theta]$$

$$= 30^{\circ}$$

$$165. \cos^{-1} \left[\cot \left(\frac{\pi}{2} \right) \right] + \cos^{-1} \left[\sin \left(\frac{2\pi}{3} \right) \right]$$

$$= \cos^{-1} (0) + \cos^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

$$= \frac{\pi}{2} + \cos^{-1} \left(\cos \frac{\pi}{6} \right)$$

$$= \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3}$$

$$166. \frac{\tan^{-1} (\sqrt{3}) - \sec^{-1} (-2)}{\csc^{-1} (-\sqrt{2}) + \cos^{-1} (-\frac{1}{2})} = \frac{\frac{\pi}{3} - \frac{2\pi}{3}}{\frac{-\pi}{4} + \frac{2\pi}{3}} = \frac{-4}{5}$$

Chapter 03: Trigonometric Functions 167. Given, $\sec^{-1} x = \csc^{-1} v$ $\Rightarrow \cos^{-1}\left(\frac{1}{x}\right) = \sin^{-1}\left(\frac{1}{y}\right)$ $\Rightarrow \cos^{-1}\left(\frac{1}{r}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{1}{v}\right)$ $\Rightarrow \cos^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{y}\right) = \frac{\pi}{2}$ 168. $x^2 + 5|x| - 6 = 0$ $\Rightarrow |x|^2 + 5|x| - 6 = 0$ $\Rightarrow |x|^2 + 6|x| - |x| - 6 = 0$ \Rightarrow (|x|+6) (|x|-1) = 0 $\Rightarrow |x| = 1$ or |x| = -6But |x| cannot be negative $\therefore |x| = 1$ *.*.. $x = \pm 1$ $\alpha = 1, \beta = -1$ $|\tan^{-1} \alpha - \tan^{-1} \beta| = |\tan^{-1} 1 - \tan^{-1} (-1)|$ $=\left|\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right|$ $=\frac{\pi}{2}$ 169. $4 \sin^{-1} x + \cos^{-1} x = \pi$ $\Rightarrow 3 \sin^{-1} x + \sin^{-1} x + \cos^{-1} x = \pi$ $\Rightarrow 3\sin^{-1}x = \pi - \frac{\pi}{2}$ $\cdots \left[\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right]$ $\Rightarrow 3\sin^{-1}x = \frac{\pi}{2} \Rightarrow \sin^{-1}x = \frac{\pi}{6}$ $\Rightarrow x = \sin \frac{\pi}{6} = \frac{1}{2}$ 170. $\cos\left(\cos^{-1}\frac{1}{5} + \sin^{-1}\frac{1}{5} + \cos^{-1}\frac{1}{5}\right)$ $=\cos\left(\frac{\pi}{2}+\cos^{-1}\frac{1}{5}\right)=-\sin\left(\cos^{-1}\frac{1}{5}\right)$ $=-\sin\left(\sin^{-1}\sqrt{\frac{24}{25}}\right)$ $=-\frac{2\sqrt{6}}{5}$

MHT-CET Triumph Maths (MCQs) 171. $\cos \left| 2 \left(\tan^{-1} \frac{1}{5} + \tan^{-1} 5 \right) \right|$ $= \cos \left[2(\cot^{-1}5 + \tan^{-1}5) \right]$ $= \cos \left| 2 \left(\frac{\pi}{2} \right) \right|$ $= \cos \pi$ = -1172. $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$ $\Rightarrow \tan^{-1}(1+x) = \frac{\pi}{2} - \tan^{-1}(1-x)$ \Rightarrow tan⁻¹ (1 + x) = cot⁻¹ (1 - x) \Rightarrow tan⁻¹ (1 + x) = tan⁻¹ $\left(\frac{1}{1-x}\right)$ $\Rightarrow 1 + x = \frac{1}{1 - x} \Rightarrow 1 - x^2 = 1 \Rightarrow x = 0$ 173. The given equation can be written as $\tan^{-1} x + \cot^{-1} x + \cot^{-1} x = \frac{2\pi}{3}$ $\Rightarrow \cot^{-1} x = \frac{2\pi}{3} - \frac{\pi}{2}$ $\dots \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$

174.
$$3 \tan^{-1} x + \cot^{-1} x = \pi$$
$$\Rightarrow 2 \tan^{-1} x + \tan^{-1} x + \cot^{-1} x = \pi$$
$$\Rightarrow 2 \tan^{-1} x + \frac{\pi}{2} = \pi$$
$$\Rightarrow \tan^{-1} x = \frac{\pi}{4}$$
$$\Rightarrow \tan (\tan^{-1} x) = \tan \frac{\pi}{4}$$
$$\Rightarrow x = 1$$
$$175. \tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$$

 $\Rightarrow \cot^{-1} x = \frac{\pi}{6} \Rightarrow x = \cot \frac{\pi}{6} \Rightarrow x = \sqrt{3}$

$$\Rightarrow \frac{\pi}{2} - \cot^{-1}x + \frac{\pi}{2} - \cot^{-1}y = \frac{4\pi}{5}$$
$$\Rightarrow \cot^{-1}x + \cot^{-1}y = \frac{\pi}{5}$$

$$176. \sin^{-1}\left(\frac{x}{13}\right) = \frac{\pi}{2} - \csc^{-1}\left(\frac{13}{12}\right)$$
$$= \sec^{-1}\left(\frac{13}{12}\right) = \cos^{-1}\left(\frac{12}{13}\right)$$
$$\therefore \sin^{-1}\left(\frac{x}{13}\right) = \sin^{-1}\left(\frac{5}{13}\right)$$
$$\therefore x = 5$$
$$177. \cot^{-1}\alpha + \cot^{-1}\beta = \cot^{-1}x$$
$$\Rightarrow \cot^{-1}\left(\frac{\alpha\beta - 1}{\alpha + \beta}\right) = \cot^{-1}x$$
$$\cdots \left[\because \cot^{-1}x + \cot^{-1}y = \cot^{-1}\left(\frac{xy - 1}{x + y}\right)\right]$$
$$\Rightarrow x = \frac{\alpha\beta - 1}{\alpha + \beta}$$
$$178. \tan^{-1}2x + \tan^{-1}3x = \frac{\pi}{4}$$
$$\Rightarrow \tan^{-1}\left(\frac{2x + 3x}{1 - (2x)(3x)}\right) = \frac{\pi}{4}$$
$$\Rightarrow \tan^{-1}\left(\frac{5x}{1 - 6x^{2}}\right) = \tan^{-1}(1)$$
$$\Rightarrow \frac{5x}{1 - 6x^{2}} = 1$$
$$\Rightarrow 1 - 6x^{2} = 5x \Rightarrow 6x^{2} + 5x - 1 = 0$$
$$\Rightarrow (x + 1)\left(x - \frac{1}{6}\right) = 0 \Rightarrow x = -1, \frac{1}{6}$$
But $x = -1$ does not hold.
$$\therefore x = \frac{1}{6}$$
$$179. \tan^{-1}\left(\frac{x - 1}{x - 2}\right) + \tan^{-1}\left(\frac{x + 1}{x + 2}\right) = \frac{\pi}{4}$$
$$\Rightarrow \tan^{-1}\left[\frac{x - 1}{x - 2}(\frac{x + 1}{x + 2})\right] = \frac{\pi}{4}$$
$$\Rightarrow \tan^{-1}\left[\frac{x - 1}{x - 2}(\frac{x + 1}{x + 2})\right] = \frac{\pi}{4}$$
$$\Rightarrow \tan^{-1}\left[\frac{x - 1}{x - 2}(\frac{x + 1}{x + 2})\right] = \frac{\pi}{4}$$
$$\Rightarrow x^{2} + x - 2 + x^{2} - x - 2 = x^{2} - 4 - x^{2} + 1$$
$$\Rightarrow x = \pm \frac{1}{\sqrt{2}}$$

180.
$$\tan^{-1} \frac{x}{y} - \tan^{-1} \left(\frac{x-y}{x+y} \right)$$

$$= \tan^{-1} \frac{x}{y} - \tan^{-1} \left(\frac{1-\frac{y}{x}}{1+\frac{y}{x}} \right)$$

$$= \tan^{-1} \frac{x}{y} - \left(\tan^{-1} 1 - \tan^{-1} \frac{y}{x} \right)$$

$$= \tan^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x} - \frac{\pi}{4}$$

$$= \tan^{-1} \frac{x}{y} + \cot^{-1} \frac{x}{y} - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$
181. $A + B + C = \pi$
 $\Rightarrow \tan^{-1} 2 + \tan^{-1} 3 + C = \pi$
 $\Rightarrow \tan^{-1} 2 + \tan^{-1} 3 + C = \pi$
 $\Rightarrow \pi + \tan^{-1} \left(\frac{2+3}{1-2\times3} \right) + C = \pi$
 $\Rightarrow \tan^{-1} \left(\frac{5}{-5} \right) + C = 0$
 $\Rightarrow -\tan^{-1} (1) + C = 0$
 $\Rightarrow -\frac{\pi}{4} + C = 0$
 $\Rightarrow C = \frac{\pi}{4}$
182. $\angle A = 90^{\circ}$
 $\tan^{-1} \left(\frac{c}{a+b} \right) + \tan^{-1} \left(\frac{b}{a+c} \right) \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{c}^{b} B^{2} + c^{2} = a^{2}$
 $= \tan^{-1} \left[\frac{c}{a^{2} + a^{2} + a^{2} + c^{2}}_{a^{2} + a^{2} + a^{2} + c^{2} + a^{2}} \right]$
 $= \tan^{-1} \left[\frac{ca + c^{2} + ab + b^{2}}{a^{2} + a^{2} + ca + bc - bc} \right]$
 $= \tan^{-1} \left[\frac{a^{2} + ab + ca}{a^{2} + ab + ca} \right] \dots \left[\because b^{2} + c^{2} = a^{2} \right]$
 $= \tan^{-1} \left[\frac{a^{2} + ab + ca}{a^{2} + ab + ca} \right] \dots \left[\because b^{2} + c^{2} = a^{2} \right]$
 $= \tan^{-1} \left[\frac{a^{2} + ab + ca}{a^{2} + ab + ca} \right] \dots \left[\because b^{2} + c^{2} = a^{2} \right]$
 $= \tan^{-1} \left[\frac{a^{2} + ab + ca}{a^{2} + ab + ca} \right] \dots \left[\because b^{2} + c^{2} = a^{2} \right]$
 $= \tan^{-1} \left[1 = \frac{\pi}{4} \right]$
183. Since, $\cot^{-1} x - \cot^{-1} y = \cot^{-1} \left(\frac{xy + 1}{y - x} \right)$
 $\therefore \cot^{-1} \frac{ab + 1}{a - b} + \cot^{-1} \frac{bc + 1}{b - c} + \cot^{-1} \frac{ca + 1}{c - a}$
 $= \cot^{-1} b - \cot^{-1} a + \cot^{-1} c - \cot^{-1} c$

:.

= 0

Example 03: Trigonometric Functions
184.
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$

 $\Rightarrow \tan^{-1} \left[\frac{x + y + z - xyz}{1 - xy - yz - xz} \right] = \frac{\pi}{2}$
 $\Rightarrow \left[\frac{x + y + z - xyz}{1 - xy - yz - xz} \right] = \tan \frac{\pi}{2}$
 $\Rightarrow xy + yz + zx - 1 = 0$
Alternate Method:
Let $x = y = z = \frac{1}{\sqrt{3}}$
Then, $\tan^{-1} \frac{1}{\sqrt{3}} + \tan^{-1} \frac{1}{\sqrt{3}} + \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{2}$
Option (D) holds for these values of x, y, z .
185. Since, $2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$
 $\therefore 4 \tan^{-1} \frac{1}{5} = 2 \left[2 \tan^{-1} \frac{1}{5} \right] = 2 \tan^{-1} \frac{2}{5}$
 $= 2 \tan^{-1} \frac{10}{24} = \tan^{-1} \frac{20}{24} = \tan^{-1} \frac{120}{119} = \tan^{-1} \frac{120}{119}$
 $\therefore 4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239} = \tan^{-1} \frac{120}{119} - \tan^{-1} \frac{1}{239}$
 $= \tan^{-1} \frac{120}{119} - \frac{1}{239} = \tan^{-1} \frac{120}{(119 \times 239) + 120}$
 $= \tan^{-1} 1 = \frac{\pi}{4}$
186. $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$
 $\therefore \tan [\tan^{-1} (\cos x) + \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)]$
 $\therefore \tan [\tan^{-1} (\cos x) + \tan^{-1} (\cos x)] = \tan^{-1} (2 \csc x)$
 $\therefore \tan [\tan^{-1} (\cos x) + \tan^{-1} (\cos x)] = \tan^{-1} (2 \csc x)$
 $\Rightarrow \frac{\cos x + \cos x}{1 - \cos^{2} x} = 2 \csc x$
 $\Rightarrow 2 \cos x = 2 \csc x . (1 - \cos^{2} x)$
 $\Rightarrow \cos x = \operatorname{cose} x . \sin^{2} x$
 $\Rightarrow \cos x = \sin x$
 $\Rightarrow x = \frac{\pi}{4}$

255

MHT-CET Triumph Maths (MCQs)

$$\therefore \quad \sin x + \cos x = \sin \frac{\pi}{4} + \cos \frac{\pi}{4}$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$
187.
$$\theta = \tan^{-1} \sqrt{\frac{a(a+b+c)}{bc}} + \tan^{-1} \sqrt{\frac{b(a+b+c)}{ca}}$$

$$+ \tan^{-1} \sqrt{\frac{c(a+b+c)}{ab}}$$
Let $s^2 = \frac{a+b+c}{abc}$

$$\therefore \quad \theta = \tan^{-1} \sqrt{a^2 s^2} + \tan^{-1} \sqrt{b^2 s^2} + \tan^{-1} \sqrt{c^2 s^2}$$

$$= \tan^{-1} (as) + \tan^{-1} (bs) + \tan^{-1} (cs)$$

$$= \tan^{-1} \left[\frac{as+bs+cs-abcs^3}{1-abs^2-acs^2-bcs^2} \right]$$

$$\therefore \quad \tan \theta = \left[\frac{s[(a+b+c)-abcs^2]}{1-(ab+bc+ca)s^2} \right]$$

$$= \left[\frac{s[(a+b+c)-(a+b+c)]}{1-s^2(ab+bc+ca)} \right]$$

$$\dots [\because s^2 (abc) = (a+b+c)]$$

$$= 0$$

Alternate Method : Let a = b = c = 1. Then, $\theta = \tan^{-1} \sqrt{3} + \tan^{-1} \sqrt{3} + \tan^{-1} \sqrt{3} = \pi$ $\Rightarrow \tan \theta = 0$

188.
$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99}$$

 $= \tan^{-1} \frac{120}{119} + \tan^{-1} \frac{1}{99} - \tan^{-1} \frac{1}{70}$
 $= \tan^{-1} \left(\frac{120}{119}\right) + \tan^{-1} \left[\frac{\frac{1}{99} - \frac{1}{70}}{1 + \frac{1}{99} \cdot \frac{1}{70}}\right]$
 $= \tan^{-1} \left(\frac{120}{119}\right) + \tan^{-1} \left(\frac{-29}{6931}\right)$
 $= \tan^{-1} \frac{120}{119} - \tan^{-1} \frac{29}{6931}$
 $= \tan^{-1} \frac{120}{119} - \tan^{-1} \frac{1}{239}$
 $= \tan^{-1} 1 = \frac{\pi}{4}$

189.
$$2 \tan^{-1} \frac{1}{5} + \sec^{-1} \frac{5\sqrt{2}}{7} + 2 \tan^{-1} \frac{1}{8}$$

$$= 2 \left(\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{8} \right) + \sec^{-1} \frac{5\sqrt{2}}{7}$$

$$= 2 \tan^{-1} \left[\frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} \left(\frac{1}{8} \right)} \right] + \tan^{-1} \sqrt{\left(\frac{5\sqrt{2}}{7} \right)^2 - 1}$$

$$\dots \left[\because \sec^{-1} x = \tan^{-1} \sqrt{x^2 - 1} \right]$$

$$= 2 \tan^{-1} \frac{13}{39} + \tan^{-1} \frac{1}{7}$$

$$= 2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1} \left[\frac{2 \left(\frac{1}{3} \right)}{1 - \left(\frac{1}{3} \right)^2} \right] + \tan^{-1} \frac{1}{7}$$

$$\dots \left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}, \text{ if } -1 < x < 1 \right]$$

$$= \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{1}{7} = \tan^{-1} \left[\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \left(\frac{1}{7} \right)} \right]$$
190. Consider option (A),

sin (cos⁻¹ x) = cos (sin⁻¹ x) =
$$\sqrt{1 - x^2}$$

.... [::sin⁻¹ x=cos⁻¹ $\sqrt{1 - x^2}$, cos⁻¹ x=sin⁻¹ $\sqrt{1 - x^2}$]
191. sin⁻¹ [cos (sin⁻¹ x)] + cos⁻¹ [sin (cos⁻¹ x)]
= sin⁻¹ $\sqrt{1 - x^2}$ + cos⁻¹ $\sqrt{1 - x^2}$
...[:: cos (sin⁻¹ x) = sin (cos⁻¹ x) = $\sqrt{1 - x^2}$]
= $\frac{\pi}{2}$
192. sin⁻¹ $\frac{1}{3}$ + sin⁻¹ $\frac{2}{3}$
= sin⁻¹ $\left[\frac{1}{3}\sqrt{1 - \frac{4}{9}} + \frac{2}{3}\sqrt{1 - \frac{1}{9}}\right]$
= sin⁻¹ $\left[\frac{\sqrt{5} + 4\sqrt{2}}{9}\right]$
∴ $x = \frac{\sqrt{5} + 4\sqrt{2}}{9}$

193. $\sin^{-1}x + \cos^{-1}y = \frac{2\pi}{5}$ $\Rightarrow \frac{\pi}{2} - \cos^{-1}x + \frac{\pi}{2} - \sin^{-1}y = \frac{2\pi}{5}$ $\Rightarrow \pi - \cos^{-1}x - \sin^{-1}y = \frac{2\pi}{5}$ $\Rightarrow \cos^{-1}x + \sin^{-1}y = \pi - \frac{2\pi}{5}$ $=\frac{3\pi}{5}$ 194. Given, $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{2}$ $\cos^{-1} x + \cos^{-1} y = \pi - \frac{2\pi}{2} = \frac{\pi}{2}$ *.*.. $\dots \begin{bmatrix} \text{If } \sin^{-1} x + \sin^{-1} y = \theta, \\ \text{then } \cos^{-1} x + \cos^{-1} y = \pi - \theta \end{bmatrix}$ 195. $\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) + \sin^{-1}\left(\frac{1}{3}\right)$ $=\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) + \cos^{-1}\sqrt{1-\left(\frac{1}{3}\right)^2}$ $\dots \left[\because \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} \right]$ $=\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) + \cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ $=\frac{\pi}{2}$ $\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ 196. $|\sin(\tan^{-1}\frac{3}{4})|^2$ $= \left| \sin \left\{ \sin^{-1} \left\{ \frac{\frac{3}{4}}{\sqrt{1 + \left(\frac{3}{4}\right)^2}} \right\} \right\} \right|$ \dots \therefore $\tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right)$ $=\left[\sin\left(\sin^{-1}\frac{3}{5}\right)\right]^{2} = \left(\frac{3}{5}\right)^{2} = \frac{9}{25}$ 197. $\sin [\cot^{-1} (x+1)] = \sin \left(\sin^{-1} \frac{1}{\sqrt{x^2 + 2x + 2}} \right)$ $=\frac{1}{\sqrt{r^2+2r+2}}$

Chapter 03: Trigonometric Functions And $\cos(\tan^{-1}x) = \cos\left(\cos^{-1}\frac{1}{\sqrt{1+x^2}}\right)$ $=\frac{1}{\sqrt{1+r^2}}$ Thus, $\frac{1}{\sqrt{r^2 + 2r + 2}} = \frac{1}{\sqrt{1 + r^2}}$ $\Rightarrow x^2 + 2x + 2 = 1 + x^2 \Rightarrow x = -\frac{1}{2}$ 198. $\cos(\tan^{-1}x) = \cos\left|\cos^{-1}\frac{1}{\sqrt{1+r^2}}\right|$:: $\tan^{-1} x = \cos^{-1} \left(\frac{1}{\sqrt{1+x^2}} \right)$ $=\frac{1}{\sqrt{1+x^2}}$ 199. $tan(cos^{-1} x)$ = tan $\left| \tan^{-1} \frac{\sqrt{1-x^2}}{x} \right|$ \ldots $\because \cos^{-1} x = \tan^{-1} \frac{\sqrt{1-x^2}}{x}$ $=\frac{\sqrt{1-x^2}}{x^2}$ 200. $\cos\left[\tan^{-1}\left(\frac{3}{4}\right)\right] = \cos\left|\cos^{-1}\frac{1}{\sqrt{1+\left(\frac{3}{4}\right)^2}}\right|$ $=\cos\left|\cos^{-1}\left(\frac{4}{5}\right)\right|$ $=\frac{4}{5}$ 201. Let $x = \cos \theta \implies \theta = \cos^{-1} x$ Now, $\cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right)$ $= \theta + \cos^{-1}\left(\frac{\cos\theta}{2} + \frac{\sqrt{3}}{2}\sqrt{1 - \cos^2\theta}\right)$ $= \theta + \cos^{-1}\left(\frac{1}{2} \cdot \cos \theta + \frac{\sqrt{3}}{2} \sin \theta\right)$

 $= \pi + \tan^{-1} \left(\frac{\tan A}{1 - \tan^2 A} \right) + \tan^{-1} \left| \frac{\cot A (1 + \cot^2 A)}{(1 + \cot^2 A) (1 - \cot^2 A)} \right|$ $= \pi + \tan^{-1} \left(\frac{\tan A}{1 - \tan^2 A} \right) + \tan^{-1} \left(\frac{\cot A}{1 - \cot^2 A} \right)$ $=\pi+\tan^{-1}\left(\frac{\tan A}{1-\tan^2 A}\right)+\tan^{-1}\left(\frac{\tan A}{\tan^2 A-1}\right)$ $=\pi+\tan^{-1}\left(\frac{\tan A}{1-\tan^2 A}\right)+\tan^{-1}\left(\frac{-\tan A}{1-\tan^2 A}\right)$ $\dots [\tan^{-1}(-x) = -\tan^{-1}x]$ $=\pi+0$ 205. $\cos^{-1}\left(\frac{15}{17}\right) + 2\tan^{-1}\left(\frac{1}{5}\right)$ $=\cos^{-1}\left(\frac{15}{17}\right) + \cos^{-1}\left(\frac{1-\frac{1}{25}}{1+\frac{1}{1+\frac{1}{25}}}\right)$ $=\cos^{-1}\left(\frac{15}{17}\right) + \cos^{-1}\left(\frac{12}{13}\right)$ $=\cos^{-1}\left(\frac{15}{17}\times\frac{12}{13}-\sqrt{1-\left(\frac{15}{17}\right)^2}\sqrt{1-\left(\frac{12}{13}\right)^2}\right)$ $=\cos^{-1}\left(\frac{140}{221}\right)$ 206. $\tan\left[\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right]$ $= \tan \left| \tan^{-1} \frac{\sqrt{\left(1 - \frac{16}{25}\right)}}{\frac{4}{2}} + \tan^{-1} \frac{2}{3} \right|$ $= \tan \left[\tan^{-1} \left(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \cdot \frac{2}{3}} \right) \right]$ $= \tan\left(\tan^{-1}\frac{17}{6}\right)$ $=\frac{17}{6}$ 207. $\cot(\cos^{-1} x) = \sec\left[\tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right)\right]$ $\Rightarrow \cot \left| \cot^{-1} \left(\frac{x}{\sqrt{1 - r^2}} \right) \right| = \sec \left| \sec^{-1} \sqrt{1 + \frac{a^2}{b^2 - a^2}} \right|$

$$\Rightarrow \frac{x}{\sqrt{1-x^2}} = \frac{b}{\sqrt{b^2 - a^2}}$$

$$\Rightarrow \frac{x^2}{1-x^2} = \frac{b^2}{b^2 - a^2}$$

$$\Rightarrow \frac{1-x^2}{x^2} = \frac{b^2 - a^2}{b^2}$$

$$\Rightarrow \frac{1-x^2}{x^2} = \frac{2b^2 - a^2}{b^2}$$

$$\Rightarrow x = \frac{b}{\sqrt{2b^2 - a^2}}$$
208. $\tan^{-1}\left\{\sin\left(\cos^{-1}\sqrt{\frac{2}{3}}\right)\right\}$

$$= \tan^{-1}\left\{\sin\left(\sin^{-1}\sqrt{\frac{1}{3}}\right)\right\}$$

$$\dots \left[\because \cos^{-1}x = \sin^{-1}\sqrt{1-x^2}\right]$$

$$= \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$
209. We know $\frac{5^x + 5^{-x}}{2} \ge 1$ [$\because A.M. \ge G.M.$]
Since, $\cos(e^x) \le 1$
So, there does not exist any solution.
210. Applying $R_1 \rightarrow R_1 - R_3$ and
 $R_2 \rightarrow R_2 - R_3$ in the given determinant, we get
 $\begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix}$

$$\Rightarrow 1 + 4\sin 4\theta + \cos^2 \theta + \sin^2 \theta = 0$$

$$\Rightarrow 4 \sin 4\theta = -2$$

$$\Rightarrow \sin 4\theta = -\frac{1}{2}$$

$$\Rightarrow 4\theta = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$$
Since, $0 < \theta < \frac{\pi}{2}$

$$\Rightarrow 0 < 4\theta < 2\pi$$

$$\Rightarrow \theta = \frac{7\pi}{24} \text{ or } \frac{11\pi}{24}$$

211.
$$\frac{(x+1)^2}{x^3+x} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

$$\therefore \qquad \frac{(x+1)^2}{x(x^2+1)} = \frac{Ax^2+A+Bx^2+Cx}{x(x^2+1)}$$

$$\therefore \qquad x^2+2x+1 = (A+B)x^2+Cx + A$$
Equating coefficients on both sides, we get
$$A+B=1, C=2, A=1$$

$$\Rightarrow B=0$$

$$\therefore \qquad \cos \sec^{-1}\left(\frac{1}{A}\right) + \cot^{-1}\left(\frac{1}{B}\right) + \sec^{-1}C$$

$$= \frac{\pi}{2} + 0 + \frac{\pi}{3} = \frac{5\pi}{6}$$
212.
$$2y = 1 \Rightarrow y = \frac{1}{2} \Rightarrow \sin x = \frac{1}{2}$$

$$\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, -\frac{7\pi}{6}, -\frac{11\pi}{6} \text{ in } -2\pi \le x \le 2\pi$$

$$\therefore \qquad \text{number of points of intersection = 4}$$
213.
$$\frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \frac{5}{\sin\left(\frac{\pi}{2}+B\right)} = \frac{4}{\sin B}$$

$$\Rightarrow \frac{5}{\cos B} = \frac{4}{\sin B} \Rightarrow \tan B = \frac{4}{5}$$
Now, $\tan A = \tan\left(\frac{\pi}{2}+B\right) = -\cot B = \frac{-5}{4}$
 $\tan C = \tan(\pi - (A + B))$

$$= -\tan(A + B)$$

$$= -\frac{(\tan A + \tan B)}{1 - \tan A \tan B} = \frac{-\left(-\frac{5}{4}+\frac{4}{5}\right)}{1 - \left(-\frac{5}{4}+\frac{4}{5}\right)} = \frac{9}{40}$$

$$\Rightarrow C = \tan^{-1}\left(\frac{2 \cdot \frac{1}{9}}{1 - \left(\frac{1}{9}\right)^2}\right)$$

$$\Rightarrow C = 2\tan^{-1}\left(\frac{1}{9}\right)$$
214. Given, $x = \sin^{-1}K, y = \cos^{-1}K$

$$\therefore \qquad \sin x = \cos y = K$$

$$\therefore \qquad \sin x = \sin\left(\frac{\pi}{2}-y\right)$$

$$\therefore \qquad x = \frac{\pi}{2} - y \Rightarrow x + y = \frac{\pi}{2}$$

•

259

MHT-CET Triumph Maths (MCQs) 215. $A - B = \frac{1}{\pi} \begin{vmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{vmatrix}$ $\Rightarrow \sin(\sin^{-1}x) = \frac{2}{2}$ $\Rightarrow x = \frac{2}{2}$ $-\frac{1}{\pi}\begin{vmatrix} -\cos^{-1}(\pi x) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & -\tan^{-1}(\pi x) \end{vmatrix}$ 218. $\cot\left[\sum_{1}^{100}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right]$ $= \cot \left[\sum_{100}^{100} \cot^{-1} \left(1 + 2 + 4 + 6 + ... + 2n \right) \right]$ $=\frac{1}{\pi}\begin{vmatrix}\frac{\pi}{2} & 0\\ 0 & \frac{\pi}{2}\end{vmatrix}$ $= \cot \left\{ \sum_{i=1}^{100} \cot^{-1} \left[1 + n(n+1) \right] \right\}$ $= \cot \left\{ \sum_{n=1}^{100} \tan^{-1} \left| \frac{1}{1+n(n+1)} \right| \right\}$ $=\frac{1}{2}I$ $= \cot \left\{ \sum_{n=1}^{100} \tan^{-1} \left[\frac{n+1-n}{1+n(n+1)} \right] \right\}$ 216. $\frac{1}{6}\sin\theta$, $\cos\theta$ and $\tan\theta$ are in G.P. $= \cot \left\{ \sum_{n=1}^{100} \left[\tan^{-1} (n+1) - \tan^{-1} n \right] \right\}$ $\cos^2 \theta = \frac{1}{6} \cdot \sin \theta \cdot \tan \theta$ *.*.. $= \cot \left[(\tan^{-1}2 - \tan^{-1}1) + (\tan^{-1}3 - \tan^{-1}2) + \dots \right]$ $+ (\tan^{-1} 101 - \tan^{-1} 100)$ $\Rightarrow 6 \cos^2 \theta = \sin \theta \cdot \frac{\sin \theta}{\cos \theta}$ $= \cot(\tan^{-1}101 - \tan^{-1}1)$ $= \cot \left| \tan^{-1} \left(\frac{101 - 1}{1 + 101} \right) \right|$ $\Rightarrow 6 \cos^3 \theta = \sin^2 \theta$ $\Rightarrow 6 \cos^3 \theta + \cos^2 \theta - 1 = 0$ $= \cot \left| \tan^{-1} \left(\frac{100}{102} \right) \right|$ Here, $\cos \theta = \frac{1}{2}$ is the only real root. $\theta = 2n\pi \pm \frac{\pi}{3}$ $= \cot \left| \tan^{-1} \left(\frac{50}{51} \right) \right|$ *.*.. $= \cot \left| \cot^{-1} \left(\frac{51}{50} \right) \right|$ 217. $\frac{\sin B}{h} = \frac{\sin A}{a}$ $=\frac{51}{50}$ $\Rightarrow \sin B = \frac{b \sin A}{3} = \frac{8 \sin 30^{\circ}}{6} = \frac{2}{3}$ **Evaluation Test** $\Rightarrow \cos 3x \cdot \frac{1}{4} (\cos 3x + 3 \cos x)$ $\sin 3x = 3 \sin x - 4 \sin^3 x$ 1. $\Rightarrow \sin^3 x = \frac{1}{4}(3\sin x - \sin 3x)$ $+\sin 3x \cdot \frac{1}{4}(3\sin x - \sin 3x) = 0$ $\cos 3x = 4 \cos^3 x - 3 \cos x$ $\Rightarrow \frac{1}{4} \Big[\cos^2 3x + 3\cos x \cos 3x + 3\sin x \sin 3x - \sin^2 3x \Big] = 0$ $\Rightarrow \cos^3 x = \frac{1}{4}(\cos 3x + 3\cos x)$ $\Rightarrow \cos^2 3x - \sin^2 3x + 3(\cos 3x \cos x)$ $+\sin 3x \sin x = 0$ Given, $\cos 3x \cos^3 x + \sin 3x \sin^3 x = 0$ $\Rightarrow \cos 6x + 3 \cos 2x = 0$

 $\Rightarrow 4\cos^3 2x - 3\cos 2x + 3\cos 2x = 0$ $\Rightarrow 4 \cos^3 2x = 0$ $\Rightarrow \cos 2x = 0$ $\Rightarrow 2x = (2n+1)\frac{\pi}{2}$ $\Rightarrow x = (2n+1) \frac{\pi}{4}$ $\sin x \sqrt{8\cos^2 x} = 1$ 2 $\sin x \left| 2\sqrt{2} \cos x \right| = 1$ $\ldots \left[\because \sqrt{8} = 2\sqrt{2} \right]$ ÷. $\sin x |\cos x| = \frac{1}{2\sqrt{2}}$ *.*.. Case I: If $\cos x > 0$, $\sin x \cos x = \frac{1}{2\sqrt{2}}$ $\therefore \quad \frac{1}{2}\sin 2x = \frac{1}{2\sqrt{2}}$ \therefore sin $2x = \frac{1}{\sqrt{2}}$ $\therefore \qquad 2x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}$[$\because x \in (0, 2\pi), \therefore 2x \in (0, 4\pi)$] $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{9\pi}{2}, \frac{11\pi}{2}$ ÷. But $\cos x > 0$ (x must be in 1st or 4th Quadrant) the possible values are $\frac{\pi}{2}, \frac{3\pi}{2}$. *.*.. Case II: If $\cos x < 0$, $\sin x(-\cos x) = \frac{1}{2\sqrt{2}} \Rightarrow \sin 2x = -\frac{1}{\sqrt{2}}$ $2x = \frac{5\pi}{4}, \frac{7\pi}{4}$.**.**. $x=\frac{5\pi}{2}, \frac{7\pi}{2}$ *.*.. The values of x satisfying the given equation *.*.. between 0 and 2π are $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ These are in A.P. with common difference $\frac{\pi}{4}$. $16^{\sin^2 x} + 16^{\cos^2 x} = 10$ 3. $\Rightarrow 16^{\sin^2 x} + 16^{1-\sin^2 x} = 10$ $\Rightarrow 16^{\sin^2 x} + \frac{16}{16^{\sin^2 x}} = 10$

Chapter 03: Trigonometric Functions Let $t = 16^{\sin^2 x}$ $\Rightarrow t + \frac{16}{t} = 10 \qquad \Rightarrow t^2 + 16 = 10t$ $\Rightarrow t^2 - 10t + 16 = 0 \qquad \Rightarrow (t - 2) (t - 8) = 0$ \Rightarrow t = 2 or t = 8 $\Rightarrow 16^{\sin^2 x} = 2 \text{ or } 16^{\sin^2 x} = 8$ $\rightarrow 2^{4\sin^2 x} = 2^1 \text{ or } 2^{4\sin^2 x} = 2^3$ $\Rightarrow 4 \sin^2 x = 1 \text{ or } 4 \sin^2 x = 3$ $\Rightarrow \sin^2 x = \frac{1}{4} \text{ or } \sin^2 x = \frac{3}{4}$ $\Rightarrow \sin^2 x = \sin^2 \left(\frac{\pi}{6}\right)$ or $\sin^2 x = \sin^2 \left(\frac{\pi}{3}\right)$ $\Rightarrow x = n\pi \pm \frac{\pi}{6} \text{ or } x = n\pi \pm \frac{\pi}{2}$ $\Rightarrow x = \frac{\pi}{6}, \frac{7\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6} \text{ or } x = \frac{\pi}{3}, \frac{4\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$ *.*.. There are 8 solutions in $[0, 2\pi]$. 4. The maximum value of a $\sin x + b \cos x$ is $\sqrt{a^2 + b^2}$ Maximum value of $\sin x + \cos x$ is $\sqrt{2}$ and the *.*.. maximum value of $1 + \sin 2x$ is 2. *.*.. The given equation will be true only when $\sin x + \cos x = \sqrt{2}$ and $1 + \sin 2x = 2$ If $\sin x + \cos x = \sqrt{2}$ $\Rightarrow \cos x \cdot \frac{1}{\sqrt{2}} + \sin x \cdot \frac{1}{\sqrt{2}} = 1$ $\Rightarrow \cos x \cos \frac{\pi}{4} + \sin x \sin \frac{\pi}{4} = 1$ $\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = 1$ $\Rightarrow x - \frac{\pi}{4} = 2n\pi$, $\Rightarrow x = 2n\pi + \frac{\pi}{4}$ (i) $1 + \sin 2x = 2 \implies \sin 2x = 1$ $\Rightarrow \sin 2x = \sin \frac{\pi}{2}$ $\Rightarrow 2x = n\pi + (-1)^n \cdot \frac{\pi}{2}$ $\Rightarrow x = \frac{n\pi}{2} + (-1)^n \cdot \frac{\pi}{4} \quad \dots (ii)$ The value of $x \in [-\pi, \pi]$ which satisfies both (i) and (ii) is $\frac{\pi}{4}$.

MHT-CET Triumph Maths (MCQs)

- $\sin^4 x + \cos^4 x = \sin x \cos x$ 5. $\Rightarrow (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x = \sin x \cos x$ $\Rightarrow 1 - \frac{1}{2} (2\sin x \cos x)^2 = \frac{1}{2} \cdot 2\sin x \cos x$ $\Rightarrow 1 - \frac{1}{2}\sin^2 2x = \frac{1}{2}\sin 2x$ $\Rightarrow \sin^2 2x + \sin 2x - 2 = 0$ \Rightarrow (sin 2x + 2) (sin 2x - 1) = 0 $\Rightarrow \sin 2x = 1$ $\ldots [\because \sin 2x \neq -2]$ $\Rightarrow \sin 2x = \sin \frac{\pi}{2}$ $\Rightarrow 2x = n\pi + (-1)^n \frac{\pi}{2}$ $\Rightarrow x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$ The value of x in $[0, 2\pi]$ are $\frac{\pi}{4}$ and $\frac{5\pi}{4}$. *.*.. There are 2 solutions. *.*.. $\tan^4 x - 2 \sec^2 x + a^2 = 0$ 6.
- $\Rightarrow \tan^{4} x 2(1 + \tan^{2} x) + a^{2} = 0$ $\Rightarrow \tan^{4} x - 2(1 + \tan^{2} x) + a^{2} = 0$ $\Rightarrow \tan^{4} x - 2\tan^{2} x - 2 + a^{2} = 0$ $\Rightarrow \tan^{4} x - 2\tan^{2} x + 1 - 3 + a^{2} = 0$ $\Rightarrow (\tan^{2} x - 1)^{2} = 3 - a^{2}$ $\Rightarrow 3 - a^{2} \ge 0$ $\Rightarrow a^{2} \le 3$ $\Rightarrow |a| \le \sqrt{3}$

7.
$$3 \cos x + 4 \sin x = 5$$

$$\therefore \quad 3 \left(\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 4 \left(\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) = 5$$

Let $\tan \frac{x}{2} = t$

$$\therefore \quad 3 - 3t^2 + 8t = 5 + 5t^2 \qquad \Rightarrow 8t^2 - 8t + 2 = 0$$

$$\Rightarrow 4t^2 - 4t + 1 = 0 \qquad \Rightarrow (2t - 1)^2 = 0$$

$$\Rightarrow t = \frac{1}{2} \qquad \Rightarrow \tan \frac{x}{2} = \tan \alpha$$

$$\Rightarrow \frac{x}{2} = n\pi + \alpha \qquad \Rightarrow x = 2n\pi + 2\alpha$$

8.
$$\tan \theta + \tan \left(\theta + \frac{\pi}{3} \right) + \tan \left(\theta + \frac{2\pi}{3} \right) = 3$$

$$\tan \theta + \sqrt{3} \qquad \tan \theta - \sqrt{3}$$

$$\Rightarrow \tan \theta + \frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} + \frac{\tan \theta}{1 + \sqrt{3} \tan \theta} = 3$$
$$\tan \theta (1 - 3 \tan^2 \theta) + (\tan \theta + \sqrt{3})(1 + \sqrt{3} \tan \theta)$$
$$\Rightarrow \frac{+(\tan \theta - \sqrt{3})(1 - \sqrt{3} \tan \theta)}{1 - 3 \tan^2 \theta} = 3$$

$$\Rightarrow \frac{9\tan\theta - 3\tan^3\theta}{1 - 3\tan^2\theta} = 3$$

$$\Rightarrow 3\left(\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}\right) = 3$$

$$\Rightarrow 3\tan 3\theta = 3$$

$$\Rightarrow \tan 3\theta = 1 = \tan\frac{\pi}{4}$$

$$\Rightarrow \theta = (4n + 1)\frac{\pi}{12}$$

9. $\frac{5}{6} > \frac{20}{37}$ \therefore $\tan\frac{A}{2} > \tan\frac{B}{2}$
 \therefore $\frac{A}{2} > \frac{B}{2}$ \therefore $A > B$
 \therefore $\tan\left(\frac{A}{2} + \frac{B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}}$
 $\Rightarrow \tan\left(\frac{A + B}{2}\right) = \frac{\frac{5}{6} + \frac{20}{37}}{1 - \frac{5}{6} \cdot \frac{20}{37}}$
 $\Rightarrow \tan\left(\frac{\pi - C}{2}\right) = \frac{185 + 120}{122 - 100}$
 $\Rightarrow \tan\left(\frac{\pi}{2} - \frac{C}{2}\right) = \frac{305}{122}$
 $\Rightarrow \cot\frac{C}{2} = \frac{305}{122} \Rightarrow \tan\frac{C}{2} = \frac{122}{305}$
Since, $\frac{20}{37} > \frac{122}{305}$
 \therefore $\tan\frac{B}{2} > \tan\frac{C}{2}$
 $\Rightarrow \frac{B}{2} > \frac{C}{2} \Rightarrow B > C$
 $\Rightarrow A > B > C$
 $\Rightarrow A > B > C$
 $\Rightarrow A > B > C$
 $\Rightarrow \frac{1}{2} \operatorname{bcsin} A = \frac{9\sqrt{3}}{2}$
 $\Rightarrow \frac{1}{2} \operatorname{bcsin} A = \frac{9\sqrt{3}}{2}$
 $\qquad \ldots \left[\because \sin A = \sin\frac{2\pi}{3} + \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{2}\right]$

$$\Rightarrow bc = 18$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\Rightarrow \cos \frac{2\pi}{3} = \frac{(b - c)^{2} + 2bc - a^{2}}{2bc}$$

$$\Rightarrow -\frac{1}{2} = \frac{(3\sqrt{3})^{2} + 2 \times 18 - a^{2}}{2 \times 18}$$

$$\Rightarrow -18 = 27 + 36 - a^{2}$$

$$\Rightarrow a^{2} = 27 + 36 + 18 = 81$$

$$\Rightarrow a = 9 \text{ cm}$$
11.
B
$$\int_{30^{\circ}} \sqrt{3} + 1$$

$$\Rightarrow a = 9 \text{ cm}$$

$$11.$$
Let $\angle B = 30^{\circ}, \angle C = 45^{\circ} \therefore \angle A = 105^{\circ}$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$\therefore \quad \frac{\sin 105^{\circ}}{\sqrt{2} + 1} = \frac{\sin 30^{\circ}}{b} = \frac{\sin 45^{\circ}}{c}$$

$$\therefore \qquad b = \frac{\left(\sqrt{3}+1\right)\sin 30^{\circ}}{\sin 105^{\circ}} = \frac{\sqrt{3}+1}{2\sin 105^{\circ}}$$

$$c = \frac{\left(\sqrt{3}+1\right)\sin 45^{\circ}}{\sin 105^{\circ}} = \frac{\sqrt{3}+1}{\sqrt{2}\sin 105^{\circ}}$$

$$A(\Delta ABC) = \frac{1}{2}bc \sin A$$

$$= \frac{1}{2} \times \frac{\sqrt{3}+1}{2\sin 105^{\circ}} \times \frac{\sqrt{3}+1}{\sqrt{2}\sin 105^{\circ}} \times \sin 105^{\circ}$$

$$= \frac{\left(\sqrt{3}+1\right)^{2}}{4\sqrt{2}\sin (60^{\circ}+45^{\circ})}$$

$$= \frac{\left(\sqrt{3}+1\right)^{2}}{4\sqrt{2}\left(\frac{\sqrt{3}}{2}\cdot\frac{1}{\sqrt{2}}+\frac{1}{2}\cdot\frac{1}{\sqrt{2}}\right)}$$

$$= \frac{\left(\sqrt{3}+1\right)^{2}}{4\sqrt{2}\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)}$$

$$= \frac{\sqrt{3}+1}{2}$$

Chapter 03: Trigonometric Functions Let $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = k = \frac{2(a+b+c)}{36}$ 12. $=\frac{a+b+c}{18}$(By property of equal ratio) b + c = 11k, c + a = 12k, a + b = 13k,*.*.. a + b + c = 18 k*.*.. a = 7k, b = 6k, c = 5k $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ $=\frac{36k^2+25k^2-49k^2}{2(6k)(5k)}$ $=\frac{12k^2}{60k^2}=\frac{1}{5}$ $\therefore \cos A = \frac{1}{5}$ 13. n + 1Let AC = n, AB = n + 1, BC = n + 2Largest angle is A and smallest angle is B. A = 2B*.*.. Since, $A + B + C = 180^{\circ}$ *.*.. $3B + C = 180^{\circ}$ \Rightarrow C = 180° - 3B $\Rightarrow \sin C = \sin(180^\circ - 3B) = \sin 3B$ $\Rightarrow \frac{\sin A}{n+2} = \frac{\sin B}{n} = \frac{\sin C}{n+1}$ $\Rightarrow \frac{\sin 2B}{n+2} = \frac{\sin B}{n} = \frac{\sin 3B}{n+1}$ $\Rightarrow \frac{2\sin B\cos B}{n+2} = \frac{\sin B}{n} = \frac{3\sin B - 4\sin^3 B}{n+1}$ $\Rightarrow \frac{2\cos B}{n+2} = \frac{1}{n} = \frac{3-4\sin^2 B}{n+1}$ $\therefore \qquad \cos \mathbf{B} = \frac{n+2}{2n}, \ 3-4\sin^2 \mathbf{B} = \frac{n+1}{n}$ $\therefore \quad 3-4(1-\cos^2 B)=\frac{n+1}{n}$ $\therefore \qquad 3-4+4\left(\frac{n+2}{2n}\right)^2 = \frac{n+1}{n}$ $\Rightarrow -1 + \frac{n^2 + 4n + 4}{n^2} = \frac{n+1}{n}$ $\Rightarrow -n^2 + n^2 + 4n + 4 = n^2 + n$

MHT-CET Triumph Maths (MCQs) \Rightarrow n² - 3n - 4 = 0 \Rightarrow (n + 1) (n - 4) = 0 \Rightarrow n = -1 or n = 4 But n cannot be negative. n = 4*.*.. The sides of the Δ are 4, 5, 6. *.*.. 14. C In $\triangle ODC$, OD = OC = r, $\angle DOC = \frac{360^{\circ}}{5} = 72^{\circ}$ A($\triangle ODC$) = $\frac{1}{2}$ r.r. sin 72° = $\frac{1}{2}$ r² sin 72° *.*.. A_2 = Area of pentagon = $\frac{5}{2}r^2 \sin 72^\circ$ *:*.. $\therefore \quad \frac{A_1 = \text{Area of circle} = \pi r^2}{A_2} = \frac{\pi r^2}{\frac{5}{2}r^2 \sin 72^\circ}$ $=\frac{2\pi}{5\cos 18^\circ}=\frac{2\pi}{5}\sec 18^\circ=\frac{2\pi}{5}\sec \frac{\pi}{10}$ 15. Let a = 4k, b = 5k, c = 6kNow, $s = \frac{a+b+c}{2} = \frac{4k+5k+6k}{2} = \frac{15k}{2}$ $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{\frac{15k}{2}\left(\frac{15k}{2}-4k\right)\left(\frac{15k}{2}-5k\right)\left(\frac{15k}{2}-6k\right)}$ $=\sqrt{\frac{15k}{2}}\times\frac{7k}{2}\times\frac{5k}{2}\times\frac{3k}{2}=\frac{15\sqrt{7}}{4}k^{2}$ By sine Rule, $\frac{a}{\sin A} = 2R$ \therefore sin $A = \frac{a}{2R}$

 $\Delta = \frac{1}{2} b c \sin A$ $\Rightarrow \Delta = \frac{1}{2} b c \cdot \frac{a}{2R} = \frac{abc}{4R}$ $R = \frac{abc}{4\Delta} = \frac{4k.5k.6k}{15\sqrt{7}k^2} = \frac{8}{\sqrt{7}}k$ Also $\Delta = rs$, where r = Radius of incircle of ΔABC $r = \frac{\Delta}{s} = \frac{\frac{15\sqrt{7}}{4} \cdot k^2}{\frac{15k}{2}} = \frac{\sqrt{7}}{2}k$

$$\frac{R}{r} = \frac{8}{\sqrt{7}} k \times \frac{2}{\sqrt{7}k} = \frac{16}{7}$$
$$\frac{R}{r} = \frac{16}{7}$$

:.

16.
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
$$\Rightarrow \cos 30^\circ = \frac{4 + 3 - a^2}{4\sqrt{3}}$$
$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{7 - a^2}{\sqrt{2}} \Rightarrow 7 - a^2 = 6$$

$$2 \quad 4\sqrt{3}$$

$$\Rightarrow a^{2} = 1$$

$$\Rightarrow a = 1 \quad \dots [\because a \neq -1]$$

$$A = \frac{1}{2} \operatorname{hesin} A = \frac{1}{2} \times 2 \times \sqrt{3} \times \sin 30^{\circ}$$

$$\Delta = \frac{-1}{2} \operatorname{bc} \sin A - \frac{-1}{2} \times 2 \times \sqrt{3} \times \sin 30^{-1}$$
$$= \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{2}$$
$$s = \frac{a + b + c}{2} = \frac{1 + 2 + \sqrt{3}}{2} = \frac{3 + \sqrt{3}}{2}$$

$$\Delta = rs$$

$$\therefore \quad r = \frac{\Delta}{s} = \frac{\sqrt{3}}{2} \times \frac{2}{3 + \sqrt{3}}$$

$$= \frac{\sqrt{3}(3 - \sqrt{3})}{9 - 3} = \frac{3\sqrt{3} - 3}{6} = \frac{\sqrt{3} - 1}{2}$$

17.
$$a^4 + b^4 + c^4 = 2a^2(b^2 + c^2)$$

∴ $a^4 + b^4 + c^4 - 2a^2b^2 - 2a^2c^2 = 0$
∴ $a^4 + b^4 + c^4 - 2a^2b^2 + 2b^2c^2 - 2a^2c^2 = 2b^2c^2$
∴ $(b^2 + c^2 - a^2)^2 = (\sqrt{2}bc)^2$
∴ $b^2 + c^2 - a^2 = \sqrt{2}bc$

$$\therefore \quad \cos \mathbf{A} = \frac{\mathbf{b}^2 + \mathbf{c}^2 - \mathbf{a}^2}{2\mathbf{b}\mathbf{c}} = \frac{\sqrt{2}\mathbf{b}\mathbf{c}}{2\mathbf{b}\mathbf{c}} = \frac{1}{\sqrt{2}}$$

...

Let length of altitude = pSince, $A + B + C = \pi$ $\therefore \qquad \mathbf{A} + \frac{\pi}{8} + \frac{5\pi}{8} = \pi$ $\therefore \qquad A = \pi - \frac{\pi}{8} - \frac{5\pi}{8} = \frac{\pi}{4}$ Area of $\Delta = \frac{1}{2}$ ap $= \frac{1}{2}$ bc sin A \therefore ap = bc sin $\frac{\pi}{4}$ \therefore ap = bc $\times \frac{1}{\sqrt{2}}$ \therefore $p = \frac{bc}{\sqrt{2}a}$(i) By sine rule, $\frac{a}{\sin\frac{\pi}{4}} = \frac{b}{\sin\frac{\pi}{8}} = \frac{c}{\sin\frac{5\pi}{8}}$ $\therefore \qquad b = \frac{a\sin\frac{\pi}{8}}{\frac{1}{2}} = \sqrt{2}a\sin\frac{\pi}{8}$ $c = \frac{a\sin\frac{5\pi}{8}}{\frac{1}{\sqrt{2}}} = \sqrt{2} a\sin\frac{5\pi}{8}$ From (i), *.*.. $p = \frac{\sqrt{2}a\sin\frac{\pi}{8}.\sqrt{2}a\sin\frac{5\pi}{8}}{\sqrt{2}a} = \sqrt{2}a\sin\frac{5\pi}{8}\sin\frac{\pi}{8}$ $=\frac{\sqrt{2a}}{2}\left(2\sin\frac{5\pi}{8}\sin\frac{\pi}{8}\right)$ $=\frac{a}{\sqrt{2}}\left[\cos\left(\frac{5\pi}{8}-\frac{\pi}{8}\right)-\cos\left(\frac{5\pi}{8}+\frac{\pi}{8}\right)\right]$ $=\frac{a}{\sqrt{2}}\left[\cos\frac{\pi}{2}-\cos\frac{3\pi}{4}\right]$ $=\frac{a}{\sqrt{2}}\left[0-\left(-\frac{1}{\sqrt{2}}\right)\right]$ $P = \frac{a}{2}$ *.*..

19.
$$\tan \frac{A}{2}$$
 and $\tan \frac{B}{2}$ are the roots of the quadratic
equation $6x^2 - 5x + 1 = 0$
 $\therefore \quad \tan \frac{A}{2} + \tan \frac{B}{2} = \frac{5}{6}, \tan \frac{A}{2}, \tan \frac{B}{2} = \frac{1}{6}$
 $\therefore \quad \tan\left(\frac{A}{2} + \frac{B}{2}\right) = \frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{1 - \tan \frac{A}{2} \tan \frac{B}{2}} = \frac{\frac{5}{6}}{1 - \frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1$
 $\therefore \quad \tan\left(\frac{A + B}{2}\right) = 1$
 $\therefore \quad \tan\left(\frac{A + B}{2}\right) = 1$
 $\therefore \quad A + B = \frac{\pi}{4}$
 $\therefore \quad A + B = \frac{\pi}{2} \qquad \therefore \angle C = \frac{\pi}{2}$
 $\therefore \quad \Delta ABC \text{ is a right angled triangle.}$
20. $r = \frac{A}{s} = \frac{\frac{1}{2} \arcsin B}{\frac{1}{2} (a + b + c)} = \frac{ac}{a + b + c}$
 $\dots [\because \sin B = \sin 90^{\circ} = 1]$
 $\therefore \quad r = \frac{ac}{a + c + b} \times \frac{a + c - b}{a^2 + c^2 + 2ac - b^2}$
 $= \frac{a(a + c - b)}{(a + c)^2 - b^2} = \frac{a(a + c - b)}{a^2 + c^2 + 2ac - b^2}$
 $= \frac{a + c - b}{2}$ $\dots [\because a^2 + c^2 = b^2]$
 $\therefore \quad Diameter = a + c - b$
21. $\angle A = 55^{\circ}, \angle B = 15^{\circ}, \angle C = 110^{\circ}$
 $\therefore \quad a = k \sin 55^{\circ}, b = k \sin 15^{\circ}, c = k \sin 110^{\circ}$
 $\therefore \quad c^2 - a^2 = k^2 \sin^2 110^{\circ} - k^2 \sin^2 55^{\circ}$
 $= k^2(\sin 110^{\circ} + \sin 55^{\circ})(\sin 110^{\circ} - \sin 55^{\circ})$
 $= k^2(2 \sin \frac{165^{\circ}}{2} \cos \frac{55^{\circ}}{2})(2 \sin \frac{55^{\circ}}{2} \cos \frac{165^{\circ}}{2})$
 $= k^2 \sin 15^{\circ} \sin 55^{\circ}$
 $= k^2 \sin 15^{\circ} \sin 55^{\circ}$
 $= (k \sin 55^{\circ})(k \sin 15^{\circ})$
 $= ab$

MHT-CET Triumph Maths (MCQs)

22. A, B, C are in A.P.

$$\therefore A + C = 2B$$
Also, $A + B + C = 180^{\circ}$

$$\therefore \angle B = 60^{\circ}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k$$

$$\therefore \sin A = ak, \sin B = bk, \sin C = ck$$

$$\therefore \frac{a}{c} \sin 2C + \frac{c}{a} \sin 2A$$

$$= \frac{a}{c} (2 \sin C \cos C) + \frac{c}{a} (2 \sin A \cos A)$$

$$= \frac{a}{c} (2 ck \cos C) + \frac{c}{a} (2ak \cos A)$$

$$= 2ka \cos C + 2kc \cos A$$

$$= 2k(a \cos C + c \cos A)$$

$$= 2kb \qquad \dots [\because b = a \cos C + c \cos A]$$

$$= 2 \sin B$$

$$= 2 \times \frac{\sqrt{3}}{2} \qquad \dots [\because \angle B = 60^{\circ}]$$

$$= \sqrt{3}$$

23.
$$2 \cot^{-1} 3 = 2 \tan^{-1} \left(\frac{1}{3}\right) = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$$

$$= \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{3}}{1 - \frac{1}{3} \cdot \frac{1}{3}}\right)$$
$$= \tan^{-1} \left(\frac{3 + 3}{9 - 1}\right)$$
$$= \tan^{-1} \left(\frac{6}{8}\right)$$
$$= \tan^{-1} \frac{3}{4}$$
$$\therefore \quad \cot \left(\frac{\pi}{4} - 2 \cot^{-1} 3\right) = \frac{1}{\tan \left(\frac{\pi}{4} - \tan^{-1} \frac{3}{4}\right)}$$
$$= \frac{1 + \tan \frac{\pi}{4} \tan \left(\tan^{-1} \frac{3}{4}\right)}{\tan \frac{\pi}{4} - \tan \left(\tan^{-1} \frac{3}{4}\right)}$$
$$= \frac{1 + 1 \cdot \frac{3}{4}}{1 - \frac{3}{4}} = \frac{4 + 3}{4 - 3} = 7$$

24. Let
$$\frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right) = \theta$$

 $\therefore \cos^{-1}\left(\frac{a}{b}\right) = 2\theta$
 $\therefore \cos 2\theta = \frac{a}{b}$
 $\therefore \tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right]$
 $= \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right)$
 $= \frac{1 + \tan\theta}{1 - \tan\theta} + \frac{1 - \tan\theta}{1 + \tan\theta}$
 $= \frac{(1 + \tan\theta)^2 + (1 - \tan\theta)^2}{1 - \tan^2\theta}$
 $= \frac{2(1 + \tan^2\theta)}{1 - \tan^2\theta}$
 $= \frac{2}{\frac{1 - \tan^2\theta}{1 + \tan^2\theta}} = \frac{2}{\cos 2\theta} = \frac{2}{\frac{a}{b}} = \frac{2b}{a}$

...

:.

:.

25.
$$\cos^{-1} \alpha - \cos^{-1} \beta = \cos^{-1} \left[\alpha \beta + \sqrt{1 - \alpha^2} \sqrt{1 - \beta^2} \right]$$

Given, $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$
 $\therefore \quad \cos^{-1} \left[\frac{xy}{2} + \sqrt{(1 - x^2)\left(1 - \frac{y^2}{4}\right)} \right] = \alpha$
 $\therefore \quad \cos \alpha = \frac{xy}{2} + \sqrt{(1 - x^2)\left(1 - \frac{y^2}{4}\right)}$
 $\therefore \quad \sqrt{(1 - x^2)\left(1 - \frac{y^2}{4}\right)} = \cos \alpha - \frac{xy}{2}$
 $\therefore \quad 2 \sqrt{(1 - x^2)\left(1 - \frac{y^2}{4}\right)} = 2 \cos \alpha - xy$
Squaring on both sides, we get
 $4(1 - x^2)\left(1 - \frac{y^2}{4}\right) = 4 \cos^2 \alpha - 4xy \cos \alpha + x^2y^2$
 $\therefore \quad 4 - y^2 - 4x^2 + x^2y^2 = 4 \cos^2 \alpha - 4xy \cos \alpha + x^2y^2$

 $\therefore \quad 4x^2 + y^2 - 4xy \cos \alpha = 4 - 4\cos^2 \alpha$ $\therefore \qquad 4x^2 + y^2 - 4xy \cos \alpha = 4 \sin^2 \alpha$

26.
$$\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}$$

$$\therefore \quad \sin^{-1} 2x = \frac{\pi}{3} - \sin^{-1} x$$

$$\therefore \quad 2x = \sin\left(\frac{\pi}{3} - \sin^{-1} x\right)$$

$$= \sin \frac{\pi}{3} \cos(\sin^{-1} x) - \cos \frac{\pi}{3} \sin(\sin^{-1} x)$$

$$\Rightarrow 2x = \frac{\sqrt{3}}{2} \cos(\sin^{-1} x) - \frac{1}{2} \cdot x \qquad \dots (i)$$

Let $\sin^{-1} x = \theta$

$$\therefore \quad \sin \theta = x$$

 $\cos \theta = \sqrt{1 - x^2}$

$$\therefore \quad \cos(\sin^{-1} x) = \sqrt{1 - x^2} \qquad \dots (ii)$$

From (i) and (ii), we get

$$2x = \frac{\sqrt{3}}{2} \cdot \sqrt{1 - x^2} - \frac{1}{2}x$$

$$\therefore \quad 4x = \sqrt{3}\sqrt{1 - x^2} - x$$

$$\therefore \quad 5x = \sqrt{3} \sqrt{1 - x^2}$$

$$\therefore \quad 25x^2 = 3 - 3x^2 \text{ (squaring both sides)}$$

$$\therefore \quad 28x^2 = 3$$

$$\therefore \quad x^2 = \frac{3}{28}$$

$$\therefore \qquad x = \sqrt{\frac{3}{28}} = \sqrt{\frac{1}{4} \cdot \frac{3}{7}} = \frac{1}{2}\sqrt{\frac{3}{7}}$$

(From the given relation it can be seen that *x* is positive)

27. L.H.S.
$$= \sin^{-1} \left(\sin \frac{33\pi}{7} \right) + \cos^{-1} \left(\cos \frac{46\pi}{7} \right)$$

 $+ \tan^{-1} \left(-\tan \frac{13\pi}{8} \right) + \cot^{-1} \left(-\cot \frac{19\pi}{8} \right)$
 $= \sin^{-1} \left[\sin \left(5\pi - \frac{2\pi}{7} \right) \right] + \cos^{-1} \left[\cos \left(7\pi - \frac{3\pi}{7} \right) \right]$
 $+ \tan^{-1} \left[-\tan \left(2\pi - \frac{3\pi}{8} \right) \right]$
 $+ \cot^{-1} \left[-\cot \left(3\pi - \frac{5\pi}{8} \right) \right]$
 $= \sin^{-1} \left(\sin \frac{2\pi}{7} \right) + \cos^{-1} \left(-\cos \frac{3\pi}{7} \right)$
 $+ \tan^{-1} \left(\tan \frac{3\pi}{8} \right) + \cot^{-1} \left(\cot \frac{5\pi}{8} \right)$

Chapter 03: Trigonometric Functions $=\frac{2\pi}{7}+\pi-\frac{3\pi}{7}+\frac{3\pi}{8}+\frac{5\pi}{8}$[:: $\cos^{-1}(-x) = \pi - \cos^{-1}x$] $=\pi-\frac{\pi}{7}+\pi=2\pi-\frac{\pi}{7}=\frac{13\pi}{7}$ $\therefore \quad \frac{13\pi}{7} = \frac{a\pi}{b}$ $\therefore \quad a = 13, b = 7$ $\therefore \quad a + b = 13 + 7 = 20$ 28. $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}$ $=\sin^{-1}\left[\frac{4}{5}\sqrt{1-\left(\frac{5}{13}\right)^2}+\frac{5}{13}\sqrt{1-\left(\frac{4}{5}\right)^2}\right]$ $+\sin^{-1}\frac{16}{65}$ $=\sin^{-1}\left[\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5}\right]+\sin^{-1}\frac{16}{65}$ $=\sin^{-1}\left(\frac{48+15}{65}\right)+\sin^{-1}\left(\frac{16}{65}\right)$ $=\sin^{-1}\left(\frac{63}{65}\right)+\sin^{-1}\left(\frac{16}{65}\right)$ $=\cos^{-1}\left(\sqrt{1-\left(\frac{63}{65}\right)^2}\right)+\sin^{-1}\left(\frac{16}{65}\right)$ $=\cos^{-1}\left(\frac{16}{65}\right) + \sin^{-1}\left(\frac{16}{65}\right)$ $=\frac{\pi}{2}$ 29. $\sqrt{2} = 1.414$ $\therefore \quad 2\sqrt{2} - 1 = 2 \times 1.414 - 1 = 2.828 - 1 = 1.828$ $\therefore \quad 2\sqrt{2} - 1 > \sqrt{3} \qquad \qquad \dots [\because \sqrt{3} = 1.732]$

:
$$\tan^{-1}(2\sqrt{2}-1) > \tan^{-1}(\sqrt{3})$$

 \dots [: tan⁻¹ x is an increasing function]

$$\therefore \quad 2 \tan^{-1} (2\sqrt{2} - 1) > 2 \times \frac{\pi}{3}$$
$$\therefore \quad A > \frac{2\pi}{3} \qquad \dots (i)$$

 $\sin 3 \theta = 3 \sin \theta - 4 \sin^3 \theta$ $\therefore \qquad 3\theta = \sin^{-1} (3 \sin \theta - 4 \sin^3 \theta)$

MHT-CET Triumph Maths (MCQs) Put $\sin \theta = \frac{1}{3}$ $\therefore \quad \theta = \sin^{-1}\left(\frac{1}{3}\right)$ \therefore 3 sin⁻¹ $\left(\frac{1}{3}\right) = sin^{-1} \left| 3 \cdot \frac{1}{3} - 4 \left(\frac{1}{3}\right)^3 \right|$ $=\sin^{-1}\left(1-\frac{4}{27}\right)$ $=\sin^{-1}\left(\frac{23}{27}\right)=\sin^{-1}(0.852)$ $\frac{\sqrt{3}}{2} = \frac{1.732}{2} = 0.866, \ 0.852 < 0.866$ $\sin^{-1}(0.852) < \sin^{-1}(0.866)$ *.*.. \dots [:: sin⁻¹ x is also an increasing function] $\therefore \qquad 3 \sin^{-1}\left(\frac{1}{3}\right) < \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ \therefore 3 sin⁻¹ $\left(\frac{1}{3}\right) < \frac{\pi}{3}$(ii) $\sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}(0.6) < \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ \therefore $\sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{3}$(iii) From (ii) and (iii), we get B = 3 sin⁻¹ $\left(\frac{1}{3}\right)$ + sin⁻¹ $\left(\frac{3}{5}\right) < \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$ $B < \frac{2\pi}{3}$:.(iv) From (i) and (iv), A > B $\cot^{-1} x + \cot^{-1} y + \cot^{-1} z = \frac{\pi}{2}$ 30. $\frac{\pi}{2} - \tan^{-1}x + \frac{\pi}{2} - \tan^{-1}y + \frac{\pi}{2} - \tan^{-1}z = \frac{\pi}{2}$ ∴. $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$ *.*.. $\tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) = \tan \pi = 0$ *.*..

Let A = tan⁻¹ x, B = tan⁻¹ y, C = tan⁻¹ z
∴ tan (A + B + C) =
$$\frac{tan(A + B) + tan C}{1 - tan (A + B) tan C}$$

= $\frac{tan A + tan B}{1 - tan A tan B} + tan C$
= $\frac{tan A + tan B}{1 - tan A tan B} \cdot tan C$
= $\frac{tan A + tan B + tan C - tan A tan B tan C}{1 - tan A tan B - tan B tan C - tan C tan A}$
∴ tan (A + B + C) = 0
⇒ tan A + tan B + tan C = tan A tan B tan C
∴ tan (tan⁻¹ x) + tan(tan⁻¹ y) + tan(tan⁻¹ z)
= tan(tan⁻¹ x) tan(tan⁻¹ y) tan(tan⁻¹ z)
∴ x + y + z = xyz
31. $\cos^{-1} \left\{ \frac{1}{\sqrt{2}} \left(\cos \frac{9\pi}{10} - \sin \frac{9\pi}{10} \right] \right\}$
= $\cos^{-1} \left[\cos \left(\frac{\pi}{4} + \frac{9\pi}{10} \right) \right]$
= $\cos^{-1} \left[\cos \left(\frac{5\pi + 18\pi}{20} \right) \right]$
= $\cos^{-1} \left[\cos \left(\frac{23\pi}{20} \right) \right]$
= $\cos^{-1} \left[\cos \left(\frac{17\pi}{20} \right) \right]$ and $0 \le \frac{17\pi}{20} \le \pi$
= $\frac{17\pi}{20}$
∴ Principal value is $\frac{17\pi}{20}$.
32. $\tan^{-1} 2 + \tan^{-1} 3 = \pi + \tan^{-1} \left(\frac{2+3}{1-2\times3} \right)$
....[: 2 × 3 > 1]
= $\pi + \tan^{-1} (-1)$
= $\pi + \tan^{-1} (-1)$

Chapter 03: Trigonometric Functions

33.
$$\tan^{-1} \frac{1}{1+2x} + \tan^{-1} \frac{1}{4x+1} = \tan^{-1} \frac{2}{x^2}$$

 $\therefore \tan^{-1} \left(\frac{\frac{1}{1+2x} + \frac{1}{4x+1}}{1-\frac{1}{1+2x} \cdot \frac{1}{4x+1}} \right) = \tan^{-1} \frac{2}{x^2}$
 $\therefore \frac{4x+1+2x+1}{(1+2x)(4x+1)-1} = \frac{2}{x^2}$
 $\therefore \frac{6x+2}{4x+8x^2+1+2x-1} = \frac{2}{x^2}$
 $\therefore x^2 (6x+2) = 2(8x^2+6x)$
 $\therefore 6x^3 + 2x^2 - 16x^2 - 12x = 0$
 $\therefore 6x^3 - 14x^2 - 12x = 0$
 $\therefore x(3x^2 - 7x - 6) = 0$
 $\therefore x(x-3) (3x+2) = 0$
 $\therefore x = 0, 3, -\frac{2}{3}$
But $x > 0$, $\therefore x = 3$
34. $\cot^{-1} x + \sin^{-1} \frac{1}{\sqrt{5}} = \frac{\pi}{4}$
 $\dots \left[\because \sin^{-1} \frac{1}{x} + \tan^{-1} \frac{1}{2} = \frac{\pi}{4}$
 $\dots \left[\because \sin^{-1} x = \tan^{-1} \frac{x}{\sqrt{1-x^2}} \right]$
 $\therefore \tan^{-1} \frac{1}{x} + \tan^{-1} \frac{1}{2} = \frac{\pi}{4}$
 $\therefore \tan^{-1} \frac{1}{x} + \tan^{-1} \frac{1}{2} = \frac{\pi}{4}$
 $\therefore \tan^{-1} \left(\frac{\frac{1}{x} + \frac{1}{2}}{1 - \frac{1}{x} \cdot \frac{1}{2}} \right) = \frac{\pi}{4}$
 $\therefore \tan^{-1} \left(\frac{1}{x} + \frac{1}{2} \right) = \frac{\pi}{4}$
 $\therefore 2 + x = 2x - 1$
 $\therefore x = 3$

269

Textbook Chapter No.

Pair of Straight Lines

Hints

- **Classical Thinking** Joint equation of pair of lines having slopes 1. *.*.. m₁ and m₂ and passing through the origin is $y^2 - (m_1 + m_2)xy + m_1m_2x^2 = 0$ 9 $\Rightarrow 3x^2 - 4xy + y^2 = 0$ **Alternate method:** Equations of the lines are y = x and y = 3xrespectively. i.e. y - x = 0 and y - 3x = 0*.*.. the combined equation of the pair of lines is *.*.. (y-x)(y-3x) = 0 $v^{2} - 3xv - xv + 3x^{2} = 0 \implies 3x^{2} - 4xv + v^{2} = 0$ *.*.. 2. The required equation is $y^2 - \left(\frac{8}{3}\right)xy - x^2 = 0$ $\Rightarrow 3x^2 + 8xy - 3y^2 = 0$. . 3. The required equation is 11. $y^2 - \frac{3}{2}xy - x^2 = 0$ $\Rightarrow 2x^2 + 3xy - 2y^2 = 0$ $x^{2} + xy - 12y^{2} = 0$ 4. $\Rightarrow x^2 + 4xy - 3xy - 12y^2 = 0$ $\Rightarrow x(x+4y) - 3y(x+4y) = 0$ $\Rightarrow (x-3y)(x+4y) = 0$ $\Rightarrow x - 3y = 0$ and x + 4y = 05. It is a homogeneous equation of degree 2 in xand *v*. *.*.. Correct option is (C). $3x^2 - 10xy - 8y^2 = 0$ 6. *.*.. $\Rightarrow 3x^2 - 12xy + 2xy - 8y^2 = 0$ \Rightarrow 3x(x - 4v) + 2v(x - 4v) = 0 $\Rightarrow (3x+2y)(x-4y) = 0$ \Rightarrow 3x + 2y = 0 and x - 4y = 0 $6x^2 - 5xy + y^2 = 0$ 7 $\Rightarrow 6x^2 - 3xy - 2xy + y^2 = 0$
- 8. Equation of straight lines parallel to ax² + 2hxy + by² = 0 and passing through point (x₁, y₁) is found by shifting the origin to (x₁, y₁)
 ∴ The required equation is
 - $a(x x_1)^2 + 2h(x x_1)(y y_1) + b(y y_1)^2 = 0$
 - 9. $L_1 = x^2 y^2 = 0$ represents pair of straight lines passing through the origin To find equation of pair of straight lines parallel to L_1 and passing through (3, 4), shift the origin to (3, 4)
 - $\therefore \quad (x-3)^2 + (y-4)^2 = 0 \\ \Rightarrow x^2 + y^2 6x 8y + 25 = 0$
 - 10. L₁: $ax^2 + 2hxy + by^2 = 0$ Equation of any line passing through origin and perpendicular to L₁ is given by $bx^2 - 2hxy + ay^2 = 0$(interchanging coefficients of x^2 and y^2 and change of sign for xy term)

The required equation
$$isav^2 - 2hxv + bx^2 = 0$$

- 1. The required equation is $-3x^{2} + 7xy + 5y^{2} = 0$ i.e. $3x^{2} - 7xy - 5y^{2} = 0$
- 12. Comparing given equation with $ax^2 + 2hxy + by^2 = 0$, we get

$$h = \frac{-1}{2}$$
 and $b = -6$

$$\therefore \quad \text{Sum of slopes} = m_1 + m_2 = \frac{-2h}{b}$$

$$=\frac{-2\left(\frac{-1}{2}\right)}{-6}=\frac{-1}{6}$$

- 13. Given equation of pair of lines is $ax^2 + 10xy + y^2 = 0$
- $\therefore \quad A = a, H = 5, B = 1$ Let the slopes of the lines given by be m₁ and m₂ $m_1 + m_2 = \frac{-2H}{B} \text{ and } m_1m_2 = \frac{A}{B}$ Given that m₂ = 4m₁ $\therefore \quad m_1 + 4m_1 = \frac{-2H}{B} = -10 \Rightarrow m_1 = -2$ and m₁ × 4m₁ = $\frac{A}{B} = a \Rightarrow 4m_1^2 = a \Rightarrow a = 16$

 $\Rightarrow 3x(2x - y) - y(2x - y) = 0$ $\Rightarrow (2x - y)(3x - y) = 0$

 \Rightarrow 3x - y = 0 and 2x - y = 0

- $\therefore \quad A = a, H = 2, B = 1$ $m_1 + m_2 = -4 \text{ and } m_1 m_2 = a$ Given that $m_1 = 3m_2$
- $\therefore \quad 3m_2 + m_2 = -4 \Rightarrow m_2 = -1$ Hence, $m_1 = -3$
- : a = (-1)(-3) = 3
- 15. Given equation of pair of lines is $ax^2 + (3a + 1)xy + 3y^2 = 0$
- $\therefore \quad A = a, H = \frac{3a+1}{2}, B = 3$ Given that $m_1 = \frac{1}{m_2} \Rightarrow m_1 m_2 = 1$ Now, $m_1 m_2 = \frac{a}{3} \Rightarrow \frac{a}{3} = 1 \Rightarrow a = 3$ Also, $m_1 + m_2 = -\left(\frac{3a+1}{3}\right) = \frac{-10}{3}$ $\Rightarrow m_1 + \frac{1}{m_1} = \frac{-10}{3} \Rightarrow 3m_1^2 + 10m_1 + 3 = 0$ $\therefore \quad m_1 = \frac{-1}{3} \text{ or } -3.$
- 16. Given equation of pair of lines is $6x^2 + 41xy - 7y^2 = 0$
- $\therefore \quad a = 6, h = \frac{41}{2}, b = -7$ α and β are angles made by the two lines with X-axis
- $\therefore \quad \text{their slopes } m_1 \text{ and } m_2 \text{ respectively are} \\ m_1 = \tan \alpha \text{ and } m_2 = \tan \beta \\ \tan \alpha . \tan \beta = m_1 m_2 = -\frac{6}{7} \end{aligned}$
- 17. Given equation of pair of lines is $6x^2 - xy - y^2 = 0$

:.
$$a = 6, h = -\frac{1}{2}, b = -1$$

If θ is the acute angle between the pair of lines

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$
$$\Rightarrow \tan \theta = \left| \frac{2\sqrt{\frac{1}{4} + 6}}{5} \right| = 1$$
$$\Rightarrow \theta = \tan^{-1}(1) = 45^{\circ}$$

Chapter 04: Pair of Straight Lines
Given equation of pair of lines is
$$\sqrt{3}xy - y^2 = 0$$

 $a = 0, h = \frac{\sqrt{3}}{2}, b = -1$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{\frac{3}{4} - 0}}{0 - 1} \right| = \left| \frac{2 \times \frac{\sqrt{3}}{2}}{-1} \right| = \sqrt{3}$$
$$\Rightarrow \theta = \tan^{-1}(\sqrt{3}) = 60^{\circ}$$

18.

...

19. Given equation of pair of lines is $11y^2 - 4xy + 4x^2 = 0$ i.e. $4x^2 - 4xy + 11y^2 = 0$ a = 4 b = -12 b = 11

$$\therefore \quad a = 4, n = -12, 0 = 11$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{144 - 44}}{4 + 11} \right| = \frac{2(10)}{15} = \frac{4}{3}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{4}{3}\right)$$

20. Given equation of pair of lines is $2x^2 - 3xy + y^2 = 0$

$$\therefore \quad a = 2, h = \frac{-3}{2}, b = 1$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{\frac{9}{4} - 2}}{3} \right| = \left| \frac{\sqrt{9 - 8}}{3} \right| = \frac{1}{3}$$

$$\therefore \quad \cot \theta = 3 \Longrightarrow \theta = \cot^{-1} (3)$$

- 21. Given equation of pair of lines is $x^{2}(\cos \theta - \sin \theta) + 2xy \cos \theta$ $+ y^{2}(\cos \theta + \sin \theta) = 0$
- $\therefore \quad a = \cos \theta \sin \theta, h = \cos \theta, b = \cos \theta + \sin \theta$ The acute angle α between the pair of lines is given by

$$\tan \alpha = \left| \frac{2\sqrt{\cos^2 \theta - (\cos^2 \theta - \sin^2 \theta)}}{2\cos \theta} \right|$$

$$\Rightarrow \tan \alpha = \tan \theta \Rightarrow \alpha = \theta$$

22. Given equation of pair of lines is $x^2 - 4hxy + 3y^2 = 0$

$$\therefore \quad A = 1, H = -2h, B = 3$$

Now, $\theta = 60^{\circ}$
 $\Rightarrow \tan \theta = \sqrt{3}$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{H^2 - AB}}{A + B} \right|$$

 $\Rightarrow \sqrt{3} = \left| \frac{2\sqrt{4h^2 - 3}}{4} \right| \Rightarrow h = \pm \frac{\sqrt{15}}{2}$

MHT-CET Triumph Maths (Hints) 23. Given equation of pair of lines is $3x^2 + 18xy + by^2 = 0$ a = 3, h = 9, b = b*.*.. Now $\theta = \pi \Longrightarrow \tan \theta = 0$ $\tan \theta = \left| \frac{2\sqrt{81 - 3b}}{3 + b} \right|$ *.*.. $\Rightarrow 0 = \left| \frac{2\sqrt{81 - 3b}}{3 + b} \right|$ \Rightarrow 81 = 3b \Rightarrow b = 27 Given equation of pair of lines is 24. $3x^2 + 10xy + 8y^2 = 0$ a = 3, h = 5, b = 8*.*.. Now $\theta = \tan^{-1}(p) \Longrightarrow \tan \theta = p$ $\tan \theta = \left| \frac{2\sqrt{25 - 24}}{11} \right|$ ÷ $\Rightarrow p = \left|\frac{2}{11}\right| = \frac{2}{11}$ Given equation of pair of lines is 25. $3x^2 + 2hxy + y^2 = 0$ a = 3, h = h, b = 1*.*.. The two lines are real and coincident if $h^2 - ab = 0$ $h^2 - ab = h^2 - 3$ *.*... for these lines to be real and coincident, $h^2 - 3 \ge 0 \implies h^2 \ge 3$ Given equation of pair of lines is 26. $9x^2 - 12xy + 4y^2 = 0$ a = 9, h = -6, b = 4Now, $h^2 - ab = (6)^2 - 9 \times 4 = 0$ The lines are coincident. *.*.. 27. The condition for a pair of straight lines to be real and coincident is $h^2 - ab = 0$ Consider the equation $4x^2 - 4xy + y^2 = 0$ a = 4, h = -2, b = 1*.*.. $h^{2} - ab = (-2)^{2} - (4)(1) = 0$ Correct option is (A). *.*.. 28. Given equation of pair of lines is $6x^2 + hxy + 12y^2 = 0$ $A = 6, H = \frac{h}{2}, B = 12$ *.*.. Since lines are parallel, $H^2 - AB = 0$ $\Rightarrow \frac{h^2}{4} = 6(12) \Rightarrow h^2 = (24)(12)$ \Rightarrow h = + 12 $\sqrt{2}$

29. Given equation of pair of lines is $4x^2 + hxy + y^2 = 0$ The lines are coincident ÷. $H^2 = AB$ $\Rightarrow \frac{h^2}{4} = 4(1)$ \Rightarrow h = ± 4 30. Given equation of pair of lines is $x^{2} + xv + v^{2} = 0$ $a = 1, h = \frac{1}{2}, b = 1$ *:*.. Here, $h^2 - ab = \frac{-3}{4} < 0$ Hence, the lines are imaginary. 31. Given equation of pair of lines is $\lambda y^2 + (1 - \lambda^2)xy - \lambda x^2 = 0$ $a = -\lambda, b = \lambda$ *.*.. Now a + b = 0*.*.. the lines are perpendicular *.*.. Angle between the lines is 90°. 32. Given equation of pair of lines is xy = 0 $a = 0, h = \frac{1}{2}, b = 0$ ÷. Now, a + b = 0*.*.. the lines are perpendicular to each other. *.*.. angle between the pair of line is 90°. 33. The condition for a pair of straight lines to be perpendicular is a + b = 0. Consider the equation $2x^2 = 2y(2x + y)$ i.e. $2x^2 - 4xy - 2y^2 = 0$ a = 2, b = -2*.*.. a + b = 2 + (-2) = 0*.*.. Correct option is (A). *.*.. 34. It is a homogeneous equation of degree 2 in xand y Hence, it represents a pair of lines and $\mathbf{a} + \mathbf{b} = \mathbf{0}$ *.*.. lines are perpendicular 35. Given equation of pair of lines is $3v^2 + 9xv + kx^2 = 0$ i.e. $kx^2 + 9xy + 3y^2 = 0$ ÷. a = k, b = 3The lines are perpendicular *.*.. a + b = 0 \Rightarrow k + 3 = 0 \Rightarrow k = -3

Chapter 04: Pair of Straight Lines

- 36. Given equation of pair of lines is $a^{2}x^{2} + bcy^{2} = a (b + c) xy$
- $\therefore \quad A = a^2, B = bc$ Since the lines are mutually perpendicular, $\therefore \quad A + B = 0$
 - $\Rightarrow a^2 + bc = 0$
- 37. Consider $2x^2 + 3xy 2y^2 + 5x + 5y + 3 = 0$ Comparing the given equation with $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, we get $a = 2, b = -2, c = 3, f = \frac{5}{2}, g = \frac{5}{2}, h = \frac{3}{2}$

Condition for equation to represent pair of lines is $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

$$\therefore \quad 2(-2)(3) + 2\left(\frac{5}{2}\right)\left(\frac{5}{2}\right)\left(\frac{3}{2}\right) \\ - 2\left(\frac{5}{2}\right)^2 - (-2)\left(\frac{5}{2}\right)^2 - 3\left(\frac{3}{2}\right)^2 \\ = -12 + \frac{75}{4} - \frac{50}{4} + \frac{50}{4} - \frac{27}{4} = 0$$

- ... Condition is satisfied
- \therefore Correct answer is option (A).
- 38. Given equation of pair of lines is $y^2 + xy + px^2 - x - 2y = 0$

:.
$$a = p, b = 1, c = 0, f = -1, g = \frac{-1}{2}, h = \frac{1}{2}$$

The given equation represents pair of straight lines if $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

$$\Rightarrow p(1)(0) + 2(-1)\left(\frac{-1}{2}\right)\left(\frac{1}{2}\right) - p(-1)^{2}$$
$$-1\left(\frac{-1}{2}\right)^{2} - 0 = 0$$
$$\Rightarrow \frac{1}{2} - p - \frac{1}{4} = 0 \Rightarrow p = \frac{1}{4}$$

39. Given equation of pair of lines is

$$6x^2 + 11xy - 10y^2 + x + 31y + k = 0$$

∴ $a = 6, b = -10, c = k, f = \frac{31}{2}, g = \frac{1}{2}, h = \frac{11}{2}$
Now, $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$
 $\Rightarrow -6(10)k + 2\left(\frac{31}{2}\right)\left(\frac{1}{2}\right)\left(\frac{11}{2}\right) - 6\left(\frac{31}{2}\right)^2 + 10\left(\frac{1}{2}\right)^2$
 $-k\left(\frac{11}{2}\right)^2 = 0$
 $\Rightarrow -k \frac{361}{4} = \frac{5415}{4} \Rightarrow k = -15$

40. Given equation of pair of lines is

$$x^2 - y^2 - x - \lambda y - 2 = 0$$

 \therefore $a = 1, b = -1, c = -2, f = \frac{-\lambda}{2}, g = \frac{-1}{2}, h = 0$
Now, abc + 2fgh - af² - bg² - ch² = 0
 \therefore $2 - \frac{\lambda^2}{4} + \frac{1}{4} = 0 \Rightarrow \frac{\lambda^2}{4} = \frac{9}{4}$
 $\Rightarrow \lambda^2 = 9$
 $\Rightarrow \lambda = \pm 3$
41. Given equation of pair of lines is

41. Given equation of pair of lines is

$$3x^2 + 2hxy - 3y^2 - 40x + 30y - 75 = 0$$

 $A = 3 B = -3 C = -75 F = 15 G = -20 H =$

$$\therefore \quad A = 3, B = -3, C = -75, F = 15, G = -20, H = h$$

Now ABC + 2FGH - AF² - BG² - CH² = 0

$$\Rightarrow (3)(-3)(-75) + 2(15)(-20)(h)$$

$$-3(15)^{2} - (-3)(-20)^{2} - (-75)h^{2} = 0$$

$$\Rightarrow 675 - 600h - 675 + 1200 + 75h^{2} = 0$$

$$\Rightarrow h^{2} - 8h + 16 = 0$$

$$\Rightarrow (h - 4)^{2} = 0$$

$$\Rightarrow h = 4,4$$

42. Given equation of pair of lines is $2x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$

:.
$$a = 2, b = 12, c = -3, f = -8, g = \frac{5}{2}, h = -5$$

Equation of perpendicular drawn from origin on $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is $bx^2 - 2hxy + ay^2 = 0$

- :. $12x^2 + 10xy + 2y^2 = 0$ i.e., $6x^2 + 5xy + y^2 = 0$
- 43. Given equation of pair of lines is $2x^2 - 5xy + 3y^2 + 8x - 9y + 6 = 0$

:.
$$a = 2, b = 3, c = 6, f = -\frac{9}{2}, g = 4, h = \frac{-5}{2}$$

The point of intersection is given by

$$\left(\frac{hf - bg}{ab - h^{2}}, \frac{gh - af}{ab - h^{2}}\right)$$
$$= \left(\frac{\left(\frac{-5}{2}\right)\left(\frac{-9}{2}\right) - 3(4)}{2(3) - \left(\frac{5}{2}\right)^{2}}, \frac{4\left(\frac{-5}{2}\right) - 2\left(\frac{-9}{2}\right)}{2(3) - \left(\frac{5}{2}\right)^{2}}\right) = (3, 4)$$

44. Given equation of pair of lines is

$$3x^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$$

 $a = 3, b = 3, c = 18, f = \frac{-21}{2}, g = \frac{-15}{2}, h = 5$

MHT-CET Triumph Maths (Hints)

The point of intersection is

$$\left(\frac{(5)\left(\frac{-21}{2}\right) - (3)\left(\frac{-15}{2}\right)}{(3)(3) - (5)^2}, \frac{\left(\frac{-15}{2}\right)(5) - (3)\left(\frac{-21}{2}\right)}{(3)(3) - (5)^2}\right)$$
$$\equiv \left(\frac{15}{8}, \frac{3}{8}\right)$$

- 45. Given equation of pair of lines is $6x^2 - xy - 12y^2 - 8x + 29y - 14 = 0$ $a = 6, b = -12, h = \frac{-1}{2}$ ∴ $\tan \theta = \left|\frac{2\sqrt{h^2 - ab}}{a + b}\right| = \frac{17}{6} \Rightarrow \theta = \tan^{-1}\left(\frac{17}{6}\right)$
- 46. Given equation of pair of lines is $x^{2} + 2\sqrt{3} xy + 3y^{2} - 3x - 3\sqrt{3} y - 4 = 0$

:.
$$a = 1, h = \sqrt{3}, b = 3$$

Now, $h^2 - ab = (\sqrt{3})^2 - (1)(3) = 0$

- \therefore the lines are parallel.
- 47. Given equation of pair of lines is $4x^{2} + 2pxy + 25y^{2} + 2x + 5y - 1 = 0$
- \therefore a = 4, b = 25, h = p The lines are parallel
- $\therefore \quad h^2 ab = 0 \implies h^2 = ab$ $\implies p^2 = 4(25) = 100$ $\implies p = 10$
- 48. Given equation of pair of lines is $3y^2 - 8xy - 3x^2 - 29x + 3y - 18 = 0$
- :. a = -3, b = 3Now, a + b = -3 + 3 = 0,
- \therefore The lines are perpendicular to each other.
- 49. Given equation of pair of lines is $x^2 - y^2 - 2y - 1 = 0$
- :. a = 1, b = -1Now, a + b = 1 + (-1) = 0
- \therefore The lines are perpendicular to each other.
- 50. Given equation of pair of lines is 3xy 4y = 0
- \therefore a = b = 0
 - Now a + b = 0
- \therefore The lines are perpendicular to each other.
- 51. Given equation of pair of lines is $px^2 - 8xy + 3y^2 + 14x + 2y + q = 0$ a = p, b = 3, c = q, f = 1, g = 7, h = -4This lines are perpendicular if a + b = 0 $\Rightarrow p + 3 = 0 \Rightarrow p = -3$

Since the equation represents a pair of lines

- $\therefore \quad abc + 2fgh af^2 bg^2 ch^2 = 0$ $\Rightarrow -9q - 56 + 3 - 147 - 16q = 0$ $\Rightarrow -25q - 200 = 0 \Rightarrow q = -8$
- 52. Given equation of pair of lines is $ax^2 + 6xy + by^2 - 10x + 10y - 6 = 0$ A = a, B = b, C = -6, F = -5, G = 5, H = 3The lines are perpendicular
- $\therefore \quad a+b=0 \Rightarrow a=-b$ Also these lines satisfy the condition $ABC + 2FGH AF^{2} BG^{2} CH^{2} = 0$ $\Rightarrow 6a^{2} + 2(-75) 25a + 25a + 54 = 0$ $\Rightarrow 6a^{2} 96 = 0 \Rightarrow a^{2} 16 = 0 \Rightarrow a = \pm 4$

Critical Thinking

- 1. The lines passing through origin and parallel to the given lines are $y = m_1 x$ and $y = m_2 x$,
- $\therefore \text{ the combined equation is}$ $(y - m_1 x)(y - m_2 x) = 0$ $\Rightarrow m_1 m_2 x^2 - (m_1 + m_2)xy + y^2 = 0$
- 2. Given line $2x y = 0 \Rightarrow$ Slope = 2 Let the slope of required line be m

$$\therefore \quad \tan 30^\circ = \left| \frac{m-2}{1+2m} \right|$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \left| \frac{m-2}{1+2m} \right|$$

 $\Rightarrow m^2 + 16m - 11 = 0 \qquad \dots (i)$ Since, the line passes through origin, its equation is

$$y = mx \Longrightarrow m = \frac{y}{x}$$

Substituting of m in equation (i), we get

$$\left(\frac{y}{x}\right)^2 + 16\left(\frac{y}{x}\right) - 11 = 0$$
$$\Rightarrow 11x^2 - 16xy - y^2 = 0$$

3. From the diagram, the required lines are

$$y = \frac{x}{\sqrt{3}} \quad \text{i.e., } \sqrt{3} \ y - x = 0$$

and
$$y = \frac{-x}{\sqrt{3}} \quad \text{i.e., } \sqrt{3} \ y + x = 0$$

$$\therefore \quad \text{Combined equation is}$$

$$(\sqrt{3} \ y - x)(\sqrt{3} \ y + x) = 0$$

i.e.,
$$3y^2 - x^2 = 0$$

4. Let y = mx be the equation of line. Slope of the given line $y = -x - \sqrt{3}$ is -1 Since, the pair of straight lines and the given line form an equilateral traingle, angle between them is 60°. $\tan \frac{\pi}{3} = \left| \frac{m+1}{1-m} \right| \Rightarrow \sqrt{3} = \left| \frac{m+1}{1-m} \right|$ *.*.. $\Rightarrow 3(1-m)^2 = (1+m)^2$ $\Rightarrow 3(1 + m^{2} - 2m) = (1 + m^{2} + 2m)$ m² - 4m + 1 = 0(i) *.*.. The equation of line passing through origin is, $y = mx \Rightarrow m = \frac{y}{r}$ Substituting the value of m in (i), we get $\left(\frac{y}{r}\right)^2 - 4\left(\frac{y}{r}\right) + 1 = 0 \Longrightarrow x^2 - 4xy + y^2 = 0$ $ax^{2} + (a + b)xy + by^{2} + x + y = 0$ 5. $\Rightarrow ax^2 + bxy + x + axy + by^2 + y = 0$ $\Rightarrow x(ax + by + 1) + y(ax + by + 1) = 0$ $\Rightarrow (x + y)(ax + by + 1) = 0$ $pq(x^2 - y^2) + (p^2 - q^2)xy = 0$ 6. \Rightarrow pqx² - pqy² + p²xy - q²xy = 0 \Rightarrow px(py + qx) - qy(py + qx) = 0 $\Rightarrow (px - qy)(py + qx) = 0$ \Rightarrow px - qy = 0 and py + qx = 0 Required equation of the line is px - qy = 0*.*.. $x^{2} + 6xy = 0 \Longrightarrow x(x + 6y) = 0$ 7. $\Rightarrow x = 0$ and x + 6y = 0 are two straight lines. x = 0 represents Y-axis. $v^2 - x^2 + 2x - 1 = 0$ 8. $\Rightarrow v^2 - (x^2 - 2x + 1) = 0$ $\Rightarrow (y-0)^2 - (x-1)^2 = 0$ This is equation of pair of straight lines passing through (1, 0). 9. The given equation represents a pair of straight lines passing through (5, 6).

- 10. The lines passes through (-2, 2)Only (-2,2) satisfies the given equation.
- Given equation of pair of lines is 11. $ax^2 + xy - by^2 = 0$ Comparing the equations, with $Ax^2 + 2Hxy + By^2 = 0$
- A = a, H = $\frac{1}{2}$ and B = -a*.*..
- the equation represents a pair of straight lines *.*.. for all real values of 'a'.

12. The combined equation of pair of straight lines passsing through origin and perpendicular to $3x^2 + xy - 2y^2 = 0$ is given by $-2x^2 - xy + 3y^2 = 0$ i.e. $2x^2 + xy - 3y^2 = 0$ Since the required lines pass through (2, -3)By shifting the origin to (2, -3), we get $2(x-2)^{2} + (x-2)(y+3) - 3(y+3)^{2} = 0$ $\Rightarrow 2x^2 + xy - 3y^2 - 5x - 20y - 25 = 0$ 13. Separate equation of lines represented by $3x^2 - 8xy + 5y^2 = 0$ are x - y = 0 and 3x - 5y = 0Line perpendicular to x - y = 0 i.e. y = x and passing through (1, 2) is (y-2) = -1(x-1)i.e. x + y - 3 = 0....(i) Line perpendicular to 3x - 5y = 0i.e. $y = \frac{3}{5}x$ and passing through (1, 2) is $(y-2) = \frac{-5}{3}(x-1)$ i.e. 5x + 3y - 11 = 0....(ii)

... combined equation is (x+y-3)(5x+3y-11) = 0

...

- Slope of the line 4x + 3y = 0 is $m = -\frac{4}{3}$ 14. $kx^{2} - 5xy - 6y^{2} = 0$ $\Rightarrow -6m^{2} - 5m + k = 0$ $\Rightarrow -6\left(-\frac{4}{3}\right)^2 - 5\left(-\frac{4}{3}\right) + k = 0$ \Rightarrow k $-\frac{32}{3}+\frac{20}{3}=0$ \Rightarrow k = $\frac{12}{3}$ \Rightarrow k = 4
- Let y = mx be a line common to the given pair 15. of lines. It satisfies the given equations $am^2 + 2m + 1 = 0$ and *.*..(i)
- $m^2 + 2m + a = 0$(ii) On solving (i) and (ii), we get $\frac{m^2}{2(1-a)} = \frac{m}{a^2-1} = \frac{1}{2(1-a)}$ $m^2 = 1$ and $m = -\left(\frac{a+1}{2}\right)$ *:*. $(a+1)^2 = 4 \implies a = 1 \text{ or } -3$

Chapter 04: Pair of Straight Lines

MHT-CET Triumph Maths (Hints)

But for a = 1 the two pair have both the lines common. So a = -3 and the slope m of the line common to both the pairs is 1. Now $x^2 + 2xy + ay^2 = x^2 + 2xy - 3y^2$ = (x - y)(x + 3y)and $ax^{2} + 2xy + y^{2} = -3x^{2} + 2xy + y^{2}$ = -(x - y)(3x + y)Thus, required equation is (x + 3y)(3x + y) = 0i.e., $3x^2 + 10xy + 3y^2 = 0$ The equation of given lines are 16. $ax^2 + 2hxy + by^2 = 0$(i) $a'x^2 + 2h'xy + b'y^2 = 0$(ii) Let the line common to both be y = mx. It will satisfy both the above equations. Hence, $a + 2mh + bm^2 = 0$(iii) and $a' + 2mh' + b'm^2 = 0$(iv) Now eliminating 'm' from the equations (iii) and (iv), we get $\frac{m^2}{2ha' - 2h'a} = \frac{-m}{ba' - b'a} = \frac{1}{2bh' - 2b'h}$ m^2 $\Rightarrow m^2 = \frac{ha' - h'a}{bh' - b'h}$(v) and $m^2 = \frac{(ab' - ba')^2}{4(bh' - b'h)^2}$(vi)

From (v) and (vi), we get the required condition.

- 17. Given equation of pair of lines $x^2 - 2xy \tan A - y^2 = 0$ ∴ $a = 1, h = -\tan A, b = -1$ $m_1 + m_2 = \frac{-2h}{b} \Rightarrow 4 = \frac{2\tan A}{-1}$ $\Rightarrow \tan A = -2$ $\Rightarrow \angle A = \tan^{-1}(-2)$
- 18. Given equation of pair of lines is $ax^2 + 2hxy + by^2 = 0$ Given that $m_1 = 5m_2$

$$\therefore \qquad m_1 + m_2 = 5m_2 + m_2 = \frac{-211}{b}$$

$$\Rightarrow m_2 = \frac{-h}{3b} \Rightarrow m_2^2 = \frac{h^2}{9b^2} \qquad \dots (i)$$

$$m_1 m_2 = (5m_2)m_2 = \frac{a}{b}$$

$$\therefore \qquad m_2^2 = \frac{a}{5b} \qquad \dots (ii)$$

$$\therefore \qquad From (i) and (ii), we get$$

$$5h^2 = 9ab$$

19. Let the gradient of one line be m.
∴ the gradient of second line is 2m We know,

•

$$m + 2m = \frac{-2h}{b}$$

$$\therefore \quad 3m = \frac{-2h}{b} \Rightarrow m = \frac{-2h}{3b} \qquad \dots (i)$$

Also,
$$m \times 2m = \frac{a}{b} \Rightarrow 2m^2 = \frac{a}{b}$$
(ii)
from (i) and (ii) we get

$$2\left(\frac{-2h}{3b}\right)^2 = \frac{a}{b} \Rightarrow \frac{8h^2}{9b^2} = \frac{a}{b} \Rightarrow ab = \frac{8h^2}{9}$$

20. Given equation of pair of lines is $ax^{2} + 2hxy + by^{2} = 0$ given that $m_{2} = \lambda m_{1}$ Now, $m_{1} + m_{2} = m_{1} + \lambda m_{1} = \frac{-2h}{h}$

$$\Rightarrow m_1 = \frac{-2h}{b(1+\lambda)} \qquad \dots (i)$$

$$m_1.m_2 = m_1.\lambda m_1 = \frac{a}{b} \Longrightarrow m_1 = \sqrt{\frac{a}{b\lambda}}$$
(ii)

- ... from (i) and (ii), we get $\sqrt{\frac{a}{b\lambda}} = \frac{-2h}{b(1+\lambda)}$ Squaring both sides, we get $4\lambda h^2 = ab(1+\lambda)^2$
- 21. Given equation of pair of lines is $ax^{2} + 2hxy + by^{2} = 0$ Given that, $m_{1} = m_{2}^{2}$ $m_{1} m_{2} = m_{2}^{2} m_{2} = \frac{a}{b}$ $\therefore m_{2} = \left(\frac{a}{b}\right)^{\frac{1}{3}}$ Also, $m_{1} + m_{2} = m_{2}^{2} + m_{2} = \frac{-2h}{b}$ $\left\{\left(\frac{a}{b}\right)^{\frac{1}{3}}\right\}^{2} + \left(\frac{a}{b}\right)^{\frac{1}{3}} = \frac{-2h}{b}$ Cubing both sides, we get $\left(\frac{a}{b}\right)^{2} + \frac{a}{b} + 3\left(\frac{a}{b}\right)^{\frac{2}{3}} \cdot \left\{\left(\frac{a}{b}\right)^{\frac{2}{3}} + \left(\frac{a}{b}\right)^{\frac{1}{3}}\right\}$ $= \frac{-8h^{3}}{b^{3}}$

Chapter 04: Pair of Straight Lines

$$\therefore \qquad \left(\frac{a}{b}\right)^2 + \frac{a}{b} - \frac{6ah}{b^2} = \frac{-8h^3}{b^3}$$

$$\dots \left\{ \because \left(\frac{a}{b}\right)^{\frac{1}{3}} + \left(\frac{a}{b}\right)^{\frac{2}{3}} = \frac{-2h}{b}$$

$$\therefore \qquad ab(a+b) - 6abh + 8h^3 = 0$$
22. Given equation of pair of lines is
$$2x^2 - 5xy + 3y^2 = 0$$

$$\therefore \qquad a = 2, h = \frac{-5}{2}, b = 3$$

$$\therefore \qquad m_1 + m_2 = \frac{5}{6} \text{ and } m_1 \cdot m_2 = \frac{2}{3} \qquad \dots (i)$$

Slopes of lines =
$$\frac{1}{m_1}$$
 and $\frac{1}{m_2}$

 \therefore Required equation of pair of lines is

$$y^{2} - \left(\frac{1}{m_{1}} + \frac{1}{m_{2}}\right)xy + \frac{1}{m_{1}m_{2}}x^{2} = 0$$

$$\Rightarrow y^{2} - \left(\frac{m_{1} + m_{2}}{m_{1}m_{2}}\right)xy + \frac{1}{m_{1}m_{2}}x^{2} = 0$$

$$\Rightarrow y^{2} - \left(\frac{\frac{5}{6}}{\frac{2}{3}}\right)xy + \frac{1}{\left(\frac{2}{3}\right)}x^{2} = 0$$

$$\Rightarrow 2y^{2} - 5xy + 3x^{2} = 0$$

- 23. Let the angle made by one of the lines with X-axis = θ
- $\therefore \quad \text{The angle made by other line with Y-axis} = \theta$ $\therefore \quad m_1 = \tan \theta,$

$$m_2 = \tan (90^\circ - \theta) = \cot \theta$$

$$m_1 m_2 = \frac{a}{b} = 1$$

$$\Rightarrow \frac{a}{b} = 1 \Rightarrow a = b$$

24. Given equation of pair of lines is $x^{2}(\sec^{2}\theta - \sin^{2}\theta) - 2xy \tan \theta + y^{2} \sin^{2}\theta = 0$ \therefore a = sec² θ - sin² θ , h = - tan θ , b = sin² θ

Now,
$$m_1 + m_2 = \frac{2 \tan \theta}{\sin^2 \theta}$$
,
 $m_1 m_2 = \frac{\sec^2 \theta - \sin^2 \theta}{\sin^2 \theta}$
∴ $m_1 - m_2 = \sqrt{(m_1 + m_2)^2 - 4m_1 m_2}$
 $= \sqrt{\left(\frac{2 \tan \theta}{\sin^2 \theta}\right)^2 - 4\left(\frac{\sec^2 \theta - \sin^2 \theta}{\sin^2 \theta}\right)}$

$$= \sqrt{\frac{4\tan^2\theta}{\sin^4\theta} - 4(\sec^2\theta\csc^2\theta - 1)}$$
$$= \sqrt{4\sec^2\theta\csc^2\theta - 4\sec^2\theta\csc^2\theta + 4}$$
$$= 2$$

25. Given equation of pair of lines

$$(\tan^{2} \alpha + \cos^{2} \alpha)x^{2} - 2xy \tan \alpha + \sin^{2} \alpha y^{2} = 0$$

$$a = \tan^{2} \alpha + \cos^{2} \alpha, h = -\tan \alpha, b = \sin^{2} \alpha$$
If θ_{1} and θ_{2} are the angles made by lines with
X-axis, then $\tan \theta_{1} = m_{1}$ and $\tan \theta_{2} = m_{2}$
Now, $m_{1} + m_{2} = \frac{2 \tan \alpha}{\sin^{2} \alpha} = 2 \sec \alpha \csc \alpha$

$$m_{1}m_{2} = \frac{\tan^{2} \alpha + \cos^{2} \alpha}{\sin^{2} \alpha} = \sec^{2} \alpha + \cot^{2} \alpha$$

$$m_{1} - m_{2} = \sqrt{4 \sec^{2} a \csc^{2} a - 4(\sec^{2} a + \cot^{2} a)}$$

$$= \sqrt{4 \sec^{2} a (\csc^{2} a - 1) - 4 \cot^{2} a}$$

$$= \sqrt{4 \cot^{2} \alpha \tan^{2} \alpha}$$

$$= 2$$

26. The equation of one of the lines passing through origin is y = mx. The line makes an angle α with the line y = x

$$\therefore \quad \tan \alpha = \pm \left\{ \frac{m_1 - m_2}{1 + m_1 m_2} \right\} = \pm \frac{(m - 1)}{1 + m}$$
$$\Rightarrow (1 + m)^2 \tan^2 \alpha = (m - 1)^2$$
$$\Rightarrow m^2 - 2m \left\{ \frac{1 + \tan^2 \alpha}{1 - \tan^2 \alpha} \right\} + 1 = 0$$
$$\Rightarrow m^2 - 2m \sec 2\alpha + 1 = 0$$
$$\dots \left\{ \because \frac{1 + \tan^2 \alpha}{1 - \tan^2 \alpha} = \sec 2\alpha \right\}$$

But $m = \frac{y}{x}$ On eliminating m, we get $y^2 - 2xy \sec 2\alpha + x^2 = 0.$

27. Let the equation of one of the line which bisects the angle between the co-ordinate axes be y = x

$$m_1 = \tan 45^\circ = 1$$

Let m_2 be the slope of the other line.

Now, $m_1m_2 = \frac{a}{b}$

MHT-CET Triumph Maths (Hints) Since $m_1 = 1$, we get $m_2 = \frac{a}{b}$; Also, $m_1 + m_2 = \frac{-2h}{h}$ $\Rightarrow 1 + \frac{a}{b} = \frac{-2h}{b}$ \Rightarrow a + b = -2h Let the equation of one of the lines be y = x28. $m_1 = \tan 45^\circ = 1$ *.*.. Now, $m_1m_2 = \frac{a}{c}$ Since $m_1 = 1$, we get $m_2 = \frac{a}{a}$ Also, $m_1 + m_2 = \frac{-b}{c_1}$ $1 + \frac{a}{a} = \frac{-b}{a}$ *:*. $\Rightarrow \frac{a+b+c}{c} = 0$ \Rightarrow a + b + c = 0 29. Let the equation of one of the angle bisector of co-ordinate axes be $x + y = 0 \Rightarrow m_1 = -1$ Now, $m_1m_2 = \frac{a}{b}$ \Rightarrow m₂ = $-\frac{a}{b}$ Also, $m_1 + m_2 = \frac{-2h}{L}$ $\Rightarrow -1 - \frac{a}{b} = \frac{-2h}{b} \Rightarrow (a+b)^2 = 4h^2$ The line makes angles α and β with X-axis 30. $m_1 = \tan \alpha$ and $m_2 = \tan \beta$ *.*.. $\Rightarrow \cot \alpha = \frac{1}{m_1} \text{ and } \cot \beta = \frac{1}{m_2}$ Given equation of pair of lines is $2x^2 - 3xy + y^2 = 0$ $a = 2, h = \frac{-3}{2}, b = 1$ *.*.. Now, $m_1 + m_2 = 3$ and $m_1 m_2 = 2$ $\cot^2 \alpha + \cot^2 \beta = \frac{1}{m_1^2} + \frac{1}{m_2^2} = \frac{m_1^2 + m_2^2}{(m_1 m_2)^2}$ *.*.. $=\frac{(m_1+m_2)^2-2m_1m_2}{(m_1m_2)^2}$

 $=\frac{(3)^2-2(2)}{(2)^2}=\frac{5}{4}$

- 31. Given equation of pair of lines is $ax^2 - bxy - y^2 = 0$ ∴ $A = a, H = \frac{-b}{2}, B = -1$ Since lines make angles α and β with X-axis,
- $\therefore \qquad m_1 = \tan\alpha \text{ and } m_2 = \tan\beta$ Now, $m_1 + m_2 = \frac{b}{-1} \Rightarrow \tan\alpha + \tan\beta = -b$ and $m_1m_2 = \frac{a}{-1} \Rightarrow \tan\alpha \tan\beta = -a$

We know, $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

$$=\frac{-b}{1-(-a)}=\frac{-b}{1+a}$$

32. Given equation of pair of lines is $ax^2 + 2hxy + by^2 = 0$

...

$$A = a, H = h, B = b$$

$$\tan \theta = \left(\frac{2\sqrt{H^2 - AB}}{A + B}\right)$$

$$= \left(\frac{\sqrt{4h^2 - 4ab}}{a + b}\right)$$

$$= \left(\frac{\sqrt{3a^2 + 3b^2 + 10ab - 4ab}}{a + b}\right)$$

$$\dots [\because 3a^2 + 3b^2 + 10ab = 4h^2]$$

$$\left(\sqrt{3(a + b)^2}\right)$$

$$\therefore \quad \tan \theta = \left(\frac{\sqrt{3(a+b)^2}}{a+b}\right)$$
$$\Rightarrow \theta = \tan^{-1}\left(\sqrt{3}\right)$$
$$= 60^{\circ}$$

33. Given equation of pair of lines is $x^{2} - 2pxy + y^{2} = 0$ ∴ a = 1, h = -p, b = 1∴ $\tan \theta = \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right|$ $\Rightarrow \tan \theta = \frac{\pm 2\sqrt{p^{2} - 1}}{1 + 1} = \pm \sqrt{p^{2} - 1}$ $\Rightarrow \tan^{2}\theta = p^{2} - 1$ $\Rightarrow \sec^{2}\theta - 1 = p^{2} - 1$ $\Rightarrow \theta = \sec^{-1} p$ T

- 34. Given equation of pair of lines is $(x^{2} + y^{2}) \sin\theta + 2xy = 0$ $\therefore \quad a = b = \sin\theta, h = 1$ $\therefore \quad \tan\theta = \left(\frac{2\sqrt{1 - \sin^{2}\theta}}{2\sin\theta}\right)$ $\Rightarrow \theta = \tan^{-1}\left(\frac{\cos\theta}{\sin\theta}\right) = \tan^{-1}\left(\cot\theta\right)$ $\Rightarrow \theta = \tan^{-1}\left\{\tan\left(\frac{\pi}{2} - \theta\right)\right\} = \frac{\pi}{2} - \theta$
- 35. Given equation of pair of lines is $ax^2 + xy + by^2 = 0$

$$\therefore \quad A = a, H = \frac{1}{2}, B = b$$
Now, $\theta = 45^{\circ} \Rightarrow \tan \theta = 1$

$$\therefore \quad \tan 45^{\circ} = \left| \frac{2\sqrt{\frac{1}{4} - ab}}{a + b} \right|$$

$$\Rightarrow (a + b)^{2} = (1 - 4ab)$$

$$\Rightarrow a^{2} + b^{2} + 6ab - 1 = 0$$
The above equation is satisfied by
$$a = 1 \text{ and } b = -6$$

36. Given equation of pair of lines is

$$\therefore \quad a = -\tan^2 A, h = \frac{k}{2}, b = 1$$

$$\therefore \quad \tan 2A = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

$$\tan 2A = \frac{2\sqrt{\frac{k^2}{4} + \tan^2 A}}{1 - \tan^2 A}$$

$$\Rightarrow \frac{2\tan A}{1 - \tan^2 A} = \frac{2\sqrt{\frac{k^2}{4} + \tan^2 A}}{1 - \tan^2 A}$$

$$\Rightarrow \frac{k^2}{4} + \tan^2 A = \tan^2 A \Rightarrow k = 0$$
37. Here, $a_1 = a, h_1 = h, b_1 = b$,

$$a_{2} = 2, h_{2} = \frac{-5}{2}, b_{2} = 3$$
Given that $\theta_{1} = \theta_{2}$

$$\Rightarrow \tan \theta_{1} = \tan \theta_{2}$$

$$\Rightarrow \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right| = \left| \frac{2\sqrt{\frac{25}{4} - 6}}{5} \right|$$

$$\Rightarrow \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right| = \left| \frac{1}{5} \right|$$

Chapter 04: Pair of Straight Lines

- Squaring both sides, we get $4 \times 25(h^2 - ab) = (a + b)^2$ $100(h^2 - ab) = (a + b)^2$ Comparing with given condition, $k(h^2 - ab) = (a + b)^2$, we get k = 100
- 38. Comparing the given equations with $ax^2 + 2hxy + by^2 = 0$, we get,

$$a_1 = 3, h_1 = \frac{-7}{2}, b_1 = 4$$

 $a_2 = 6, h_2 = \frac{-5}{2}, b_2 = 1$

If θ_1 and θ_2 are acute angles between the two pairs of lines, then

$$\tan \theta_1 = \left(\frac{2\sqrt{\frac{49}{4} - 12}}{3 + 4}\right) = \frac{1}{7}$$
$$\Rightarrow \theta_1 = \tan^{-1}\left(\frac{1}{7}\right)$$
$$\tan \theta_2 = \left(\frac{2\sqrt{\frac{25}{4} - 6}}{6 + 1}\right) = \left(\frac{1}{7}\right)$$
$$\Rightarrow \theta_2 = \tan^{-1}\left(\frac{1}{7}\right)$$

Hence, $\theta_1 = \theta_2$.

...

and q.

39. Given equation of pair of lines is $a^{2}x^{2} + bcy^{2} = a(b + c)xy$

$$\therefore \quad A = a^2, H = \frac{-a(b+c)}{2}, B = bc$$

Since the lines are coincident $H^2 - AB = 0$

$$\Rightarrow \left\{\frac{-a(b+c)}{2}\right\}^2 - a^2(bc) = 0$$
$$\Rightarrow a^2(b-c)^2 = 0$$
$$\Rightarrow a = 0 \text{ or } b = c$$

40. Given equation of pair of lines is (p-q)x² + 2(p + q)xy + (q - p)y² = 0
∴ a = p - q, h = p + q, b = q - p Since, the lines are mutually perpendicular
∴ a + b = 0 ⇒ (p - q) + (q - p) = 0 The above equation is true for all values of p

MHT-CET Triumph Maths (Hints)

- 41. Given equation of pair of lines is $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$
- :. $A = 3a, H = \frac{5}{2}, B = a^2 2$

Since the lines are perpendicular

- $\therefore \quad A + B = 0$ $\Rightarrow 3a + (a^2 - 2) = 0$ $\Rightarrow a^2 + 3a - 2 = 0$ Since, the equation is a quadratic equation in 'a' and B² - 4AC > 0, The roots of 'a' are real and distinct.
- :. Lines are perpendicular to each other for two values of 'a'.
- 42. Given equation of pair of lines is $ay^2 + (-1 - \lambda^2) xy - ax^2 = 0$ $\therefore \quad A = -a, H = \frac{-1 - \lambda^2}{2}, B = a$ A + B = (-a) + a = 0 \Rightarrow Angle between the given lines is 90°. Now, consider xy = 0. Here, A = B = 0 $\Rightarrow A + B = 0$
- \therefore the angle between the lines is 90°
- \therefore Correct option is (C).
- 43. Given equation of pair of lines is $x^2 + y^2 + 2gx + 2fy + 1 = 0$ A = 1, B = 1, C = 1, F = f, G = g, H = 0 The given equation represents a pair of lines
- $\therefore \quad ABC + 2FGH AF^2 BG^2 CH^2 = 0$ $\Rightarrow (1)(1)(1) + 2fg(0) - (1)f^2 - 1(g)^2 - (1)(0)^2 = 0$ $\Rightarrow f^2 + g^2 = 1$
- 44. Given equation of pair of lines is $ax^2 + by^2 + cx + cy = 0$

$$\therefore \quad A = a, B = b, C = 0, F = \frac{c}{2}, G = \frac{c}{2}, H = 0$$
Now ABC + 2FGH - AF² - BG² - CH² = 0
$$\Rightarrow ab(0) + 2\left(\frac{c}{2}\right)\left(\frac{c}{2}\right)(0) - a\left(\frac{c}{2}\right)^{2}$$

$$- b\left(\frac{c}{2}\right)^{2} - 0(0)^{2} = 0$$

$$\Rightarrow ac^{2} + bc^{2} = 0$$

$$\Rightarrow c^{2}(a + b) = 0$$

$$\Rightarrow c(a + b) = 0$$

45. Given equation of pair of lines is hxy + gx + fy + c = 0 $A = B = 0, C = c, F = \frac{f}{2}, G = \frac{g}{2}, H = \frac{h}{2}$ Now, ABC + 2FGH - AF² - BG² - CH² = 0 $\Rightarrow 0 + 2\left(\frac{f}{2}\right)\left(\frac{g}{2}\right)\left(\frac{h}{2}\right) - 0 - 0 - c\left(\frac{h}{2}\right)^{2} = 0$

$$\Rightarrow \frac{f gh}{4} - \frac{ch^2}{4} = 0$$
$$\Rightarrow fg = ch$$

46. Given equation of pair of lines is

$$2x^{2} + 5xy + 2y^{2} + 3x + 3y + 1 = 0$$

$$a = 2, b = 2, c = 1, f = \frac{3}{2}, g = \frac{3}{2}, h = \frac{5}{2}$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right| = \left| \frac{2\sqrt{\left(\frac{25}{4}\right) - 4}}{2 + 2} \right| = \frac{3}{4}$$

$$\therefore \quad \cos \theta = \frac{4}{5} \implies \theta = \cos^{-1}\left(\frac{4}{5}\right)$$

47. Given equation of pair of lines is

$$x^{2} - 3xy + \lambda y^{2} + 3x - 5y + 2 = 0$$

$$a = 1, b = \lambda, c = 2, f = \frac{-5}{2}, g = \frac{3}{2}, h = \frac{-3}{2}$$

$$\theta = \tan^{-1}\left(\frac{1}{3}\right) \Rightarrow \tan \theta = \frac{1}{3}$$
Since, $\tan \theta = \left|\frac{2\sqrt{h^{2} - ab}}{a + b}\right|$

$$\Rightarrow \frac{1}{3} = \left|\frac{2\sqrt{\left(\frac{-3}{2}\right)^{2} - \lambda}}{\lambda + 1}\right|$$

$$\Rightarrow (\lambda + 1)^{2} = 9(9 - 4\lambda) \Rightarrow \lambda^{2} + 38\lambda - 80 = 0$$

$$\Rightarrow (\lambda + 40)(\lambda - 2) = 0 \Rightarrow \lambda = -40, 2$$

48. Given equation of pair of lines is $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ $\theta = \frac{\pi}{4} \implies \tan \theta = 1$ $\therefore \quad 1 = \left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right|$ $\implies 4(h^{2} - ab) = (a + b)^{2}$ $\implies 4h^{2} - 4ab = a^{2} + 2ab + b^{2}$ $\implies a^{2} + 6ab + b^{2} = 4h^{2}$ 49. Given equation of pair of lines is $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ $a = 1, b = \lambda, c = 2, f = \frac{-5}{2}, g = \frac{3}{2}, h = \frac{-3}{2}$ Now, $abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow 2\lambda + 2\left(-\frac{5}{2}\right)\left(\frac{3}{2}\right)\left(-\frac{3}{2}\right) - \frac{25}{4} - \frac{9\lambda}{4} - \frac{18}{4} = 0$ $\Rightarrow \lambda = 2$ $\tan \theta = \frac{2\sqrt{\frac{9}{4}-2}}{1-2} = \frac{1}{2}$ $\Rightarrow \cot \theta = 3$ $\csc^2 \theta = 1 + \cot^2 \theta = 1 + 9 = 10$ *.*.. Given equation of pair of lines is 50. $9x^2 + y^2 + 6xy - 4 = 0$ a = 9, b = 1, h = 3*.*.. $h^2 - ab = 3^2 - 9(1) = 0$ The lines are parallel *.*.. Now, $9x^2 + 6xy + y^2 = 4$ $\Rightarrow (3x + y)^2 = 4 \Rightarrow 3x + y = \pm 2$ Hence, the lines are parallel and not coincident. 51. Given equation of pair of lines is $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ *.*.. A = a, B = b, H = hThe lines are parallel $H^2 = AB$ *.*.. \Rightarrow h = \sqrt{ab} Now ABC + 2FGH - $AF^2 - BG^2 - CH^2 = 0$ $\Rightarrow abc + 2fg\sqrt{ab} - af^2 - bg^2 - abc = 0$ $\Rightarrow (\sqrt{a} f - \sqrt{b} g)^2 = 0 \Rightarrow af^2 = bg^2$ 52. Given equation of pair of lines is $x^2 + k_1 y^2 + 2k_2 y = a^2$ $a = 1, b = k_1, c = -a^2, f = k_2, g = 0, h = 0$ The lines are perpendicular $a + b = 0 \Longrightarrow k_1 = -1$ *.*.. Substituting value of k_1 in the given equation of lines, we get $x^2 - y^2 + 2k_2y - a^2 = 0$ $\Rightarrow a^2 - k_2^2 = 0 \Rightarrow k_2 = \pm a$ $(x^{2} + y^{2})(h^{2} + k^{2} - a^{2}) = (hx + ky)^{2}$ 53. $\Rightarrow x^{2}(h^{2} + k^{2} - a^{2}) + y^{2}(h^{2} + k^{2} - a^{2})$ $= h^{2}x^{2} + k^{2}y^{2} + 2hkxy$ $\Rightarrow x^{2}(k^{2} - a^{2}) + y^{2}(h^{2} - a^{2}) - 2hkxy = 0$ $A = k^2 - a^2$, $B = h^2 - a^2$ *.*.. The lines are perpendicular $\mathbf{A} + \mathbf{B} = \mathbf{0}$ *.*.. \Rightarrow k² - a² + h² - a² = 0 \Rightarrow h² + k² = 2a²

Chapter 04: Pair of Straight Lines 54. Given equation of pair of lines is $2x^2 - 4xy - py^2 + 4x + qy + 1 = 0$ $a = 2, b = -p, c = 1, f = \frac{q}{2}, g = 2, h = -2$ The lines are perpendicular, a + b = 0*.*.. $\Rightarrow 2 - p = 0 \Rightarrow p = 2$ The equations represents pair of lines $2(-2)(1) + 2\left(\frac{q}{2}\right)(2)(2) - 2\left(\frac{q}{2}\right)^2$ *:*.. $+2(2)^{2}-1(2)^{2}=0$ \Rightarrow q² - 8q = 0 \Rightarrow q = 0 or 8 55. Given equation of pair of lines is $12x^2 + 7xy + by^2 + gx + 7y - 1 = 0$ A = 12, B = b, C = -1, F = $\frac{7}{2}$, G = $\frac{g}{2}$, H = $\frac{7}{2}$ ÷. The lines are perpendicular $A + B = 0 \implies 12 + b = 0 \implies b = -12$ *.*.. Also, $ABC + 2FGH - AF^2 - BG^2 - CH^2 = 0$ \Rightarrow (12)(-12)(-1) + 2 $\left(\frac{7}{2}\right)\left(\frac{g}{2}\right)\left(\frac{7}{2}\right)$ $-(12)\left(\frac{7}{2}\right)^2 - (-12)\left(\frac{g}{2}\right)^2 - (-1)\left(\frac{7}{2}\right)^2 = 0$ $\Rightarrow 12g^2 + 49g + 37 = 0$ \Rightarrow (g + 1)(12g + 37) = 0 \Rightarrow g = -1 or $-\frac{37}{12}$ 56. Given equation of pair of lines is $12x^{2} + 7xy - py^{2} - 18x + qy + 6 = 0$ $a = 12, b = -p, c = 6, f = \frac{q}{2}, g = -9, h = \frac{7}{2}$ The lines are be perpendicular a + b = 0.*.*.. $\Rightarrow 12 - p = 0 \Rightarrow p = 12$ Also, $abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow 12(-12)6 + 2\left(\frac{q}{2}\right)(-9)\left(\frac{7}{2}\right) - 12\left(\frac{q}{2}\right)^2$

$$-(-12)(-9)^{2} - 6\left(\frac{7}{2}\right)^{2} = 0$$

$$\Rightarrow -864 - \frac{63q}{2} - 3q^{2} + 972 - \frac{147}{2} = 0$$

$$\Rightarrow 23 - 21q - 2q^{2} = 0$$

$$\Rightarrow (q - 1)(2q + 23) = 0 \Rightarrow q = 1 \text{ or } -\frac{23}{2}$$

MHT-CET Triumph Maths (Hints)

57. The separate equations of lines represented by $x^2 - 7xy + 6y^2 = 0$ are x - 6y = 0 and x - y = 0Let the 3 points be as shown in figure.

$$\begin{array}{c} A(0, 0) \\ x - 6y = 0 \\ \bullet \\ G(1, 0) \\ (x_1, y_1)B \\ \hline \\ C(x_2, y_2) \end{array}$$

We know
$$\frac{0 + x_1 + x_2}{3} = 1$$

 $\Rightarrow x_1 + x_2 = 3$ (i)
and $y_1 + y_2 = 0$ (ii)
Also, $x_1 - 6y_1 = 0$ (iii)
 $x_2 - y_2 = 0$ (iv)

[Since the points (x_1, y_1) and (x_2, y_2) lie on the lines AB and AC respectively]

On solving, we get the co-ordinates of B and C.

$$\therefore \qquad \mathbf{B} \equiv \left(\frac{18}{5}, \frac{3}{5}\right) \text{ and } \mathbf{C} \equiv \left(\frac{-3}{5}, \frac{-3}{5}\right)$$

Hence, the equation of third side i.e., BC is

$$\frac{y-\frac{3}{5}}{x-\frac{18}{5}} = \frac{\frac{-3}{5}-\frac{3}{5}}{\frac{-3}{5}-\frac{18}{5}}$$
$$\implies 2x-7y-3=0$$

58. The given pair of lines can be separated as:

$$L_{1} = (l + \sqrt{3} m)x + (m - \sqrt{3} l)y = 0$$

$$L_{2} = (l - \sqrt{3} m)x + (m + \sqrt{3} l)y = 0$$
and
$$L_{3} = lx + my + n = 0$$
The slopes S is and S is the three lines.

 \therefore The slopes S₁, S₂ and S₃ of the three lines respectively are,

$$S_1 = \frac{-(l+\sqrt{3}m)}{(m-\sqrt{3}l)}, S_2 = \frac{-(l-\sqrt{3}m)}{(m+\sqrt{3}l)}, S_3 = \frac{-l}{m}$$

Angle between L_1 and L_3 is

$$\theta_{13} = \tan^{-1} \left| \frac{S_1 - S_3}{1 + S_1 S_3} \right|$$

= $\tan^{-1} \left| \frac{-\left(\frac{l + \sqrt{3}m}{m - \sqrt{3}l}\right) + \frac{l}{m}}{1 + \left(\frac{l + \sqrt{3}m}{m - \sqrt{3}l}\right) \left(\frac{l}{m}\right)} \right|$
= $\tan^{-1} \left| \frac{-\sqrt{3}m^2 - \sqrt{3}l^2}{l^2 + m^2} \right| = \tan^{-1} \left(\sqrt{3}\right) = 60^{\circ}$

Angle between L_2 and L_3 is

$$\theta_{23} = \tan^{-1} \left| \frac{S_2 - S_3}{1 + S_2 S_3} \right| = \tan^{-1} \left| \frac{-\left(\frac{l - \sqrt{3m}}{m + \sqrt{3l}}\right) + \frac{l}{m}}{1 + \left(\frac{l - \sqrt{3m}}{m + \sqrt{3l}}\right) \left(\frac{l}{m}\right)} \right|$$
$$= \tan^{-1} \left| \frac{\sqrt{3m^2 + \sqrt{3l^2}}}{m^2 + l^2} \right| = \tan^{-1} \left(\sqrt{3}\right) = 60^{\circ}$$

:. Angle between the lines L_1 and $L_2 = 60^{\circ}$ Hence, the triangle is equilateral.

Competitive Thinking

Let OA and OB be the required lines.

- ∴ angles made by OA and OB with X-axis are 30° and 150° respectively.
- \therefore their equations are $y = \frac{1}{\sqrt{3}}x$ and $y = -\frac{1}{\sqrt{3}}x$

i.e.,
$$x - \sqrt{3}y = 0$$
 and $x + \sqrt{3}y = 0$

- $\therefore \quad \text{The joint equations of the lines is} \\ \left(x \sqrt{3}y\right)\left(x + \sqrt{3}y\right) = 0 \Longrightarrow x^2 3y^2 = 0$
- 3. The lines trisecting the first quadrant are as shown in the figure.

...

Chapter 04: Pair of Straight Lines $\Rightarrow x^{2} - 4x + 4 + y^{2} = 16 + x^{2} + 4x + 4 + y^{2}$

8.

...

9.

...

The equations of bisectors are, y-3 = (1)(x-5) and y-3 = (-1)(x-5) $\Rightarrow x - y - 2 = 0$ and x + y - 8 = 0

- The joint equation of the bisectors is *.*.. (x - y - 2)(x + y - 8) = 0 $\Rightarrow x^2 - y^2 - 10x + 6v + 16 = 0$
- Slope of QR = -2. 5. Slope of $PQ = m_1$

Y٩

4.

P(2, 1)

Equation of PQ passing through point P (2, 1) *.*.. and having slope m₁ is

$$y-1 = -\frac{1}{3}(x-2)$$

$$\Rightarrow 3(y-1) + (x-2) = 0 \qquad \dots (i)$$

Slope of PR = m₂ = 3 \quad \left(\cdots PQ \pm PR]

- equation of PR is *.*.. y - 1 = 3(x - 2) \Rightarrow (y - 1) - 3(x - 2) = 0(ii) The joint equation of the lines is [3(y-1) + (x-2)][(y-1) - 3(x-2)] = 0 $\Rightarrow 3(y-1)^2 - 8(y-1)(x-2) - 3(x-2)^2 = 0$
 - $\Rightarrow 3(x^2 4x + 4) + 8(xy x 2y + 2)$ $-3(y^2-2y+1)=0$ $\Rightarrow 3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$
- $x^2 7xy + 12y^2 = 0$ 6. $\Rightarrow (x-3y)(x-4y) = 0$ Hence, the lines are intersecting and non-perpendicular.

7.
$$\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4$$

i.e. $\sqrt{(x-2)^2 + y^2} = 4 - \sqrt{(x+2)^2 + y^2}$
Squaring both sides, we get
 $(x-2)^2 + y^2 = 16 - 8\sqrt{(x+2)^2 + y^2} + (x+2)^2 + y^2$

$$-8\sqrt{(x+2)^2 + y^2}$$
Again squaring both sides, we get
$$(x+2)^2 = (x+2)^2 + y^2$$

$$\Rightarrow y^2 = 0$$
This is an equation of pair of two coincident
straight lines.
8. The required lines are parallel to
$$x^2 - 4xy + 3y^2 = 0, \text{ which pass through } (3, -2).$$

$$\therefore \text{ the combined equation of lines is}$$

$$(x-3)^2 - 4(x-3)(y+2) + 3(y+2)^2 = 0$$

$$\Rightarrow x^2 - 6x + 9 - 4(xy + 2x - 3y - 6)$$

$$+ 3(y^2 + 4y + 4) = 0$$

$$\Rightarrow x^2 - 6x + 9 - 4xy - 8x + 12y + 24 + 3y^2$$

$$+ 12y + 12 = 0$$

$$\Rightarrow x^2 - 4xy + 3y^2 - 14x + 24y + 45 = 0$$
9. The required equation is $-2x^2 - 3xy + 5y^2 = 0$
i.e., $2x^2 + 3xy - 5y^2 = 0$
10. Given equation of pair of lines is
$$4xy + 2x + 6y + 3 = 0$$

$$\Rightarrow 2x(2y + 1) + 3(2y + 1) = 0$$

- $\Rightarrow (2y+1)(2x+3) = 0$ Separate equations of lines are 2x + 3 = 0 and 2v + 1 = 0i.e. $x = \frac{-3}{2}$ and $y = \frac{-1}{2}$ The equation of line passing through (2, 1) and perpendicular to $x = \frac{-3}{2}$ is y = 1 i.e. y - 1 = 0The equation of line passing through (2, 1) and perpendicular to $y = \frac{-1}{2}$ is x = 2 i.e. x - 2 = 0
- Combined equation of pair of lines is *.*.. (x-2)(y-1) = 0 $\Rightarrow xy - x - 2y + 2 = 0$
- 11. OD is the median

MHT-CET Triumph Maths (Hints)

Equation of OD is y = mx $\Rightarrow y = \frac{3}{2}x \Rightarrow 3x - 2y = 0$ Slope of line AB = $\frac{2}{2} = 1$ Given, OE \perp AB Slope of OE = -1 Equation of OE is y = mx

...

- $\Rightarrow y = -x \Rightarrow x + y = 0$ $\therefore \quad \text{Joint equation of median and altitude is} \\ (3x - 2y) (x + y) = 0 \\ \Rightarrow 3x^2 + xy - 2y^2 = 0$
- 12. We have, $x^2 5x + 6 = 0$ and $y^2 6y + 5 = 0$ $\Rightarrow (x - 3)(x - 2) = 0$ and (y - 1)(y - 5) = 0
- ... One pair of opposite sides of parallelogram is x 3 = 0 and x 2 = 0 and the other pair is y 1 = 0 and y 5 = 0
- The vertices of the parallelogram are as shown in the figure below.

 \therefore equation of diagonal d₁ is

$$y-1 = \frac{5-1}{3-2}(x-2)$$

$$\Rightarrow y-1 = 4(x-2) \Rightarrow y = 4x-7$$

and equation of diagonal d₂ is

$$y-1 = \frac{5-1}{2-3}(x-3)$$

$$\Rightarrow y-1 = -4(x-3) \Rightarrow 4x+y = 13$$

- \therefore the equations are 4x + y = 13 and y = 4x 7.
- 13. $2x^{2} + 3xy 2y^{2} = 0$ $\Rightarrow x + 2y = 0 \text{ and } 2x y = 0$

From the figure, $\begin{pmatrix} -2 & 1 \end{pmatrix}$

$$A\left(\frac{-2}{5},\frac{1}{5}\right), B(0,0), C\left(\frac{-1}{5},\frac{-2}{5}\right)$$

Now, equation of side AD is $2x - y + c_1 = 0$

Substituting $x = \frac{-2}{5}$, $y = \frac{1}{5}$ in above equation, we get $c_1 = 1$ *.*.. equation of AD becomes 2x - y + 1 = 0Similarly equation of side DC is $x + 2y + c_2 = 0$ i.e., x + 2y + 1 = 0 $D\left(\frac{-3}{5},\frac{-1}{5}\right)$ *.*.. Now, equation of diagonal BD is $y - 0 = \frac{0 + \frac{1}{5}}{0 + \frac{3}{5}}(x - 0)$ $\Rightarrow \frac{3}{5}y = \frac{1}{5}x$ $\Rightarrow x - 3y = 0$ 14. Substituting the value of *y* in the equation $ax^2 + 2hxy + by^2 = 0.$ $\Rightarrow ax^2 + 2hx(mx) + b(mx)^2 = 0$ \Rightarrow a + 2hm + bm² = 0 One of the lines is 3x + 4y = 015. i.e., $\frac{y}{x} = -\frac{3}{4}$ The given joint equation is $6x^2 - xy + 4cy^2 = 0$ $\Rightarrow 4c \left(\frac{y}{r}\right)^2 - \left(\frac{y}{r}\right) + 6 = 0 \qquad \dots (i)$ Substituting value of $\frac{y}{y}$ in equation (i), we get $4c\left(\frac{-3}{4}\right)^2 - \left(-\frac{3}{4}\right) + 6 = 0$ $\Rightarrow 4c \times \frac{9}{16} + \frac{3}{4} + 6 = 0$ $\Rightarrow \frac{9c}{4} + \frac{3+24}{4} = 0 \Rightarrow 9c + 27 = 0$ \Rightarrow c = -3 16. Given equation of pair of lines is $kx^2 - 5xy - 3y^2 = 0$ \Rightarrow k - 5 $\frac{y}{x}$ - 3 $\left(\frac{y}{x}\right)^2$ = 0 \Rightarrow k - 5m - 3m² = 0(i) Now, slope of line x - 2y + 3 = 0 is $m_1 = \frac{1}{2}$. slope of the line perpendicular to x - 2y + 3 = 0*.*.. is m = -2. Substituting value of m in equation (i), we get $k - 5(-2) - 3(-2)^2 = 0$ \Rightarrow k = -10 + 12 \Rightarrow k = 2

17.
$$6x^{2} + xy - y^{2} = 0$$

$$\Rightarrow 6x^{2} + 3xy - 2xy - y^{2} = 0$$

$$\Rightarrow 2x + y = 0 \text{ and } 3x - y = 0$$

$$\det a = \frac{1}{2}$$

- $\therefore \quad \text{equation } 3x^2 axy y^2 = 0 \text{ becomes} \\ 3x^2 \frac{1}{2}xy y^2 = 0 \\ \Rightarrow 6x^2 xy 2y^2 = 0 \\ \Rightarrow 3x 2y = 0 \text{ and } 2x + y = 0 \\ \therefore \quad \text{given pair of lines have common line } 2x + y = 0$
- \therefore Option (A) is correct answer.
- 19. Given equation of pair of lines is $3x^2 + 5xy - 2y^2 = 0$ ∴ $a = 3, h = \frac{5}{2}, b = -2$

Now,
$$m_1 + m_2 = \frac{-2h}{b} = \frac{5}{2}$$

- 20. Given equation of pair of lines is $4x^2 + 2hxy - 7y^2 = 0$
- $\therefore \quad A = 4, H = h, B = -7$ Now, $m_1 + m_2 = -\frac{2H}{B} = \frac{2h}{7}$ and $m_1m_2 = \frac{A}{B} = \frac{4}{-7}$ Given that, $m_1 + m_2 = m_1m_2$ $\Rightarrow \frac{2h}{7} = \frac{4}{-7} \Rightarrow h = -2$
- 21. Given equation of pair of lines is $x^2 - 2cxy - 7y^2 = 0$
- $\therefore \quad a = 1, h = -c, b = -7$ $\therefore \quad m_1 + m_2 = \frac{-2c}{7} \text{ and } m_1m_2 = \frac{-1}{7}$ Given that, $m_1 + m_2 = 4m_1m_2$ $\Rightarrow \frac{-2c}{7} = \frac{-4}{7} \Rightarrow c = 2$
- 22. Given equation of pair of lines is $ax^2 - 6xy + y^2 = 0$
- $\therefore \quad A = a, H = -3, B = 1$ Given that, $m_1 = 2m_2$ $m_1 + m_2 = -\frac{2(-3)}{1} = 6$ $\Rightarrow 2m_2 + m_2 = 6 \Rightarrow m_2 = 2 \Rightarrow m_1 = 4$ Now, $m_1m_2 = \frac{a}{1} = a$ $\Rightarrow a = (4)(2) = 8$
- **Chapter 04: Pair of Straight Lines** 23. Given equation of pair of lines is $x^2 + hxy + 2y^2 = 0$ $A = 1, H = \frac{h}{2}, B = 2$ ÷ Given that $m_1 = 2m_2$ Now, $m_1 + m_2 = \frac{-h}{2}$ and $m_1 m_2 = \frac{1}{2}$ $(2m_2)m_2 = \frac{1}{2} \Rightarrow 2(m_2)^2 = \frac{1}{2} \Rightarrow m_2 = \pm \frac{1}{2}$... Also, $2m_2 + m_2 = \frac{-h}{2} \Rightarrow m_2 = \frac{-h}{6}$ $\Rightarrow \pm \frac{1}{2} = \frac{-h}{4} \Rightarrow h = \pm 3$ Given equation of pairs of lines is 24. $ax^2 + 2hxy + by^2$ \therefore $m_1 + m_2 = \frac{-2h}{b}$ and $m_1m_2 = \frac{a}{b}$ Given that, $m_1 = 2m_2$ $2m_2 + m_2 = \frac{-2h}{h}$ and $2m_2m_2 = \frac{a}{h}$ *:*. \therefore m₂ = $\frac{-2h}{3h}$ and m₂² = $\frac{a}{2h}$ $\therefore \qquad \left(-\frac{2h}{3h}\right)^2 = \frac{a}{2h}$ $\therefore \qquad \frac{4h^2}{9b^2} = \frac{a}{2b}$ 25. Given equation of pairs of lines is $kx^2 + 5xy + y^2 = 0$ \therefore a = k, b = 1, h = $\frac{5}{2}$ \therefore $m_1 + m_2 = \frac{-2h}{h} = -5$ $m_1 m_2 = \frac{a}{b} = k$ Given that, $m_1 - m_2 = 1$ Now, $(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1m_2$ $\Rightarrow 1^2 = (-5)^2 - 4k \Rightarrow 4k = 24$ \Rightarrow k = 6 26. If the gradients of two lines are in ratio 1 : n. then $\frac{h^2}{ab} = \frac{(n+1)^2}{4n} = \frac{(3+1)^2}{43} = \frac{4}{3}$ **Alternate Method:** Gradients $\frac{m_1}{m_2} = 1:3$

$$\Rightarrow$$
 m₁ = m, m₂ = 3m

MHT-CET Triumph Maths (Hints)

$$m_{1} + m_{2} = -\frac{2h}{b} \Rightarrow m + 3m = -\frac{2h}{b}$$
$$\Rightarrow m = \frac{-h}{2b}$$
$$m_{1} \cdot m_{2} = \frac{a}{b} \Rightarrow m \cdot 3m = \frac{a}{b}$$
$$\Rightarrow 3 m^{2} = \frac{a}{b} \Rightarrow 3 \cdot \frac{h^{2}}{4b^{2}} = \frac{a}{b} \Rightarrow \frac{h^{2}}{ab} = \frac{4}{3}$$

- 27. $m_1: m_2 = 1:2$
- $\therefore \qquad \frac{h^2}{ab} = \frac{(2+1)^2}{4(2)} = \frac{9}{8}$ $\implies \frac{ab}{h^2} = \frac{8}{9}$
- 28. Given equation of pair of lines is $x^2 + 4xy + y^2 = 0$

$$\therefore \quad a = 1, h = 2, b = 1$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \left| \frac{2\sqrt{(2)^2 - (1)(1)}}{1 + 1} \right| = \sqrt{3}$$

$$\Rightarrow \theta = \tan^{-1} \left(\sqrt{3}\right) = 60^{\circ}$$

- 29. Given equation of pair of lines is $(x^2 + y^2)\sqrt{3} = 4xy$ ∴ $a = \sqrt{3}$, h = -2, $b = \sqrt{3}$
- $\therefore \quad a = \sqrt{3}, h = -2, b = \sqrt{3}$ $\therefore \quad \tan \theta = \left| \frac{2\sqrt{4-3}}{2\sqrt{3}} \right| = \frac{1}{\sqrt{3}}$ $\Rightarrow \theta = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}$
- 30. Given equation of pair of lines is $x^2 + 4y^2 - 7xy = 0$

$$\therefore \quad a = 1, h = -\frac{7}{2}, b = 4$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{\left(\frac{-7}{2}\right)^2 - (1)(4)}}{1 + (4)} \right|$$

$$= \left| \frac{2\sqrt{\frac{49}{4} - 4}}{5} \right| = \frac{\sqrt{33}}{5}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{\sqrt{33}}{5}\right)$$

31. Given equation of pair of lines is $4x^2 - 24xy + 11y^2 = 0$ a = 4 b = -12 b = 11

$$\therefore \quad a=4, n=-12, b=11$$

$$\therefore \quad \tan \theta = \pm 2 \frac{\sqrt{h^2 - ab}}{a+b} = \pm 2 \frac{\sqrt{144 - 44}}{15} = \pm \frac{4}{3}$$

$$\Rightarrow \theta = \tan^{-1} \left(\pm \frac{4}{3} \right)$$

- 32. Given equation of pair of lines is $x^2 + 2xy \sec \theta + y^2 = 0$
- $\therefore \quad a = 1, h = \sec \theta, b = 1$ Let ϕ be the angle between the lines.

$$\therefore \quad \tan \phi = \left| \frac{2\sqrt{\sec^2 \theta - 1}}{2} \right|$$
$$\Rightarrow \tan \phi = \tan \theta \Rightarrow \phi = \theta$$

- 33. Let m_1 and m_2 be the slopes of the lines given by $x^2 + 4xy + y^2 = 0$
- $\therefore \qquad m_1 + m_2 = -4 \quad \Rightarrow m_2 = -4 m_1 \\ \text{and} \quad m_1 \cdot m_2 = 1 \quad \Rightarrow m_1(-4 m_1) = 1 \\ \Rightarrow \quad m_1^2 + 4m_1 + 1 = 0$
- $\therefore \quad m_1, m_2 = -2 \pm \sqrt{3}$ Slope of line x - y = 4 is $m_3 = 1$
- ... Angle between first two lines,

$$\tan^{-1} \theta_{12} = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right| = \left| \frac{(-2 + \sqrt{3}) - (-2 - \sqrt{3})}{1 + (-2 + \sqrt{3})(-2 - \sqrt{3})} \right|$$
$$\Rightarrow \theta_{12} = \tan^{-1} \left(\sqrt{3} \right) = 60^{\circ}$$

Angle between second and third line

$$\theta_{23} = \tan^{-1}\left(\frac{-2-\sqrt{3}-1}{1+(-2-\sqrt{3})1}\right) = \tan^{-1}\left(\sqrt{3}\right) = 60^{\circ}$$

Similarly, we have, $\theta_{31} = 60^{\circ}$

- :. The triangle formed by the lines is equilateral triangle.
- 34. Let m_1 and m_2 be the slopes of the lines given by $23x^2 - 48xy + 3y^2 = 0$

$$\therefore \qquad m_1 + m_2 = \frac{48}{3} = 16 \Rightarrow m_2 = 16 - m_1$$

and $m_1 m_2 = \frac{23}{3} \Rightarrow m_1 (16 - m_1) = \frac{23}{3}$
$$\Rightarrow -m_1^2 + 16m_1 - \frac{23}{3} = 0$$

$$\Rightarrow 3m_1^2 - 48m_1 + 23 = 0$$

$$\Rightarrow m_1, m_2 = \frac{24 \pm 13\sqrt{3}}{3}$$
slope of line is 2x+3y+4=0 is $m_3 = \frac{-2}{3}$

... Angle between first two lines,

$$\tan^{-1} \theta_{12} = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
$$= \left| \frac{\left(\frac{24 + 13\sqrt{3}}{3} \right) - \left(\frac{24 - 13\sqrt{3}}{3} \right)}{1 + \left(\frac{24 + 13\sqrt{3}}{3} \right) \left(\frac{24 - 13\sqrt{3}}{3} \right)} \right|$$
$$= \left| \frac{\frac{26\sqrt{3}}{3}}{\frac{9 + 576 - 507}{9}} \right| = \left| \frac{\frac{26\sqrt{3}}{3}}{\frac{78}{9}} \right|$$

 $\therefore \quad \tan^{-1} \theta_{12} = \sqrt{3}$

$$\Rightarrow \theta_{12} = \tan^{-1}\left(\sqrt{3}\right) = 60^{\circ}$$

Angle between second and third line

$$\theta_{23} = \tan^{-1} \left(\frac{\frac{24 - 13\sqrt{3}}{3} - \left(-\frac{2}{3}\right)}{1 + \left(\frac{24 - 13\sqrt{3}}{3}\right)\left(-\frac{2}{3}\right)} \right)$$
$$= \tan^{-1} \left(\frac{\frac{26 - 13\sqrt{3}}{3}}{\frac{9 - 48 + 26\sqrt{3}}{9}} \right) = \tan^{-1} \left(\frac{\frac{26 - 13\sqrt{3}}{3}}{\frac{-39 + 26\sqrt{3}}{9}} \right)$$
$$= \tan^{-1} \left(\frac{26 - 13\sqrt{3}}{3} \times \frac{9}{-39 + 26\sqrt{3}} \right)$$
$$= \tan^{-1} \left(\frac{13\left(2 - \sqrt{3}\right) \times 3}{13\sqrt{3}\left(2 - \sqrt{3}\right)} \right)$$
$$= \tan^{-1} \left(\sqrt{3} \right) = 60^{\circ}$$

Similarly, we have, $\theta_{31} = 60^{\circ}$

- The triangle formed by the lines is equilateral triangle.
- 35. Given equation of pair of lines is $4x^{2} + 12xy + 9y^{2} = 0$ a = 4, h = 6, b = 9Here, $h^{2} - ab = (6)^{2} - (4)(9) = 36 - 36 = 0$ Hence, the lines are real and coincident.

Chapter 04: Pair of Straight Lines

36. Given equation of pair of lines is

$$x^2 + ky^2 + 4xy = 0$$

∴ $a = 1, h = \frac{k}{2}, b = 4$
The pair of lines are coincident if $h^2 - ab = 0$
 $\Rightarrow h^2 = ab \Rightarrow \frac{k^2}{4} = 4(1)$
 $\Rightarrow k = \pm 4$
37. Given equation of pair of lines is
 $px^2 - qy^2 = 0$
∴ $a = p, b = -q, c = 0$
Since, the lines are real and distinct
∴ $h^2 - ab > 0$
 $\Rightarrow 0 - p(-q) > 0$
 $\Rightarrow pq > 0$
38. Given equation of pair of lines is
 $y^2 \sin^2 \theta - xy \sin^2 \theta + x^2 (\cos^2 \theta - 1) = 0$
∴ $a = \sin^2 \theta, b = \cos^2 \theta - 1 = -(1 - \cos^2 \theta)$
 $= -\sin^2 \theta$
Now, $a + b = \sin^2 \theta - \sin^2 \theta = 0$
∴ The lines are perpendicular.
∴ $\theta = \frac{\pi}{2}$
39. Consider option (C)
Given equation is $y^2 + x + 1 = 0$
∴ $a = 0, b = 1, c = 0, f = 0, g = -\frac{1}{2}, h = 0$
Now, $abc + 2fgh - af^2 - bg^2 - ch^2$
 $= 0 + 0 - 0 - (\frac{1}{4}) + 0 = -\frac{1}{4} \neq 0$
∴ The equation does not represent a pair of straight lines.
40. Given equation of pair of lines is
 $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$
 $a = 3, b = 2, c = 2, f = \frac{5}{2}, g = \frac{5}{2}, h = \frac{7}{2}$
Consider abc + 2fgh - af^2 - bg^2 - ch^2
 $= (3)(2)(2) + 2(\frac{5}{2})(\frac{7}{2})$
 $-3(\frac{5}{2})^2 - 2(\frac{5}{2})^2 - 2(\frac{7}{2})^2 = 0$
∴ the given equation represents a pair of straight lines.

- 41. Given equation of pair of lines is $xy + a^2 = ax + ay$ i.e. $ax + ay - xy - a^2 = 0$
- $\therefore \quad A = 0, B = 0, C = -a^{2}, F = \frac{a}{2}, G = \frac{a}{2}, H = -\frac{1}{2}$ Now, ABC + 2FGH - AF² - BG² - CH² = 0 - 2 $\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{-1}{2}\right) - (a^{2})\left(\frac{-1}{2}\right)^{2} = 0$
- \therefore the given equation represents a pair of straight lines.
- 42. Given equation of pair of lines is $ax^2 - y^2 + 4x - y = 0$
- $\therefore \quad A = a, B = -1, C = 0, F = \frac{-1}{2}, G = 2, H = 0$ The given equation represents a pair of straight lines, $\therefore \quad APC + 2FCH = AF^2 - BC^2 - CH^2 = 0$

$$\therefore \quad ABC + 2FGH - AF^2 - BG^2 - CH^2 = 0$$
$$\Rightarrow 0 - 0 - a\left(\frac{1}{4}\right) - (-1)(4) = 0$$
$$\Rightarrow -\frac{a}{4} + 4 = 0 \Rightarrow a = 16$$

- 43. Given equation of pair of lines is kxy + 10x + 6y + 4 = 0
- ∴ $a = b = 0, c = 4, f = 3, g = 5, h = \frac{k}{2}$ Now, $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\Rightarrow 0 + 2(3)(5)\left(\frac{k}{2}\right) - 0 - 0 - 4\left(\frac{k}{2}\right)^2 = 0$ $\Rightarrow 15k - k^2 = 0 \Rightarrow k(15 - k) = 0$ $\Rightarrow k = 0 \text{ or } k = 15$
- 44. Given equation of pair of lines is $x^{2} + kxy + y^{2} - 5x - 7y + 6 = 0$
- $\therefore \quad a = 1, b = 1, c = 6, f = \frac{-7}{2}, g = \frac{-5}{2}, h = \frac{k}{2}$ Now, abc + 2fgh af² bg² ch² = 0 $\Rightarrow (1)(1)(6) + 2\left(\frac{-7}{2}\right)\left(\frac{-5}{2}\right)\left(\frac{k}{2}\right) 1\left(-\frac{7}{2}\right)^{2}$ $-1\left(\frac{-5}{2}\right)^{2} 6\left(\frac{k}{2}\right)^{2} = 0$ $\Rightarrow 6 + \frac{35k}{4} \frac{49}{4} \frac{25}{4} \frac{6k^{2}}{4} = 0$ $\Rightarrow -6k^{2} + 35 k 50 = 0$ $\Rightarrow (2k 5)(3k 10) = 0$ $\Rightarrow k = \frac{5}{2} \text{ or } k = \frac{10}{2}$

- 45. Given equation of pair of lines is $x^2 - y^2 + x + 3y - 2 = 0$
- :. $a = 1, b = -1, g = \frac{1}{2}, f = \frac{3}{2}, c = -2$
- $\therefore \quad \text{point of intersection of the lines is} \\ \left(\frac{hf bg}{ab h^2}, \frac{gh af}{ab h^2}\right) = \left(\frac{-1}{2}, \frac{3}{2}\right)$
- 46. Given equation of pair of lines is $2x^{2} - 10xy + 2\lambda y^{2} + 5x - 16y - 3 = 0$ 5

:.
$$a = 2, b = 2\lambda, c = -3, f = -8, g = \frac{5}{2}, h = -5$$

$$\Rightarrow 2(2\lambda)(-3) + 2(-8)\left(\frac{5}{2}\right)(-5) - 2(64)$$
$$-2\lambda\left(\frac{25}{4}\right) + 3(25) = 0$$

$$\Rightarrow \frac{49\lambda}{2} = 147 \Rightarrow \lambda = 6$$

$$\therefore \quad \text{Point of intersection of the lines is} \\ \left(\text{hf} - \text{bg } \text{gh} - \text{af} \right)$$

$$\left(\begin{array}{c} ab - h^{2} & ab - h^{2} \end{array} \right) \\ \equiv \left(\frac{(-5)(-8) - 2(6)\left(\frac{5}{2}\right)}{2(12) - (-5)^{2}}, \frac{\frac{5}{2}(-5) - 2(-8)}{2(12) - (-5)^{2}} \right) \\ \equiv \left(-10, \frac{-7}{2} \right)$$

- 47. Given equation of pair of lines is $2x^2 - 3xy - 2y^2 + 10x + 5y = 0$ ∴ a = 2. b = -2, c = 0, $f = \frac{5}{2}$, g = 5, $h = \frac{-3}{2}$
- $\therefore \quad \text{Point of intersection of the lines is} \\ \left(\frac{\text{hf} \text{bg}}{\text{ab} \text{h}^2}, \frac{\text{gh} \text{af}}{\text{ab} \text{h}^2}\right) = (-1, 2)$

Slope of line joining origin and (-1, 2) m = -2Slope of kx + y + 3 = 0 is -k

Now,
$$(-k)(-2) = -1 \Rightarrow k = \frac{-1}{2}$$

48. The line 5x + y - 1 = 0 is coincides $5x^2 + xy - kx - 2y + 2 = 0$

:.
$$a = 5, b = 0, c = 2, f = -1, g = -\frac{k}{2}, h = \frac{1}{2}$$

 $m_1 + m_2 = \frac{-2h}{b}$

Chapter 04: Pair of Straight Lines

As
$$b = 0$$
, this case is not defined
Slope of line $5x + y - 1 = 0$ is $m = -5$
Slope of another line must be infinite
equation of another line is $x = k_1$
Combine equation is $(5x + y - 1)(x - k_1) = 0$
 $\Rightarrow 5x^2 - 5xk_1 + xy - yk_1 - x + k_1 = 0$
 $\Rightarrow 5x^2 + xy - (5k_1 + 1)x - yk_1 + k_1 = 0$
Comparing this equation with the given
equation, we get $k = 11$
Given equation of pair of lines is
 $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$

.:. .:. .:.

49.

$$\therefore \quad a = 3, b = 2, h = \frac{7}{2}$$

$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \left| \frac{2\sqrt{\frac{49}{4} - 6}}{3 + 2} \right| = \left| \frac{2\sqrt{\frac{25}{4}}}{5} \right|$$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = \tan^{-1}(1) = \frac{\pi}{4}$$

50. Given equation of pair of lines is $x^{2} - xy - 6y^{2} - 7x + 31y - 18 = 0$

$$\therefore \quad a = 1, b = -6, h = -\frac{1}{2}$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{\left(\frac{-1}{2}\right)^2 - 1(-6)}}{1 - 6} \right| = \left| \frac{2\sqrt{\frac{1}{4} + 6}}{-5} \right| = |-1| = 1$$

$$\Rightarrow \theta = \tan^{-1}(1) = 45^{\circ}$$

51. Given equation of pair of lines is $x^2 - 3xy + \lambda y^2 + 3x + 5y + 2 = 0$

$$\therefore \quad a = 1, b = \lambda, h = -\frac{3}{2}$$

$$\theta = \tan^{-1} 3 \Rightarrow \tan \theta = 3$$

$$\therefore \quad \tan \theta = \left| \frac{2\sqrt{\left(-\frac{3}{2}\right)^2 - (1)\lambda}}{1 + \lambda} \right|$$

$$\Rightarrow 3 = \left| \frac{2\sqrt{\frac{9 - 4\lambda}{4}}}{1 + \lambda} \right| = \left| \frac{\sqrt{9 - 4\lambda}}{1 + \lambda} \right|$$

$$\Rightarrow \frac{9 - 4\lambda}{(1 + \lambda)^2} = 9$$

$$\Rightarrow 9 - 4\lambda = 9 (1 + \lambda)^2$$

$$\Rightarrow 9\lambda^2 + 22\lambda = 0$$

$$\Rightarrow \lambda (9\lambda + 22) = 0$$

$$\Rightarrow \lambda = 0 \text{ or } \lambda = -\frac{22}{9}$$
But λ is non-negative

$$\therefore \quad \lambda = 0$$

52. Given equation of pair of lines is

$$2x^{2} + 5xy + 3y^{2} + 6x + 7y + 4 = 0$$

$$a = 2, b = 3, h = \frac{5}{2}$$

$$\theta = \tan^{-1} m \Rightarrow \tan \theta = m$$

$$\tan \theta = \left| \frac{2\sqrt{\frac{25}{4} - 6}}{2 + 3} \right| \Rightarrow m = \frac{1}{5}$$
53. Given equation of pair of lines is

$$x^{2} + y^{2} - 2x - 1 = 0 \qquad \dots(i)$$

$$x + y = 1 \text{ intersects the above pair of lines}$$

$$\therefore \quad \text{It satisfies equation (i)}$$

$$\therefore \quad x^{2} + y^{2} - 2x(x + y) - (x + y)^{2} = 0$$

$$\Rightarrow 2x^{2} + 4xy = 0 \Rightarrow x^{2} + 2xy = 0$$

$$\Rightarrow 2x^2 + 4xy = 0 \Rightarrow x^2 + 2$$

$$\therefore \quad a = 1, b = 0, h = 1$$

$$\therefore \quad \tan \theta = \frac{2\sqrt{1^2 - 0}}{1}$$

$$\Rightarrow 0 \quad \tan^{-1}(2)$$

$$\Rightarrow \theta = \tan^{-1}(2)$$
54. The joint equation of the pair of straight lines
joining the origin to the points of intersection
of the line $lx + my + n = 0$ and
 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is
 $ax^2 + 2hxy + by^2 + 2g\left(\frac{lx + my}{-n}\right)x$
 $+ 2f\left(\frac{lx + my}{-n}\right)y + c\left(\frac{lx + my}{-n}\right)^2 = 0$
Here, $l = 2$, $m = 1$, $n = -1$ and
 $a = 3$, $b = 0$, $c = 1$, $f = 0$, $g = -2$, $h = 2$
 $\therefore 3x^2 + 4xy - 4x(2x + y) + (2x + y)^2 = 0$
 $\Rightarrow 3x^2 + 4xy - 8x^2 - 4xy + 4x^2 + y^2 + 4xy = 0$
 $\Rightarrow x^2 - 4xy - y^2 = 0$
 $\therefore A = 1$, $B = -1$, $H = -2$
 $\therefore \tan \theta = \frac{2\sqrt{4+1}}{0} = \infty$
 $\Rightarrow \theta = \frac{\pi}{2}$
55. Given, $ax^2 + 2hxy + by^2 = -2gx$
 $a_1x^2 + 2h_1xy + b_1y^2 = -2g_1x$
 $\therefore \frac{ax^2 + 2hxy + by^2}{a_1x^2 + 2h_1xy + b_1y^2} = \frac{g}{g_1}$
We have,
 $(ag_1 - a_1g)x^2 + 2(hg_1 - h_1g)xy + (bg_1 - b_1g)y^2 = 0$
 $\therefore A = (ag_1 - a_1g) B = (hg_1 - h_1g)$

A = $(ag_1 - a_1g)$, B = $(bg_1 - b_1g)$ The lines are perpendicular

.
$$A + B = 0$$

 $\Rightarrow (ag_1 - a_1g) + (bg_1 - b_1g) = 0$
 $\Rightarrow (a + b)g_1 = (a_1 + b_1)g$

The equation of line is $y = 2\sqrt{2}x + c$ 56. $\Rightarrow \left(\frac{y-2\sqrt{2}x}{c}\right) = 1$(i) Given equation of circle is $x^{2} + y^{2} = 2(1)^{2}$(ii) from (i) and (ii), we get *.*.. $x^{2} + y^{2} = 2\left(\frac{y - 2\sqrt{2}x}{c}\right)^{2}$ $\Rightarrow c^{2}(x^{2} + y^{2}) = 2(y^{2} - 4\sqrt{2}xy + 8x^{2})$ $\Rightarrow (c^{2} - 16)x^{2} + (c^{2} - 2)y^{2} + 8\sqrt{2}xy = 0$ The lines are perpendicular if A + B = 0. $c^2 - 16 + c^2 - 2 = 0$ *.*.. $\Rightarrow 2c^2 - 18 = 0$ \Rightarrow c² - 9 = 0 57. Lines represented by the equation $2y^2 - xy - 6x^2 = 0$ are y = 2x and $y = -\frac{3}{2}x$ The co-ordinates of the vertices of the triangle formed by above lines with x + y = 1 are $(0, 0), \left(\frac{1}{3}, \frac{2}{3}\right)$ and (-2, 3)The altitude from vertex (0, 0) on x + y = 1 is

y = x.

The altitude from vertex $\left(\frac{1}{3}, \frac{2}{3}\right)$ on $y = \frac{-3}{2}x$

is $y - \frac{2}{3} = \frac{2}{3} \left(x - \frac{1}{3} \right)$ $\Rightarrow 6x - 9v + 4 = 0$(ii) Solving (i) and (ii), we get

$x = \frac{4}{3}$ and $y = \frac{4}{3}$, Orthocentre is $\left(\frac{4}{3}, \frac{4}{3}\right)$

...

- 58. Given equations of pair of lines are xy + 4x - 3y - 12 = 0 and xy - 3x + 4y - 12 = 0
- x(y+4) 3(y+4) = 0 and x(y-3) + 4(y-3) = 0....
- ... (y+4)(x-3) = 0 and (x+4)(y-3) = 0
- ÷. The vertices of the square are as shown in the figure

D(-4, 3)

$$x + 4 = 0$$

A(-4, -4)
 $y + 4 = 0$
 $y + 4 = 0$
B(3, -4)
C(3, 3)
 $x - 3 = 0$
B(3, -4)

Equation of diagonal d_1 is

$$y+4 = \frac{-4-3}{-4-3}(x+4)$$

$$\Rightarrow y+4 = x+4$$

$$\Rightarrow x-y=0$$

and equation of diagonal d₂

$$y+4 = \frac{3+4}{-4-3}(x-3)$$

$$\Rightarrow y+4 = -1(x-3)$$

$$\Rightarrow y+4 = -x+3$$

$$\Rightarrow x+y+1 = 0$$

Combined equation of diagonals d₁ and d₂ is *.*.. (x-y)(x+y+1) = 0 $\Rightarrow x^2 - y^2 + x - y = 0$

is

Evaluation Test

 $L_1: ax^2 + 2hxy + by^2 = 0$ 1. Equation of any line passing through origin and perpendicular to L_1 is given by $bx^2 - 2hxy + ay^2 = 0$(interchanging coefficients of x^2 and y^2 and change of sign for xy term) The required equation of pair of lines is *.*.. $-15x^2 + 7xy + 2y^2 = 0$ i.e. $15x^2 - 7xy - 2y^2 = 0$ Here, $m_1 + m_2 = \frac{-2h}{h}$(i) 2. and $m_1 m_2 = \frac{a}{b}$

$$(m_1 - m_2)^2 = (m_1 + m_2)^2 - 4m_1m_2$$

$$= \frac{4h^2 - 4ab}{b^2}$$

$$= \frac{4h^2 - 3h^2}{b^2} \dots [\because 4ab = 3h^2 \text{ (given)}]$$

$$= \frac{h^2}{b^2}$$

$$(m_1 - m_2 = \frac{h}{b} \quad \dots \text{(ii)}$$

$$(m_1 - m_2 = \frac{h}{b} \quad \dots \text{(iii)}$$

$$(m_1 - m_2 = 1 : 3$$

Chapter 04: Pair of Straight Lines

3. The lines are parallel, if
$$af^2 = bg^2$$

 $\Rightarrow f = \frac{3}{2}g$
Let $g = 2$ and $f = 3$
 $\Rightarrow abc + 2fgh - af^2 - bg^2 - ch^2$
 $= 4(9)(c) + 2(3)(2)(6) - 4(3)^2 - 9(2)^2 - c(6)^2 = 0$
 $\Rightarrow c$ is any number.
4. Given equation is $x^2 - y^2 - x - \lambda y - 2 = 0$.
 $\Rightarrow a = 1, b = -1, c = -2, f = \frac{-\lambda}{2}, g = \frac{-1}{2}, h = 0$
This equation represents a pair of straight
lines, if $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$
 $\Rightarrow 2 - \frac{\lambda^2}{4} + \frac{1}{4} = 0 \Rightarrow \frac{\lambda^2}{4} = \frac{9}{4} \Rightarrow \lambda^2 = 9 \Rightarrow \lambda = \pm 3$
5. The given equation of pair of lines is
 $x^2 + 2\sqrt{2} xy - y^2 = 0$
 $\therefore a = 1, b = -1, h = \sqrt{2}$
Now, $a + b = 1 + (-1) = 0$
 \therefore The lines are perpendicular
6. The joint equation of the lines through the
point (x_1, y_1) and at right angles to the lines
 $ax^2 + 2hy + by^2 = 0$ is
 $b(x - x_1)^2 - 2h(x - x_1)(y - y_1) + a(y - y_1)^2 = 0$
 \therefore joint equation of pair of lines drawn through
 $(1, 1)$ and perpendicular to the pair of lines
 $3x^2 - 7xy + 2y^2 = 0$ is
 $2(x - 1)^2 + 7(x - 1)(y - 1) + 3(y - 1)^2 = 0$
7. The given equations are $x - y - 1 = 0$ and
 $2x + y - 6 = 0$
 \therefore The joint equation is given by
 $(x - y - 1)(2x + y - 6) = 0$
 $\Rightarrow 2x^2 + xy - 6x - 2xy - y^2 + 6y - 2x - y + 6 = 0$
8. Let the equation of one of the angle bisector of
the co-ordinate axes be $x + y = 0 \Rightarrow m_1 = -1$
Given equation of pair of lines is
 $2x^2 + 2hxy + 3y^2 = 0$
 $\therefore A = 2, H = h, B = 3$
Now, $m_1m_2 = \frac{a}{b} \Rightarrow m_2 = \frac{-2}{3}$
Also $m_1 + m_2 = \frac{-2h}{b} \Rightarrow -1 - \frac{2}{3} = \frac{-2h}{3}$
 $\Rightarrow h = \frac{5}{2}$
9. The given equation of pair of lines is
 $3x^2 - 2y^2 + \lambda xy - x + 5y - 2 = 0$
 $\therefore a = 3, b = -2, c = -2, f = \frac{5}{2}, g = \frac{-1}{2}, h = \frac{\lambda}{2}$

Now abc + 2fgh - af² - bg² - ch² = 0

$$12 - \frac{5\lambda}{4} - \frac{75}{4} + \frac{1}{2} + \frac{\lambda^2}{2} = 0$$

$$\Rightarrow 2\lambda^2 - 5\lambda - 25 = 0 \Rightarrow (\lambda - 5)(2\lambda + 5) = 0$$

$$\Rightarrow \lambda = 5 \text{ or } \frac{-5}{2}$$

10. Let y = mx be the common line and let $y = m_1 x$ and $y = m_2 x$ be the other lines given by $2x^2 + axy + 3y^2 = 0$ and $2x^2 + bxy - 3y^2 = 0$ respectively. Then,

$$m + m_{1} = -\frac{a}{3}, mm_{1} = \frac{2}{3}, and$$

$$m + m_{2} = \frac{b}{3}, mm_{2} = -\frac{2}{3}$$

$$(mm_{1}) (mm_{2}) = \frac{2}{3} \left(-\frac{2}{3}\right)$$

$$\Rightarrow m^{2}(m_{1}m_{2}) = -\frac{4}{9}$$

$$\Rightarrow m^{2} = \frac{4}{9} \qquad \dots [\because m_{1}m_{2} = -1 \text{ (given)}]$$

$$\Rightarrow m = \pm \frac{2}{3}$$
When $m = \frac{2}{3},$

$$mm_{1} = \frac{2}{3} \text{ and } mm_{2} = -\frac{2}{3} \Rightarrow m_{1} = 1 \text{ and } m_{2} = -1$$

$$\therefore m + m_{1} = -\frac{a}{3} \text{ and } m + m_{2} = \frac{b}{3}$$

$$\Rightarrow a = -5 \text{ and } b = -1$$
When $m = -\frac{2}{3},$

$$mm_{1} = \frac{2}{3} \text{ and } mm_{2} = -\frac{2}{3} \Rightarrow m_{1} = -1 \text{ and } m_{2} = 1$$

$$\therefore m + m_{1} = -\frac{a}{3} \text{ and } m + m_{2} = \frac{b}{3}$$

$$\Rightarrow a = 5 \text{ and } b = 1$$
11. Given equation of pair of lines is
$$3x^{2} - 48xy + 23y^{2} = 0$$

$$\therefore a = 3, h = -24, b = 23$$

$$\therefore \tan \theta = \left|\frac{2\sqrt{576} - 69}{3 + 23}\right|$$

$$\Rightarrow \tan \theta = \left|\frac{2\sqrt{507}}{26}\right| = \left|\frac{2 \times 13\sqrt{3}}{26}\right| = \sqrt{3}$$

 $\Rightarrow \theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

Textbook Chapter No.

Vectors

- Classical Thinking
- 1. Since the vectors are collinear, \therefore $\overline{b} = \lambda \overline{a}$ $\Rightarrow (-2\hat{i} + m\hat{j}) = \lambda(\hat{i} - \hat{j})$ On comparing, we get $\lambda = -2$ and $-\lambda = m$ $\Rightarrow m = 2$
- 2. $\overline{c} = \lambda \overline{d}$ $\Rightarrow (x-2)\overline{a} + \overline{b} = \lambda(2x+1)\overline{a} - \lambda \overline{b}$ On comparing, we get $\lambda = -1$ and $(x-2) = \lambda(2x+1)$ $\Rightarrow x-2 = -2x-1$ $\Rightarrow x = \frac{1}{3}$
- 3. Let $\vec{a} = 3\hat{i} 2\hat{j} + 5\hat{k}$ and $\vec{b} = -2\hat{i} + p\hat{j} q\hat{k}$ Two vector are collinear if

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$
$$\implies \frac{3}{-2} = \frac{-2}{p} = \frac{5}{-q}$$
$$\implies p = \frac{4}{3}, q = \frac{10}{3}$$

- 4. For the points to be collinear, $\overline{AB} \times \overline{BC} = 0$ $\Rightarrow (\overline{b} - \overline{a}) \times (\overline{c} - \overline{b}) = \overline{0}$ $\Rightarrow \overline{b} \times \overline{c} - \overline{a} \times \overline{c} + \overline{a} \times \overline{b} = \overline{0}$ $\Rightarrow \overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} = \overline{0}$
- 5. Here $\overline{a} = \hat{i} + \hat{j}$, $\overline{b} = 2\hat{i} \hat{j}$ and $\overline{r} = 2\hat{i} 4\hat{j}$ Let $\overline{r} = t_1\overline{a} + t_2\overline{b}$ $\Rightarrow 2\hat{i} - 4\hat{j} = t_1(\hat{i} + \hat{j}) + t_2(2\hat{i} - \hat{j})$ $= (t_1 + 2t_2)\hat{i} + (t_1 - t_2)\hat{j}$ Comparing the coefficients, we get $t_1 + 2t_2 = 2$ (i) $t_1 - t_2 = -4$ (ii) On solving (i) and (ii), we get $t_1 = -2, t_2 = 2$

Hints

- 6. Given, $3\overline{A} = 2\overline{B}$ $\therefore 3(x+4y) = 2(y-2x+2)$ $\Rightarrow 7x + 10y = 4$ (i) and 3(2x+y+1) = 2(2x-3y-1) $\Rightarrow 2x + 9y = -5$ (ii) On solving (i) and (ii), we get x = 2, y = -1
- 8. $1(\overline{a}) + 1(\overline{b}) = \overline{a} + \overline{b}$.
- $\therefore \quad 1(\overline{a}) + 1(\overline{b}) 1(\overline{a} + \overline{b}) = 0$
- \therefore The vectors are coplanar.
- 9. Let $R(\bar{r})$ be the point dividing PQ internally in the ratio 2 : 5

$$\therefore \qquad \overline{r} = \frac{5\overline{p} + 2\overline{q}}{7}$$

10. Let $R(\bar{r})$ divide line AB internally in the ratio 2:3

$$\vec{r} = \frac{2\vec{b} + 3\vec{a}}{2+3} = \frac{2(3\hat{i} + \hat{j} + 4\hat{k}) + 3(2\hat{i} + 3\hat{j} - \hat{k})}{5} = \frac{12\hat{i} + 11\hat{j} + 5\hat{k}}{5}$$
(12.11.)

$$\therefore \quad \text{Co-ordinates of R are}\left(\frac{12}{5}, \frac{11}{5}, 1\right)$$

11. C ≡
$$\left(\frac{2-4}{2}, \frac{-1+3}{2}\right)$$
 ≡ (-1, 1)
∴ $\overline{OC} = -\hat{i} + \hat{j}$

- 12. If M(\overline{m}) is the mid-point of AB, then $\overline{m} = \frac{\overline{a} + \overline{b}}{2}$ $\Rightarrow \frac{\hat{i} + 3\hat{j} - \hat{k} + 3\hat{i} - \hat{j} - 3\hat{k}}{2} = 2\hat{i} + \hat{j} - 2\hat{k}$
- 13. Let R (\bar{r}) divide AB externally in the ratio 5:2 $\therefore \quad \bar{r} = \frac{5(\hat{i} - \hat{j} + 2\hat{k}) - 2(2\hat{i} + \hat{j} - \hat{k})}{5 - 2} = \frac{\hat{i} - 7\hat{j} + 12\hat{k}}{3}$

Chapter 05: Vectors

14. Let $\overline{R(r)}$ divide PQ externally in the ratio 2 : 1

$$\vec{r} = \frac{2q - p}{2 - 1}$$

= $\frac{2(3\hat{i} + 2\hat{j} + \hat{k}) - (2\hat{i} - \hat{j} + 4\hat{k})}{1}$
= $4\hat{i} + 5\hat{j} - 2\hat{k}$

- \therefore Co-ordinates of R are (4, 5, -2)
- 15. Let P divide AB in the ratio λ : 1

$$\therefore \qquad \left(\frac{17}{4}, \frac{11}{4}, 0\right) \equiv \left(\frac{2\lambda+5}{\lambda+1}, \frac{-7\lambda+a}{\lambda+1}, \frac{k\lambda-1}{\lambda+1}\right)$$
$$\Rightarrow \frac{17}{4} = \frac{2\lambda+5}{\lambda+1} \Rightarrow \lambda = \frac{1}{3}$$

16. If $A(\bar{a}), B(\bar{b}), C(\bar{c})$ are the vertices and $G(\bar{g})$ is the centroid of ΔABC , then

$$\overline{g} = \frac{a+b+c}{3}$$

 $\therefore \quad 3\hat{i} + 2\hat{j} + n\hat{k} = \frac{(2\hat{i} + 3\hat{j} - 4\hat{k}) + (m\hat{i} + \hat{j} - \hat{k}) + (3\hat{i} + 2\hat{j} + 2\hat{k})}{3}$ $\Rightarrow 3(3\hat{i} + 2\hat{j} + n\hat{k}) = (5 + m)\hat{i} + 6\hat{j} + (-3)\hat{k}$ On comparing, we get $9 = 5 + m \Rightarrow m = 4$, and $3n = -3 \Rightarrow n = -1$

17.
$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$

 $\Rightarrow (2, 1, c) = \left(\frac{2a + 1}{3}, \frac{4 + b}{3}, \frac{1}{3}\right)$
 $\Rightarrow 2 = \frac{2a + 1}{3}, 1 = \frac{4 + b}{3}, c = \frac{1}{3}$
 $\Rightarrow a = \frac{5}{2}, b = -1, c = \frac{1}{3}$

18.
$$[\hat{i} \hat{k} \hat{j}] = \hat{i} \cdot (\hat{k} \times \hat{j}) = \hat{i} \cdot (-\hat{i}) = -1.$$

19.
$$2\hat{i} \cdot \lfloor 3\hat{j} \times (-5\hat{k}) \rfloor = -30 [\hat{i} \cdot (\hat{j} \times \hat{k})]$$

= $-30(\hat{i} \cdot \hat{i}) = -30(1)$
= -30

20.
$$(\hat{i} + \hat{j}) \cdot [(\hat{j} + \hat{k}) \times (\hat{k} + \hat{i})]$$

= $\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$
= $1 (1) - 1 (-1) = 2$

21.
$$\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -4 \\ -1 & 2 & -1 \end{vmatrix}$$

= 1 (-1 + 8) + 1(-1 - 4) + 1(2 + 1)
= 5
22. $\overline{a} \cdot (\overline{b} \times \overline{c}) = \begin{vmatrix} 3 & -2 & 2 \\ 6 & 4 & -2 \\ 3 & -2 & -4 \end{vmatrix}$
= 3(-16 - 4) + 2(-24 + 6) + 2(-12 - 12)
= -144
24. Since $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \begin{bmatrix} \overline{b} \ \overline{c} \ \overline{a} \end{bmatrix} = \begin{bmatrix} \overline{c} \ \overline{a} \ \overline{b} \end{bmatrix} = -\begin{bmatrix} \overline{b} \ \overline{a} \ \overline{c} \end{bmatrix}$
25. $\begin{bmatrix} i \ \hat{k} \ \hat{j} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{j} \end{bmatrix} + \begin{bmatrix} \hat{j} \ \hat{k} \ \hat{i} \end{bmatrix} = \begin{bmatrix} i \ \hat{k} \ \hat{j} \end{bmatrix} + \begin{bmatrix} i \ \hat{k} \ \hat{j} \end{bmatrix} - \begin{bmatrix} i \ \hat{k} \ \hat{j} \end{bmatrix} = -1$
27. $\begin{bmatrix} \overline{a} + 2\overline{b} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix}$
= $\begin{bmatrix} \overline{a} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix} + \begin{bmatrix} 2\overline{b} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix}$
= $\begin{bmatrix} \overline{a} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix} + \begin{bmatrix} 2\overline{b} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix}$
= $\begin{bmatrix} \overline{a} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix} + \begin{bmatrix} 2\overline{b} \ \overline{a} + \overline{c} \ \overline{b} \end{bmatrix}$
= $0 - \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} + 2 (0) + 2 (0)$
= $-\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$
28. Let $\overline{p} = \overline{a} - 2\overline{b} + 3\overline{c}, \ \overline{q} = 2\overline{a} + m\overline{b} - 4\overline{c}$ and $\overline{r} = -7\overline{b} + \overline{c}$
Since the points are collinear.
 $\therefore \begin{bmatrix} \overline{p} \ \overline{q} \ \overline{r} \end{bmatrix} = 0$
 $\Rightarrow 1(10m - 28) + 2(20 - 0) + 3(-14 - 0) = 0$
 $\Rightarrow 10m - 30 = 0 \Rightarrow m = 3$
29. Let $\overline{a} = i + 2j + 3k$, $\overline{b} = \lambda i + 4j + 7k$, and $\overline{c} = -3i - 2j - 5k$
Since the vectors are collinear,
 $\begin{vmatrix} 1 \ 2 \ 3 \\ \lambda \ 4 \ 7 \\ -3 \ -2 \ -5 \end{vmatrix}$
 $\Rightarrow -6 + 10\lambda - 42 - 6\lambda + 36 = 0$
 $\Rightarrow \lambda = 3$
30. We know that,
 $\begin{bmatrix} \overline{a} - \overline{b} \ \overline{b} - \overline{c} \ \overline{c} - \overline{a} \end{bmatrix} = 0$
 $\therefore Vectors \ \overline{a} - \overline{b}, \ \overline{b} - \overline{c} \ and \ \overline{c} - \overline{a} \ are coplanar$

MHT-CET Triumph Maths (Hints) 31. Since, the vectors are coplanar, $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$ *.*.. $\Rightarrow \begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ 3 & p & 5 \end{vmatrix} = 0$

- $\Rightarrow 10 + p + 5 + 3 + p 6 = 0$ $\Rightarrow p = -6$
- 32. Let $\bar{a} = \hat{i} + 3\hat{j} + 2\hat{k}$, $\bar{b} = 2\hat{i} \hat{j} + 4\hat{k}$, and $\vec{c} = 3\hat{i} + 2\hat{j} + x\hat{k}$

Since the vectors are coplanar,

$$\begin{vmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 3 & 2 & x \end{vmatrix} = 0$$
$$\Rightarrow -x - 8 - 6x + 36 - 14 = 0$$
$$\Rightarrow x = 2$$

33. Let $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = -\hat{i} + \hat{j}$ and $c = \hat{i} + 2\hat{j} + a\hat{k}$ Since \bar{a} , \bar{b} and \bar{c} are coplanar. | 1 1 1|

$$\therefore \begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 2 & a \end{vmatrix} = 0$$

$$\Rightarrow 1(a - 0) - 1(-a - 0) + 1(-2 - 1) = 0$$

$$\Rightarrow 2a = 3 \Rightarrow a = \frac{3}{2}$$

- We have $[\bar{a} \ \bar{b} \ \bar{a} \times \bar{b}] = \bar{a} \cdot \left[\bar{b} \times (\bar{a} \times \bar{b})\right]$ 35. $= (\overline{a} \times \overline{b}). (\overline{a} \times \overline{b})$ $= |\overline{a} \times \overline{b}|^{2}$
- 36. $[\overline{a} \ \overline{c} \ \overline{b}] = \overline{a} . (\overline{c} \times \overline{b})$ $=\overline{c}.(\overline{b}\times\overline{a})$ = 0 $\dots [\because \overline{a} \text{ and } \overline{b} \text{ are parallel}]$
- 37. $\overline{a} \cdot (\overline{b} \times \overline{c}) = 0 \text{ or } (\overline{a} \times \overline{b}) \cdot \overline{c} = 0$ Volume of parallelopiped = $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ 38. $= \left(\frac{11}{2}\right)(12) \left(\frac{13}{3}\right) \left[\hat{i} \ \hat{j} \ \hat{k}\right]$ = 286 cu. unit.

39. Let
$$\bar{a} = 2\hat{i} + \hat{j} - \hat{k}$$
, $\bar{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ and
 $\bar{c} = -3\hat{i} - \hat{j} + \hat{k}$
∴ volume of parallelopiped = $\begin{vmatrix} 2 & 1 & -1 \\ 1 & 2 & 3 \\ -3 & -1 & 1 \end{vmatrix}$
= 2(2 + 3) - 1(1 + 9) - 1(1 - 6)
= 5 cu. unit.
40. Volume of parallelopiped = $\begin{vmatrix} -3 & 7 & 5 \\ -3 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix}$
= (-3)(-21-15) - 7(9 + 21) + 5(15 - 49)
= 108 - 210 - 170 = - 272
But volume cannot be negative.
∴ Volume of parallelopiped = 272 cu. unit.
41. A, B, C, D are vertices of tetrahedron.
∴ AB, AC and AD are its edges.
Now, AB = -2\hat{i} - 2\hat{j} - 3\hat{k}
 $\overline{AC} = 4\hat{i} - 9\hat{k}$
 $\overline{AD} = 6\hat{i} - 3\hat{j} - 3\hat{k}$
∴ Volume of tetrahedron = $\frac{1}{6} \left[\overline{AB} \ \overline{AC} \ \overline{AD} \right]$
 $= \frac{1}{6} \begin{bmatrix} -2(0 - 27) + 2(-12 + 54) - 3(-12 - 0) \end{bmatrix}$
 $= \frac{1}{6} (174) = 29 \text{ cu. unit.}$
42. Let A, B, C, D be the given points
∴ AB = 2\hat{i} - 3\hat{j} + 6\hat{k}, \ \overline{AC} = -4\hat{i} - 5\hat{j} + 9\hat{k} \text{ and}
 $\overline{AD} = -6\hat{i} - 2\hat{j} + 6\hat{k}$

2

:. Volume of tetrahedron =
$$\frac{1}{6} \begin{vmatrix} 2 & -3 & 6 \\ -4 & -5 & 9 \\ -6 & -2 & 6 \end{vmatrix}$$

$$=\frac{-66}{6}=-11$$

But volume cannot be negative Volume of tetrahedron = 11 cu.unit.

...

Chapter 05: Vectors

On comparing, we get $4 = -12 \lambda \implies \lambda = \frac{-1}{2},$ $4 - x = -6\lambda \Longrightarrow x = 2$, and $2 = \lambda(y-3) \Longrightarrow -6 = y-3 \Longrightarrow y = -3$ Here $\mathbf{a} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\mathbf{b} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$, $\mathbf{c} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{k}$ 5. The points are collinear $\overline{AB} = \lambda \overline{BC}$ *.*.. $\Rightarrow -2\hat{i} = \lambda [(a-1)\hat{i} + (b+1)\hat{i} + c\hat{k}]$ On comparing, we get $\lambda(a-1) = 0, \lambda(b+1) = -2, \lambda c = 0$ Hence a = 1, c = 0 and b is arbitrary scalar. Let A, B, C be the three collinear point. 6. $\overline{AB} = \lambda \overline{BC}$ *.*.. Here, $\overline{AB} = -2b$, $\overline{BC} = (k+1)\overline{b}$ $\forall k \in R \Rightarrow \overline{AB} = \lambda \overline{BC}$ *.*.. Since, $\overline{a} + 2\overline{b}$ is collinear with \overline{c} , and $\overline{b} + 3\overline{c}$ 7. is collinear with \overline{a} . $\overline{a} + 2\overline{b} = x\overline{c}$ and $\overline{b} + 3\overline{c} = y\overline{a} \quad \forall x, y \in \mathbb{R}$ *.*.. $\overline{a} + 2\overline{b} + 6\overline{c} = (x+6)\overline{c}$ ÷. Also, $\overline{a} + 2\overline{b} + 6\overline{c} = \overline{a} + 2(\overline{b} + 3\overline{c}) = (1 + 2y)\overline{a}$ $(x+6)\bar{c} = (1+2y)\bar{a}$ *.*.. Since, \overline{a} and \overline{c} are non-collinear. x + 6 = 0 and 1 + 2y = 0*.*.. $\Rightarrow x = -6 \text{ and } y = -\frac{1}{2}$ Now. $\overline{a} + 2\overline{b} = x\overline{c}$ $\Rightarrow \bar{a} + 2\bar{b} + 6\bar{c} = \bar{0}$ $\overline{AB} = \overline{a} + \overline{b}$ 8. $\overline{BD} = 3\overline{a} + 3\overline{b} = 3\overline{AB}$ Points A, B, D are collinear. *.*.. Let $\overline{R} = x\overline{a} + v\overline{b} + z\overline{c}$ 9 $\Rightarrow \overline{R} = x(2\overline{p} + 3\overline{q} - \overline{r}) + y(\overline{p} - 2\overline{q} + 2\overline{r})$ $+ z(-2\bar{p} + \bar{q} - 2\bar{r})$ $\Rightarrow 3\overline{p} - \overline{q} + 2\overline{r} = (2x + y - 2z)\overline{p}$ $+(3x-2y+z)\overline{q} + (-x+2y-2z)\overline{r}$ On comparing, we get 2x + y - 2z = 3,(i) 3x - 2y + z = -1,(ii) -x + 2y - 2z = 2....(iii) Solving above equations, we get x = 2, y = 5, z = 3 $\overline{R} = 2\overline{a} + 5\overline{b} + 3\overline{c}$ *.*..

MHT-CET Triumph Maths (Hints) $\overline{a} + \overline{b} + \overline{c} + \overline{d} = (1 + \lambda)\overline{d}$ 10. Also, $\overline{a} + \overline{b} + \overline{c} + \overline{d} = (1 + \mu)\overline{a}$ $\Rightarrow (1 + \lambda) \overline{d} = (1 + \mu) \overline{a}$ if $\lambda \neq -1$, then $\overline{\mathbf{d}} = \left(\frac{1+\mu}{1+\lambda}\right)\overline{\mathbf{a}}$ Now, $\overline{a} + \overline{b} + \overline{c} + \overline{d} = (1 + \mu)\overline{a}$ \therefore $\overline{a} + \overline{b} + \overline{c} + \left(\frac{1+\mu}{1+\lambda}\right)\overline{a} = (1+\mu)\overline{a}$ $\Rightarrow \left[1 + \left(\frac{1+\mu}{1+\lambda} \right) - (1+\mu) \right] \bar{a} + \bar{b} + \bar{c} = 0$ This contradicts the fact that $\bar{a}\,,\ \bar{b}\,,\ \bar{c}$ are non-coplanar $\Rightarrow \lambda = -1$ $\overline{a} + \overline{b} + \overline{c} + \overline{d} = \overline{0}$ *.*.. The position vector of A is $6\overline{b} - 2\overline{a}$ and 11. the position vector of P is $\overline{a} - \overline{b}$ Let the position vector of B be \bar{r} Since, P divides AB in the ratio 1:2 $\overline{a} - \overline{b} = \frac{l(\overline{r}) + 2(6\overline{b} - 2\overline{a})}{2}$ $\Rightarrow 3\overline{a} - 3\overline{b} - 12\overline{b} + 4\overline{a} = \overline{r}$ $\Rightarrow \bar{r} = 7\bar{a} - 15\bar{b}$ 12. $2\bar{a} + 3\bar{b} - 5\bar{c} = 0$ $\Rightarrow 5\bar{c} = 2\bar{a} + 3\bar{b} \Rightarrow \bar{c} = \frac{3\bar{b} + 2\bar{a}}{3+2}$ point C divides segment AB internally in the ratio 3:2. $|\overline{OA}| = \sqrt{1+9+4} = \sqrt{14}$ 13. $|\overline{OB}| = \sqrt{9+1+4} = \sqrt{14}$ OA = OB.... Let C be any point on angle bisector and on line AB C is midpoint of AB *.*.. $\bar{c} = \frac{a+b}{2} = 2\hat{i} + 2\hat{j} - 2\hat{k}$ *.*.. P(p) divide AB internally in the ratio 3 : 1. 14. $\overline{p} = \frac{3\overline{b} + \overline{a}}{4}$ *.*.. Q(q) is midpoint of AP $\bar{q} = \frac{\bar{a} + \bar{p}}{2} = \frac{\bar{a} + \frac{3\bar{b} + \bar{a}}{4}}{2} = \frac{5\bar{a} + 3\bar{b}}{8}$ Ŀ. 296

15. $2\overline{a} + \overline{b} = 3\overline{c}$ $\Rightarrow 2\bar{a} = 3\bar{c} - \bar{b}$ $\Rightarrow \overline{a} = \frac{3\overline{c} - \overline{b}}{2} = \frac{3\overline{c} - \overline{b}}{3-1}$ *.*.. A divides BC in the ratio 3 :1 externally. 16. $P(\overline{p})$ is midpoint of BC $\therefore \qquad \overline{p} = \frac{b+c}{2}$ $\Rightarrow 2\overline{p} = \overline{b} + \overline{c}$ (i) $Q(\bar{q})$ divides CA internally in the ratio 2:1 $\therefore \quad \overline{q} = \frac{2\overline{a} + \overline{c}}{2}$ $\Rightarrow 3\bar{q} = 2\bar{a} + \bar{c}$(ii) $R(\bar{r})$ divides AB externally in the ratio 1:2 $\overline{r} = \frac{\overline{b} - 2\overline{a}}{1 - 2\overline{a}}$ $=\frac{2\overline{p}-3\overline{q}}{-1}$[From (i) and (ii)] $\overline{r} = -2\overline{p} + 3\overline{q}$ *.*.. *.*.. points P, Q and R are collinear. 17. $[\bar{a} \ \bar{b} \ \bar{c}] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix}$ Applying, $C_3 \Rightarrow C_3 + C_1$ $= \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x \end{vmatrix} = 1(1+x-x) = 1$ 18. Let A = (1,1,2), B = (2, 1, p), C = (1, 0, 3) and $D \equiv (2, 2, 0).$ $\overline{AB} = \hat{i} + (p-2)\hat{k}$ *.*.. $\overline{AC} = -\hat{i} + \hat{k}$, and

 $\overline{AD} = \hat{i} + \hat{j} - 2 \hat{k}$ The points are coplanar. $\overline{AB}, \overline{AC} \text{ and } \overline{AD} \text{ are coplanar}$ $\left[\overline{AB} \overline{AC} \overline{AD}\right] = 0$ $\Rightarrow \begin{vmatrix} 1 & 0 & p-2 \\ 0 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = 0$ $\Rightarrow 1(2-1) + (p-2)(1) = 0$

 $\Rightarrow 1 + p - 2 = 0 \Rightarrow p = 1$

Chapter 05: Vectors

- 19. Since the points are coplanar, ∴ $\begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ \lambda - 1 & 2 & 3 \end{vmatrix} = 0$
 - $\Rightarrow 1(3-8) 2[(0-4(\lambda-1))] = 0$ $\Rightarrow -5 + 8\lambda 8 = 0 \Rightarrow \lambda = \frac{13}{8}$
- 20. Since, the given vectors are coplanar, $\begin{vmatrix} a & 1 & 1 \\ 1 & -b & 1 \\ 1 & 1 & -c \end{vmatrix} = 0$
 - $\Rightarrow a(bc-1) 1(-c-1) + 1(1+b) = 0$ $\Rightarrow abc - a + c + 1 + 1 + b = 0$ $\Rightarrow abc + 2 = a - b - c$
- 21. Since the given vectors are coplanar, $\begin{vmatrix}
 -bc & b^2 + bc & c^2 + bc \\
 a^2 + ac & -ac & c^2 + ac \\
 a^2 + ab & b^2 + ab & -ab
 \end{vmatrix} = 0$ $\Rightarrow (ab + bc + ca)^3 = 0 \Rightarrow ab + bc + ca = 0.$
- 22. Let $P(\overline{p})$, $Q(\overline{q})$, $R(\overline{r})$ be the three points.

 \overline{PQ} is not scalar multiple of \overline{PR}

 \therefore they are not collinear

$$\begin{bmatrix} \bar{p} & \bar{q} & \bar{r} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 4 & -7 & -1 \\ 3 & 6 & 6 \end{vmatrix}$$
$$= 36 \neq 0$$

 \therefore they are not coplanar.

23.
$$\frac{(\overline{b} \times \overline{c}) \cdot (\overline{a} + \overline{b} + \overline{c})}{\lambda}$$
$$= \frac{(\overline{b} \times \overline{c}) \cdot \overline{a} + (\overline{b} \times \overline{c}) \cdot \overline{b} + (\overline{b} \times \overline{c}) \cdot \overline{c}}{\lambda}$$
$$= \frac{(\overline{b} \times \overline{c}) \cdot \overline{a} + \overline{0} + \overline{0}}{\lambda} = \frac{\overline{a} \cdot (\overline{b} \times \overline{c})}{\lambda} = \frac{\lambda}{\lambda} = 1$$

24.
$$(\overline{a} - \overline{b}) \cdot [(\overline{b} + \overline{c}) \times (\overline{c} + \overline{a})]$$

24.
$$(\mathbf{a} - \mathbf{b}) \cdot [(\mathbf{b} + \mathbf{c}) \times (\mathbf{c} + \mathbf{a})]$$
$$= (\mathbf{a} - \mathbf{b}) \cdot [\mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}]$$
$$= \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) + \mathbf{a} \cdot (\mathbf{c} \times \mathbf{a})$$
$$- \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) - \mathbf{b} \cdot (\mathbf{b} \times \mathbf{a}) - \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$$
$$= [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] - [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$$

25.
$$\begin{bmatrix} \overline{a} + \overline{b} + \overline{c} \end{bmatrix} \cdot \begin{bmatrix} (\overline{a} + \overline{b}) \times (\overline{a} + \overline{c}) \end{bmatrix}$$
$$= (\overline{a} + \overline{b}) \cdot \left[(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c}) \right]$$
$$+ \overline{c} \cdot \left[(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c}) \right]$$
$$= 0 + \begin{bmatrix} \overline{c} & \overline{a} + \overline{b} & \overline{a} + \overline{c} \end{bmatrix}$$
$$= \begin{bmatrix} \overline{c} & \overline{a} & \overline{a} + \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{b} & \overline{a} + \overline{c} \end{bmatrix}$$
$$= \begin{bmatrix} \overline{c} & \overline{a} & \overline{a} + \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{b} & \overline{a} + \overline{c} \end{bmatrix}$$
$$= \begin{bmatrix} \overline{c} & \overline{a} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{c} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{b} & \overline{a} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{b} & \overline{c} \end{bmatrix}$$
$$= 0 + 0 + \begin{bmatrix} \overline{c} & \overline{b} & \overline{a} \end{bmatrix} + 0 = - \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

26.
$$\mathbf{r} = l(\mathbf{b} \times \mathbf{c}) + \mathbf{m}(\mathbf{c} \times \mathbf{a}) + \mathbf{n}(\mathbf{a} \times \mathbf{b})$$

 $\therefore \quad \mathbf{a} \cdot \mathbf{r} = l \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{m} \mathbf{a} \cdot (\mathbf{c} \times \mathbf{a}) + \mathbf{n} \mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$
 $= l [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] + 0 + 0$
 $\mathbf{a} \cdot \mathbf{r} = 2l$ $[\because [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 2]$(i)
Similarly,
 $\mathbf{b} \cdot \mathbf{r} = 2\mathbf{m},$ (ii)
 $\mathbf{c} \cdot \mathbf{r} = 2\mathbf{n}$ (iii)

... On adding equations (i), (ii) and (iii) we get $(\overline{a} + \overline{b} + \overline{c}).\overline{r} = 2(l + m + n)$

$$\therefore \qquad l+m+n=\frac{1}{2}\left(\overline{a}+\overline{b}+\overline{c}\right).\overline{r}$$

27.

Volume of parallelopiped

$$\begin{vmatrix} 1 & 2 & -1 \\ 1 & -1 & 0 \\ 1 & -1 & -1 \end{vmatrix} \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = k \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$$

$$\Rightarrow 1(1-0) - 2(-1-0) - 1(-1+1) = k$$

$$\Rightarrow 1+2-0 = k \Rightarrow k = 3$$

28. Volume of parallelopiped = $\begin{vmatrix} -p & 0 & 5 \\ 1 & -1 & q \\ 3 & -5 & 0 \end{vmatrix} = 8$

$$\Rightarrow -p(0+5q)+5(-5+3) = 8$$

$$\Rightarrow -5pq-18 = 0$$

$$\Rightarrow 5pq+18 = 0$$

29. Let A = (1, 2, 0), B = (2, 0, 4), C = (-1, 2, 0)and $D = (-1, 1, \lambda)$ be the vertices of the tetrahedron

$$\therefore \quad \overline{AB} = \hat{i} - 2\hat{j} + 4\hat{k}$$
$$\overline{AC} = -2\hat{i}$$
$$\overline{AD} = -2\hat{i} - \hat{j} + \lambda\hat{k}$$

MHT-CET Triumph Maths (Hints) Volume of tetrahedron = $\frac{1}{6} \left[\overline{AB} \ \overline{AC} \ \overline{AD} \right]$ $\Rightarrow \frac{2}{3} = \frac{1}{6} \begin{vmatrix} 1 & -2 & 4 \\ -2 & 0 & 0 \\ -2 & -1 & \lambda \end{vmatrix}$ $\Rightarrow 2(-2\lambda) + 4(2) = 4$ $\Rightarrow \lambda = 1$ $\overline{AB} + \overline{BC} + \overline{AC} = \overline{b} - \overline{a} + \overline{c} - \overline{b} + \overline{c} - \overline{a}$ 30. $=2(\overline{c}-\overline{a})$ $=2(\overline{c}-\overline{d}+\overline{d}-\overline{a})$ $= 2(\overline{DC} + \overline{AD})$ $= 2(\overline{DC} - \overline{BD})$ \dots [:: D is mid-point of AB]

If AD is the median, 31.

$$\therefore \quad \overline{AD} = \overline{d} - \overline{a} = \frac{b+c}{2} - \overline{a}$$

$$= \frac{(\overline{b}-\overline{a}) + (\overline{c}-\overline{a})}{2} = \frac{1}{2} (\overline{AB} + \overline{AC})$$

$$= 4\hat{i} - \hat{j} + 4\hat{k}$$

$$\therefore \quad l (AD) = \sqrt{16+1+16} = \sqrt{33}$$
32.
$$\overline{AA'} + \overline{BB'} + \overline{CC'} = \overline{a'} - \overline{a} + \overline{b'} - \overline{b} + \overline{c'} - \overline{c}$$

$$= (\overline{a'} + \overline{b'} + \overline{c'}) - (\overline{a} + \overline{b} + \overline{c})$$

$$= 3 \overline{g'} - 3 \overline{g}$$

....[:: G' and G are centroids]
$$= 3 \overline{GG'}$$

33.

Let \overline{a} , \overline{b} , \overline{c} , \overline{d} be the position vectors of A, 34. B, C, D respectively For parallelogram: $\overline{a} + \overline{c} = \overline{b} + \overline{d}$ $\Rightarrow \overline{d} = \overline{a} + \overline{c} - \overline{b} \Rightarrow \overline{d} = -\hat{i} + \hat{j} + \hat{k}$ 35. A

B
We have,
$$\overline{p} = \overline{AC} + \overline{BD}$$

 $= \overline{AC} + \overline{BC} + \overline{CD}$
 $= \overline{AC} + \lambda \overline{AD} + \overline{CD}$
 $= \lambda \overline{AD} + (\overline{AC} + \overline{CD})$
 $= \lambda \overline{AD} + \overline{AD}$
 $= (\lambda + 1) \overline{AD}$
Also, $\overline{p} = \mu \overline{AD}$
 $\mu = \lambda + 1$

÷.

Competitive Thinking

1. Here,
$$\overline{a} = \hat{i}$$
, $\overline{b} = \hat{j}$, $\overline{c} = x\hat{i} + 8\hat{j}$
 $\overline{AB} = -\hat{i} + \hat{j}$, $\overline{BC} = x\hat{i} + 7\hat{j}$
Since the points are collinear,
 $\therefore \quad \overline{AB} = \lambda \ \overline{BC}$
 $\Rightarrow -\hat{i} + \hat{j} = \lambda (x\hat{i} + 7\hat{j})$
On comparing, we get
 $7\lambda = 1 \Rightarrow \lambda = \frac{1}{7}$
 $\lambda x = -1 \Rightarrow x = -7$
2. Let A (\hat{a}), B (\hat{b}), C (\hat{c}) be the given points
 $\therefore \quad \hat{a} = 20\hat{i} + p\hat{j}$, $\hat{b} = 5\hat{i} - \hat{j}$, $\hat{c} = 10\hat{i} - 13\hat{j}$
 $\therefore \quad \overline{AB} = k \ \overline{BC}$
 $\Rightarrow -15\hat{i} - (p+1)\hat{j} = k(5\hat{i} - 12\hat{j})$
On comparing, we get
 $-15 = 5 \ k \Rightarrow k = -3 \ and$
 $-(p+1) = -12k$
 $\Rightarrow -(p+1) = 36$
 $\Rightarrow p = -37$
3. $\overrightarrow{PQ} = k \ \overline{QR}$
 $\overline{a} + \overline{b} - \overline{c} = k(-2\overline{a} - 2\overline{b} + t\overline{c})$
On comparing, we get
 $1 = -2k \Rightarrow k = \frac{-1}{2} \ and -1 = kt \Rightarrow t = 2$

Here $\overline{AB} = \overline{b} - \overline{a}$ and 4. $\overline{AC} = 2\overline{a} - 2\overline{b} = -2(\overline{b} - \overline{a})$ $\overline{AC} = m \overline{AB}$ *.*.. Hence A, B, C are collinear. Since, $\overline{a} + 3\overline{b}$ is collinear with \overline{c} , and $\overline{b} + 2\overline{c}$ 5. is collinear with a, $\overline{a} + 3\overline{b} = x\overline{c}$ and $\overline{b} + 2\overline{c} = v\overline{a} \quad \forall x, y \in \mathbb{R}$. ÷. $\bar{a} + 3\bar{b} + 6\bar{c} = (x+6)\bar{c}$ *.*... Also, $\bar{a} + 3\bar{b} + 6\bar{c} = \bar{a} + 3(\bar{b} + 2\bar{c}) = (1 + 3v)\bar{a}$ $(x+6)\bar{c} = (1+3v)\bar{a}$ *.*.. $\Rightarrow (x+6)\overline{c} - (1+3v)\overline{a} = 0$ x + 6 = 0 and 1 + 3v = 0*.*.. $\Rightarrow x = -6 \text{ and } y = -\frac{1}{2}$ Now $\overline{a} + 3\overline{b} = x\overline{c} \implies \overline{a} + 3\overline{b} + 6\overline{c} = \overline{0}$ Let $\vec{a} = 3\hat{i}+2\hat{j} - \hat{k}$ and $\vec{b} = 6\hat{i} - 4x\hat{j} + v\hat{k}$ 6. Since, \overline{a} and \overline{b} are parallel,

$$\frac{3}{6} = \frac{2}{-4x} = \frac{-1}{y}$$
$$\Rightarrow x = -1 \text{ and } y = -2$$

7. The given vectors are collinear.

$$\therefore \quad \frac{3}{a} = \frac{1}{b} = \frac{-5}{-15}$$
$$\Rightarrow a = 9, b = 3$$

- 8. x = 0, y = 0, otherwise one vector will be a scalar multiple of the other and hence collinear which is a contradiction.
- 11. $\vec{c} = m\vec{a} + n\vec{b}$ ∴ $3\hat{i} - \hat{k} = m(\hat{i} + \hat{j} - 2\hat{k}) + n(2\hat{i} - \hat{j} + \hat{k})$ Comparing the co-efficients of \hat{i} and \hat{j} , we get 3 = m + 2n, and(i) m = n(ii) ∴ Solving the above two equations, we get m = n = 1
- $\therefore \qquad m+n=1+1=2$
- 12. Let P(p) divide the line internally in the ratio 2:3

$$\therefore \quad \overline{\mathbf{p}} = \frac{3(2\overline{\mathbf{a}} - 3\overline{\mathbf{b}}) + 2(3\overline{\mathbf{a}} - 2\overline{\mathbf{b}})}{2+3} = \frac{12\overline{\mathbf{a}} - 13\overline{\mathbf{b}}}{5}$$

Chapter 05: Vectors 13. $A \equiv (1, -1, 2), B \equiv (2, 3, -1)$ Point P divides AB internally in the ratio 2 : 3. $P = \left[\frac{2(2)+3(1)}{2+3}, \frac{2(3)+3(-1)}{2+3}, \frac{2(-1)+3(2)}{2+3}\right]$ *:*. $\equiv \left(\frac{7}{5}, \frac{3}{5}, \frac{4}{5}\right)$ the position vector of P is $\frac{1}{5}(\hat{7i}+\hat{3j}+\hat{4k})$ *.*.. 14. $\begin{array}{c} C(x_1, y_1, z_1) & D(x_2, y_2, z_2) \\ \hline A(2, 1, 4) & B(-1, 3, 6) \end{array}$ C divides AB internally in the ratio 1 : 2 and D divides AB internally in the ratio 2 : 1. $z_1 + z_2 = \frac{1(6) + 2(4)}{1+2} + \frac{2(6) + 1(4)}{2+1}$ *.*. $=\frac{14}{3}+\frac{16}{3}=\frac{30}{3}$ Let position vector of B be r 15. Since, \overline{a} divides AB in the ratio 2 : 3 $\therefore \qquad \frac{2\bar{r}+3(\bar{a}+2\bar{b})}{2+2} = \bar{a}$ $\Rightarrow 2\overline{r} = 5\overline{a} - 3\overline{a} - 6\overline{b} = 2\overline{a} - 6\overline{b}$ $\Rightarrow \bar{r} = \bar{a} - 3\bar{b}$ 16. We know that, centroid of a triangle divides the line segment joining the orthocentre and circumcentre in the ratio 2 : 1. The co-ordinates of orthocentre and circumcentre are (-1, 3, 2), (5, 3, 2)respectively. *.*.. Co-ordinates of centroid $= \left(\frac{2(5)+1(-1)}{2+1}, \frac{2(3)+1(3)}{2+1}, \frac{2(2)+1(2)}{2+1}\right)$

$$\equiv$$
 (3, 3, 2)

17. Let the co-ordinates of circumcentre be (x, y, z). Co-ordinates of orthocentre and centroid are (-3, 5, 2) and (3, 3, 4) respectively. We know that, centroid of triangle divides the line segment joining its orthocentre and circumcentre in the ratio 2 : 1.

$$\therefore \quad \left(\frac{2x-3}{3}, \frac{2y+5}{3}, \frac{2z+2}{3}\right) \equiv (3, 3, 4)$$
$$\Rightarrow \frac{2x-3}{3} = 3, \frac{2y+5}{3} = 3, \frac{2z+2}{3} = 4$$
$$\Rightarrow x = 6, y = 2, z = 5$$

18. Let N (\overline{n}) divide line segment LM externally in the ratio 2 : 1.

$$\therefore \qquad \overline{n} = \frac{2(\overline{a} + 2\overline{b}) - (2\overline{a} - \overline{b})}{2 - 1}$$
$$= \frac{2\overline{a} + 4\overline{b} - 2\overline{a} + \overline{b}}{1} = 5\overline{b}$$

19. R(r) divides PQ externally in the ratio 2 : 1

$$\vec{r} = \frac{2(-\hat{i} + \hat{j} - \hat{k}) - 1(\hat{i} + 2\hat{j} - \hat{k})}{2 - 1}$$
$$= -2\hat{i} + 2\hat{j} - 2\hat{k} - \hat{i} - 2\hat{j} + \hat{k}$$
$$\vec{r} = -3\hat{i} - \hat{k}$$

- 20. $3\overline{P} + 2\overline{R} 5\overline{Q} = \overline{0}$ $\Rightarrow 3\overline{P} + 2\overline{R} = 5\overline{Q}$ $\Rightarrow \overline{Q} = \frac{3\overline{P} + 2\overline{R}}{5}$
- ∴ Q is the position vector of the point dividing P and R in the ratio 3 : 2 internally. Thus, P, Q and R are collinear.
- 21. Let the point B divide AC in the ratio λ : 1

$$\therefore \quad 5\hat{i} - 2\hat{k} = \frac{\lambda(11i + 3j + 7k) + i - 2j - 8k}{\lambda + 1}$$
$$\Rightarrow \lambda(5\hat{i} - 2\hat{k}) + (5\hat{i} - 2\hat{k})$$
$$= \lambda(11\hat{i} + 3\hat{j} + 7\hat{k}) + (\hat{i} - 2\hat{j} - 8\hat{k})$$
$$\Rightarrow -6\lambda\hat{i} - 3\lambda\hat{j} - 9\lambda\hat{k} = -4\hat{i} - 2\hat{j} - 6\hat{k}$$
$$\Rightarrow -6\lambda = -4$$
$$\Rightarrow \lambda = \frac{2}{3} \text{ i.e. ratio} = 2:3$$

22. M and N are the midpoints of sides PQ and RS

$$\therefore \quad \overline{\mathbf{m}} = \frac{\overline{\mathbf{p}} + \overline{\mathbf{q}}}{2} \text{ and } \overline{\mathbf{n}} = \frac{\overline{\mathbf{r}} + \overline{\mathbf{s}}}{2}$$

$$\Rightarrow 2\overline{\mathbf{m}} = \overline{\mathbf{p}} + \overline{\mathbf{q}} \text{ and } 2\overline{\mathbf{n}} = \overline{\mathbf{r}} + \overline{\mathbf{s}}$$

$$\overline{\mathbf{PS}} + \overline{\mathbf{QR}} = \overline{\mathbf{s}} - \overline{\mathbf{p}} + \overline{\mathbf{r}} - \overline{\mathbf{q}}$$

$$= \overline{\mathbf{r}} + \overline{\mathbf{s}} - (\overline{\mathbf{p}} + \overline{\mathbf{q}})$$

$$= 2\overline{\mathbf{n}} - 2\overline{\mathbf{m}}$$

$$= 2\overline{\mathbf{MN}}$$

23. Let the position vectors of A, B, C, L, M, N and
K be
$$\overline{a}$$
, \overline{b} , \overline{c} , \overline{i} , \overline{m} , \overline{n} and \overline{k} respectively.
 $\overline{i} = \frac{2\overline{b}+\overline{c}}{3}$, $\overline{m} = \frac{2\overline{a}+3\overline{c}}{5}$, $\overline{n} = \frac{3\overline{b}+5\overline{a}}{8}$,
 $\overline{k} = \frac{5\overline{b}+3\overline{a}}{8}$

$$\frac{|\overline{AL} + \overline{BM} + \overline{CN}|}{|\overline{CK}|}$$

$$= \frac{\left|\frac{2\overline{b}+\overline{c}}{3} - \overline{a} + \frac{2\overline{a}+3\overline{c}}{5} - \overline{b} \frac{3\overline{b}+5\overline{a}}{8}\overline{c}\right|}{\left|\frac{5\overline{b}+3\overline{a}}{8} - \overline{c}\right|}$$

$$= \frac{\left|\frac{1}{120}\left[80\overline{b}+40\overline{c}-120\overline{a}+48\overline{a}+72\overline{c}-120\overline{b}+45\overline{b}+75\overline{a}-120\overline{c}\right]\right|}{\left|\frac{1}{8}\left[5\overline{b}+3\overline{a}-8\overline{c}\right]\right|}$$

$$= \frac{\left|\frac{1}{120}\left[3\overline{a}+5\overline{b}-8\overline{c}\right]\right|}{\left|\frac{1}{8}\left[3\overline{a}+5\overline{b}-8\overline{c}\right]\right|}$$

$$= \frac{1}{15}$$
24. G is the centroid.
 $\therefore \quad \overline{OG} = \frac{\overline{OA}+\overline{OB}+\overline{OC}}{3}$
 $\Rightarrow \overline{OA} + \overline{OB} + \overline{OC} = 3\overline{OG}$
25. $\overline{GA}+\overline{GB}+\overline{GC} = (\overline{a}-\overline{g})+(\overline{b}-\overline{g})+(\overline{c}-\overline{g})$
 $= \overline{a}+\overline{b}+\overline{c}-3\overline{g}$
 $= \overline{a}+\overline{b}+\overline{c}-3\left(\frac{\overline{a}+\overline{b}+\overline{c}}{3}\right) = \overline{0}$
26. $\overline{a}.(\overline{b}\times\overline{c}) = \begin{vmatrix}2 & 1 & -1\\1 & 2 & 1\\1 & -1 & 2\end{vmatrix}$

$$= 2(4+1) - 1(2-1) - 1(-1-2)$$

= 12
27. $\bar{a}.(\bar{b} \times \bar{c}) = 10$
 $\therefore |\begin{vmatrix} 1 & 1 & 1 \\ 2 & \lambda & 1 \\ 1 & -1 & 4 \end{vmatrix} = 10$
 $\Rightarrow (4\lambda + 1) - (8-1) + (-2 - \lambda) = 10$
 $\Rightarrow \lambda = 6$

Г

28. Let \hat{n} be the unit vector perpendicular to \bar{a} and \bar{b} $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \overline{a} . (\overline{b} \times \overline{c}) = \overline{a} . (|\overline{b}| |\overline{c}| \sin \theta \ \hat{n})$ $=\overline{a}.(3 \times 4 \sin \frac{2\pi}{3}.\hat{n}) = \overline{a}.\left(12 \times \frac{\sqrt{3}}{2}\hat{n}\right)$ $= 6\sqrt{3} |\bar{a}| |\hat{n}| \cos \theta = 6\sqrt{3} \times 2 \times 1 \Longrightarrow 12\sqrt{3}$. 29. $|\bar{a}| = 1, |\bar{b}| = 2, |\bar{c}| = 3$ $\begin{bmatrix} \overline{a} + \overline{b} + \overline{c} & \overline{b} - \overline{a} & \overline{c} \end{bmatrix}$ $= (\overline{a} + \overline{b} + \overline{c}) \cdot [(\overline{b} - \overline{a}) \times \overline{c}]$ $= \left(\overline{a} + \overline{b} + \overline{c}\right). \left(\overline{b} \times \overline{c} - \overline{a} \times \overline{c}\right)$ $= [\overline{a} \overline{b} \overline{c}] - [\overline{b} \overline{a} \overline{c}]$ $= 2 \left[\overline{a} \ \overline{b} \ \overline{c} \right]$ $= 2 \overline{a} \cdot (\overline{b} \times \overline{c})$ $=2|\overline{a}|.|\overline{b}\times\overline{c}|\cos 0^{\circ}$ $=2|\overline{a}|.|\overline{b}\times\overline{c}|$ $= 2 |\overline{a}| \cdot |\overline{b}| \cdot |\overline{c}| \sin 90^{\circ}$ $= 2 \times 1 \times 2 \times 3 = 12$ $\begin{bmatrix} \overline{a} - \overline{b} & \overline{b} - \overline{c} & \overline{c} - \overline{a} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} - \begin{bmatrix} \overline{b} & \overline{c} & \overline{a} \end{bmatrix}$ 30. $= \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$ 31. $(\overline{a} - \overline{b}) \cdot \left[(\overline{b} - \overline{c}) \times (\overline{c} - \overline{a}) \right]$ $= \begin{bmatrix} \overline{a} - \overline{b} & \overline{b} - \overline{c} & \overline{c} - \overline{a} \end{bmatrix} = 0$ Vector $\overline{\alpha}$ lies in the plane of $\overline{\beta}$ and $\overline{\gamma}$ 32. $\overline{\alpha}$, $\overline{\beta}$, $\overline{\gamma}$ are coplanar *.*.. $\Rightarrow [\overline{\alpha} \ \overline{\beta} \ \overline{\gamma}] = 0$ $\begin{bmatrix} \overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a} \end{bmatrix} = 2 \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ 33. $\dots [\because \overline{a}, \overline{b}, \overline{c} \text{ are coplanar}]$ = 0 $\left[\overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a}\right] = 2\left[\overline{a} \ \overline{b} \ \overline{c}\right]$ 34. Here $\overline{C} = C_1 \hat{i} - \hat{j} + \hat{k}$ 35. To make three vectors coplanar [ABC] = 01 $\Rightarrow \begin{vmatrix} 1 & 0 & 0 \end{vmatrix} = 0$ C, -1 1 $\Rightarrow 1(0-0) - 1(1-0) + 1(-1-0) = 0$ The value of [ABC] is independent of C_1 *.*.. Hence no value of C_1 can be found.

Chapter 05: Vectors Let $\overline{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\overline{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and 36. $\vec{c} = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$ Since, \overline{a} , \overline{b} and \overline{c} are coplanar, $\left[\overline{a} \overline{b} \overline{c} \right] = 0$ *.*.. $\Rightarrow \begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & \lambda & 5 \end{vmatrix} = 0$ $\Rightarrow 2(10+3\lambda) + 1(5+9) + 1(\lambda-6) = 0$ $\Rightarrow \lambda = -4$ Let \bar{a} , \bar{b} and \bar{c} be the given vectors 37. The given vectors are coplanar 2 $\begin{vmatrix} 1 & \lambda & -1 \\ 2 & -1 & \lambda \end{vmatrix} = 0$ *.*. $\Rightarrow \lambda(\lambda^2 - 1) - (\lambda + 2) + 2(-1 - 2\lambda) = 0$ $\Rightarrow \lambda^3 - 6\lambda - 4 = 0$ $\Rightarrow (\lambda + 2)(\lambda^2 - 2\lambda - 2) = 0$ $\Rightarrow \lambda = -2 \text{ or } \lambda = \frac{2 \pm \sqrt{4+8}}{2} = 1 \pm \sqrt{3}$ 38. Let $\vec{a} = 4\hat{i} + 11\hat{j} + m\hat{k}$, $\vec{b} = 7\hat{i} + 2\hat{j} + 6\hat{k}$ and $\vec{c} = \hat{i} + 5\hat{j} + 4\hat{k}$. Since \overline{a} , \overline{b} and \overline{c} are coplanar, $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$ *.*.. $\Rightarrow \begin{vmatrix} 4 & 11 & m \\ 7 & 2 & 6 \end{vmatrix} = 0$ $\Rightarrow 4 (8-30) - 11 (28-6) + m (35-2) = 0$ $\Rightarrow -330 + 33m = 0$ \Rightarrow m = 10 39. Here $\bar{a} = 2\hat{i} + 2\hat{j} + 6\hat{k}$, $\bar{b} = 2\hat{i} + \lambda\hat{j} + 6\hat{k}$, $\hat{c} = 2\hat{i} - 3\hat{i} + \hat{k}$ Since \overline{a} , \overline{b} and \overline{c} are coplanar, 2 6 $\begin{vmatrix} 2 & \lambda & 6 \\ 2 & -3 & 1 \end{vmatrix} = 0$ *.*. -3 1 $\Rightarrow 2 (\lambda + 18) - 2 (2 - 12) + 6 (-6 - 2\lambda) = 0$ $\Rightarrow -10\lambda = -20$ $\Rightarrow \lambda = 2$

MHT	-CET Triumph Maths (Hints)	T
40.	Let $\overline{\mathbf{a}} = -2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\overline{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\overline{\mathbf{c}} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\overline{\mathbf{a}} = 2\hat{\mathbf{c}} + \hat{\mathbf{j}}$	
÷	$d = \lambda J + k$ Since the given points are coplanar. $\begin{bmatrix} \overline{AB} \ \overline{AC} \ \overline{AD} \end{bmatrix} = 0$ $\Rightarrow \begin{vmatrix} 3 & 0 & 0 \\ 2 & 0 & -2 \\ 2 & \lambda - 1 & 0 \end{vmatrix} = 0$ $\Rightarrow 3(2\lambda - 2) + 0 + 0 = 0$	
	$\Rightarrow 6\lambda - 6 = 0$ $\Rightarrow \lambda = 1$	
41.	Since $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = \hat{i} - \hat{j} + 2\hat{k}$ and $\overline{c} = r\hat{i} + (r-2)\hat{i} - \hat{k}$ are contain vectors	
	$\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$	
	$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1 \end{vmatrix} = 0$	
	$\Rightarrow 1 [1-2(x-2)] - 1 (-1-2x) + 1(x-2+x) = 0$ $\Rightarrow 1 - 2x + 4 + 1 + 2x + 2x - 2 = 0$ $\Rightarrow 2x = -4$ $\Rightarrow x = -2$	
42.	Let $\vec{a} = 3\hat{i} - 2\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}$,	
	$c = -i + j + 2k$ and $d = 4i + 5j + \lambda k$ Since, the given points are coplanar,	
÷	$\begin{bmatrix} AB & AC & AD \end{bmatrix} = 0$ $\Rightarrow \begin{vmatrix} -1 & 5 & -3 \\ -4 & 3 & 3 \\ 1 & 7 & \lambda + 1 \end{vmatrix} = 0$	
	$\Rightarrow -1(3\lambda + 3 - 21) - 5(-4\lambda - 4 - 3) -3(-28 - 3) = 0$	
	$\Rightarrow -3\lambda + 18 + 20\lambda + 35 + 93 = 0$ $\Rightarrow 17 \lambda = -146$ $\Rightarrow \lambda = \frac{-146}{17}$	
43.	Let $\overline{s} = 2\overline{a} + 3\overline{b} - \overline{c}$, $\overline{t} = \overline{a} - 2\overline{b} + 3\overline{c}$, $\overline{u} = 3\overline{a} + 4\overline{b} - 2\overline{c}$, $\overline{v} = k\overline{a} - 6\overline{b} + 6\overline{c}$	
÷	$\overline{ST} = -\overline{a} - 5\overline{b} + 4\overline{c}, \ \overline{SU} = \overline{a} + \overline{b} - \overline{c}$ $\overline{SV} = (k-2)\overline{a} - 9\overline{b} + 7\overline{c}$ Since the given points are conferen	
÷	$\begin{bmatrix} \overline{ST} & \overline{SU} & \overline{SV} \end{bmatrix} = 0$	

TM

 $\Rightarrow \begin{vmatrix} -1 & -5 & 4 \\ 1 & 1 & -1 \\ k-2 & -9 & 7 \end{vmatrix} = 0$ \Rightarrow 2 + 5 (7 + k - 2) + 4 (- 9 - k + 2) = 0 $\Rightarrow 2 + 25 + 5k - 28 - 4k = 0$ $\Rightarrow -1 + k = 0$ \Rightarrow k = 1 44. Since, $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ are coplanar, a 1 1 $\therefore \qquad \begin{vmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{1} & \mathbf{b} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{c} \end{vmatrix} = \mathbf{0}$ \Rightarrow a (bc - 1) - 1 (c - 1) + 1 (1 - b) = 0 $\Rightarrow abc - a - b - c + 2 = 0$ \Rightarrow abc - (a + b + c) = -2 45. Let a, b and c be the given vectors. The vectors are coplanar $\therefore \quad \begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0$ $\Rightarrow -\lambda^2(\lambda^4 - 1) - 1(-\lambda^2 - 1) + 1(1 + \lambda^2) = 0$ $\Rightarrow \lambda^6 - 3\lambda^2 - 2 = 0$ $\Rightarrow (1 + \lambda^2)^2 (\lambda^2 - 2) = 0$ $\Rightarrow \lambda = \pm \sqrt{2}$ 46. The given vectors are coplanar $\therefore \quad \begin{vmatrix} \lambda^3 & 0 & 1 \\ 1 & -\lambda^3 & 0 \\ 1 & 2\lambda - \sin \lambda & -\lambda \end{vmatrix} = 0$ $\Rightarrow \lambda^3 (\lambda^4 - 0) + 1(2\lambda - \sin \lambda + \lambda^3) = 0$ $\Rightarrow \lambda^7 + \lambda^3 + 2\lambda = \sin \lambda \qquad \dots (i)$ This is true for $\lambda = 0$. For non-zero values of λ , equation (i) is $\lambda^6 + \lambda^2 + 2 = \frac{\sin \lambda}{\lambda}$(ii) We know that $\frac{\sin x}{x} < 1$ for all $x \neq 0$. L.H.S. of (ii) is greater than 2 and R.H.S. is *.*.. less than 1. So, (ii) is not true for any non-zero λ . Hence, there is only one value of λ .

47. Let
$$\overline{\alpha}$$
, $\overline{\beta}$ and $\overline{\gamma}$ be the given vectors
 $\overline{\alpha}$, $\overline{\beta}$ and $\overline{\gamma}$ are coplanar
∴ $\begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & (2\lambda - 1) \end{vmatrix} = 0$
 $\Rightarrow \lambda(2\lambda - 1) = 0 \Rightarrow \lambda = 0, \frac{1}{2}$
Hence, $\overline{\alpha}$, $\overline{\beta}$, $\overline{\gamma}$ are non-coplanar for all
values of λ except 0 and $\frac{1}{2}$.
48. Since, O(0, 0, 0), P(2, 3, 4), Q(1, 2, 3),
R(x, y, z) are co-planar
∴ $\begin{bmatrix} OR & OP & OQ \end{bmatrix} = 0$
 $\Rightarrow \begin{vmatrix} x & y & z \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{vmatrix} = 0$
 $\Rightarrow x (9 - 8) - y (6 - 4) + z (4 - 3) = 0$
 $\Rightarrow x - 2y + z = 0$
49. Let the vector be $\hat{a}\hat{i} + \hat{b}\hat{j} + c\hat{k}$.
It is perpendicular to $2\hat{i} + \hat{j} + \hat{k}$.
∴ $2a + b + c = 0$ (i)
The vector is coplanar with $\hat{i} + 2\hat{j} + \hat{k}$ and
 $\hat{i} + \hat{j} + 2\hat{k}$
 $\begin{vmatrix} a & b & c \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 0$
∴ $3a - b - c = 0$ (ii)
On solving (i) and (ii), we get
 $a = 0, b = 5, c = -5$
∴ The required vector is $5(\hat{j} - \hat{k})$
50. $\begin{bmatrix} \overline{\alpha} & \overline{\beta} & \overline{\gamma} \end{bmatrix} = \begin{vmatrix} 5 & 6 & 7 \\ 7 & -8 & 9 \\ 3 & 20 & 5 \end{vmatrix}$
 $= 5(-40 - 180) - 6(35 - 27) + 7(140 + 24) = 0$
∴ the given vectors are coplanar.
51. Since \overline{x} is a non-zero vector, the given conditions will be satisfied, if either
i. at least one of the vectors $\overline{a}, \overline{b}, \overline{c}$ is zero or
ii. \overline{x} is perpendicular to all the vectors $\overline{a}, \overline{b}, \overline{c}$ is zero or
ii. \overline{x} is perpendicular to all the vectors $\overline{a}, \overline{b}, \overline{c}$ is zero or
ii. \overline{x} is perpendicular to all the vectors $\overline{a}, \overline{b}, \overline{c}$ is zero or ii. \overline{x} is $\overline{a}, \overline{b}, \overline{c}$.

Chapter 05: Vectors options (A), (B) and (D) = $\begin{bmatrix} \overline{u} & \overline{v} & \overline{w} \end{bmatrix}$, 54. while option (C) = $-\left[\overline{u} \ \overline{v} \ \overline{w}\right]$ $\overline{a} \cdot (\overline{a} \times \overline{b}) = (\overline{a} \times \overline{a}) \cdot b = 0$ 55. $\frac{\overline{a}.\overline{b}\times\overline{c}}{\overline{c}\times\overline{a}.\overline{b}} + \frac{\overline{b}.\overline{a}\times\overline{c}}{\overline{c}.\overline{a}\times\overline{b}} = \frac{\overline{a}.\overline{b}\times\overline{c}}{\overline{c}.\overline{a}\times\overline{b}} + \frac{\overline{b}.\overline{a}\times\overline{c}}{\overline{c}.\overline{a}\times\overline{b}}$ 56. $= \frac{[\overline{a}\ \overline{b}\ \overline{c}]}{[\overline{c}\ \overline{a}\ \overline{b}]} + \frac{[\overline{b}\ \overline{a}\ \overline{c}]}{[\overline{c}\ \overline{a}\ \overline{b}]}$ $=\frac{[\overline{a}\ \overline{b}\ \overline{c}]}{[\overline{c}\ \overline{a}\ \overline{b}]}-\frac{[\overline{a}\ \overline{b}\ \overline{c}]}{[\overline{c}\ \overline{a}\ \overline{b}]}=0$ \bar{a}, \bar{b} and \bar{c} are non-coplanar. 57. So, $\left[\overline{a}\overline{b}\overline{c}\right] \neq 0$ $\bar{a} \left\{ \frac{\bar{b} \times \bar{c}}{3\bar{b} \cdot (\bar{c} \times \bar{a})} \right\} - \bar{b} \left\{ \frac{\bar{c} \times \bar{a}}{2\bar{c} \cdot (\bar{a} \times \bar{b})} \right\}$ $= \frac{\overline{[a bc]}}{3[bca]} - \frac{\overline{[bca]}}{2[cab]} = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6}$ 58. $\overline{a} \cdot [(\overline{b} + \overline{c}) \times (\overline{a} + \overline{b} + \overline{c})]$ $= \overline{a} \cdot \left[\overline{b} \times \overline{a} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} + \overline{c} \times \overline{b} \right]$ $\dots \left[\because \overline{b} \times \overline{b} = 0, \ \overline{c} \times \overline{c} = 0 \right]$ $= [\overline{a} \ \overline{b} \ \overline{a}] + [\overline{a} \ \overline{b} \ \overline{c}] + [\overline{a} \ \overline{c} \ \overline{a}] + [\overline{a} \ \overline{c} \ \overline{b}]$ $= 0 + [\overline{a} \ \overline{b} \ \overline{c}] + 0 - [\overline{a} \ \overline{b} \ \overline{c}]$ = 059. $(\overline{a} + \overline{b}).(\overline{b} + \overline{c}) \times (\overline{a} + \overline{b} + \overline{c})$ $= (\overline{a} + \overline{b}) \cdot \left[\overline{b} \times \overline{a} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} + \overline{c} \times \overline{b} \right]$ $= \left\lceil \overline{a} \overline{b} \overline{a} \right\rceil + \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil + \left\lceil \overline{a} \overline{c} \overline{a} \right\rceil + \left\lceil \overline{a} \overline{c} \overline{b} \right\rceil$ $+\left\lceil \overline{b}\overline{b}\overline{a}\right\rceil + \left\lceil \overline{b}\overline{b}\overline{c}\right\rceil + \left\lceil \overline{b}\overline{c}\overline{a}\right\rceil + \left\lceil \overline{b}\overline{c}\overline{b}\right\rceil$ $= 0 + \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil + 0 + \left\lceil \overline{a} \overline{c} \overline{b} \right\rceil + 0 + 0 + \left\lceil \overline{b} \overline{c} \overline{a} \right\rceil + 0$ $= \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil - \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil + \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil = \left\lceil \overline{a} \overline{b} \overline{c} \right\rceil$ 60. Since, $\overline{a}.\overline{b} = 0$ \overline{a} and \overline{b} are perpendicular unit vectors. *.*. Now, $(2\overline{a} - \overline{b})$. $\{(\overline{a} \times \overline{b}) \times (\overline{a} + 2\overline{b})\}$ $= \left\lceil 2\overline{a} - \overline{b} \ \overline{a} \times \overline{b} \ \overline{a} + 2\overline{b} \right\rceil$ $= -\left[\overline{a} \times \overline{b} \ 2\overline{a} - \overline{b} \ \overline{a} + 2\overline{b}\right]$ $= -\left(\overline{a} \times \overline{b}\right) \cdot \left\{ \left(2\overline{a} - \overline{b}\right) \times \left(\overline{a} + 2\overline{b}\right) \right\}$

$$\Rightarrow p^{2} - \frac{1}{3}pq + \frac{2}{3}q^{2} = 0$$

$$\Rightarrow \left(p^{2} - \frac{1}{3}pq + \frac{1}{36}q^{2}\right) - \frac{1}{36}q^{2} + \frac{2}{3}q^{2} = 0$$

$$\Rightarrow \left(p - \frac{q}{6}\right)^{2} + \frac{23}{36}q^{2} = 0$$

$$\Rightarrow p - \frac{q}{6} = 0, q = 0$$

$$\Rightarrow p = 0, q = 0$$
Hence, there is exactly one value of (p, q).
66. $\left[\lambda(\overline{a} + \overline{b}) \ \lambda^{2}\overline{b} \ \lambda\overline{c}\right] = \left[\overline{a} \ \overline{b} + \overline{c} \ \overline{b}\right]$

$$\Rightarrow \lambda^{4}\left[\overline{a} \ \overline{b} \ \overline{c}\right] = \left[\overline{a} \ \overline{b} + \overline{c} \ \overline{b}\right]$$

$$\Rightarrow \lambda^{4}\left\{\left[\overline{a} \ \overline{b} \ \overline{c}\right] + \left[\overline{b} \ \overline{b} \ \overline{c}\right]\right\} = \left\{\left[\overline{a} \ \overline{b} \ \overline{b}\right] + \left[\overline{a} \ \overline{c} \ \overline{b}\right]\right\}$$

$$\Rightarrow \lambda^{4}\left\{\left[\overline{a} \ \overline{b} \ \overline{c}\right] = -\left[\overline{a} \ \overline{b} \ \overline{c}\right]\right]$$

$$\Rightarrow \lambda^{4}\left\{\left[\overline{a} \ \overline{b} \ \overline{c}\right] = -\left[\overline{a} \ \overline{b} \ \overline{c}\right]\right]$$

$$\Rightarrow \lambda^{4}\left\{\left[\overline{a} \ \overline{b} \ \overline{c}\right] + \left[\overline{b} \ \overline{b} \ \overline{c}\right]\right] = 0$$
But, $\left[\overline{a} \ \overline{b} \ \overline{c}\right] = 0$
But, $\left[\overline{a} \ \overline{b} \ \overline{c}\right] = 1$

$$\Rightarrow 2(-1) + 3(-1 + 3) = 4 \text{ cu.unit.}$$
68. Volume of parallelopiped = $\left[\overline{a} \ \overline{b} \ \overline{c}\right]$

$$\Rightarrow 2(1 - 2) + 3(-1 - 4) + 1(1 + 2) = -14$$
But, volume cannot be negative.

$$\therefore$$
Volume of parallelopiped = 14 \text{ cu. units.}
69. Volume of tetrahedron = $\frac{1}{6} \left[\overline{a} \ \overline{b} \ \overline{c}\right] = 24$
Edges of parallelopiped are $\overline{a} \times \overline{b} \ \overline{b} \times \overline{c} \ \overline{c} \times \overline{a}$

$$= \left[\overline{a} \ \overline{b} \ \overline{c}\right]^{2}$$

$$= 24^{2}$$

$$= 576 \text{ sq. units}$$

- 71. Volume of parallelopiped = [a b b c c a]= $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} - \begin{bmatrix} \overline{b} \ \overline{c} \ \overline{a} \end{bmatrix}$ = $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} - \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ = 0
- 72. Volume of parallelopiped $= \left[\overline{a} + \overline{b} \ \overline{b} + \overline{c} \ \overline{c} + \overline{a} \right] = 2 \left[\overline{a} \ \overline{b} \ \overline{c} \right]$ $= 2 \begin{vmatrix} 2 & -3 & 5 \\ 3 & -4 & 5 \\ 5 & -3 & -2 \end{vmatrix}$ = 2 [2(8+15) + 3(-6-25) + 5(-9+20)] = 2 [46-93+55] = 16 cu. Unit
- 73. Let A, B, C and D be the given points.

$$\therefore \qquad \overline{AB} = -4\hat{i} - 6\hat{j}, \qquad \overline{AC} = -\hat{i} + 4\hat{j} + 3\hat{k}, \quad \text{and} \\ \overline{AD} = -6\hat{i} - \hat{j} + 3\hat{k}$$

Volume of tetrahedron
$$= \frac{1}{6} \begin{vmatrix} -4 & -6 & 0 \\ -1 & 4 & 3 \\ -6 & -1 & 3 \end{vmatrix}$$

 $= \frac{30}{6}$

= 5

74. AD is the median

$$\therefore \quad \overline{AD} = \frac{\overline{AB} + \overline{AC}}{2} \quad 3\hat{i} + 5\hat{j} + 4\hat{k} \quad 5\hat{i} - 5\hat{j} + 2\hat{k}$$

$$\Rightarrow \overline{AD} = \frac{(3+5)\hat{i} + (5-5)\hat{j} + (4+2)\hat{k}}{2}$$

$$= \frac{8\hat{i} + 6\hat{k}}{2}$$

$$= 4\hat{i} + 3\hat{k}$$

$$\therefore \quad l(AD) = |\overline{AD}| = \sqrt{16+9} = 5 \text{ units.}$$

75. Let AM be the angle bisector of
$$\angle BAC$$

 $|\overline{AB}| = \sqrt{16+25+9} = \sqrt{50} = 5\sqrt{2}$
 $|\overline{AC}| = \sqrt{1+1+16} = \sqrt{18} = 3\sqrt{2}$
 $A(4, 3, 5)$
 $M(4, 3, 5)$
 $\overline{M} = \frac{5\overline{c} + 3\overline{b}}{8} = \frac{5(3\hat{i} + 2\hat{j} + \hat{k}) + 3(-2\hat{j} + 2\hat{k})}{8}$
 $= \frac{15\hat{i} + 4\hat{j} + 11\hat{k}}{8}$
 $\therefore \overline{M} = \left(\frac{15}{8}, \frac{4}{8}, \frac{11}{8}\right)$
76. Let AM be the angle bisector of angle A

76. Let AN be the angle disector of angle A
$$|\overline{AB}|=6 \text{ and } (\overline{AC})=3$$

$$\therefore$$
 M divides BC internally is the ratio 2 : 1

$$\therefore \quad \overline{\mathbf{M}} = \frac{2(2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}) + \mathbf{l}(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})}{2+1}$$
$$= \frac{6\mathbf{\hat{i}} + 13\mathbf{\hat{j}} + 18\mathbf{\hat{k}}}{3}$$

77.
$$\overline{AB} = -6\hat{i} - 2\hat{j} + 3\hat{k}$$
, $\overline{BC} = -2\hat{i} + 3\hat{j} - 6\hat{k}$
 $\overline{CD} = 6\hat{i} + 2\hat{j} - 3\hat{k}$, $\overline{DA} = 2\hat{i} - 3\hat{j} + 6\hat{k}$
 $\overline{AC} = -8\hat{i} + \hat{j} - 3\hat{k}$ and $\overline{BD} = 4\hat{i} + 5\hat{j} - 9\hat{k}$
Here, $|\overline{AB}| = |\overline{BC}| = |\overline{CD}| = |\overline{DA}| = 7$
and $\overline{AC} \cdot \overline{BD} = 0 \Rightarrow \overline{AC} \perp \overline{BD}$
Hence, ABCD is a rhombus.

78. In ΔABC, hypotenuse AB = p
∴
$$\overline{AC} \perp \overline{CB}$$

∴ $\overline{AC.CB} = 0$ (i)
Now, $\overline{AB}.\overline{AC} + \overline{BC}.\overline{BA} + \overline{CA}.\overline{CB}$
= $\overline{AB}.\overline{AC} + \overline{BC}.(-\overline{AB}) + (-\overline{AC}).\overline{CB}$
= $\overline{AB}.\overline{AC} - \overline{BC}.\overline{AB} - \overline{AC}.\overline{CB}$
= $\overline{AB}.(\overline{AC} - \overline{BC}) - 0$ [From (i)]
= $\overline{AB}.(\overline{AC} + \overline{CB})$
= $\overline{AB}.\overline{AB}$ [$\because \overline{AC} + \overline{CB} = \overline{AB}$]
= $|\overline{AB}|^2 = p^2$

Chapter 05: Vectors

6. Volume of the parallelopiped formed by vectors is
i.e.,
$$V = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix} = 1 - a + a^3$$

 $\therefore \frac{dV}{da} = -1 + 3a^2$, $\frac{d^2V}{da^2} = 6a$
For max. or min. of V, $\frac{dV}{da} = 0$
 $\therefore a^2 = \frac{1}{3}$ $\therefore a = \frac{1}{\sqrt{3}}$
 $\frac{d^2V}{da^2} = 6a > 0$ for $a = \frac{1}{\sqrt{3}}$
 $\therefore V$ is minimum for $a = \frac{1}{\sqrt{3}}$
7. Given, $\overline{a}.\overline{b} = \overline{b}.\overline{c} = \overline{c}.\overline{a} = 0$
The scalar triple product of three vectors is
 $[\overline{a}.\overline{b}.\overline{c}] = (\overline{a} \times \overline{b}).\overline{c}$
 $\therefore a.\overline{b} = 0$ $\therefore \overline{a} \perp \overline{b}$
 $\therefore angle between \overline{a} and \overline{b} is $\theta = 90^{\circ}$
Similarly, $[\overline{a}.\overline{b}.\overline{c}] = |\overline{a}||\overline{b}||\widehat{n}.\overline{c}$ where \widehat{n} is a
normal vector.
 $\therefore \widehat{n}$ and \overline{c} are parallel to each other
 $\therefore [\overline{a}.\overline{b}.\overline{c}] = |\overline{a}||\overline{b}||\widehat{n}|.|\overline{c}| = |a||b||c|.$
8. Given, $\overline{r} \times \overline{b} = \overline{c} \times \overline{b}$
 $\Rightarrow (\overline{r} - \overline{c}) \times \overline{b} = \overline{0}$
 $\therefore \overline{r} - \overline{c}$ is parallel to \overline{b}
 $\Rightarrow \overline{r} - \overline{c} = \lambda \overline{b}$ for some scalar λ
 $\Rightarrow \overline{r} = \overline{c} + \lambda \overline{b}$ (i)
 $\Rightarrow \overline{r}.\overline{a} = \overline{c}.\overline{a} + \lambda(\overline{b}.\overline{a})$
 $\Rightarrow 0 = \overline{c}.\overline{a} + \lambda(\overline{b}.\overline{a})$ $[\because \overline{r} \cdot \overline{a} = 0 (\text{given})]$
 $\Rightarrow \lambda = -\frac{\overline{a}.\overline{c}}{\overline{a}.\overline{b}}$
Substituting the value of λ in (i), we get
 $\overline{r} = \overline{c} - \frac{\overline{a}.\overline{c}}{\overline{a}.\overline{b}}(\overline{b}.\overline{b})$
 $\Rightarrow \overline{r}.\overline{b} = \overline{c}.\overline{b} - \frac{\overline{a}.\overline{c}}{\overline{a}.\overline{b}}(\overline{b}.\overline{b})$
 $\Rightarrow \overline{r}.\overline{b} = 1 - \frac{(-4)}{1} \times 2 = 9$$

9. Let $\overline{c} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ $\therefore \quad \overline{a \times c} = \overline{c} \times \overline{b}$ $\Rightarrow \overline{a} \times \overline{c} = -\overline{b} \times \overline{c} \Rightarrow (\overline{a} + \overline{b}) \times \overline{c} = 0 \Rightarrow (\overline{a} + \overline{b}) || \overline{c}$ Let $(\overline{a} + \overline{b}) = \lambda \overline{c}$ $\Rightarrow |\overline{a} + \overline{b}| = |\lambda| |\overline{c}| \Rightarrow \sqrt{29} = |\lambda| .\sqrt{29} \Rightarrow \lambda = \pm 1$ $\therefore \quad \overline{a} + \overline{b} = \pm (2\hat{i} + 3\hat{j} + 4\hat{k})$ Now, $(\overline{a} + \overline{b}) . (-7\hat{i} + 2\hat{j} + 3\hat{k}) = \pm (-14 + 6 + 12)$ $= \pm 4$

10. Given,

$$\begin{bmatrix} l\bar{a} + m\bar{b} + n\bar{c} & l\bar{b} + m\bar{c} + n\bar{a} & l\bar{c} + m\bar{a} + n\bar{b} \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} l\bar{a} + m\bar{b} + n\bar{c} & n\bar{a} + l\bar{b} + m\bar{c} & m\bar{a} + n\bar{b} + l\bar{c} \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} l & m & n \\ n & l & m \\ m & n & l \end{bmatrix} \begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} l & m & n \\ n & l & m \\ m & n & l \end{bmatrix} = 0 \qquad \dots \begin{bmatrix} \because \begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix} \neq 0 \end{bmatrix}$$

$$\Rightarrow l^3 + m^3 + n^3 - 3lmn = 0$$

$$\Rightarrow (l + m + n) (l^2 + m^2 + n^2 - lm - mn - nl) = 0$$

$$\Rightarrow l + m + n = 0$$

11.

...

Let point O be the circumcentre of $\triangle ABC$. Let \bar{a} , \bar{b} , \bar{c} , \bar{p} , \bar{d} , \bar{h} , \bar{m} be the position vectors of the respective points. Since, $\bar{h} = \bar{a} + \bar{b} + \bar{c}$ (Standard formula)

 $\therefore \qquad \overline{\mathbf{m}} = \frac{\overline{\mathbf{p}} + \overline{\mathbf{h}}}{2} = \frac{\overline{\mathbf{p}} + \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}}{2}$ $\therefore \qquad \overline{\mathbf{DM}} = \overline{\mathbf{m}} - \overline{\mathbf{d}} = \frac{\overline{\mathbf{p}} + \overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}}{2} - \frac{\overline{\mathbf{b}} + \overline{\mathbf{c}}}{2} = \frac{\overline{\mathbf{p}} + \overline{\mathbf{a}}}{2}$ $\therefore \qquad \overline{\mathbf{DM}} \cdot \overline{\mathbf{PA}} = \left(\frac{\overline{\mathbf{p}} + \overline{\mathbf{a}}}{2}\right) \cdot \left(\overline{\mathbf{a}} - \overline{\mathbf{p}}\right) = \frac{1}{2} \left(\mathbf{a}^2 - \mathbf{p}^2\right) = 0$

....[:: O is circumcentre, :: OA = OP i.e., a = p] DM is perpendicular to PA. **MHT-CET Triumph Maths (Hints)** Let position vector of Q be r 15. Since, \overline{p} divides PQ in the ratio 3 : 4 $\frac{3\overline{r} + 4(3\overline{p} + \overline{q})}{3 + 4} = \overline{p}$ *.*.. $\Rightarrow 7\overline{p} = 3\overline{r} + 12\overline{p} + 4\overline{q}$ $\Rightarrow -5\overline{p} - 4\overline{q} = 3\overline{r}$ $\Rightarrow \bar{r} = \frac{-1}{2} (5\bar{p} + 4\bar{q})$ 16. A(3, 2, 0) 13 C(-9, 6, -3)B(5, 3, 2) D By distance formula, AB = $\sqrt{(5-3)^2 + (3-2)^2 + (2-0)^2}$ $=\sqrt{4+1+4}=\sqrt{9}=3$ AC = $\sqrt{(3+9)^2 + (2-6)^2 + (0+3)^2}$ $=\sqrt{144+16+9}=\sqrt{169}=13$ Point D divides seg BC in the ratio of 3:13 *.*.. *.*.. By section formula, $D = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right)$ $\equiv \left(\frac{3(-9)+13(5)}{3+13}, \frac{3(6)+13(3)}{3+13}, \frac{3(-3)+13(2)}{3+13}\right)$ $\equiv \left(\frac{-27+65}{16}, \frac{18+39}{16}, \frac{-9+26}{16}\right)$ $\equiv \left(\frac{38}{16}, \frac{57}{16}, \frac{17}{16}\right) \equiv \left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$ $A(x_1, y_1, z_1)$ 17. (l, 0, 0)(0, 0, n) $B(x_2, y_2, z_2)$ (0, m, 0) $C(x_3, y_3, z_3)$ $x_1 + x_2 = 2l, x_2 + x_3 = 0, x_3 + x_1 = 0$ On solving we get $x_1 = l$, $x_2 = l$, $x_3 = -l$ $y_1 + y_2 = 0, y_2 + y_3 = 2m, y_3 + y_1 = 0$

On solving we get $y_1 = -m$, $y_2 = m$, $y_3 = m$

 $z_1 + z_2 = 0$, $z_2 + z_3 = 0$, $z_3 + z_1 = 2n$ On solving we get $z_1 = n$, $z_3 = n$, $z_2 = -n$ $\therefore A(l, -m, n), B(l, m, -n), C(-l, m, n)$ By distance formula, $AB^{2} = (l - l)^{2} + (-m - m)^{2} + (n + n)^{2} = 4m^{2} + 4n^{2}$ $BC^{2} = (l + l)^{2} + (-m - m)^{2} + (-n - n)^{2} = 4l^{2} + 4n^{2}$ $CA^{2} = (l + l)^{2} + (-m - m)^{2} + (n - n)^{2} = 4l^{2} + 4m^{2}$ $CA^{2} = (l + l)^{2} + (-m - m)^{2} + (n - n)^{2} = 4l^{2} + 4m^{2}$ $\frac{AB^{2} + BC^{2} + CA^{2}}{l^{2} + m^{2} + n^{2}}$ $= \frac{4m^{2} + 4n^{2} + 4l^{2} + 4n^{2} + 4l^{2} + 4n^{2} + 4l^{2} + 4m^{2}}{l^{2} + m^{2} + n^{2}}$ $= 8 \frac{(l^{2} + m^{2} + n^{2})}{l^{2} + m^{2} + n^{2}} = 8$ 18. A(1, 0, 3)C(3, 5, 3)

Let D be the foot of perpendicular and let it divide BC in the ratio λ : 1 internally

$$D = \left(\frac{3\lambda+4}{\lambda+1}, \frac{5\lambda+7}{\lambda+1}, \frac{3\lambda+1}{\lambda+1}\right)$$

$$\overline{AD} = \overline{d} - \overline{a}$$

$$= \left(\frac{3\lambda+4}{\lambda+1}\right)\hat{i} + \left(\frac{5\lambda+7}{\lambda+1}\right)\hat{j} + \left(\frac{3\lambda+1}{\lambda+1}\right)\hat{k} - \hat{i} - 3\hat{k}$$

$$= \left(\frac{2\lambda+3}{\lambda+1}\right)\hat{i} + \left(\frac{5\lambda+7}{\lambda+1}\right)\hat{j} - \left(\frac{2}{\lambda+1}\right)\hat{k}$$

$$\overline{BC} = 3\hat{i} + 5\hat{j} + 3\hat{k} - \left(4\hat{i} + 7\hat{j} + \hat{k}\right)$$

$$= -\hat{i} - 2\hat{j} + 2\hat{k}$$
Since, $\overline{AD} \perp \overline{BC}$.

$$\overline{AD} \cdot \overline{BC} = 0$$

$$\Rightarrow \left(\frac{2\lambda+3}{\lambda+1}\right)(-1) + \left(\frac{5\lambda+7}{\lambda+1}\right)(-2) + \left(\frac{-2}{\lambda+1}\right)(2) = 0$$

$$\Rightarrow -2\lambda - 3 - 10\lambda - 14 - 4 = 0$$

$$\Rightarrow -12\lambda - 21 = 0 \Rightarrow \lambda = -\frac{7}{4}$$

$$D = \left(\frac{3\left(-\frac{7}{4}\right) + 4}{-\frac{7}{4} + 1}, \frac{5\left(-\frac{7}{4}\right) + 7}{-\frac{7}{4} + 1}, \frac{3\left(-\frac{7}{4}\right) + 1}{-\frac{7}{4} + 1}\right)$$

$$= \left(\frac{-21 + 16}{-7 + 4}, \frac{-35 + 28}{-7 + 4}, \frac{-21 + 4}{-7 + 4}\right) = \left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$$

Textbook Chapter No.

06

Three Dimensional Geometry

Hints

Classical Thinking

- 1. For every point (x, y, z) on X-axis y = 0, z = 0
- 2. Let the direction cosines of the line be *l*, m, n
- :. $l = \cos 45^{\circ}, m = \cos 60^{\circ}, n = \cos 60^{\circ}$

$$\Rightarrow l = \frac{1}{\sqrt{2}}, m = \frac{1}{2} \text{ and } n = \frac{1}{2}$$

$$\therefore \quad \text{d.c.s are } \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}$$

3. Let the d.c.s of the line be *l*, m, n

$$\therefore \quad l = \cos 90^\circ, \, m = \cos 60^\circ, \, n = \cos 30^\circ$$
$$\Rightarrow l = 0, \, m = \frac{1}{2}, \, n = \frac{\sqrt{3}}{2}$$

- $\therefore \quad \text{d.c.s are } 0, \frac{1}{2}, \frac{\sqrt{3}}{2}$
- 4. The d.c.s of Y-axis are cos90°, cos0°, cos90° i.e. 0, 1, 0
- 5. The d.c.s of X-axis are 1, 0, 0.
- 7. For option (B), $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \neq 1$
- \therefore option (B) is correct answer.

8. Since,
$$l^2 + m^2 + n^2 = 1$$

 $\therefore \quad k^2 + \left(\frac{1}{2}\right)^2 + 0^2 = 1$
 $\Rightarrow k^2 = 1 - \frac{1}{4} = \frac{3}{4}$
 $\Rightarrow k = \pm \frac{\sqrt{3}}{2}$

9. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\therefore \quad \cos^2 45^\circ + \cos^2 60^\circ + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \gamma = 1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ $\Rightarrow \cos \gamma = \pm \frac{1}{2}$ $\Rightarrow \gamma = 60^\circ \text{ or } 120^\circ$

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 10. $\Rightarrow \cos^2 \alpha + \cos^2(90^\circ - \alpha) + \cos^2 \gamma = 1$ \ldots [:: $\alpha + \beta = 90^{\circ}$] $\Rightarrow \cos^2 \alpha + \sin^2 \alpha + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \gamma + 1 = 1$ $\Rightarrow \cos^2 \gamma = 0$ $\Rightarrow \gamma = 90^{\circ}$ 11. Let *l*, m, n be the d.c.s of the line. $l = \cos \alpha$; m = cos 60°; n = cos 45° *.*.. Since, $\cos^2 \alpha + \cos^2 60^\circ + \cos^2 45^\circ = 1$ $\Rightarrow \cos^2 \alpha = 1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ $\Rightarrow \cos \alpha = \pm \frac{1}{2}$ the d.c.s are $\pm \frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$ *.*.. 13. Let $\overline{\mathbf{r}} = 2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ $|\overline{r}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$ The d.c.s are $\frac{x}{|\overline{r}|}, \frac{y}{|\overline{r}|}, \frac{z}{|\overline{r}|}$ *.*.. i.e., $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$ 14. Let $\overline{r} = 3\hat{i} + 4\hat{k}$. $|\overline{r}| = \sqrt{3^2 + 0^2 + 4^2} = 5$ The d.c.s are $\frac{3}{5}$, 0, $\frac{4}{5}$ *.*.. 15. D.c.s are $\frac{a}{|\overline{r}|}, \frac{b}{|\overline{r}|}, \frac{c}{|\overline{r}|}$ i.e., $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$ 16. $A \equiv (1, 2, 6)$ and $B \equiv (-4, 5, 0)$ D.r.s of AB are -4 - 1, 5 - 2, 0 - 6*.*.. i.e., -5, 3, -6 17. On Y-axis, x and z co-ordinates are zero. Hence, (B) is the correct option.

- 18. Since $(-l)^2 + (-m)^2 + (-n)^2 = 1$, we can say that -l, -m, -n are the direction cosines of the line.
 - Also that $\frac{-l}{l} = \frac{-m}{m} = \frac{-n}{n} = -1$ Hence, we can say that -l, -m, -n are the d.r.s. of the line.
- 19. Let a, b, c be the d.r.s of the line.
- \therefore The d.c.s are given by

$$\frac{a}{\sqrt{a^{2} + b^{2} + c^{2}}}, \frac{b}{\sqrt{a^{2} + b^{2} + c^{2}}}, \frac{c}{\sqrt{a^{2} + b^{2} + c^{2}}}$$

i.e., $\frac{2}{\sqrt{2^{2} + (-1)^{2} + (-2)^{2}}}, \frac{-1}{\sqrt{2^{2} + (-1)^{2} + (-2)^{2}}}, \frac{-2}{\sqrt{2^{2} + (-1)^{2} + (-2)^{2}}}$
i.e., $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$

20. The direction cosines are $\frac{\sqrt{2}}{\sqrt{2+5+2}}, \frac{-\sqrt{5}}{\sqrt{2+5+2}}, \frac{\sqrt{2}}{\sqrt{2+5+2}}$

1.e.,
$$\frac{1}{3}$$
, $\frac{1}{3}$, $\frac{1}{3}$
21. The d.r.s of line through (1, 2, -3) and (-2, 3, 1) are 2, 1, 3, 2, 1, (-3)

- (-2, 3, 1) are -2 1, 3 2, 1 (-3)i.e. -3, 1, 4
- \therefore d.c.s are

$$\frac{-3}{\sqrt{9+1+16}}, \frac{1}{\sqrt{9+1+16}}, \frac{4}{\sqrt{9+1+16}}$$

i.e. $\frac{-3}{\sqrt{26}}, \frac{1}{\sqrt{26}}, \frac{4}{\sqrt{26}}$

- 22. The d.r.s of AB are 2-14, -3-5, 1+3 i.e. -12, -8, 4 i.e., 3, 2, -1
- $\therefore \qquad \text{The d.c.s are } \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$
- 23. Let O(0, 0, 0) and P(1, 2, 3) be two points.
- \therefore Then the d.r.s of OP are 1, 2, 3
- $\therefore \quad \text{The d.c.s of OP are} \\ \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
- 24. D.r.s. of line through A(3, 1, 2), B(4, λ , 0) are 4 - 3, λ - 1, 0 - 2 \Rightarrow 1, λ - 1, -2 \equiv a₁, b₁, c₁ D.r.s. of line through C(1, 2, 1), D(2, 3, -1) are 2 - 1, 3 - 2, -1 - 1 \Rightarrow 1, 1, -2 \equiv a₂, b₂, c₂

Since, AB || CD,

- $\therefore \qquad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\Rightarrow \frac{1}{1} = \frac{\lambda 1}{1} = \frac{-2}{-2}$ i.e., $\lambda 1 = 1 \Rightarrow \lambda = 2$
- 25. Let A = (5, 2, 4), B = (6, -1, 2) and C = (8, -7, k) ∴ The d.r.s of AB are 6 - 5, -1 - 2, 2 - 4 i.e., 1, -3, -2, and The d.r.s of BC are 8 - 6, -7 + 1, k - 2 i.e. 2, -6, k - 2 Since, the points A, B, C are collinear, AB || BC
- $\therefore \quad \frac{2}{1} = \frac{-6}{-3} = \frac{k-2}{-2}$ $\Rightarrow k-2 = -4$ $\Rightarrow k = 2 4 = -2$

26. Let $A \equiv (-2, 4, \lambda)$, $B \equiv (3, -6, -8)$, $C \equiv (1, -2, -2)$ The d.r.s of AB are -5, 10, λ +8, and The d.r.s of AC are -3, 6, λ +2 Since, the points A,B,C are collinear, AB || AC

$$\therefore \qquad \frac{-5}{-3} = \frac{10}{6} = \frac{\lambda+8}{\lambda+2}$$

$$\therefore 5(\lambda + 2) = 3(\lambda + 8)$$

$$\Rightarrow 5\lambda + 10 = 3\lambda + 24$$

$$\Rightarrow 2\lambda = 14$$

$$\Rightarrow \lambda = 7$$

27. Let, $l_1 = \frac{1}{\sqrt{6}}$, $m_1 = \frac{-1}{\sqrt{6}}$, $n_1 = \frac{2}{\sqrt{6}}$ and $l_2 = \frac{2}{\sqrt{6}}$, $m_2 = \frac{1}{\sqrt{6}}$, $n_2 = \frac{-1}{\sqrt{6}}$

$$\therefore \quad \text{angle between the lines is} \\ \cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2| \\ \Rightarrow \cos \theta = \left| \frac{1}{\sqrt{6}} \left(\frac{2}{\sqrt{6}} \right) + \left(\frac{-1}{\sqrt{6}} \right) \left(\frac{1}{\sqrt{6}} \right) + \left(\frac{2}{\sqrt{6}} \right) \left(\frac{-1}{\sqrt{6}} \right) \right| \\ \Rightarrow \cos \theta = \left| \frac{-1}{6} \right| \\ \therefore \quad \theta = \cos^{-1} \left(\frac{1}{6} \right)$$

28. Let, a₁, b₁, c₁ = 5, -12, 13
and a₂, b₂, c₂ = -3, 4, 5

∴
$$\cos\theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

 $= \left| \frac{5(-3) + (-12)4 + 13(5)}{\sqrt{5^2 + (-12)^2 + 13^2} \cdot \sqrt{(-3)^2 + 4^2 + 5^2}} \right|$
 $= \left| \frac{-15 - 48 + 65}{13\sqrt{2} \cdot 5\sqrt{2}} \right|$
 $= \frac{1}{65}$
∴ $\theta = \cos^{-1}\left(\frac{1}{65}\right)$

29. Here,
$$A \equiv (1, 2, 3)$$
, $B \equiv (4, 5, 7)$,
 $C \equiv (-4, 3, -6)$ and $D \equiv (2, 9, 2)$
 \therefore d r s of lines AB and CD are 3, 3, 4 and 6

∴ d.r.s of lines AB and CD are 3, 3, 4 and 6, 6, 8 respectively.

$$\therefore \quad \theta = \cos^{-1} \left[\frac{(3)(6) + (3)(6) + (4)(8)}{\sqrt{34} \cdot \sqrt{136}} \right]$$
$$= \cos^{-1} \left[\frac{68}{2 \times 34} \right] = 0^{\circ}$$

30.
$$\cos 45^{\circ} = \left| \frac{2a - 3 + 10}{\sqrt{2^{2} + (-1)^{2} + 2^{2}} \sqrt{a^{2} + 3^{2} + 5^{2}}} \right|$$
$$\Rightarrow \frac{1}{\sqrt{2}} = \left| \frac{2a + 7}{3\sqrt{a^{2} + 34}} \right|$$
$$\Rightarrow 9(a^{2} + 34) = 2(2a + 7)^{2}$$
$$\Rightarrow 9a^{2} + 306 = 8a^{2} + 56a + 98$$
$$\Rightarrow a^{2} - 56a + 208 = 0$$
$$\Rightarrow a = 4$$

- 31. Let $a_1, b_1, c_1 = 1, -2, 1$ and $a_2, b_2, c_2 = 2, 3, 4$ Consider, $a_1a_2 + b_1b_2 + c_1c_2 = 1(2) + (-2)(3) + 1(4)$ = 0
- $\therefore \quad OP \perp OQ.$

Critical Thinking

- If α, β, λ are direction angles of any vector OL, then those
 of OL' are π − α, π − β, π − γ respectively
 ∴ correct answer is option (B).
- **Chapter 06: Three Dimensional Geometry** We know that, $l^2 + m^2 + n^2 = 1$ 2. Consider option (D) $\left(\frac{2}{\sqrt{25}}\right)^2 + \left(\frac{3}{\sqrt{25}}\right)^2 + \left(\frac{4}{\sqrt{25}}\right)^2 = \frac{4+9+16}{25}$ $=\frac{29}{25}\neq 1$ correct answer is option (D). 3. Consider option (B) $\cos^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{3}$ *:*. $=\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$ *.*.. correct answer is option (B). $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 4. $\cos \gamma = \pm \sqrt{1 - \left(\frac{14}{15}\right)^2 - \left(\frac{1}{3}\right)^2} = \pm \sqrt{\frac{8}{9} - \left(\frac{196}{225}\right)} = \pm \frac{2}{15}$ *.*.. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 5. $\cos^2 \alpha + \cos^2 60^\circ + \cos^2 60^\circ = 1$ *.*.. $\cos^2 \alpha = 1 - \frac{1}{4} - \frac{1}{4} = 1 - \frac{1}{2} = \frac{1}{2}$:. $\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{2}}$ $\Rightarrow \alpha = 45^{\circ} \text{ or } \alpha = 135^{\circ}$ Since, the line lies in ZOX plane, it makes an 6. angle 90° with Y-axis Also, line makes angle 30° and $\pi - 30^\circ$ with positive Z-axis and 60° and $\pi - 60^{\circ}$ with positive X-axis d.c.s of the required line are *.*.. $\pm \cos \alpha, \pm \cos \beta, \pm \cos \gamma$ i.e., $\pm \cos 60^\circ$, $\pm \cos 0^\circ$, $\pm \cos 30^\circ$ i.e. $\pm \frac{1}{2}$, 0, $\pm \frac{\sqrt{3}}{2}$
- 7. $\cos \gamma = \sqrt{1 \frac{3}{4} \frac{1}{2}} = \sqrt{\frac{-1}{4}}$ which is not possible.
- 8. Let *l*, m, n be the d.c.s of r. l = m = n....[$\because \alpha = \beta = \gamma \Longrightarrow \cos \alpha = \cos \beta = \cos \gamma$] Now, $l^2 + m^2 + n^2 = 1$ $\implies l = \pm \frac{1}{\sqrt{3}}$

- 9. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$ (:: $\alpha = \beta = \gamma$) $\Rightarrow \cos^2 \alpha = \frac{1}{3} \Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$ Now, sum of d.c.s. = l + m + n $= \cos \alpha + \cos \alpha + \cos \alpha$ $= 3 \cos \alpha = \sqrt{3}$
- 10. $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ = $2\cos^2 \alpha - 1 + 2\cos^2 \beta - 1 + 2\cos^2 \gamma - 1$ = $2(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) - 3$ = 2(1) - 3 = -1
- 11. $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ = $(1 - \cos^2 \alpha) + (1 - \cos^2 \beta) + (1 - \cos^2 \gamma)$ = $3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = 3 - (1) = 2$
- 12. Let $\alpha = \frac{\pi}{6}$ and $\beta = \frac{\pi}{4}$ \therefore $\cos \alpha = \frac{\sqrt{3}}{2}$ and $\cos \beta = \frac{1}{\sqrt{2}}$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\therefore \quad \frac{3}{4} + \frac{1}{2} + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \gamma = -\frac{1}{4}$

Square of a real number cannot be negative.

- \therefore option (A) is the correct answer.
- 13. The line makes angle θ with X-axis and Z-axis and β with Y-axis.
- $\therefore \quad l = \cos \theta, \text{ m} = \cos \beta, \text{ n} = \cos \theta$ $\cos^2 \theta + \cos^2 \beta + \cos^2 \theta = 1$ $\Rightarrow 2\cos^2 \theta = 1 \cos^2 \beta$ $\Rightarrow 2\cos^2 \theta = \sin^2 \beta \qquad \dots(i)$ But sin² $\beta = 3\sin^2 \theta \qquad \dots(i)$ From (i) and (ii), we get $3\sin^2 \theta = 2\cos^2 \theta$ $\Rightarrow 3(1 \cos^2 \theta) = 2\cos^2 \theta$ $\Rightarrow 3 = 5\cos^2 \theta \Rightarrow \cos^2 \theta = \frac{3}{5}$
- 14. Let the length of the line segment be r and its d.c.s be *l*, m, n.
- \therefore The projections on the co-ordinate axes are lr, mr, nr.
- $\therefore \quad lr = 4, mr = 6 \text{ and } nr = 12$ $\therefore \quad l^2r^2 + m^2r^2 + n^2r^2 = (4)^2 + (6)^2 + (12)^2$ $\Rightarrow r^2(l^2 + m^2 + n^2) = 16 + 36 + 144$ $\Rightarrow r^2 = 196 \qquad \dots [\because l^2 + m^2 + n^2 = 1]$ $\Rightarrow r = 14$

The d.c.s. of line are
$$\frac{4}{r}, \frac{6}{r}, \frac{12}{r}$$

i.e., $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$

- 15. Let α , β , γ be the angles which OP makes with the co-ordinates axes,
- $\therefore \qquad x = r\cos\alpha, y = r\cos\beta, z = r\cos\gamma$
- $\therefore \quad \cos \alpha = \frac{x}{r}; \cos \beta = \frac{y}{r}; \cos \gamma = \frac{z}{r}$
 - So, the direction cosines are $\frac{x}{r}$, $\frac{y}{r}$, $\frac{z}{r}$.
- 16. We have $l = \cos 45^\circ = \frac{1}{\sqrt{2}}$, $m = \cos 60^\circ = \frac{1}{2}$ and $n = \cos \gamma$ We know that $l^2 + m^2 + n^2 = 1$ $\therefore \quad \frac{1}{2} + \frac{1}{4} + n^2 = 1$ $\Rightarrow n^2 = 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow n = \pm \frac{1}{2}$ $\Rightarrow \cos \gamma = \pm \frac{1}{2}$ $\overline{r} = r \left(l\hat{i} + m\hat{j} + n\hat{k} \right)$ $\Rightarrow \overline{r} = 12 \left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} \pm \frac{1}{2}\hat{k} \right)$
- 17. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$ ($\because \alpha = \beta = \gamma$) $\Rightarrow \cos^2 \alpha = \frac{1}{3} \Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$ \therefore The d.c.s are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$. The magnitude of the given vector is 6. $\therefore \quad \overline{r} = 6(\cos \alpha \hat{i} + \cos \beta \hat{j} + \cos \gamma \hat{k})$ $= \frac{\pm 6}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}) = \pm 2\sqrt{3}(\hat{i} + \hat{j} + \hat{k})$
- 18. For a line passing through origin, d.r.s are the co-ordinates of the point.
- 19. D.c.s. of the line are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

$$\therefore \quad \cos \alpha = \frac{1}{\sqrt{3}}, \ \cos \beta = \frac{1}{\sqrt{3}}, \ \cos \gamma = \frac{1}{\sqrt{3}}$$

Hence, line is equally inclined to axes.

20.
$$\cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$
$$= \frac{5}{\sqrt{9 + 16 + 25}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \gamma = \frac{\pi}{4}$$

- 21. The d.r.s. of the given line are 2-6, -3+7, 1+1 i.e., -2, 2, 1. i.e., 2, -2, -1
- \therefore angle α is acute, $\cos \alpha > 0$

$$\Rightarrow \cos \alpha = \frac{2}{3}$$

Thus, required d.c.s are $\frac{2}{3}$, $\frac{-2}{3}$, $\frac{-1}{3}$

22.
$$l^2 + m^2 + n^2 = 1$$

 $\therefore \qquad \left(\frac{2}{7}\right)^2 + \left(\frac{-3}{7}\right)^2 + n^2 = 1$
 $\therefore \qquad n^2 = 1 \qquad \frac{13}{7} = \frac{36}{7}$

 $n^2 = 1 - \frac{1}{49} = \frac{1}{49}$ Let a, b, c be the d.r.s. of the line.

$$\therefore \quad a = 2, b = -3, c = z$$

Since, $n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$
$$\therefore \quad \frac{z}{\sqrt{4 + 9 + z^2}} = \pm \frac{6}{7}$$

$$\Rightarrow \frac{z^2}{13 + z^2} = \frac{36}{49}$$

$$\Rightarrow 49 z^2 - 36 z^2 = 13 \times 36$$

$$\Rightarrow z^2 = 36$$

$$\Rightarrow z = \pm 6$$

23. Let A = (2, a, -1), B = (3, 4, b) and C = (1, -2, 3) d.r.s of AB are 3 - 2, 4 - a, b - (-1) i.e., 1, 4 - a, b + 1 d.r.s of BC are 1 -3, -2 -4, 3 - b i.e., -2, -6, 3 - b Since, the points A, B and C are collinear, AB || BC ∴ $\frac{1}{2} = \frac{4-a}{2} = \frac{b+1}{2}$

$$\frac{1}{-2} = \frac{1}{-6} = \frac{1}{3-b}$$

$$\Rightarrow \frac{4-a}{-6} = \frac{1}{-2}, \frac{b+1}{3-b} = \frac{1}{-2}$$

$$\Rightarrow 4-a = 3, -2b-2 = 3-b$$

$$\Rightarrow a = 1, b = -5$$

Chapter 06: Three Dimensional Geometry Let $A \equiv (1, a, 1), B \equiv (3, -1, 2)$ and $C \equiv (1, a^2, 1)$ 24. d.r.s of AB are 3 - 1, -1 - a, 2 - 1i.e. 2, -1 -a, 1 d.r.s of BC are 1 - 3, $a^2 + 1$, 1 - 2i.e. -2, $a^2 + 1$, -1Since, the points are collinear, AB || BC $\therefore \frac{2}{-2} = \frac{-1-a}{a^2+1} = \frac{1}{-1}$ $\Rightarrow \frac{-1-a}{a^2+1} = -1$ $\Rightarrow a^2 + 1 = 1 + a$ $\Rightarrow a^2 - a = 0$ $\Rightarrow a(a-1) = 0$ \Rightarrow a = 0 or a = 1 Here, $\frac{3-(-2)}{1-3} = \frac{-6-4}{-2-(-6)} = \frac{-8-7}{-2-(-8)}$ 25. $\Rightarrow -\frac{5}{2} = -\frac{5}{2} = -\frac{5}{2}$ the given points are collinear. ... 26. Let, $l_1, m_1, n_1 = a, \frac{-2}{3}, \frac{1}{3}$ and $l_2, m_2, n_2 = \frac{2}{3}, \frac{1}{3}, \frac{-2}{3}$ $\cos \theta = | l_1 l_2 + m_1 m_2 + n_1 n_2 |$ $\therefore \qquad \cos \frac{\pi}{2} = \left| a \left(\frac{2}{3} \right) + \left(\frac{-2}{3} \right) \left(\frac{1}{3} \right) + \frac{1}{3} \left(\frac{-2}{3} \right) \right|$ $\Rightarrow 0 = \frac{2a}{3} - \frac{2}{9} - \frac{2}{9}$ $\Rightarrow \frac{2a}{3} = \frac{4}{9}$ $\Rightarrow a = \frac{2}{3}$ 27. Let, a_1 , b_1 , $c_1 = 5$, 4, 1 $a_2, b_2, c_2 = -3, 2, 1$ $\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a^2 + b^2 + c^2} \sqrt{a^2 + b^2 + c^2}} \right|$

$$\cos \theta = \left| \frac{5(-3) + 4(2) + 1(1)}{\sqrt{5^2 + 4^2 + 1^2} \cdot \sqrt{(-3)^2 + (2)^2 + (1)^2}} \right|$$
$$= \left| \frac{-15 + 8 + 1}{\sqrt{42}\sqrt{14}} \right| = \frac{6}{14\sqrt{3}} = \frac{\sqrt{3}}{7}$$
$$\cdot \theta = \cos^{-1}\left(\frac{\sqrt{3}}{7}\right)$$

IM

28.
$$\theta = \cos^{-1} \left| \frac{1(2) + 2(-3) + 1(4)}{\sqrt{1^2 + 2^2 + 1^2} \sqrt{2^2 + (-3)^2 + 4^2}} \right|$$

 $\theta = \cos^{-1}(0) = \frac{\pi}{2}$
29. Given, A = (1, 2, -1), B = (2, 0, 3), C = (3, -1, 2)
The d.r.s of AB = 1, -2, 4 and d.r.s of
AC = 2, -3, 3
 $\therefore \cos\theta = \left| \frac{1(2) + (-2)(-3) + 4(3)}{\sqrt{1 + 4 + 16} \sqrt{4 + 9 + 9}} \right|$
 $\Rightarrow \cos\theta = \frac{2 + 6 + 12}{\sqrt{21} \sqrt{22}} = \frac{20}{\sqrt{462}}$
 $\Rightarrow \sqrt{462} \cos\theta = 20$
30. $l + m + n = 0$
 $\Rightarrow l = -(m + n)$ and $lm = 0 \Rightarrow -(m + n)m = 0$
 $\Rightarrow m = 0$ or $m + n = 0 \Rightarrow m = 0$ or $m = -n$
If $m = 0$, then $l = -n$
 $\therefore \frac{l}{-1} = \frac{m}{0} = \frac{n}{1}$
If $m = -n$, then $l = 0$
 $\therefore \frac{l}{0} = \frac{m}{-1} = \frac{n}{1}$
 \therefore the d.r.s of the lines are proportional to
 $-1, 0, 1$ and $0, -1, 1$
 \therefore angle between them is
 $\cos \theta = \left| \frac{0 + 0 + 1}{\sqrt{1 + 0 + 1} \sqrt{0 + 1 + 1}} \right| = \frac{1}{2}$
 $\therefore \theta = \frac{\pi}{3}$
31. $l + m - n = 0$ and $l^2 + m^2 - n^2 = 0$
 $\Rightarrow l + m = n$ and $l^2 + m^2 = n^2$
Putting $l + m = n$ in $l^2 + m^2 = n^2$
Putting $l + m = n$ in $l^2 + m^2 = n^2$, we get
 $l^2 + m^2 = (l + m)^2$
 $\Rightarrow 2lm = 0 \Rightarrow l = 0$ or $m = 0$
If $l = 0$, then $m = n$
 $\therefore \frac{l}{0} = \frac{m}{1} = \frac{n}{1}$
If $m = 0$, then $l = n$
 $\therefore \frac{l}{1} = \frac{m}{0} = \frac{n}{1}$
 \therefore the d.r.s of the lines are proportional to 0, 1, 1
and 1, 0, 1.
 $\therefore \cos \theta = \left| \frac{\theta(1) + 1(0) + 1(1)}{\sqrt{0 + 1 + 1} \sqrt{1 + 0 + 1}} \right| = \frac{1}{2}$
 $\Rightarrow \theta = \cos^{-1} \left(\frac{1}{2} \right) \Rightarrow \theta = \frac{\pi}{3}$

32. Since, the three lines are mutually
perpendicular
∴
$$l_1l_2 + m_1m_2 + n_1n_2 = 0$$

 $l_2l_3 + m_2m_3 + n_2n_3 = 0$
 $l_3l_1 + m_3m_1 + n_3n_1 = 0$
Also, $l_1^2 + m_1^2 + n_1^2 = 1$,
 $l_2^2 + m_2^2 + n_2^2 = 1$,
 $l_3^2 + m_3^2 + n_3^2 = 1$
Now, $(l_1 + l_2 + l_3)^2 + (m_1 + m_2 + m_3)^2$
 $+ (n_1 + n_2 + n_3)^2$
 $+ 2 (l_1l_2 + m_1m_2 + n_1n_2) + 2(l_2l_3 + m_2m_3 + n_2n_3)$
 $+ 2 (l_3l_1 + m_3m_1 + n_3n_1)$
 $= 3$
 $\Rightarrow (l_1 + l_2 + l_3)^2 + (m_1 + m_2 + m_3)^2$
 $+ (n_1 + n_2 + n_3)^2$
 $= (l_1^2 + l_2^2 + l_3)^2 + (m_1 + m_2 + m_3)^2$
 $= (l_1 + l_2 + l_3)^2 + (m_1 + m_2 + m_3)^2$
 $= (0, a, 0)$
 $(0, a, a)$
 $(0, a)$
 $(0, a)$
 $(0, a)$
 $(0, a)$
 $($

Chapter 06: Three Dimensional Geometry

- 35. Let $A \equiv (-2, 1, -8)$ and $B \equiv (a, b, c)$
- ∴ the d.r.s of the line AB are a + 2, b 1, c + 8
 Since, AB is parallel to the line whose d.r.s are 6, 2, 3.
- $\therefore \qquad \frac{a+2}{6} = \frac{b-1}{2} = \frac{c+8}{3}$

Only option (A) satisfies this condition.

- 36. The d.r.s of AB and CD are 1, 2, -2 and 2, 3, 4 respectively Now, $a_1a_2 + b_1b_2 + c_1c_2 = 1(2) + 2(3) + (-2)(4)$ = 0
- \therefore AB \perp CD,
- \therefore projection of AB on CD is 0.

37. As
$$\frac{a}{\left(\frac{1}{bc}\right)} = \frac{b}{\left(\frac{1}{ca}\right)} = \frac{c}{\left(\frac{1}{ab}\right)}$$

the lines are parallel.

38.
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix}$$
$$= \hat{i} (m_1 n_2 - m_2 n_1) + \hat{j} (n_1 l_2 - l_1 n_2) + \hat{k} (l_1 m_2 - m_1 l_2)$$

:. The d.c.s are $m_1n_2 - m_2n_1, n_1l_2 - n_2l_1, l_1m_2 - l_2m_1$

39.
$$\begin{vmatrix} 1 & j & k \\ 2 & 1 & -3 \\ 1 & -2 & 1 \end{vmatrix} = -5\hat{i} - 5\hat{j} - 5\hat{k}$$

| ↑ ↑ ↑ |

- ... d.r.s of line are -5, -5, -5i.e. -1, -1, -1... the d.c.s are $\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
- 40. The vectors $4\hat{i}+\hat{j}+3\hat{k}$ and $2\hat{i}-3\hat{j}+\hat{k}$ will lie along the given lines. The vector perpendicular to these vectors is given by $(4\hat{i}+\hat{j}+3\hat{k}) \times (2\hat{i}-3\hat{j}+\hat{k})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & 3 \end{vmatrix} = 10\hat{i}+2\hat{j}-14\hat{k}$

 \therefore The d.r.s of required line are 10, 2, -14.

$$\therefore \quad \text{The d.c.s. are } \frac{1}{\sqrt{3}}, \frac{1}{5\sqrt{3}}, \frac{-7}{5\sqrt{3}}$$

00

Competitive Thinking

2. $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ $= 2\cos^{2}\alpha - 1 + 2\cos^{2}\beta - 1 + 2\cos^{2}\gamma - 1$ $= 2 (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) - 3 = 2(1) - 3 = -1$ $l^2 + m^2 + n^2 = 1$ 3. $\therefore \qquad \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + n^2 = 1$ \Rightarrow n² = $\frac{23}{36}$ \Rightarrow n = $\pm \frac{\sqrt{23}}{6}$ $l^2 + m^2 + n^2 = 1$ 4. $\therefore \quad \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^2} = 1$ \Rightarrow c² = 3 \Rightarrow c = $\pm \sqrt{3}$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 5. $\cos^2 45^\circ + \cos^2 120^\circ + \cos^2 \theta = 1$ • $\Rightarrow \cos^2 \theta = 1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \Rightarrow \cos \theta = \pm \frac{1}{2}$ Since, θ is an acute angle $\cos \theta = \frac{1}{2} \Longrightarrow \theta = 60^{\circ}$ *:*.. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 6. $\cos^{2}120^{\circ} + \cos^{2}\beta + \cos^{2}60^{\circ} = 1$ *.*.. $\Rightarrow \left(\frac{-1}{2}\right)^2 + \cos^2\beta + \left(\frac{1}{2}\right)^2 = 1$ $\Rightarrow \cos^2\beta = 1 - \frac{1}{4} - \frac{1}{4}$ $\Rightarrow \cos^2\beta = \frac{1}{2}$ $\Rightarrow \cos \beta = \pm \frac{1}{\sqrt{2}} \Rightarrow \beta = 45^{\circ} \text{ or } 135^{\circ}$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 7. $\cos^2\frac{\pi}{4} + \cos^2\frac{\pi}{4} + \cos^2\gamma = 1$ *.*.. $\Rightarrow \cos^2 \gamma = 1 - \frac{1}{2} - \frac{1}{2} = 0$ $\Rightarrow \cos \gamma = 0 \Rightarrow \gamma = \frac{\pi}{2}$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 8. $\cos^2\left(\frac{\pi}{4}\right) + \cos^2\left(\frac{5\pi}{4}\right) + \cos^2\gamma = 1$ *.*.. $\Rightarrow \cos^2 \gamma = 1 - \frac{1}{2} - \frac{1}{2}$ $\Rightarrow \cos^2 \gamma = 0 \Rightarrow \gamma = \frac{\pi}{2}$

- 9. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 45^\circ + \cos^2 \beta + \cos^2 \beta = 1 \dots (\because \beta = \gamma)$ $\Rightarrow 2\cos^2 \beta = 1 - \frac{1}{2} = \frac{1}{2}$ $\Rightarrow \cos^2 \beta = \frac{1}{4}$ $\therefore \quad \beta = 60^\circ = \gamma$
 - $p = 60^{\circ} \gamma$ $\Rightarrow \alpha + \beta + \gamma = 165^{\circ}$
- 10. Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\therefore \quad \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1 \quad \dots (\alpha = \beta = \gamma)$ $\Rightarrow 3 \cos^2 \alpha = 1$ $\Rightarrow \cos^2 \alpha = \frac{1}{3}$ $\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$ Now, $l = m = n = \cos \alpha$ $\therefore \quad l = m = n = \pm \frac{1}{\sqrt{3}}$
- 11. Since, $\alpha = \beta = \gamma \implies \cos^2 \alpha + \cos^2 \alpha$

$$\alpha = \beta = \gamma \Longrightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$$
$$\Rightarrow \cos \alpha = \left(\pm \frac{1}{\sqrt{3}}\right)$$

So, there are four lines whose direction cosines are

$$\begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \end{pmatrix}, \\ \begin{pmatrix} \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \end{pmatrix}.$$

12. Since, the vector is equally inclined to the co-ordinate axes,

$$l = m = n = \pm \frac{1}{\sqrt{3}}$$

13. $\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$ $\Rightarrow \frac{1 + \cos 2\alpha}{2} + \frac{1 + \cos 2\beta}{2} + \frac{1 + \cos 2\gamma}{2} = 1$ $\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma + 3 = 2$ $\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$

14.
$$\cos^2 \frac{\alpha}{2} + \cos^2 \frac{\beta}{2} + \cos^2 \frac{\gamma}{2} = 1$$

Now, $\cos \alpha + \cos \beta + \cos \gamma$
 $= 2\cos^2 \frac{\alpha}{2} - 1 + 2\cos^2 \frac{\beta}{2} - 1 + 2\cos^2 \frac{\gamma}{2} - 1$
 $= 2(1) - 3 = -1$

- 15. Let the length of the line segment be r and its direction cosines be *l*, m, n.
- \therefore The projections on the co-ordinate axes are lr, mr, nr.

∴
$$lr = 3$$
, $mr = 4$ and $nr = 5$
∴ $l^2r^2 + m^2r^2 + n^2r^2 = 3^2 + 4^2 + 5^2$
 $\Rightarrow r^2(l^2 + m^2 + n^2) = 9 + 16 + 25$
 $\Rightarrow r^2 = 50$ [:: $l^2 + m^2 + n^2 = 1$]
 $\Rightarrow r = \sqrt{50} = 5\sqrt{2}$

16. The projections on the co-ordinate axes are lr, mr, nr.

$$\therefore$$
 *l*r = 2, mr = 3 and nr = 6

- $\therefore \quad l^2 r^2 + m^2 r^2 + n^2 r^2 = 4 + 9 + 36$ $\Rightarrow r^2 (l^2 + m^2 + n^2) = 49$ $\Rightarrow r = 7$
- 17. d.r.s. of line are -2 4, 1 3, -8 (-5)
 i.e., -6, -2, -3
 i.e. 6, 2, 3
- 18. AD is the median

$$\therefore \quad D \equiv \left(\frac{\lambda - 1}{2}, \frac{5 + 3}{2}, \frac{\mu + 2}{2}\right) \equiv \left(\frac{\lambda - 1}{2}, 4, \frac{\mu + 2}{2}\right)$$

$$\therefore \quad \text{d.r.s. of AD are } \frac{\lambda - 1}{2} - 2, 4 - 3, \frac{\mu + 2}{2} - 5$$

i.e. $\frac{\lambda-5}{2}$, 1, $\frac{\mu-8}{2}$...(i) Since AD is equally inclined to co-ordinate axes, its d.r.s. are ± 1 , ± 1 , ± 1 Option (D) satisfies (i).

19. The d.c.s. are

$$\frac{1}{\sqrt{1+9+4}}, \frac{-3}{\sqrt{1+9+4}}, \frac{2}{\sqrt{1+9+4}}$$
$$\Rightarrow \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}.$$

- 20. d.r.s. of line are -2 4, 1 3, -8 + 5 i.e., -6, -2, -3 i.e., 6, 2, 3 ∴ The d.c.s. are $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$
- 21. The d.r.s of OP are 3, 12, 4
 ∴ The required d.c.s. are
 3 12 4

i.e.,
$$\frac{3}{13}$$
, $\frac{12}{13}$, $\frac{1}{13}$

22. Let the length of the line segment be r and its direction cosines be l, m, n. The projections on the co-ordinate axes are lr, mr, nr. *.*.. lr = 6, mr = -3 and nr = 2 *.*.. $l^{2}r^{2} + m^{2}r^{2} + n^{2}r^{2} = (6)^{2} + (-3)^{2} + (2)^{2}$ *.*.. \Rightarrow r²(l² + m² + n²) = 36 + 9 + 4 \Rightarrow r² = 49 $\dots [: l^2 + m^2 + n^2 = 1]$ \Rightarrow r = 7 Now, d.c.s. of line are $\frac{6}{r}, \frac{-3}{r}, \frac{2}{r}$ i.e., $\frac{6}{7}, -\frac{3}{7}, \frac{2}{7}$. Here, $\bar{a} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, $\bar{b} = 6\hat{i} + 2\hat{j} + 3\hat{k}$ 23. Projection = $\frac{\overline{a}.\overline{b}}{|\overline{b}|} = \frac{18+10-6}{7} = \frac{22}{7}$ Ŀ. For option (C), $\frac{4-(-2)}{-3-4} \neq \frac{-3-4}{-2-(-3)}$ 24. *.*.. option (C) is the correct answer. 25. Let A(5, -2, 7), B(2, 2, β), C(-1, 6, -1) be the given points d.r.s. of AB are 2 - 5, 2 + 2, $\beta - 7$ i.e., $-3, 4, \beta - 7$ d.r.s. of BC are -1 - 2, 6 - 2, $-1 - \beta$ i.e., $-3, 4, -1 - \beta$ Since, the points are collinear *.*.. AB || BC $\frac{4}{4} = \frac{\beta - 7}{-1 - \beta} \Longrightarrow \beta - 7 = -1 - \beta \Longrightarrow \beta = 3$ *.*.. Let A (-1, 2, -3), B (4, a, 1) and C (b, 8, 5)26. Since, the given points are collinear. AB || BC *.*.. $\frac{4-(-1)}{b-4} = \frac{a-2}{8-a} = \frac{1-(-3)}{5-1}$ *.*.. $\Rightarrow \frac{5}{b-4} = 1, \frac{a-2}{8-a} = 1$ \Rightarrow b = 9, a = 5 P(4, 5, *x*), Q(3, *y*, 4) and R(5, 8, 0) 27. Since, the points are collinear *.*.. PQ || QR $\frac{-1}{2} = \frac{y-5}{8-y} = \frac{4-x}{-4}$ *.*.. $\Rightarrow \frac{-1}{2} = \frac{y-5}{8-v} \text{ and } \frac{4-x}{-4} = \frac{-1}{2}$ \Rightarrow y - 8 = 2y - 10 and 8 - 2x = 4 \Rightarrow *y* = 2 and *x* = 2 x + y = 4*.*..

Chapter 06: Three Dimensional Geometry

28. d.r.s. of AB and BC are (-2, 2, 2) and
(1, -1, -1) respectively.

$$\therefore \quad \frac{-2}{1} = \frac{2}{-1} = \frac{2}{-1}$$

$$\therefore \quad \text{the given points are collinear.}$$
29. The drs of the diagonal of the lin

29. The d.r.s. of the diagonal of the line joining the origin to the opposite corner of cube are a - 0, a - 0, a - 0 i.e. 1, 1, 1.

30. Here, a₁, b₁, c₁ = 1, 1, 2 and
a₂, b₂, c₂ =
$$\sqrt{3} - 1$$
, $-\sqrt{3} - 1$, 4
∴ $\cos \theta = \frac{1(\sqrt{3} - 1) + 1(-\sqrt{3} - 1) + 2(4)}{\sqrt{1 + 1 + 4}\sqrt{(\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2 + 16}}$
 $= \frac{6}{\sqrt{6}\sqrt{4 + 4 + 16}} = \frac{6}{\sqrt{6}\sqrt{24}} = \frac{1}{2}$
∴ $\theta = 60^\circ$

31. D.r.s. are 2, 2, 1 and

$$7-3, 2-1, 12-4 \equiv 4, 1, 8$$

 $2 \times 4 + 2 \times 1 + 1 \times 8$
18

$$\therefore \quad \cos \theta = \frac{2 \times 4 + 2 \times 1 + 1 \times 8}{\sqrt{2^2 + 2^2 + 1^2} \sqrt{4^2 + 1^2 + 8^2}} = \frac{18}{3 \times 9} = \frac{2}{3}$$
$$\therefore \quad \theta = \cos^{-1}\left(\frac{2}{3}\right)$$

32. The direction ratios of AB = 1, 2, -2 and the direction ratios of CD = 2, 3, 4 $a_1a_2 + b_1b_2 + c_1c_2 = (1)(2) + (2)(3) + (-2)(4) = 0$

$$\therefore$$
 AB \perp CD \therefore $\theta = \frac{\pi}{2}$

33. Putting l = -m - n in $l^2 = m^2 + n^2$, we get $(-m - n)^2 = m^2 + n^2$ $\Rightarrow mn = 0 \Rightarrow m = 0$ or n = 0If m = 0, then l = -n $\therefore \qquad \frac{l}{-1} = \frac{m}{0} = \frac{n}{1}$ If n = 0, then l = -m $\therefore \qquad \frac{l}{-1} = \frac{m}{1} = \frac{n}{0}$ $\therefore \qquad a_1, b_1, c_1 = -1, 0, 1$ and $a_2, b_2, c_2 = -1, 1, 0$ $\therefore \qquad \text{The angle between the lines is given by}$ $\cos \theta = \frac{1 + 0 + 0}{\sqrt{1 + 0 + 1}\sqrt{1 + 1 + 0}} = \frac{1}{2}$

 $\theta = \frac{\pi}{3}$

...

- 34. Let the direction ratios of the line perpendicular to both the lines be a, b, c. The line is perpendicular to the lines with Direction ratios -1, 2, 2 and 0, 2, 1 -a + 2b + 2c = 0....(i) *.*.. 2b + c = 0....(ii) Solving (i) and (ii), we get $\frac{a}{-2} = \frac{b}{1} = \frac{c}{-2}$ The d.r.s. of the line are 2, -1, 2. *.*.. The required d.c.s. of the line are $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$. *.*.. 35. The d.r.s. of the two lines are 1, -1, 2 and 2, 1, -1Let d.r.s. of the line be a, b, c. a - b + 2c = 0*.*..(i) and 2a + b - c = 0....(ii) Solving (i) and (ii), we get $\frac{a}{-1} = \frac{b}{5} = \frac{c}{3}$ d.r.s. of the line are -1, 5, 3. *.*..
- 1. $\alpha = \beta = 2\gamma$ $\Rightarrow \beta = \alpha, \gamma = \frac{\alpha}{2}$ Since, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\therefore \quad \cos^2 \alpha + \cos^2 \alpha + \cos^2 \frac{\alpha}{2} = 1$ $\Rightarrow 2\cos^2 \alpha + \frac{1+\cos \alpha}{2} = 1$ $\Rightarrow 4\cos^2 \alpha + \cos \alpha - 1 = 0$ $\Rightarrow \cos \alpha = \frac{-1 \pm \sqrt{1+16}}{2(4)} = \frac{-1 \pm \sqrt{17}}{8}$ If α is acute, then $\cos \alpha$ is positive. $\therefore \quad \cos \alpha = \frac{\sqrt{17} - 1}{8}$
- 2. $\cos\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$ $\sin^2 \theta = 1 - \cos^2 \theta$ $= 1.1 - \cos^2 \theta$ $= \left(l_1^2 + m_1^2 + n_1^2 \right) \left(l_2^2 + m_2^2 + n_2^2 \right)$ $- \left(l_1 l_2 + m_1 m_2 + n_1 n_2 \right)^2$

$$\therefore \quad \text{the required d.c.s. are } \frac{-1}{\sqrt{35}}, \frac{5}{\sqrt{35}}, \frac{3}{\sqrt{35}}.$$
36. If the straight line makes angles α , β , γ , δ with diagonals of a cube, then
$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma + \cos^{2}\delta = \frac{4}{3}$$

$$\therefore \quad \frac{1+\cos 2\alpha}{2} + \frac{1+\cos 2\beta}{2} + \frac{1+\cos 2\beta}{2} + \frac{1+\cos 2\delta}{2} = \frac{4}{3}$$

$$\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma + \cos 2\delta = \frac{8}{3} - 4$$

$$\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma + \cos 2\delta = \frac{-4}{3}$$
37.
$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma + \cos^{2}\delta = \frac{4}{3}$$

$$\therefore \quad 1 - \sin^{2}\alpha + 1 - \sin^{2}\beta + 1 - \sin^{2}\gamma + 1 - \sin^{2}\delta = \frac{4}{3}$$

$$\Rightarrow \sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma + \sin^{2}\delta = 4 - \frac{4}{3} = \frac{8}{3}$$

Evaluation Test

$$= l_1^2 l_2^2 + l_1^2 m_2^2 + l_1^2 n_2^2 + l_2^2 m_1^2 + m_1^2 m_2^2 + m_1^2 n_2^2 + l_2^2 n_1^2 + m_2^2 n_1^2 + n_1^2 n_2^2 - l_1^2 l_2^2 - m_1^2 m_2^2 - n_1^2 n_2^2 -2 l_1 l_2 m_1 m_2 - 2 m_1 m_2 n_1 n_2 - 2 n_1 n_2 l_1 l_2 = l_1^2 m_2^2 - 2 l_1 l_2 m_1 m_2 + l_2^2 m_1^2 + m_1^2 n_2^2 - 2 m_1 m_2 n_1 n_2 + m_2^2 n_1^2 + l_2^2 n_1^2 - 2 l_1 l_2 n_1 n_2 + l_1^2 n_2^2 = (l_1 m_2 - l_2 m_1)^2 + (m_1 n_2 - m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2$$

3. Given, A(2, 3, 7), B(-1, 3, 2), C(p, 5, r) Let D be the midpoint of BC.

:.
$$D \equiv \left(\frac{-1+p}{2}, \frac{3+5}{2}, \frac{2+r}{2}\right) \equiv \left(\frac{p-1}{2}, 4, \frac{r+2}{2}\right)$$

:. d.r.s. of AD are
$$\frac{p-1}{2}$$
 -2, 4 - 3, $\frac{r+2}{2}$ -7

i.e.,
$$\frac{p-3}{2}$$
, 1, $\frac{1-12}{2}$

Since, AD is equally inclined to the axes

$$\frac{p-5}{2} = 1 = \frac{r-12}{2}$$
$$\Rightarrow p = 7, r = 14$$

...

4. The d.r.s of AB are 3 - 1, 2 - 4, 6 - 5i.e. 2, -2, 1 Let $a_1, b_1, c_1 = 2, -2, 1$ d.r.s. of BC are 1 - 3, 4 - 5, 5 - 3i.e., -2, -1, 2 Let $a_2, b_2, c_2 = -2, -1, 2$ $a_1a_2 + b_1b_2 + c_1c_2 = 2(-2) + (-2)(-1) + 1(2)$ *.*.. = -4 + 2 + 2 = 0 \Rightarrow AB and BC are perpendicular. $m \angle ABC = 90^{\circ}$ *.*.. 5. The given equations are 6mn - 2nl + 5lm = 0, and(i) 3l + m + 5n = 0 \Rightarrow m = -3l - 5n....(ii) Substituting value of m in equation (i), we get 6(-3l - 5n)n - 2nl + 5l(-3l - 5n) = 0 $\Rightarrow -18ln - 30n^2 - 2nl - 15l^2 - 25nl = 0$ $\Rightarrow 15l^2 + 45ln + 30n^2 = 0$ $\Rightarrow l^2 + 3ln + 2n^2 = 0$ $\Rightarrow (l+n)(l+2n) = 0$ $\Rightarrow l = -n \text{ or } l = -2n$ If l = -n, then m = -2n $\Rightarrow \frac{l}{1} = \frac{n}{-1}$ and $\frac{m}{2} = \frac{n}{-1}$ $\Rightarrow \frac{l}{1} = \frac{m}{2} = \frac{n}{-1}$ d.r.s. of the 1^{st} line are 1, 2, -1. *.*.. If l = -2n, then m = n $\Rightarrow \frac{l}{2} = \frac{n}{1}$ and $\frac{m}{1} = \frac{n}{1}$ $\Rightarrow \frac{l}{-2} = \frac{m}{1} = \frac{n}{1}$ d.r.s. of the 2^{nd} line are -2, 1, 1. *.*.. $\cos \theta = \frac{1 \times (-2) + 2 \times 1 + (-1) \times 1}{\sqrt{1^2 + 2^2 + (-1)^2} \sqrt{(-2)^2 + 1^2 + 1^2}}$ *.*.. $=\frac{-2+2-1}{\sqrt{6}\sqrt{6}}=\frac{-1}{6}$ $\theta = \cos^{-1}\left(\frac{-1}{6}\right)$ *.*.. Since, $(l-m)^2 \ge 0$ 6. $l^2 - 2l\mathbf{m} + \mathbf{m}^2 \ge 0$ *.*. $l^2 + m^2 \ge 2lm$ *.*..(i) Similarly, $m^2 + n^2 \ge 2mn$(ii) and $n^2 + l^2 \ge 2nl$(iii)

Chapter 06: Three Dimensional Geometry Adding (i), (ii) and (iii), we get $2(l^2 + m^2 + n^2) \ge 2(lm + mn + nl)$... $lm + mn + nl \le 1$ The maximum value of lm + mn + nl is 1. *.*.. 7. Let A = (a, 2, 3), B = (3, b, 7) and $C \equiv (-3, -2, -5)$ d.r.s of AB are 3 - a, b - 2, 4d.r.s of BC are -6, -2-b, -12 Since the points are collinear $\frac{3-a}{-6} = \frac{b-2}{-2-b} = \frac{4}{-12}$ $\Rightarrow a = 2, b = 4$ 8. Let the d.r.s of the line perpendicular to both the lines be a, b, c. d.r.s of lines is 1, -1, 0 and 2, -1, 1 a - b = 0...(i) 2a - b + c = 0....(ii) On solving (i) and (ii), we get $\frac{a}{-1} = \frac{b}{-1} = \frac{c}{1}$ d.r.s of the line are -1, -1, 1*.*.. the required d.c.s are $\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ *.*.. Since $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 9. $\cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1 \dots [\because \alpha = \beta = \gamma]$ ÷ $\Rightarrow 3 \cos^2 \alpha = 1$ $\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$ \therefore $l = m = n = \cos \alpha = \pm \frac{1}{\sqrt{3}}$

Textbook Chapter No.

07 Line

Hints

...

...

- 🔎 Classical Thinking
- 1. On X-axis, y = 0 and z = 0
- 2. On Y-axis, the co-ordinates of x and z = 0
- 3. Equation of X-axis is y = 0, z = 0. Hence y and z remain fixed.
- 4. Vector equation of line passing through \overline{a} and parallel to \overline{b} is $\overline{r} = \overline{a} + \lambda \overline{b}$
- $\therefore \quad \bar{\mathbf{r}} = (\hat{\mathbf{i}} \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 5\hat{\mathbf{k}})$
- 5. Let $A \equiv (2, 1, -1)$
- $\therefore \quad \overline{a} = 2\hat{i} + \hat{j} \hat{k}$ $\overline{b} = \hat{i} + 2\hat{j} + \hat{k}$ Now, $\overline{r} = (2\hat{i} + \hat{j} - \hat{k}) + \lambda(\hat{i} + 2\hat{j} + \hat{k})$
- 6. The given line passes through (3, -4, 6) The d.r.s. of line are 2, 5, 3
- \therefore The given line is parallel to $2\hat{i} + 5\hat{j} + 3\hat{k}$
- $\therefore \quad \text{The vector equation of the line is} \\ \bar{\mathbf{r}} = (3\hat{\mathbf{i}} 4\hat{\mathbf{j}} + 6\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$
- The given line passes through (5, -4, 6)The d.r.s. of line are 3, 7, 2
- \therefore The given line is parallel to $3\hat{i} + 7\hat{j} + 2\hat{k}$
- $\therefore \quad \text{The vector equation of the line is} \\ \bar{r} = 5\hat{i} 4\hat{j} + 6\hat{k} + \lambda(3\hat{i} + 7\hat{j} + 2\hat{k})$
- 8. Given, cartesian equation of the line is 3x - 2 = 2y + 1 = 3z - 3 $\Rightarrow 3\left(x - \frac{2}{3}\right) = 2\left(y + \frac{1}{2}\right) = 3(z - 1)$ $\Rightarrow \frac{x - \frac{2}{3}}{2} = \frac{y + \frac{1}{2}}{3} = \frac{z - 1}{2}$

- ... The given line passes through $\left(\frac{2}{3}, \frac{-1}{2}, 1\right)$, and has direction ratios proportional to 2, 3, 2.
 - The vector equation is $\vec{r} = \left(\frac{2}{3}\hat{i} - \frac{1}{2}\hat{j} + \hat{k}\right) + \lambda \left(2\hat{i} + 3\hat{j} + 2\hat{k}\right)$
- 9. Given cartesian equation of the line is 6x - 2 = 3y + 1 = 1 - 2z $\Rightarrow 6\left(x - \frac{1}{3}\right) = 3\left(y + \frac{1}{3}\right) = -2\left(z - \frac{1}{2}\right)$ $\Rightarrow \frac{x - \frac{1}{3}}{1} = \frac{y + \frac{1}{3}}{2} = \frac{z - \frac{1}{2}}{-3}$ (i.e. the basis of the line is the line
 - The given line passes through $\left(\frac{1}{3}, \frac{-1}{3}, \frac{1}{2}\right)$ and the direction ratios are proportional to 1, 2, -3
 - The vector equation is -(1, 1, 1, 1) + c(1 + 2) = c(1)
 - $\bar{\mathbf{r}} = \left(\frac{1}{3}\hat{\mathbf{i}} \frac{1}{3}\hat{\mathbf{j}} + \frac{1}{2}\hat{\mathbf{k}}\right) + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 3\hat{\mathbf{k}})$
- 11. The given vector equation is $\vec{r} = 3\hat{i} - 5\hat{j} + 7\hat{k} + \lambda(2\hat{i} + \hat{j} - 3\hat{k})$
- \therefore The line passes through (3, -5, 7) and has direction ratios 2, 1, -3
- $\therefore \quad \text{The equation of line is } \frac{x-3}{2} = \frac{y+5}{1} = \frac{z-7}{-3}$
- 12. The required lines passes through (2, -1, 1) and has d.r.s. proportional to 2, 7, -3
- $\therefore \quad \text{The equation of line is} \\ \bar{r} = 2\hat{i} \hat{j} + \hat{k} + \lambda(2\hat{i} + 7\hat{j} 3\hat{k})$
- 13. The line is parallel to $\frac{x-2}{3} = \frac{y-3}{-1} = \frac{z+1}{2}$
- ∴ d.r.s of line are 3, -1, 2
 also, the line passes through origin
 ∴ The equation of line is
 - $\bar{\mathbf{r}} = \lambda(3\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$

Chapter 07: Line

14.
$$\frac{2x-1}{2} = \frac{1-y}{1} = \frac{z}{3} \implies \frac{x-\frac{1}{2}}{1} = \frac{y-1}{-1} = \frac{z}{3}$$
∴ The direction ratios of the required line are 1, -1, 3.
Also line passes through (2, -1, 3)
∴ Equation of the line is $\frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-3}{3}$
15. Let \overline{a} and \overline{b} be the position vectors of the points
∴ $\overline{a} = 3\hat{i} - 2\hat{j} - 5\hat{k}$ and $\overline{b} = 3\hat{i} - 2\hat{j} + 6\hat{k}$
∴ $\overline{b} - \overline{a} = 3\hat{i} - 2\hat{j} + 6\hat{k} - 3\hat{i} + 2\hat{j} + 5\hat{k}$
 $= 11\hat{k}$
The vector equation of line is given by
 $\overline{r} = \overline{a} + \lambda(\overline{b} - \overline{a})$
 $\Rightarrow \overline{r} = 3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda(11\hat{k})$
16. Let $\overline{a} = -2\hat{i} + \hat{j} + 3\hat{k}$ and $\overline{b} = \hat{i} - 2\hat{j} + 5\hat{k}$
∴ $\overline{b} - \overline{a} = 3\hat{i} - 3\hat{j} + 2\hat{k}$
The vector equation of the line is $\overline{r} = -2\hat{i} + \hat{j} + 3\hat{k} + \lambda(3\hat{i} - 3\hat{j} + 2\hat{k})$
17. The equation of line passing through
 (x_1, y_1, z_1) and (x_2, y_2, z_2)
 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$
∴ The equation of line passing through
 $(4, -5, -2)$ and $(-1, 5, 3)$ is
 $\frac{x-4}{-1-4} = \frac{y+5}{-5} = \frac{z+2}{-1}$
18. The required equation of line which passes through the points $(1, 2, 3)$ and $(0, 0, 0)$ is
 $\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z-3}{-3}$
19. The equation of the line joining the points $(-2, 4, 2)$ and $(7, -2, 5)$ is $\frac{x+2}{7-(-2)} = \frac{y-4}{-2-4} = \frac{z-2}{5-2}$

 $\Rightarrow \frac{x+2}{3} = \frac{y-4}{-2} = \frac{z-2}{1}$

20. 2x + z - 4 = 0 $\Rightarrow 2x + z = 4$ $\Rightarrow z = 4 - 2x$ (i) 2y + z = 0 $\Rightarrow z = -2y$ (ii) $\therefore 4 - 2x = -2y = z$ [From (i) and (ii)] $\Rightarrow -2 (x - 2) = -2y = z$ $\Rightarrow x - 2 = y = \frac{z}{-2}$ $\Rightarrow x - 2 = y = \frac{z}{-2}$ $\Rightarrow x - 2 + 2 = y + 2 = \frac{z}{-2} + 2$ $\Rightarrow \frac{x}{1} = \frac{y + 2}{1} = \frac{z - 4}{-2}$ 21. $a_1, b_1, c_1 = 1, 2, 2 \text{ and } a_2, b_2, c_2 = 3, 2, 6$

$$\therefore \quad \cos \theta = \left| \frac{1 \times 3 + 2 \times 2 + 2 \times 6}{\sqrt{1^2 + 2^2 + 2^2} \sqrt{3^2 + 2^2 + 6^2}} \right|$$
$$= \frac{19}{3 \times 7} = \frac{19}{21}$$

22.
$$a_1, b_1, c_1 = 2, 2, -1 \text{ and } a_2, b_2, c_2 = 1, 2, 2$$

 $\cos \theta = \left| \frac{2 \times 1 + 2 \times 2 + (-1) \times 2}{\sqrt{2^2 + 2^2} + (-1)^2 \sqrt{1^2 + 2^2} + 2^2} \right|$
 $= \left| \frac{2 + 4 - 2}{3 \times 3} \right| = \frac{4}{9}$
 $\Rightarrow \theta = \cos^{-1} \left(\frac{4}{9} \right)$

23.
$$a_1, b_1, c_1 = 3, -2, 0 \text{ and } a_2, b_2, c_2 = 2, 3, 4$$

$$\Rightarrow \cos \theta = \left| \frac{3 \times 2 + (-2) \times 3 + 0 \times 4}{\sqrt{3^2 + (-2)^2 + 0} \cdot \sqrt{2^2 + 3^2 + 4^2}} \right|$$

$$\Rightarrow \cos \theta = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

- 24. $a_1, b_1, c_1 = 1, 2, 3$ and $a_2, b_2, c_2 = 2, 2, -2$ $a_1a_2 + b_1b_2 + c_1c_2 = 1(2) + 2(2) + 3(-2) = 0$ ∴ The lines are at right angles.
- 25. $a_1, b_1, c_1 = 1, 2, 3 \text{ and } a_2, b_2, c_2 = -5, 1, 1$ $a_1a_2 + b_1b_2 + c_1c_2 = (1)(-5) + (2)(1) + (3)(1)$ = 0
- \therefore Lines are at right angle.
- 26. The given equation of line is,

$$\frac{x-2}{3} = \frac{y-3}{4}$$
; z = 4

The line is perpendicular to Z-axis. Hence parallel to XY-plane.

27. Line L₁: $\bar{r} = (2\hat{j} - 3\hat{k}) + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$ Line L₂: $\bar{r} = (2\hat{i} + 6\hat{j} + 3\hat{k}) + \mu(2\hat{i} + 3\hat{j} + 4\hat{k})$ L₁ and L₂ can be written in cartesian form as L₁: $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ and L₂: $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$

> The point (2, 6, 3) satisfies both the equations. it is the point of intersection.

Alternate method: $x \quad v-2 \quad z+3$

...

L₁:
$$\frac{\pi}{1} = \frac{y-2}{2} = \frac{z-3}{3} = \lambda$$

 $\Rightarrow x = \lambda, y = 2\lambda + 2, z = 3\lambda - 3.$
L₂: $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4} = \mu$
 $\Rightarrow x = 2 \mu + 2, y = 3 \mu + 6, z = 4 \mu + 3$
Co-ordinates of a point on the line L₁ are
($\lambda, 2\lambda + 2, 3\lambda - 3$)
Co-ordinates of a point on the line L₂ are
($2\mu + 2, 3\mu + 6, 4\mu + 3$)
They intersect. Therefore, their co-ordinates
must be same.
 $\lambda = 2\mu + 2, 2\lambda + 2 = 3\mu + 6, 3\lambda - 3 = 4\mu + 3$

$$\lambda = 2\mu + 2, 2\lambda + 2 = 3\mu + 6, 3\lambda - 3 = 4\mu + 3$$

$$\Rightarrow \lambda - 2\mu = 2 \qquad \dots (i)$$

$$2\lambda - 3\mu = 4 \qquad \dots (ii)$$

$$3\lambda - 4\mu = 6 \qquad \dots (iii)$$
Solving equations (i) and (ii), we get

$$\lambda = 2, \mu = 0.$$

Equation (i) holds true for these values.

 \therefore Intersection is (2, 6, 3).

 $4\lambda - \mu = -3$

28. The point (-1, -1, -1) satisfies both the equations so it is the point of intersection **Alternate method:**

Let
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

 $\Rightarrow x = 1 + 2\lambda, y = 2 + 3\lambda, z = 3 + 4\lambda.$
Let $\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1} = \mu$
 $\Rightarrow x = 4 + 5\mu, y = 1 + 2\mu, z = \mu$
Co-ordinates of a point on the first line are
 $(1 + 2\lambda, 2 + 3\lambda, 3 + 4\lambda)$
Co-ordinates of a point on the second line are
 $(4 + 5\mu, 1 + 2\mu, \mu)$
They intersect. Therefore, their co-ordinates
must be same.
 $1 + 2\lambda = 4 + 5\mu, 2 + 3\lambda = 1 + 2\mu, 3 + 4\lambda = \mu$
 $\Rightarrow 2\lambda - 5\mu = 3$ (i)
 $3\lambda - 2\mu = -1$ (ii)

....(iii)

Solving equations (ii) and (iii), we get $\lambda = -1$, $\mu = -1$. Equation (i) holds true for these values.

- \therefore Intersection is (-1, -1, -1).
- 29. The point (4, 0, -1) satisfies both equations.
- $\therefore \quad \text{The two lines intersect at } (4, 0, -1) \\ \text{Alternate method:}$

Let
$$\frac{x-1}{3} = \frac{y-1}{-1} = \lambda; z = -1$$

 \Rightarrow general point on this line is

 $(3\lambda + 1, -\lambda + 1, -1)$ Also, $\frac{x-4}{2} = \frac{z+1}{3} = \mu; y = 0$ \Rightarrow general point on this line is $(2\mu + 4, 0, 3\mu - 1)$

For $\lambda = 1$ and $\mu = 0$, they have a common point on them. i.e., (4, 0, -1)

- 30. Co-ordinate of any point on Y-axis is x = 0, z = 0 i.e. (0, y, 0)
- $\therefore \quad \text{The foot of perpendicular from the point} \\ (\alpha, \beta, \gamma) \text{ on Y-axis is } (0, \beta, 0)$
- 31. Any point on Z-axis is (0, 0, z)
 ∴ The foot of perpendicular from the point (a, b, c) on Z-axis is (0, 0, c)
- 32. Distance from X-axis = $\sqrt{y^2 + z^2} = \sqrt{b^2 + c^2}$

33. Distance =
$$\sqrt{y^2 + z^2} = \sqrt{9 + 16} = 5$$

34. Distance from Z-axis =
$$\sqrt{x^2 + y^2} = 5$$

- 35. Distance from Y-axis = $\sqrt{1+9} = \sqrt{10}$
- 36. Let $p(\overline{\alpha}) = 2\hat{i} + \hat{j} + \hat{k}$

Comparing the equation of line with $\vec{r} = \vec{a} + \lambda \vec{b}$, we get $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} + \hat{k}$ Now, $\vec{\alpha} - \vec{a} = 3\hat{i} - \hat{j} - \hat{k}$ $|\vec{\alpha} - \vec{a}| = \sqrt{3^2 + (-1)^2 + (-1)^2}$ $= \sqrt{11}$ $(\vec{\alpha} - \vec{a}) \cdot \vec{b} = (3\hat{i} - \hat{j} - \hat{k}) \cdot (3\hat{i} + \hat{k})$ = 9 - 1= 8

...
Chapter 07: Line

$$\therefore$$
 The distance of point from the line is

$$d = \sqrt{\left|\overline{\alpha} - \overline{a}\right|^2 - \left[\frac{\left(\overline{\alpha} - \overline{a}\right).\overline{b}}{\left|\overline{b}\right|}\right]^2}$$
$$= \sqrt{11 - \frac{8 \times 8}{10}} = \sqrt{\frac{46}{10}} = \sqrt{\frac{23}{5}}$$

37. Let A ≡ (2, 4, -1)
Let
$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9} = \lambda$$

Any point on the line is
P ≡ (λ - 5, 4 λ - 3, -9 λ + 6)
The d.r.s. of the line AP are
2 - λ + 5, 4 - 4 λ + 3, -1 + 9 λ - 6
Since, AP is perpendicular to the given line,
1(2 - λ + 5) + 4(4 - 4 λ + 3) - 9(-1 + 9 λ - 6) = 0
 \therefore 2 - λ + 5 + 16 - 16 λ + 12 + 9 - 81 λ + 54 = 0
 \therefore 98 - 98 λ = 0 $\Rightarrow \lambda$ = 1
The point P is (1 - 5, 4 - 3, -9 + 6) ≡ (-4, 1, -3)
AP = $\sqrt{(2 - (-4))^2 + (4 - 1)^2 + (-1 + 3)^2}$
= $\sqrt{36 + 9 + 4} = 7$

Alternate method: Since the point is (2, 4, -1) ∴ a = 2, b = 4, c = -1Given equation of line is $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ Comparing with $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c},$ $x_1 = -5, y_1 = -3, z_1 = 6$ d.r.s. are 1, 4, -9 ∴ dcs are $\frac{1}{2} = \frac{4}{2} = \frac{-9}{2}$

$$\therefore \quad \text{d.c.s. are } \frac{1}{\sqrt{98}}, \frac{4}{\sqrt{98}}, \frac{-9}{\sqrt{98}}$$

$$\begin{cases}
 \left[(a - x_1)^2 + (b - y_1)^2 + (c - z_1)^2 \right] \\
 - \left[(a - x_1)l + (b - y_1)m + (c - z_1)n \right]^2 \\
 - \left[(2 + 5)^2 + (4 + 3)^2 + (-1 - 6)^2 \right] \\
 - \left[(2 + 5)\frac{1}{\sqrt{98}} + (4 + 3)\frac{4}{\sqrt{98}} + (-1 - 6)\frac{-9}{\sqrt{98}} \right]^2 \\
 = \sqrt{49 + 49 + 49 - \frac{98 \times 98}{98}} \\
 = \sqrt{49} \\
 = 7$$

38. $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ Any point on the line is P (λ , 2 λ + 1, 3 λ + 2) Given point is A (1, 6, 3) \therefore the d.r.s of the line AP are $\lambda - 1, 2\lambda + 1 - 6, 3\lambda + 2 - 3$ $\Rightarrow \lambda - 1, 2\lambda - 5, 3\lambda - 1$ Since, AP is perpendicular to the given line, (1)($\lambda - 1$) + (2)(2 $\lambda - 5$) + (3)(3 $\lambda - 1$) = 0 $\Rightarrow \lambda - 1 + 4\lambda - 10 + 9\lambda - 3 = 0$ $\Rightarrow 14\lambda - 14 = 0 \Rightarrow \lambda = 1$ \therefore P = (1, 3, 5) \therefore AP = $\sqrt{(1-1)^2 + (6-3)^2 + (3-5)^2} = \sqrt{13}$ 40. First line passes through

(x₁, y₁, z₁) = (4, -1, 0) and has d.r.s a₁, b₁, c₁ = 1, 2, -3 Second line passes through (x₂, y₂, z₂) = (1, -1, 2) and has d.r.s a₂, b₂, c₂ = 2, 4, -5 ∴ Shortest distance between them is

$$d = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
$$\Rightarrow d = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
$$= \begin{vmatrix} x_1 - 4 & -1 + 1 & 2 - 0 \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix}$$
$$= \begin{vmatrix} 1 - 4 & -1 + 1 & 2 - 0 \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix}$$
$$= \begin{vmatrix} -3(2) + 0 + 2(0) \\ \sqrt{5} \end{vmatrix} = \frac{6}{\sqrt{5}}$$

Alternate method:

Shortest distance between the lines

$$r_1 = a_1 + \lambda b_1$$
 and $r_2 = a_2 + \mu b_2$ is given by

$$d = \left| \frac{(\bar{a}_2 - \bar{a}_1) \cdot (\bar{b}_1 \times \bar{b}_2)}{|\bar{b}_1 \times \bar{b}_2|} \right|$$

Here $\bar{a}_1 = 4\hat{i} - \hat{j}, \ \bar{a}_2 = \hat{i} - \hat{j} + 2\hat{k}$
 $\bar{b}_1 = \hat{i} + 2\hat{j} - 3\hat{k}, \ \bar{b}_2 = 2\hat{i} + 4\hat{j} - 5$
Now $\bar{a}_2 - \bar{a}_1 = -3\hat{i} + 2\hat{k}$
 $\bar{b}_1 \times \bar{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} = 2\hat{i} - \hat{j}$

323

ĥ

$$\text{MHT-CET Triumph Maths (Hints)}$$

∴ Shortest distance (d) = $\left| \frac{(-3\hat{i} + 2\hat{k}) \cdot (2\hat{i} - \hat{j})}{\sqrt{4 + 1 + 0}} \right|$
= $\left| -\frac{6}{\sqrt{5}} \right|$
= $\frac{6}{\sqrt{5}}$
41. Here, $(x_1, y_1, z_1) = (1, -1, 0)$
 $(x_2, y_2, z_2) = (2, -1, 0)$
 $(a_1, b_1, c_1) = (2, 0, 1)$
 $(a_2, b_2, c_2) = (1, -1, -1)$

$$d = \left| \frac{2 - 1 - 1 + 1 - 0 - 0}{2 - 0 - 1} \right|$$

$$d = \left| \frac{2 - 1 - 1 + 1 - 0 - 0}{\sqrt{(0 + 1)^2 + (1 + 2)^2 + (-2 - 0)^2}} \right|$$

$$= \left| \frac{1(0 + 1)}{\sqrt{14}} \right|$$

$$= \frac{1}{\sqrt{14}}$$

42. Here,
$$(x_1, y_1, z_1) = (3, 5, 7)$$

 $(x_2, y_2, z_2) = (-1, -1, -1)$
 $(a_1, b_1, c_1) = (1, -2, 1)$
 $(a_2, b_2, c_2) = (7, -6, 1)$

$$d = \begin{vmatrix} -4 & -6 & -8 \\ 1 & -2 & 1 \\ 7 & -6 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -4 & -6 & -8 \\ 1 & -2 & 1 \\ 7 & -6 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -4 & -6 & -8 \\ 1 & -2 & 1 \\ 7 & -6 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -4 & -6 & -8 \\ 1 & -2 & 1 \\ 7 & -6 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -16 - 36 - 64 \\ 2\sqrt{29} \end{vmatrix}$$

$$= \frac{116}{2\sqrt{29}}$$

$$= 2\sqrt{29}$$

43. Here,
$$(x_1, y_1, z_1) = (1, 2, 3)$$

 $(x_2, y_2, z_2) = (2, 4, 5)$
 $(a_1, b_1, c_1) = (2, 3, 4)$

$$d = \begin{vmatrix} (a_2, b_2, c_2) = (3, 4, 5) \\ 2 - 1 & 4 - 2 & 5 - 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix}$$
$$d = \begin{vmatrix} \frac{1(-1) - 2(-2) + 2(-1)}{\sqrt{(-1)^2 + (2)^2 + (-1)^2}} \end{vmatrix}$$
$$= \frac{1}{\sqrt{6}}$$

44. The given equation of lines are

$$x + a = 2y = -12z$$
 and $x = y + 2a = 6z - 6a$
i.e., $\frac{x + a}{-12} = \frac{y}{-6} = \frac{z}{1}$ and $\frac{x}{6} = \frac{y + 2a}{6} = \frac{z - a}{1}$
 $d = \begin{vmatrix} -a & 2a & -a \\ -12 & -6 & 1 \\ 6 & 6 & 1 \end{vmatrix}$
 $= \begin{vmatrix} -a(-12) - 2a(-12) + (-72 + 36)^2 \end{vmatrix}$
 $= \frac{|-a(-12) - 2a(-12 - 6) - a(-72 + 36)|}{\sqrt{12^2 + 18^2 + 36^2}}$
 $= \frac{12a + 36a + 36a}{\sqrt{1764}} = \frac{84a}{42} = 2a$

45. Since, the line intersect each other,

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} 2 - 1 & 2 - k & -1 + 1 \\ 3 & 6 & -2 \\ -1 & 4 & -1 \end{vmatrix} = 0$$

$$\Rightarrow 1 (-6 + 8) - (2 - k) (-3 - 2) + 0 = 0$$

$$\Rightarrow 2 + (2 - k) 5 = 0$$

$$\Rightarrow 12 - 5k = 0$$

$$\Rightarrow k = \frac{12}{5}$$

46. Comparing the given equations with $\overline{r} = \overline{a_1} + \lambda \overline{b_1}$ and $\overline{r} = \overline{a_2} + \lambda \overline{b_2}$ we get $\overline{a_1} = -\hat{i} + 3\hat{j} + \hat{k}$, and $\overline{a_2} = 3\hat{i} + \hat{j}$ $\overline{b_1} = \overline{b_2} = \overline{b} = 5\hat{i} + \hat{j} + 4\hat{k}$

Chapter 07: Line 5. Let a, b, c, be the direction ratios of the required line. Since, the line is perpendicular to the lines with d.r.s 3, -16, 7 and 3, 8, -5 3a - 16b + 7c = 0*.*..(i) and 3a + 8b - 5c = 0....(ii) $\Rightarrow \frac{a}{2} = \frac{b}{3} = \frac{c}{6}$[From (i) and (ii)] *.*.. Equation of the required line is $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$ Let $A \equiv (-1, 3, -2)$ and $B \equiv (-5, 3, -6)$ 6. Midpoint of AB = (-3, 3, -4)Since the line is equally inclined to the axis d.r.s. are 1, 1, 1. *.*.. equation of the line is *.*.. $\frac{x+3}{1} = \frac{y-3}{1} = \frac{z+4}{1}$ $\Rightarrow x + 3 = y - 3 = z + 4$ 7. Co-ordinates of $G \equiv (1, 1, 1)$ D.r.s of OG are 1, 1, 1 and it passes through (0, 0, 0)equation of line OG is ... $\frac{x-0}{1} = \frac{y-0}{1} = \frac{z-0}{1}$ $\Rightarrow x = v = z$ $\vec{r} = (3\hat{i} + 4\hat{j} + \hat{k}) + t(2\hat{i} - 3\hat{j} + 5\hat{k})$ 8. $= (3 + 2t)\hat{i} + (4 - 3t)\hat{i} + (1 + 5t)\hat{k}$ When the line crosses XY plane \Rightarrow Z = 0 $1+5t=0 \Rightarrow t=\frac{-1}{5}$ *.*.. 9. The equation of the line joining the points (-2, 1, -8) and (a, b, c) is $\frac{x - (-2)}{a + 2} = \frac{y - 1}{b - 1} = \frac{z - (-8)}{c + 8}$ The above line is in the direction of vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ a + 2 = 6, b - 1 = 2, c + 8 = 3*.*.. \Rightarrow a = 4, b = 3 and c = -5 The equation of the line joining the points 10. (2, 2, 1) and (5, 1, -2) is $\frac{x-2}{5-2} = \frac{y-2}{1-2} = \frac{z-1}{-2-1}$ $\Rightarrow \frac{x-2}{3} = \frac{y-2}{-1} = \frac{z-1}{-3}$(i)

The lines are parallel

$$\vec{a}_2 - \vec{a}_1 = 4\hat{i} - 2\hat{j} - \hat{k}$$

 $(\vec{a}_2 - \vec{a}_1) \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & -1 \\ 5 & 1 & 4 \end{vmatrix}$
 $= \hat{i}(-8+1) - \hat{j}(16+5) + \hat{k}(4+10)$
 $= -7\hat{i} - 21\hat{j} + 14\hat{k}$

 \therefore The distance between the parallel lines is

$$d = \left| \frac{\left(\bar{a}_{2} - \bar{a}_{1}\right) \times \bar{b}}{\left| \bar{b} \right|} \right|$$

$$d = \left| \frac{-7\hat{i} - 21\hat{j} + 14\hat{k}}{\sqrt{25 + 1 + 16}} \right|$$
$$= \sqrt{\frac{49 + 441 + 196}{42}} = \frac{7}{\sqrt{3}}$$

....

劉 Critical Thinking

- 1. The d.r.s. of line are 1, -2, 3 and it passes through point (1, 2, 3)
- $\therefore \quad \text{the vector equation of the line is} \\ \bar{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) \\ \text{The cartesian equation of the line is} \\ \frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{3} \\ \end{array}$
- 2. The d.r.s. of line are 3, 2, -8 and its passes through (5, 2, -4)
- $\therefore \text{ the vector equation of line is} \\ \overline{r} = 5\hat{i} + 2\hat{j} 4\hat{k} + \lambda(3\hat{i} + 2\hat{j} 8\hat{k}) \\ \text{The cartesian equation of the line is} \\ \frac{x-5}{3} = \frac{y-2}{2} = \frac{z+4}{-8} \\ \end{array}$
- 3. The line passes through (2, -3, 4) and has direction ratios proportional to 3, 4, -5.
- :. the cartesian equation of the line is r-2, $\nu+3$, r-4

$$\frac{x-2}{3} = \frac{y+3}{4} = \frac{z-4}{-5}$$

- $\therefore \quad 4x 8 = 3y + 9 \text{ and } -5y 15 = 4z 16$ i.e., 4x - 3y = 17 and 5y + 4z = 1
- 4. Line || Z-axis
- ∴ d.r.s. are 0, 0, 1

$$\therefore \quad \text{Required equation is} \\ \bar{r} = 2\hat{i} + 3\hat{j} + 4\hat{k} + \lambda (0, \hat{i} + 0, \hat{j} + 1\hat{k}) \\ \Rightarrow \bar{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) + \lambda\hat{k}$$

мнт	-CET Triumph Maths (Hints)	
	Since, <i>x</i> co-ordinate is 4	
	It satisfies (i) 4-2 $y-2$ $z-1$	
	$\frac{4-2}{3} = \frac{y-2}{-1} = \frac{z-1}{-3}$	
<i>.</i>	$\frac{z-1}{-3} = \frac{2}{3}$	
	3z - 3 = -6	
	z = -1	
11.	The equation of the line joining the points $(3, 4, 1)$ and $(5, 1, 6)$ is	
	$\frac{x-3}{5-3} = \frac{y-4}{1-4} = \frac{z-1}{6-1}$	
	$\Rightarrow \frac{x-3}{2} = \frac{y-4}{2} = \frac{z-1}{5} \qquad \dots (i)$	
	2 -3 -3 Co-ordinate of any point on the XY-plane is	
	z = 0 x - 3 $v - 4$ $0 - 1$	
	$\frac{1}{2} = \frac{1}{-3} = \frac{1}{5}$	
<i>.</i>	$\frac{x-3}{2} = \frac{-1}{5}$	
	$\Rightarrow x - 3 = -\frac{2}{5}$	
	$\Rightarrow x = \frac{13}{5}$	
	Also we have $\frac{y-4}{-3} = -\frac{1}{5}$	
	$\Rightarrow y - 4 = \frac{3}{5} \Rightarrow y = \frac{23}{5}$	
	The line meets the XY-plane at $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$	
12.	Here, $(x_1, y_1, z_1) = (3, -6, 10)$ and $ r = \sqrt{17}$	
	$x_2 = x_1 + lr = 3 - \frac{2}{\sqrt{17}} \left(\sqrt{17}\right) = 1$	
	$y_2 = y_1 + \text{mr} = -6 + \frac{3}{\sqrt{17}} \left(\sqrt{17}\right) = -3$	
	$z_2 = z_1 + nr = 10 - \frac{2}{\sqrt{17}} \left(\sqrt{17}\right) = 8$	
13.	The d.r.s. of the two lines are $2, -1, 1$ and	
	4, -1, λ Since, the lines are perpendicular	
	$a_1a_2 + b_1b_2 + c_1c_2 = 0$	
	$\Rightarrow 2(4) + (-1)(-1) + (1)(\lambda) = 0$	
	$\Rightarrow \lambda + 9 = 0$ $\Rightarrow \lambda = -9$	

14. $a_1, b_1, c_1 = 2, p, 5$ and $a_2, b_2, c_2 = 3, -p, p$ Since, the given lines are perpendicular. (2)(3) + p(-p) + (5)(p) = 0*.*.. $\Rightarrow 6 - p^2 + 5p = 0$ \Rightarrow p² - 5p - 6 = 0 \Rightarrow (p - 6) (p + 1) = 0 \Rightarrow p = 6 or p = -1 15. $a_1, b_1, c_1 = 2, \lambda, 0 \text{ and } a_2, b_2, c_2 = 1, 3, 1$ Since, the lines are perpendicular. $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $2(1) + \lambda(3) + 0(1) = 0$.:. $2+3\lambda=0$ *.*.. $\lambda = \frac{-2}{3}$ ÷ 16. Given lines pass through common point (1, 2, 3)Also, $a_1a_2 + b_1b_2 + c_1c_2 = 2(3) + 3(4) + 4(5) \neq 0$ lines are intersecting *.*.. 17. Let $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then $\overline{\mathbf{r}} \times \overline{\mathbf{a}} = \overline{\mathbf{b}} \times \overline{\mathbf{a}} \Longrightarrow (\overline{\mathbf{r}} - \overline{\mathbf{b}}) \times \overline{\mathbf{a}} = 0$ $\therefore \quad \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 2 & y & z + 1 \\ 1 & 1 & 0 \end{vmatrix} = 0$ $\Rightarrow (-z-1)\hat{i} - (-z-1)\hat{j} + (x-y-2)\hat{k} = 0$ $\Rightarrow z = -1, x - y = 2 \qquad \dots (i)$ Now, $\overline{r} \times \overline{b} = \overline{a} \times \overline{b} \Rightarrow (\overline{r} - \overline{a}) \times \overline{b} = 0$ $\therefore \quad \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x - 1 & y - 1 & z \\ 2 & 0 & -1 \end{vmatrix} = 0$ $\Rightarrow (1-y)\hat{i} - (1-x-2z)\hat{j} + (2-2y)\hat{k} = 0$ \Rightarrow y = 1, x + 2z = 1(ii) Solving (i) and (ii), we get x = 3, y = 1, z = -1Let P (x, y, z) be any point 18.

Now by the given condition, we get

$$\left[\sqrt{(x^2+y^2)}\right]^2 + \left[\sqrt{(y^2+z^2)}\right]^2 + \left[\sqrt{(z^2+x^2)}\right]^2 = 36$$
i.e., $x^2 + y^2 + z^2 = 18$
The distance from origin
 $= \sqrt{x^2 + y^2 + z^2} = \sqrt{18} = 3\sqrt{2}$

19. Let $\frac{x}{2} = \frac{y-1}{3} = \frac{z-1}{3} = \lambda$ \therefore Any general point on this line is $Q(2\lambda, 3\lambda+1, 3\lambda+1)$ Let $P \equiv (1, 2, 3)$. \therefore D.r.s. of PQ are $2\lambda - 1, 3\lambda - 1, 3\lambda - 2$ P(1, 2, 3) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-1}{3}$

Since, PQ is perpendicular to given line

- $\therefore \qquad a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$
- $\therefore \quad (2\lambda 1)2 + (3\lambda 1)3 + (3\lambda 2)3 = 0$
- $\therefore \quad \lambda = \frac{1}{2}$ $\therefore \quad Q \equiv \left(1, \frac{5}{2}, \frac{5}{2}\right)$
- 20. Let $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$ Any point on the line is $P \equiv (2\lambda, 3\lambda + 2, 4\lambda + 3)$ Given point is A (3, -1, 11) \therefore The d.r.s. of AP are
- $2\lambda -3$, $3\lambda + 3$, $4\lambda 8$ Since, the line AP is perpendicular to the given line
- $\therefore \quad 2(2\lambda 3) + 3(3\lambda + 3) + 4(4\lambda 8) = 0$ $\Rightarrow 29 \lambda 29 = 0$ $\Rightarrow \lambda = 1$
- :. $P \equiv (2, 5, 7)$

21. Let
$$\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3} = \lambda$$

- $\therefore \quad \text{Any general point on this line is} \\ Q (5\lambda -3, 2\lambda + 1, 3\lambda 4) \\ \text{Let P} \equiv (0, 2, 3). \end{cases}$
- $\therefore \quad \text{The d.r.s. of PQ are } 5\lambda 3, 2\lambda 1, 3\lambda 7$ Since, PQ is perpendicular to given line
- $\therefore \quad 5(5\lambda 3) + 2(2\lambda 1) + 3(3\lambda 7) = 0$ $\Rightarrow \lambda = 1$
- $\therefore \qquad \mathbf{Q} \equiv (2, 3, -1)$

22. Distance of point
$$P(\overline{\alpha})$$
 from the
line $\overline{r} = \overline{a} + \lambda \overline{b}$ is
 $\sqrt{|\overline{\alpha} - \overline{a}|^2} - \left[\frac{(\overline{\alpha} - \overline{a}).\overline{b}}{|\overline{b}|}\right]^2}$
Given, $P(\overline{\alpha}) \equiv (0,0,0)$ and
 $\overline{t} = 4\hat{i} + 2\hat{j} + 4\hat{k} + \lambda(3\hat{i} + 4\hat{j} - 5\hat{k})$
 \therefore $\overline{a} = 4\hat{i} + 2\hat{j} + 4\hat{k}$ and
 $\overline{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}$
 \therefore Distance of point
 $= \sqrt{\left[(-4)^2 + (-2)^2 + (-4)^2\right] - \left[\frac{-4(3) - 2(4) - 4(-5)}{\sqrt{3^2 + 4^2 + (-5)^2}}\right]^2}$
 $= \sqrt{16 + 4 + 16}$
 $= 6$
Alternate method:
 $\overline{AO} = 4\hat{i} + 2\hat{j} + 4\hat{k}$
 \therefore OA = $\sqrt{16 + 4 + 16} = 6$
 $AIternate method:$
 $\overline{AO} = 4\hat{i} + 2\hat{j} + 4\hat{k}$
 \therefore OA = $\sqrt{16 + 4 + 16} = 6$
In right angled ΔOA on AL
 $= \frac{12 + 8 - 20}{\sqrt{9 + 16 + 25}} = 0$
In right angled ΔOAM , $d^2 = OA^2 - AM^2$
 $\Rightarrow d^2 = 6^2 - 0 \Rightarrow d = 6$
23. Any point on the line $\frac{x - 1}{2} = \frac{y}{9} = \frac{z}{5} = \lambda$ is
 $P(2\lambda + 1, 9\lambda, 5\lambda)$
Let $A = (5, 4, - 1)$
The d.r.s. of the line AP are
 $2\lambda + 1 - 5, 9\lambda - 4, 5\lambda - (-1)$
 $\Rightarrow 2\lambda - 4, 9\lambda - 4, 5\lambda + 1$
Since, AP is perpendicular to the given line
 $\therefore 2(2\lambda - 4) + 9(9\lambda - 4) + 5(5\lambda + 1) = 0$
 $\Rightarrow 4\lambda - 8 + 81\lambda - 36 + 25\lambda + 5\lambda - 1$

 $\Rightarrow \lambda = \frac{39}{110}$

Chapter 07: Line

$$\therefore P = \left(\frac{188}{110}, \frac{351}{110}, \frac{195}{110}\right)$$
$$\therefore AP = \sqrt{\left(5 - \frac{188}{110}\right)^2 + \left(4 - \frac{351}{110}\right)^2 + \left(-1 - \frac{195}{110}\right)^2}$$
$$= \frac{1}{\sqrt{110^2}} \sqrt{131044 + 7921 + 93025}$$
$$= \sqrt{\frac{2109}{110}}$$

24. Let
$$\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11} = \lambda$$

Any point on the line is
P(10 λ + 11, -4 λ - 2, -11 λ - 8)
Let A = (2, -1, 5)
The d.r.s. of the line AP are
10 λ + 11 - 2, -4 λ - 2 - (-1), -11 λ - 8 - 5
i.e., 10 λ + 9, -4 λ - 1, -11 λ - 13
Since, AP is perpendicular to the given line

$$\therefore \quad 10(10\lambda + 9) - 4(-4\lambda - 1) - 11(-11\lambda - 13) = 0 \\ \Rightarrow 100\lambda + 90 + 16\lambda + 4 + 121\lambda + 143 = 0 \\ \Rightarrow 237\lambda + 237 = 0 \Rightarrow \lambda = -1$$

$$\therefore \quad \mathbf{P} \equiv (1, 2, 3)$$

$$\therefore \quad AP = \sqrt{(2-1)^2 + (-1-2)^2 + (5-3)^2} \\ = \sqrt{1+9+4} = \sqrt{14}$$

25. The given equation of line is

$$\frac{x-1}{2} = \frac{y+1}{-3} = z$$

The co-ordinates of any point on the given line are $(2\lambda + 1, -3\lambda - 1, \lambda)$ The distance of this point from the point (1, -1, 0) is $4\sqrt{14}$. $(2\lambda)^2 + (-3\lambda)^2 + (\lambda)^2 = (4\sqrt{14})^2 \Rightarrow \lambda = \pm 4$

 $\therefore \quad (2\lambda)^2 + (-3\lambda)^2 + (\lambda)^2 = (4\sqrt{14})^2 \Longrightarrow \lambda = \pm 4$ $\therefore \quad \text{The co-ordinates of the required point are} (9, -13, 4) \text{ or } (-7, 11, -4)$

The point nearer to the origin is (-7, 11, -4).

26. The equation of the line joining the points A(2, -3, -1) and B(8, -1, 2) is $\frac{x-2}{8-2} = \frac{y+3}{-1+3} = \frac{z+1}{2+1}$ $\Rightarrow \frac{x-2}{6} = \frac{y+3}{2} = \frac{z+1}{3} = \lambda$ Any point on the line is $(6\lambda + 2, 2\lambda - 3, 3\lambda - 1)$ The distance of this point from the point A(2, -3, -1) is 14 units. $\therefore \qquad (6\lambda)^2 + (2\lambda)^2 + (3\lambda)^2 = (14)^2$

- $\therefore \qquad 49\lambda^2 = 196$
- $\therefore \qquad \lambda^2 = 4 \Longrightarrow \lambda = \pm 2$
- :. The points are (14, 1, 5) and (-10, -7, -7)
- \therefore The point nearer to the origin is (-10, -7, -7).
- 27. Any point on the line

$$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9} = \lambda \text{ is given by}$$
$$M \equiv (\lambda - 5, 4\lambda - 3, -9\lambda + 6).$$

$$A^{2}$$
 [1]
(-5, -3, 6) M B

The d.r.s. of PM are
$$\lambda - 7, 4\lambda - 7, -9\lambda + 7$$

Since, PM is perpendicular to AM,

$$\therefore \quad 1(\lambda - 7) + 4 (4\lambda - 7) - 9(-9\lambda + 7) = 0$$
$$\Rightarrow 98\lambda - 98 = 0 \quad \Rightarrow \lambda = 1$$

- $\therefore \qquad M = (-4, 1, -3)$ Now, Equation of perpendicular passing through P(2, 4, -1) and M(-4, 1, -3) is $\frac{x-2}{-4-2} = \frac{y-4}{1-4} = \frac{z+1}{-3+1}$ $\Rightarrow \frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2}$
- 28. The direction ratios are same. Also both lines pass through origin.
- \therefore Given lines are coinciding lines.

29. The lines can be rewritten as

$$\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - \hat{k})$$
 and
 $\vec{r} = (\hat{i} - \hat{j} - \hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k})$
Here, $(x_1, y_1, z_1) = (1, -2, 3)$
 $(x_2, y_2, z_2) = (1, -1, -1)$
 $(a_1, b_1, c_1) = (-1, 1, -1)$
 $(a_2, b_2, c_2) = (1, 2, -2)$
∴ Shortest distance (d)
 $d = \left| \frac{\begin{vmatrix} 1 - 1 & -1 + 2 & -1 - 3 \\ -1 & 1 & -1 \\ 1 & 2 & -2 \end{vmatrix}}{\sqrt{(-2 + 2)^2 + (-1 - 2)^2 + (-2 - 1)^2}} \right|$
 $= \left| \frac{0 - 1(3) - 4(-3)}{3\sqrt{2}} \right| = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}}$

Chapter 07: Line

- 30. The equations of the given lines are $\bar{r} = (-\hat{i} + \hat{j} - \hat{k}) + \lambda(\hat{i} + \hat{j} - \hat{k})$ and $\bar{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-\hat{i} + 2\hat{j} + \hat{k})$ Here, $(x_1, y_1, z_1) = (-1, 1, -1)$ $(x_2, y_2, z_2) = (1, -1, 2)$ $(a_1, b_1, c_1) = (1, 1, -1)$ $(a_2, b_2, c_2) = (-1, 2, 1)$
- \therefore Shortest Distance (d)

$$= \left| \frac{\begin{vmatrix} 1+1 & -1-1 & 2+1 \\ 1 & 1 & -1 \\ -1 & 2 & 1 \end{vmatrix}}{\sqrt{(1+2)^2 + (1-1)^2 + (2+1)^2}} \right|$$
$$= \left| \frac{2(3) + 2(0) + 3(3)}{3\sqrt{2}} \right| = \frac{5}{\sqrt{2}}$$

31. The given equation of lines are

$$\frac{x-1}{k} = \frac{y+1}{3} = \frac{z-1}{4} \text{ and}$$
$$\frac{x-3}{1} = \frac{2y-9}{2k} = \frac{z}{1}$$
i.e.
$$\frac{x-3}{1} = \frac{y-\frac{9}{2}}{k} = \frac{z}{1}$$

Since the line intersect,

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

$$\therefore \begin{vmatrix} 2 & \frac{11}{2} & -1 \\ k & 3 & 4 \\ 1 & k & 1 \end{vmatrix} = 0$$

$$\therefore 2(3 - 4k) - \frac{11}{2}(k - 4) - 1(k^2 - 3) = 0$$

$$\therefore 6 - 8k - \frac{11}{2}k + 22 - k^2 + 3 = 0$$

$$\therefore 2k^2 + 27k - 62 = 0$$

$$\therefore 2k^2 - 4k + 31k - 62 = 0$$

$$\therefore 2k(k - 2) + 31(k - 2) = 0$$

$$\therefore k = 2 \text{ or } k = \frac{-31}{2}$$

32.
$$\overline{a}_2 - \overline{a}_1 = -3\hat{i} + 2\hat{k}$$

 $\overline{b}_1 \times \overline{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & 4 & -5 \end{vmatrix}$
 $= \hat{i} (-10 + 12) - \hat{j} (-5 + 3) + \hat{k} (4 - 2)$
 $= 2\hat{i} + 2\hat{j} + 2\hat{k}$
 $\therefore \quad (\overline{a}_2 - \overline{a}_1) \cdot (\overline{b}_1 \times \overline{b}_2) = (-3\hat{i} + 2\hat{k}) \cdot (2\hat{i} + 2\hat{j} + 2\hat{k})$
 $= -6 + 4 = -2$
33. Let the components of the line vector be a, b, c.
 $a^2 + b^2 + c^2 = (63)^2 \qquad \dots(i)$
 $\frac{a}{3} = \frac{b}{-2} = \frac{c}{6} = \lambda (\text{say})$
 $\Rightarrow a = 3\lambda, b = -2\lambda, c = 6\lambda$
 $\therefore \quad 9\lambda^2 + 4\lambda^2 + 36\lambda^2 = (63)^2 \qquad \dots[\text{From }(i)]$

$$\therefore \qquad 49\lambda^2 = (63)^2 \Longrightarrow \lambda = \pm \frac{63}{7} = \pm 9$$

Since, as the line makes an obtuse angle with X-axis, $a = 3\lambda < 0$, $\lambda = -9$

The required components are -27, 18, -54.

Competitive Thinking

· .

- 1. The line passes through (1, -2, -1)Let other point be (x_2, y_2, z_2) Direction ratio are 0, 6, -1
- $\therefore \quad x_2 1 = 0 \Rightarrow x_2 = 1$ $y_2 - (-2) = 6 \Rightarrow y_2 = 4$ $z_2 - (-1) = -1 \Rightarrow z_2 = -2$
- 2. The equation of line passing through (a, b, c) and having d.r.s. 0, 0, 1 is $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$
- 3. Let a, b, c be the d.r.s. of the required line d.r.s. of the given lines are 2, -2, 1 and 1, -2, 2.

:.
$$2a - 2b + c = 0$$
 ...(i)
 $a - 2b + 2c = 0$...(ii)

$$\therefore \qquad \frac{a}{-4+2} = \frac{-b}{4-1} = \frac{c}{-4+2}$$
$$\Rightarrow \frac{a}{-2} = \frac{b}{-3} = \frac{c}{-2}$$

 $\therefore \quad \text{Equation of the required line is} \\ \frac{x-3}{-2} = \frac{y+1}{-3} = \frac{z-2}{-2} \\ \Rightarrow \frac{x-3}{2} = \frac{y+1}{3} = \frac{z-2}{2}$

MHT-CET Triumph Maths (Hints)		
4.	$\frac{x+2}{2} = \frac{2y-5}{3}, z = -1$	
÷	$\frac{x+2}{2} = \frac{y-\frac{5}{2}}{\frac{3}{2}}, \ z = -1$	
.:.	$\frac{x+2}{4} = \frac{y-\frac{5}{2}}{3}, z = -1$	
 	d.r.s of given line are 4, 3, 0 d.c.s of the line are $\frac{4}{\sqrt{4^2+3^2}}, \frac{3}{\sqrt{4^2+3^2}}, 0 \Rightarrow \frac{4}{5}, \frac{3}{5}, 0$	
5.	d.r.s. of given line are 1, 1, 1	
	d.c.s. are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$	
6.	Given equation of line $x = 4z + 3$, $y = 2 - 3z$ $\Rightarrow z = \frac{x - 3}{4}, z = \frac{y - 2}{-3}$	
<i>.</i>	Equation of line is $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z-0}{1}$	
	d.r.s of line are $4, -3, 1$	
	$\cos \alpha = \frac{4}{\sqrt{4^2 + (-3)^2 + 1^2}} = \frac{4}{\sqrt{26}}$,	
	$\cos \beta = \frac{-3}{\sqrt{26}}, \ \cos \gamma = \frac{1}{\sqrt{26}}$	
÷	$\cos \alpha + \cos \beta + \cos \gamma = \frac{4}{\sqrt{26}} - \frac{3}{\sqrt{26}} + \frac{1}{\sqrt{26}}$ $= \frac{2}{\sqrt{26}}$	
	$\sqrt{26}$	
7.	The given equation is $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$	
	The direction ratios of the above line are 3, 1, 0 \Rightarrow n = cos x = 0 \Rightarrow x = 90°	
	The given straight line is perpendicular to Z -axis	
8.	Let a, b, c be the direction ratios of the line.	
<i>.</i> .	$a - b + c = 0$ and $\dots(i)$	
<i>.</i>	a - 3b = 0(11) $\frac{a}{3} = \frac{b}{1} = \frac{c}{-2}$	
	the direction ratios of the line are $3, 1, -2$.	
9.	If a line is equally inclined to axes, then $l = m = n = \pm \frac{1}{\sqrt{2}}$	
	$\sqrt{3}$	
••		

Given that the line passes through the point (-3, 2, -5)The equation of line is $\frac{x+3}{1} = \frac{y-2}{1} = \frac{z+5}{1}$

10. Here, $(x_1, y_1, z_1) \equiv (a, b, c)$ and $(x_2, y_2, z_2) \equiv (a - b, b - c, c - a)$ Required equation of line is $\frac{x - a}{a - b - a} = \frac{y - b}{b - c - b} = \frac{z - c}{c - a - c}$ i.e., $\frac{x - a}{b} = \frac{y - b}{c} = \frac{z - c}{a}$

...

- 11. Given equation is $\frac{x-1}{l} = \frac{y-2}{m} = \frac{z+1}{n}$ The equation of line passing through (1, 2, -1) and (-1, 0, 1) is $\frac{x-1}{-1-1} = \frac{y-2}{0-2} = \frac{z+1}{1+1}$ $\Rightarrow \frac{x-1}{-2} = \frac{y-2}{-2} = \frac{z+1}{2}$ $\Rightarrow \frac{x-1}{1} = \frac{y-2}{1} = \frac{z+1}{-1}$ (i) Comparing (i) with given equation, we get l = 1, m = 1, n = -1
- 12. Equation of line AB in vector form is $\vec{r} = 6\vec{a} - 4\vec{b} + 4\vec{c} + \lambda\left(-4\vec{c} - \{6\vec{a} - 4\vec{b} + 4\vec{c}\}\right)$ $\Rightarrow \vec{r} = 6\vec{a} - 4\vec{b} + 4\vec{c} + \lambda\left(-6\vec{a} + 4\vec{b} - 8\vec{c}\right) \dots(i)$ Equation of line CD in vector form is $\vec{r'} = \vec{a} + 2\vec{b} - 5\vec{c} + \lambda'\left(-\vec{a} - 2\vec{b} - 3\vec{c} - \{\vec{a} + 2\vec{b} - 5\vec{c}\}\right)$ $\Rightarrow \vec{r'} = \vec{a} + 2\vec{b} - 5\vec{c} + \lambda'\left(-2\vec{a} - 4\vec{b} + 2\vec{c}\right) \dots(i)$

The point of intersection of AB and CD will satisfy

 $\vec{r} = \vec{r'}$ $\Rightarrow 6\vec{a} - 4\vec{b} + 4\vec{c} + \lambda(-6\vec{a} + 4\vec{b} - 8\vec{c})$ $= \vec{a} + 2\vec{b} - 5\vec{c} + \lambda'(-2\vec{a} - 4\vec{b} + 2\vec{c})$

Comparing the coefficients of \overline{a} and \overline{b} , we get

$$6\lambda - 2\lambda' = 5 \qquad \dots \text{(iii)}$$

$$2\lambda + 2\lambda' = 3 \qquad \dots \text{(iv)}$$

$$\Rightarrow \lambda = 1 \text{ and } \lambda' = \frac{1}{2}$$

Substituting value of λ in equation (i), we get the point of intersection

Point of intersection $\bar{r} = -4\bar{c}$ i.e. point B.

...

Chapter 07: Line

- 13. The equation of the line joining the points (3, 5, -7) and (-2, 1, 8) is $\frac{x-3}{-2-3} = \frac{y-5}{1-5} = \frac{z-(-7)}{8-(-7)}$ Let $\frac{x-3}{-5} = \frac{y-5}{-4} = \frac{z+7}{15} = \lambda$ ⇒ $x = 3 - 5\lambda, y = 5 - 4\lambda, z = -7 + 15\lambda$ For YZ plane, x = 0∴ $3 - 5\lambda = 0 \Rightarrow \lambda = \frac{3}{5}$ Now, $y = 5 - 4\lambda = 5 - 4\left(\frac{3}{5}\right) = 5 - \frac{12}{5} = \frac{13}{5}$
- $z = -7 + 15\lambda = -7 + 15\left(\frac{3}{5}\right) = 2$ $\therefore \quad \text{The required point is}\left(0, \frac{13}{5}, 2\right)$

14. Given equations of line are

$$\bar{r} = (\hat{i}+2\hat{j}-\hat{k})+\lambda(3\hat{i}-4\hat{k})$$
(i)
and $\bar{r} = (1-t)(4\hat{i}-\hat{j})+t(2\hat{i}+\hat{j}-3\hat{k})$
i.e., $\bar{r} = (4\hat{i}-\hat{j})+t(-2\hat{i}+2\hat{j}-3\hat{k})$ (ii)
Now, d.r.s. of line (i) and (ii) are
 $a_1, b_1, c_1 = 3, 0, -4$
and $a_2, b_2, c_2 = -2, 2, -3$
 $\cos \theta = \left| \frac{3(-2)+\theta(2)+(-4)(-3)}{\sqrt{9+\theta+16}\sqrt{4+4+9}} \right|$
 $\Rightarrow \cos \theta = \frac{6}{5\sqrt{17}}$
 $\Rightarrow \theta = \cos^{-1} \left(\frac{6}{5\sqrt{17}} \right)$

15. The d.r.s. of the lines are 2, 5, -3 and -1, 8, 4

$$\therefore \quad \cos \theta = \left| \frac{2(-1) + 5(8) + (-3)(4)}{\sqrt{2^2 + 5^2 + (-3)^2} \sqrt{(-1)^2 + 8^2 + 4^2}} \right|$$
$$\Rightarrow \cos \theta = \frac{26}{9\sqrt{38}}$$
$$\Rightarrow \theta = \cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$$

16. The d.r.s. of the lines are 1, 0, -1 and 3, 4, 5

$$\therefore \quad \cos \theta = \left| \frac{1(3) + 0(4) + (-1)(5)}{\sqrt{1^2 + 0^2 + (-1)^2} \sqrt{3^2 + 4^2 + 5^2}} \right| = \left| \frac{-2}{10} \right|$$
$$\therefore \quad \theta = \cos^{-1} \left(\frac{1}{5} \right)$$

17.
$$\cos\theta = \left| \frac{2(1) + 2(2) + (-1)(2)}{\sqrt{4 + 4 + 1} \sqrt{1 + 4 + 4}} \right| = \left| \frac{4}{\sqrt{9} \sqrt{9}} \right| = \frac{4}{9}$$

 $\Rightarrow \theta = \cos^{-1} \left(\frac{4}{9} \right)$

- 18. The d.r.s. of the line joining the points (2, 1, -3) and (-3, 1, 7) are -5, 0, 10 The d.r.s. of the line parallel to line $\frac{x-1}{3} = \frac{y}{4} = \frac{z+3}{5}$ are 3, 4, 5
- $\therefore \quad \text{The angle between the lines having d.r.s.}$ -5, 0, 10 and 3, 4, 5 is $<math display="block">\cos \theta = \left| \frac{-5(3) + 0(4) + 10(5)}{\sqrt{25 + 0 + 100}\sqrt{9 + 16 + 25}} \right|$ $\Rightarrow \cos \theta = \frac{35}{25\sqrt{10}}$ $\Rightarrow \theta = \cos^{-1} \left(\frac{7}{5\sqrt{10}} \right)$
- 19. $a_1a_2 + b_1b_2 + c_1c_2 = (2)(1) + (5)(2) + (4)(-3) = 0$
- : Lines are perpendicular
- $\therefore \quad \theta = 90^{\circ}$
- 20. The equation of given lines are

$$\frac{x}{3} = \frac{y}{2} = \frac{z}{-6} \text{ and } \frac{x}{2} = \frac{y}{-12} = \frac{z}{-3}$$
$$a_1a_2 + b_1b_2 + c_1c_2 = 3(2) + 2(-12) + (-6)(-3)$$
$$= 0$$

: Lines are perpendicular

 $\therefore \quad \theta = 90^{\circ}$

- 21. The first line is parallel to Z-axis and the second line is parallel to X-axis.
- \therefore The angle between them is 90°.
- 22. Let the d.r.s of the given line be a, b, c Then, according to given condition of perpendicularity,
 -1.a + 2.b + 2.c = 0(i) 0.a + 2.b + 1.c = 0(ii) On solving (i) and (ii), we get a = 2, b = -1 and c = 2
- 23. $a_1,b_1, c_1, = -3, 2k, 2$ and $a_2, b_2, c_2 = 3k, 1, -5$ Since, the lines are perpendicular to each other, $a_1a_2 + b_1b_2 + c_1c_2 = 0$

$$\therefore \quad (-3)(3k) + (2k)(1) + (2)(-5) = 0$$
$$\Rightarrow -9k + 2k - 10 = 0$$
$$\Rightarrow k = \frac{-10}{7}$$

24. Given equations of lines are x = ay + b, z = cy + d $\Rightarrow \frac{x-b}{a} = \frac{y}{1}, \frac{z-d}{c} = \frac{y}{1}$ $\Rightarrow \frac{x-b}{a} = \frac{y}{1} = \frac{z-d}{c}$ and x = a'y + b', z = c'y + d' $\Rightarrow \frac{x-b'}{a'} = \frac{y}{1}, \frac{z-d'}{c'} = \frac{y}{1}$ $\Rightarrow \frac{x-b'}{a'} = \frac{y}{1} = \frac{z-d'}{c'}$

> Since, the lines are perpendicular to each other. $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\Rightarrow aa' + 1(1) + cc' = 0$ $\Rightarrow aa' + cc' = -1$

25. Equation of line BC is

$$\frac{x-0}{2-0} = \frac{y+11}{-3+11} = \frac{z-4}{1-4}$$

$$\Rightarrow \frac{x}{2} = \frac{y+11}{8} = \frac{z-4}{-3}$$

Let $\frac{x}{2} = \frac{y+11}{8} = \frac{z-4}{-3} = \lambda$
Any point D on the line is
 $\equiv (2\lambda, 8\lambda - 11, -3\lambda + 4)$
Given point A $\equiv (1, 8, 4)$
. d.r.s of AD are $2\lambda - 1, 8\lambda - 11 - 8, -3\lambda + 4 - 4$
 $= 2\lambda - 1, 8\lambda - 19, -3\lambda$
Since, AD \perp BC,
. $aa_1 + bb_1 + cc_1 = 0$
 $\Rightarrow 2(2\lambda - 1) + 8(8\lambda - 19) - 3(-3\lambda) = 0$
 $\Rightarrow 4\lambda - 2 + 64\lambda - 152 + 9\lambda = 0$

- $\Rightarrow 77\lambda = 154$
- $\Rightarrow \lambda = 2$ $\therefore \quad D \equiv (4, 5, -2)$

.

26. Given equation of line is $\overline{\mathbf{r}} = (3+t)\hat{\mathbf{i}} + (1-t)\hat{\mathbf{j}} + (-2-2t)\hat{\mathbf{k}}$ $\Rightarrow \overline{\mathbf{r}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}} + (\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})\mathbf{t}$, where $\mathbf{t} \in \mathbf{R}$

 $\therefore \quad \text{The line passes through } (3, 1, -2) \text{ and is} \\ \text{parallel to the vector } \hat{i} - \hat{j} - 2\hat{k} \\ \text{Equation of second line is} \\ x = 4 + k, y = -k, z = -4 - 2k, \\ \Rightarrow \frac{x-4}{1} = \frac{y}{-1} = \frac{z+4}{-2} = k, \text{ where } k \in \mathbb{R} \\ \end{cases}$

- \therefore d.r.s. of the line are 1, -1, -2. Also, it passes through (3, 1, -2).
- ... Both lines are coincident.

of line option (A) is correct answer *.*.. Alternate method: Let $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1} = \lambda$ and $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4} = \mu$ $x = 3\lambda + 5$, $y = -\lambda + 7$, $z = \lambda - 2$ and *.*.. $x = -36\mu - 3$, $y = 2\mu + 3$, $z = 4\mu + 6$ On solving, we get x = 21, $y = \frac{5}{3}$, $z = \frac{10}{3}$ 28. Consider option (B) Point (-2, -4, -5) satisfies both the equations of the line. Option (B) is the correct answer. *.*..

satisfies both the equations

- 29. Consider option (B) point (-11, -4, 5) satisfies both the equations of line
- \therefore option (B) is correct answer

27.

Consider option (A)

point $\left(21,\frac{5}{3},\frac{10}{3}\right)$

- Consider option (B) point (2, 3, 4) satisfies both the equations of line
- \therefore option (B) is correct answer

31.

Let the two lines be AB and CD having equations $\frac{x}{1} = \frac{y+a}{1} = \frac{z}{1} = \lambda$ and $\frac{x+a}{2} = \frac{y}{1} = \frac{z}{1} = \mu$.

Then, $P \equiv (\lambda, \lambda - a, \lambda)$ and $Q \equiv (2\mu - a, \mu, \mu)$ According to the given condition,

$$\frac{\lambda - 2\mu + a}{2} = \frac{\lambda - a - \mu}{1} = \frac{\lambda - \mu}{2}$$
$$\Rightarrow \mu = a \text{ and } \lambda = 3a$$

- \therefore P = (3a, 2a, 3a) and Q = (a, a, a)
- 32. d.r.s. of the line joining (0, -11, 4) and (2, -3, 1) are 2, 8, -3.

: Equation of line is
$$\frac{x}{2} = \frac{y+11}{8} = \frac{z-4}{-3}$$

• A (1, 8, 4) $\frac{x}{2} = \frac{y+11}{8} = \frac{z-4}{-3}$ Let $\frac{x}{2} = \frac{y+11}{8} = \frac{z-4}{-3} = \lambda$ Any general point on this line is $M \equiv (2\lambda, 8\lambda - 11, -3\lambda + 4)$ Let $A \equiv (1, 8, 4)$ d.r.s. of AM are $2\lambda - 1$, $8\lambda - 19$, -3λ Since, AM is perpendicular to the given line, $2(2\lambda - 1) + 8(8\lambda - 19) - 3(-3\lambda) = 0$ *.*.. $\Rightarrow 77\lambda = 154$ $\Rightarrow \lambda = 2$ $M \equiv (4, 5, -2)$ *.*.. Let $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1} = \lambda$ 33. • A (1, 0, 2) $\frac{x+1}{3} = \frac{y-2}{-2} = \frac{z+1}{-1}$ Any general point on this line is B $(3\lambda - 1, -2\lambda + 2, -\lambda - 1)$ Let $A \equiv (1, 0, 2)$ d.r.s. of AB are $3\lambda - 2$, $-2\lambda + 2$, $-\lambda - 3$ *.*.. Since, AB is perpendicular to the given line, *.*.. $3 (3\lambda - 2) - 2 (-2\lambda + 2) - 1 (-\lambda - 3) = 0$ $\Rightarrow 14\lambda = 7$ $\Rightarrow \lambda = \frac{1}{2}$

- $\therefore \qquad \mathbf{B} \equiv \left(\frac{1}{2}, 1, \frac{-3}{2}\right)$
- 34. Let M be the foot of perpendicular drawn from the point P(1, 2, 3) to the line and $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2} = \lambda$
- ... The co-ordinates of any point on the line are $M \equiv (3\lambda + 6, 2\lambda + 7, -2\lambda + 7)$
- $\therefore \quad \text{The d.r.s of PM are} \\ 3\lambda + 6 1, \ 2\lambda + 7 2, -2\lambda + 7 3 \\ \text{i.e., } 3\lambda + 5, 2\lambda + 5, -2\lambda + 4 . \end{cases}$

Since, PM is perpendicular to the given line whose d.r.s. are 3, 2, -2, $\therefore \quad 3(3\lambda + 5) + 2(2\lambda + 5) - 2(-2\lambda + 4) = 0$ $\Rightarrow 9\lambda + 15 + 4\lambda + 10 + 4\lambda - 8 = 0$ $\Rightarrow 17 \lambda + 17 = 0$ $\Rightarrow \lambda = -1$ $\therefore \quad M \equiv (3, 5, 9)$ $\therefore \quad PM = \sqrt{(3-1)^2 + (5-2)^2 + (9-3)^2}$ $= \sqrt{4+9+36} = 7$ 35. Since the point is (-2, 4, -5),

∴ a = -2, b = 4, c = -5
Given equation of line is

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$
∴ $x_1 = -3, y_1 = 4, z_1 = -8$
d.r.s of the line are 3, 5, 6
∴ d.c.s are $\frac{3}{\sqrt{70}}, \frac{5}{\sqrt{70}}, \frac{6}{\sqrt{70}}$
Perpendicular distance of point from the line is

$$\sqrt{\left[(a-x_1)^2 + (b-y_1)^2 + (c-z_1)^2\right]} - \left[(a-x_1)l + (b-y_1)m + (c-z_1)n\right]^2}$$

$$= \sqrt{1^2 + 0 + 3^2} - \left[\frac{3(1)}{\sqrt{70}} + \frac{0(5)}{\sqrt{70}} + \frac{3(6)}{\sqrt{70}}\right]^2}$$

$$= \sqrt{1 + 9 - \left(\frac{3}{\sqrt{70}} + \frac{18}{\sqrt{70}}\right)^2}$$

36. Let M be the foot of perpendicular drawn from the point P(2, 3, 4) to the line

and
$$\frac{x-1}{-1} = \frac{y-0}{2} = \frac{z+1}{3} = \lambda$$

 $=\sqrt{\frac{37}{10}}$ units

 $\therefore \qquad M \equiv (-\lambda + 1, 2\lambda, 3\lambda - 1).$ The d.r.s of PM are $-\lambda - 1, 2\lambda - 3, 3\lambda - 5$ Since, PM is perpendicular to the given line, $-1(-\lambda - 1) + 2(2\lambda - 3) + 3(3\lambda - 5) = 0$ $\Rightarrow \lambda + 1 + 4\lambda - 6 + 9\lambda - 15 = 0$ $\Rightarrow 14\lambda = 20$ $\Rightarrow \lambda = \frac{10}{7}$ $\therefore \qquad M \equiv \left(\frac{-3}{7}, \frac{20}{7}, \frac{23}{7}\right)$

$$\therefore \quad PM = \sqrt{\left(2 + \frac{3}{7}\right)^2 + \left(3 - \frac{20}{7}\right)^2 + \left(4 - \frac{23}{7}\right)^2} \\ = \sqrt{\frac{289}{49} + \frac{1}{49} + \frac{25}{49}} \\ = \frac{3}{7}\sqrt{35}$$

37. The equation of the line joining the points (-9, 4, 5) and (11, 0, -1) is $\frac{x+9}{11+9} = \frac{y-4}{0-4} = \frac{z-5}{-1-5}$ $\Rightarrow \frac{x+9}{20} = \frac{y-4}{-4} = \frac{z-5}{-6}$ $\Rightarrow \frac{x+9}{10} = \frac{y-4}{-2} = \frac{z-5}{-3}$

- $\therefore \quad \text{The d.r.s. of the given line are 10, -2, 3}$ $\text{Let } \frac{x+9}{10} = \frac{y-4}{-2} = \frac{z-5}{-3} = \lambda$
- $\therefore \quad \text{Any point on the line is} \\ P = (10\lambda 9, -2\lambda + 4, -3\lambda + 5) \\ \therefore \quad \text{The d.r.s.of OP are} \\ 10\lambda 9, -2\lambda + 4, -3\lambda + 5 \\ \text{Since, the given line is perpendicular to OP,} \\ 10(10\lambda 9) 2(-2\lambda + 4) 3(-3\lambda + 5) = 0 \\ \Rightarrow 100\lambda 90 + 4\lambda 8 + 9\lambda 15 = 0 \\ \Rightarrow 113\lambda = 113 \\ \Rightarrow \lambda = 1 \\ \text{Prov} (1 2, 2) \\ \text{Prov} (1 2, 2)$

$$\therefore P = (1, 2, 2)$$
38. Let $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = \lambda$

A (1, 6, 3)

M $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

• B (x_1, y_1, z_1) Any general point on this line is $M \equiv (\lambda, 2\lambda + 1, 3\lambda + 2)$ Let $A \equiv (1, 6, 3)$ d.r.s. of AM are $\lambda - 1, 2\lambda - 5, 3\lambda - 1$ Since, AM is perpendicular to the given line, $\therefore 1 (\lambda - 1) + 2 (2\lambda - 5) + 3 (3\lambda - 1) = 0$ $\Rightarrow 14\lambda = 14$ $\Rightarrow \lambda = 1$ $\therefore M = (1, 3, 5)$ Now, M is the midpoint of AB.

$$\therefore \qquad \left(\frac{1+x_1}{2}, \frac{6+y_1}{2}, \frac{3+z_1}{2}\right) = (1, 3, 5)$$

$$\Rightarrow x_1 = 1, y_1 = 0, z_1 = 7$$
39. Let $\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z+1}{1} = \lambda$
any point on the line is
 $P = (2\lambda + 1, -2\lambda - 1, \lambda - 1)$
Let $A = (1, -1, -1)$
Now, $PA = 3$

$$\therefore \qquad \sqrt{(2\lambda + 1 - 1)^2 + (-2\lambda - 1 + 1)^2 + (\lambda - 1 + 1)^2} = 3$$

 $\Rightarrow \sqrt{4\lambda^2 + 4\lambda^2 + \lambda^2} = 3$
 $\Rightarrow 9\lambda^2 = 9$
 $\Rightarrow \lambda = \pm 1$
 $\therefore \qquad P = (3, -3, 0) \text{ or } P = (-1, 1, -2)$

- 40. First line passes through $(x_1, y_1, z_1) = (3, 8, 3)$ and has d.r.s. $(a_1, b_1, c_1) = (3, -1, 1)$ Second line passes through $(x_2, y_2, z_2) = (-3, -7, 6)$ and has d.r.s. $(a_2, b_2, c_2) = (-3, 2, 4)$
- \therefore Shortest distance (d) between them is

$$d = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
$$= \begin{vmatrix} -6 & -15 & 3 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} -6(-4-2)^2 + (-3-12)^2 + (6-3)^2 \\ \sqrt{(-4-2)^2 + (-3-12)^2 + (6-3)^2} \end{vmatrix}$$
$$= \begin{vmatrix} -6(-4-2) + 15(12+3) + 3(6-3) \\ \sqrt{36+225+9} \\ \end{vmatrix}$$
$$= \frac{270}{\sqrt{270}} = 3\sqrt{30}$$

41. Here,
$$(x_1, y_1, z_1) = (-1, -2, -1)$$

 $(x_2, y_2, z_2) = (2, -2, 3)$
 $(a_1, b_1, c_1) = (3, 1, 2)$
 $(a_2, b_2, c_2) = (1, 2, 3)$
 $d = \begin{vmatrix} 3 & 0 & 4 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix}$
 $d = \frac{17}{\sqrt{(3-4)^2 + (2-9)^2 + (6-1)^2}}$

42. Since, the given lines intersect each other,

$$\therefore \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$
$$\Rightarrow \begin{vmatrix} 3 - 1 & k + 1 & 0 - 1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0$$
$$\Rightarrow 2(3 - 8) - (k + 1) (2 - 4) - 1 (4 - 3) = 0$$
$$\Rightarrow -10 + 2k + 2 - 1 = 0$$
$$\Rightarrow k = \frac{9}{2}$$

43. Since, the given lines intersect each other,

$$\therefore \begin{vmatrix} 2-1 & 3-2 & 1-3 \\ k & 2 & 3 \\ 3 & k & 2 \end{vmatrix} = 0$$

$$\Rightarrow 1(4-3k) - 1(2k-9) - 2(k^2-6) = 0$$

$$\Rightarrow 2k^2 + 5k - 25 = 0$$

$$\Rightarrow k = \frac{5}{2}, -5$$

Let the equation of a line passing through the 44. origin be $\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$.

0

This meets the lines

....

$$\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1} \text{ and } \frac{x-\frac{8}{3}}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$$
$$\begin{vmatrix} 2 & 1 & -1 \\ a & b & c \\ 1 & -2 & 1 \end{vmatrix} = 0 \text{ and } \begin{vmatrix} \frac{8}{3} & -3 & 1 \\ a & b & c \\ 2 & -1 & 1 \end{vmatrix} = 0$$

 \Rightarrow a + 3b + 5c = 0 and 3a + b - 5c = 0 $\Rightarrow \frac{a}{5} = \frac{b}{-5} = \frac{c}{2}$ Thus, the equation of the line through the origin intersecting the given lines is $\frac{x}{5} = \frac{y}{-5} = \frac{z}{2} = \lambda$ (say) The co-ordinates of any point on this line are $(5\lambda, -5\lambda, 2\lambda).$ The co-ordinates of any point on $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1} = \lambda_1(\text{say})$ are $(\lambda_1 + 2, -2\lambda_1 + 1, \lambda_1 - 1).$ If these two lines intersect, then $5\lambda = \lambda_1 + 2, -5\lambda = -2\lambda_1 + 1$ and $2\lambda = \lambda_1 - 1$ $\Rightarrow \lambda_1 = 3 \text{ and } \lambda = 1$ So, the co-ordinates of P are (5, -5, 2). Similarly, co-ordinates of Q are $\left(\frac{10}{3}, \frac{-10}{3}, \frac{8}{3}\right)$ $PQ^{2} = \left(\frac{10}{3} - 5\right)^{2} + \left(\frac{-10}{3} + 5\right)^{2} + \left(\frac{8}{3} - 2\right)^{2} = 6$

- 45. Lines L_1 and L_2 are parallel to the vectors $\overline{b}_1 = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\overline{b}_2 = \hat{i} + 2\hat{j} + 3\hat{k}$ respectively.
- The unit vector perpendicular to both L_1 and *.*.. L_2 is

$$\hat{\mathbf{n}} = \frac{\mathbf{b}_1 \times \mathbf{b}_2}{\left|\overline{\mathbf{b}_1} \times \overline{\mathbf{b}_2}\right|}$$
Now, $\overline{\mathbf{b}}_1 \times \overline{\mathbf{b}}_2 = \begin{vmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$

$$\hat{\mathbf{n}} = \frac{1}{5\sqrt{3}} \left(-\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}}\right)$$

Evaluation Test

line are

0

...

...

...

1. Let
$$\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2} = r$$

 \therefore $x = -r - 1, y = 5r + 12, z = 2r + 7$
 \therefore Co-ordinates of any point on the line are $(-r - 1, 5r + 12, 2r + 7)$.
This point lies on the curve $11x^2 - 5y^2 + z^2 = 0$

$$\therefore \quad 11(-r-1)^2 - 5(5r+12)^2 + (2r+7)^2 = 0$$

$$\Rightarrow 11r^2 + 22r + 11 - 125r^2 - 600r - 720 + 4r^2 + 28r + 49 = 0$$

 $\Rightarrow -110r^2 - 550r - 660 = 0$ \Rightarrow r² + 5r + 6 = 0 \Rightarrow (r + 2)(r + 3) = 0 \Rightarrow r = -2 or r = -3 If r = -2, then the point is (1, 2, 3)and if r = -3, then the point is (2, -3, 1)option (A) is correct.

- 2. The given equation of line is x = 4y + 5, z = 3y - 6. It can be written as $\frac{x-5}{4} = y = \frac{z+6}{3} = r$, say
- ... co-ordinates of the any point on the line are (4r + 5, r, 3r 6). This point is at a distance of $3\sqrt{26}$ from the point (5, 0, -6)

$$\therefore \quad (4r+5-5)^2 + (r-0)^2 + (3r-6+6)^2 = (3\sqrt{26})^2$$

$$\Rightarrow 16r^2 + r^2 + 9r^2 = 234$$

$$\Rightarrow 26r^2 = 234$$

$$\Rightarrow r^2 = 9$$

$$\Rightarrow r = \pm 3$$

If r = 3, then the point is
 $(4 \times 3 + 5, 3, 3 \times 3 - 6) \equiv (17, 3, 3)$

3. Let the components of the line vector be a, b, c

$$\therefore$$
 $a^2 + b^2 + c^2 = (63)^2$ (i)

Also,
$$\frac{a}{3} = \frac{b}{-2} = \frac{c}{6} = k$$
, say

 $\therefore \quad a = 3k, b = -2k, c = 6k$ Substituting value of a, b and c in equation (i), we get $9k^2 + 4k^2 + 36k^2 = 63^2$

$$\therefore \qquad 49k^2 = 63 \times 63$$

$$\therefore \qquad k^2 = \frac{63 \times 63}{49} = 81$$

- :. $k = \pm 9$ Since, the line makes obtuse angle with X-axis component along X-axis is negative.
- \therefore k = -9
- \therefore The components of the line vector are 3k, -2k, 6k i.e., -27, 18, -54
- 4. Let M be the foot of the perpendicular drawn from the point P(3, -1, 11) to the given line.

Let
$$\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

 $\Rightarrow x = 2\lambda, y = 3\lambda + 2, z = 4\lambda + 3$
 $\therefore M \equiv (2\lambda, 3\lambda + 2, 4\lambda + 3)$
d.r.s. of PM are $2\lambda - 3, 3\lambda + 3, 4\lambda - 8$
Since, PM is perpendicular to the given line
 $\therefore (2\lambda - 3)(2) + (3\lambda + 3)(3) + (4\lambda - 8)(4) = 0$
 $\Rightarrow 4\lambda - 6 + 9\lambda + 9 + 16\lambda - 32 = 0$
 $\Rightarrow \lambda = 1$

$$\therefore$$
 M = (2, 5, 7)

length of perpendicular (PM) = $\sqrt{(2-2)^2 + (-1-5)^2 + (11-7)^2}$

....

...

6.

$$= \sqrt{(3-2)^2 + (-1-5)^2 + (11-7)^2}$$

= $\sqrt{1+36+16}$
= $\sqrt{53}$

5. When square is folded co-ordinates will be D(0, 0, a), C(a, 0, 0), A(-a, 0, 0), B(0, -a, 0).

i.e.,
$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$$

Thus, the path of the rocket represents a straight line passing through the origin. For t = 10 sec. we have, x = 20, y = -40, z = 40Let M(20, -40, 40)

$$\therefore \quad \left| \overline{\mathrm{OM}} \right| = \sqrt{x^2 + y^2 + z^2}$$

 $=\sqrt{400+1600+1600} = 60 \text{ km}$

 \therefore Rocket will be at 60 km from the starting point O(0, 0, 0) in 10 seconds.

Chapter 07: Line

7. d.r.s. of L₁ are 3, 1, 2 and d.r.s. of L₂ are 1, 2, 3 \therefore vector perpendicular to L₁ and L₂ = $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix}$

$$= \hat{i}(3-4) - \hat{j}(9-2) + \hat{k}(6-1)$$

= $-\hat{i} - 7\hat{j} + 5\hat{k}$

:. unit vector =
$$\frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{\sqrt{1 + 49 + 25}} = \frac{-\hat{i} - 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$$

8. Let S be the foot of perpendicular drawn from P(1, 0, 3) to the join of points A(4, 7, 1) and B(3, 5, 3)
P. (1, 0, 3)

$$\lambda$$

$$Let S' divide AB in the ratio $\lambda : 1$

$$Extreme B = \left(\frac{3\lambda + 4}{\lambda + 1}, \frac{5\lambda + 7}{\lambda + 1}, \frac{3\lambda + 1}{\lambda + 1}\right) \dots (i)$$
Now, d.r.s. of PS are
$$\frac{3\lambda + 4}{\lambda + 1} - 1, \frac{5\lambda + 7}{\lambda + 1} - 0, \frac{3\lambda + 1}{\lambda + 1} - 3$$
i.e., $\frac{2\lambda + 3}{\lambda + 1}, \frac{5\lambda + 7}{\lambda + 1}, \frac{-2}{\lambda + 1}$
i.e., $2\lambda + 3, 5\lambda + 7, -2$
Also, d.r.s. of AB are $-1, -2, 2$
Since, PS \perp AB
$$\therefore (2\lambda + 3)(-1) + (5\lambda + 7)(-2) + (-2)(2) = 0$$$$

$$\therefore \quad (2\lambda+3)(-1) + (5\lambda+7)(-2) + (-2)(2) = 0$$
$$\Rightarrow -2\lambda - 3 - 10\lambda - 14 - 4 = 0$$
$$\Rightarrow \lambda = -\frac{7}{4}$$

Substituting the value of λ in (i), we get $S = \left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$

9. Equation of the line passing through the points (5, 1, a) and (3, b, 1) is $\frac{x-3}{5-3} = \frac{y-b}{1-b} = \frac{z-1}{a-1}$(i)

The line passes through the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$

:
$$\frac{-3}{2} = \frac{\frac{17}{2} - b}{1 - b} = \frac{\frac{-13}{2} - 1}{a - 1}$$
[From (i)]

$$\therefore \quad a-1 = \frac{\frac{-15}{2}}{\frac{-3}{2}} = 5$$
$$\therefore \quad a = 5+1 = 6$$
$$and -3 + 3b = 17$$

$$\therefore 5b = 20 \implies b = 4$$

2b

:
$$a = 6, b = 4$$

Textbook Chapter No.

Plane

Classical Thinking

- 1. Here, $\overline{n} = \hat{i} 2\hat{j} + 3\hat{k}$ and p = 1 $\hat{n} = \frac{\overline{n}}{|\overline{n}|} = \frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{1 + 4 + 9}} = \frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}}$
- $\therefore \quad \text{The vector equation of the plane is} \\ \bar{r} \cdot \hat{n} = p$

$$\Rightarrow \bar{r} \cdot \left(\frac{\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{14}}\right) = 1$$
$$\Rightarrow \bar{r} \cdot \left(\hat{i} - 2\hat{j} + 3\hat{k}\right) = \sqrt{14}$$

- 2. The given vector equation is $\overline{r}.(3\hat{i}-2\hat{j}+2\hat{k})=12$ (i) $\overline{r}.\overline{n}=12$, where $\overline{n}=3\hat{i}-2\hat{j}+2\hat{k}$ $\hat{n}=\frac{\overline{n}}{|\overline{n}|}=\frac{3\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{9+4+4}}=\frac{3\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{17}}$ $\Rightarrow \hat{n}=\frac{3}{\sqrt{17}}\hat{i}-\frac{2}{\sqrt{17}}\hat{j}+\frac{2}{\sqrt{17}}\hat{k}$
- ∴ Normal form is

$$\bar{\mathbf{r}} \cdot \left(\frac{3}{\sqrt{17}}\hat{\mathbf{i}} - \frac{2}{\sqrt{17}}\hat{\mathbf{j}} + \frac{2}{\sqrt{17}}\hat{\mathbf{k}}\right) = \frac{12}{\sqrt{17}}$$

- 3. Given equation of plane is $\overline{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) + 9 = 0$ $\Rightarrow \overline{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = -9$ (i) $\overline{n} = 2\hat{i} - 3\hat{j} + \hat{k}$ $\therefore \qquad \hat{n} = \frac{2\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{4 + 9 + 1}} = \frac{2\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{14}}$
- $\therefore \quad \text{The d.c.s. of normal to the plane are} \\ \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
- 4. Given that lx + my + nz = p is the equation of the plane in normal form.
- $\therefore \quad l, m, n \text{ are the direction cosines.} \\ \text{Also } l^2 + m^2 + n^2 = 1,$

Hints

Since, p is the distance from the origin, p should be greater than zero.

- \therefore All the statements are true,
- \therefore correct answer is option (D)
- 6. Equation of XY plane is z = 0,
- \therefore d.c.s. of its normal are 0, 0, 1

7.
$$\frac{x}{7} + \frac{y}{7} + \frac{z}{7} = \frac{1}{2}$$

For equal intercepts, $\frac{7}{a} = 7 \implies a = 1$

8. Equation of plane in intercept form is

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Here, a = b = c and point (1, -1, 2) lies in the plane,

$$\frac{1}{a} + \frac{-1}{a} + \frac{2}{a} = 1 \implies a = 2$$

 \therefore the required equation of a plane is x + y + z = 2.

9. Here,
$$\overline{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\overline{n} = 3\hat{i} - 2\hat{j} + 3\hat{k}$
The vector equation of the plane is
 $\overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$
 $\Rightarrow \overline{r} \cdot (3\hat{i} - 2\hat{j} + 3\hat{k}) = (\hat{i} + \hat{j} + 2\hat{k}) \cdot (3\hat{i} - 2\hat{j} + 3\hat{k})$
 $\Rightarrow \overline{r} \cdot (3\hat{i} - 2\hat{j} + 3\hat{k}) = 7$

10. Let
$$\overline{a} = \hat{j} - 3\hat{k}$$
 and $\overline{n} = \hat{i} + 2\hat{j} + 4\hat{k}$
The vector equation of plane is
 $\overline{r} \cdot (\hat{i} + 2\hat{j} + 4\hat{k}) = (\hat{j} - 3\hat{k}) \cdot (\hat{i} + 2\hat{j} + 4\hat{k})$
 $\Rightarrow \overline{r} \cdot (\hat{i} + 2\hat{j} + 4\hat{k}) = -10$

11. The plane passes through (2, -1, 1) This point satisfies the equation of plane in option (D) Also, it has d.r.s. 1, 1, -2.
∴ option (D) is correct answer.

Chapter 08: Plane

Alternate method:

Let $A \equiv (2, -1, 1)$ The d.r.s. of line joining the points (2, 3, -1) and (1, 2, 1) are 1, 1, -2 \therefore the equation of the required plane is 1(x-2) + 1(y+1) - 2(z-1) = 0

 $\Rightarrow x + y - 2z + 1 = 0$

- 12. The plane passes through (3, 2, -1) This point satisfies the equation of plane in option (C). Also, it has d.r.s. 2, 2, -3
- \therefore option (C) is correct answer.
- 13. The plane passes through (-10, 5, 4) This point satisfies the equation of plane in option (B) Also, it has d.r.s. 7, -3, -1
- \therefore option (B) is correct answer.
- 14. The plane passes through (1, 2, -3) This point satisfies the equation of plane in option (A)
 - Also, it has d.r.s. 1, 2, -3.
- ∴ option (A) is correct answer.
 Alternate method:
 Let M (1, 2, -3) be the foot of perpendicular from the origin O (0, 0, 0) to the plane D. r. s of normal are 1, 2, -3
- $\therefore \text{ the equation of the required plane is}$ 1 (x-1)+2 (y-2)-3 (z+3) = 0 $\Rightarrow x+2y-3z = 14$
- 15. The plane passes through (2, 4, -3) This point satisfies the equation of plane in option (C) Also, it has d.r.s. 2, 4, -3.
- \therefore option (C) is correct answer.
- 16. The plane passes through (1, -1, 1) This point satisfies the equation of plane in option (D)

Also, it has d.r.s =
$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix}$$

= $\hat{i}(2-1) - \hat{j}(4-0) + \hat{k}(2-0)$
= $\hat{i} - 4\hat{j} + 2\hat{k}$

i.e., 1, -4, 2

... option (D) is correct answer. Alternate Method Let $\bar{a} = \hat{i} - \hat{j} + \hat{k}$, $\bar{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\bar{c} = \hat{j} + 2\hat{k}$ Now, $\overline{b} \times \overline{c} = \hat{i} - 4\hat{j} + 2\hat{k}$

$$\therefore \text{ the vector equation of required plane is} $\overline{r}.(\overline{b} \times \overline{c}) = \overline{a}.(\overline{b} \times \overline{c})$

$$\Rightarrow \overline{r}.(\hat{i} - 4\hat{j} + 2\hat{k}) = (\hat{i} - \hat{j} + \hat{k}).(\hat{i} - 4\hat{j} + 2\hat{k})$$

$$\Rightarrow \overline{r}.(\hat{i} - 4\hat{j} + 2\hat{k}) = 7$$$$

17. Let $(x_1, y_1, z_1) = (0, 1, 2)$, $a_1, b_1, c_1 = 3, 1, 1$ and $a_2, b_2, c_2 = -1, 2, -5$

$$\therefore$$
 the equation of required plane is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$
$$\Rightarrow \begin{vmatrix} x - 0 & y - 1 & z - 2 \\ 3 & 1 & 1 \\ -1 & 2 & -5 \end{vmatrix} = 0$$
$$\Rightarrow -7x + 14y - 14 + 7z - 14 = 0$$
$$\Rightarrow x - 2y - z + 4 = 0$$

18. Let $(x_1, y_1, z_1) = (1, 2, -1)$, $a_1, b_1, c_1 = 2, 1, 3$ and $a_2, b_2, c_2 = 4, 1, 2$

$$\therefore$$
 the equation of required plane is

$$\begin{vmatrix} x-1 & y-2 & z+1 \\ 2 & 1 & 3 \\ 4 & 1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(-2) + (y-2)(10) + (z+1)(-2) = 0$$

$$\Rightarrow -2x + 2 + 10y - 20 - 2z - 2 = 0$$

$$\Rightarrow x - 5y + z + 10 = 0$$

- 19. Required plane passes through point $(x_1, y_1, z_1) \equiv (1, -3, -2)$ and is perpendicular to planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8
- \therefore their normals are parallel to the required plane
- \therefore a₁, b₁, c₁ = 1, 2, 2 and a₂, b₂, c₂ = 3, 3, 2
- \therefore the equation of required plane is

$$\begin{vmatrix} x-1 & y+3 & z+2 \\ 1 & 2 & 2 \\ 3 & 3 & 2 \end{vmatrix} = 0$$
$$\Rightarrow 2x - 4y + 3z - 8 = 0$$

- 20. The equation $\overline{r} = \overline{a} + \lambda \overline{b} + \mu \overline{c}$ represents a plane passing through vector \overline{a} and parallel to \overline{b} and \overline{c}
- $\therefore \qquad \overline{a} = 3\hat{i} + \hat{j}, \ \overline{b} = -\hat{j} + \hat{k}, \ \overline{c} = \hat{i} + 2\hat{j} + 3\hat{k}$

Now,
$$\overline{\mathbf{b}} \times \overline{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{0} & -1 & \mathbf{1} \\ 1 & 2 & 3 \end{vmatrix}$$
$$= -5\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$$

- $\therefore \text{ the equation of required plane is} \\ \bar{r}.(-5\hat{i}+\hat{j}+\hat{k}) = (3\hat{i}+\hat{j}).(-5\hat{i}+\hat{j}+\hat{k}) \\ \Rightarrow \bar{r}.(-5\hat{i}+\hat{j}+\hat{k}) = -14$
- 21. Consider option (B) $\bar{r}.(\hat{i}+11\hat{j}+3\hat{k})=14$

Its Cartesian form is x + 11y + 3z = 14Since, the given points (1, 2, -3), (3, 1, 0) and (0, 1, 1) satisfy the above plane, correct answer is option (B)

∴ correct answer is opti Alternate method:

Equation of a plane passing through three points is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x - 1 & y - 2 & z + 3 \\ 2 & -1 & 3 \\ -1 & -1 & 4 \end{vmatrix} = 0$$

$$\Rightarrow (x - 1)(-1) - (y - 2)(11) + (z + 3)(-3) = 0$$

$$\Rightarrow -x - 11y - 3z + 14 = 0$$

$$\Rightarrow x + 11y + 3z = 14$$

Its vector form is
 $\bar{r} \cdot (\hat{i} + 11\hat{j} + 3\hat{k}) = 14$

- 22. Consider option (B) $\vec{r} \cdot (3\hat{i} + \hat{j} - \hat{k}) + 4 = 0$ Its Cartesian form is 3x + y - z = -4Since the given points A(1, -2, 5), B(0, -5, -1) and C(-3, 5, 0) satisfy the above plane,
- \therefore correct answer is option (B).
- 23. Consider option (B) $\overline{r} .(9\hat{i} + 3\hat{j} - \hat{k}) = 14$ Its Cartesian form is 9x + 3y - z = 14Since, given points (1, 1, -2), (2, -1, 1) and (1, 2, 1) satisfy the above plane, ∴ correct answer is option (B)

- 24. Consider option (D) 2x + 2y - 5z = 0Since, the given points (4, 1, 2), (1, -1, 0) and (0, 0, 0) satisfy the above plane, ∴ correct answer is option (D)
- 25. Consider option (C) 3x - 4z + 1 = 0Since, the given points (1, 1, 1), (1, -1, 1) and (-7, -3, -5) satisfy the above plane,
- \therefore correct answer is option (C)
- 26. Here $\overline{n_1} = \hat{i} \hat{j} + 2\hat{k}$ and $\overline{n_2} = 3\hat{i} \hat{j} \hat{k}$ The vector equation of plane passing through intersection of $\overline{r} \cdot \overline{n_1} = p_1$ and $\overline{r} \cdot \overline{n_2} = p_2$ is $\overline{r} \cdot (\overline{n_1} + \lambda \overline{n_2}) = p_1 + \lambda p_2$ $\Rightarrow \overline{r} \cdot [\hat{i} - \hat{j} + 2\hat{k} + \lambda (3\hat{i} - \hat{j} - \hat{k})] = 3 + \lambda (4)$ $\Rightarrow \overline{r} \cdot [(1 + 3\lambda)\hat{i} - (1 + \lambda)\hat{j} + (2 - \lambda)\hat{k}] = 3 + 4\lambda$
- 27. Consider option (B) $\bar{r} \cdot (10\hat{i} + 11\hat{j} + 12\hat{k}) = 33$ Its Cartesian form is 10x + 11y + 12z = 33Since, the given point (1, 1, 1) is satisfies the above plane correct answer is option (B) *.*.. Alternate method: The equation of plane through the intersection of given planes is $(x + y + z - 4) + \lambda(x + 2y + 3z + 3) = 0$ Since, it passes through (1, 1, 1) $(1+1+1-4) + \lambda(1+2+3+3) = 0 \Longrightarrow \lambda = \frac{1}{2}$ *.*.. $\Rightarrow (x + y + z - 4) + \frac{1}{9}(x + 2y + 3z + 3) = 0$ $\Rightarrow 10x + 11y + 12z - 33 = 0$ *.*.. the equation of plane in vector form is $\bar{r} \cdot (10\hat{i} + 11\hat{j} + 12\hat{k}) = 33$ 28. Consider option (D) $\bar{r}.(11\hat{i}+3\hat{j}-5\hat{k})=22$ Its Cartesian form is 11x + 3y - 5z = 22Since, the given point (1, 2, -1) is satisfies the above plane,
- \therefore correct answer is option (D)

Chapter 08: Plane

29. Equation of plane passing through intersection of given planes is, $(x + y + z - 1) + \lambda(2x + 3y - z + 4) = 0$ $(1+2\lambda)x + (1+3\lambda)y + (1-\lambda)z + 4\lambda - 1 = 0$ Since, the plane is parallel to X-axis, $(1+2\lambda) = 0 \Longrightarrow \lambda = -\frac{1}{2}$ *.*.. Hence, the equation of required plane is y - 3z + 6 = 030. Plane passes through (1, 2, 3)The point (1, 2, 3) satisfies the equation of plane represented by option (B) *.*.. option (B) is correct Alternate method: Any plane parallel to 2x + 4y + 2z = 5 is 2x + 4y + 2z = kIt passes through $(1, 2, 3) \Rightarrow k = 16$ Equation of plane is x + 2y + z = 8*.*.. 31. Plane passes through (0, 0, 0)The point (0, 0, 0) satisfies the equation of plane represented by option (A) option (A) is correct. *.*.. 32. Equation of plane parallel to ZX-plane is y = b. It is passes through (0, 2, 0)its equation is y = 2. *.*.. Equation of plane parallel to YZ-plane is x = a33. Since, it is passes through (-1, 3, 4)equation of required plane is x = -1*.*.. i.e., x + 1 = 034. Since, the plane is parallel to X-axis, the d.r.s. of the normal to the plane are 0, b, c The equation of required plane is by + cz + d = 0*.*.. 35. Since, the plane is parallel to ax + by + cz = 0, their d.r.s will be same and

It passes through (α, β, γ) \therefore The equation of the plane is $a(x - \alpha) + b(y - \beta) + c(z - \gamma) = 0$ $\Rightarrow ax + by + cz = a\alpha + b\beta + c\gamma$

36. Equation of the plane through the origin is ax + by + cz = 0The required plane passes through the line $\frac{x-1}{5} = \frac{y-2}{4} = \frac{z-3}{5}$ ∴ 5a + 4b + 5c = 0(i)

The plane passes through the point (1, 2, 3) \therefore a + 2b + 3c = 0(ii) Solving (i) and (ii), we get

$$\therefore \qquad \frac{a}{12-10} = \frac{b}{5-15} = \frac{c}{10-4}$$
$$\Rightarrow \frac{a}{1} = \frac{b}{-5} = \frac{c}{3}$$

 $\therefore \quad \text{The equation of the required plane is} \\ x - 5y + 3z = 0$

37. Since, line is perpendicular to the plane

 $\therefore \quad \text{d.r.s. of the line are a, b, c} \\ \text{It passes through } (\alpha, \beta, \gamma) \\ \therefore \quad \text{equation of perpendicular is} \\ \end{cases}$

$$x - \alpha \quad v - \beta \quad z - \gamma$$

$$\frac{x-\alpha}{a} = \frac{y-\beta}{b} = \frac{z-\beta}{c}$$

38. Since, line is perpendicular to the plane

 $\therefore \quad \text{d.r.s. of the line are } 2, -3, 1$ It passes through (1, 1, 1)

the equation of required line is

$$\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{1}$$

...

- 39. Since, line is perpendicular to the plane
- $\therefore \quad \text{d.r.s. of the line are } 1, -2, -3$ It passes through (1, 1, -1) $\therefore \quad \text{the equation of required line is}$ x-1 y-1 z+1

- 40. D.r.s of line perpendicular to YZ-plane are 1, 0, 0 It passes through (1, 2, 3)
- \therefore equation of required line is

$$\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{0}$$

- 41. D.r.s of the normal to the XZ plane are a, 0, c The required line passes through (1, 2, 3)
- \therefore The equation of required line is

$$\frac{x-1}{a} = \frac{y-2}{0} = \frac{z-3}{c}$$

42. Equation of line passing through point (1, 1, 1) is

$$\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{c}$$

Also, the line is parallel to the plane 2x + 3y + z + 5 = 0

$$\therefore \quad 2a + 3b + c = 0$$

The above equation is satisfied by -1, 1, -1 \therefore correct answer is option (A)

- 43. The line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x 4y + z = 7.
- ∴ the point (4, 2, k) lies on the line and hence lies in the plane

$$\therefore \quad 2(4) - 4(2) + k = 7$$
$$\Rightarrow k = 7$$

44. $\overline{n}_1 = 2\hat{i} - \hat{j} + \hat{k}$ and $\overline{n}_2 = \hat{i} + \hat{j} + 2\hat{k}$ $\therefore \quad \cos\theta = \left|\frac{\overline{n}_1 \cdot \overline{n}_2}{\left|\overline{n}_1\right| \left|\overline{n}_2\right|}\right|$ $= \left|\frac{2(1) - 1(1) + 1(2)}{\sqrt{4 + 1 + 1}\sqrt{1 + 1 + 4}}\right| = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}$

45. Let
$$a_1$$
, b_1 , $c_1 = 1$, 2, -3 and a_2 , b_2 , $c_2 = 4$, 1
∴ The angle between the planes is

, 2

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$
$$= \left| \frac{1(4) + 2(1) + (-3)(2)}{\sqrt{1 + 4 + 9} \cdot \sqrt{16 + 1 + 4}} \right| = 0$$
$$\Rightarrow \theta = \frac{\pi}{2}$$

- 48. The d.r.s. of normal to first plane are a, b, c and the d.r.s. of normal to second plane are a', b', c'Since the two planes are perpendicular,
- $\therefore \quad aa' + bb' + cc' = 0$
- 49. The d.r.s of the normal to the plane are 0, 2, 3. The d.r.s of X axis are 1, 0, 0 Now, $a_1a_2 + b_1b_2 + c_1c_2 = 0(1) + 2(0) + 3(0)$ = 0
- \therefore The plane 2y + 3z = 0 passes through X-axis.
- 50. Comparing the equations of line and plane with $\overline{r} = \overline{a} + \lambda \overline{b}$ and $\overline{r}.\overline{n} = p$, we get $\overline{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\overline{n} = 2\hat{i} - \hat{j} + \hat{k}$
- \therefore The angle between the line and plane is

$$\sin \theta = \left| \frac{\overline{b} \cdot \overline{n}}{\left| \overline{b} \right| \cdot \left| \overline{n} \right|} \right|$$
$$= \left| \frac{1(2) + 2(-1) - 1(1)}{\sqrt{1 + 4 + 1} \sqrt{4 + 1 + 1}} \right| = \frac{1}{6}$$
$$\Rightarrow \theta = \sin^{-1} \left(\frac{1}{6} \right)$$

51. Here, $\overline{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overline{n} = 3\hat{i} - 4\hat{k}$

$$\therefore \quad \text{Angle between the line and plane is} \\ \sin \theta = \left| \frac{(\hat{i} - \hat{j} + \hat{k}) \cdot (3\hat{i} - 4\hat{k})}{\sqrt{1 + 1 + 1} \cdot \sqrt{9 + 16}} \right| = \left| \frac{-1}{5\sqrt{3}} \right| \\ \Rightarrow \theta = \sin^{-1} \left(\frac{1}{5\sqrt{3}} \right)$$

52. Let a, b, c = 2, 3, 4 and a₁, b₁, c₁ = 3, 2, -3
∴
$$\sin \theta = \frac{aa_1 + bb_1 + cc_1}{\sqrt{a^2 + b^2 + c^2}\sqrt{a_1^2 + b_1^2 + c_1^2}}$$

 $= \frac{2(3) + 3(2) + 4(-3)}{\sqrt{2^2 + 3^2 + 4^2}\sqrt{(3)^2 + (2)^2 + (-3)^2}}$
 $\Rightarrow \sin \theta = 0$
 $\Rightarrow \theta = 0^\circ$

53. Let a, b, c = 3, 2, 4 and a₁, b₁, c₁ = 2, 1, -3
∴
$$\sin \theta = \frac{6+2-12}{\sqrt{9+4+16}\sqrt{4+1+9}}$$

⇒ $\sin \theta = \frac{-4}{\sqrt{29\times 14}} = \frac{-4}{\sqrt{406}}$
⇒ $\theta = \sin^{-1}\left(\frac{-4}{\sqrt{406}}\right)$

54. The d.r.s. of line and plane are a, b, c

$$\therefore \quad \sin \theta = \frac{aa+bb+cc}{\sqrt{a^2+b^2+c^2} \cdot \sqrt{a^2+b^2+c^2}}$$
$$= \frac{a^2+b^2+c^2}{a^2+b^2+c^2} = 1$$
$$\Rightarrow \theta = 90^\circ$$

55. Given equation of line is 6x = 4y = 3zi.e. $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ ∴ the d.r.s. of line are 2, 3, 4 the d.r.s. of plane are 3, 2, -3

$$\therefore \quad \sin \theta = \frac{2(3) + 3(2) + 4(-3)}{\sqrt{4 + 9 + 16} \cdot \sqrt{9 + 4 + 9}} = 0$$
$$\implies \theta = 90^{\circ}$$

57. Since the line $\bar{r} = \hat{i} + \lambda (2\hat{i} - m\hat{j} - 3\hat{k})$ is parallel to the plane $\bar{r} .(m\hat{i} + 3\hat{j} + \hat{k}) = 0$ ∴ $\bar{b}.\bar{n} = 0$ $\Rightarrow (2\hat{i} - m\hat{j} - 3\hat{k}) .(m\hat{i} + 3\hat{j} + \hat{k}) = 0$ $\Rightarrow 2(m) - m(3) - 3(1) = 0$ $\Rightarrow -m = 3$ $\Rightarrow m = -3$

Chapter 08: Plane

58. The line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ lie on the plane 4x + 4y - kz = 0Since the given line lies on the plane, it is parallel to the plane ∴ $aa_1 + bb_1 + cc_1 = 0$

$$\Rightarrow 4(2) + 4(3) - k(4) = 0$$
$$\Rightarrow 4k = 20 \Rightarrow k = 5$$

- 59. The equation of plane is 3x - 2y + 6z - 5 = 0 and the point is (2, 3, 4)
- \therefore The distance of point from the plane is

$$d = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$
$$= \left| \frac{2(3) + 3(-2) + 4(6) - 5}{\sqrt{3^2 + 2^2 + 6^2}} \right| = \frac{19}{7}$$

Alternate method:

Let A(a) = (2,3,4)Given equation of plane is $\overline{r} \cdot (3\hat{i} - 2\hat{j} + 6\hat{k}) = 5$

$$\therefore \quad \overline{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \text{, and } \overline{n} = 3\hat{i} - 2\hat{j} + 6\hat{k}$$

 \therefore The distance of point from plane is

$$d = \frac{\left| \left(\bar{a} \cdot \bar{n}\right) - p \right|}{\left| \bar{n} \right|} = \left| \frac{2(3) + 3(-2) + 4(6) - 5}{\sqrt{3^2 + 2^2 + 6^2}} \right| = \frac{19}{7}$$

60. Here, a = 1, b = 1, c = 1, d = -3 and x = y = z = 0

:. $d = \left| \frac{-3}{\sqrt{1^2 + 1^2 + 1^2}} \right| = \sqrt{3}$

61. Here, a = 3, b = -6, c = 2, z = 11 and x = 2, y = 3, z = 4 $a = \begin{vmatrix} 3(2) + (-6)(3) + 2(4) + 11 \end{vmatrix} = 1$

$$\therefore \quad d = \left| \frac{3(2) + (-6)(3) + 2(4) + 11}{\sqrt{3^2 + (-6)^2 + 2^2}} \right| = 1$$

- 62. Let the intercepts made by the plane a, b, c = 2, 1, -2
- \therefore The distance of plane from origin is

$$d = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} = \frac{1}{\sqrt{\frac{1}{4} + 1 + \frac{1}{4}}} = \frac{2}{\sqrt{6}}$$

Alternate method: The equation of plane is

$$\frac{x}{2} + \frac{y}{1} + \frac{z}{-2} = 1$$

i.e. $x + 2y - z - 2 = 0$

 \therefore distance of plane from the origin is

$$d = \left| \frac{-2}{\sqrt{1+4+1}} \right|$$
$$d = \frac{2}{\sqrt{6}}$$

63. Let a, b,
$$c = -6, 3, 4$$

 \therefore The length of perpendicular from origin is
1 12

$$d = \frac{1}{\sqrt{\frac{1}{(-6)^2} + \frac{1}{3^2} + \frac{1}{4^2}}} = \frac{1}{\sqrt{\frac{29}{144}}} = \frac{12}{\sqrt{29}}$$

- 64. The distance of (1,1,1) from the origin is $d = \sqrt{(1)^{2} + (1)^{2} + (1)^{2}} = \sqrt{3}$ Distance of (1,1,1) from x + y + z + k = 0 is $d_{1} = \left| \frac{(1) + (1) + (1) + k}{\sqrt{(1)^{2} + (1)^{2} + (1)^{2}}} \right| = \pm \frac{k + 3}{\sqrt{3}}$ Now, $\sqrt{3} = \pm \frac{1}{2} \left(\frac{k + 3}{\sqrt{3}} \right)$ (given) $\Rightarrow 6 = \pm (k + 3)$ $\Rightarrow k = 3, -9$
- 65. Since, the points (1, 1, k) and (-3, 0, 1) are equidistance from the given plane

$$\therefore \quad \left| \frac{3+4-12k+13}{\sqrt{9+16+144}} \right| = \left| \frac{-9-12+13}{\sqrt{9+16+144}} \right| \\ \Rightarrow |3+4-12k+13| = |-9-12+13| \\ \Rightarrow 20-12k = \pm 8 \Rightarrow k = 1, \frac{5}{7}$$

66. Given line passes through (1, −2, 1) and the d.r.s. of normal to the plane are 2, 2, −1

.
$$d = \left| \frac{2(1) + 2(-2) - 1(1) - 6}{\sqrt{2^2 + 2^2 + (-1)^2}} \right| = \frac{9}{\sqrt{9}} = 3$$

67. Given planes are parallel and can be written as

$$2x - 2y + z + 3 = 0$$
 and $2x - 2y + z + \frac{5}{2} = 0$

 \therefore the distance between these planes is

$$d = \left| \frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}} \right|$$
$$= \left| \frac{3 - \frac{5}{2}}{\sqrt{4 + 4 + 1}} \right| = \frac{\left(\frac{1}{2}\right)}{3} = \frac{1}{6}$$

68. Given planes are parallel, and can be written as

$$x + 2y + 3z + 7 = 0$$
 and $x + 2y + 3z + \frac{7}{2} = 0$

 \therefore the distance between these planes is

$$d = \left| \frac{7 - \frac{7}{2}}{\sqrt{1 + 4 + 9}} \right| = \frac{\sqrt{7}}{2\sqrt{2}}$$

– 1

1

69. The plane passes through points (1, -2, 3) and (4, 0, -1)
This points satisfies the equation of plane in

option (A) ∴ option (A) is correct answer.

70. The plane passes through (1, 2, -1)This point satisfies the equation of plane in option (A)

Also, it has d.r.s =
$$\overline{b} \times \overline{c} = \begin{vmatrix} i & j & k \\ 1 & 2 & -1 \\ 1 & 1 & 3 \end{vmatrix}$$

= $7\hat{i} - 4\hat{j} - \hat{k}$

i.e., 7, -4, -1

- ... option (A) is correct answer. Alternate Method Let $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{j} + 2\hat{k}$ Now, $\vec{b} \times \vec{c} = \hat{i} - 4\hat{j} + 2\hat{k}$
- $\therefore \text{ the vector equation of required plane is}$ $<math>\overline{r}.(\overline{b} \times \overline{c}) = \overline{a}.(\overline{b} \times \overline{c})$ $\Rightarrow \overline{r}(7\hat{i} - 4\hat{j} - \hat{k}) = (\hat{i} - 2\hat{j} - \hat{k}).(7\hat{i} - 4\hat{j} - \hat{k})$ $\Rightarrow \overline{r}.(7\hat{i} - 4\hat{j} - \hat{k}) = 0$

Critical Thinking

1. Let x_1, y_1, z_1 be the intercepts made by the plane \therefore Equation of plane is x = y = z

 $\frac{x}{x_1} + \frac{y}{y_1} + \frac{z}{z_1} = 1$ Since it passes through (a, b, c), $\Rightarrow \frac{a}{x_1} + \frac{b}{y_1} + \frac{c}{z_1} = 1$

 $\therefore \quad \text{Locus of } (x_1, y_1, z_1) \text{ is } \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$

2. Since, the plane contains the X-axis, it passes through the origin d = 0.... The equation of the plane is ax + by + cz = 0....(i) Also, plane passes through (1, 1, 1) $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$ *.*..(ii) The equation of the X-axis is $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ As the plane contains the X-axis, the d.r.s of the normal to the plane are perpendicular to X-axis a(1) + b(0) + c(0) = 0... $\Rightarrow a = 0$ Substituting value of a in (ii) we get $b + c = 0 \Longrightarrow b = -c$ The equation of the required plane is *.*.. bv - bz = 0 $\Rightarrow v - z = 0$ 3. The plane passes through (1, -1, 3) and (2, 3-4)The points satisfies the equation of plane in option (B) option (B) is correct answer. *.*.. Alternate method: Let ax + by + cz + d = 0 be the equation of the required plane. Since, the plane is parallel to X-axis, *.*.. a = 0The points (1, -1, 3) and (2, 3, -4) lie in the plane, -b + 3c + d = 0, and *.*..(i) 3b - 4c + d = 0....(ii) Solving the equations (i) and (ii), we get $\frac{b}{3-(-4)} = \frac{c}{3+1} = \frac{d}{4-9}$ $\Rightarrow \frac{b}{7} = \frac{c}{4} = \frac{d}{-5}$ Equation of the required plane is 7y + 4z - 5 = 0*.*.. 4.

$$A(\overline{a}) = \hat{i} + 2\hat{j} + 4\hat{k}$$
$$M(\overline{m}) = 2\hat{j} - \hat{k}$$
$$B(\overline{b}) = -\hat{i} + 2\hat{j} - 6\hat{k}$$

$$\therefore \quad M(\overline{m}) = \frac{(1-1)}{2}\hat{i} + \frac{(2+2)}{2}\hat{j} + \frac{(4-6)}{2}\hat{k}$$

= $2\hat{j} - \hat{k}$
$$\therefore \quad \text{equation of plane passing through the vector}$$

 $2\hat{j} - \hat{k} \text{ and perpendicular to } \overline{AB} = -2\hat{i} - 10\hat{k} \text{ is}$
 $\overline{r}.(-2\hat{i} - 10\hat{k}) = (2\hat{j} - \hat{k}).(-2\hat{i} - 10\hat{k})$
 $\Rightarrow \overline{r}.(\hat{i} + 5\hat{k}) = -10$
5. P be the point (a, b, c).
 $\therefore \quad \text{The d.r.s of OP are a, b, c.}$
 $\therefore \quad \text{Equation of the plane passing through the point (a, b, c) is}$
 $a(x - a) + b(y - b) + c(z - c) = 0$

$$a(x-a) + b(y-b) + c(z-c) - b(y-b) + c(z-c) - b(y-b) + b(z-c) - b$$

6. Mid-point of the line segment joining the points (-1, 2, 3) and (3, -5, 6) is

$$M \equiv \left(\frac{-1+3}{2}, \frac{2-5}{2}, \frac{3+6}{2}\right)$$
$$M \equiv \left(1, \frac{-3}{2}, \frac{9}{2}\right)$$

The plane passes through point M It satisfies option (C) **Alternate method:**

The required plane bisects the line segment perpendicularly.

:. the d.r.s. of the normal to the plane are 3 - (-1), -5 - 2, 6 - 3i.e. 4, -7, 3

Since, the mid-point $\left(1, -\frac{3}{2}, \frac{9}{2}\right)$ lies in the plane,

 \therefore The equation of the plane is

Р

$$4(x-1) - 7\left(y + \frac{3}{2}\right) + 3\left(z - \frac{9}{2}\right) = 0$$
$$\Rightarrow 4x - 7y + 3z = 28$$

7.

It lies on the plane The d.r.s. of normal to the plane are -4, 2, 2 i.e. -2, 1, 1 The equation of the plane is *.*.. -2(x+1) + 1(y-3) + 1(z-4) = 0 $\Rightarrow 2x - y - z = -9$ $\Rightarrow \frac{x}{\underline{-9}} + \frac{y}{9} + \frac{z}{9} = 1$ Intercepts are $\frac{-9}{2}$, 9, 9 *.*.. (2, -1, 0) lies on the plane 9x - 2y - 3z = k8. 9(2) - 2(-1) - 3(0) = k*.*.. \Rightarrow k = 20 9. Since, the point $(1, 0, z_1)$ lies on the plane $\overline{r}.(-\hat{i}+3\hat{k})=2$ i.e. -x + 3z = 2 \Rightarrow z₁ = 1 10. (3, 2, -1) lies on the plane $5x + 3y - 2z = \lambda$ $5(3) + 3(2) - 2(-1) = \lambda$ *.*.. $\Rightarrow \lambda = 23$ 11. The equation of the plane passing through the intersection of the planes $r \cdot a = p$ and $\overline{\mathbf{r}} \cdot \overline{\mathbf{b}} = \mathbf{q}$ is $\mathbf{r} \cdot (\mathbf{a} + \lambda \mathbf{b}) = \mathbf{p} + \lambda \mathbf{q} \quad \dots (\mathbf{i})$ Since, the plane passes through the origin, $p + \lambda q = 0$ $\Rightarrow \lambda = \frac{-p}{2}$ Substituting the value of λ in (i), we get $\overline{\mathbf{r}} \cdot \left(\overline{\mathbf{a}} - \frac{\mathbf{p}}{\mathbf{q}}\overline{\mathbf{b}}\right) = \mathbf{p} + \left(\frac{-\mathbf{p}}{\mathbf{q}}\right)(\mathbf{q})$ $\Rightarrow \bar{r} \cdot (\bar{aq} - \bar{bp}) = pq - pq$ $\Rightarrow \bar{\mathbf{r}} \cdot (\bar{\mathbf{qa}} - \bar{\mathbf{pb}}) = 0$ The line of intersection of the planes 12. $\vec{r} \cdot (3\hat{i} - \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} + 4\hat{j} - 2\hat{k}) = 2$ is perpendicular to each of the normal vectors $\overline{n_1} = 3\hat{i} - \hat{j} + \hat{k}$ and $\overline{n_2} = \hat{i} + 4\hat{j} - 2\hat{k}$. The line is parallel to the vector $n_1 \times n_2$ *.*.. $\vec{n}_{1} \times \vec{n}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 1 & 4 & -2 \end{vmatrix}$:. $= -2\hat{i} + 7\hat{j} + 13\hat{k}$

Chapter 08: Plane

....

....

13. The equation of the required plane is $x + 2y + 3z - 4 + \lambda(2x + y - z + 5) = 0$ $\Rightarrow (1 + 2\lambda)x + (2 + \lambda)y + (3 - \lambda)z - 4 + 5\lambda = 0$(i)

Let a, b, c be the d.r.s of the required plane From equation (i), $a = 1 + 2\lambda$; $b = 2 + \lambda$;

The required plane is perpendicular to 5x + 3y - 6z + 8 = 0

5a + 3b - 6c = 0 $\Rightarrow 5(1 + 2\lambda) + 3(2 + \lambda) - 6(3 - \lambda) = 0$ $\Rightarrow 5 + 10\lambda + 6 + 3\lambda - 18 + 6\lambda = 0$ $\Rightarrow -7 + 19\lambda = 0$ $\Rightarrow \lambda = \frac{7}{19}$

Substituting the value of λ in equation (i), we get

$$\left(1+2\times\frac{7}{19}\right)x + \left(2+\frac{7}{19}\right)y + \left(3-\frac{7}{19}\right)z - 4 + 5\left(\frac{7}{19}\right) = 0$$
$$\Rightarrow \frac{33}{19}x + \frac{45}{19}y + \frac{50}{19}z - \frac{41}{19} = 0$$
$$\Rightarrow 33x + 45y + 50z - 41 = 0$$

14. The equation of the plane passing through the origin is ax + by + cz = 0. The required plane is perpendicular to the line x = 2y = 3z

i.e.,
$$\frac{x}{6} = \frac{y}{3} = \frac{z}{2}$$

- \therefore the d.r.s. of the line are 6, 3, 2
- \therefore the d.r.s. of the normal to the plane are 6, 3 and 2.
- :. the equation of the required plane is 6x + 3y + 2z = 0
- 15. Let a, b, c be the d.r.s. of the required plane. Since, the plane passes through Z-axis,

$$\therefore \quad a(0) + b(0) + c(1) = 0$$
$$\Rightarrow c = 0$$

Given that the required plane is perpendicular

is

to
$$\frac{x-1}{\cos\theta} = \frac{y+2}{\sin\theta} = \frac{z-3}{0}$$

 \therefore d.r.s of normal to plane are $\cos \theta$, $\sin \theta$, 0

the equation of required plane

$$x \cos \theta + y \sin \theta = 0$$

 $\Rightarrow x + y \tan \theta = 0$

16.

- \therefore the d.r.s of the normal to the plane are 1, -1, 1
- ... the equation of plane passing through the point (1, 2, 3)1(x-1) - 1(y-2) + 1(z-3) = 0

$$\Rightarrow x - y + z = 2$$

17. Equation of any plane through (x_1, y_1, z_1) is a $(x - x_1) + b (y - y_1) + c(z - z_1) = 0$ (i) it contains the line

$$\frac{x - x_2}{d_1} = \frac{y - y_2}{d_2} = \frac{z - z_2}{d_3} = 0$$

i.e. it passes through (x_2, y_2, z_2)

 $\therefore \quad a (x_2 - x_1) + b (y_2 - y_1) + c (z_2 - z_1) = 0 \dots (ii)$ Also, $ad_1 + bd_2 + cd_3 = 0 \qquad \dots (iii)$ Eliminating a, b, c from (i), (ii), (iii), we get the equation of the required plane as

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ d_1 & d_2 & d_3 \end{vmatrix} = 0$$

- 18. Vector perpendicular to plane is $\overline{n} = 6\hat{i} - 3\hat{j} + 5\hat{k}$ Thus, the line perpendicular to the given line will be parallel to \overline{n}
- $\therefore \quad \text{The equation of line which passes through} \\ \overline{a} = 2\hat{i} 3\hat{j} 5\hat{k} \text{ and parallel to } \overline{n} \text{ is} \\ \overline{r} = \overline{a} + \lambda \overline{n} \\ \Rightarrow \overline{r} = (2\hat{i} 3\hat{j} 5\hat{k}) + \lambda(6\hat{i} 3\hat{j} + 5\hat{k})$
- 19. The d.r.s. of the line are 3, -4, 5 and it passes through is 3, -5, 7
- $\therefore \quad \text{The equation of line is} \\ \bar{\mathbf{r}} = 3\hat{\mathbf{i}} 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + \lambda \left(3\hat{\mathbf{i}} 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}\right)$

....

Chapter 08: Plane

20. The line is perpendicular to the plane

$$x + 2y - 5z + 9 = 0$$

∴ the d.r.s are 1, 2, -5
Also it passes through (1, 2, 3)
∴ The equation of line is $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{-5}$
21. $\overline{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1 \end{vmatrix} = -3\hat{i} + 5\hat{j} + 4\hat{k}$
∴ the d.r.s. of line are -3, 5, 4
∴ the d.r.s. of line are -3, 5, 4
∴ the d.r.s. of line are -3, 5, 4
∴ The equation of the line passing through
(1, 2, 3) and having d.r.s. -3, 5, 4 is
 $\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}$
22. Here, $\overline{n}_1 = (x\hat{i} + \hat{j} - \hat{k})$, and
 $\overline{n}_2 = (\hat{i} + x\hat{j} - \hat{k})$
∴ $\cos \theta = \left| \frac{\overline{n}_1 \cdot \overline{n}_2}{|\overline{n}_1| |\overline{n}_2|} \right|$
 $\Rightarrow \cos \frac{\pi}{3} = \left| \frac{(x\hat{i} + \hat{j} - \hat{k}) \cdot (\hat{i} + x\hat{j} + \hat{k})}{\sqrt{x^2 + 1 + 1} \cdot \sqrt{1 + x^2 + 1}} \right|$
 $\Rightarrow \frac{1}{2} = \pm \left(\frac{x + x - 1}{x^2 + 2} \right)$
 $\Rightarrow \frac{2x - 1}{x^2 + 2} = \frac{1}{2}$...(considering positive value)
 $\Rightarrow x^2 + 2 - 4x + 2 = 0$
 $\Rightarrow (x - 2)^2 = 0$
 $\Rightarrow x = 2$
23. Consider plane OPQ
the equation of plane is
 $ax + by + cz = 0$
The plane passes through P(1, 2, 1) and
Q(2, 3, 0)
∴ $a + 2b + c = 0$ and(i)
 $2a + 3b = 0$ (ii)
On solving (i) and (ii), we get
 $\frac{a}{-3} = \frac{b}{2} = \frac{c}{-1}$

... The equation of plane OPQ is -3x + 2y - z = 0(iii) The equation of plane PQR is $a_1 (x - 1) + b_1 (y - 2) + c_1 (z - 1) = 0$ On solving for a_1 , b_1 , c_1 , we get $a_1 = -3$, $b_1 = 3$, $c_1 = 0$

- $\therefore \quad \text{The equation of PQR is} \\ x y + 1 = 0 \qquad \dots \text{(iv)}$
- ... The angle between the planes represented by equations (iii) and (iv) is

$$\cos \theta = \left| \frac{(-3)(1) + 2(-1)}{\sqrt{9 + 4 + 1} \cdot \sqrt{1 + 1}} \right|$$
$$= \left| \frac{-5}{\sqrt{14} \cdot \sqrt{2}} \right|$$
$$\Rightarrow \theta = \cos^{-1} \left(\frac{5}{\sqrt{28}} \right)$$

- 24. The d.r.s. of normal to the plane are 2, 3, -1 The d.r.s. of X-axis are 1, 0, 0
- \therefore the angle between the plane and X-axis is

$$\sin \theta = \frac{aa_1 + bb_1 + cc_1}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{a_1^2 + b_1^2 + c_1^2}}$$
$$\Rightarrow \sin \theta = \frac{2(1) + 0 + 0}{\sqrt{4 + 9 + 1} \cdot \sqrt{1}}$$
$$\Rightarrow \sin \theta = \frac{2}{\sqrt{14}}$$
$$\Rightarrow \theta = \sin^{-1}\left(\frac{2}{\sqrt{14}}\right)$$

25. Here a = 1, b = k, c = 4 and
a₁ = 1, b₁ = -3, c₁ = 2
The angle between the line and plane is

$$\sin \theta = \frac{aa_1 + bb_1 + cc_1}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{a_1^2 + b_1^2 + c_1^2}}$$

Now, $\theta = \sin^{-1}\left(\frac{3}{7\sqrt{6}}\right) \implies \sin \theta = \frac{3}{7\sqrt{6}}$
 $\therefore \frac{3}{7\sqrt{6}} = \frac{1 - 3k + 8}{\sqrt{1 + k^2 + 16} \cdot \sqrt{1 + 9 + 4}}$
 $\implies k^2 + 21k - 46 = 0$
 $\implies k = 2 \text{ or } -23$
26. Equation of the line L: $\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{2}$ and
equation of the plane P: $4x - 2y - z = 1$.
The d.r.s of the line are 2, 3, 2, and
The d.r.s of the normal to the plane are 4,
-2, -1.
Now consider
 $a_1a_2 + b_1b_2 + c_1c_2 = 8 - 6 - 2 = 0$
 \therefore Line L and plane P are parallel.
Since the point (1, 0, 3), which lies on the line
L also satisfies the equation of the plane P.

27. Equation of the line L: $\frac{x+3}{2} = \frac{y-4}{3} = \frac{z+5}{1}$ and equation of the plane P: 2x - 3y + 5z = 1.The d.r.s of the line are 2, 3, 1 The d.r.s of the normal to the plane are 2, -3, 5. Now consider $a_1a_2 + b_1b_2 + c_1c_2 = 4 - 9 + 5 = 0$ Line L is parallel to the plane P. *.*.. Since, the line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-5}{4}$ lies in 28. the plane 4x + 4y - cz - d = 0, *.*.. $aa_1 + bb_1 + cc_1 = 0$ $\Rightarrow 2(4) + 3(4) + 4(-c) = 0$ $\Rightarrow 20 - 4c = 0$ \Rightarrow c = 5 Also, the plane passes through (3, 4, 5)4(3) + 4(4) - 5(5) - d = 0*.*.. \Rightarrow d = 3 29. Given equation of plane $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z+2}{2}$ The line passes through (1, 1, -2).... The above point lies on the plane x + By - 3z + D = 0*.*.. 1 + B + 6 + D = 0 \Rightarrow B + D = -7(i) Also the given line is perpendicular to the normal to the plane $a_1a_2 + b_1b_2 + c_1c_2 = 0$ \Rightarrow 2(1) + 3(B) + 2(-3) = 0 \Rightarrow B = $\frac{4}{2}$ Substituting value of B is equation (i), we get $D = \frac{-25}{3}$ 30. Since both the given lines pass through the point with position vector $\hat{i} + \hat{j}$, the required plane also passes through $\hat{i} + \hat{j}$, and normal to the plane is perpendicular to the vectors $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} - 2\hat{k}$. Let a, b, c be the d.r.s. of the normal to the plane.

$$\therefore \quad \overline{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & -1 \\ -1 & 1 & -2 \end{vmatrix}$$

 $\Rightarrow \overline{n} = -3\hat{i} + 3\hat{j} + 3\hat{k}$ i.e. $\overline{n} = -\hat{i} + \hat{j} + \hat{k}$ Vector equation of the plane passing through *.*.. $\hat{i} + \hat{j}$ and containing the given lines is $\bar{r}.(-\hat{i}+\hat{j}+\hat{k}) = (\hat{i}+\hat{j}).(-\hat{i}+\hat{j}+\hat{k})$ $\Rightarrow \bar{r} \cdot (-\hat{i} + \hat{j} + \hat{k}) = 0$ The plane passes through 31. (0, 2, -3) and (2, 6, 3)The two points satisfy the equation of plane is option (A) *.*.. option (A) is correct. **Alternate Method:** The equation of the plane is $|x-\alpha \quad y-\beta \quad z-\gamma|$ $a_1 \qquad b_1$ $c_1 = 0$ $a_2 \quad b_2 \quad c_2$ $\Rightarrow \begin{vmatrix} x & y-2 & z+3 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix} = 0$ $\Rightarrow -x - (y - 2)(-2) + (z + 3)(-1) = 0$ $\Rightarrow -x + 2v - 4 - z - 3 = 0$ $\Rightarrow x - 2y + z + 7 = 0$ 32. The plane passes through (5, 7, -3) and (8, 4, 5)The two points satisfy the equation of plane is option (A) *.*.. option (A) is correct. 33. Let a, b, c be the d.r.s of the normal to the plane $\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 5 & 7 \\ 1 & 4 & 7 \end{vmatrix} = \hat{i} - 2\hat{j} + \hat{k}$... Since, the plane passes through (-1, -3, -5)

- ∴ 1(x+1) 2(y+3) + 1(z+5) = 0⇒ x - 2y + z = 0From the given options only (0, 0, 0) satisfies the equation of the plane. ∴ The plane passes through (0, 0, 0).
- 34. Here $x_1, y_1, z_1 = -l, -3, -5$ and $x_2, y_2, z_2 = 2, 4, 6$ $a_1, b_1, c_1 = 3, 5, 7$ and $a_2, b_2, c_2 = 1, 3, 5$ Since the given lines are coplanar |x - x, y - y, z - z|

$$\therefore \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Chapter 08: Plane

$$\Rightarrow \begin{vmatrix} -l-2 & -3-4 & -5-6 \\ 3 & 5 & 7 \\ 1 & 3 & 5 \end{vmatrix} = 0$$

$$\Rightarrow (-l-2)(25-21) - (-3-4)(15-7) + (-5-6)(9-5) = 0$$

$$\Rightarrow 12 = 4(l+2)$$

$$\Rightarrow l = 1.$$

35. The lines are coplanar

$$\therefore \begin{vmatrix} -1-2 & -3-4 & -5-6 \\ 1 & 4 & k \\ 3 & 5 & k \end{vmatrix} = 0$$

$$\Rightarrow -3(4k - 5k) + 7(k - 3k) - 11(-7) = 0$$

$$\Rightarrow k = 7$$

36. Since the given lines are coplanar, then

$$\therefore \begin{vmatrix} 3-1 & 1-2 & 3-1 \\ 1 & 2 & -\lambda \\ \lambda & 3 & 4 \end{vmatrix} = 0$$
$$\Rightarrow \begin{vmatrix} 2 & -1 & 2 \\ 1 & 2 & -\lambda \\ \lambda & 3 & 4 \end{vmatrix} = 0$$
$$\Rightarrow \lambda^2 + 2\lambda + 26 = 0$$
$$\Delta = 4 - 4(1)(26) < 0$$
$$\therefore \text{ Roots are imaginary}$$
So no real value of λ exists

37.
$$\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$$
 and $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$

The d.r.s. of the first line are 1, 2, 3 and The d.r.s. of the second line are 2, 3, 4 Ratio of the d.r.s. are not same

i.e.
$$\frac{2}{1} \neq \frac{3}{2} \neq \frac{4}{3}$$

... The lines are not parallel. Sum of the products of the d.r.s. is not equal to 0 i.e., $2(1) + 2(3) + 3(4) \neq 0$

$$\therefore$$
 The lines are not perpendicular.

Consider
$$\begin{vmatrix} 0+2 & -2+6 & 3+3 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix}$$

= 2 $\begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix} = 0$ (:: the two rows are same)

 \therefore The two lines are coplanar.

38. Let d₁ be the distance of the point (1, 2, -1) from the plane 2x - 3y + z + k = 0

$$\therefore \quad d_1 = \left| \frac{2(1) - 3(2) + (-1) + k}{\sqrt{2^2 + (-3)^2 + 1^2}} \right| = \left| \frac{-5 + k}{\sqrt{4 + 9 + 1}} \right|$$
$$= \left| \frac{k - 5}{\sqrt{14}} \right|$$

Let d₂ be the distance of the point (1, 2, -1) from the plane x + 2y + 3z = 0

c.
$$d_2 = \left| \frac{(1) + 2(2) + 3(-1)}{\sqrt{1^2 + 2^2 + 3^2}} \right| = \left| \frac{2}{\sqrt{14}} \right|$$

Given that $d_1 d_2 = 1$.

$$\therefore \quad \left| \frac{k-5}{\sqrt{14}} \right| \left| \frac{2}{\sqrt{14}} \right| = 1$$
$$\Rightarrow (k-5) \ 2 = 14$$
$$\Rightarrow k-5 = 7$$
$$\Rightarrow k = 12$$

39.
$$P_{1} = \left| \frac{3(2) - 6(3) + 2(4) + 11}{\sqrt{3^{2} + (-6)^{2} + (2)^{2}}} \right| = 1$$
$$P_{2} = \left| \frac{3(1) - 6(1) + 2(4) + 11}{\sqrt{3^{2} + (-6)^{2} + (2)^{2}}} \right| = \frac{16}{7}$$

the equation P_1 and P_2 satisfies $7P^2 - 23P + 16 = 0.$

- \therefore P₁ and P₂ are the roots of the equation (B).
- 40. Equation of plane parallel to x 2y + 2z = 5 is x 2y + 2z + k = 0(i) distance of the above plane from (1, 2, 3) is 1.

$$\therefore \quad \left| \frac{1 - 4 + 6 + k}{\sqrt{9}} \right| = 1$$

i.e. $k + 3 = \pm 3$
 $\Rightarrow k = 0 \text{ or } - 6$

41. Let x, y, z be any point

$$d_{1}^{2} + d_{2}^{2} + d_{3}^{2} = 36$$
∴ $\left|\frac{x-z}{\sqrt{2}}\right|^{2} + \left|\frac{x-2y+z}{\sqrt{6}}\right|^{2} + \left|\frac{x+y+z}{\sqrt{3}}\right|^{2} = 36$

 $\Rightarrow \frac{1}{6} \left[3x^{2} - 6xz + 3z^{2} + x^{2} + 4y^{2} + z^{2} - 4xy - 4yz + 2xz + 2x^{2} + 2y^{2} + 2z^{2} + 4xy + 4yz + 4xz\right] = 36$

∴ $\Rightarrow x^{2} + y^{2} + z^{2} = 36$

42. Since all the planes are parallel, $p_1 = \frac{|2-6|}{\sqrt{2^2 + (-3)^2 + 4^2}} = \frac{4}{\sqrt{29}}$ *.*.. Equation of the plane 4x - 6y + 8z + 3 = 0 can be written as $2x - 3y + 4z + \frac{3}{2} = 0$ $p_2 = \frac{\left|2 - \frac{3}{2}\right|}{\sqrt{2^2 + (-3)^2 + 4^2}} = \frac{1}{2\sqrt{29}}$ *.*:. and $p_3 = \frac{|2+6|}{\sqrt{2^2 + (-3)^2 + 4^2}} = \frac{8}{\sqrt{29}}$ Now consider $p_1 + 8p_2 - p_3$ $=\frac{4}{\sqrt{29}}+\frac{4}{\sqrt{29}}-\frac{8}{\sqrt{29}}$ 43. Let $A \equiv (a, 0, 0), B \equiv (0, b, 0)$ and $c \equiv (0, 0, c)$ The equation of the plane in intercept form is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Since, centroid is (3, 3, 3) $3 = \frac{x_1 + x_2 + x_3}{3} = \frac{a + 0 + 0}{3} = 3$ *.*.. $\Rightarrow a = 9$ Similarly $\frac{0+b+0}{3} = 3 \Rightarrow b = 9$, and $\frac{0+0+c}{3} = 3 \implies c = 9$

- The equation of plane is $\frac{x}{q} + \frac{y}{q} + \frac{z}{q} = 1$ *.*..
 - $\Rightarrow x + y + z = 9$
- Let $A \equiv (a, 0, 0), B \equiv (0, b, 0)$ and $C \equiv (0, 0, c)$. 44. Since, centroid is (α, β, γ) $a = 3\alpha, b = 3\beta, c = 3\gamma$ *.*..
- the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ *.*..
 - $\frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$ $\Rightarrow \frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$
- The given equation of plane is 6x 3y + 2z = 1845. i.e. $\frac{x}{3} + \frac{y}{-6} + \frac{z}{9} = 1$ If a, b, c are intercepts made by the plane, then Centroid = $\left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$

$$G \equiv \left(\frac{3+0+0}{3}, \frac{0-6+0}{3}, \frac{9+0+0}{3}\right)$$
$$\Rightarrow G \equiv (1, -2, 3)$$

46. The given equations of plane is ax + by + cz = 1

i.e.
$$\frac{x}{\frac{1}{a}} + \frac{y}{\frac{1}{b}} + \frac{z}{\frac{1}{c}} = 1$$

The intercepts made by the plane are $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ *.*..

$$\therefore \qquad A = \left(\frac{1}{a}, 0, 0\right); B = \left(0, \frac{1}{b}, 0\right); C = \left(0, 0, \frac{1}{c}\right)$$
$$\therefore \qquad \text{centroid} = \left(\frac{\frac{1}{a} + 0 + 0}{3}, \frac{0 + \frac{1}{b} + 0}{3}, \frac{0 + 0 + \frac{1}{c}}{3}\right)$$
$$\Rightarrow G = \left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right)$$

47. Let equation of plane be
$$lx + my + nz = p$$

i.e., $\frac{x}{p} + \frac{y}{p} + \frac{z}{p} = 1$
∴ $A = \left(\frac{p}{l}, 0, 0\right), B = \left(0, \frac{p}{m}, 0\right), C = \left(0, 0, \frac{p}{n}\right)$
If centroid of ΔABC is (x_1, y_1, z_1) , then
 $x_1 = \frac{p}{3l}, y_1 = \frac{p}{3m}, z_1 = \frac{p}{3n}$
Now, $l^2 + m^2 + n^2 = 1$
∴ $\frac{p^2}{2} + \frac{p^2}{2} + \frac{p^2}{2} = 1$

$$9x_1^2 \quad 9y_1^2 \quad 9z_1^2$$
$$\Rightarrow \frac{1}{x_1^2} + \frac{1}{y_1^2} + \frac{1}{z_1^2} = \frac{9}{p^2}$$

...

....

48. The equation of line perpendicular to given plane passing through (2, 2, 2) is

$$\frac{x-2}{1} = \frac{y-2}{1} = \frac{z-2}{1} = \lambda$$
(say)

Any general point on it is $P \equiv (\lambda + 2, \lambda + 2, \lambda + 2)$ Since, P lies the plane x + y + z = 0

- $\lambda + 2 + \lambda + 2 + \lambda + 2 = 9 \Longrightarrow \lambda = 1$ *.*..
- *.*.. The foot of perpendicular is (3, 3, 3).
- 49. The required plane is perpendicular to the line v = 4 z = 5

$$\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-3}{2} = \lambda$$
 (say)

the d.r.s of normal to the plane are proportional to 1, 2, 2Equation of the plane is

x + 2y + 2z + d = 0....(i)

Chapter 08: Plane

Since it passes through the point (5, 1, 2), we have

(5) + 2(1) + 2(2) + d = 0 $\Rightarrow d = -11$

... The equation (i) becomes x + 2y + 2z - 11 = 0Any general point on the given line is given by

 $\lambda + 2$, $2\lambda + 4$, $2\lambda + 5$.

This point lies in the required plane

- $\therefore \quad \lambda + 2 + 2(2\lambda + 4) + 2(2\lambda + 5) 11 = 0$ $\Rightarrow \lambda + 2 + 4\lambda + 8 + 4\lambda + 10 11 = 0$ $\Rightarrow 9\lambda + 9 = 0 \Rightarrow \lambda = -1$
- $\therefore \quad \text{The point of intersection is} \\ [(-1) + 2, 2(-1) + 4, 2(-1) + 5] \\ \Rightarrow (1, 2, 3)$
- 50. The equation of plane passing through the intersection of the given planes is $(2x - 5y + z - 3) + \lambda(x + y + 4z - 5) = 0$ $\Rightarrow (2 + \lambda)x + (-5 + \lambda)y$

+ $(1 + 4\lambda) z - 3 - 5\lambda = 0$ (i) This plane is parallel to the plane x + 3y + 6z = 1

$$\therefore \qquad \frac{2+\lambda}{1} = \frac{-5+\lambda}{3} = \frac{1+4\lambda}{6}$$
$$\Rightarrow \lambda = \frac{-11}{2}$$

- $\therefore \qquad \text{Substituting value of } \lambda \text{ in equation (i), we get} \\ -\frac{7}{2} x \frac{21}{2} y \frac{42}{2} z + \frac{49}{2} = 0$
- $\therefore \quad x + 3y + 6z = 7$ Comparing with x + 3y + 6z = k, we get k = 7
- 51. The equation of the plane through the line of intersection of the planes, 4x + 7y + 4z + 81 = 0 and 5x + 3y + 10z = 25is $(4x + 7y + 4z + 81) + \lambda(5x + 3y + 10z - 25) = 0$ $\Rightarrow (4+5\lambda) x + (7+3\lambda) y + (4+10\lambda)z + 81-25\lambda = 0$(i)

It is parallel to x - 4y + 6z = k,

$$\therefore \qquad \frac{4+5\lambda}{1} = \frac{7+3\lambda}{-4} = \frac{4+10\lambda}{6}$$
$$\Rightarrow \lambda = -1$$
Substituting value of λ in equation (i), we get
$$-x+4y-6z+106 = 0$$
$$\Rightarrow x-4y+6z = 106$$
Hence k = 106

52. The equations of the planes bisecting the angle between the given planes are $\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \pm \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$ $\Rightarrow \frac{2x - y + 2z + 3}{\sqrt{2^2 + (-1)^2 + 2^2}} = \pm \frac{3x - 2y + 6z + 8}{\sqrt{3^2 + (-2)^2 + 6^2}}$ \Rightarrow 7 (2x - y + 2z + 3) = ± 3(3x - 2y + 6z + 8) \Rightarrow 7(2x - y + 2z + 3) = 3 (3x - 2y + 6z + 8) or 7(2x - y + 2z + 3) = -3(3x - 2y + 6z + 8) $\Rightarrow 5x - y - 4z - 3 = 0$ or 23x - 13y + 32z + 45 = 0The point (3, -2, 1) satisfies both the 53. equations so it is the point of intersection Alternate method: Line is $\frac{x+3}{3} = \frac{y-2}{-2} = \frac{z+1}{1} = \lambda$ (say) $x = 3\lambda - 3; y = -2\lambda + 2; z = \lambda - 1$ Line intersects plane, 4x + 5y + 3z - 5 = 0 $4(3\lambda - 3) + 5(-2\lambda + 2) + 3(\lambda - 1) - 5 = 0$ *.*.. $\Rightarrow \lambda = 2.$ The point of intersection is (3, -2, 1)*.*.. 54. The point (1, -2, 7) satisfies the given equation of plane. So it is the point of intersection. **Alternate method:** The d.r.s ratios of the line joining the points (2, -3, 1) and (3, -4, -5) are 1, -1, -6The equation of line is *.*.. $\frac{x-2}{1} = \frac{y+3}{-1} = \frac{z-1}{-6} = \lambda(say)$ Any general point on the line is $(\lambda + 2, -\lambda - 3, -6\lambda + 1)$ The above point lies on the plane 2x + y + z = 7 $2(\lambda + 2) + (-\lambda - 3) + (-6\lambda + 1) = 7$ *.*.. $\Rightarrow -5\lambda + 2 = 7$ $\Rightarrow \lambda = -1$ The point is (1, -2, 7)*:*.. The equations of line is 55. $\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2} = \lambda$ (say) Any point on the line is $(\lambda + 3, 2\lambda + 4, 2\lambda + 5)$ Since the point lies on the plane x + y + z = 17 $\lambda + 3 + 2\lambda + 4 + 2\lambda + 5 = 17 \Longrightarrow \lambda = 1$ *.*.. The point is (4, 6, 7). *.*.. Hence, the required distance is $\sqrt{(3-4)^2 + (4-6)^2 + (5-7)^2}$

$$= \sqrt{1^2 + 2^2 + 2^2} = 3$$

- 56. The d.r.s ratios of the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ are 2, 3, -6.
- \therefore The d.r.s of any line parallel to it are also 2, 3, -6.
- $\therefore \quad \text{The equation of the line passing through} \\ P(1, -2, 3) \text{ and parallel to the given line is} \\ \frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-6} = \lambda(\text{say}) \qquad \dots(i) \\ \frac{x}{2} = \frac{y}{3} = \frac{z}{-6} \qquad \qquad P(1, -2, 3) \\ \hline \end{array}$

Any point on the line is $Q \equiv (2\lambda + 1, 3\lambda - 2, -6\lambda + 3)$

Ō

The point Q lies on the plane
$$x - y + z = 5$$
.
 $(2\lambda + 1) - (3\lambda - 2) + (-6\lambda + 3) = 5$

$$\Rightarrow -7\lambda = -1 \Rightarrow \lambda = \frac{1}{7}$$

$$\therefore \qquad \mathbf{Q} \equiv \left(\frac{\mathbf{9}}{7}, \frac{-11}{7}, \frac{15}{7}\right)$$

...

$$\therefore \quad \text{Required distance} = l(PQ) = d$$

$$\therefore \quad d = \sqrt{\left(\frac{9}{7} - 1\right)^2 + \left(\frac{-11}{7} + 2\right)^2 + \left(\frac{15}{7} - 3\right)^2} \\ = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{-6}{7}\right)^2} \\ = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = \sqrt{\frac{49}{49}} = 1$$

57. Let $\pi_1 : x + 2y + 3z = 5$ $\pi_2 : x + 2y + 3z = 7$ be two given planes Any plane parallel to the given planes and

equidistant from these is given by

$$x + 2y + 3z = \frac{d_1 + d_2}{2} = \frac{5 + 7}{2}$$

i.e. $x + 2y + 3z = 6$

- 58. Given planes are parallel,
- :. the required plane is also parallel to them Let $3x + 4y + 5z + \lambda = 0$ be the required plane $\lambda = \frac{d_1 + d_2}{d_1 + d_2} = \frac{-6 + 6}{d_1 + d_2} = 0$

$$\lambda = \frac{1}{2} = \frac{1}{2} = 0$$

 $\therefore \quad \text{the equation of required plane is} \\ 3x + 4y + 5z = 0$

°°

1.

4.

Competitive Thinking

 $\vec{n} = 2\hat{i} - 3\hat{j} + \hat{k}$ $\implies \hat{n} = \frac{1}{\sqrt{14}} \left(2\hat{i} - 3\hat{j} + \hat{k} \right)$

The equation of required plane is $\bar{r} \cdot \hat{n} = d$

$$\Rightarrow \overline{\mathbf{r}} \cdot \frac{1}{\sqrt{14}} \left(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}} \right) = \frac{3}{\sqrt{14}}$$
$$\Rightarrow \overline{\mathbf{r}} \cdot \left(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}} \right) = 3$$

2. Let
$$A \equiv (-1, 1, 2)$$

 $\therefore \quad \overline{a} = -\hat{i} + \hat{j} + 2\hat{k}$
 $\overline{n} = \hat{i} + \hat{j} + \hat{k}$

- $\therefore \quad \text{equation of plane is } \mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ $\Rightarrow \mathbf{\bar{r}} \cdot \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}\right) = \left(-\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) \cdot \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}\right)$ $\Rightarrow \mathbf{\bar{r}} \cdot \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}\right) = 2$
- 3. The d.r.s. of the normal to the plane are 1, 2, -3 \therefore the d.c.s. of the normal to the plane are

$$\frac{1}{\sqrt{1^2 + 2^2 + (-3)^2}}, \frac{2}{\sqrt{1^2 + 2^2 + (-3)^2}}, \frac{-3}{\sqrt{1^2 + 2^2 + (-3)^2}}$$

i.e., $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$.

d.c.s of normal to the plane are

$$\cos \frac{\pi}{4}, \cos \frac{\pi}{4}, \cos \frac{\pi}{2} = \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$$

Equation of the plane is $lx + my + nz = p$
 $\Rightarrow \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = \sqrt{2}$
 $\Rightarrow x + y = 2$
The equation of plane passing the (1, 2, -3) and (2, -2, 1) and parallel to X-a

- 5. The equation of plane passing through (1, 2, -3) and (2, -2, 1) and parallel to X-axis is $\begin{vmatrix} x-1 & y-2 & z+3 \\ 2-1 & -2-2 & 1+3 \\ 1 & 0 & 0 \end{vmatrix} = 0$ $\Rightarrow (y-2)(4) + (z+3)(4) = 0$ $\Rightarrow y + z + 1 = 0$
- 6. The plane passes through (2, 3, 4) This point satisfies the equation of plane in option (D) Also, it has d.r.s. 1, 2, 4.

 \therefore option (D) is correct answer.

Alternate method: The equation of the required plane parallel to the plane x + 2y + 4z = 5 is x + 2v + 4z + k = 0The plane passes through (2, 3, 4)

$$\therefore \quad 2+2(3)+4(4)+k=0$$

$$\Rightarrow k=-24$$

- the equation of the required plane is *.*.. x + 2y + 4z = 24
- 7. The plane passes through (2, 3, 4)This point satisfies the equation of plane in option (B) Also, it has d.r.s. 5, -6, 7.
- *.*.. option (B) is correct answer.
- 8. The plane passes through (1, 2, 3)This point satisfies the equation of plane in option (D) Also, it has d.r.s. 2, 3, -4.
- option (D) is correct answer. *.*.. 2 . (9.

$$\Rightarrow \frac{5x - 3y + 6z = 60}{60} \Rightarrow \frac{5x}{60} - \frac{3y}{60} + \frac{6z}{60} = 1 \Rightarrow \frac{x}{12} + \frac{y}{-20} + \frac{z}{10} = 1$$

the intercepts are (12, -20, 10). *.*..

10. The plane
$$x - 3y + 5z = d$$
 passes through $(1, 2, 4)$.
 \therefore $d = 15$

- *.*.. the equation of plane becomes x - 3y + 5z = 15 $\Rightarrow \frac{x}{15} + \frac{y}{-5} + \frac{z}{3} = 1$
- length of intercept cut by plane on the X, Y, Z *.*.. axes are 15, -5, 3 respectively.
- 11. The plane π is parallel to Y-axis.
- Y intercept is zero
- the equation of plane is $\frac{x}{4} + \frac{z}{3} = 1$ *.*..
 - \Rightarrow 3x + 4z = 12
- 12. Here, a = b = c = 1
- the equation of the required plane is $\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1$ *.*.. $\Rightarrow x + y + z = 1$
- 13. The intercepts made by the plane are a, b, c = l, m, n
- The distances of plane from origin is *.*..

$$d = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$$

$$\Rightarrow k = \frac{1}{\sqrt{\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2}}} \Rightarrow \frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} = \frac{1}{k^2}$$

Chapter 08: Plane

14. Let
$$P \equiv (2, 3, 4)$$
 and $Q \equiv (6, 7, 8)$
If R is the mid-point of PQ,

- $R \equiv (4, 5, 6)$ *.*.. This point satisfies the equation of plane in option (D)
- *.*.. option (D) is correct answer **Alternate method:** $\vec{n} = 4\hat{i} + 4\hat{j} + 4\hat{k}$, $\vec{a} = 4\hat{i} + 5\hat{j} + 6\hat{k}$
- equation of plane is *.*.. $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ $\Rightarrow \overline{\mathbf{r}} \cdot (4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) = (4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 6\hat{\mathbf{k}}) \cdot (4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ \Rightarrow 4x + 4y + 4z = 16 + 20 + 24 $\Rightarrow x + y + z - 15 = 0$
- The plane passes through (1, 2, 2)15. This point satisfies the equation of plane in option (B) Also, it has d.r.s. 1, 2, 2.
- option (B) is correct answer. ...
- 16. Let M (1, 2, 3) be the foot of perpendicular from the origin O(0, 0, 0) to the plane d.r.s. of normal are 1, 2, 3
- *.*.. the equation of the required plane is 1(x-1) + 2(y-2) + 3(z-3) = 0 $\Rightarrow x - 1 + 2y - 4 + 3z - 9 = 0$ $\Rightarrow x + 2v + 3z - 14 = 0$ Consider the option (B) point (7, 2, 1) satisfies the above equation of plane.
- *.*.. option (B) is correct answer.
- The plane is $y = \frac{-8}{5}$ which is parallel to XZ-plane 17.

... Foot of the perpendicular drawn from the origin $\equiv \left(0, \frac{-8}{5}, 0\right)$

- The plane passes through (2, 6, 3)18. It satisfies option (D) **Alternate Method:** The d.r.s of OP are 2-0, 6-0, 3-0 i.e., 2, 6, 3 The plane passes through P(2, 6, 3).
- the equation of the required plane is *.*.. 2(x-2) + 6(y-6) + 3(z-3) = 0 $\Rightarrow 2x + 6v + 3z = 49$
- 19. The plane passes through (1, 1, 1) and (1, -1, -1)The above points satisfies the equation of plane in option (B) *.*..
 - option (B) is correct answer.

- 20. The plane passes through A(-2, 2, 2) and B(2, -2, -2)
 The above points satisfies the equation of plane in option (A)
- \therefore option (A) is correct answer.
- 21. The plane passes through (0, 1, 2) and (-1, 0, 3)
 The above points satisfies the equation of plane in option (D)
- \therefore option (D) is correct answer.
- 22. The plane passes through (2, -3, 1) This point satisfies the equation of plane in option (A) Also, it has d.r.s. 3 - 2, 4 + 1, -1 -5 i.e. 1, 5, -6.
- ∴ option (A) is correct answer.
 Alternate method: The d.r.s. of the line joining the points (3, 4, -1) and (2, -1, 5) are 1, 5, -6. The plane passes through (2, -3, 1)
- $\therefore \text{ the equation of required plane is} \\ 1(x-2) + 5(y+3) 6(z-1) = 0 \\ \Rightarrow x + 5y 6z + 19 = 0$
- 23. The d.r.s. of the line joining the points (4, -1, 2) and (-3, 2, 3) are 7, -3, -1The plane passes through (-10, 5, 4)
- $\therefore \quad \text{The equation of required plane is} \\ 7 (x + 10) 3 (y 5) 1 (z 4) = 0 \\ \Rightarrow 7x + 70 3y + 15 z + 4 = 0 \\ \Rightarrow 7x 3y z + 89 = 0 \end{aligned}$
- 24. The equation of the plane is $b(x - 1) + c(y - 1) + a(z - 1) = 0 \qquad \dots(i)$ Now, 2001 = 3 × 23 × 29 Since, a < b < c
- $\therefore \quad a = 3, b = 23 \text{ and } c = 29$ Substituting the values of a, b, c in equation (i), we get 23x + 29y + 3z = 55

25.
$$\bar{r} = (1 - p - q)\bar{a} + p\bar{b} + q\bar{c}$$

 $\Rightarrow \bar{r} = \bar{a} + p(\bar{b} - \bar{a}) + q(\bar{c} - \bar{a}) \qquad \dots(i)$
Comparing with $\bar{r} = \bar{A} + \lambda \bar{B} + \mu \bar{C}$,

the equation (i) represents a plane passing through a point having position vector \overline{a} and parallel to the vectors $\overline{b} - \overline{a}$ and $\overline{c} - \overline{a}$. 26. Equation of plane passing through (1, 0, 2), (-1, 1, 2) and (5, 0, 3) is $x - 1 \quad y - 0 \quad z - 2$ -1-1 1-0 2-2 = 05-1 0 -0 3 -2x - 1 y z - 20 -21 = 0 \Rightarrow 0 1 4 \Rightarrow (x - 1) - y (-2) + (z - 2) (-4) = 0 $\Rightarrow x - 1 + 2y - 4z + 8 = 0$ $\Rightarrow x + 2y - 4z + 7 = 0$ 27. Equation of plane passing through (1, 2, 3), (-1, 4, 2) and (3, 1, 1) is x - 1 y - 2 z - 3 $\begin{vmatrix} -1 & -1 & 4 & -2 & 2 & -3 \end{vmatrix} = 0$

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 3-1 & 1-2 & 1-3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x-1 & y-2 & z-3 \\ -2 & 2 & -1 \\ 2 & -1 & -2 \end{vmatrix} = 0$$

$$\Rightarrow (x-1) (-4-1) - (y-2) (4+2) + (z-3) (2-4) = 0$$

$$\Rightarrow -5x + 5 - 6y + 12 - 2z + 6 = 0$$

$$\Rightarrow -5x - 6y - 2z + 23 = 0$$

$$\Rightarrow 5x + 6y + 2z = 23$$

28. Equation of plane passing through

$$(1, 2, 3), (2, 3, 1)$$
 and $(3, 1, 2)$ is
 $\begin{vmatrix} x-1 & y-2 & z-3 \\ 2-1 & 3-2 & 1-3 \\ 3-1 & 1-2 & 2-3 \end{vmatrix} = 0$
 $\Rightarrow \begin{vmatrix} x-1 & y-2 & z-3 \\ 1 & 1 & -2 \\ 2 & -1 & -1 \end{vmatrix} = 0$
 $\Rightarrow (x-1) (-3) - (y-2) (3) + (z-3) (-3) = 0$
 $\Rightarrow -3x + 3 - 3y + 6 - 3z + 9 = 0$
 $\Rightarrow x + y + z = 6$
Comparing the above equation with
 $ax + by + cz = d$, we get
 $a = 1, b = 1, c = 1$
Now, $a + 2b + 3c = (1) + 2(1) + 3(1) = 6$

29. The equation of the required plane is $(x + 2y + 3z + 4) + \lambda(4x + 3y + 2z + 1) = 0$(i) The plane passes through origin i.e., (0, 0, 0) ∴ $4 + \lambda = 0 \Rightarrow \lambda = -4$

Chapter 08: Plane

Substituting value of λ in equation (i), we get -15x - 10y - 5z = 0 $\Rightarrow 3x + 2y + z = 0$

- 30. The plane passes through (2, 1, 0) It satisfies option (C) The equation of the required plane is $(x - 2y + 3z - 4) + \lambda(x - y + z - 3) = 0$ (i) The plane passes through (2, 1, 0).
- $\therefore \quad (2-2+0-4) + \lambda (2-1+0-3) = 0$ $\Rightarrow \lambda = -2$ Substituting value of λ in (i), we get -x+z+2=0 $\Rightarrow x-z=2$
- 31. The d.r.s. of the line are 1, 2, 3. The line is perpendicular to the plane
- \therefore The d.r.s. of plane are 1, 2, 3
- $\therefore \quad \text{The equation of plane passing through } (2, 3, 4) \text{ is} \\ a(x-2) + b(y-3) + c(z-4) = 0 \qquad \dots(i) \\ \Rightarrow 1(x-2) + 2(y-3) + 3(z-4) = 0 \\ \Rightarrow x + 2y + 3z = 20$
- 32. The plane passes through the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$ i.e. through (3, 6, 4) The points (3, 2, 0) and (3, 6, 4) satisfies option (A)
- ∴ option (A)
 ∴ option (A) is correct answer.
 Alternate method:
 The equation of plane passing through (3, 2, 0) is
- $a(x-3) + b(y-2) + c(z-0) = 0 \qquad(i)$ ∴ a(3-3) + b(6-2) + c(4-0) = 0⇒ $0.a + 4b + 4c = 0 \qquad(ii)$ and $1.a + 5b + 4c = 0 \qquad(iii)$ On solving (ii) and (iii), we get a = -4, b = 4, c = -4
- \therefore equation of required plane is x y + z = 1
- 33. The equation of plane passing through (2, -1, -3)is a(x-2) + b(y+1) + c(z+3) = 0Also, as the plane is parallel is the given two lines,
- :. 3a + 2b 4c = 0 and 2a 3b + 2c = 0 $\Rightarrow a = -8, b = -14, c = -13$
- $\therefore \quad \text{The equation of the required plane is} \\ -8(x-2) 14(y+1) 13(z+3) = 0 \\ \Rightarrow 8x + 14y + 13z + 37 = 0$
- 34. Point (2, 1, -2) lies in the plane $x + 3y \alpha z + \beta = 0$

$$\therefore \quad 2+3(1)-\alpha(-2)+\beta=0 \\ \Rightarrow 2\alpha+\beta=-5 \qquad \dots (i)$$

Also, the d.r.s of the normal are perpendicular to the given plane.

$$\therefore \quad 3(1) + (-5)(3) + (2)(-\alpha) = 0$$

$$\Rightarrow 3 - 15 - 2\alpha = 0$$

$$\Rightarrow \alpha = -6$$

Substituting value of α in equal

Substituting value of α in equation (i), we get $\beta = 7$

35. The d.r.s of normal to the given planes are 1, 2, 2 and -5, 3, 4

$$\therefore \quad \cos \theta = \frac{(1)(-5) + (2)(3) + (2)(4)}{\sqrt{1^2 + 2^2 + 2^2}\sqrt{(-5)^2 + 3^2 + 4^2}} = \frac{3\sqrt{2}}{10}$$
$$\Rightarrow \theta = \cos^{-1}\left(\frac{3\sqrt{2}}{10}\right)$$

36.
$$\cos \theta = \frac{3(2) - 4(-1) + 5(-2)}{\sqrt{9 + 16 + 25}\sqrt{4 + 1 + 4}}$$

$$\therefore \quad \cos \theta = 0$$
$$\Rightarrow \theta = \frac{\pi}{2}$$

- 37. Given equation of locus xy + yz = 0 $\Rightarrow y (x + z) = 0$ $\Rightarrow y = 0 \text{ or } x + z = 0$ The planes y = 0 and x + z = 0 perpendicular to each other.
- 38. $\overline{\mathbf{r}} \cdot \left(\mathbf{m}\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) + 3 = 0 \Rightarrow \overline{\mathbf{r}} \cdot \left(\mathbf{m}\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) = -3$ $\overline{\mathbf{r}} \cdot \left(2\hat{\mathbf{i}} - \hat{\mathbf{m}}\hat{\mathbf{j}} - \hat{\mathbf{k}}\right) - 5 = 0 \Rightarrow \overline{\mathbf{r}} \cdot \left(2\hat{\mathbf{i}} - \hat{\mathbf{m}}\hat{\mathbf{j}} - \hat{\mathbf{k}}\right) = 5$ Here, $\overline{\mathbf{n}}_1 = -\hat{\mathbf{n}}\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\overline{\mathbf{n}}_2 = -2\hat{\mathbf{i}} - \hat{\mathbf{m}}\hat{\mathbf{j}} - \hat{\mathbf{k}}$

$$\therefore \quad \cos \theta = \left| \frac{\overline{n_1} \cdot \overline{n_2}}{\left| \overline{n_1} \right| \left| \overline{n_2} \right|} \right|$$
$$\Rightarrow \cos \frac{\pi}{3} = \left| \frac{\left(m\hat{i} - \hat{j} + 2\hat{k} \right) \cdot \left(2\hat{i} - m\hat{j} - \hat{k} \right)}{\sqrt{m^2 + 1 + 4} \sqrt{4 + m^2 + 1}} \right|$$
$$\Rightarrow \frac{1}{2} = \frac{2m + m - 2}{m^2 + 5}$$

$$\Rightarrow m^{2} + 5 = 6m - 4$$
$$\Rightarrow m^{2} - 6m + 9 = 0$$
$$\Rightarrow (m - 3)^{2} = 0$$
$$\Rightarrow m = 3$$

39. Here,
$$\overline{n_1} = p\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overline{n_2} = 2\hat{i} - p\hat{j} - \hat{k}$
∴ $\cos\theta = \left|\frac{\overline{n_1} \cdot \overline{n_2}}{\left|\overline{n_1}\right| \left|\overline{n_2}\right|}\right|$
 $\Rightarrow \cos\frac{\pi}{3} = \left|\frac{(p\hat{i} - \hat{j} + 2\hat{k})(2\hat{i} - p\hat{j} - \hat{k})}{\sqrt{p^2 + 1 + 4}\sqrt{4 + p^2 + 1}}\right|$
 $\Rightarrow \frac{1}{2} = \pm \left(\frac{2p + p - 2}{p^2 + 5}\right)$
 $\Rightarrow \frac{1}{2} = \frac{3p - 2}{p^2 + 5}$
.... (considering positive value)
 $\Rightarrow p^2 + 5 = 6p - 4$
 $\Rightarrow p^2 - 6P + 9 = 0$
 $\Rightarrow (p - 3)^2 = 0$
 $\Rightarrow p = 3$
40. Let the d.r.s of the normal to the plane be proportional to a, b, c.
It passes through (1, 0, 0)
∴ the equation of the plane is
 $a(x - 1) + b(y - 0) + c(z - 0) = 0$ (i)
Also, the plane passes through (0, 1, 0).
∴ $a(-1) + b(1) + c(0) = 0$
 $\Rightarrow a = b$ (ii)

$$\Rightarrow a = b \qquad \dots(ii)$$

Now, the angle between the required plane
and the plane $x + y = 3$ is $\frac{\pi}{4}$.
$$\therefore \qquad \cos \frac{\pi}{4} = \frac{a(1) + b(1) + c(0)}{\sqrt{a^2 + b^2 + c^2} \sqrt{1 + 1}}$$
$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{a + b}{\sqrt{a^2 + b^2 + c^2} \sqrt{2}}$$
Squaring both sides, we get
 $\Rightarrow a^2 + b^2 + c^2 = a^2 + b^2 + 2ab$
 $\Rightarrow c^2 = 2ab \qquad \dots(iii)$
From (ii) and (iii), we get
 $a : b : c = a : a : \sqrt{2} a = 1 : 1 : \sqrt{2}$

- 41. For perpendicular planes, $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\Rightarrow 2(1) + 1(2) - 2(k) = 0$ $\Rightarrow k = 2$
- 42. Since the planes are perpendicular, $\therefore \quad (3)(2) + (-6)(1) + (-2)(-k) = 0$ $\Rightarrow k = 0$
- 43. Since, the planes are perpendicular to each other. $\therefore \quad 3(4) + (-2)(3) + 2 \times (-k) = 0$ $\Rightarrow k = 3$

- 44. The equation of plane passing through (4, 4, 0)is a(x-4) + b(y-4) + c(z-0) = 0 $\Rightarrow a(x-4) + b(y-4) + cz = 0$...(i) Since, plane (i) is perpendicular to the planes 2x + y + 2z + 3 = 0 and 3x + 3y + 2z - 8 = 02a + b + 2c = 0, and *.*.. ...(ii) 3a + 3b + 2c = 0...(iii) On solving (i) and (ii), we get a = -4, b = 2, c = 3Substituting the values of a, b, c in (i), we get -4(x-4) + 2(y-4) + 3z = 0 $\Rightarrow -4x + 16 + 2y - 8 + 3z = 0$ $\Rightarrow 4x - 2y - 3z = 8$
- 45. Comparing with $\overline{r} = \overline{a} + \lambda \overline{b}$ and $\overline{r} \cdot \overline{n} = p$, we get $\overline{b} = -\hat{i} + \hat{j} + \hat{k}$ and $\overline{n} = 3\hat{i} + 2\hat{j} - \hat{k}$
- $\therefore \quad \text{Angle between the line and plane is given by} \\ \sin \theta = \frac{\overline{b} \cdot \overline{n}}{\left|\overline{b}\right| \left|\overline{n}\right|} \\ = \frac{(-1)(3) + (1)(2) + (1)(-1)}{\sqrt{3}\sqrt{14}} = \frac{-2}{\sqrt{42}} \\ \Rightarrow \theta = \sin^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
- 46. The d.r.s. of line are 3, 4, 5 and the d.r.s. of normal to the plane are 2, -2, 1
 ∴ The angle between line and plane is

$$\sin \theta = \frac{aa_1 + bb_1 + cc_1}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{a_1^2 + b_1^2 + c_1^2}}$$
$$= \frac{(2)(3) + (-2)(4) + (1)(5)}{\sqrt{2^2 + (-2)^2 + (1)^2} \cdot \sqrt{3^2 + 4^2 + 5^2}}$$
$$= \frac{3}{\sqrt{9}\sqrt{50}} = \frac{1}{5\sqrt{2}} = \frac{\sqrt{2}}{10}$$

47. The d.r.s. of line are 1, 2, 2 and the d.r.s. of normal to the plane are 2, -1, $\sqrt{\lambda}$

$$\therefore \quad \sin \theta = \frac{1(2) + 2(-1) + 2(\sqrt{\lambda})}{\sqrt{1 + 4 + 4} \cdot \sqrt{4 + 1 + \lambda}}$$
$$\Rightarrow \frac{1}{3} = \frac{2\sqrt{\lambda}}{3\sqrt{5 + \lambda}}$$
$$\Rightarrow 2\sqrt{\lambda} = \sqrt{5 + \lambda}$$
$$\Rightarrow 4\lambda = 5 + \lambda$$
$$\Rightarrow \lambda = \frac{5}{3}$$

- 48. d.r.s. of normal to the plane are 2, -3, 6 d.r.s. of X-axis are 1, 0, 0.
- \therefore The angle between the plane and X-axis is

$$\sin \theta = \frac{aa_1 + bb_1 + cc_1}{\sqrt{a^2 + b^2 + c^2} \sqrt{a_1^2 + b_1^2 + c_1^2}}$$
$$= \frac{2(1) - 3(0) + 6(0)}{\sqrt{4 + 9 + 36} \cdot \sqrt{1}}$$
$$= \frac{2}{7}$$
$$\therefore \quad \theta = \sin^{-1}\left(\frac{2}{7}\right)$$
But $\theta = \sin^{-1} \alpha$
$$\therefore \quad \alpha = \frac{2}{7}$$

$$\therefore \quad \alpha = \frac{2}{7}$$

49. The d.r.s. of line are 1, 2, λ and The d.r.s. of normal to the plane are 1, 2, 3.

$$\therefore \quad \sin \theta = \frac{1(1) + 2(2) + \lambda(3)}{\sqrt{1 + 4 + 9}\sqrt{1 + 4 + \lambda^2}}$$

$$\Rightarrow \sin \theta = \frac{5 + 3\lambda}{\sqrt{14}\sqrt{5 + \lambda^2}}$$

$$\Rightarrow \sin^2 \theta = \frac{(5 + 3\lambda)^2}{14(5 + \lambda^2)}$$

$$\Rightarrow 1 - \frac{5}{14} = \frac{(5 + 3\lambda)^2}{14(5 + \lambda^2)}$$

$$\dots \left[\because \cos \theta = \sqrt{\frac{5}{14}} \text{ (given)}\right]$$

$$\Rightarrow \frac{9}{14} = \frac{25 + 30\lambda + 9\lambda^2}{14(5 + \lambda^2)}$$
On solving, we get
$$\lambda = \frac{2}{14}$$

$$\lambda = \frac{2}{3}$$

...

50. Let a, b, c = 3, $2 + \lambda$, -1 and a_1 , b_1 , $c_1 = 1$, -2, 0 Since, the line lies on the plane

$$aa_1 + bb_1 + cc_1 = 0$$

$$\Rightarrow 3(1) + (2 + \lambda) (-2) + (-1) (0) = 0$$

$$\Rightarrow \lambda = \frac{-1}{2}$$

51. The line is parallel to the plane if aa₁ + bb₁ + cc₁ = 0 Consider option (B), 2(3) + 1(4) - 2(5) = 0
∴ 2x + y - 2z = 0 is the required plane.
52. The equation of the plane is ax + by + cz + d = 0

53. line
$$\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$$
 lies on the plane
 $2x - 4y + z = 7$.
 \therefore Point (4, 2, k) lies on the plane $2x - 4y + z = 7$
 $\therefore 2(4) - 4(2) + k = 7$
 $\Rightarrow k = 7$
54. Line is perpendicular to normal of plane
 $\Rightarrow (2\hat{i} - \hat{j} + 3\hat{k}) \cdot (l\hat{i} + m\hat{j} - \hat{k}) = 0$
 $2l - m - 3 = 0$ (i)
 $(3, -2, -4)$ lies on the plane $lx + my - z = 9$
 $\therefore 3l - 2m + 4 = 9$
 $\Rightarrow 3l - 2m = 5$ (ii)
Solving (i) and (ii)
 $l = 1, m = -1$
 $l^2 + m^2 = 2$
55. The d.r.s. of the XY-plane are 0, 0, 1
the d.r.s. of the given line are *l*, m, n
Since, the line is parallel to the plane

$$\therefore \quad aa_1 + bb_1 + cc_1 = 0$$

$$\Rightarrow l(0) + m(0) + n(1) = 0$$

$$\Rightarrow n = 0$$

56. Let the position vector of Q be $(\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$ $= (-3\mu + 1)\hat{i} + (\mu - 1)\hat{j} + (5\mu + 2)\hat{k}$ $\therefore \quad \overline{PQ} = (-3\mu - 2)\hat{i} + (\mu - 3)\hat{j} + (5\mu - 4)\hat{k}$ Since, \overline{PQ} is parallel to the plane $\therefore \quad (-3\mu - 2)(1) + (\mu - 3)(-4) + (5\mu - 4)(3) = 0$

$$\Rightarrow \mu = \frac{1}{4}$$

- 57. The plane passes through points (-3, 0, 2) and (3, 2, 6)This points satisfies the equation of plane in option (D)
- \therefore option (D) is correct answer.
- 58. Lines are coplanar if

...

 $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$ $\begin{vmatrix} 1 - 2 & 4 - 3 & 5 - 4 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$

$$\Rightarrow \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow -1(1+2k) -1(1+k^{2}) + 1(2-k) = 0$$

$$\Rightarrow k^{2} + 3k = 0$$

$$\Rightarrow k = 0, -3$$

59. The planes are concurrent,

$$\therefore \qquad \begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix} = 0$$
$$\Rightarrow a^2 + b^2 + c^2 + 2abc - 1 = 0$$
$$\Rightarrow a^2 + b^2 + c^2 = 1 - 2abc$$

60. The equation of the plane is
$$\frac{x}{8} + \frac{y}{4} + \frac{z}{4} = 1$$

i.e., $x + 2y + 2z = 8$

:. The length of the perpendicular from origin to the plane is

$$d = \left| \frac{-8}{\sqrt{1+4+4}} \right| = \frac{8}{3}$$

61. The equations of the plane with reference to the two systems of rectangular axes are

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \qquad \dots (i)$$

and
$$\frac{X}{a'} + \frac{Y}{b'} + \frac{Z}{c'} = 1$$
(ii)

Since the origin of axes is same.

- \therefore Length of the perpendicular from (0, 0, 0) on plane (i)
 - = Length of the perpendicular from (0, 0, 0) on plane (ii)

$$\Rightarrow \left| \frac{-1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \right| = \left| \frac{-1}{\sqrt{\frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2}}} \right|$$
$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$$

62. Since the line is parallel to XY-plane, the distance of the point P (6, 7, 8) from this plane is equal to its Z co-ordinate i.e. 8 units.

Distance of point P from the given plane is given by

$$d = \left| \frac{3(-6) - 6(2) + 2(3) + 10}{\sqrt{(3)^2 + (-6)^2 + (2)^2}} \right|$$
$$= \left| \frac{-18 - 12 + 6 + 10}{\sqrt{9 + 36 + 4}} \right|$$
$$= \left| \frac{-14}{\sqrt{49}} \right| = \frac{14}{7}$$
$$d = 2$$

64. Given equation of plane is $\mathbf{\bar{r}} \cdot (3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}) = 13$ The vector form of the equation is

The vector form of the ec

$$3x + 2y + 6z = 13$$

 $\Rightarrow 3x + 2y + 6z - 13 = 0$

...

Given point $\equiv (2, 3, \lambda)$

 \therefore Distance of the point from the plane

$$= \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$
$$\Rightarrow 5 = \left| \frac{3(2) + 2(3) + 6(\lambda) - 13}{\sqrt{9 + 4} + 36} \right|$$
$$\Rightarrow 5 = \left| \frac{6\lambda - 1}{7} \right|$$
$$\Rightarrow 6\lambda - 1 = \pm 35$$
$$\Rightarrow \lambda = 6, \frac{-17}{3}$$

65. Here, a = 2, b = 1, c = 2, d = 5, x = 2, y = 1, z = 0

$$\therefore \quad d = \left| \frac{2(2) + 1(1) + 2(0) + 5}{\sqrt{2^2 + 1^2 + 2^2}} \right|$$
$$= \left| \frac{10}{\sqrt{9}} \right| = \frac{10}{3}$$

66. Normal vector
$$\hat{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -2 & 3 \\ 2 & -1 & -1 \end{vmatrix}$$

= $\hat{\mathbf{i}}(2+3) - \hat{\mathbf{j}}(-1-6) + \hat{\mathbf{k}}(-1+4)$
= $5\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$
Let A ≡ $(1, -1, -1)$
 \therefore $\bar{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$

$$\therefore \quad \text{Equation of the plane is} \\ 5(x-1) + 7(y+1) + 3(z+1) = 0 \\ \Rightarrow 5x + 7y + 3z + 5 = 0$$
Chapter 08: Plane

Distance of (1, 3, -7) from the above plane is $d = \left| \frac{5(1) + 7(3) + 3(-7) + 5}{\sqrt{25 + 49 + 9}} \right|$ $= \frac{10}{\sqrt{83}}$ units

67.
$$\overline{n} = 2\hat{i} + \hat{j} + 2\hat{k}$$
 and $p = 5$
 $\hat{n} = \frac{\overline{n}}{|\overline{n}|} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{4 + 1 + 4}} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{3}$

 \therefore The vector equation of the plane is $r.\hat{n} = p$

$$\Rightarrow \overline{\mathbf{r}} \cdot \left(\frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}}{3}\right) = 5$$
$$\Rightarrow \overline{\mathbf{r}} \cdot \left(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) = 15$$

68. Let a, b, c = -3, 2, 6

... the equation of plane is ... -3x + 2y + 6z + d = 0(i) Now, the perpendicular distance (D) from origin is

$$D = \left| \frac{d}{\sqrt{(-3)^2 + 2^2 + 6^2}} \right|$$
$$\Rightarrow 7 = \frac{|d|}{7} \Rightarrow d = \pm 49$$

- $\therefore \quad \text{The equation of plane is} \\ -3x + 2y + 6z + 49 = 0 \\ \text{or } -3x + 2y + 6z 49 = 0 \end{aligned}$
- 69. The equation of a plane passing through (1, -2, 1) is a(x-1) + b(y+2) + c(z-1) = 0....(i) Plane (i) is perpendicular to planes 2x - 2y + z = 0 and x - y + 2z = 4. 2a - 2b + c = 0, and(ii) $\mathbf{a} - \mathbf{b} + 2\mathbf{c} = \mathbf{0}$(iii) Solving (ii) and (iii), we get a = -3, b = -3, c = 0Substituting the values of a, b, c in equation (i), we get x + y + 1 = 0
- ... The distance of this plane from (1, 2, 2) is $d = \left| \frac{1+2+1}{\sqrt{1+1}} \right| = 2\sqrt{2}$
- 70. Equation of L₁ i.e., the line of intersection of the first two given planes is $(2x - 2y + 3z - 2) + \lambda (x - y + z + 1) = 0$ $\Rightarrow (\lambda + 2) x - (2 + \lambda) y$ $+ (\lambda + 3) z + (\lambda - 2) = 0$...(i)

Equation of L₂ i.e., the line of intersection of the next two given planes is $(1 + 3\mu)x + (2 - \mu)y$ $+ (2\mu - 1)z - (\mu + 3) = 0$...(ii) Since, equations (i) and (ii) represent the

 \therefore by comparing, we get

same plane.

$$\frac{2+\lambda}{1+3\mu} = \frac{-(2+\lambda)}{2-\mu}$$

$$\Rightarrow 1+3\mu = \mu - 2 \qquad \Rightarrow \mu = -\frac{3}{2}$$

Substituting $\mu = -\frac{3}{2}$ in (ii), we get
 $7x - 7y + 8z + 3 = 0$
Perpendicular distance from the origin (0, 0, 0)

$$= \left| \frac{7(0) - 7(0) + 8(0) + 3}{\sqrt{7^2 + 7^2 + 8^2}} \right| = \frac{3}{\sqrt{162}}$$

$$= \frac{3}{9\sqrt{2}} = \frac{1}{3\sqrt{2}}$$

71. The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x - y + z = 3 is $(x + 2y + 3z - 2) + \lambda(x - y + z - 3) = 0$ $\Rightarrow x(1 + \lambda) + y(2 - \lambda) + z(3 + \lambda) - 2 - 3\lambda = 0$ (i)

This plane is at a distance of $\frac{2}{\sqrt{3}}$ units from

$$\therefore \qquad \frac{|3(1+\lambda)+1(2-\lambda)-1(3+\lambda)-2-3\lambda|}{\sqrt{(1+\lambda)^2+(2-\lambda)^2+(3+\lambda)^2}} = \frac{2}{\sqrt{3}}$$
$$\Rightarrow \frac{|-2\lambda|}{\sqrt{3\lambda^2+4\lambda+14}} = \frac{2}{\sqrt{3}}$$

Squaring both sides, we get

$$3\lambda^2 + 4\lambda + 14 = 3\lambda^2 \Longrightarrow 4\lambda = -14 \Longrightarrow \lambda = \frac{-7}{2}$$

Substituting value of λ in equation (i), we get

$$-\frac{5}{2}x + \frac{11}{2}y - \frac{z}{2} + \frac{17}{2} = 0$$

$$\Rightarrow 5x - 11y + z - 17 = 0$$

72. The equation of the plane passing through (-1, 3, 0) is a(x + 1) + b(y - 3) + c(z - 0) = 0(i) Also, the plane passes through the points (2, 2, 1) and (1, 1, 3). \therefore 3a - b + c = 0(ii) 2a - 2b + 3c = 0(iii)

Solving (ii) and (iii), we get a = -1, b = -7, c = -4Substituting the values of a, b, c in equation (i), we get -1(x+1) - 7(y-3) - 4(z) = 0 $\Rightarrow x + 7y + 4z - 20 = 0$

The distance of this plane from the point *.*.. (5, 7, 8) is

$$d = \left| \frac{1(5) + 7(7) + 4(8) - 20}{\sqrt{1^2 + 7^2 + 4^2}} \right| = \frac{66}{\sqrt{66}} = \sqrt{66}$$

73. Given planes are

> 2x + y + 2z - 8 = 04x + 2y + 4z - 16 = 0....(i) and 4x + 2y + 4z + 5 = 0....(ii)

The distance between two parallel planes is

$$d = \left| \frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}} \right| = \left| \frac{-16 - 5}{\sqrt{4^2 + 2^2 + 4^2}} \right| = \frac{21}{6} = \frac{7}{2}$$

- 74. $x^2 5x + 6 = 0$ \Rightarrow (x - 2) = 0 or (x - 3) = 0, which represents a plane.
- 75. Here, the co-ordinates of A, B, C are (3a, 0, 0) (0, 3b, 0) and (0, 0, 3c) respectively.
- The centroid is (a, b, c). *.*..
- Let A = (a, 0, 0), B = (0, b, 0) and C = (0, 0, c)76. The equation of the plane in intercept form is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ Since, centriod is (6, 6, 3)

$$\therefore \quad 6 = \frac{x_1 + x_2 + x_3}{3}$$
$$\Rightarrow 6 = \frac{a + 0 + 0}{3} \Rightarrow a = 18$$
Similarly $\frac{0 + b + 0}{3} = 6 \Rightarrow b = 18$
$$\frac{0 + 0 + c}{3} = 3 \Rightarrow c = 9$$

The equation of plane is $\frac{x}{18} + \frac{y}{18} + \frac{z}{9} = 1$ *.*.. $\Rightarrow x + y + 2z - 18 = 0$

77. Given equation of plane is
$$ax + by + cz = 1$$

...

$$\therefore \quad A \equiv \left(\frac{1}{a}, 0, 0\right), B \equiv \left(0, \frac{1}{b}, 0\right) \text{ and}$$
$$C \equiv \left(0, 0, \frac{1}{c}\right)$$

$$\therefore \quad \text{Centroid} = \left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right) = \left(\frac{1}{6}, \frac{-1}{3}, 1\right)$$

$$\therefore \quad 3a = 6 \Rightarrow a = 2$$

$$3b = -3 \Rightarrow b = -1$$

$$3c = 1 \Rightarrow c = \frac{1}{3}$$

$$\therefore \quad a + b + 3c = 2 - 1 + 3\left(\frac{1}{3}\right) = 2$$

$$78. \quad [a \ b \ c] \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = [0 \ 0 \ 0]$$

$$\Rightarrow a + 8b + 7c = 0, 9a + 2b + 3c = 0,$$

$$7a + 7b + 7c = 0$$

$$\Rightarrow a = 1, b = 6, c = -7$$

$$P(a, b, c) \text{ lies on the plane $2x + y + z = 1.$

$$\therefore \quad 7a + b + c = 7 + 6 - 7 = 6$$

$$79. \quad \text{The equation of the required plane is}$$

$$(2x - 5y + z - 3) + \lambda(x + y + 4z - 5) = 0 \dots (i)$$

$$\therefore \quad (2 + \lambda)x + (-5 + \lambda)y + (1 + 4\lambda)z + (-3 - 5\lambda) = 0$$
Since, this plane is parallel to $x + 3y + 6z = 1$

$$\therefore \quad \frac{2 + \lambda}{1} = \frac{-5 + \lambda}{3} = \frac{1 + 4\lambda}{6}$$
On solving, we get
$$\lambda = -\frac{11}{2}$$
Substituting the value of λ in equation (i), we get
$$(2x - 5y + z - 3) - \frac{11}{2}(x + y + 4z - 5) = 0$$

$$\Rightarrow -7x - 21y - 42z + 49 = 0$$

$$\Rightarrow x + 3y + 6z - 7 = 0$$

$$80. \quad \text{The point } \left(-\frac{1}{11}, \frac{9}{11}, \frac{-25}{11}\right) \text{ satisfies both the}$$
equations
$$\therefore \quad \text{it is the point of intersection.}$$

$$Alternate method:$$

$$\text{Let } \frac{x}{1} = \frac{y - 1}{2} = \frac{z + 2}{3} = \lambda(say)$$
Any general point on the line is $(\lambda, 2\lambda + 1, 3\lambda - 2)$

$$\text{This point lies on the plane $2x + 3y + z = 0$

$$\therefore \quad 2\lambda + 3(2\lambda + 1) + (3\lambda - 2) = 0$$

$$\Rightarrow \lambda = -\frac{1}{11}$$

$$\therefore \quad \text{The point is } \left(-\frac{1}{11}, \frac{9}{11}, \frac{-25}{11}\right)$$$$$$

Chapter 08: Plane

- 81. The point (5, -1, 1) satisfies both the equations
- \therefore it is the point of intersection
- \therefore option (D) is correct
- 82. The point (10, 10, 3) satisfies both the equations.
- \therefore it is the point of intersection.
- \therefore option (B) is correct
- 83. The point (-4, -3, 0) satisfies the given equations
- \therefore correct answer is option (D).

84. Let
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12} = \lambda$$

- ... the co-ordinates of any point on the line are $P \equiv (3\lambda + 2, 4\lambda - 1, 12\lambda + 2)$ This point lies on the plane x - y + z = 16
- $\therefore \quad 3\lambda + 2 4\lambda + 1 + 12\lambda + 2 = 16$ $\Rightarrow 11\lambda = 11 \Rightarrow \lambda = 1$
- \therefore P = (5, 3, 14)
- : Let $Q \equiv (1, 0, 2)$
- :. distance PQ is given by $d = \sqrt{(5-1)^2 + (3-0)^2 + (14-2)^2} = 13$

85.

Distance of point P (1, -2, 1) from the $x + 2y - 2z = \alpha$ plane is 5

$$\therefore \quad \frac{|1-4-2-\alpha|}{\sqrt{1+4+4}} = 5$$

$$\Rightarrow |\alpha+5| = 15$$

$$\Rightarrow \alpha+5 = \pm 15$$

$$\Rightarrow \alpha = 10, -20$$

$$\Rightarrow \alpha = 10 \qquad \dots (\because \alpha > 0)$$

The equation of line PM whose d r s are 1/2.

The equation of line PM whose d.r.s. are 1, 2, -2 is

$$\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{-2} = \lambda(\text{say})$$

The co-ordinates of M are $(\lambda + 1, 2\lambda - 2, -2\lambda + 1)$

Since, M lies on the plane x + 2y - 2z = 10 $\lambda + 1 + 4\lambda - 4 + 4\lambda - 2 = 10$

$$\Rightarrow 9\lambda = 15 \Rightarrow \lambda = \frac{5}{3}$$

...

Hence, the co-ordinates of M are $\left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$.

- 86. The d.r.s. of the line $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ are 1, 4, 5
- ∴ The d.r.s. of any line parallel to it are also 1, 4, 5
 The equation of the line passing through

Q (1, -2, 3) $\frac{x-1}{1} = \frac{y+2}{\lambda} = \frac{z-3}{5} = \lambda$ (say) ...(i)

Any point on the line is $P \equiv (\lambda + 1, 4\lambda - 2, 5\lambda + 3)$ The point P lies on the plane 2x + 3y - 4z + 22 = 0 $2(\lambda + 1) + 3(4\lambda - 2) - 4(5\lambda + 3) + 22 = 0$ $\Rightarrow 6\lambda = 6$ $\Rightarrow \lambda = 1$ *.*.. P = (2, 2, 8)Required distance = l(PQ) = d*.*.. $d = \sqrt{(2-1)^2 + (2+2)^2 + (8-3)^2}$ $=\sqrt{1+16+25}$ $d = \sqrt{42}$ units ÷. Since line PQ is parallel to line $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ 87. d.r.s. of PQ are 1, 4, 5 *.*.. Equation of line PQ passing through P(1, -2, 3)... is $\frac{x-1}{1} = \frac{y+2}{4} = \frac{z-3}{5}$ Let $\frac{x-1}{1} = \frac{y+2}{4} = \frac{z-3}{5} = \lambda$

Any point R on PQ = $(\lambda + 1, 4\lambda - 2, 5\lambda + 3)$

MHT-CET Triumph Maths (Hints) Since point R lies in the plane 2x + 3y - 4z + 22 = 0

- $2(\lambda + 1) + 3(4\lambda 2) 4(5\lambda + 3) + 22 = 0$ *.*.. $\Rightarrow -6v + 6 = 0$ $\Rightarrow \lambda = 1$
- $R \equiv (2, 2, 8)$ *.*.. PQ = 2PR $= 2\sqrt{(2-1)^2 + (2+2)^2 + (8-3)^2}$

$$= 2\sqrt{42}$$
 units

Let A = (5, -1, 4), B = (4, -1, 3)88. $\overline{AB} = -\hat{i} - \hat{k} \implies |\overline{AB}| = \sqrt{2}$

Projection of \overline{AB} in the plane x + y + z = 7is $\left|\overline{AB}\right| \cos \theta = \left|\overline{A'B'}\right| \cos \theta$

Evaluation Test

Given planes are 1. x - cy - bz = 0....(i) cx - y + az = 0....(ii) bx + ay - z = 0....(iii) Equation of a plane passing through the line of intersection of planes (i) and (ii) is x - cy - bz + k(cx - y + az) = 0 $\Rightarrow (1 + ck)x - (c + k)y - (b - ak)z = 0 \dots (iv)$ Now, planes (iii) and (iv) are same for some value of k, $\frac{1+ck}{b} = -\frac{c+k}{a} = \frac{-(b-ak)}{-1}$ *.*.. $\Rightarrow \frac{1+ck}{b} = -\frac{c+k}{a}$ \Rightarrow a + ack = -bc - bk \Rightarrow k(b + ac) = -(a + bc)

Direction ratios of normal to the given plane is 1, 1, 1.

$$\cos (90^\circ - \theta) = \left| \frac{1(-1) + 1(0) + 1(-1)}{\sqrt{1^2 + 1^2 + 1^2} \sqrt{1^2 + 0^2 + 1^2}} \right|$$
$$\Rightarrow \sin \theta = \frac{2}{\sqrt{6}} \Rightarrow \cos \theta = \sqrt{1 - \frac{4}{6}} = \sqrt{\frac{1}{3}}$$
Required projection = $\left| \overline{AB} \right| \cos \theta$
$$= \sqrt{2} \times \frac{1}{\sqrt{3}} = \sqrt{\frac{2}{3}}$$

 $\sqrt{3}$

89. The line of intersection of first two planes is

$$\frac{x-5}{0} = \frac{y}{-3} = \frac{z+\frac{8}{3}}{-5a}$$

It must lie on third plane.

$$\therefore \quad 3b(0) + (-3)(1) + (-3)(-5a) = 0$$

and $3b(5) + 0(1) + (-3)\left(\frac{-8}{3}\right) = 0$
$$\Rightarrow a = \frac{1}{5} \text{ and } 15b + 8 = 0$$

$$\Rightarrow a = \frac{1}{5} \text{ and } b = -\frac{8}{15}$$

Also, $-\frac{c+k}{a} = b - ak$ $\Rightarrow -\left(\frac{c - \frac{a + bc}{b + ac}}{a}\right) = b + a\left(\frac{a + bc}{b + ac}\right)$ $\Rightarrow \frac{-bc - ac^2 + a + bc}{a} = b^2 + abc + a^2 + abc$ $\Rightarrow 1 - c^2 = a^2 + b^2 + 2abc$ $\Rightarrow a^2 + b^2 + c^2 + 2abc = 1$

2. Let a, b, c be the intercepts form by the plane on co-ordinate axes.

Since,
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2}$$

 $\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = 1$

...

 \Rightarrow k = $-\left(\frac{a+bc}{b+ac}\right)$

Chapter 08: Plane

- ... The point (2, 2, 2) satisfies the equation of the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
- \therefore the required point is (2, 2, 2).
- 3. Given euation of line and plane are $\bar{r} = \hat{i} + \hat{j} + \lambda (2\hat{i} + \hat{j} + 4\hat{k})$, and $\bar{r} \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 3$
- $\therefore \quad \overline{\mathbf{b}} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}} \text{ and}$ $\overline{\mathbf{n}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ $\text{ Consider } \overline{\mathbf{b}} \cdot \overline{\mathbf{n}} = (2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}})$ = 2 + 2 - 4= 0
- \therefore the line lies in the plane.
- 4. The equation of the given line is

$$x = 2 + t, y = 1 + t, z = -\frac{1}{2} - \frac{1}{2}t$$
$$\Rightarrow \frac{x - 2}{1} = \frac{y - 1}{1} = \frac{z + \frac{1}{2}}{-\frac{1}{2}}$$

... The given line passes through the point $\left(2,1,-\frac{1}{2}\right)$ and it's d. r.s are 1, 1, $-\frac{1}{2}$ The equation of the given plane is

The equation of the given plane is x + 2y + 6z = 10

 \therefore d.r.s of the normal to the plane are 1, 2, 6

$$\therefore \quad p = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$
$$= \left| \frac{1(2) + 2(1) + 6\left(-\frac{1}{2}\right) - 10}{\sqrt{1^2 + 2^2 + 6^2}} \right|$$
$$= \left| \frac{2 + 2 - 3 - 10}{\sqrt{1^2 + 2^2 + 6^2}} \right|$$
$$= \left| \frac{2 + 2 - 3 - 10}{\sqrt{1^2 + 2^2 + 6^2}} \right|$$
$$= \frac{9}{\sqrt{41}}$$
$$\therefore \quad \frac{\lambda}{\sqrt{\mu}} = \frac{9}{\sqrt{41}}$$
$$\Rightarrow \lambda = 9, \ \mu = 41$$
$$\therefore \quad 5\lambda - \mu = 5(9) - 41 = 45 - 41 = 4$$

5. Let a be the vector along the line of intersection of the planes 3x - 7y - 5z = 1 and 8x - 11y + 2z = 0. the d.r.s of the normals to the planes are 3, -7, -5 and 8, -11, 2.

 $\bar{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -7 & -5 \\ 8 & -11 & 2 \end{vmatrix}$ *.*. $=\hat{i}(-14-55)-\hat{j}(6+40)+\hat{k}(-33+56)$ $= -69\hat{i} - 46\hat{i} + 23\hat{k}$ Similarly, let b the vector along the line of intersection of the planes 5x - 13y + 3z + 2 = 0and 8x - 11y + 2z = 0the d.r.s of the normals to the planes are 5, -13, 3 and 8, -11, 2 $\overline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 5 & -13 & 3 \\ 8 & -11 & 2 \end{vmatrix}$ *:*.. $=\hat{i}(-26+33)-\hat{j}(10-24)+\hat{k}(-55+104)$ $= 7\hat{i} + 14\hat{j} + 49\hat{k}$ Consider, $\bar{a}.\bar{b} = (-69\hat{i} - 46\hat{j} + 23\hat{k}).(7\hat{i} + 14\hat{j} + 49\hat{k})$ $= -69 \times 7 + (-46) \times 14 + 23 \times 49$ =-483 - 644 + 1127= -1127 + 1127= 0a and b are perpendicular *.*.. $\Rightarrow \theta = 90^{\circ}$ *.*.. $\sin\theta = \sin 90^\circ = 1$

6. The equation of the given plane is $2\lambda x - (1 + \lambda)y + 3z = 0$ $\Rightarrow 2\lambda x - y - \lambda y + 3z = 0$ $\Rightarrow (2x - y)\lambda - (y - 3z) = 0$ $\Rightarrow (2x - y) - \frac{1}{\lambda}(y - 3z) = 0$ i. The plane measure through the

7.

... The plane passes through the point of intersection of the planes 2x - y = 0 and y - 3z = 0

Let $A \equiv (2, -1, 3)$, AM be \perp to the given plane and let $B \equiv (x, y, z)$ be the image of A in the Plane.

the d.r.s. of the normal to the plane are 3, -2, -1

- $\therefore \quad \text{The equation of the line AM is} \\ \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{-1} = \text{k, say}$
- $\therefore \quad x = 3k + 2, y = -2k 1, z = -k + 3$ Let M = (3k + 2, -2k - 1, -k + 3)
- :. equation of plane becomes 3(3k+2) - 2(-2k-1) - (-k+3) = 9
- \therefore $k = \frac{2}{7}$

$$\therefore \qquad \mathbf{M} \equiv \left(\frac{6}{7} + 2, -\frac{4}{7} - 1, -\frac{2}{7} + 3\right) \equiv \left(\frac{20}{7}, -\frac{11}{7}, \frac{19}{7}\right)$$

Since, M is the mid point of AB.

$$\therefore \qquad \frac{x_1 + 2}{2} = \frac{20}{7}, \ \frac{y_1 - 1}{2} = -\frac{11}{7}, \ \frac{z_1 + 3}{2} = \frac{19}{7}$$
$$\therefore \qquad x_1 = \frac{26}{7}, \ y_1 = -\frac{15}{7}, \ z_1 = \frac{17}{7}$$
$$\text{Image of A is } B\left(\frac{26}{7}, -\frac{15}{7}, \frac{17}{7}\right)$$

8. Since, \overline{a} and \overline{b} are coplanar, $\overline{a} \times \overline{b}$ is a vector perpendicular to the plane containing \overline{a} and \overline{b} . Similarly, $\overline{c} \times \overline{d}$ is a vector perpendicular to the plane containing \overline{c} and \overline{d} .

The two planes will be parallel, if their normals $\overline{a} \times \overline{b}$ and $\overline{c} \times \overline{d}$ are parallel.

$$\therefore \qquad \left(\overline{\mathbf{a}} \times \overline{\mathbf{b}}\right) \times \left(\overline{\mathbf{c}} \times \overline{\mathbf{d}}\right) = \overline{\mathbf{0}}$$

9. Equation of the plane containing the given lines is

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(15-16) - (y-2)(10-12) + (z-3)(8-9) = 0$$

$$\Rightarrow (x-1)(-1) - (y-2)(-2) + (z-3)(-1) = 0$$

$$\Rightarrow -x+1+2y-4-z+3 = 0$$

$$\Rightarrow -x+2y-z = 0$$

$$\Rightarrow x-2y+z = 0$$
(i)
Given equation of plane is

$$Ax - 2y + z = d$$
(ii)

The planes given by equation (i) and (ii) are parallel.

$$\therefore$$
 A = 1

distance between the planes (D) is

$$D = \left| \frac{d}{\sqrt{1^2 + (-2)^2 + 1^2}} \right| = \left| \frac{d}{\sqrt{6}} \right|$$
$$\left| \frac{d}{\sqrt{6}} \right| = \sqrt{6}$$

10.

 $\Rightarrow |\mathbf{d}| = 6$

...

$$P(2, -1, 2)$$

$$Q$$

$$2x + y + z = 9$$

Since, direction cosines of PQ are equal and positive

:. the d.r.s. of PQ are
$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

 \therefore The equation of the line PQ is

$$\frac{x-2}{\frac{1}{\sqrt{3}}} = \frac{y+1}{\frac{1}{\sqrt{3}}} = \frac{z-2}{\frac{1}{\sqrt{3}}}$$

$$\Rightarrow x - 2 = y + 1 = z - 2 = k$$
, say

... Co-ordinate of the point Q are

$$(k + 2, k - 1, k + 2)$$

The point Q lies on the plane $2x + y + z = 9$

$$\therefore \quad 2(k+2)+k-1+k+2=9$$
$$\Rightarrow 4k+5=9 \qquad \Rightarrow k=1$$
$$\therefore \quad Q \equiv (3, 0, 3)$$

:. PQ =
$$\sqrt{(3-2)^2 + (0+1)^2 + (3-2)^2}$$

= $\sqrt{1+1+1} = \sqrt{3}$

11. Let A ≡ (a, 0, 0), B ≡ (0, b, 0), C ≡ (0, 0, c)
∴ G ≡ (x, y, z) ≡
$$\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$$

⇒ $\frac{a}{3} = x, \frac{b}{3} = y, \frac{c}{3} = z$
⇒ a = 3x, b = 3y, c = 3z(i)

Chapter 08: Plane

The equation of the plane is

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

L.

Since, this plane is at a distance of 1 unit from the origin,

$$\left| \frac{-1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \right| = 1$$

$$\Rightarrow \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1$$

$$\Rightarrow \frac{1}{9x^2} + \frac{1}{9y^2} + \frac{1}{9z^2} = 1 \dots \text{[From (i)]}$$

$$\Rightarrow \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 9$$

$$\Rightarrow k = 9$$

Let the equation of the plane OAB be 12. ax + by + cz = dThis plane passes through the points A(1, 2, 1)and B(2, 1, 3)

- a + 2b + c = 0, *.*.. ...(i) 2a + b + 3c = 0...(ii) and
- on solving (i) and (ii), we get *.*..
 - $\frac{a}{5} = \frac{b}{-1} = \frac{c}{-3}$

Similarly, let the equation of the plane ABC be a'(x+1) + b'(y-1) + c'(z-2) = 0Substituting the co-ordinates of A and B, we get

2a' + b' - c' = 0,

and 3a' + c' = 0

 $\frac{a'}{1} = \frac{b'}{-5} = \frac{c'}{-3}$...

If θ is the angle between two planes, then it is the angle between their normals.

$$\therefore \quad \cos \theta = \frac{5 \times 1 + (-1) \times (-5) + (-3) \times (-3)}{\sqrt{25 + 1 + 9} \sqrt{1 + 25 + 9}}$$
$$= \frac{5 + 5 + 9}{\sqrt{35} \sqrt{35}}$$
$$= \frac{19}{35}$$
$$\Rightarrow \theta = \cos^{-1} \left(\frac{19}{35}\right)$$

13. The equation of the given plane can be written as $\frac{x}{20} + \frac{y}{15} + \frac{z}{-12} = 1$

> Let the plane intersects the *x*, *y* and *z* axes in the points A(20, 0, 0), B(0, 15, 0), C(0, 0, -12)

$$\therefore$$
 $\overline{a} = 20\hat{i}, \overline{b} = 15\hat{j}, \text{ and } \overline{c} = -12\hat{k}$

:. Volume of tetrahedron =
$$\frac{1}{6} \begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$$

$$= \frac{1}{6} \begin{vmatrix} 0 & 15 & 0 \\ 0 & 0 & -12 \end{vmatrix} = \begin{vmatrix} -600 \end{vmatrix} = 600$$

14. Given lines are coplanar.

...

$$\begin{vmatrix} 1-2 & 4-3 & 5-4 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow -1(1+2k) - 1(1+k^2) + 1(2-k) = 0$$

$$\Rightarrow -1 - 2k - 1 - k^2 + 2 - k = 0$$

$$\Rightarrow -k^2 - 3k = 0 \Rightarrow k(k+3) = 0$$

$$\Rightarrow$$
 k = 0 or k = -3

Textbook Chapter No.

Linear Programming

Hints

Classical Thinking

- 3. Option D is the only option which is non-linear.
- 4. 'p' is a linear inequality and 'q' is a non-linear inequality
- 5. Since the profit should be maximum, the objective function is Maximum profit, z = 40x + 25y.
- 9. Let x = number of table clothes produced in a day, and y = number of curtains produced in a day
- \therefore $x \ge 0, y \ge 0$

 \dots [:: both items cannot be negative]

Representing the given	information in	n tabular form,	we get
------------------------	----------------	-----------------	--------

	Table cloth (x)	Curtain (y)	Total availability
Money earned (₹)	50	250	500
Hours of work	1	3	Z

- $\therefore \qquad 50x + 250y \ge 500$
- \therefore total hours = z = x + 3y
- :. Required LPP is formulated as Minimize, z = x + 3y, subject to $50 x + 250 y \ge 500$, $x \ge 0$, $y \ge 0$
- 15. At (800, 400), P = 12 (800) + 6 (400) = 12000At (1050, 150), P = 12 (1050) + 6 (150) = 13500At (600, 0), P = 12 (600) + 6 (0) = 7200
- \therefore Maximum value of P is 13500.
- 16. The corner points of feasible region are O(0, 0), A(7, 0), B(3, 4) and D(0, 2)At A(7, 0), z = 5(7) + 7(0) = 35At B(3, 4), z = 5(3) + 7(4) = 43At C(0, 2), z = 5(0) + 7(2) = 14
- \therefore Maximum value of z is 43.
- 17. The corners of feasible region are O(0, 0), A(25, 0), B(16, 16) and C(0, 24) At O(0, 0), z = 0At A(25, 0), z = 4(25) + 3(0) = 100At B (16, 16), z = 4(16) + 3(16) = 112At C(0, 24), z = 4(0) + 3(24) = 72
- \therefore Maximum value of z is 112.
- 18. The corners of feasible region are O (0,0), A (52, 0), E (44, 16) and D (0, 38).
- $\therefore \quad \text{At A}(52, 0), z = 3(52) + 4(0) = 156$ At E(44, 16), z = 3(44) + 4(16) = 196 At D(0, 38), z = 3(0) + 4(38) = 152
- \therefore Maximum value of z is 196

Chapter 09: Linear Programming

19. At A (50, 50), P =
$$\frac{5}{2}(50) + \frac{3}{2}(50) + 410 = 610$$

At B (10, 50), P = $\frac{5}{2}(10) + \frac{3}{2}(50) + 410 = 510$
At C (60, 0), P = $\frac{5}{2}(60) + \frac{3}{2}(0) + 410 = 560$
At D (60, 40), P = $\frac{5}{2}(60) + \frac{3}{2}(40) + 410 = 620$
∴ Minimum value of P is 510 at B (10, 50)

20. The corners of given feasible region are A(12, 0), B(4, 2), C(1, 5) and D(0, 10) At A(12, 0), z = 3(12) + 2(0) = 36At B(4, 2), z = 3(4) + 2(2) = 16At C(1, 5), z = 3(1) + 2(5) = 13At D(0, 10), z = 3(0) + 2(10) = 20Minimum value of z is 13

- 21. The corner points of feasible region are (0, 3), (0, 5) and (3, 2)
- $\therefore \quad \text{At } (0, 3), z = 11(0) + 7(3) = 21$ At (0, 5), z = 11(0) + 7(5) = 35 At (3, 2), z = 11(3) + 7(2) = 47
- \therefore Minimum value of z is 21

22. At
$$P\left(\frac{3}{13}, \frac{24}{13}\right)$$
, $z = \frac{3}{13} + 2\left(\frac{24}{13}\right) = \frac{51}{13} = 3.923$
At $Q\left(\frac{3}{2}, \frac{15}{4}\right)$, $z = \frac{3}{2} + 2\left(\frac{15}{4}\right) = 9$
At $R\left(\frac{7}{2}, \frac{3}{4}\right)$, $z = \frac{7}{2} + 2\left(\frac{3}{4}\right) = 5$
At $S\left(\frac{18}{7}, \frac{2}{7}\right)$, $z = \frac{18}{7} + 2\left(\frac{2}{7}\right) = \frac{22}{7} = 3.143$

- $\therefore \quad \text{Maximum value of z is 9, and} \\ \text{Minimum value of z is} \frac{22}{7}.$
- 23. Assume that x and y take arbitrary large values. So the objective function can be made as large as we want. Hence the problem has unbounded solution.
- 24. The feasible region is unbounded. x and y can take arbitrary large values. Hence the problem has unbounded solution.
- 25. Since there are two disjoint feasible regions, the LPP has no solution.
- 26. The feasible region is disjoint.
- \therefore There is no solution.

Critical Thinking 1. From the given table the constraints are $2x + 3y \le 3$

. From the given table the constraints are $2x + 3y \le 36$; $5x + 2y \le 50$; $2x + 6y \le 60$ Also $x \ge 0$, $y \ge 0$ [:: number of magazines cannot be negative]

- \therefore The number of constraints are 5.
- 2. Repersenting the given information in table form, we get

	Shirt (x)	Pants (y)	Total availability
Work time on machine (hours)	2	3	70
Man labour (hours)	3	2	75

Linear constraints are $2x + 3y \le 70$, $3x + 2y \le 75$.

Also,
$$x \ge 0, y \ge 0$$

....[:: number of shirts and pants cannot be negative]

- 3. Let the factory owner purchase *x* units of machine A and *y* units of machine B for his factory.
- \therefore $x \ge 0$, $y \ge 0$

 \dots [:: number of machines cannot be negative]

Representing the given information in tabular form, we get

	Machine A(x)	Machine B(y)	Total Availability
Machine Area (m ²)	1000	1200	7600
Skilled men	12	8	72
Daily output (no. of units)	50	40	Z

 \therefore 1000*x* + 1200*y* ≤ 7600

 $12x + 8y \le 72$

4. Let, x = number of necklaces, and y = number of bracelets

Representing the given information in tabular form, we get

	Necklace (x)	Bracelet (y)	Total availability
Time required (hrs)	$\frac{1}{2}$	1	16
Profit (₹)	100	200	Z

 $\therefore \qquad \frac{1}{2}x + y \le 16 \Rightarrow x + 2y \le 32$

 $x + y \le 24$

total profit z = 100x + 300y

- $\therefore \quad \text{Required LPP is formulated as} \\ \text{Maximize } z = 100x + 300y, \text{ subject to} \\ x + y \le 24, x + 2y \le 32, x \ge 0, y \ge 0 \\ \end{cases}$
- 5. Let the consumption per day be, *x* grams of food X and Y grams of food Y.
- \therefore $x \ge 0$ and $y \ge 0$

 \dots [:: the quantities cannot be negative]

Representing the given information in table form, we get

Type of food	Food X (x)	Food Y (y)	Minimum requirement
Vitamin A per gram (units)	4	6	90
Vitamin B per gram (units)	7	11	130
Cost per gram (paise)	15	22	Z

 $\therefore \quad 4x + 6y \ge 90,$

 $7x + 11y \ge 130$, and z = 15 x + 22 y

... Required LLP is formulated as, Minimize z = 15x + 22y, subject to constraints $4x + 6y \ge 90$, $7x + 11y \ge 130$, $x \ge 0$, $y \ge 0$

- **Chapter 09: Linear Programming**
- 6. Suppose x kg of food A and y kg of food B are consumed to form a weekly diet.
- $\therefore x \ge 0, y \ge 0.$ Representing the given information in table form, we get
 Food A (x)
 Food B (y)
 Minimum requirement

	Food A (x)	Food B (y)	Minimum requirement
Fats (units)	4	12	18
Carbohydrates (units)	16	4	24
Protein (units)	8	6	16
Cost (₹)	6	5	Z

- $\therefore \quad \text{Required LPP is formulated as} \\ \text{Minimize, } z = 6x + 5y \text{ subject to constraints,} \\ 4x + 12y \ge 18, 16x + 4y \ge 24, 8x + 6y \ge 24, x \ge 0, y \ge 0 \\ \text{Required LPP is formulated as} \\ \text{Minimize, } z = 6x + 5y \text{ subject to constraints,} \\ \text{Required LPP is formulated as} \\ \text{Required LPP$
- 7. Converting the given inequalities into equations, we get x + y = 4The equation intersects the axes at (4, 0) and (0, 4) The feasible region lies on origin side of lines y = 5 and x + y = 4 and in first quadrant. It is bounded in first quadrant.
- 8. Converting given inequalities into equations, we get

$$y - x = 1$$
 i.e. $\frac{x}{(-1)} + \frac{y}{1} = 1$ (i)
 $2x - 6y = 3$ i.e. $\frac{x}{2} + \frac{y}{(\frac{-1}{2})} = 1$ (ii)

$$x = 0, y = 0$$

 $\therefore \quad \text{Equation (i) intersects the axes at } (-1, 0) \text{ and } (0, 1)$ Equation (ii) intersects the axes at $\left(\frac{3}{2}, 0\right)$ and $\left(0, \frac{-1}{2}\right)$

Substituting x = 0, y = 0 in given inequalities, we get $(0) - (0) = 0 \le 1$, and $2(0) - 6(0) = 0 \le 3$

- :. Feasible region lies on the origin side of both the lines, in first quadrant. It is unbounded and convex.
- 9. The feasible region lies on origin side of line 2x + 3y 5 = 0 and non-origin side of line 4x 3y + 2 = 0. However, it is not bounded by any axes.

The feasible region lies on origin side of the lines -x + 3y = 9 and -x + y = 1, and in first quadrant. It is unbounded.

- 11. Feasible region lies on origin side of line 2x 3y = 5.
- ... O lies inside the region Substituting P (2, -2) in given inequality, we get 2 (2) - 3 (-2) = $10 \le 5$
- \therefore P lies outside the region.

- 12. It is clear from the graph that origin is not there in the feasible region. Out of the 4 options, only option (B) satisfies this condition i.e., $4(0) 2(0) = 0 \le -3$ is correct.
- 13. The shaded region lies; On origin side of line $x + 2y = 8 \Rightarrow x + 2y \le 8$, On non-origin side of line $2x + y = 2 \Rightarrow 2x + y \ge 2$, On origin side of line $x - y = 1 \Rightarrow x - y \le 1$ and in first quadrant $\Rightarrow x \ge 0, y \ge 0$.
- 14. The feasible region lies on non-origin side of line 2x + y = 2and origin side of line x - y = 3 as shown in the figure. By solving the two equations, we get the point of

intersection $\left(\frac{5}{3}, \frac{-4}{3}\right)$, which is the vertex of the common graph.

- 15. Feasible region lies on origin side of line x + y = 6, non-origin side of line 3x + 2y = 6 and in the first quadrant.
- \therefore Vertices of the feasible region are (0, 6), (0,3), (2, 0) and (6, 0)

Chapter 09: Linear Programming

16. Converting the given inequalities into equations, we get x = 5, x = 10, y = 5 and y = 10The feasible region is as shown in the figure

- The vertices of the feasible region are (5, 5), (10, 5), (10, 10) and (5, 10)
- 17. Converting the given inequations into equations, we get

$$2x + 3y = 6 \text{ i.e. } \frac{x}{3} + \frac{y}{2} = 1 \qquad \dots (i)$$

$$5x + 3y = 15 \text{ i.e. } \frac{x}{3} + \frac{y}{5} = 1 \qquad \dots (ii)$$

Equation (i) intersects the axes at points (3, 0) and (0, 2)*.*.. Equation (ii), intersects at points (3, 0) and (0, 5). Also substituting origin (0, 0) in both in equalities we get, $2(0) + 3(0) = 0 \le 6$ and $5(0) + 3(0) = 0 \le 15$

Y

- Feasible region lies on origin side of both the lines as shown in the graph $X' \leftarrow$ *.*.. the vertices of feasible region are (0, 2), (0, 0) and (3, 0)
- (0, 5) is not a vertex of feasible region. *.*.. Using two point form we have, equation of line AB : x + 2y = 8 and equation of line CD : 3x + 2y = 1218. Since, the shaded region lies on, origin side of line AB, non-origin side of line CD and above X- axis.
- $x + 2y \le 8$, $3x + 2y \ge 12$ and $y \ge 0$ *.*..

...

19. Take a test point (1, 1) that lies within the feasible region. Since $(1) + (1) = 2 \le 5$, is true we have $x + y \le 5$. Since $1 \le 4$ and $1 \le 3$ are true, we have $x \le 4$ and $y \le 3$. Since $4(1) + 1 = 5 \ge 4$, we have $4x + y \ge 4$

The feasible region lies on the origin side of 2x + y = 30 and x + 2y = 24, 20. in the first quadrant. The corners of the feasible region are O(0, 0), A(15, 0), B(0, 12) and 2x + v = 30C (12, 6) At A(15, 0), z = 90At B(0, 12), z = 96C(12,6)At C(12, 6), z = 120 Maximum value of z is 120. *.*.. A(15.0) Y′ 21. The feasible region lies on origin side of lines x + y = 5 and 3x + y = 9, in first quadrant.

- The corners of feasible region are O (0, 0), A (0, 5), B (2, 3) and C (3, 0)
- Maximum value of objective function ... z = 12x + 3y is at C (3, 0)
- z = 12(3) + 3(0) = 36*.*..

Feasible region lies on origin side of lines 5x + 8y = 40 and 3x + y = 6 and above line y = 2, in first 28. quadrant.

The corner points of the feasible region

A(0, 2), B
$$\left(\frac{4}{3}, 2\right)$$
, C $\left(\frac{8}{19}, \frac{90}{19}\right)$ and D(0, 5)
At A (0, 2), z = 14
At B $\left(\frac{4}{3}, 2\right)$, z = 22
At C $\left(\frac{8}{19}, \frac{90}{19}\right)$, z = $\frac{678}{19}$
At D (0, 5), z = 35

30. The corner points of feasible region are A(1, 0), B(10, 0), C (2, 4), D(0, 4) and E (0, 1) At A (1, 0), z = 1 + 0 = 1 = 1At B (10, 0), z = 10 + 0 = 10At C (2, 4), z = 2 + 4 = 6At D (0, 4), z = 0 + 4 = 4At E (0, 1), z = 0 + 1 = 1z has minimum value at both A (1, 0) and E (0, 1).

Feasible region lies on origin side of line $x_1 + x_2 = 1$ and non-origin side of line $3x_1 + x_2 = 3$ in first quadrant. 31. there is no feasible region. *.*..

The feasible regions are is disjoint. Hence there is no point in common.

- There is no optimum value of the objective function.
- . 00

5.

...

8.

Competitive Thinking

Condition (i), $i = 1, x_{11} + x_{12} + x_{13} + \dots + x_{1n}$ $i = 2, x_{21} + x_{22} + x_{23} + \dots + x_{2n}$ $i = 3, x_{31} + x_{32} + x_{33} + \dots + x_{3n}$ $i = m, x_{m1} + x_{m2} + x_{m3} + \dots + x_{mn} \rightarrow m \text{ constraints}$ Condition (ii), $j = 1, x_{11} + x_{21} + x_{31} + \dots + x_{m1}$ $j = 2, x_{12} + x_{22} + x_{32} + \dots + x_{m1}$ $j = n, x_{1n} + x_{2n} + x_{3n} + \dots + x_{mn} \rightarrow n \text{ constraints}$ Total constraints = m + n

7. In linear programming problem, concave region is not used. Convex region is used in linear programming.

Feasible region is on non-origin side of 3y + x = 3 and in first quadrant. Hence, it is unbounded.

9. The feasible region lies on origin side of the lines $-x_1 + x_2 = 1$ and $-x_1 + 3x_2 = 9$, in first quadrant. It is unbounded.

Chapter 09: Linear Programming

10. Feasible region lies on non-origin side of both lines and is true for positive values of x and both positive and negative values of y.

11. Since shaded region lies on origin side of lines x + y = 20 and 2x + 5y = 80 and is in first quadrant

:. $x + y \le 20$, $2x + 5y \le 8$, $x \ge 0$, $y \ge 0$

- 12. Shaded region lies on origin side of x + 2y = 8 and x y = 1, and on non-origin side of 2x + y = 2.
- :. $x + 2y \le 8, x y \le 1, 2x + y \ge 2$
- 13. Take a test point (2, 1) which lies within the feasible region. Since, $2 - 1 = 1 \ge 0$, $2 \le 5$, $1 \le 3$ and $2, 1 \ge 0$
- $\therefore \quad x, y \ge 0, x y \ge 0, x \le 5, y \le 3.$
- 14. Since shaded region lies on non-origin side of 5x + 4y = 20, and on origin side of the lines x = 6 and y = 3

A(0,30)

 $\therefore \quad 5x + 4y \ge 20, \, x \le 6, \, y \le 3, \, x \ge 0, \, y \ge 0$

17. The feasible region lies on the origin side of x + y = 40 and x + 2y = 6, in fist quadrant. The corners of feasible region are O(0, 0), A(0, 30), B(20, 20) and C(40, 0)

- $\therefore \quad \text{At A}(0, 30), P = 0 + 4 (30) = 120$ At B(20, 20), P = 3(20) + 4 (20) = 140 At C(40, 0), P = 3(40) + 0 = 120
- \therefore Maximum value of P is 140.
- 18. The feasible region lies on origin side of 4x + 5y = 20, non-origin side of x + y = 3 and in first quadrant.
- \therefore The corners of feasible region are A(5, 0), B(0, 4), C(3, 0) and D(0, 3)
- \therefore Maximum 2x + 3y is at B (0, 4)
- :. Maximum 2x + 3y = 2(0) + 4(3) = 12

B(20,20)

 $\therefore \quad \mathbf{B} \equiv (1, 3.5)$

27. At (15, 15), z = 15p + 15qAt (0, 20), z = 20q

Since, maximum occurs at (15, 15) and (0, 20),

$$\therefore \quad z_{max} = 15p + 15q = 20q$$
$$\Rightarrow 15p + 15q = 20q$$
$$\Rightarrow 15p = 5q \Rightarrow 3p = q$$

28. z = px + qyAt (25, 20), z = 25p + 20qAt (0, 30), z = 0 + 30q = 30qSince maximum z occurs at both the points, 25p + 20q = 30q $\Rightarrow 25p = 10q \Rightarrow 5p = 2q$ 2x+v

- 29. At (5, 5), z = 3(5) + 9(5) = 60At (0, 10), z = 3(0) + 9(10) = 90At (0, 20), z = 3(0) + 9(20) = 180At (15, 15), z = 3(15) + 9(15) = 180
- Minimum value of z is 60 at (5, 5).
- The feasible region lies on non-origin side of all the lines, X_2 30. in first quadrant The corners of feasible region are

X'

- A(11, 0), B(4, 2), C(1, 5) and D(0, 10).
- At A(11,0), z = 2(11) + 0 = 22*.*.. At B(4, 2), z = 2(4) + 3(2) = 14At C(1, 5), z = 2(1) + 3(5) = 17At D(0, 1), z = 0 + 3(10) = 30
- Maximum value of z is 14 *.*..
- The feasible region is unbounded whose vertex is 31.

$$\therefore \qquad \text{Minimum } z = 2x + 10y \text{ is at } \left(\frac{5}{4}, \frac{5}{4}\right)$$
$$\therefore \qquad z = 2\left(\frac{5}{4}\right) + 10\left(\frac{5}{4}\right) = 15$$

- $z = 2\left(\frac{z}{4}\right) + 10\left(\frac{z}{4}\right) = 15$ 32. The feasible region region lies on the non-origin side of
 - 2x + 3y = 6 and y = 1 and on origin side of x + y = 8The corners of feasible region are
 - , 1 , B(0, 2), C(7, 1) and D(0, 8). A

Substituting above points in z = 4x + 6y, we get

Min.
$$z = 12$$
 at A $\left(\frac{3}{2}, 1\right)$ and B (0, 2).

- The feasible region lies on origin side of line 33. x + y - 20 = 0 and above the line y = 5. The corners of feasible region are B (0, 20), C (0, 5) and D (15, 5)
- The minimum value of z = 7x 8y is at B (0, 20) z = 7(0) - 8(20) = -160

- 38. The feasible region is unbounded.
- \therefore its maximum value does not exist.

- 39. The feasible region lies on the origin side of the line x + 2y = 2 and on non-origin side of x + 2y = 8.
- \therefore There is no feasible solution.

- \therefore there is no point common to all inequations.
- \therefore There is no maximum value of z.

B(2.5, 35)

A(20, 0)

2x + 5y = 180

2x+y=40

(90,0)

►X

C(0, 36)

X′**+**

0

Y

Constraints are $4x + 2y \le 80 \Rightarrow 2x + y \le 40$, $2x + 5y \le 180$ Maximize z = 3x + 4yThe corners of feasible region are O(0, 0), A(20, 0), B(2.5, 35), C(0, 36) \therefore At A (20, 0), z = 3(20) + 0 = 60

Let no. of model $M_1 = x$ and no. of model $M_2 = y$

- At B (2.5,35), z = 3(2.5) + 4(35) = 147.5At C (0, 36), z = 0 + 3(36) = 108
- \therefore z is maximum at B(2.5, 35).

 $x \ge 0, y \ge 0$

1.

....

- \therefore Infinite optimal solutions exist along CD.
- 6. Consider option (C)

 $3 + 2(4) \ge 11$ $3(3) + 4(4) \le 30$ $2(3) + 5(4) \le 30$

- \therefore All the above three in-equalities hold for point (3, 4).
- \therefore Option (C) is the correct answer.
- 7. Let the manufacturer produce *x* and *y* bottles of medicines A and B.

He must have
$$\frac{3x}{1000} + \frac{y}{1000} \le 66, x + y \le 45000, x \le 20000, y \le 40,000, x \ge 0, y \ge 0.000$$

 \therefore the number of constraints is 6.

8. Let the company produce *x* telephones of A type and *y* telephones of B type.

$$\therefore \quad \text{Constraints are } 2x + 4y \le 800 \Rightarrow x + 2y \le 400, x + y \le 300$$

Maximize z = 300x + 400y
(0, 300)

- \therefore the feasible region of the LPP is bounded.
- 9. Given that $4x + 2y \le 8$, $2x + 5y \le 10$
- :. the feasible region lies on origin side of 4x + 2y = 8 and 2x + 5y = 10. Also, $x, y \ge 0$
- \therefore the feasible region lies in first quadrant.
- \therefore option (C) is correct.

10. Objective function
$$z = x_1 + x_2$$

The corner points of feasible region are
O(0, 0), A(2, 0), B(2, 1), C $\left(\frac{2}{3}, \frac{7}{3}\right)$ and D(0, 1)
At B(2, 1) and C $\left(\frac{2}{3}, \frac{7}{3}\right)$, z is maximum. Max z = 3

- :. Infinite number of solutions exists along BC.
- 11. Objective function z = 3x + 2yThe corner points of feasible region are

$$A\left(\frac{1}{4}, \frac{5}{4}\right), B\left(\frac{1}{6}, \frac{5}{6}\right), C(1, 0), D(3, 0), E(3, 3), F\left(\frac{5}{2}, \frac{7}{2}\right)$$

At A = z_A = 3 $\left(\frac{1}{4}\right)$ + 2 $\left(\frac{5}{4}\right)$ = 3.25
At B = z_B = 3 $\left(\frac{1}{6}\right)$ + 2 $\left(\frac{5}{6}\right)$ = 2.167
At C = z_C = 3(1) + 2(0) = 3
At D = z_D = 3(3) + 2(0) = 9
At E = z_E = 3(3) + 2(3) = 15
At F = z_F = 3 $\left(\frac{5}{2}\right)$ + 2 $\left(\frac{7}{2}\right)$ = 14.5

 \therefore Maximum value of z at (3,3) is 15.

Textbook Chapter No.

01 Continuity

Hints

	Classical Thinking
1.	$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{\sin x}{x} + \cos x \right)$
	= 1 + 1 = 2 = f(0)
<i>.</i>	f(x) is continuous at $x = 0$.
2.	$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{2} \sin^2 x = 0 = f(0)$
÷	f(x) is continuous at $x = 0$.
3.	$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(1 + \frac{4x}{5} \right)^{\frac{1}{x}}$
	$=\left[\lim_{x\to 0}\left(1+\frac{4x}{5}\right)^{\frac{5}{4x}}\right]^{\frac{4}{5}} = e^{\frac{4}{5}} = f(0)$
<i>:</i> .	f(x) is continuous at $x = 0$.
4	Since $f(x)$ is continuous $x = 0$
	$f(0) = \lim_{x \to \infty} f(x)$
	$= \lim_{x \to 0} (\sin x - \cos x)$
	$= \sin 0 - \cos 0 = -1$
5	Since $f(x)$ is continuous at $x = 0$
	$f(0) = \lim_{x \to 0} f(x)$
	$= \lim_{x \to 0} \frac{2x + \tan x}{x}$
	$= \lim_{x \to 0} \left(2 + \frac{\tan x}{x} \right) = 2 + 1 = 3$
6.	Since, $f(x)$ is continuous at $x = 1$.
<i>.</i> :.	$f(1) = \lim_{x \to 1} f(x) \qquad \Rightarrow k = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
	$\Rightarrow k = \lim_{x \to 1} (x+1) \qquad \Rightarrow k = 2$
7.	Since, $f(x)$ is continuous at $x = 0$.
<i>.</i>	$f(0) = \lim_{x \to 0} f(x)$
	$\Rightarrow \frac{k}{2} = \lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3$
	$\Rightarrow \frac{k}{2} = 3 \qquad \Rightarrow k = 6$

8. Since,
$$f(x)$$
 is continuous at $x = 0$.
 \therefore $f(0) = \lim_{x \to 0} f(x)$
 $\Rightarrow k = \lim_{x \to 0} \frac{\sin \pi x}{5x}$
 $\Rightarrow k = \lim_{x \to 0} \left(\frac{\sin \pi x}{\pi x}\right) \cdot \frac{\pi}{5}$
 $\Rightarrow k = (1) \cdot \frac{\pi}{5}$
 $\Rightarrow k = (1) \cdot \frac{\pi}{5}$
9. Since, $f(x)$ is continuous at $x = 0$.
 \therefore $f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(e^{3x} - 1)\sin x}{x^2}$
 $= \lim_{x \to 0} \frac{e^{3x} - 1}{3x} \times 3 \times \frac{\sin x}{x} = 1 \times 3 \times 1$
 \therefore $f(0) = 3$
10. $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2x + 1) = 3 \neq f(1)$
 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 1) = 2 = f(1)$
11. $f\left(\frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2}$
 $\lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^+} (1 - x) = 1 - \frac{1}{2} = \frac{1}{2}$
 $\lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^+} (1 - x) = 1 - \frac{1}{2} = \frac{1}{2}$
 \therefore $\lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^+} f(x) = f\left(\frac{1}{2}\right)$
 \therefore $f(x)$ is continuous at $x = \frac{1}{2}$.
12. Since, $f(x)$ is continuous at $x = 1$.
 \therefore $\lim_{x \to 1^-} f(x) = f(1)$
 $\Rightarrow \lim_{x \to 1^-} (8x - 1) = k$

 \Rightarrow k = 7

383

MHT-CET Triumph Maths (Hints) 13. Since, f(x) is continuous at x = 2. $f(2) = \lim_{x \to \infty} f(x)$ $x \rightarrow 2^{-}$ \Rightarrow 3 = lim(kx - 1) $x \rightarrow 2$ \Rightarrow 3 = 2k - 1 \Rightarrow k = 2 14. Since, f(x) is continuous at x = 1. $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x)$ $x \rightarrow 1^{-}$ $\Rightarrow 2 = \lim (c - 2x)$ $x \rightarrow 1$ $\Rightarrow 2 = c - 2$ $\Rightarrow c = 4$ 15. Since, f(x) is continuous at x = 0. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 0^{-}$ $x \rightarrow 0^{+}$ $\Rightarrow \lim_{x \to 0^-} (-x^2 - \mathbf{k}) = \lim_{x \to 0^+} (x^2 + \mathbf{k})$ $\Rightarrow - k = k$ \Rightarrow k = 0 16. Since, f(x) is continuous at x = 1. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow 1^{-}$ $x \rightarrow 1^{+}$ $\Rightarrow \lim_{x \to 1^-} (2x+1) = \lim_{x \to 1^+} (3-kx^2)$ $\Rightarrow 2 + 1 = 3 - k(1)^2$ $\Rightarrow k = 0$ Since, f(x) is continuous at x = 3. 17. $f(3) = \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 3^{-}$ $\Rightarrow 4 = \lim_{h \to 0} f(3 - h) \Rightarrow 4 = \lim_{h \to 0} (3 - h + \lambda)$ \Rightarrow 3 + λ = 4 \Rightarrow λ = 1 18. Since, f(x) is continuous at x = 2. $f(2) = \lim f(x)$ $x \rightarrow 2^{-}$ $\Rightarrow f(2) = \lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} + a \right) \Rightarrow 8 = 4 + a$ $\Rightarrow a = 4$ Also, $f(2) = \lim_{x \to \infty} f(x)$ $x \rightarrow 2^{-1}$ \Rightarrow f(2) = lim (x + b + 4) \Rightarrow 8 = 6 + b $x \rightarrow 2$ \Rightarrow b = 2 Since, f(x) is continuous at $x = \frac{\pi}{2}$. 19. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow \frac{\pi^{-}}{2}$ $x \rightarrow \frac{\pi^{+}}{2}$ $\Rightarrow \lim_{x \to \frac{\pi}{2}} (ax+1) = \lim_{x \to \frac{\pi}{2}} (\sin x + b)$ \Rightarrow a. $\frac{\pi}{2} + 1 = 1 + b \Rightarrow b = \frac{a\pi}{2}$

 $\lim_{x \to 1} f(x) = \lim_{x \to 1} x^2 = 1 \text{ and } f(1) = 2$ 20. f(x) is discontinuous at x = 1. $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 = 1$ 21. $x \rightarrow 1^{-}$ $x \rightarrow 1$ $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x+5) = 6$ $x \rightarrow 1$ $x \rightarrow 1^+$ *.*.. f(x) is discontinuous at x = 1. 22. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x = 1$ $x \rightarrow 1$ $x \rightarrow 1^{-}$ $\lim f(x) = \lim (x+1) = 1 + 1 = 2$ $x \rightarrow 1^+$ $x \rightarrow 1^+$ $\lim f(x) \neq \lim f(x)$. . $x \rightarrow l^ x \rightarrow l^+$ f(x) is discontinuous at x = 1. *.*.. 23. $\lim_{x \to -1} f(x) = \lim_{x \to -1} (x - 1) = -1$ $x \rightarrow 0^{-}$ $x \rightarrow 0$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^2 = 0$ $x \rightarrow 0^+$ $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ $x \rightarrow 0^{-}$ $x \rightarrow 0^{+}$ f(x) is discontinuous at x = 0. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} \left(\frac{5}{2} - x \right) = \frac{1}{2}$ 24. $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left(x - \frac{3}{2} \right) = \frac{1}{2} \text{ and } f(2) = 1$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) \neq f(2)$ *.*.. $x \rightarrow 2^{-}$ $x \rightarrow 2^+$ f(x) is discontinuous at x = 2. *.*.. 25. $\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 - x) = 0$ $x \rightarrow 1^+$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1 + x^2) = 1 + 1^2 = 2$ $x \rightarrow 1^{-}$ $x \rightarrow 1$ $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 1^+$ $x \rightarrow 1$ f(x) is discontinuous at x = 1. *.*.. $\lim f(y) = \lim (y^2 - y - 1) = 4 - 2 - 1 = 1$ 26. $y \rightarrow 2^{-}$ $y \rightarrow 2^{-}$ $\lim_{x \to 1} f(y) = \lim_{x \to 1} (4y + 1) = 8 + 1 = 9$ $y \rightarrow 2^+$ $y \rightarrow 2^+$ $\lim_{x \to \infty} f(y) \neq \lim_{x \to \infty} f(y)$ $y \rightarrow 2^{-}$ $y \rightarrow 2^+$ *.*.. f(y) is discontinuous at y = 2. $\lim_{x \to 3} f(x) = \lim_{x \to 3} \sqrt{x - 2} = 1$ 28. $f(3) = \sqrt{3} - 2 = 1$ $\lim f(x) = f(3)$ *.*.. *.*.. f(x) is continuous at x = 3. Since, $3 \in (2, 4)$ f(x) is continuous in (2, 4). *.*..

29. For x > 0, f(x) = xSince f is a polynomial function, it is continuous for all x > 0. For x < 0, $f(x) = x^2$ Since f is a polynomial function, it is continuous for all x < 0. $\lim_{x \to 0^-} f(x) = \lim_{x \to 0} x^2 = 0$ $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0$ f(0) = 0Given the polynomial function of the polynomial function of the polynomial function.

- $\therefore \quad f(x) \text{ is continuous at } x = 0.$ $\therefore \quad f(x) \text{ is continuous on } R.$
- 30. f(x) being a rational function, is continuous in [0, 1] except at those points where the denominator (x 2) (x 5) = 0i.e., when x = 2 or x = 5Since 2, $5 \notin [0, 1]$
- \therefore f(x) is continuous in [0, 1].
- 31. For x < 2, f(x) = x 1Since f is a polynomial function, it is continuous for all x < 2. For x > 2, f(x) = 2x - 3Since f is a polynomial function, it is continuous for all x > 2. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} (x - 1) = 1$ $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} (2x - 3) = 1$ f(2) = 1
- \therefore f(x) is continuous for all real values of x.
- 32. Since, f(x) is continuous in [0, 3].
- $\therefore \quad \text{it is continuous at } x = 2.$ $\therefore \quad \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$ $\Rightarrow \lim_{x \to 2^{-}} (3x - 4) = \lim_{x \to 2^{+}} (2x + k)$ $\Rightarrow 3(2) - 4 = 2(2) + k$ $\Rightarrow 2 = 4 + k \Rightarrow k = -2$
- 33. Since, f(x) is continuous in [-2, 2].
- $\therefore \quad \text{it is continuous at } x = 0 \text{ and } x = 1.$ $\therefore \quad \lim f(x) = \lim f(x)$

$$\Rightarrow \lim_{x \to 0^{-}} (x + a) = \lim_{x \to 0^{+}} x$$
$$\Rightarrow a = 0$$
Also,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$
$$\Rightarrow \lim_{x \to 1^{-}} x = \lim_{x \to 1^{+}} (b - x)$$
$$\Rightarrow 1 = b - 1$$
$$\Rightarrow b = 2$$

34. Since, f(x) is continuous on [-4, 2].

Chapter 01: Continuity

$$\therefore \quad \text{it is continuous at } x = -2.$$

$$\therefore \quad \lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{+}} f(x)$$

$$\Rightarrow \quad \lim_{x \to -2^{-}} (6b - 3ax) = \lim_{x \to -2^{+}} (4x + 1)$$

$$\Rightarrow 6b - 3a(-2) = 4(-2) + 1$$

$$\Rightarrow 6b + 6a = -7$$

$$\Rightarrow a + b = -\frac{7}{6}$$

Critical Thinking

Since, f(x) is continuous at x = 5. 1. $f(5) = \lim f(x)$ *.*.. $= \lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ $= \lim_{x \to 5} \frac{(x-5)^2}{(x-2)(x-5)}$ $=\frac{5-5}{5-2}=0$ Since, f(x) is continuous at $x = \frac{1}{2}$. 2. $f\left(\frac{1}{2}\right) = \lim_{x \to \frac{1}{2}} f(x)$ *.*.. $\Rightarrow k = \lim_{x \to \frac{1}{2}} \frac{x^6 - \frac{1}{64}}{x^3 - \frac{1}{8}}$ Applying L'Hospital rule on R.H.S., we get $k = \lim_{x \to \frac{1}{2}} \frac{6x^5}{3x^2} = \lim_{x \to \frac{1}{2}} 2x^3 = 2\left(\frac{1}{2}\right)^3 = \frac{1}{4}$ $\lim_{x \to 0} f(x) = \sin^{-1}(0) = 0 = f(0)$ 3. f(x) is continuous at x = 0. *.*... $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x}, \text{ but } -1 \le \sin \frac{1}{x} \le 1 \text{ and}$ 4. $x \rightarrow 0$ $\lim_{x \to 0^+} f(x) = 0 = \lim_{x \to 0^-} f(x) = f(0)$ *.*.. *.*.. f(x) is continuous at x = 0. 5. Since, f(x) is continuous at x = 0. $\lim_{x \to \infty} f(x) = f(0)$ *.*.. $\lim_{x\to 0} x^a \sin \frac{1}{r} = 0, \text{ if } a > 0$ *:*..

MHT-CET Triumph Maths (Hints) $\lim_{h \to 0} f(x) = \lim_{h \to 0} f(0-h)$ 6. $x \rightarrow 0^{-}$ $= \lim_{h \to 0} \frac{-h}{e^{\frac{-1}{h}} + 1} = \lim_{h \to 0} \frac{-h}{1 + \frac{1}{\frac{1}{2}}} = 0$ $\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{h}{e^{\frac{1}{h}} + 1} = 0$ $\lim f(x) = \lim f(x) = f(0)$ *.*.. f(x) is continuous at x = 0. *.*.. $\lim_{x \to 0} \frac{\sin 2x}{x} = 2 \neq f(0)$ 7. $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \neq f(0)$ $\lim_{x \to 0} e^{\frac{-1}{x}} = \lim_{x \to 0} \frac{1}{\frac{1}{x}} = \frac{1}{e^{\infty}} = \frac{1}{\infty} = 0 \neq f(0)$ $\lim_{x \to 0} \left(\frac{3x}{x} + \frac{4\tan x}{x} \right) = 3 + 4 = 7 = f(0)$ f(x) is continuous at x = 0. *.*.. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 5^{\frac{1}{x}} = \lim_{h \to 0} 5^{-\frac{1}{h}} = 0$ 8. $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \lambda[x] = 0, \text{ for all } \lambda \in \mathbb{R}$ $f(0) = \lambda(0) = 0$ f is continuous at x = 0, whatever λ may be. *.*.. 9. Since, f(x) is continuous at x = a. $f(a) = \lim f(x)$ *.*.. $= \lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}$ $= \lim_{x \to a} \left(\sqrt{x} + \sqrt{a} \right) = \sqrt{a} + \sqrt{a} = 2\sqrt{a}$ 10. Since, f(x) is continuous at x = 1. *.*..

$$f(1) = \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{x+3}-2}{x^3-1}$$
$$= \lim_{x \to 1} \frac{\sqrt{x+3}-2}{x^3-1^3} \times \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}$$
$$= \lim_{x \to 1} \frac{x-1}{(x-1)(x^2+x+1)(\sqrt{x+3}+2)} = \frac{1}{3(4)} = \frac{1}{12}$$

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{r}$ 11. By rationalising, we get $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{2kx}{x(\sqrt{1+kx} + \sqrt{1-kx})}$ $=2\lim_{x\to 0}\frac{k}{\sqrt{1+kr}+\sqrt{1-kr}}=k$ $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (2x^2 + 3x - 2) = -2$ Since, f(x) is continuous at x = 0. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow 0^{-}$ $x \rightarrow 0^{+}$ \Rightarrow k = -2 Since, f(x) is continuous at x = 4. 12. $f(4) = \lim f(x)$ $= \lim_{x \to 4} \frac{x^4 - 64x}{\sqrt{x^2 + 9} - 5}$ $= \lim_{x \to 4} \frac{x(x^3 - 64)(\sqrt{x^2 + 9} + 5)}{(x^2 + 9) - 25}$ $= \left(\lim_{x \to 4} \frac{x^3 - 4^3}{x^2 - 4^2}\right) \left[\lim_{x \to 4} x \left(\sqrt{x^2 + 9} + 5\right)\right]$ $=\frac{3}{2}(4)\left[4\left(\sqrt{16+9}+5\right)\right]$ 13. Since, f(x) is continuous at x = 0.

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\tan(x^2 - x)}{x}$$
$$= \lim_{x \to 0} \frac{\tan[x(x-1)]}{x(x-1)} \times (x-1) = 1 \times (-1) = -1$$

14. Since, f(x) is continuous at x = 0.
∴ f(0) =
$$\lim_{x\to 0} f(x)$$

 $\Rightarrow k = \lim_{x\to 0} \frac{1 - \cos 4x}{8x^2} = \lim_{x\to 0} \frac{2\sin^2 2x}{8x^2}$
 $\Rightarrow k = \lim_{x\to 0} \frac{\sin^2 2x}{4x^2} = 1$
15. Since, f(x) is continuous at x = 0.

$$f(0) = \lim_{x \to 0^{-}} f(x)$$

$$\Rightarrow a = \lim_{x \to 0} \frac{1 - \cos 4x}{x^2}$$

$$= \lim_{x \to 0} \frac{2 \sin^2 2x}{x^2}$$

$$= 2 \lim_{x \to 0} \frac{\sin^2 2x}{(2x)^2} \times 4 = 2 \times 4 = 8$$

Chapter 01: Continuity

16. Since,
$$f(x)$$
 is continuous at $x = 0$.

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow k = \lim_{x \to 0} \frac{1 - \cos 3x}{x \tan x}$$

$$\Rightarrow k = \lim_{x \to 0} \frac{1 - \cos 3x}{x^2} \times \frac{1}{\frac{\tan x}{x}}$$

$$\Rightarrow k = \frac{3^2}{2} \times 1 \qquad \dots \left[\because \lim_{x \to 0} \left(\frac{1 - \cos kx}{x^2} \right) = \frac{k^2}{2} \right]$$

$$\Rightarrow k = \frac{9}{2}$$

17. Since, f(x) is continuous at $x = \frac{\pi}{2}$.

$$\therefore \quad f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} f(x)$$
$$\Rightarrow 3 = \lim_{x \to \frac{\pi}{2}} \left(\frac{k \cos x}{\pi - 2x}\right)$$

Applying L'Hospital rule on R.H.S., we get

$$3 = \lim_{x \to \frac{\pi}{2}} \frac{k(-\sin x)}{-2}$$
$$\Rightarrow 3 = \frac{k}{2} \Rightarrow k = 6$$

18. Since, f(x) is continuous at $x = \frac{\pi}{4}$.

$$\therefore \quad f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x)$$

$$\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos 2x}$$

$$\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos^2 x - \sin^2 x}$$

$$\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{(\cos x - \sin x)(\cos x + \sin x)}$$

$$\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{1}{\cos x + \sin x} = \frac{1}{\sqrt{2}}$$

19. Since,
$$f(x)$$
 is continuous $x = 0$.
 \therefore $f(0) = \lim_{x \to 0} f(x)$
 $\Rightarrow \lambda = \lim_{x \to 0} \frac{\cos 3x - \cos x}{x^2}$
Applying L'Hospital rule on R.H.S., we get
 $\lambda = \lim_{x \to 0} \frac{-3\sin 3x + \sin x}{2x}$

Applying L'Hospital rule on R.H.S., we get

$$\lambda = \lim_{x \to 0} \frac{-9\cos 3x + \cos x}{2} \implies \lambda = \frac{-9+1}{2} = -4$$

20. Since,
$$f(x)$$
 is continuous at $x = \frac{\pi}{4}$.

$$f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x)$$
$$\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2}\sin x}$$

Applying L'Hospital rule on R.H.S., we get

$$k = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{-\sqrt{2}\cos x} = \frac{-2}{-1} = 2$$

21. Since, f(x) is continuous at $x = \frac{\pi}{6}$,

$$\lim_{x \to \frac{\pi}{6}} f(x) = f\left(\frac{\pi}{6}\right)$$
$$\Rightarrow \lim_{x \to \frac{\pi}{6}} \frac{3\sin x - \sqrt{3}\cos x}{6x - \pi} = a$$

...

Applying L'Hospital rule to L.H.S, we get

$$\lim_{x \to \frac{\pi}{6}} \frac{3\cos x + \sqrt{3}\sin x}{6} = a$$
$$\Rightarrow \frac{3\left(\frac{\sqrt{3}}{2}\right) + \sqrt{3}\left(\frac{1}{2}\right)}{6} = a$$
$$\Rightarrow \frac{4\sqrt{3}}{12} = a \Rightarrow a = \frac{1}{\sqrt{3}}$$

- 22. Since, f(x) is continuous at $x = \frac{\pi}{2}$.
- $\therefore \quad f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} f(x)$ $\Rightarrow \lambda = \lim_{x \to \frac{\pi}{2}} \frac{1 \sin x}{(\pi 2x)^2}$

Applying L'Hospital rule on R.H.S., we get

$$\lambda = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-4(\pi - 2x)}$$

Applying L'Hospital rule on R.H.S., we get

$$\lambda = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{-4(-2)} \qquad \Rightarrow \qquad \lambda = \frac{1}{8}$$

- 23. For f(x) to be continuous at x = 0, $f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{(a + x)^2 \sin(a + x) - a^2 \sin a}{x}$ Applying L'Hospital rule on R.H.S., we get $f(0) = \lim_{x \to 0} \frac{2(a + x)\sin(a + x) + (a + x)^2\cos(a + x)}{1}$ $\Rightarrow f(0) = 2a \sin a + a^2 \cos a$ 24. Since, f(x) is continuous at x = 0.
- $\therefore \quad f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 \sqrt{x + 4}}{\sin 2x}$ Applying L'Hospital rule on R.H.S., we get $\left(-\frac{1}{2\sqrt{x + 4}}\right) = 1$

$$f(0) = \lim_{x \to 0} \frac{\left(2\sqrt{x+4} \right)}{2\cos 2x} = -\frac{1}{8}$$

25. Since, f(x) is continuous at x = 0.

$$\therefore \quad f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(27 - 2x)^3 - 3}{9 - 3(243 + 5x)^{\frac{1}{5}}}$$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \frac{\frac{1}{3}(27 - 2x)^{\frac{-2}{3}}(-2)}{-\frac{3}{5}(243 + 5x)^{\frac{-4}{5}}(5)} = 2$$

26. For f(x) to be continuous at $x = \frac{\pi}{2}$,

$$f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} f(x)$$

= $\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2} - \sqrt{1 + \sin x}}{\cos^2 x}$
= $\lim_{x \to \frac{\pi}{2}} \frac{2 - (1 + \sin x)}{(1 - \sin^2 x)(\sqrt{2} + \sqrt{1 + \sin x})}$
= $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)(\sqrt{2} + \sqrt{1 + \sin x})}$
= $\lim_{x \to \frac{\pi}{2}} \frac{1}{(1 + \sin x)(\sqrt{2} + \sqrt{1 + \sin x})}$
= $\frac{1}{(1 + 1)(\sqrt{2} + \sqrt{1 + 1})} = \frac{1}{4\sqrt{2}}$

27. For f(x) to be continuous at
$$x = 0$$
,
f(0) = $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \frac{\frac{\cos x}{2\sqrt{1 + \sin x}} + \frac{\cos x}{2\sqrt{1 - \sin x}}}{1}$$
$$= \frac{1}{2}(1+1) = 1$$

28. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}$$

=
$$\lim_{x \to 0} \frac{(\cos^2 x - 1) - \sin^2 x}{\sqrt{x^2 + 1} - 1} \times \frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} + 1}$$

=
$$\lim_{x \to 0} \frac{(-\sin^2 x - \sin^2 x)(\sqrt{x^2 + 1} + 1)}{x^2 + 1 - 1}$$

=
$$\lim_{x \to 0} \frac{-2\sin^2 x}{x^2} \times (\sqrt{x^2 + 1} + 1)$$

=
$$-2(1)^2 (\sqrt{0^2 + 1} + 1) = -4$$

29. Since, f(x) is continuous at x = 0.

:.
$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{2^x - 2^{-x}}{x} \right)$$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \left[\frac{(2^{x} + 2^{-x}) \log_{e} 2}{1} \right]$$
$$= (2^{0} + 2^{0}) \log_{e} 2$$

$$\therefore \quad f(0) = 2\log_e 2 = \log_e 4$$

30. Since,
$$f(x)$$
 is continuous at $x = 0$.

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3^x + 3^{-x} - 2}{x^2}$$
$$= \lim_{x \to 0} \frac{(3^x - 1)^2}{3^x}$$
$$= \frac{(\log 3)^2}{1} = (\log 3)^2$$

31. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow 2 = \lim_{x \to 0} \frac{8^{x} - 2^{x}}{k^{x} - 1}$$
$$\Rightarrow 2 = \lim_{x \to 0} \frac{2^{x} \left(\frac{4^{x} - 1}{x}\right)}{\frac{k^{x} - 1}{x}} \Rightarrow 2 = \frac{2^{0} \log 4}{\log k}$$
$$\Rightarrow 2 \log k = \log 4$$
$$\Rightarrow 2 \log k = 2 \log 2$$
$$\Rightarrow k = 2$$

Chapter 01: Continuity

32. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{(e^{3x} - 1)\sin x^{\circ}}{x^{2}}$$
$$= \lim_{x \to 0} \frac{e^{3x} - 1}{3x} \times 3 \times \frac{\sin \frac{\pi x}{180}}{\frac{\pi x}{180}} \times \frac{\pi}{180}$$
$$= 1 \times 3 \times 1 \times \frac{\pi}{180} = \frac{\pi}{60}$$

33. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow \frac{k}{2} = \lim_{x \to 0} \frac{e^{5x} - e^{2x}}{\sin 3x}$$

Applying L'Hospital rule on R.H.S., we get

$$\frac{k}{2} = \lim_{x \to 0} \frac{5e^{5x} - 2e^{2x}}{3\cos 3x}$$
$$\Rightarrow \frac{k}{2} = \frac{5e^0 - 2e^0}{3\cos 0} = \frac{5-2}{3} = 1$$
$$\Rightarrow k = 2$$

34. For f(x) to be continuous at x = 0, $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{e^x - e^{\sin x}}{2(x - \sin x)}$$
$$= \frac{1}{2} \lim_{x \to 0} e^{\sin x} \left(\frac{e^{x - \sin x} - 1}{x - \sin x} \right)$$
$$= \frac{1}{2} \times e^0 \times 1 \qquad \dots \left[\because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \right]$$
$$= \frac{1}{2}$$

35. For f(x) to be continuous at
$$x = 0$$
,
f(0) = $\lim_{x \to 0} f(x)$
= $\lim_{x \to 0} (x+1)^{\cot x}$
= $\lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{x \cot x}$
= $\lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{\lim_{x \to 0} \left(\frac{x}{\tan x}\right)}$
= $e^{1} = e$

36. Since,
$$f(x)$$
 is continuous at $x = 0$.

$$\therefore \quad f(0) = \lim_{x \to 0} f(x)$$

$$= \lim_{x \to 0} \left(\frac{4x+1}{1-4x}\right)^{\frac{1}{x}}$$

$$= \lim_{x \to 0} \frac{\left[\left(1+4x\right)^{\frac{1}{4x}}\right]^4}{\left[\left(1-4x\right)^{-\frac{1}{4x}}\right]^{-4}}$$

$$= \frac{e^4}{e^{-4}} = e^8$$
37. Since $f(x)$ is continuous at $x = 0$.

38. Since, f(x) is continuous at $x = \frac{\pi}{2}$,

:..

$$f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} f(x)$$

= $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\pi - 2x}}$
= $\lim_{x \to \frac{\pi}{2}} [1 + (\sin x - 1)]^{\frac{1}{\pi - 2x}}$
= $e^{\lim_{x \to \frac{\pi}{2}} (\frac{\sin x - 1}{\pi - 2x})}$
= $e^{-\frac{1}{2} \lim_{x \to \frac{\pi}{2}} \frac{1 - \cos(\frac{\pi}{2} - x)}{(\frac{\pi}{2} - x)}}$
= e^{0}
= 1

39. Since, f(x) is continuous at x = 0. ∴ f(0) = $\lim_{x\to 0} f(x)$ ⇒ 5 = $\lim_{x\to 0} \frac{\log(1+kx)}{\sin x}$

$$\Rightarrow 5 = \lim_{x \to 0} \frac{\frac{\log(1+kx)}{kx} \times k}{\frac{\sin x}{x}}$$
$$\Rightarrow 5 = \frac{1 \times k}{1} \Rightarrow k = 5$$

40. Since,
$$f(x)$$
 is continuous at $x = 7$.
 \therefore $f(7) = \lim_{x \to 7} f(x)$
 $\Rightarrow k = \lim_{x \to 7} \frac{\log x - \log 7}{x - 7}$
Applying L'Hospital rule on R.H.S., we
 $k = \lim_{x \to 7} \frac{\frac{1}{x}}{1} = \frac{1}{7}$

41. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$ $\therefore \quad \log(1+2ax) - \log(1-bx)$

$$\Rightarrow k = \lim_{x \to 0} \frac{\log(1 + 2ax) - \log(1 - bx)}{x}$$
$$\Rightarrow k = \lim_{x \to 0} \left[\frac{\log(1 + 2ax)}{2ax} \times 2a + \frac{\log(1 - bx)}{-bx} \times b \right]$$
$$\Rightarrow k = 2a + b$$

get

42. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow k = \lim_{x \to 0} \frac{(3^{\sin x} - 1)^2}{x \log(1 + x)}$$
$$\Rightarrow k = \lim_{x \to 0} \frac{\left(\frac{3^{\sin x} - 1}{\sin x}\right)^2 \cdot \left(\frac{\sin x}{x}\right)^2}{\frac{\log(1 + x)}{x}}$$
$$\Rightarrow k = \frac{(\log 3)^2 \times (1)^2}{1} = (\log 3)^2$$

43. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{\log(\sec^2 x)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\log(1 + \tan^2 x)}{\tan^2 x} \times \frac{\tan^2 x}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\log(1 + \tan^2 x)}{\tan^2 x} \times \frac{\frac{\tan^2 x}{x}}{\frac{\sin x}{x}}$$
$$= 1 \times \frac{1^2}{1} = 1$$

44. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow 12(\log 4)^3 = \lim_{x \to 0} \frac{(4^x - 1)^3}{\sin \frac{x}{p} \log \left(1 + \frac{x^2}{3}\right)}$$

$$\Rightarrow 12(\log 4)^{3}$$

$$= \lim_{x \to 0} \left(\frac{4^{x} - 1}{x}\right)^{3} \times \frac{\left(\frac{x}{p}\right)}{\left(\sin \frac{x}{p}\right)} \times \frac{p}{\left(\log\left(1 + \frac{1}{3}x^{2}\right)\right)^{3}}$$

$$\Rightarrow 12(\log 4)^{3} = (\log 4)^{3}(1) \left(\frac{3p}{1}\right)$$

$$\Rightarrow p = 4$$
45. Since, f(x) is continuous at x = 3.

$$\therefore \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

$$\lim_{x \to 3^{-}} f(x) = f(3)$$

$$\Rightarrow \lim_{x \to 3^{-}} (2x^{2} + 3x + b) = 5$$

$$\Rightarrow 2(3)^{2} + 3(3) + b = 5$$

$$\Rightarrow b = -22$$
Also,
$$\lim_{x \to 3^{+}} f(x) = f(3)$$

$$\Rightarrow \lim_{x \to 3^{+}} \left(\frac{x^{2} - 9}{x - 3} + a\right) = 5$$

$$\Rightarrow (3 + 3 + a) = 5$$

$$\Rightarrow a = -1$$
46.
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{2} + a$$

$$\Rightarrow 2 = \frac{1}{4} + a \Rightarrow a = \frac{7}{4} \qquad \dots(i)$$
Since, f(x) is continuous at x = 0.

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

$$\Rightarrow \lim_{x \to 0^{-}} (2\sqrt{x^{2} + 1} + b) = \lim_{x \to 0^{-}} (x^{2} + a)$$

$$\Rightarrow 2\sqrt{0 + 1} + b = 0 + a$$

$$\Rightarrow 2 + b = \frac{7}{4} \qquad \dots[From (i)]$$

$$\Rightarrow b = -\frac{1}{4}$$
47.
$$\lim_{x \to 4^{-}} f(x) = \lim_{b \to 0} f(4 - b)$$

$$= \lim_{b \to 0} \frac{4 - b - 4}{4 - b - 4} + a$$

$$= \lim_{b \to 0} \left(-\frac{b}{h} + a\right) = a - 1$$

$$\lim_{x \to 4^{+}} f(x) = \lim_{h \to 0} f(4 + h)$$

$$= \lim_{h \to 0} \frac{4 + h - 4}{|4 + h - 4|} + b = b + 1$$

$$= \lim_{x \to 4^{+}} \frac{4 + h - 4}{|4 + h - 4|} + b = b + 1$$

$$= \lim_{x \to 4^{+}} f(x) \text{ is continuous at } x = 4.$$

$$\therefore \quad \lim_{x \to 4^{+}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$$

$$\Rightarrow a - 1 = a + b = b + 1$$

$$\Rightarrow b = -1 \text{ and } a = 1$$
48.
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sin(a + 1)x + \sin x}{x}$$

$$= \lim_{x \to 0^{+}} \left[\frac{\sin(a + 1)x}{(a + 1)x} \times (a + 1) + \frac{\sin x}{x} \right]$$

$$= a + 1 + 1$$

$$= a + 2$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$= \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{x + bx^{2}} - \sqrt{x}}{b\sqrt{x}}$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

$$\therefore$$

$$\therefore \lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} e^{1/h} = 0$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} e^{1/h} = \infty$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} e^{1/h} = \infty$$

$$\therefore$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x^{4} - 16}{x - 2}$$

$$= \lim_{x \to 2^{+}} (x - 2)(x^{2} + 4) = 32 \text{ and } f(2) = 16$$

$$\therefore$$

$$\lim_{x \to 1^{+}} f(x) = f(2)$$

$$\therefore$$

$$f(x) \text{ is discontinuous at } x = 2.$$

57.
$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} \frac{e^{\frac{-1}{h}} - 1}{e^{\frac{-1}{h}} + 1} = \lim_{h \to 0} \frac{\frac{1}{e^{\frac{1}{h}}} - 1}{\frac{1}{e^{\frac{1}{h}}} + 1} = \frac{0 - 1}{0 + 1} = -1$$

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{e^{\frac{1}{h}} - 1}{e^{\frac{1}{h}} + 1} = \lim_{h \to 0} \frac{1 - \frac{1}{e^{\frac{1}{h}}}}{1 + \frac{1}{e^{\frac{1}{h}}}} = \frac{1 - 0}{1 + 0} = 1$$

- $\therefore \qquad \lim_{x \to 0^-} \mathbf{f}(x) \neq \lim_{x \to 0^+} \mathbf{f}(x)$
- \therefore f(x) is not continuous at x = 0.
- 58. f(x) is discontinuous, when $x^2 3x + 2 = 0$ i.e., $(x - 1) (x - 2) = 0 \Rightarrow x = 1, x = 2$

59.
$$f(x) = \frac{x+1}{(x-3)(x+4)}$$

...

 \therefore f(x) is discontinuous at x = 3, -4.

60.
$$f(x) = \frac{4-x^2}{x(4-x^2)} = \frac{4-x^2}{x(2+x)(2-x)}$$

Since, f(x) does not exist at x = 0, 2, -2. there are three points of discontinuity.

- 61. $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (4 - 3x) = 4 - 6 = -2$ $x \rightarrow 2^{-}$ $x \rightarrow 2^{-}$ $\lim_{x \to -6} f(x) = \lim_{x \to -6} (2x - 6) = 4 - 6 = -2$ $x \rightarrow 2^+$ $x \rightarrow 2^+$ f(2) = 4 - 3(2) = -2 $\lim f(x) = \lim (2x - 6) = 6 - 6 = 0$ $x \rightarrow 3^{-}$ $x \rightarrow 3^{-}$ $\lim f(x) = \lim (x+5) = 3+5 = 8$ $x \rightarrow 3^+$ $x \rightarrow 3^+$ $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ *.*..
- $\therefore \quad f(x) \text{ is continuous at } x = 2 \text{ and discontinuous at } x = 3.$

62.
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} x \sin x = \frac{\pi}{2}$$
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\pi}{2} \sin (\pi + x) = \frac{-\pi}{2}$$
$$\therefore \quad f(x) \text{ is discontinuous at } x = \frac{\pi}{2}.$$

63.
$$\lim_{y \to 0} f(y) = \lim_{y \to 0} \frac{(e^{2y} - 1)}{2y} \times 2 \times \frac{\sin y}{y}$$
$$= \log e \times 2 \times 1 = 2$$
and $f(0) = 4$
$$\therefore \quad f(y) \text{ is discontinuous at } y = 0.$$

- 64. $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin^2 ax}{(ax)^2} a^2 = a^2$ and f(0) = 1.
- $\therefore \quad f(x) \text{ is discontinuous at } x = 0,$ when $a \neq \pm 1$
- 65. Let f(x) = tan x
 The point of discontinuity of f(x) are those points where tan x is infinite.
 i.e., tan x = ∞

$$\Rightarrow x = (2n+1)\frac{\pi}{2}, n \in I$$

66.
$$\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\sqrt{1 - \cos 2x}} = \frac{\sin \pi}{\sqrt{1 - \cos \pi}} = 0$$
$$\lim_{x \to \frac{\pi}{2}^{+}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi - 2x}$$
$$= \lim_{h \to 0} \frac{\cos\left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)}$$
$$= \lim_{h \to 0} \frac{-\sin h}{-2h}$$
$$= \frac{1}{2}(1) = \frac{1}{2}$$
$$\therefore \quad \lim_{x \to \frac{\pi}{2}^{-}} f(x) \neq \lim_{x \to \frac{\pi}{2}^{+}} f(x)$$
$$\therefore \quad f(x) \text{ is discontinuous at } x = \frac{\pi}{2}.$$

67.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x \cos x - 3 \tan x}{x^2 + 2 \sin x}$$
$$= \lim_{x \to 0} \frac{x \cos x - 3 \tan x}{x^2 + 2 \sin x}$$
$$= \lim_{x \to 0} \frac{\cos x - \frac{3 \tan x}{x}}{x + \frac{2 \sin x}{x}}$$
$$= \frac{1 - 3}{0 + 2} = -1$$
$$\therefore \quad \lim_{x \to 0} f(x) \neq f(0)$$

 $x \rightarrow 0$

f(x) is discontinuous at x = 0.

....

68.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{5^x - e^x}{\sin 2x} = \lim_{x \to 0} \frac{5^x - 1 + 1 - e^x}{\sin 2x}$$
$$= \lim_{x \to 0} \frac{\frac{5^x - 1}{x} - \frac{e^x - 1}{x}}{\frac{\sin 2x}{2x} \times 2}$$
$$= \frac{\log 5 - \log e}{2}$$
$$= \frac{1}{2} (\log 5 - 1)$$

 $\lim_{x\to 0} f(x) \neq f(0)$ *.*..

- f(x) is discontinuous at x = 0. *.*..
- Applying L'Hospital rule, we get 69.

$$\lim_{x \to \frac{\pi}{2}} \frac{5^{\cos x} - 1}{\frac{\pi}{2} - x} = \lim_{x \to \frac{\pi}{2}} \frac{5^{\cos x} \cdot \log 5(-\sin x)}{-1}$$
$$= 5^{\cos \frac{\pi}{2}} \cdot \log 5 \sin \frac{\pi}{2}$$
$$= \log 5$$
and $f\left(\frac{\pi}{2}\right) = 2 \log 5$

$$\therefore \quad f(x) \text{ is discontinuous at } x = \frac{\pi}{2}.$$

Here, $\lim_{x \to \frac{\pi}{2}} f(x)$ exists but not equal to $f\left(\frac{\pi}{2}\right)$

the discontinuity at $x = \frac{\pi}{2}$ is removable. .:.

70.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(2^x - 1)^2}{\tan x \cdot \log(1 + x)}$$
$$= \lim_{x \to 0} \frac{(2^x - 1)^2}{x^2} \times \frac{1}{\frac{\tan x}{x}} \times \frac{1}{\frac{\log(1 + x)}{x}}$$
$$= (\log 2)^2 \times 1 = (\log 2)^2$$
and $f(0) = \log 4$
$$\therefore \quad f(x) \text{ is discontinuous at } x = 0.$$
Here, $\lim_{x \to 0} f(x)$ exists but not equal to $f(0)$.
$$\therefore \quad \text{the discontinuity at } x = 0 \text{ is removable.}$$

71. Since, $f(x)$ is continuous at $x = \frac{\pi}{4}$.

$$\therefore \quad f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x)$$

$$\Rightarrow f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}$$
Applying L'Hospital rule on R.H.S., we get
$$f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2\left(\frac{\pi}{4} - x\right)}{-2\cos \sec^2 2x} = \frac{-1}{-2} = \frac{1}{2}$$
72. Since, $f(x)$ is continuous in $[-1, 1]$.
 \therefore it is continuous at $x = 0$.
 $\therefore \qquad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)$

$$\Rightarrow \lim_{x \to 0} \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x} = \lim_{x \to 0} \frac{2x + 1}{x - 2}$$

$$\Rightarrow \lim_{x \to 0} \frac{(1 + px) - (1 - px)}{x(\sqrt{1 + px} + \sqrt{1 - px})} = \frac{-1}{2}$$

$$\Rightarrow p = \frac{-1}{2}$$

1

For all $x \in \mathbb{R}$, $-1 \le \sin x \le 1$ 73. f(x) is continuous for all real values of x. *.*..

74. Since,
$$f(x)$$
 is continuous in $[0, 8]$.
 \therefore it is continuous at $x = 2$ and $x = 4$.
 \therefore $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$
 $\Rightarrow \lim_{x \to 2^{-}} (x^{2} + ax + 6) = \lim_{x \to 2^{+}} (3x + 2)$
 $\Rightarrow (2)^{2} + 2a + 6 = 3(2) + 2$
 $\Rightarrow 10 + 2a = 8$
 $\Rightarrow a = -1$ (i)
Also, $\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{+}} f(x)$
 $\Rightarrow \lim_{x \to 4^{-}} (3x + 2) = \lim_{x \to 4^{+}} (2ax + 5b)$
 $\Rightarrow 3(4) + 2 = 2a (4) + 5b$
 $\Rightarrow 14 = 8a + 5b$
 $\Rightarrow b = \frac{22}{5}$ [From (i)]

75. Since,
$$f(x)$$
 is continuous in $[-2, 2]$.
 \therefore it is continuous at $x = 0$ and $x = 1$.
 $\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$
 $\Rightarrow \lim_{x \to 0^{-}} \left(\frac{\sin ax}{x} - 2 \right) = \lim_{x \to 0^{+}} (2x + 1)$
 $\Rightarrow a - 2 = 0 + 1 \Rightarrow a = 3$

Г

Chapter 01: Continuity

 $\frac{1}{2}$

МНТ	-CET Triumph Maths (Hints)
	Also, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$
	$\Rightarrow \lim_{x \to 1^{-}} (2x+1) = \lim_{x \to 1^{+}} \left(2b\sqrt{x^2+3} - 1 \right)$
	$\Rightarrow 2(1) + 1 = 2b\sqrt{1+3} - 1$
	$\Rightarrow 3 = 4b - 1$ $\Rightarrow b = 1$
<i>:</i> .	a + b = 3 + 1 = 4
76. ∴	Since, $f(x)$ is continuous on its domain. it is continuous at $x = 2$ and $x = 9$.
	$ \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x) $
	$\Rightarrow \lim_{x \to 2^+} (ax + b) = 7$
	$\Rightarrow 2a + b = 7 \qquad \dots(i)$ Also $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$
	$\Rightarrow \lim_{x \to 9^{-}} (ax + b) = 21$
	$\Rightarrow 9a + b = 21 \qquad \dots (ii)$
	Solving (i) and (ii), we get $a = 2, b = 3$
77.	f(x) is continuous in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ except at $x = 0$.
	For $f(x)$ to be continuous in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,
	$f(0) = \lim_{x \to 0} f(x)$
	$\Rightarrow f(0) = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x \sin x}$
	Applying L'Hospital rule on R.H.S., we get $x = -x$
	$f(0) = \lim_{x \to 0} \frac{e^{-e}}{x \cos x + \sin x}$
	Applying L'Hospital rule on R.H.S., we get $e^{x} + e^{-x}$
	$f(0) = \lim_{x \to 0} \frac{e^{x} + e^{x}}{-x \sin x + \cos x + \cos x}$
	$=\frac{e^{0}+e^{0}}{0+2\cos 0}=\frac{1+1}{2(1)}=1$
78.	$f(x) = \frac{(x-1)(x+1)(x-2)(x+2)}{ x-1 x-2 }$
	Since, $\lim_{x \to 1} \frac{x-1}{ x-1 }$ does not exist.
	Also, $\lim_{x \to 2} \frac{x-2}{ x-2 }$ does not exist
	f(x) is discontinuous at $x = 1, 2$.

For any $x \neq 1, 2, f(x)$ is the quotient of two polynomials and a polynomial is everywhere continuous. Therefore, f(x) is continuous for all $x \neq 1, 2$. f(x) is continuous on $R - \{1, 2\}$. *.*.. 79. Since, f(x) is continuous in $[0, \pi]$. it is continuous at $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$. *.*.. $\lim_{x \to \left(\frac{\pi}{4}\right)^{-}} f(x) = \lim_{x \to \left(\frac{\pi}{4}\right)^{+}} f(x)$ *.*.. $\Rightarrow \lim_{x \to \left(\frac{\pi}{4}\right)^{-}} (x + a\sqrt{2}\sin x) = \lim_{x \to \left(\frac{\pi}{4}\right)^{+}} (2x\cot x + b)$ $\Rightarrow \frac{\pi}{4} + a\sqrt{2}\left(\frac{1}{\sqrt{2}}\right) = 2\left(\frac{\pi}{4}\right)(1) + b$ $\Rightarrow \frac{\pi}{4} + a = \frac{\pi}{2} + b$ $\Rightarrow a - b = \frac{\pi}{4}$ (i) Also, $\lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = \lim_{x \to \left(\frac{\pi}{2}\right)^+} f(x)$ $\Rightarrow \lim (2x \cot x + b) = \lim (a \cos 2x - b \sin x)$ $x \rightarrow \left(\frac{\pi}{2}\right)^{-1}$ $x \rightarrow \left(\frac{\pi}{2}\right)$ $\Rightarrow 2\left(\frac{\pi}{2}\right)(0) + b = a(-1) - b(1)$ \Rightarrow b = -a - b $\Rightarrow a + 2b = 0$(ii) From (i) and (ii), we get $a = \frac{\pi}{6}$ and $b = \frac{-\pi}{12}$ 80. Since, f(x) is continuous in $(-\infty, 6)$. *.*.. it is continuous at x = 1 and x = 3. *.*.. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow 1^{-}$ $x \rightarrow 1$ $\Rightarrow \lim_{x \to 1^{-}} \left(1 + \sin \frac{\pi x}{2} \right) = \lim_{x \to 1^{+}} (ax + b)$ $\Rightarrow 1 + \sin \frac{\pi}{2} = a + b$ $\Rightarrow a + b = 2$(i) Also, $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)$ $\Rightarrow \lim_{x \to 3^-} (ax + b) = \lim_{x \to 3^+} \left(6 \tan \frac{\pi x}{12} \right)$ \Rightarrow 3a + b = 6 tan $\frac{3\pi}{12}$ \Rightarrow 3a + b = 6(ii) From (i) and (ii), we get a = 2, b = 0
Chapter 01: Continuity

Competitive Thinking

õ

1.

- $f(2) = k (2)^{2}$ = 4k $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} 3 = 3$ Since the function is continous at x = 2, $\lim_{x \to 2^{+}} f(x) = f(2)$ $\Rightarrow 4k = 3$ $\Rightarrow k = \frac{3}{4}$
- 2. Since, f(x) is continuous at x = a. \therefore $f(a) = \lim_{x \to a} f(x)$

$$\Rightarrow b = \lim_{x \to a} \frac{x^3 - a^3}{x - a}$$
$$\Rightarrow b = 3a^{3-1} = 3a^2$$

- 3. Since, f(x) is continuous at x = 2. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$ $\implies \lim_{x \to 2^{-}} (x^{2} - 1) = \lim_{x \to 2^{+}} (2x - 1) = k$
- $\Rightarrow 3 = 3 = k \Rightarrow k = 3$ 4. $\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5} (3x 8) = 7$ $\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5} 2k = 2k$ Since, f(x) is continuous at x = 5. $\therefore \qquad \lim_{x \to 5^{+}} f(x) = \lim_{x \to 5^{+}} f(x) = 1$

$$\Rightarrow 7 = 2k \Rightarrow k = \frac{7}{2}$$

5. Since, f(x) is continuous at x = 0, \therefore $f(0) = \lim_{x \to 0^{-}} f(x)$

$$\Rightarrow 0^{2} + \alpha = \lim_{x \to 0} 2\sqrt{x^{2} + 1} + \beta$$

$$\Rightarrow \alpha = 2 + \beta$$

$$\Rightarrow \beta = \alpha - 2$$

Also, $f\left(\frac{1}{2}\right) = 2$

$$\Rightarrow \left(\frac{1}{2}\right)^{2} + \alpha = 2$$

$$\Rightarrow \frac{1}{4} + \alpha = 2 \qquad \Rightarrow \alpha = \frac{7}{4}$$

$$\beta = \alpha - 2 = \frac{7}{4} - 2 = -\frac{1}{4}$$

$$\therefore \qquad \alpha^{2} + \beta^{2} = \left(\frac{7}{4}\right)^{2} + \left(-\frac{1}{4}\right)^{2} = \frac{50}{16} = \frac{25}{8}$$

For f(x) to be continuous at x = 0, 6. $f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$ 7. Since, f(x) is continuous at x = -5. *.*.. $f(-5) = \lim_{x \to -5} f(x)$ $\Rightarrow a = \lim_{x \to -5} \frac{x^2 + 3x - 10}{x^2 + 2x - 15}$ $\Rightarrow a = \lim_{x \to -5} \frac{(x-2)(x+5)}{(x+5)(x-3)}$ $\Rightarrow a = \lim_{x \to -5} \frac{x-2}{x-3} = \frac{7}{8}$ 8. Since, f(x) is continuous at x = 3. $f(3) = \lim f(x)$ *.*.. $\Rightarrow 2(3) + k = \lim_{x \to 3} \frac{x^2 - 9}{x - 3}$ $\Rightarrow 6 + k = \lim_{x \to 3} \frac{(x+3)(x-3)}{x-3}$ $\Rightarrow 6 + k = \lim_{x \to 2} (x + 3)$ $\Rightarrow 6 + k = 6 \Rightarrow k = 0$ 9. Since, f(x) is continuous at x = 0, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 0^{-}$ $x \rightarrow 0$ $\Rightarrow \lim_{x \to 0} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} = \lim_{x \to 0} \frac{2x+1}{x-1}$ Applying L'Hospital rule on L.H.S, we get $\lim_{x \to 0} \frac{\frac{k}{2\sqrt{1+kx}} - \frac{(-k)}{2\sqrt{1-kx}}}{1} = -1$ $\Rightarrow \frac{k}{2} + \frac{k}{2} = -1$ \Rightarrow k = -1 10. Since, f(x) is continuous at x = 0. $f(0) = \lim f(x)$ *.*.. $\Rightarrow k = \lim_{x \to 0} \frac{\sin 2x}{5x}$ $\Rightarrow \mathbf{k} = \lim_{x \to 0} \frac{\sin 2x}{2x} \times \frac{2}{5}$ $\Rightarrow k = \frac{2}{5}$ Since, f(x) is continuous at x = 0. 11. $f(0) = \lim_{x \to \infty} f(x)$ *.*.. $\Rightarrow 2k = \lim_{x \to 0} \frac{3\sin \pi x}{5x} = \lim_{x \to 0} \frac{3\sin \pi x}{5(\pi x)} \times \pi = \frac{3\pi}{5}$ $k = \frac{3\pi}{10}$ *:*..

MHT-CET Triumph Maths (Hints) 12. Here, f(2) = 0 $\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h) = \lim_{h \to 0} |2 - h - 2| = 0$ $\lim_{x \to 2^{+}} f(x) = \lim_{h \to 0} f(2 + h) = \lim_{h \to 0} |2 + h - 2| = 0$ $\therefore \quad f(x) \text{ is continuous at } x = 2.$

- 13. Here, f(b) = 0 $\lim_{x \to b^{-}} f(x) = \lim_{h \to 0} f(b-h) = \lim_{h \to 0} |b-h-b| = 0$ $\lim_{x \to b^{+}} f(x) = \lim_{h \to 0} f(b+h) = \lim_{h \to 0} |b+h-b| = 0$
- \therefore f(x) is continuous at x = b.
- 14. Here, $f\left(\frac{3\pi}{4}\right) = 1$ and $\lim_{x \to \frac{3\pi^-}{4}} f(x) = 1$ $\lim_{x \to \frac{3\pi^+}{4}} f(x) = \lim_{h \to 0} 2\sin\frac{2}{9}\left(\frac{3\pi}{4} + h\right)$

$$=2\sin\frac{\pi}{6}=1$$

- \therefore f(x) is continuous at $x = \frac{3\pi}{4}$.
- 15. Since, f(x) is continuous at x = 0. ∴ $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{\frac{x^2}{4}} \times \frac{x}{4}$$

- f(0) = 2(1)(0) = 0Alternate method: Since, f(x) is continuous at x = 0.
- $\therefore \quad f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{1 \cos x}{x}$
 - Applying L'Hospital rule on R.H.S., we get $f(0) = \lim_{x \to 0} \sin x = 0$
- 16. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow k = \lim_{x \to 0} (\cos x)^{\frac{1}{x}}$$

$$\Rightarrow \log k = \lim_{x \to 0} \frac{1}{x} \log(\cos x)$$

Applying L'Hospital rule on R.H.S., we get

$$\log k = \lim_{x \to 0} \frac{-\frac{\sin x}{\cos x}}{1}$$

$$\Rightarrow \log k = 0$$

$$\Rightarrow k = e^{0} = 1$$

Since, f(x) is continuous at x = 1. 17. *.*.. $f(1) = \lim f(x)$ $\Rightarrow \mathbf{k} = \lim_{x \to 1} \frac{\log x}{x - 1}$ Applying L'Hospital rule on R.H.S., we get 1 $k = \lim_{x \to 1} \frac{x}{1} = 1$ 18. For f(x) to be continuous at $x = \pi$, $f(\pi) = \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$ Applying L'Hospital rule on R.H.S., we get $f(\pi) = \lim_{x \to \pi} \frac{-\cos x - \sin x}{\cos x - \sin x}$ $\Rightarrow f(\pi) = -1$ 19. Since, f(x) is continuous at x = 0. $f(0) = \lim_{x \to 0} f(x)$ *.*.. $\Rightarrow 4 = \lim_{x \to 0} \frac{\left(e^{kx} - 1\right)^2 \sin x}{r^3}$ $\Rightarrow 4 = \lim_{x \to 0} \left[k^2 \times \frac{\left(e^{kx} - 1\right)^2}{k^2 x^2} \cdot \frac{\sin x}{x} \right]$ $\Rightarrow 4 = k^2$ \Rightarrow k = ±2 20. For f(x) to be continuous at x = 0, $f(0) = \lim_{x \to 0} f(x)$ $= \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$ $=\lim_{x\to 0}\frac{e^{x^2}-1+1-\cos x}{x^2}$ $= \lim_{x \to 0} \frac{e^{x^2} - 1}{r^2} + \lim_{x \to 0} \frac{1 - \cos x}{r^2}$ $=1+\frac{1}{2}=\frac{3}{2}$ 21. For f(x) to be continuous at x = 0, $f(0) = \lim f(x)$ $\Rightarrow k = \lim_{x \to 0} \frac{\log(1+2x)\sin x^{\circ}}{r^{2}}$ $\Rightarrow k = \lim_{x \to 0} \frac{\log(1+2x)}{2x} \times 2 \times \frac{\sin\frac{\pi x}{180}}{\pi x} \times \frac{\pi}{180}$

$$\Rightarrow k = 1 \times 2 \times 1 \times \frac{\pi}{180} = \frac{\pi}{90}$$

22. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$ $\Rightarrow k = \lim_{x \to 0} \log_{(1-3x)} (1+3x)$ $\Rightarrow k = \lim_{x \to 0} \frac{\log(1+3x)}{\log(1-3x)}$ $\Rightarrow k = \frac{\lim_{x \to 0} \frac{\log(1+3x)}{3x} \times 3}{\lim_{x \to 0} \frac{\log(1-3x)}{-3x} \times -3}$ $\Rightarrow k = -1$

23. Since the function is continuous at x = 0, $\lim_{x \to 0} f(0) = f(x)$

$$\therefore \quad k = \lim_{x \to 0} \log (\sec^2 x)^{\cot^2 x}$$
$$= \lim_{x \to 0} \cot^2 x \log \sec^2 x$$
$$= \lim_{x \to 0} \frac{\log (1 + \tan^2 x)}{\tan^2 x}$$
$$= 1$$

24. Since, f(x) is continuous at x = 0 \therefore $f(0) = \lim_{x \to 0} f(x)$

$$\Rightarrow k = \lim_{x \to 0} \left[\tan\left(\frac{\pi}{4} + x\right) \right]^{\frac{1}{x}}$$
$$= \lim_{x \to 0} \left(\frac{1 + \tan x}{1 - \tan x} \right)^{\frac{1}{x}}$$
$$= \lim_{x \to 0} \frac{\left[(1 + \tan x)^{\frac{1}{\tan x}} \right]^{\frac{\tan x}{x}}}{\left[(1 - \tan x)^{-\frac{1}{\tan x}} \right]^{\frac{-\tan x}{x}}}$$
$$= \frac{e^{1}}{e^{-1}} = e^{2}$$

25.
$$\lim_{x \to 1} (\log_2 2x)^{\log_x 8}$$
$$= \lim_{x \to 1} [\log_2 2 + \log_2 x]^{\log_x 2^3}$$
$$= \lim_{x \to 1} [1 + \log_2 x]^{3 \log_x 2}$$
$$= \lim_{x \to 1} [1 + \log_2 x]^{\frac{3}{\log_2 x}}$$
$$= e^{\lim_{x \to 1} \log_2 x \times \frac{3}{\log_2 x}}$$
$$= e^3$$

Chapter 01: Continuity Since the function is continuous at x = 1, $\lim_{x \to \infty} f(x) = f(1)$ $\Rightarrow e^3 = (k-1)^3$ $\Rightarrow e = k - 1$ \Rightarrow k = e + 1 26. For f(x) to be continuous at x = 0, $f(0) = \lim_{x \to 0} f(x)$ $= \lim_{x \to 0} \frac{\log_{e}(1+x) - \log_{e}(1-x)}{x}$ Applying L'Hospital rule on R.H.S., we get $f(0) = \lim_{x \to 0} \frac{\frac{1}{1+x} + \frac{1}{1-x}}{1}$ $\Rightarrow f(0) = 2$ 27. For f(x) to be continuous at x = 0, $f(0) = \lim f(x)$ $x \rightarrow 0$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x}$ Applying L'Hospital rule on R.H.S., we get $f(0) = \lim_{x \to 0} \frac{\frac{a}{1 + ax} + \frac{b}{1 - bx}}{1}$ $\Rightarrow f(0) = a + b$ 28. Since, f(x) is continuous at x = 2. $f(2) = \lim_{x \to \infty} f(x)$ *.*.. $\Rightarrow 2 = \lim_{x \to 2} \frac{x^2 - (A+2)x + A}{x - 2}$ $\Rightarrow 2 = \lim_{x \to 2} \frac{x(x-2) - A(x-1)}{x-2},$ which is true if A = 0If $x \to 0$, then the value of $\sin \frac{1}{r}$ passes 29. through [-1,1] infinitely many ways, therefore limit of the function does not exist at x = 0. Hence, there is no value of k for which the

30. $\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x}, \text{ but } -1 \le \sin \frac{1}{x} \le 1 \text{ and}$ x → 0 $\therefore \qquad \lim_{x \to 0} f(x) = 0$

 $\lim_{x \to 0} f(x) = 0$ Since, f(x) is continuous at x = 0. $\therefore \quad f(0) = \lim_{x \to 0} f(x)$

function is continuous at x = 0.

$$\Rightarrow k = 0$$

~ (

~ •

31. Since,
$$f(x)$$
 is continuous at $x = 1$.
 \therefore $f(1) = \lim_{x \to 1^{-}} f(x)$
 $\Rightarrow 2 = \lim_{x \to 1} (ax^2 - b)$
 $\Rightarrow 2 = a - b$
The values of a and b in options (A), (B) and
(C) satisfies this relation.
 \therefore option (D) is the correct answer.
32. $f(x) = \sin x$
 \therefore $f(0) = \sin 0 = 0$
 $\lim_{x \to 0^{+}} x^2 + a^2 = 0^2 + a^2 = a^2$
Since the function is continuous at $x = 0$,
 $\lim_{x \to 0^{+}} f(x) = f(0)$
 $\Rightarrow 0 = a^2$
 $\Rightarrow a = 0$
 $\lim_{x \to 0^{-}} x^2 + a^2 = 1^2 + a^2$
 $\Rightarrow a = 0$
 $\lim_{x \to 1^{-}} x^2 + a^2 = 1^2 + a^2$
 $\Rightarrow a = 0$
 $\lim_{x \to 1^{-}} x^2 + a^2 = 1^2 + a^2$
 $\Rightarrow b = -1$
 $a + b + 2$
 $\Rightarrow b = -1$
 $a + b + ab = 0 - 1 + 0 (-1) = -1$
33. Since, $f(x)$ is continuous at $x = \frac{\pi}{2}$.
 \therefore $f(\frac{\pi}{2}) = \lim_{x \to \frac{\pi}{2}} f(x)$
 $\Rightarrow \lambda = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\pi - 2x}$
Applying L'Hospital rule on R.H.S., we get
 $\lambda = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-2} = \frac{\cos \frac{\pi}{2}}{2} = 0$
34. Since, $f(x)$ is continuous at $x = \frac{\pi}{4}$,
 \therefore $f(\frac{\pi}{4}) = \lim_{x \to \frac{\pi}{2}} f(x)$

Applying L'Hospital rule on R.H.S., we get

$$k = \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2}\cos x}{-4} \qquad \Longrightarrow k = \frac{1}{4}$$

35. Since,
$$f(x)$$
 is continuous at $x = \frac{\pi}{4}$.

$$\therefore \quad f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x)$$
$$\Rightarrow a = \lim_{x \to \frac{\pi}{4}} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}$$

Applying L'Hospital rule on R.H.S., we get

$$a = \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x + \csc^2 x}{1}$$
$$\Rightarrow a = \left(\sqrt{2}\right)^2 + \left(\sqrt{2}\right)^2 = 4$$

36. For
$$f(x)$$
 to be continuous at $x = 0$,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

$$\Rightarrow f(0) = \lim_{x \to 0^{-}} f(x)$$

$$\Rightarrow k = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{\cos \frac{\pi}{2} [0 - h]}{[0 - h]}$$
$$\Rightarrow k = \lim_{h \to 0} \frac{\cos \frac{\pi}{2} [-h]}{[-h]}$$
$$\Rightarrow k = \lim_{h \to 0} \frac{\cos \left(-\frac{\pi}{2}\right)}{-1}$$
$$\Rightarrow k = 0$$

37. If f(x) is continuous from right at
$$x = 2$$
, then

$$f(2) = \lim_{x \to 2^{+}} f(x)$$

$$\Rightarrow k = \lim_{h \to 0} f(2 + h)$$

$$\Rightarrow k = \lim_{h \to 0} \left[(2 + h)^{2} + e^{\frac{1}{2 - (2 + h)}} \right]^{-1}$$

$$\Rightarrow k = \lim_{h \to 0} \left[4 + h^{2} + 4h + e^{\frac{-1}{h}} \right]^{-1}$$

$$\Rightarrow k = (4 + 0 + 0 + e^{-\infty})^{-1}$$

$$\Rightarrow k = \frac{1}{4}$$

 $\Rightarrow k = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2} \sin x}{\pi - 4x}$

Chapter 01: Continuity

- 38. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$ $= \lim_{x \to 0} \frac{\log_e(1 + x^2 \tan x)}{\sin x^3}$ $= \lim_{x \to 0} \left(\frac{\log_e(1 + x^2 \tan x)}{x^2 \tan x} \cdot \frac{x^2 \tan x}{\sin x^3} \right)$ $= \lim_{x \to 0} \left(\frac{\log_e(1 + x^2 \tan x)}{x^2 \tan x} \cdot \frac{x^3}{\sin x^3} \cdot \frac{\tan x}{x} \right)$ \therefore f(0) = 1
- 39. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \left(\frac{1}{x} - \frac{2}{e^{2x} - 1} \right)$$
$$= \lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x(e^{2x} - 1)}$$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \frac{2e^{2x} - 2}{x(2e^{2x}) + 1(e^{2x} - 1)}$$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \frac{4e^{2x}}{2x(2e^{2x}) + e^{2x}(2) + 2e^{2x}}$$

$$\Rightarrow f(0) = \frac{4}{2+2} = 1$$

40. Since, f(x) is continuous at x = 0. \therefore $f(0) = \lim f(x)$

$$\Rightarrow \left(\frac{k}{16}\right) \log\left(\frac{10}{3}\right) \cdot \log 2 = \lim_{x \to 0} \frac{20^{x} + 3^{x} - 6^{x} - 10^{x}}{1 - \cos 8x}$$
$$= \lim_{x \to 0} \frac{\left(10^{x} - 3^{x}\right)\left(2^{x} - 1\right)}{2\sin^{2} 4x}$$
$$= \lim_{x \to 0} \frac{\left(\frac{10^{x} - 1}{x} - \frac{3^{x} - 1}{x}\right) \cdot \left(\frac{2^{x} - 1}{x}\right)}{2 \times \frac{\sin^{2} 4x}{16x^{2}} \times 16}$$
$$= \frac{(\log 10 - \log 3)(\log 2)}{32}$$
$$\therefore \qquad \left(\frac{k}{16}\right) \log\left(\frac{10}{3}\right) \cdot \log 2 = \frac{1}{32} \log\left(\frac{10}{3}\right) \log 2$$

$$\Rightarrow \frac{k}{16} = \frac{1}{32}$$

$$\Rightarrow k = \frac{1}{2}$$

$$\Rightarrow k = 3^{\log_3(\frac{1}{2})} \qquad \dots \left[\because a^{\log_a x} = x \right]$$
41.
$$\lim_{x \to 2^-} f(x) = \lim_{h \to 0} f(2 - h)$$

$$= \lim_{h \to 0} \frac{2 - h - 2}{|2 - h - 2|} + a$$

$$= \lim_{h \to 0} \left(-\frac{h}{h} + a \right) = a - 1$$

$$\lim_{x \to 2^+} f(x) = \lim_{h \to 0} f(2 + h)$$

$$= \lim_{h \to 0} \frac{2 + h - 2}{|2 + h - 2|} + b = b + 1$$
and $f(2) = a + b$
Since, $f(x)$ is continuous at $x = 2$,

$$\therefore \quad \lim_{x \to 2^-} f(x) = f(2) = \lim_{x \to 2^+} f(x)$$

$$\Rightarrow a - 1 = a + b = b + 1$$

$$\Rightarrow b = -1 \text{ and } a = 1$$
42. Given, $f(x) = |x| + |x - 1|$

$$\therefore \quad f(x) = \begin{cases} -2x + 1, & \text{if } x < 0 \\ 1, & \text{if } 0 \le x < 1 \\ 2x - 1, & \text{if } 0 \le x < 1 \\ 2x - 1, & \text{if } 0 \le x < 1 \\ 2x - 1, & \text{if } x \ge 1 \end{cases}$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} f(x) = f(0)$$

$$\therefore \quad f(x) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$$

$$\therefore \quad f(x) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$$

$$\therefore \quad f(x) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\therefore \quad \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\therefore \quad \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\therefore \quad \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\therefore \quad \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1$$

$$\therefore \quad \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1$$

MHT-CET Triumph Maths (Hints) $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 4x + 3}{r^2 - 1} = \lim_{x \to 1} \frac{(x - 3)}{(r + 1)} = -1$ 43. f(1) = 2 $\lim_{x \to \infty} f(x) \neq f(1)$ f(x) is discontinuous at x = 1. 44. $\lim f(x) = -1$ $\lim_{x \to \infty} f(x) = 1$ $r \rightarrow a^{+}$ f(x) is discontinuous at x = a. *.*.. |x| is continuous at x = 0 and $\frac{|x|}{x}$ is 45. discontinuous at x = 0. $f(x) = |x| + \frac{|x|}{x}$ is discontinuous at x = 0. *.*.. $f(x) = \frac{2x^2 + 7}{x^2(x+3) - 1(x+3)} = \frac{2x^2 + 7}{(x^2 - 1)(x+3)}$ 46. $=\frac{2x^2+7}{(x-1)(x+1)(x+3)}$ the points of discontinuity are *.*.. x = 1, x = -1 and x = -3 only. $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} 2 - x^2 = 1$ 47. f(1) = 1 - 1 = 0 $\lim_{x \to \infty} f(x) \neq f(1)$ The function is discontinuous at x = 1*.*.. $\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} x - 10 = -5$ f(5) = 2(5) = 10 $\lim_{x \to \infty} f(x) \neq f(5)$ The function is discontinuous at x = 5*.*.. $\lim_{x \to -\infty} f(x) = x - 10 = -7$ $f(3) = 2 - 3^2 = -7$ $\lim_{x \to 2^{\infty}} f(x) = f(3)$ The function is continuous at x = 3*.*.. 48. Since, f(x) is not defined at x = 0, 1, -1 and at all other points f(x) is continuous.

 \therefore the given function is discontinuous at 3 points.

49. Given, $f(x) = [x], x \in (-3.5, 100)$ As we know greatest integer function is discontinuous on integer values. In given interval, the integer values are $(-3, -2, -1, 0, \dots, 99).$ *.*.. the total number of integers are 103. 50. Since, f(x) is continuous at every point of its domain. it is continuous at x = 1. *.*.. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 1^+$ $\Rightarrow \lim_{x \to 1} (5x - 4) = \lim_{x \to 1} (4x^2 + 3bx)$ $\Rightarrow 1 = 4 + 3b$ $\Rightarrow b = -1$ Since, f(x) is continuous for all x. 51. *.*.. f(x) is continuous at x = 2. $f(2) = \lim_{x \to 2} f(x)$ *.*.. $\Rightarrow k = \lim_{x \to 2} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}$ $= \lim_{x \to 2} \frac{(x-2)(x^2+3x-10)}{(x-2)^2}$ $= \lim_{x \to 2} \frac{(x-2)^2 (x+5)}{(x-2)^2}$ = 7 Since, f(x) = [x] is continuous at every non 52. integer points. *.*.. option (C) is the correct answer. 53. Let g(x) = |x| and $h(x) = \sin x$. Then, f(x) = (hog)(x) for all $x \in R$. As both g and h are continuous functions on R.

- $\therefore \quad f(x) \text{ is also continuous for all } x \in \mathbb{R}.$
- 54. Since, f(x) is continuous in $\left\lfloor 0, \frac{\pi}{2} \right\rfloor$.

$$\therefore$$
 it is continuous at $x = \frac{\pi}{4}$.

$$\therefore \qquad f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{4x - \pi}$$

Chapter 01: Continuity

Applying L'Hospital rule on R.H.S., we get

$$f\left(\frac{\pi}{4}\right) = \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{4}$$
$$\Rightarrow f\left(\frac{\pi}{4}\right) = \frac{-2}{4} = \frac{-1}{2}$$

- 55. Since, f(x) is continuous at each point of its domain.
- it is continuous at x = 0. *.*..

$$\therefore \quad f(0) = \lim_{x \to 0} f(x)$$

$$= \lim_{x \to 0} \left(\frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \right)$$

Applying L'Hospital rule on R.H.S., we get

$$f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{1 + x^2}\right)}$$
$$= \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

- 56. The given function is defined only in the interval [1, ∞). For x > 2, y = 3x - 2 which is a straight line, hence continuous. Also, the given function is continuous at x = 2.
- *.*.. option (C) is the correct answer.
- 57. $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} f(x) = 0$ and $x \rightarrow 1^{-}$ $x \rightarrow 1^+$ f(1) = 0
- $\lim f(x) = \lim f(x) = f(1)$ *.*.. $x \rightarrow 1^+$ $x \rightarrow 1^{-}$
- f(x) is continuous at x = 1. *.*.. $\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} f(x) = 1$ $x \rightarrow 2^+$ $x \rightarrow 2^{-}$
- $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 2^{-}$ $x \rightarrow 2^+$
- f(x) is not continuous at x = 2. *.*..
- 58. Since, f(x) is continuous over $[-\pi, \pi]$.

$$\therefore$$
 it is continuous at $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{-\pi}{2}} f(x) = \lim_{x \to \frac{-\pi^{+}}{2}} f(x)$$
$$\Rightarrow \lim_{x \to \frac{-\pi}{2}} (-2\sin x) = \lim_{x \to \frac{-\pi}{2}} (\alpha \sin x + \beta)$$
$$\Rightarrow -2 (-1) = \alpha(-1) + \beta$$
$$\Rightarrow -\alpha + \beta = 2 \qquad \dots (i)$$

Also,
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x)$$
$$\Rightarrow \lim_{x \to \frac{\pi}{2}} (\alpha \sin x + \beta) = \lim_{x \to \frac{\pi}{2}} (\cos x)$$
$$\Rightarrow \alpha(1) + \beta = 0$$
$$\Rightarrow \alpha + \beta = 0 \qquad \dots (ii)$$
From (i) and (ii), we get
$$\alpha = -1, \beta = 1$$

59. For f(x) to be continuous at
$$x = \frac{-\pi}{2}$$

$$\lim_{x \to \frac{-\pi^{+}}{2}} f(x) = \lim_{x \to \frac{-\pi^{-}}{2}} f(x) = f\left(\frac{-\pi}{2}\right)$$

$$\therefore \qquad \lim_{x \to \frac{-\pi}{2}} A \sin x + B = -2 \sin\left(\frac{-\pi}{2}\right)$$

$$\Rightarrow -A + B = 2$$

$$\Rightarrow A - B = -2 \qquad \dots(i)$$

For
$$f(x)$$
 to be continuous at $x - \frac{1}{2}$
$$\lim_{x \to \frac{\pi^+}{2}} f(x) = \lim_{x \to \frac{\pi^-}{2}} f(x) = f\left(\frac{\pi}{2}\right)$$

$$\therefore \lim_{x \to \frac{\pi}{2}} A \sin x + B = \cos \frac{\pi}{2}$$

$$\Rightarrow A + B = 0 \qquad \dots (ii)$$

On solving (i) and (ii), we get

 $x \rightarrow \frac{\pi^{-}}{2}$

$$A = -1$$
, $B = 1$

- 60. Since, f(x) is continuous for all x in R.
- *.*.. f(x) is continuous at x = 0.

$$\therefore \quad f(0) = \lim_{x \to 0^-} f(x)$$

$$\Rightarrow q = \lim_{x \to 0} \frac{\sin(p+1)x + \sin x}{x}$$
$$\Rightarrow q = \lim_{x \to 0} \left[(p+1) \times \frac{\sin(p+1)x}{(p+1)x} + \frac{\sin x}{x} \right]$$
$$\Rightarrow q = (p+1) + 1$$
$$\Rightarrow q = p + 2$$

The values of p and q in option (C) satisfies this condition.

61. Since, f is continuous at every point in R.

$$\therefore \quad \text{f is continuous at } x = 2n.$$

$$\therefore \quad \lim_{x \to (2n)^{-}} f(x) = \lim_{x \to (2n)^{+}} f(x) = f(2n)$$

$$\Rightarrow \lim_{x \to (2n)^{-}} (b_n + \cos \pi x) = \lim_{x \to (2n)^{+}} (a_n + \sin \pi x)$$

$$\Rightarrow b_n + \cos 2n\pi = a_n + \sin 2n\pi$$

$$\Rightarrow b_n + 1 = a_n \Rightarrow a_n - b_n = 1$$
So, option (C) is correct.
Also, f is continuous at $x = 2n + 1$.

$$\lim_{x \to (2n+1)^{-}} f(x) = \lim_{x \to (2n+1)^{+}} f(x) = f(2n + 1)$$

$$\Rightarrow \lim_{x \to (2n+1)^{-}} (a_n + \sin \pi x) = \lim_{x \to (2n+1)^{+}} (b_{n+1} + \cos \pi x)$$

$$\Rightarrow a_n + \sin(2n + 1)\pi = b_{n+1} + \cos(2n + 1)\pi$$

$$\dots [\because f(x) = b_{n+1} + \cos \pi x, x \in (2n + 1, 2n + 2)]$$

$$\Rightarrow a_n = b_{n+1} - 1$$

$$\Rightarrow a_n - b_{n+1} = -1$$
Evaluation Test
$$\text{Replacing n by n - 1, we get}$$

$$a_{n-1} - b_n = -1$$
So, options (A) and (D) are correct.
Hence, option (B) does not hold.
$$\text{63. For } f(x) \text{ to be continuous at } x = 0,$$

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{2}} - (1 + x)^{\frac{1}{3}}}{x}$$

$$= \lim_{x \to 0} \frac{(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots) - (1 + \frac{1}{3}x - \frac{1}{9}x^2 + \dots)}{x}$$

$$= \lim_{x \to 0} \frac{(1 - \frac{1}{3})x + (\frac{1}{9} - \frac{1}{8})x^2 + \dots}{x}$$

Evaluation Test

1.
$$f(0) = \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4}$$
$$= \lim_{x \to 0} \frac{2\sin^2\left[\frac{2\sin^2\left(\frac{x}{2}\right)}{2}\right]}{x^4}$$
$$= \lim_{x \to 0} \frac{2\sin^2\left[\sin^2\left(\frac{x}{2}\right)\right]\left[\sin^2\left(\frac{x}{2}\right)\right]^2}{x^4\left[\sin^2\left(\frac{x}{2}\right)\right]^2}$$
$$= 2\lim_{x \to 0} \frac{\sin^4\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^4 2^4} = \frac{1}{2^3} = \frac{1}{8}$$

2. f is continuous at
$$x = 0$$
.

$$\therefore f(0) = \lim_{x \to 0} \left[\frac{\log(1+x^2) - \log(1-x^2)}{\sec x - \cos x} \right]$$

$$= \lim_{x \to 0} \left[\frac{\log(1+x^2) - \log(1-x^2)}{\left[\frac{1-\cos^2 x}{\cos x}\right]} \right]$$

$$= \lim_{x \to 0} \left[\frac{\cos x \left[\log(1+x^2) - \log(1-x^2)\right]}{\sin^2 x} \right]$$

$$= \lim_{x \to 0} \left[\frac{\cos x \left[\log(1+x^2) + \log(1-x^2)\right]}{\frac{x^2}{x^2}} + \frac{\log(1-x^2)}{-x^2} \right]}{\frac{(\sin^2 x)}{x^2}} \right]$$

$$= (\cos 0) \left[\frac{1+1}{1^2} \right] = 2$$

Chapter 01: Continuity

3. For f(x) to be continuous at
$$x = 0$$
, we must
have f(0) = $\lim_{x \to 0} f(x)$
$$= \lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
$$= \lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$
$$\times \frac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}} \times \frac{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}}$$
$$= \lim_{x \to 0} \frac{\left[(a^2 - ax + x^2) - (a^2 + ax + x^2) \right] \left[\sqrt{a + x} + \sqrt{a - x} \right]}{\left[(a + x) - (a - x) \right] \left[\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right]}$$
$$= \lim_{x \to 0} \frac{-2ax \left(\sqrt{a + x} + \sqrt{a - x} \right)}{2x \left(\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}$$
$$= \frac{-a \left(\sqrt{a} + \sqrt{a} \right)}{\sqrt{a^2 + \sqrt{a^2}}}$$
$$\therefore \quad f(0) = -\sqrt{a}$$

4.
$$\lim_{x \to 0} \frac{5^x \cdot 2^x + 7^x - 7^x \cdot 2^x - 5^x}{2 \sin^2 \frac{x}{2}}$$
$$= \lim_{x \to 0} \frac{5^x (2^x - 1) - 7^x (2^x - 1)}{2 \sin^2 \frac{x}{2}}$$
$$= \lim_{x \to 0} \frac{1}{2} \left(\frac{2^x - 1}{x} \right) \left(\frac{5^x - 1}{x} - \frac{7^x - 1}{x} \right) \frac{1}{\sin^2 x/2 - 1}$$

$$= \lim_{x \to 0} \frac{1}{2} \left(\frac{2^{x} - 1}{x} \right) \left(\frac{5^{x} - 1}{x} - \frac{7^{x} - 1}{x} \right) \frac{1}{\frac{\sin^{2} x/2}{x^{2}/4} \times \frac{1}{4}}$$
$$= 2(\log 2) \left(\log \frac{5}{7} \right)$$

It is discontinuous at x = 0 and it is removable.

5.
$$a = \lim_{x \to 0} \frac{\sin^3 \sqrt{x} \log(1+3x)}{(\tan^{-1} \sqrt{x})^2 (e^{5\sqrt{x}} - 1)x}$$
$$= \lim_{x \to 0} \frac{\frac{\sin^3 \sqrt{x}}{(\sqrt{x})^3} \cdot (\sqrt{x})^3 \cdot \frac{\log(1+3x)}{3x} \cdot 3x}{(\frac{\sqrt{x}}{\sqrt{x}})^2} \cdot (\sqrt{x})^2 \cdot \frac{e^{5\sqrt{x}} - 1}{5\sqrt{x}} \cdot 5\sqrt{x} \cdot x}$$

$$= \frac{(1)^3 (\sqrt{x})^3 \cdot (1) 3x}{(1)^2 (\sqrt{x})^2 (1) 5 \sqrt{x} \cdot x}$$
$$= \frac{3}{5}$$
For f to be continuous at $x = 2$,

6.

$$f(2) = \lim_{x \to 0} (x-1)^{\frac{1}{(2-x)}}$$
$$= \lim_{x \to 0} (1+(x-2))^{\frac{-1}{(x-2)}} = e^{-1}$$

- 7. Given function is continuous at $(-\infty, 6)$.
- $\therefore \quad \text{at } x = 1 \text{ and } x = 3, \text{ function is continuous.}$ If the function f(x) is continuous at x = 1, then $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$ $\Rightarrow 1 + \sin \frac{\pi}{2} = a + b$
- $\therefore \quad a+b=2 \qquad \dots(i)$ If the function is continuous at x = 3, then $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)$ $\implies 3a+b=6 \tan \frac{3\pi}{12}$

$$\therefore \quad 3a+b=6 \qquad \dots (ii)$$

From (i) and (ii), $a=2, b=0$

- 8. Since, x and |x| are continuous for all x.
- \therefore x + |x| is continuous for $x \in (-\infty, \infty)$.
- 9. For f(x) to be continuous at x = 0, we must have $\lim_{x \to \infty} f(x) = f(0) = \lim_{x \to \infty} f(x)$ $x \rightarrow 0^{-}$ $x \rightarrow 0^+$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{\tan 2x/\tan 3x}$ $x \rightarrow 0^+$ $x \rightarrow 0^+$ $= \lim e^{\left(\frac{\tan 2x}{2x} \times 2x\right) / \left(\frac{\tan 3x}{3x} \times 3x\right)}$ $x \rightarrow 0^+$ 2 $=e^{\overline{3}}$ $f(0) = \lim_{x \to 0} f(x)$ $x \rightarrow 0^+$ 2 $\Rightarrow b = e^{\frac{2}{3}}$ $\lim_{x \to 0^{-}} \mathbf{f}(x) = \lim_{x \to 0^{-}} (1 + |\sin x|)^{a/|\sin x|}$ $= e^{\lim_{x\to 0} \left(|\sin x| \times \frac{a}{|\sin x|}\right)} = e^{a}$ $f(0) = \lim_{x \to 0} f(x)$ $x \rightarrow 0^{-}$ $\Rightarrow b = e^a \Rightarrow e^{\frac{2}{3}} = e^a$ $\Rightarrow a = \frac{2}{3}$

10. Given,
$$f(x) = [x]^2 - [x^2]$$

 $-1 < x < 0$, $f(x) = (-1)^2 - 0 = 1$
 $x = 0$, $f(x) = 0^2 - 0 = 0$
 $0 < x < 1$, $f(x) = 0^2 - 0 = 0$
 $x = 1$, $f(x) = 1^2 - 1 = 0$
 $1 < x < \sqrt{2}$, $f(x) = 1^2 - 1 = 0$
 $x = \sqrt{2}$, $f(x) = 1^2 - 2 = -1$
 $\sqrt{2} < x < \sqrt{3}$, $f(x) = 1^2 - 2 = -1$
 $x = \sqrt{3}$, $f(x) = 1^2 - 3 = -2$
 $\sqrt{3} < x < 2$, $f(x) = 1^2 - 3 = -2$
 $x = 2$, $f(x) = 2^2 - 4 = 0$
 $2 < x < \sqrt{5}$, $f(x) = 2^2 - 4 = 0$
 $x = \sqrt{5}$, $f(x) = 2^2 - 5 = -1$
Hence, the given function is disconting

Hence, the given function is discontinuous at all integers except 1.

Textbook Chapter No.

02 Differentiation

Hints

Classical Thinking
1.
$$f'(2^{-}) = \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h}$$

 $= \lim_{h \to 0} \frac{(2+h+1)-3}{h}$
 $= \lim_{h \to 0} \frac{h}{h} = 1$
 $f'(2^{+}) = \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h}$
 $= \lim_{h \to 0} \frac{2(2+h) - 1 - 3}{h}$
 $= \lim_{h \to 0} \frac{2h}{h} = 2$
 $\therefore f'(2^{-}) \neq f'(2^{+})$
 $\therefore f'(2)$ does not exist.
2. $f'(3^{-}) = \lim_{h \to 0^{-}} \frac{f(3+h) - f(3)}{h}$
 $= \lim_{h \to 0} \frac{(3+h+2)-5}{h} = \lim_{h \to 0} \frac{h}{h} = 1$
 $f'(3^{+}) = \lim_{h \to 0^{+}} \frac{f(3+h) - f(3)}{h}$

$$= \lim_{h \to 0} \frac{8 - (3 + h) - 5}{h} = \lim_{h \to 0} \frac{-h}{h} = -1$$

 $\therefore \qquad f'(3^{-}) \neq f'(3^{+})$

 \therefore f'(3) does not exist.

3.
$$f'(0^+) = \lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h| - 0}{h}$$

 $= \lim_{h \to 0^+} \frac{h}{h} = 1$
 $f'(0^-) = \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{|h| - 0}{h}$
 $= \lim_{h \to 0^-} \frac{-h}{h} = -1$
 $\therefore f'(0^+) \neq f'(0^-)$
 $\therefore f'(0)$ does not exist.

4.
$$f'(1^{-}) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$$

 $= \lim_{x \to 1} \frac{px^{2} + 1 - p - 1}{x - 1} = \lim_{x \to 1} \frac{p(x^{2} - 1)}{x - 1}$
 $= p \lim_{x \to 1} (x + 1)$
 $= 2p$
 $f'(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x + p - p - 1}{x - 1}$
 $= \lim_{x \to 1^{-}} \frac{x - 1}{x - 1}$
 $= 1$
Since, $f(x)$ is differentiable at $x = 1$.
 $\therefore 2p = 1 \Rightarrow p = \frac{1}{2}$
5. $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x = 1$
 $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (2x - 1) = 1$
 $f(1) = 1$
 $\therefore f(x)$ is continuous at $x = 1$.
 $f'(1^{-}) = \lim_{h \to 0^{-}} \frac{f(1 + h) - f(1)}{h} = \lim_{h \to 0} \frac{1 + h - 1}{h}$
 $= \lim_{h \to 0} \frac{h}{h} = 1$
 $f'(1^{+}) = \lim_{h \to 0^{+}} \frac{f(1 + h) - f(1)}{h}$
 $= \lim_{h \to 0} \frac{2(1 + h) - 1 - 1}{h}$
 $= \lim_{h \to 0} \frac{2h}{h} = 2$
 $\therefore f'(1^{-}) \neq f(1^{+})$
 $\therefore f(x)$ is not differentiable at $x = 1$.
6. $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} (5 - x) = 3$
 $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} (5 - x) = 3$
 $f(2) = 1 + 2 = 3$

 \therefore f(x) is continuous at x = 2.

MHT-CET Triumph Maths (Hints)

$$f'(2^{-}) = \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{1 + (2+h) - 3}{h}$$

$$= \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0^{-}} \frac{f(2+h) - 3}{h}$$

$$= \lim_{h \to 0^{-}} \frac{h}{h} = -1$$

$$\therefore f'(2^{-}) \neq f'(2^{+})$$

$$\therefore f(x) \text{ is not differentiable at $x = 2$.
7. $f(0) = 0$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x \sin \frac{1}{x}}{x - 0}$$

$$\therefore f(x) \text{ is continuous at $x = 0$.
 $f(0^{-}) = \lim_{h \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$

$$= \lim_{h \to 0^{-}} \frac{f(0-h) - f(0)}{0-h-0}$$

$$= \lim_{h \to 0^{-}} \frac{-h \sin(\frac{1}{-h}) - 0}{-h}$$

$$= -\lim_{h \to 0^{-}} \frac{-h \sin(\frac{1}{-h}) - 0}{-h}$$

$$= -\lim_{h \to 0^{-}} (\frac{1}{h})$$

$$= (a number which oscillates between -1 and 1)$$

$$\therefore f(0^{-}) \text{ does not exist.}$$

$$\therefore f(x) \text{ is not differentiable at $x = 0$.
8. $\frac{d}{dx} [\sin(2x+3)] = \cos(2x+3), \frac{d}{dx}(2x+3)$

$$= 2\cos(2x+3)$$
9. $y = e^{\sqrt{x}} \Rightarrow \frac{dy}{dx} = e^{\sqrt{x}} \cdot \frac{d}{dx}(\sqrt{x}) \Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$
10. $\frac{d}{dx}(e^{x^{3}}) = e^{x^{3}} \cdot \frac{d}{dx}(\log x)$

$$= \frac{4(\log x)^{3}}{2}$$$$$$$$

$$\begin{array}{c|cccc}
 12. \quad \frac{d}{dx} \left[\log(\log x) \right] &= \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) \\ &= \frac{1}{\log x} \cdot \frac{1}{x} = (x \log x)^{-1} \\ 13. \quad y = \log_{10} |x| = \frac{\log_{c} |x|}{\log_{c} 10} \\ \therefore \quad \frac{dy}{dx} = \frac{1}{\log_{c} 10} \cdot \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x \log_{c} 10} \\ 14. \quad y = f(ax^{2} + b) \\ \therefore \quad \frac{dy}{dx} = f'(ax^{2} + b) \cdot \frac{d}{dx}(ax^{2} + b) = 2ax f'(ax^{2} + b) \\ 15. \quad y = (4x^{3} - 5x^{2} + 1)^{4} \\ \therefore \quad \frac{dy}{dx} = 4(4x^{3} - 5x^{2} + 1)^{3} \cdot \frac{d}{dx}(4x^{3} - 5x^{2} + 1) \\ = 4(4x^{3} - 5x^{2} + 1)^{3} (12x^{2} - 10x) \\ 16. \quad \frac{d}{dx}(x^{2} + \cos x)^{4} = 4(x^{2} + \cos x)^{3} \cdot \frac{d}{dx}(x^{2} + \cos x) \\ = 4(x^{2} + \cos x)^{3} (2x - \sin x) \\ 17. \quad \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \\ = \frac{2}{(u+1)^{2}} \cdot \frac{1}{2\sqrt{x}} \\ = \frac{1}{(\sqrt{x} + 1)^{2}} \cdot \frac{1}{\sqrt{x}} \\ = \frac{1}{\sqrt{x}(1 + \sqrt{x})^{2}} \\ \end{array}$$

18.
$$y = \log(\tan \sqrt{x})$$

 $\therefore \quad \frac{dy}{dx} = \frac{1}{\tan \sqrt{x}} \cdot \frac{d}{dx} (\tan \sqrt{x})$
 $= \frac{1}{\tan \sqrt{x}} \cdot \sec^2 \sqrt{x} \cdot \frac{1}{2\sqrt{x}}$
 $= \frac{\sec^2 \sqrt{x}}{2\sqrt{x} \tan \sqrt{x}}$

1)

19.
$$y = \log(\sec x + \tan x)$$

 $\therefore \quad \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \cdot \frac{d}{dx} (\sec x + \tan x)$
 $= \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x}$
 $= \sec x$

406

x

20.
$$y = \log(\log(\log x^{3}))$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\log(\log x^{3})} \cdot \frac{d}{dx} [\log(\log x^{3})]$$

$$= \frac{1}{\log(\log x^{3})} \cdot \frac{1}{\log x^{3}} \cdot \frac{d}{dx} (\log x^{3})$$

$$= \frac{1}{\log(\log x^{3})} \cdot \frac{1}{3\log x} \cdot \frac{1}{x^{3}} \cdot 3x^{2}$$

$$= \frac{1}{x\log x \log(\log x^{3})}$$

21. Derivative exists if $1 - x^2 > 0$ i.e., $1 > x^2$ i.e., $x^2 < 1$ i.e., |x| < 1 i.e., -1 < x < 1

22.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan^{-1}(\sqrt{x}) \right] = \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}}$$
$$= \frac{1}{2\sqrt{x}(1+x)}$$

23.
$$y = \cos^{-1}\left(\frac{1}{x^3}\right)$$

$$\therefore \quad y = \sec^{-1}(x^3)$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{x^3\sqrt{(x^3)^2 - 1}} . 3x^2 = \frac{3}{x\sqrt{x^6 - 1}}$$

24. Put
$$x = \sin \theta \Rightarrow \theta = \sin^{-1}x$$

 $\therefore \quad y = \tan^{-1}\left(\frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}\right) = \tan^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)$
 $= \tan^{-1}(\tan \theta) = \theta = \sin^{-1}x$
 $\therefore \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$

25. Let $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ Put $x = \tan\theta \Rightarrow \theta = \tan^{-1}x$ $\therefore \quad y = \cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right)$ $\Rightarrow y = \cos^{-1}(\cos 2\theta) = 2\theta = 2\tan^{-1}x$ $\therefore \quad \frac{dy}{dx} = \frac{2}{1+x^2}$

26. Let $y = \operatorname{cosec}^{-1}\left(\frac{1+x^2}{2x}\right)$ $= \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

Put
$$x = \tan \theta \Rightarrow \theta = \tan^{-1}x$$

 $\therefore \quad y = \sin^{-1}\left(\frac{2\tan \theta}{1+\tan^2 \theta}\right)$
 $= \sin^{-1}(\sin 2\theta)$
 $= 2\theta = 2\tan^{-1}x$
 $\therefore \quad \frac{dy}{dx} = \frac{2}{1+x^2}$
27. Put $x = \tan \theta \Rightarrow \theta = \tan^{-1}x$
 $\therefore \quad y = \sin^{-1}\left(\frac{1-\tan^2 \theta}{1+\tan^2 \theta}\right) = \sin^{-1}(\cos 2\theta)$
 $= \sin^{-1}\left(\sin\left(\frac{\pi}{2}-2\theta\right)\right)$
 $= \frac{\pi}{2} - 2\theta = \frac{\pi}{2} - 2\tan^{-1}x$
 $\therefore \quad \frac{dy}{dx} = -\frac{2}{1+x^2}$
28. Put $x = \cos \theta \Rightarrow \theta = \cos^{-1}x$
 $\therefore \quad y = \sec^{-1}\left(\frac{1}{2\cos^2 \theta - 1}\right)$
 $= \sec^{-1}\left(\frac{1}{\cos 2\theta}\right)$
 $= \sec^{-1}\left(\sec 2\theta\right)$
 $= 2\theta = 2\cos^{-1}x$
 $\therefore \quad \frac{dy}{dx} = -\frac{2}{\sqrt{1-x^2}}, x \neq \pm 1$
29. Let $y = e^{x \sin x}$
Taking logarithm on both sides, we get
 $\log y = x \sin x$
Differentiating both sides w.r.t.x, we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = e^{x \sin x} (\sin x + x \cos x)$
30. Let $y = x^x$
Taking logarithm on both sides, we get
 $\log y = x \log x$
Differentiating both sides w.r.t.x, we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{x} + \log x \cdot 1$
 $\therefore \quad \frac{dy}{dx} = x^x(1 + \log x)$
 $= x^x (\log e + \log x) = x^x \log (ex)$

31.
$$y = x^{\log x}$$

Taking logarithm on both sides, we get
 $\log y = \log x \log x$
 $= (\log x)^2$
Differentiating both sides w.r.t. x, we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = 2 \log x \cdot \frac{1}{x}$
 $\Rightarrow \frac{dy}{dx} = \frac{2y}{x} \log x$
 $\Rightarrow \frac{dy}{dx} = 2 \frac{x^{\log x}}{x} \cdot \log x = 2x^{\log x - 1} \cdot \log x$
32. $y = x^2 + x^{\log x}$
 $\therefore \quad \frac{dy}{dx} = 2x + \frac{d}{dx} (x^{\log x})$
 $\Rightarrow \frac{dy}{dx} = 2x + \frac{2}{x} \log x (x^{\log x})$

33. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

Differentiating both sides w.r.t. *x*, we get

$$\frac{2}{3}x^{\frac{2}{3}-1} + \frac{2}{3}y^{\frac{2}{3}-1} \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{2}{3}x^{\frac{-1}{3}} + \frac{2}{3}y^{\frac{-1}{3}} \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow y^{\frac{-1}{3}} \cdot \frac{dy}{dx} = -x^{\frac{-1}{3}} \Rightarrow \frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

34.
$$x^{3} + y^{3} - 3 axy = 0$$

Differentiating w.r.t. x, we get

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} - 3a \left(x \frac{dy}{dx} + y\right) = 0$$

$$\Rightarrow 3(x^{2} - ay) + 3 \frac{dy}{dx}(y^{2} - ax) = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{ay - x^{2}}{y^{2} - ax}$$

35.
$$x^3 + 8xy + y^3 = 64$$

Differentiating both sides w.r.t. x, we get
 $3x^2 + 8\left(y + x\frac{dy}{dx}\right) + 3y^2 \frac{dy}{dx} = 0$
 $\Rightarrow \frac{dy}{dx} = -\frac{3x^2 + 8y}{8x + 3y^2}$

$$\Rightarrow \frac{dy}{dx} = -$$

36.
$$y = \cos (x + y)$$

 $\therefore \quad \frac{dy}{dx} = -\sin (x + y) \cdot \left(1 + \frac{dy}{dx}\right)$
 $\Rightarrow \frac{dy}{dx} [1 + \sin (x + y)] = -\sin (x + y)$
 $\Rightarrow \frac{dy}{dx} = \frac{-\sin(x + y)}{1 + \sin(x + y)}$
37. $\sin^2 x + 2 \cos y + xy = 0$
Differentiating w.r.t. x, we get
 $2 \sin x \cos x - 2 \sin y \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$

.:.

$$\Rightarrow \frac{dy}{dx}(x-2\sin y) = -y - \sin 2x$$
$$\Rightarrow \frac{dy}{dx} = \frac{y + \sin 2x}{2\sin y - x}$$

38.
$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$

Differentiating w.r.t. x, we get
$$2ax + 2h\left(y + x\frac{dy}{dx}\right) + 2by\frac{dy}{dx} + 2g + 2f\frac{dy}{dx} = 0$$
$$\Rightarrow \frac{dy}{dx}(2hx + 2by + 2f) = -(2ax + 2hy + 2g)$$
$$\Rightarrow \frac{dy}{dx} = -\frac{ax + hy + g}{hx + by + f}$$

39.
$$\sqrt{x} + \sqrt{y} = 1$$

Differentiating both sides w.r.t.*x*, we get
 $\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$
 $\therefore \qquad \left(\frac{dy}{dx}\right)_{\left(\frac{1}{4},\frac{1}{4}\right)} = -1$
40. $x = a \cos 0$ and $y = b \sin 0$

40.
$$x = a \cos \theta$$
 and $y = b \sin \theta$
 $\therefore \quad \frac{dx}{d\theta} = -a \sin \theta$ and $\frac{dy}{d\theta} = b \cos \theta$
 $\frac{dy}{d\theta} = b \cos \theta$

$$\therefore \qquad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b\cos\theta}{-a\sin\theta} = \left(-\frac{b}{a}\right)\cot\theta$$

41. Let
$$y = 5^x$$
 and $z = \log_5 x$

$$\therefore \quad \frac{dy}{dx} = 5^x \log 5 \text{ and } \frac{dz}{dx} = \frac{1}{x \log 5}$$

$$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}x}} = \frac{5^x \log 5}{\frac{1}{x \log 5}} = x.5^x (\log 5)^2$$

	Chapter 02: Differentiation
48.	$y = \log(ax + b)$
<i>.</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{a}x + \mathrm{b}} \times \mathrm{a}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-\mathrm{a}^2}{(\mathrm{a}x+\mathrm{b})^2}$
49.	$y = \log(\sin x)$
÷	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sin x} \cdot \cos x = \cot x$
<i>.</i>	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\operatorname{cosec}^2 x$
50.	$\sqrt{xy} = 1$
	$\Rightarrow xy = 1$
	$\Rightarrow y = \frac{1}{x}$
<i>.</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{x^2}$
<i>.</i>	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{2}{x^3}$
51.	$y = \sin mx$ (i)
÷	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{m}\cos\mathrm{m}x$
<i>.</i>	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{m}^2 \sin \mathrm{m}x$
	$\Rightarrow \frac{d^2 y}{dx^2} + m^2 y = 0 \qquad \dots [From (i)]$
52.	$y = 2\sin x + 3\cos x$
<i>.</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos x - 3\sin x$
<i>.</i>	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\sin x - 3\cos x$
	$y + \frac{d^2 y}{dx^2} = 2\sin x + 3\cos x - 2\sin x - 3\cos x$
	$\Rightarrow y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0$
53.	$x = a \cos nt - b \sin nt$ (i)
<i>.</i>	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\operatorname{nasinnt} - \operatorname{nbcosnt}$
<i>.</i>	$\frac{d^2x}{dt^2} = -n^2 a \cos nt + n^2 b \sin nt$
	$= -n^2$ (a cos nt – b sin nt)

 $= -n^{2}x$

...[From (i)]

MHT-CET Triumph Maths (Hints) 54. $y = a \sin(mx) + b \cos(mx)$(i) $\frac{\mathrm{d}y}{\mathrm{d}x}$ = am cos (mx) – bm sin (mx) ... $\therefore \quad \frac{d^2 y}{dx^2} = -am^2 \sin(mx) - bm^2 \cos(mx)$ $= -m^{2} [a \sin(mx) + b \cos(mx)]$ $= -m^2 y$[From (i)] 55. $v = a + bx^2$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{b}x$(i) $\therefore \quad \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 2\mathrm{b}$ $\Rightarrow x \frac{d^2 y}{dx^2} = 2bx = \frac{dy}{dx} \qquad \dots [From (i)]$ $f(x) = be^{ax} + ae^{bx}$ 56. $f'(x) = abe^{ax} + abe^{bx}$ *.*.. $f''(x) = a^2 b e^{ax} + a b^2 e^{bx}$ ÷. $f''(0) = a^2b + ab^2 = ab(a + b)$ *.*.. Ô **Critical Thinking** $f(x) = \begin{cases} -(x-3), \ x < 3\\ (x-3), \ x \ge 3 \end{cases}$ 1. $f'(3^{-}) = -1$ and $f'(3^{+}) = 1$ $f'(3^{-}) \neq f'(3^{+})$ *.*.. f'(3) does not exist. *.*.. 2. $\lim_{x \to x^{-}} f(x) = \lim_{h \to 0} f(2-h) = \lim_{h \to 0} |2-h-2| = 0$ $\lim_{x \to 2^+} f(x) = \lim_{h \to 0} f(2+h) = \lim_{h \to 0} |2+h-2| = 0$ $x \rightarrow 2^+$ f(2) = 0*.*.. f (x) is continuous at x = 2. *.*.. $f'(2^{-}) = \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h}$ $=\lim_{h\to 0}\frac{-(2+h-2)-0}{h}$ = -1 $f'(2^+) = \lim_{h \to 0^+} \frac{f(2+h) - f(2)}{h}$ $= \lim_{h \to 0} \frac{2 + h - 2 - 0}{h} = 1$ $f'(2^{-}) \neq f'(2^{+})$ *.*.. f(x) is not differentiable at x = 2. *.*..

3.
$$f'(1^{-}) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$$

 $= \lim_{x \to 1^{-}} \frac{2x^{2} + 3x + 4 - 9}{x - 1}$
 $= \lim_{x \to 1^{-}} \frac{(x - 1)(2x + 5)}{x - 1}$
 $= \lim_{x \to 1^{+}} (2x + 5)$
 $= 7^{-}$
 $f'(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$
 $= \lim_{x \to 1^{+}} \frac{kx + 9 - k - 9}{x - 1}$
 $= \lim_{x \to 1^{+}} \frac{k(x - 1)}{x - 1}$
 $= k$
Since, $f(x)$ is differentiable at $x = 1$.
 \therefore $k = 7$
4. $f(x) = \frac{x}{1 + |x|}$
 \therefore $f(x) = \begin{cases} \frac{x}{1 - x}, & x < 0 \\ \frac{x}{1 + x}, & x \ge 0 \end{cases}$
 \therefore $f'(x) = \begin{cases} \frac{x}{(1 - x)^{2}}, & x < 0 \\ \frac{x}{(1 + x)^{2}}, & x \ge 0 \end{cases}$
 \therefore $f(x)$ is differentiable at $(-\infty, \infty)$.
5. Applying L'Hospital rule, we get
 $\lim_{x \to 2^{-}} \frac{2x^{2} - 4f'(x)}{x - 2} = \lim_{x \to 2^{-}} \frac{4x - 4f''(x)}{1}$
 $= 8 - 4f''(2) = 8 - 4(1) = 4$
6. Since, $f'(a)$ exists.
 \therefore $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \dots(i)$
Now, $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$
 $= \lim_{x \to a} f(a) - a \lim_{x \to a} \left\{ \frac{f(x) - f(a)}{x - a} \right\}$
 $= f(a) - af'(a) \dots[From (i)]$
7. If a function $f(x)$ is continuous at $x = a$, then it
may or may not be differentiable at $x = a$.

Option (B) is not true.

...

8.
$$f'(0^{-}) = \lim_{x\to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

 $= \lim_{h\to 0} \frac{f(0 - h) - f(0)}{-h}$
 $= \lim_{h\to 0} \frac{h^2 \sin\left(\frac{1}{-h}\right) - 0}{-h}$
 $= 0$
 $f'(0^{+}) = \lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0}$
 $= \lim_{h\to 0} \frac{f(0 + h) - f(0)}{h}$
 $= \lim_{h\to 0} \frac{h^2 \sin\frac{1}{h} - 0}{h}$
 $= 0$
 $\therefore f'(0^{-}) = f'(0^{+})$
 $\therefore f(x) \text{ is derivable at } x = 0.$
9. $f'(0^{-}) = \lim_{x\to 0^{-}} \frac{f(x) - f(0)}{x - 0}$
 $= \lim_{x\to 0^{-}} \frac{-x - 0}{x}$
 $= -1$
 $f'(0^{+}) = \lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0}$
 $= \lim_{x\to 0^{+}} \frac{x^2 - 0}{x - 0}$
 $= 0$
 $\therefore f'(0^{-}) \neq f'(0^{+})$
 $f'(1^{-}) = \lim_{x\to 1^{-}} \frac{f(x) - f(1)}{x - 1}$
 $= 2$
 $f'(1^{+}) = \lim_{x\to 1^{+}} \frac{f(x) - f(1)}{x - 1}$
 $= \lim_{x\to 1^{-}} \frac{x^3 - x + 1 - 1}{x - 1}$
 $= 2$
 $\therefore f'(1^{-}) = f'(1^{+})$
 $\therefore f'(1^{-}) = f'(1^{+})$

Chapter 02: Differentiation 10. f(x) is continuous at x = 1. $f(1) = \lim_{x \to \infty} f(x)$ *.*.. $x \rightarrow 1^+$ \Rightarrow a + b = b + a + c $\Rightarrow c = 0$ Also, f(x) is differentiable at x = 1. Lf'(1) = Rf'(1)*.*.. $\Rightarrow \left[\frac{d}{dx}(ax^2 + b)\right]_{x=1} = \left[\frac{d}{dx}(bx^2 + ax + c)\right]_{x=1}$ $\Rightarrow [2ax]_{x=1} = [2bx+a]_{x=1}$ $\Rightarrow 2a = 2b + a$ $\Rightarrow a = 2b$ 11. $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$ $=\lim_{x\to 0}\frac{x^{p}\cos\frac{1}{x}-0}{x}$ $= \lim_{x \to 0} x^{p-1} \cos \frac{1}{x} = 0, \text{ if } p-1 > 0$ i.e., if p > 1f(x) will be differentiable at x = 0, if p > 1*.*.. $\mathbf{f}(x) = \begin{cases} \mathbf{e}^{-x}, & x \ge 0\\ \mathbf{e}^{x}, & x < 0 \end{cases}$ 12. Clearly, f(x) is continuous and differentiable for all non-zero *x*. Now, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} e^x = 1$ $x \rightarrow 0^{-}$ and $\lim_{x \to 0} f(x) = \lim_{x \to 0} e^{-x} = 1$ $x \rightarrow 0^+$ Also at x = 0, $f(0) = e^0 = 1$ So, f(x) is continuous for all values of x. $Lf'(0) = \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$ Rf'(0) = $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{-h} - 1}{h} = -1$ So, f(x) is not differentiable at x = 0. f(x) is continuous every where but not *.*.. differentiable at x = 0. $f(x) = \begin{cases} x e^{-\left(-\frac{1}{x} + \frac{1}{x}\right)} = x, & x < 0\\ x e^{-2/x}, & x > 0\\ 0, & x = 0 \end{cases}$ 13. $\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0$ $x \rightarrow 0^{-}$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} x e^{-2/x} = 0$ and f(0) = 0 $x \rightarrow 0$ $x \rightarrow 0^+$

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = f(0)$ $x \rightarrow 0^{-}$ $x \rightarrow 0^+$

411

So, f(x) is continuous at x = 0 Also, Lf'(0) = 1 and Rf'(0) = $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h}$ = $\lim_{h \to 0^+} \frac{he^{-2/h} - 0}{h} = \lim_{h \to 0} e^{-2/h} = 0$

... f is not differentiable at x = 0. Thus, f(x) is everywhere continuous but not differentiable at x = 0.

14. $f(x) = \begin{cases} \frac{x^2}{x} = x, & x > 0\\ 0, & x = 0\\ \frac{x^2}{-x} = -x, & x < 0 \end{cases}$

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x) = 0, \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0$ and f(0) = 0.

So, f(x) is continuous at x = 0.

Also, f(x) is continuous for all other values of x.

Hence, f(x) is continuous everywhere.

Here, Lf'(0) = -1 and Rf'(0) = 1.

 \therefore f(x) is not differentiable at x = 0.

15. Lf'(0) =
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^x + ax - b}{x}$$

Rf'(0) = $\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$
= $\lim_{x \to 0} \frac{b(x - 1)^2 - b}{x}$
= $\lim_{x \to 0} \frac{b(x^2 - 2x + 1 - 1)}{x}$
= $\lim_{x \to 0} b(x - 2) = -2b$
Since f'(0) exists

Since f'(0) exists.

 $\therefore \quad Lf'(0) \text{ must exist.} \\ \therefore \quad 1 - b = 0 \Longrightarrow b = 1$

Lf'(0) = Rf'(0) = -2
and Lf'(0) =
$$\lim_{x \to 0} \frac{e^x + ax - 1}{x}$$

= $\lim_{x \to 0} \left(\frac{e^x - 1}{x} + a \right) = 1 + a$

$$\therefore \quad 1 + a = -2 \Longrightarrow a = -3$$

$$\therefore \quad (a, b) = (-3, 1)$$

16.
$$L f'(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

 $= \lim_{h \to 0} \frac{m(1-h)^2 - m}{-h} = \lim_{h \to 0} \frac{m(1+h^2-2h-1)}{-h}$
 $= \lim_{h \to 0} m(2-h) = 2m$
 $R f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{2(1+h) - m}{h}$
For differentiability, $L f'(1) = R f'(1)$.

But for any value of m, Lf'(1) = R f'(1) is not possible.

17. Lf'(0) =
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

= $\lim_{x \to 0} \left(\frac{-a \sin x + be^{-x} - b}{x} \right)$

Applying L' Hospital rule, we get
$$(-a \cos x - be^{-x})$$

$$Lf'(0) = \lim_{x \to 0^{+}} \left(\frac{-a \cos x - bc}{1} \right) = -(a + b)$$

Rf'(0) =
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$$

=
$$\lim_{x \to 0} \left(\frac{a \sin x + be^{x} - b}{x} \right)$$

Applying L' Hospital rule, we get

$$\operatorname{Rf}'(0) = \lim_{x \to 0} \left(\frac{a \cos x + b e^x}{1} \right) = a + b$$

Since, f(x) is differentiable at x = 0.

$$\therefore \quad Lf'(0) = Rf'(0)$$

$$\Rightarrow - (a+b) = a+b$$

$$\Rightarrow a+b = 0$$

18. Let
$$y = \sqrt{\sqrt{x} + 1}$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{\sqrt{x} + 1}} \cdot \frac{d}{dx} (\sqrt{x} + 1)$$

$$= \frac{1}{4\sqrt{x} \cdot \sqrt{\sqrt{x} + 1}}$$

$$= \frac{1}{4\sqrt{x}(\sqrt{x} + 1)}$$

19. As
$$x^{\circ} = \frac{\pi x}{180}$$
 radian.
 $\therefore \qquad \frac{dy}{dx} = \frac{\pi}{180} \sec x^{\circ} \tan x^{\circ}$

20.
$$10^{-x \tan x} \left[\frac{d}{dx} (10^{x \tan x}) \right]$$

 $= 10^{-x \tan x} \cdot 10^{x \tan x} \cdot \log 10 \cdot \frac{d}{dx} (x \tan x)$
 $= \log 10 (\tan x + x \sec^2 x)$
21. $y = e^{\frac{x^2}{1+x^2}}$
 $\therefore \frac{dy}{dx} = e^{\frac{x^2}{1+x^2}} \cdot \frac{d}{dx} \left(\frac{x^2}{1+x^2} \right)$
 $= e^{\frac{x^2}{1+x^2}} \cdot \left[\frac{(1+x^2)(2x) - x^2 \cdot (0+2x)}{(1+x^2)^2} \right]$
 $= \frac{2xe^{\frac{x^2}{1+x^2}}}{(1+x^2)^2}$
22. $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$
 $= \frac{1}{2\sqrt{u}} \times (3-4v) \times 2x$
 $= \frac{1}{\sqrt{(3-2v)v}} \times (3-4v) \times x$
 $= \frac{1}{\sqrt{(3-2v)v^2}} \times (3-4v) \times x$
 $= \frac{3-4x^2}{\sqrt{3-2x^2}}$
23. $y = (\cos x^2)^2$
 $\therefore \frac{dy}{dx} = 2 \cos x^2 \cdot \frac{d}{dx} (\cos x^2)$
 $= 2 \cos x^2 \cdot (-\sin x^2) \cdot \frac{d}{dx} (x^2)$
 $= 2 \cos x^2 \cdot (-\sin x^2) \cdot 2x$
 $= -2x (2 \sin x^2 \cos x^2) = -2x \sin 2x^2$
24. $y = \frac{\tan x + \cot x}{\tan x - \cot x} = \frac{\tan x + \frac{1}{\tan x}}{\tan x - \frac{1}{\tan x}}$
 $= -\frac{1 + \tan^2 x}{1 - \tan^2 x} = -\sec 2x$

 $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\sec 2x \tan 2x \cdot \frac{\mathrm{d}}{\mathrm{d}x}(2x)$

 $= -2 \sec 2x \tan 2x$

TM

 $= \cos(\sqrt{\sin x + \cos x}) \cdot \frac{1}{2\sqrt{\sin x + \cos x}} \cdot \frac{d}{dx}(\sin x + \cos x)$ $= \frac{\cos(\sqrt{\sin x + \cos x})}{2\sqrt{\sin x + \cos x}} \cdot (\cos x - \sin x)$

413

Г

29.
$$\frac{d}{dx} \left(\sqrt{\sec^2 x + \csc^2 x} \right) = \frac{d}{dx} \left[\sqrt{\left(\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \right)} \right]$$
$$= \frac{d}{dx} \left(\sqrt{\frac{1}{\cos^2 x \sin^2 x}} \right) = \frac{d}{dx} \left(\sqrt{\frac{4}{\sin^2 2x}} \right)$$
$$= \frac{d}{dx} (2 \csc 2x) = -2 \csc 2x \cot 2x. \frac{d}{dx} (2x)$$
$$= -4 \csc 2x \cot 2x$$

30.
$$y = (x \cot^3 x)^{\frac{3}{2}}$$

∴ $\frac{dy}{dx} = \frac{3}{2} (x \cot^3 x)^{\frac{1}{2}} \cdot \frac{d}{dx} (x \cot^3 x)$
 $= \frac{3}{2} (x \cot^3 x)^{\frac{1}{2}} [\cot^3 x \cdot 1 + x \cdot 3 \cot^2 x \cdot \frac{d}{dx} (\cot x)]$
 $= \frac{3}{2} (x \cot^3 x)^{\frac{1}{2}} [\cot^3 x + 3x \cot^2 x (-\csc^2 x)]$
 $= \frac{3}{2} (x \cot^3 x)^{\frac{1}{2}} (\cot^3 x - 3x \cot^2 x \csc^2 x)$

31.
$$y = \sqrt{\frac{1+\tan x}{1-\tan x}} = \sqrt{\tan\left(\frac{\pi}{4}+x\right)}$$
$$\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{\tan\left(\frac{\pi}{4}+x\right)}} \cdot \frac{d}{dx} \left[\tan\left(\frac{\pi}{4}+x\right)\right]$$
$$= \frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}} \cdot \sec^2\left(\frac{\pi}{4}+x\right)$$

32.
$$y = \log\left[\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right]$$
$$\therefore \quad \frac{dy}{dx} = \frac{1}{\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)} \cdot \frac{d}{dx} \left[\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right]$$
$$= \frac{1}{\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)} \cdot \sec^{2}\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \frac{1}{2}$$
$$= \frac{1}{2\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)} = \frac{1}{\sin\left(\frac{\pi}{2} + x\right)}$$
$$= \frac{1}{\cos x} = \sec x$$

33.
$$\log\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \left(\log\sqrt{\frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)}}\right)$$
$$= \log\left(\tan\frac{x}{2}\right)$$
$$= \log\left(\tan\frac{x}{2}\right)$$
$$\therefore \quad \frac{dy}{dx} = \frac{1}{\tan\frac{x}{2}} \cdot \frac{d}{dx} \left(\tan\frac{x}{2}\right)$$
$$= \frac{1}{\tan\frac{x}{2}} \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2}$$
$$= \frac{1}{2\sin\frac{x}{2}\cos\frac{x}{2}}$$
$$= \frac{1}{\sin x}$$
$$= \csc x$$

34.
$$\operatorname{Let} y = \left[\log\left\{e^x \left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}\right]$$
$$\Rightarrow y = \log e^x + \log\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}$$
$$\Rightarrow y = x + \frac{3}{4} \left[\log(x-2) - \log(x+2)\right]$$
$$\therefore \quad \frac{dy}{dx} = 1 + \frac{3}{4} \left(\frac{1}{x-2} - \frac{1}{x+2}\right)$$
$$= 1 + \frac{3}{x^2 - 4} = \frac{x^2 - 1}{x^2 - 4}$$

35.
$$f(x) = \frac{1}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}}$$

$$\int \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}$$

$$= \frac{1}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \times \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}$$

$$= \frac{1}{a^2 - b^2} \left[\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right]$$

$$\therefore \quad f'(x) = \frac{1}{a^2 - b^2} \left[\frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x - \frac{1}{2\sqrt{x^2 + b^2}} \cdot 2x \right]$$

$$= \frac{x}{a^2 - b^2} \left[\frac{1}{\sqrt{x^2 + a^2}} - \frac{1}{\sqrt{x^2 + b^2}} \right]$$

$$36. \quad y = \log\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) = \frac{1}{2}\log\left(\frac{1+\sin x}{1-\sin x}\right) \\ = \frac{1}{2}\log(1+\sin x) - \frac{1}{2}\log(1-\sin x) \\ \therefore \quad \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+\sin x} \cdot \cos x - \frac{1}{2} \cdot \frac{1}{1-\sin x} \cdot (-\cos x) \\ = \frac{1}{2}\cos x \left(\frac{1}{1+\sin x} + \frac{1}{1-\sin x}\right) \\ = \frac{1}{2}\cos x \left(\frac{2}{1-\sin^2 x}\right) = \frac{2\cos x}{2\cos^2 x} \\ = \frac{1}{\cos x} = \sec x \\ 37. \quad y = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\log\left(x + \sqrt{x^2 + a^2}\right) \\ \therefore \quad \frac{dy}{dx} = \frac{1}{2}\left[\sqrt{a^2 + x^2} + \frac{a^2}{2}\log\left(x + \sqrt{x^2 + a^2}\right) + \frac{a^2}{2} \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot 2x\right] \\ \quad + \frac{a^2}{2} \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \left[1 + \frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x\right] \\ = \frac{1}{2\left(\sqrt{a^2 + x^2}\right)} \left(a^2 + x^2 + x^2\right) \\ \quad + \frac{a^2}{2} \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \frac{\sqrt{x^2 + a^2 + x^2}}{\sqrt{x^2 + a^2}} \cdot \frac{1}{2\sqrt{a^2 + x^2}} \right] \\ = \frac{1}{2\left(\sqrt{a^2 + x^2}\right)} \left(a^2 + 2x^2 + a^2\right) \\ = \frac{2\left(a^2 + x^2\right)}{2\sqrt{a^2 + x^2}} = \sqrt{a^2 + x^2} \\ 38. \quad f(x) = \cos(\sin x^2) \\ \therefore \quad f'(x) = -\sin(\sin x^2) \cdot \frac{d}{dx}(\sin x^2) \\ = -\sin(\sin x^2) \cdot (\cos x^2) \cdot (2x) \\ \therefore \quad f'\left(\sqrt{\frac{\pi}{2}}\right) = -2\sqrt{\frac{\pi}{2}} \sin\left(\sin\frac{\pi}{2}\right)\cos\frac{\pi}{2} \\ = 0 \qquad \dots \left[\because \cos\frac{\pi}{2} = 0\right] \\ \end{cases}$$

$$39. \text{ Let } y = \frac{d}{dx} \Big[\log f(e^{x} + 2x) \Big] \\ = \frac{1}{f(e^{x} + 2x)} \cdot \frac{d}{dx} \Big[f(e^{x} + 2x) \Big] \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} (e^{x} + 2x) \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} (e^{x} + 2x) \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} (e^{x} + 2x) \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} (e^{x} + 2x) \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} (e^{x} + 2x) \\ = \frac{1}{f(e^{x} + 2x)} \cdot f'(e^{x} + 2x) \cdot \frac{d}{dx} \Big] \\ (y)_{(x=0)} = \frac{f'(1)^{3}}{f(1)} = \frac{2 \cdot 3}{3} = 2$$

$$40. \quad y = \sin^{-1} \left(\frac{19}{20}x\right) + \cos^{-1} \left(\frac{19}{20}x\right) \\ = \frac{\pi}{2} \qquad \dots \left[\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right] \\ \therefore \quad \frac{dy}{dx} = 0$$

$$41. \quad y = \sec^{-1} \left(\frac{x+1}{x+1}\right) + \sin^{-1} \left(\frac{x-1}{x+1}\right) \\ = \cos^{-1} \left(\frac{x-1}{x+1}\right) + \sin^{-1} \left(\frac{x-1}{x+1}\right) \\ = \cos^{-1} \left(\frac{x-1}{x+1}\right) + \sin^{-1} \left(\frac{\sqrt{x}-1}{x+1}\right) = \pi/2$$

$$\therefore \quad \frac{dy}{dx} = 0$$

$$42. \quad y = \cos^{-1} \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sin^{-1} \left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) = \pi/2$$

$$\therefore \quad \frac{dy}{dx} = 0$$

$$43. \quad \sin^{-1} x + \sin^{-1} \sqrt{1-x^{2}} \\ = \sin^{-1} x + \cos^{-1} x \quad \dots \left[\because \cos^{-1} x = \sin^{-1} \sqrt{1-x^{2}} \right] \\ = \frac{\pi}{2}$$

$$\therefore \quad \frac{d}{dx} (\sin^{-1} x + \sin^{-1} \sqrt{1-x^{2}}) = \frac{d}{dx} \left(\frac{\pi}{2}\right) = 0$$

$$44. \quad \text{Let } y = \tan^{-1} (\cot x) + \cot^{-1} (\tan x) \\ = \tan^{-1} \left[\tan \left(\frac{\pi}{2} - x\right)\right] + \cot^{-1} \left[\cot \left(\frac{\pi}{2} - x\right)\right] \\ = \pi - 2x$$

$$\therefore \quad \frac{dy}{dx} = -2$$

45.
$$\frac{d}{dx} \{ \sin (2 \cos^{-1} (\sin x)) \}$$
$$= \frac{d}{dx} \left\{ \sin \left(2 \cos^{-1} \left(\cos \left(\frac{\pi}{2} - x \right) \right) \right) \right\}$$
$$= \frac{d}{dx} \left\{ \sin \left(2 \left(\frac{\pi}{2} - x \right) \right) \right\}$$
$$= \frac{d}{dx} \left\{ \sin (\pi - 2x) \right\}$$
$$= -2 \cdot \cos (\pi - 2x)$$
$$= 2 \cos 2x$$

46.
$$y = \tan^{-1} \left(\frac{x^{\frac{1}{3}} + a^{\frac{1}{3}}}{1 - x^{\frac{1}{3}} a^{\frac{1}{3}}} \right) = \tan^{-1} \left(x^{\frac{1}{3}} \right) + \tan^{-1} \left(a^{\frac{1}{3}} \right)$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{1 + \left(x^{\frac{1}{3}} \right)^2} \cdot \frac{1}{3} x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}} (1 + x^{\frac{2}{3}})}$$

47.
$$y = \tan^{-1} \left(\frac{\frac{6}{5} + \tan x}{1 - \frac{6}{5}(\tan x)} \right)$$
$$= \tan^{-1} \left(\frac{6}{5} \right) + \tan^{-1}(\tan x)$$
$$\therefore \quad y = \tan^{-1} \left(\frac{6}{5} \right) + x$$
$$\therefore \quad \frac{dy}{dx} = 0 + 1 = 1$$

$$48. \quad y = \tan^{-1} \left(\frac{5x - x}{1 + 5x \cdot x} \right) + \tan^{-1} \left(\frac{\frac{2}{3} + x}{1 - \frac{2}{3} \cdot x} \right)$$
$$= \tan^{-1} 5x - \tan^{-1} x + \tan^{-1} \frac{2}{3} + \tan^{-1} x$$
$$= \tan^{-1} 5x + \tan^{-1} \frac{2}{3}$$
$$\therefore \quad \frac{dy}{dx} = \frac{1}{1 + (5x)^2} \cdot 5 = \frac{5}{1 + 25x^2}$$
$$49. \quad \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)^2} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]$$
$$= \frac{d}{dx} \left[\frac{\pi}{4} - \frac{x}{2} \right] = -\frac{1}{2}$$
Alternate Method:
Let $y = \tan^{-1} \left[\frac{\cos x}{1 + \sin x} \right]$
$$= \tan^{-1} \left[\frac{\sin \left(\frac{\pi}{2} - x \right)}{1 + \cos \left(\frac{\pi}{2} - x \right)} \right]$$
$$= \tan^{-1} \left[\frac{2\sin \left(\frac{\pi}{4} - \frac{x}{2} \right) \cos \left(\frac{\pi}{4} - \frac{x}{2} \right)}{2\cos^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)} \right]$$
$$= \tan^{-1} \left(\tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right) = \frac{\pi}{4} - \frac{x}{2}$$

So. $y = \tan^{-1} (\sec x - \tan x)$

$$\therefore \qquad \frac{dy}{dx} = \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \sin x}{\cos x} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \right]$$
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right) \right]$$

...

$$= \frac{d}{dx} \left[\tan^{-1} \left(\tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right) \right]$$
$$= \frac{d}{dx} \left(\frac{\pi}{4} - \frac{x}{2} \right) = -\frac{1}{2}$$
$$51. \quad \frac{d}{dx} \left(\tan^{-1} \sqrt{\frac{1 + \cos x}{1 - \cos x}} \right)$$
$$= \frac{d}{dx} \left(\tan^{-1} \sqrt{\frac{2\cos^2 \frac{x}{2}}{2\sin^2 \frac{x}{2}}} \right)$$
$$= \frac{d}{dx} \left(\tan^{-1} \left(\cot \frac{x}{2} \right) \right)$$
$$= \frac{d}{dx} \left(\tan^{-1} \left(\tan \left(\frac{\pi}{2} - \frac{x}{2} \right) \right) \right)$$
$$= -\frac{1}{2}$$

52.
$$y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$$

By rationalizing the denominator, we get

$$y = \cot^{-1} \left[\frac{2 + 2\cos x}{2\sin x} \right]$$
$$= \cot^{-1} \left[\frac{1 + \cos x}{\sin x} \right]$$
$$= \cot^{-1} \left[\cot \frac{x}{2} \right] = \frac{x}{2}$$
$$\frac{dy}{dx} = \frac{1}{2}$$

:..

53. Put
$$\cos \alpha = \frac{5}{\sqrt{41}}$$
, $\sin \alpha = \frac{4}{\sqrt{41}}$
 $\therefore \quad y = \sin^{-1} [\sin (x + \alpha)] = x + \alpha$
 $\therefore \quad \frac{dy}{dx} = 1$

Chapter 02: Differentiation 54. Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$ \therefore $y = \tan^{-1}\left(\frac{1+\tan\theta}{1-\tan\theta}\right)$ $= \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \theta \right) \right] = \frac{\pi}{4} + \theta$ $=\frac{\pi}{4}+\tan^{-1}x$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$ 55. Let $y = \tan^{-1}\left(\frac{2}{x^{-1} - x}\right) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right)$ Put $x = \tan \theta \Longrightarrow \theta = \tan^{-1} x$ $\therefore \qquad y = \tan^{-1}\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$ $= \tan^{-1}(\tan 2\theta) = 2\theta = 2\tan^{-1}x$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{1+x^2}$ 56. Let $y = \cos^{-1}\left(\frac{x - x^{-1}}{x + x^{-1}}\right) = \cos^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right)$ Put $x = \cot \theta \implies \theta = \cot^{-1} x$ $\therefore \qquad y = \cos^{-1}\left(\frac{\cot^2\theta - 1}{\cot^2\theta + 1}\right) = \cos^{-1}\left(\frac{1 - \tan^2\theta}{1 + \tan^2\theta}\right)$ $=\cos^{-1}(\cos 2\theta)=2\theta=2\cot^{-1}x$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{1+x^2}$ 57. Let $y = \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right)$ Put $x = a \sin \theta \Rightarrow \theta = \sin^{-1} \left(\frac{x}{a}\right)$ $\therefore \qquad y = \tan^{-1} \left(\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right)$ $= \tan^{-1}\left(\frac{a\sin\theta}{a\cos\theta}\right) = \tan^{-1}(\tan\theta) = \theta$ $=\sin^{-1}\left(\frac{x}{a}\right)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{a}} \cdot \frac{1}{\sqrt{1 - \left(\frac{x}{\mathrm{a}}\right)^2}} = \frac{1}{\sqrt{\mathrm{a}^2 - x^2}}$

58. Put
$$x = \tan \theta \Rightarrow \theta = \tan^{-1}x$$

 $\therefore \quad y = \sin^{-1}\left(\frac{2 \tan \theta}{1 + \tan^2 \theta}\right) + \sec^{-1}\left(\frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}\right)$
 $= \sin^{-1}(\sin 2\theta) + \sec^{-1}(\sec 2\theta)$
 $= 2\theta + 2\theta = 4\theta = 4 \tan^{-1}x$
 $\therefore \quad \frac{dy}{dx} = \frac{4}{1 + x^2}$
59. Put $x = \cos 2\theta \Rightarrow \theta = \frac{1}{2}\cos^{-1}x$
 $\therefore \quad -1\left(\sqrt{1 - x}\right) \Rightarrow -1\left(\sqrt{1 - \cos 2\theta}\right)$

$$\therefore \quad \sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right) = \sin^{-1}\left(\sqrt{\frac{1-\cos 2\theta}{2}}\right)$$
$$= \sin^{-1}\left(\sqrt{\sin^2 \theta}\right) = \theta$$
$$= \frac{1}{2}\cos^{-1} x$$
$$\therefore \quad \frac{d}{dx}\left[\sin^{-1}\left(\sqrt{\frac{1-x}{2}}\right)\right] = \frac{d}{dx}\left(\frac{1}{2}\cos^{-1} x\right)$$
$$= \frac{-1}{2\sqrt{1-x^2}}$$

60. Put
$$e^{2x} = \cot \theta \Rightarrow \theta = \cot^{-1} (e^{-2x})$$

 $\therefore \quad y = \tan^{-1} \left(\frac{\cot \theta + 1}{\cot \theta - 1} \right) = \tan^{-1} \left(\frac{1 + \tan \theta}{1 - \tan \theta} \right)$
 $= \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \theta \right) \right]$
 $= \frac{\pi}{4} + \theta = \frac{\pi}{4} + \cot^{-1} (e^{2x})$
 $\therefore \quad \frac{dy}{dx} = 0 - \frac{1}{1 + (e^{2x})^2} \cdot e^{2x} \cdot 2$
 $\therefore \quad \frac{dy}{dx} = -\frac{2e^{2x}}{1 + e^{4x}}$
61. Let $y = \sin^{-1} \left(\frac{\sqrt{1 + x} - \sqrt{1 - x}}{2} \right)$
Put $x = \cos 2\theta \Rightarrow \theta = \frac{1}{2}\cos^{-1} x$
 $\therefore \quad y = \sin^{-1} \left[\frac{\sqrt{2}}{2}\cos \theta - \frac{\sqrt{2}}{2}\sin \theta \right]$
 $= \sin^{-1} \left[\frac{1}{\sqrt{2}}\cos \theta - \frac{1}{\sqrt{2}}\sin \theta \right]$

$$= \sin^{-1}\left(\sin\frac{\pi}{4}\cos\theta - \cos\frac{\pi}{4}\sin\theta\right)$$

$$= \sin^{-1}\left(\sin\left(\frac{\pi}{4} - \theta\right)\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^{2}}}$$
62. Let $y = \tan^{-1}\left(\frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}\right)$
Put $x = \cos 2\theta \Rightarrow \theta = \frac{1}{2}\cos^{-1}x$

$$\therefore \quad y = \tan^{-1}\left(\frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}}\right)$$

$$= \tan^{-1}\left(\frac{\sqrt{2\cos^{2}\theta} - \sqrt{2\sin^{2}\theta}}{\sqrt{2\cos^{2}\theta} + \sqrt{2\sin^{2}\theta}}\right)$$

$$= \tan^{-1}\left(\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}\right) = \tan^{-1}\left(\frac{1 - \tan\theta}{1 + \tan\theta}\right)$$

$$= \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \theta\right)\right)$$

$$\therefore \quad y = \frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{2}\left(\frac{1}{\sqrt{1 - x^{2}}}\right)$$
63. Let $y = \sin^{2}\left\{\cot^{-1}\left(\sqrt{\frac{1 - x}{1 + x}}\right)\right\}$
Put $x = \cos\theta$

$$\therefore \quad y = \sin^{2}\left\{\cot^{-1}\left(\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}\right)\right\}$$

$$= \sin^{2}\left\{\cot^{-1}\left(\sqrt{\frac{2\sin^{2}\theta}{2}}\right)\right\}$$

$$= \sin^{2}\left\{\cot^{-1}\left(\tan\frac{\theta}{2}\right)\right\}$$

$$= \sin^{2}\left\{\cot^{-1}\left(\tan\frac{\theta}{2}\right)\right\}$$

$$= \sin^{2}\left\{\cot^{-1}\left(\cot\left(\frac{\pi}{2} - \frac{\theta}{2}\right)\right)\right\}$$

$$= \sin^{2}\left(\frac{\pi}{2} - \frac{\theta}{2}\right)$$

$$\therefore \quad y = \cos^{2}\frac{\theta}{2} = \frac{1 + \cos\theta}{2} = \frac{1 + x}{2}$$

64.
$$f(x) = \cot^{-1} (\cos 2x)^{1/2}$$

 \therefore $f(x) = \cot^{-1} (\sqrt{\cos 2x})$
 \therefore $f'(x) = \frac{-1}{1 + \cos 2x} \left[\frac{-2\sin 2x}{2\sqrt{\cos 2x}} \right]$
 $= \frac{\sin 2x}{(1 + \cos 2x)\sqrt{\cos 2x}}$
 \therefore $f'\left(\frac{\pi}{6}\right) = \frac{\frac{\sqrt{3}}{2}}{\left(1 + \frac{1}{2}\right)\left(\sqrt{\frac{1}{2}}\right)} = \sqrt{\frac{2}{3}}$
65. Since, $1 + \sin \theta = \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^2$
and $1 - \sin \theta = \left(\sin \frac{\theta}{2} - \cos \frac{\theta}{2}\right)^2$
 \therefore $f(x) = \tan^{-1}\left(\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}}\right) = \tan^{-1}\left(\frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}}\right)$
 $= \tan^{-1}\left[\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right]$
 \therefore $f(x) = \frac{\pi}{4} + \frac{x}{2}$ \therefore $f'(x) = \frac{1}{2}$
66. Put log $x = \tan \theta \Rightarrow \theta = \tan^{-1}(\log x)$
 \therefore $f(x) = \cos^{-1}\left(\frac{1 - \tan^2 \theta}{x}\right)$

$$\therefore \quad f(x) = \cos^{-1} \left(\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right)$$

= $\cos^{-1} (\cos 2\theta)$
= $2\theta = 2 \tan^{-1} (\log x)$
$$\therefore \quad f'(x) = 2 \cdot \frac{1}{1 + (\log x)^2} \cdot \frac{1}{x}$$

$$\therefore \quad f'(e) = \frac{2}{1 + (\log e)^2} \cdot \frac{1}{e} = \frac{2}{1 + 1^2} \cdot \frac{1}{e} = \frac{1}{e}$$

67. $y = (x^x)^x$
Taking logarithm on both sides, we get
 $\log y = x \log x^x = x^2 \log x$
Differentiating both sides w.r.t. x, we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = x^2 \cdot \frac{1}{x} + 2x \log x = x(1 + 2 \log x)$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = xy(1+2\log x)$$

Chapter 02: Differentiation

get

68.
$$y = x^{x^2}$$

Taking logarithm on both sides, we get
 $\log y = x^2 \log x$
Differentiating both sides w.r.t. x. we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = x^2 \cdot \frac{1}{x} + \log x \cdot (2x)$
 $\therefore \quad \frac{dy}{dx} = y (x + 2x \log x)$
 $= x^{x^2} (x + 2x \log x) = x^{x^2 + 1} (1 + 2 \log x)$
69. Let $y = x^{4x^3}$
Taking logarithm on both sides, we get
 $\log y = 4x^3 \cdot \log x$
Differentiating both sides w.r.t. x, we get
 $\frac{1}{y} \cdot \frac{dy}{dx} = 4x^2 + 12x^2 \log x$
 $\therefore \quad \frac{dy}{dx} = x^{4x^3} \cdot 4x^2 (1 + 3 \log x)$
 $= 4x^{4x^3 + 2} (1 + 3 \log x)$
70. $y = \sqrt{\frac{1+x}{x}}$

0.
$$y = \sqrt{\frac{1+x}{1-x}}$$

Taking logarithm on both sides, we

$$\log y = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(1-x)$$

Differentiating w.r.t. x, we get

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x} - \frac{1}{2} \cdot \frac{1}{1-x} \cdot (-1)$$

$$\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1+x}{1-x}} \cdot \frac{1}{(1+x)(1-x)}$$

$$= \frac{1}{(1+x)^{\frac{1}{2}}(1-x)^{\frac{3}{2}}}$$

$$2(x - \sin x)^{\frac{3}{2}}$$

71.
$$y = \frac{2(x - \sin x)^{\frac{1}{2}}}{\sqrt{x}}$$

Taking logarithm on both sides, we get $\log y = \log 2 + \frac{3}{2}\log(x - \sin x) - \frac{1}{2}\log x$ Differentiating w.r.t. x, we get $\frac{1}{y} \cdot \frac{dy}{dx} = 0 + \frac{3}{2} \cdot \frac{1}{x - \sin x} \cdot (1 - \cos x) - \frac{1}{2x}$ $\Rightarrow \frac{dy}{dx} = \frac{2(x - \sin x)^{\frac{3}{2}}}{\sqrt{x}} \left(\frac{3}{2} \cdot \frac{1 - \cos x}{x - \sin x} - \frac{1}{2x}\right)$

72.
$$y = \frac{e^{x} \log x}{x^{2}}$$
Taking logarithm on both sides, we get
$$\log y = x + \log (\log x) - 2 \log x$$
Differentiating w.r.t. x, we get
$$\frac{1}{y} \cdot \frac{dy}{dx} = 1 + \frac{1}{x \log x} - \frac{2}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{x} \log x}{x^{2}} \left(\frac{x \log x + 1 - 2 \log x}{x \log x} \right)$$

$$= \frac{e^{x} [(x-2) \log x + 1]}{x^{3}}$$
73. Let $y = (\sin x)^{\log x}$
Taking logarithm on both sides, we get

Taking logarithm on both sides, we get $\log y = \log x \log (\sin x)$ Differentiating both sides w.r.t.x, we get $\frac{1}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{1}{\sin x} \cdot \cos x + \log(\sin x) \cdot \frac{1}{x}$ $\Rightarrow \frac{dy}{dx} = (\sin x)^{\log x} \left(\frac{1}{x}\log \sin x + \cot x \log x\right)$

- 74. $y = (\tan x)^{\sin x}$ Taking logarithm on both sides, we get $\log y = \sin x \log (\tan x)$ Differentiating both sides w.r.t. x, we get $\frac{1}{y} \cdot \frac{dy}{dx} = \sin x \cdot \frac{1}{\tan x} \cdot \sec^2 x + \log (\tan x) \cdot \cos x$ $\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \sin x \cdot \frac{\cos x}{\sin x} \cdot \frac{1}{\cos^2 x} + \cos x \log(\tan x)$ $\Rightarrow \frac{dy}{dx} = (\tan x)^{\sin x} [\sec x + \cos x \log(\tan x)]$
- 75. $x^{2}e^{y} + 2xye^{x} + 13 = 0$ Differentiating w.r.t. x, we get $2xe^{y} + x^{2}e^{y}\frac{dy}{dx} + 2\left(xye^{x} + xe^{x}\frac{dy}{dx} + ye^{x}\right) = 0$

$$\Rightarrow \frac{dy}{dx} = -\frac{2xe^{y} + 2y(xe^{x} + e^{x})}{x(xe^{y} + 2e^{x})}$$
$$\Rightarrow \frac{dy}{dx} = -\frac{2xe^{y-x} + 2y(x+1)}{x(xe^{y-x} + 2)}$$

76. $\sec\left(\frac{x+y}{x-y}\right) = a \Rightarrow \frac{x+y}{x-y} = \sec^{-1} a$ Differentiating both sides w.r.t.*x*, we get

$$\frac{(x-y)\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)-(x+y)\left(1-\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{(x-y)^2}=0$$

$$\Rightarrow (x - y - x - y) + (x - y + x + y) \frac{dy}{dx} = 0$$
$$\Rightarrow 2x \frac{dy}{dx} = 2y$$
$$\Rightarrow \frac{dy}{dx} = \frac{y}{x}$$

77.
$$\cos(x + y) = y \sin x$$

Differentiating both sides w.r.t. x, we get
 $-\sin(x + y) \cdot \left(1 + \frac{dy}{dx}\right) = y \cos x + \sin x \cdot \frac{dy}{dx}$
 $\Rightarrow \frac{dy}{dx} = -\frac{y \cos x + \sin(x + y)}{\sin(x + y) + \sin x}$

78.
$$\sin (x + y) + \cos (x + y) = 1$$

Differentiating both sides w.r.t. x, we get

$$\cos (x + y) \cdot \left(1 + \frac{dy}{dx}\right) - \sin (x + y) \cdot \left(1 + \frac{dy}{dx}\right) = 0$$

$$\Rightarrow \frac{dy}{dx} [\cos (x + y) - \sin (x + y)]$$

$$= -\cos (x + y) + \sin (x + y)$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sin (x + y) - \cos (x + y)}{\cos (x + y) - \sin (x + y)}$$

$$\Rightarrow \frac{dy}{dx} = -1$$

79.
$$\sin(x+y) = \log(x+y)$$

Differentiating both sides w.r.t. x, we get
$$\cos(x+y) \left[1 + \frac{dy}{dx}\right] = \frac{1}{x+y} \left(1 + \frac{dy}{dx}\right)$$
$$\Rightarrow \cos(x+y) \frac{dy}{dx} - \frac{1}{x+y} \cdot \frac{dy}{dx} = \frac{1}{x+y} - \cos(x+y)$$
$$\Rightarrow -\frac{dy}{dx} \left[\frac{1}{x+y} - \cos(x+y)\right] = \frac{1}{x+y} - \cos(x+y)$$
$$\Rightarrow \frac{dy}{dx} = -1$$

80.
$$3\sin(xy) + 4\cos(xy) = 5$$

Differentiating both sides w.r.t. x, we get

$$3\cos(xy) \left[y + x \frac{dy}{dx} \right] - 4\sin(xy) \left[y + x \frac{dy}{dx} \right] = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{4y\sin(xy) - 3y\cos(xy)}{3x\cos(xy) - 4x\sin(xy)}$$

$$= \frac{y[4\sin(xy) - 3\cos(xy)]}{-x[4\sin(xy) - 3\cos(xy)]} = -\frac{y}{x}$$

Chapter 02: Differentiation

81.
$$x = y\sqrt{1-y^{2}}$$

Differentiating both sides w.r.t. x, we get

$$1 = \frac{dy}{dx}\sqrt{1-y^{2}} + y \cdot \frac{1}{2\sqrt{1-y^{2}}} \cdot (-2y) \cdot \frac{dy}{dx}$$

$$\Rightarrow 1 = \frac{dy}{dx}\sqrt{1-y^{2}} - \frac{y^{2}}{\sqrt{1-y^{2}}} \cdot \frac{dy}{dx}$$

$$\Rightarrow 1 = \frac{dy}{dx}\left(\frac{1-2y^{2}}{\sqrt{1-y^{2}}}\right)$$

$$\Rightarrow 1 = \frac{dy}{dx}\left(\frac{1-2y^{2}}{\sqrt{1-y^{2}}}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sqrt{1-y^{2}}}{1-2y^{2}}$$
82.
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$

$$\Rightarrow x^{2}(1+y) = y^{2}(1+x)$$

$$\Rightarrow (x-y)(x+y+xy) = 0$$

$$\Rightarrow x+y+xy = 0 \qquad \dots(i) [\because x \neq y]$$
Differentiating w.r.t. x, we get

$$1 + \frac{dy}{dx} + x\frac{dy}{dx} + y.1 = 0$$

$$\Rightarrow (1+x)\frac{dy}{dx} = -(1+y)$$

$$\Rightarrow (1+x)^{2}\frac{dy}{dx} = -(1+x)(1+y)$$

$$\Rightarrow \frac{dy}{dx} = \frac{-1}{(1+x)^{2}} \qquad \dots[From (i)]$$
83. If $y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$,
then $\frac{dy}{dx} = \frac{f'(x)}{2y-1} \qquad \dots \frac{dy}{dx} = \frac{1}{x(2y-1)}$
84. If $y = \sqrt{f(x) + y}$, then

$$\frac{dy}{dx} = \frac{f'(x)}{2y-1} \qquad \dots \frac{dy}{dx} = \frac{\cos x}{2y-1}$$
85. If $y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$, then

$$\frac{dy}{dx} = \frac{-\sin x}{2y-1} = \frac{\sin x}{1-2y}$$

 $y = e^{x + e^{x + e^{x + \dots}}}$ 86. $\Rightarrow y = e^{x+y}$ Taking logarithm on both sides, we get $\log y = (x + y) \log e$ Differentiating both sides w.r.t. x, we get $\frac{1}{v} \cdot \frac{dy}{dx} = 1 + \frac{dy}{dx} \Longrightarrow \frac{dy}{dx} = \frac{y}{1 - v}$ 87. $y = \sqrt{x + \sqrt{y + y}}$ $\Rightarrow (v^2 - x) = \sqrt{2v}$ $\Rightarrow (y^2 - x)^2 = 2y$ Differentiating both sides w.r.t. x, we get $2(y^2 - x)\left(2y\frac{dy}{dx} - 1\right) = 2\frac{dy}{dx}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(y^2 - x)}{2y^3 - 2xy - 1}$ 88. If $y = f(x)^{f(x)^{f(x)^{\dots^{\infty}}}}$, then $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 f'(x)}{f(x) [1 - y \log f(x)]}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2}{x(1-y\log x)}$ $\Rightarrow x(1-y\log x)\frac{dy}{dx} = y^2$ 89. If $y = f(x)^{f(x)^{f(x)^{\dots^{\infty}}}}$, then $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 f'(x)}{f(x)[1 - y \log f(x)]}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 \cdot \frac{1}{2\sqrt{x}}}{\sqrt{x}\left(1 - y\log\sqrt{x}\right)} = \frac{y^2}{2x\left(1 - \frac{1}{2}y\log x\right)}$ $\Rightarrow (2 - y \log x) \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2}{x}$ 90. If $y = f(x)^{f(x)^{f(x)^{...\infty}}}$, then $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 f'(x)}{f(x)[1 - y\log f(x)]}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 \cos x}{\sin x (1 - y \log \sin x)}$ $= \frac{y^2 \cot x}{1 - y \log \sin x}$

91.
$$y = x^2 + \frac{1}{y}$$

If $y = f(x) + \frac{1}{y}$, then $\frac{dy}{dx} = \frac{yf'(x)}{2y - f(x)}$
 $\therefore \quad \frac{dy}{dx} = \frac{2xy}{2y - x^2}$

92. $y = xe^{xy}$ Taking logarithm on both sides, we get $\log y = \log x + \log e^{xy}$ $\Rightarrow \log y = \log x + xy$ Differentiating both sides w.r.t. x, we get $\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x} + x \frac{dy}{dx} + y$ $\Rightarrow \frac{dy}{dx} \left(\frac{1}{y} - x\right) = \frac{1}{x} + y$ $\Rightarrow \frac{dy}{dx} = \frac{(1 + xy)y}{(1 - xy)x}$

93. $x^{v} = y^{x}$

Taking logarithm on both sides, we get $y \log_e x = x \log_e y$ Differentiating both sides w.r.t. x, we get

$$\log_{e} x \frac{dy}{dx} + \frac{y}{x} = \log_{e} y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx}$$
$$\Rightarrow \frac{dy}{dx} \left(\frac{y \log_{e} x - x}{y} \right) = \frac{x \log_{e} y - y}{x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{y(x \log_{e} y - y)}{x(y \log_{e} x - x)}$$

94. $x^{v}.y^{x} = 1$

Taking logarithm on both sides, we get $y \log x + x \log y = 0$ Differentiating w.r.t. x, we get

$$\log x \cdot \frac{dy}{dx} + y \cdot \frac{1}{x} + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + \log y \cdot 1 = 0$$
$$\Rightarrow \frac{dy}{dx} \left(\log x + \frac{x}{y} \right) + \frac{y}{x} + \log y = 0$$
$$\Rightarrow \frac{dy}{dx} = -\frac{\left(\frac{y}{x} + \log y\right)}{\log x + \frac{x}{y}}$$
$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left(\frac{y + x \log y}{x + y \log x}\right)$$

95. $x^{m}y^{n} = 2(x + y)^{m+n}$ Taking logarithm on both sides, we get m log x + n log y = log 2 + (m + n)log(x + y) Differentiating both sides w.r.t. x, we get $\frac{m}{x} + \frac{n}{y} \cdot \frac{dy}{dx} = \frac{m+n}{x+y} \left(1 + \frac{dy}{dx}\right)$ $\Rightarrow \left(\frac{m+n}{x+y} - \frac{n}{y}\right) \frac{dy}{dx} = \frac{m}{x} - \frac{m+n}{x+y}$ $\Rightarrow \frac{dy}{dx} = \frac{y}{x}$ 96. $x^{y} = 2^{x-y}$ Taking logarithm on both sides, we get y log x = (x - y) log2 Differentiating both sides w.r.t. x, we get

$$y \cdot \frac{1}{x} + \log x \cdot \frac{dy}{dx} = \log 2 \left(1 - \frac{dy}{dx} \right)$$
$$\Rightarrow (\log x + \log 2) \frac{dy}{dx} = \log 2 - \frac{y}{x}$$
$$\Rightarrow [\log(2x)] \frac{dy}{dx} = \frac{x \log 2 - y}{x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{x \log 2 - y}{x \log(2x)}$$

97.
$$y = a^{x^y}$$

...

$$\log y = x^{\nu} \log a$$

 $\therefore \quad \log(\log y) = y \log x + \log(\log a)$ Differentiating both sides w.r.t.*x*, we get

$$\frac{1}{\log y} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \frac{y}{x} + \frac{dy}{dx} \log x$$
$$\Rightarrow \left(\frac{1}{y \log y} - \log x\right) \frac{dy}{dx} = \frac{y}{x}$$
$$\Rightarrow x(1 - y \log x \log y) \frac{dy}{dx} = y^2 \log y$$

98.
$$\log (x + y) = 2xy$$
(i)
Differentiating both sides w.r.t. *x*, we get

$$\left(\frac{1}{x+y}\right)\left(1+\frac{dy}{dx}\right) = 2\left(x\frac{dy}{dx}+y\right)$$
$$\Rightarrow \frac{dy}{dx} = \frac{1-2xy-2y^2}{2x^2+2xy-1}$$
Putting $x = 0$ in (i), we get
 $y = 1$
 $y'(0) = \frac{1-0-2}{0+0-1} = 1$

99. Let
$$y = e^{x} \cos x$$
 and $z = e^{-x} \sin x$
 $\therefore \frac{dy}{dx} = e^{x} (\cos x - \sin x)$ and
 $\frac{dz}{dx} = e^{-x} (\cos x - \sin x)$
 $\therefore \frac{dy}{dx} = \frac{dy}{dx} = e^{2x}$
104.
 $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dx}} = e^{2x}$
105.
100. Let $y = \cos^{-1}(\sqrt{x})$ and $z = \sqrt{1-x}$
 $\therefore \frac{dy}{dx} = \frac{-1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}}$ and $\frac{dz}{dx} = \frac{-1}{2\sqrt{1-x}}$
 $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{1}{\sqrt{x}}$
105.
101. $x = \frac{e^{t} + e^{-t}}{2}$ and $y = \frac{e^{t} - e^{-t}}{2}$
 $\therefore \frac{dx}{dt} = \frac{e^{t} - e^{-t}}{2}$ and $\frac{dy}{dt} = \frac{e^{t} + e^{-t}}{2}$
 $\therefore \frac{dx}{dt} = \frac{\frac{dy}{dx}}{\frac{dx}{dt}} = \frac{\frac{e^{t} + e^{-t}}{2}}{\frac{2}{y}}$
102. $x = a(t \cos t - \sin t)$ and $y = a(t \sin t + \cos t)$
 $\therefore \frac{dx}{dt} = a(-t \sin t + \cos t - \cos t) = -at \sin t$
 $and \frac{dy}{dt} = a(t \cos t + \sin t - \sin t) = at \cos t$
 $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{at \cos t}{-at \sin t} = -\cot t$
103. $x = a \cos^{3} \theta$ and $y = a \sin^{3} \theta$
 $\therefore \frac{dx}{d\theta} = -3a \cos^{2} \theta \cdot \sin \theta$
 $and \frac{dy}{d\theta} = 3a \sin^{2} \theta \cdot \cos \theta$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{dx}} = -\tan \theta$$

$$\therefore \quad \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \tan^2 \theta} = \sqrt{\sec^2 \theta} = |\sec \theta|$$
104. $y = \log (1 + \theta), x = \sin^{-1} \theta$

$$\therefore \quad \frac{dy}{d\theta} = \frac{1}{1 + \theta}, \frac{dx}{d\theta} = \frac{1}{\sqrt{1 - \theta^2}}$$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\sqrt{1 - \theta^2}}{1 + \theta}$$
105. Let $y = \sin^{-1} x$ and $z = \cos^{-1} \left(\sqrt{1 - x^2}\right)$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

$$z = \cos^{-1} \left(\sqrt{1 - x^2}\right) = \sin^{-1} x$$

$$\therefore \quad \frac{dz}{dx} = \frac{1}{\sqrt{1 - x^2}}$$
106. Let $y = \sin^{-1} \left(\frac{1 - x}{1 + x}\right)$ and $z = \sqrt{x}$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\frac{1 - x}{1 + x})^2}} \cdot \frac{(1 + x)(-1) - (1 - x)(1)}{(1 + x)^2}$$

$$= \frac{-1}{\sqrt{x(1 + x)}}$$
and $\frac{dz}{dx} = \frac{1}{2\sqrt{x}}$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{-2}{1 + x}$$

107. Let
$$y = a^{\sec x}$$
 and $z = a^{\tan x}$
 $\therefore \quad \frac{dy}{dx} = a^{\sec x} \log a \sec x \tan x$
and $\frac{dz}{dx} = a^{\tan x} \log a \sec^2 x$
 $\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{a^{\sec x} \log a \sec x \tan x}{a^{\tan x} \log a \sec^2 x}$
 $= a^{\sec x - \tan x} \cdot \frac{\sin x}{\cos x \cdot \frac{1}{\cos x}} = \sin x a^{\sec x - \tan x}$

108.
$$x = e^{\theta} \left(\theta + \frac{1}{\theta} \right)$$

$$\therefore \quad \frac{dx}{d\theta} = e^{\theta} \left(1 - \frac{1}{\theta^2} \right) + e^{\theta} \left(\theta + \frac{1}{\theta} \right)$$

$$= e^{\theta} \left(1 + \theta + \frac{1}{\theta} - \frac{1}{\theta^2} \right)$$

$$= e^{\theta} \left(\frac{\theta^2 + \theta^3 + \theta - 1}{\theta^2} \right)$$

$$y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$$

$$\therefore \quad \frac{dy}{d\theta} = e^{-\theta} \left(1 + \frac{1}{\theta^2} \right) - e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$$

$$= e^{-\theta} \left(1 + \frac{1}{\theta^2} - \theta + \frac{1}{\theta} \right)$$

$$= e^{-\theta} \left(\frac{\theta^2 + 1 - \theta^3 + \theta}{\theta^2} \right)$$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{e^{-2\theta} (1 + \theta^2 - \theta^3 + \theta)}{\theta^2 - 1 + \theta^3 + \theta}$$

109.
$$\frac{dx}{dt} = a \left(-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \sec^2 \frac{t}{2} \cdot \frac{1}{2} \right)$$

 $= a \left| -\sin t + \frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}} \right|$

$$= a \left(-\sin t + \frac{1}{\sin t}\right) = a \left(\frac{\cos^{2} t}{\sin t}\right)$$

$$= a \cos t \cot t$$
and $\frac{dy}{dt} = a \cos t$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1}{\cot t} = \tan t$$
110. $x = a(\sin 2\theta + \frac{1}{2} \sin 4\theta)$,
 $y = b \left[\cos 2\theta - \frac{1}{2}(1 + \cos 4\theta)\right]$

$$\therefore \quad \frac{dx}{d\theta} = 2a(\cos 2\theta + \cos 4\theta) = 2a(2\cos 3\theta \cos \theta)$$
and $\frac{dy}{d\theta} = 2b(\sin 4\theta - \sin 2\theta) = 2b(2\cos 3\theta \sin \theta)$

$$\therefore \quad \frac{dy}{d\theta} = \frac{b}{a} \tan \theta$$
111. $x = t \log t \ and y = t^{t}$

$$\therefore \quad x = \log t^{t} = \log y$$
Differentiating both sides w.r.t. x, we get
$$1 = \frac{1}{y} \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = y = t^{t}$$
Since, $x = t \log t$

$$\therefore \quad x = \log t^{t} = e^{x}$$
112. Let $y = \tan^{-1} \left(\frac{2x}{1 - x^{2}}\right) \ and z = \sin^{-1} \left(\frac{2x}{1 + x^{2}}\right)$
Put $x = \tan \theta$

$$\therefore \quad y = \tan^{-1} \left(\frac{2\tan \theta}{1 - \tan^{2} \theta}\right) = \tan^{-1} (\sin 2\theta) = 2\theta$$
and $z = \sin^{-1} \left(\frac{2\tan \theta}{1 + \tan^{2} \theta}\right) = \sin^{-1} (\sin 2\theta) = 2\theta$

$$\therefore \quad y = z$$

$$\therefore \quad \frac{dy}{dx} = 1$$

113. Let $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ and $z = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ $y = 2\tan^{-1}x$ and $z = 2\tan^{-1}x$ *.*.. $\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\overline{\mathrm{d}x}}{\underline{\mathrm{d}z}} = 1$ *.*.. 114. Let $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ and $z = \cot^{-1}\left(\frac{1-3x^2}{3x-x^3}\right)$ $y = 2 \tan^{-1} x$ and $z = 3 \tan^{-1} x$ *.*.. $\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}z}} = \frac{\frac{2}{1+x^2}}{\frac{3}{1+x^2}} = \frac{2}{3}$... 115. Put t = sin θ $x = \sin^{-1} (3 \sin \theta - 4 \sin^3 \theta)$ *.*.. $=\sin^{-1}(\sin 3\theta)=3\theta$ $y = \cos^{-1}\left(\sqrt{1 - \sin^2\theta}\right) = \cos^{-1}\left(\cos\theta\right) = \theta$ *.*.. x = 3y $\Rightarrow y = \frac{1}{2} x$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}$ 116. $\sin y = \frac{t}{\sqrt{1+t^2}}$ Put t = tan θ $\sin y = \frac{\tan \theta}{\sin \theta} = \sin \theta$ *.*.. $v = \theta$ *.*.. $\frac{dy}{d0} = 1$ ÷. $\cos x = \frac{1}{\sqrt{1+t^2}} = \frac{1}{\sec \theta} = \cos \theta$ $\therefore \frac{dx}{d\theta} = 1$ $x = \theta$ *.*.. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\mathrm{d}x} = 1$ ÷ *.*.. dθ

Chapter 02: Differentiation 117. Let $y = \tan^{-1} \left(\sqrt{\frac{1-x^2}{1+x^2}} \right)$ and $z = \cos^{-1}(x^2)$ Put $x^2 = \cos 2\theta \Rightarrow \theta = \frac{1}{2}\cos^{-1} x^2$ $\therefore \qquad y = \tan^{-1} \left(\sqrt{\frac{2\sin^2 \theta}{2\cos^2 \theta}} \right) = \tan^{-1} (\tan \theta) = \theta$ $\Rightarrow y = \frac{1}{2}\cos^{-1}(x^2)$ $\Rightarrow y = \frac{1}{2}z$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{1}{2}$ 118. Putting $t = \tan \theta$ in the given equations, we get $x = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta$ and $y = \frac{2\tan\theta}{1+\tan^2\theta} = \sin 2\theta$ $\therefore \qquad \frac{dx}{d\theta} = -2\sin 2\theta \text{ and } \frac{dy}{d\theta} = 2\cos 2\theta$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\mathrm{d}x} - \frac{\cos 2\theta}{\sin 2\theta} = -\frac{x}{y}$ 119. Put $x = \sin \theta \Rightarrow 2\sin^{-1} x = 2\theta$ $\Rightarrow \sin(2\sin^{-1}x) = \sin 2\theta \Rightarrow y = \sin 2\theta$ $\frac{dx}{d\theta} = \cos \theta$ and $\frac{dy}{d\theta} = 2\cos 2\theta$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}\theta}{\mathrm{d}x}} = \frac{2\cos 2\theta}{\cos \theta}$ $=\frac{2(1-2\sin^2\theta)}{\sqrt{1-\sin^2\theta}}=\frac{2-4x^2}{\sqrt{1-x^2}}$ 120. Let $y = \tan^{-1} \left[\frac{\sin x}{1 + \cos x} \right]$ and $z = \tan^{-1} \left[\frac{\cos x}{1 + \sin x} \right]$ $= \tan^{-1} \left[\frac{2\sin(x/2)\cos(x/2)}{2\cos^2(x/2)} \right]$ $= \tan^{-1} \left| \tan\left(\frac{x}{2}\right) \right| = \frac{x}{2}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$

NHT-CET Triumph Maths (Hints)
$$x = \tan^{-1} \left[\frac{\cos x}{1 + \sin x} \right]$$
 $= \tan^{-1} \left[\frac{\cos x}{1 + \sin x} \right]$ $= \tan^{-1} \left[\frac{\cos x}{2 - \sin x^2/2^3} \right]$ $= \tan^{-1} \left[\frac{\cos x}{2 - \sin x^2/2^3} \right]$ $= \tan^{-1} \left[\frac{\cos x}{2 - \sin x^2/2^3} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $= \tan^{-1} \left[\frac{1 - \tan x^2}{1 + \tan x^2/2} \right]$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = -1$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = -1$ $\therefore \frac{dy}{dx} = -4a \cos^{0} \sin \theta$ $\therefore \frac{dy}{dx} = -4a \cos^{0} \sin \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = -3a \cos^{0} \theta = -\tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-\sin^{2} \theta}{\cos^{0} \theta} = -\tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-\sin^{2} \theta}{\cos^{0} \theta} = -\tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-\sin^{2} \theta}{\cos^{2} \theta} = -\tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-1}{2}$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-1}{2}$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-1}{2}$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-1}{2} \tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} x$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} x$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} x$ $\therefore \frac{dy}{dx} = -4a \cos^{0} \theta \sin \theta$ $\therefore \frac{dy}{dx} = \frac{dy}{dx} = \frac{-1}{2} \tan^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} \theta = -1 \sin^{2} \theta$ $\therefore \frac{dy}{dx} = -\frac{1}{2} \tan^{2} \theta = -1 \sin^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} \theta = -1 \sin^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} \theta = -1 \sin^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \tan^{2} \theta = -1 \sin^{2} \theta$ $\therefore \frac{dy}{dx} = \frac{1}{2} \sin^{2} \theta = -1 \sin^{2} \theta$

126. $x = t^2$ and $v = t^3 + 1$ $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt} = 3t^2$ *.*.. $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}x} = \frac{3\mathrm{t}}{2}$ $\therefore \frac{d^2 y}{dx^2} = \frac{3}{2} \cdot \frac{dt}{dx} = \frac{3}{2} \cdot \frac{1}{2t} = \frac{3}{4t}$ 127. $\frac{dy}{dt} = 10t^9$ and $\frac{dx}{dt} = 8t^7$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}x}} = \frac{5t^2}{4}$ $\therefore \qquad \frac{d^2 y}{dr^2} = \frac{5}{4} \cdot 2t \cdot \frac{dt}{dr} = \frac{5t}{2} \cdot \frac{1}{8t^7} = \frac{5}{16t^6}$ 128. $x = \log t$ and $y = \frac{1}{4}$ $\therefore \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t} \text{ and } \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{1}{t^2}$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}x} = -\frac{1}{\mathrm{t}}$(i) $\therefore \qquad \frac{d^2 y}{dr^2} = -\left(-\frac{1}{t^2}\right)\frac{dt}{dr}$ $=\frac{1}{t^2}\cdot\frac{1}{dx}=\frac{1}{t^2}\cdot\frac{1}{\frac{1}{t}}=\frac{1}{t}$ $\therefore \qquad \frac{\mathrm{d}^2 y}{\mathrm{d} r^2} = -\frac{\mathrm{d} y}{\mathrm{d} r}$[From (i)] 129. $y = 1 - x + \frac{x^2}{(2)!} - \frac{x^3}{(3)!} + \dots$ $\Rightarrow y = e^{-x}$(i) $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x}(-1)$ $\frac{d^2 y}{dx^2} = (-1)\{e^{-x}.(-1)\} = e^{-x} = y \dots [From (i)]$ 130. Consider option (C), $f(x) = \sin x$ \Rightarrow f(0) = 0 and $f'(x) = \cos x$ \Rightarrow f'(0) = 1 Also, $f''(x) = -\sin x = -f(x)$ option (C) is the correct answer. *.*..

Chapter 02: Differentiation $\Rightarrow e^{v} = \frac{1}{1}$ 131. $e^{y}(x+1) = 1$ $\Rightarrow y = \log\left(\frac{1}{r+1}\right)$ $\Rightarrow y = -\log(x+1)$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}r} = -\frac{1}{r+1} \qquad \dots (i)$ $\therefore \qquad \frac{\mathrm{d}^2 y}{\mathrm{d} r^2} = \frac{1}{(r+1)^2} = \left(\frac{-1}{r+1}\right)^2$ $=\left(\frac{\mathrm{d}y}{\mathrm{d}r}\right)^2$[From (i)] 132. $y = ax^5 + \frac{b}{4}$(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{a}x^4 - \frac{4\mathrm{b}}{\mathrm{x}^5}$ $\therefore \qquad \frac{d^2 y}{dx^2} = 20ax^3 + \frac{20b}{x^6}$ $= \frac{20}{r^2} \left(ax^5 + \frac{b}{x^4} \right) = \frac{20y}{x^2} \quad \dots [From (i)]$ 133. $v = ax^{n+1} + bx^{-n}$(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = (n+1)ax^n - nbx^{-n-1}$ $\therefore \frac{d^2 y}{dx^2} = n(n+1)ax^{n-1} + n(n+1)bx^{-n-2}$ $\Rightarrow \frac{d^2 y}{dx^2} = \frac{n(n+1)}{r^2} (ax^{n+1} + bx^{-n})$ $\Rightarrow x^2 \frac{d^2 y}{dr^2} = n(n+1)y$[From (i)] 134. $y = a \cos(\log x) + b \sin(\log x) \dots$ (i) $\therefore \qquad y' = \frac{-a\sin(\log x)}{x} + \frac{b\cos(\log x)}{x}$ $\Rightarrow xy' = -a \sin(\log x) + b \cos(\log x)$ Differentiating both sides w.r.t.x, we get $xy'' + y' = \frac{-a\cos(\log x)}{x} - \frac{b\sin(\log x)}{x}$ $\Rightarrow x^2 y'' + xy' = -[a \cos(\log x) + b \sin(\log x)]$ $\Rightarrow x^{2}y'' + xy' = -y$ 135. $y = a^{x} \cdot b^{2x-1}$[From (i)] $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{b}^{2x-1} . \mathrm{a}^x \log \mathrm{a} + \mathrm{a}^x . 2\mathrm{b}^{2x-1} \log \mathrm{b}$ $=a^{x}b^{2x-1}(\log a + 2\log b)$ $\frac{d^2 y}{dr^2} = a^x b^{2x-1} (\log a + 2 \log b)^2$ $=a^{x}b^{2x-1}(\log ab^{2})^{2}$ $= v(\log ab^2)^2$[From (i)]

427

MHT-CET Triumph Maths (Hints)			
136. $y = \log\left(x + \sqrt{x^2 + a^2}\right)$	140. $y = e^{2x}$		
$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x + \sqrt{x^2 + \mathrm{a}^2}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + \mathrm{a}^2}} \cdot 2x\right)$	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} \qquad \qquad \therefore \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\mathrm{e}^{2x}$		
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x + \sqrt{x^2 + a^2}} \times \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}$	$\therefore \log y = 2x$ $\therefore x = \frac{1}{2} \log y \qquad \qquad$		
$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 + a^2}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\therefore \qquad \frac{d^2 y}{dx^2} = \frac{-1}{2} \left(x^2 + a^2 \right)^{-\frac{3}{2}} \cdot 2x = \frac{-x}{\left(x^2 + a^2 \right)^{\frac{3}{2}}}$	$\therefore \frac{d^2 x}{dy^2} = \frac{-1}{2y^2} = \frac{-1}{2(e^{2x})^2}$		
137. $y = x^2 + 2x + 3$	$\therefore \qquad \frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}} \times \frac{\mathrm{d}^{2} x}{\mathrm{d} y^{2}} = \frac{-2}{\mathrm{e}^{2x}} = -2\mathrm{e}^{-2x}$		
$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 2$	141. Let $y = 2 \cos x \cos 3x$		
$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2x+2}$	$\Rightarrow y = \cos 4x + \cos 2x$ dy		
$\therefore \qquad \frac{d^2x}{dy^2} = \frac{-1}{2(x+1)^2} \cdot \frac{dx}{dy} = \frac{-1}{4(x+1)^3}$	$\therefore \frac{1}{dx} = -4 \sin 4x - 2 \sin 2x$		
$138. y = x + e^x$	$\therefore \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -16\cos 4x - 4\cos 2x$		
$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \mathrm{e}^x \qquad \dots (\mathrm{i})$	$= -4(\cos 2x + 4\cos 4x) = -2^{2}(\cos 2x + 2^{2}\cos 4x)$		
$\therefore \qquad \frac{dx}{dy} = \frac{1}{1 + e^x} = (1 + e^x)^{-1}$	142. $\frac{\mathrm{d}x}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{-1}$		
$\therefore \qquad \frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = -\left(1 + \mathrm{e}^x\right)^{-2} \cdot \frac{\mathrm{d}}{\mathrm{d}y}\left(1 + \mathrm{e}^x\right)$	$\frac{d}{dx} = \frac{d}{dx} \left\{ \frac{dy}{dy} \right\}^{-1}$		
$= -(1+e^x)^{-2} \cdot e^x \cdot \frac{dx}{dy}$	$\frac{1}{dy}\left(\frac{1}{dy}\right) = \frac{1}{dy}\left(\frac{1}{dx}\right) \int dx$		
$= -\frac{e^{x}}{(1+e^{x})^{2}} \cdot \frac{1}{1+e^{x}} \qquad \dots [From (i)]$	$\Rightarrow \frac{d^2 x}{dy^2} = \frac{d}{dx} \left\{ \left(\frac{dy}{dx} \right)^2 \right\} \frac{dx}{dy}$		
$= - \frac{e^x}{\left(1 + e^x\right)^3}$	$\Rightarrow \frac{d^2 x}{dy^2} = -\left(\frac{dy}{dx}\right)^{-2} \cdot \frac{d}{dx}\left(\frac{dy}{dx}\right) \cdot \frac{dx}{dy}$		
139. $y = \sin x + e^x$ $\therefore \qquad \frac{dy}{dx} = \cos x + e^x$	$\Rightarrow \frac{d^2 x}{dy^2} = -\left(\frac{dy}{dx}\right)^{-3} \left(\frac{d^2 y}{dx^2}\right)$		
$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = (\cos x + \mathrm{e}^x)^{-1} \qquad \dots (\mathrm{i})$	143. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (i)		
$\therefore \qquad \frac{d^2 x}{dy^2} = -(\cos x + e^x)^{-2}(-\sin x + e^x) \cdot \frac{dx}{dy}$	Differentiating both sides w.r.t.x, we get		
$=\frac{(\sin x - e^x)}{(\cos x + e^x)^2} \cdot (\cos x + e^x)^{-1} \dots [\text{From (i)}]$	$\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$		
$=\frac{\sin x-e^x}{(\cos x+e^x)^3}$	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\mathrm{b}^2 x}{\mathrm{a}^2 y} \qquad \dots \dots (\mathrm{ii})$		

 $\therefore \qquad \frac{d^2 y}{dx^2} = -\frac{b^2}{a^2} \left(\frac{y - x \frac{dy}{dx}}{y^2} \right)$ $= -\frac{b^2}{a^2 y^2} \left(y - x \frac{dy}{dx} \right)$ $= -\frac{b^2}{a^2 y^2} \left(y + \frac{b^2 x^2}{a^2 y} \right) \qquad \dots [From (ii)]$ $= -\frac{b^2}{a^2 y^2} \cdot \frac{b^2}{y} \left(\frac{y^2}{b^2} + \frac{x^2}{a^2} \right) = \frac{-b^4}{a^2 y^3} \dots [From(i)]$

144. x = f(t) and y = g(t)∴ $\frac{dx}{dt} = f'(t)$ and $\frac{dy}{dt} = g'(t)$ ∴ $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$ ∴ $\frac{d^2y}{dx^2} = \frac{f'(t).g''(t) - g'(t).f''(t)}{[f'(t)]^2} \cdot \frac{dt}{dx}$ $= \frac{f'(t).g''(t) - g'(t)f''(t)}{[f'(t)]^3}$

145.
$$y = \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{1 - \tan x}{1 + \tan x}$$
$$\Rightarrow y = \tan\left(\frac{\pi}{4} - x\right) \qquad \dots(i)$$
$$\therefore \qquad \frac{dy}{dx} = -\sec^2\left(\frac{\pi}{4} - x\right)$$
$$\therefore \qquad \frac{d^2 y}{dx^2} = 2\sec^2\left(\frac{\pi}{4} - x\right) \cdot \tan\left(\frac{\pi}{4} - x\right)$$
$$\therefore \qquad \frac{d^2 y}{dx^2} = -2\tan\left(\frac{\pi}{4} - x\right) = -2y \quad \dots[From (i)]$$

146. $y = \cos(\log x)$ (i) ∴ $\frac{dy}{dx} = -\sin(\log x) \cdot \frac{1}{x}$ $\Rightarrow x \frac{dy}{dx} = -\sin(\log x)$ Differentiating both sides w.r.t. x, we get $x \frac{d^2 y}{dx^2} + \frac{dy}{dx} \cdot 1 = -\cos(\log x) \cdot \frac{1}{x}$

Chapter 02: Differentiation

$$\Rightarrow x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = -y \qquad \dots [From (i)]$$

$$\Rightarrow x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$$
147. $y = e^{\tan x}$

$$\Rightarrow \log y = \tan x$$
Differentiating both sides w.r.t. x , we get
$$\frac{1}{y} \cdot \frac{dy}{dx} = \sec^{2}x \Rightarrow \frac{dy}{dx} = \frac{y}{\cos^{2}x}$$

$$\Rightarrow \cos^{2}x \frac{dy}{dx} = y$$
Differentiating both sides w.r.t. x , we get
$$\cos^{2}x \frac{d^{2}y}{dx^{2}} - 2 \cos x \sin x \frac{dy}{dx} = \frac{dy}{dx}$$

$$\Rightarrow \cos^{2}x \frac{d^{2}y}{dx^{2}} = (1 + \sin 2x) \frac{dy}{dx}$$
148. $y = e^{\operatorname{mcos}^{-1}x} \qquad \dots (i)$

$$\therefore \qquad \frac{dy}{dx} = e^{\operatorname{mcos}^{-1}x} \qquad \dots (i)$$

$$\therefore \qquad \frac{dy}{dx} = e^{\operatorname{mcos}^{-1}x} \qquad \dots (j)$$

$$\Rightarrow \sqrt{1 - x^{2}} \frac{dy}{dx} = -my \qquad \dots [From (i)]$$

$$\Rightarrow (1 - x^{2}) \left(\frac{dy}{dx}\right)^{2} = m^{2}y^{2}$$
Differentiating both sides w.r.t. x , we get
$$(1 - x^{2}) \cdot 2 \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2} \cdot (0 - 2x) = 2m^{2}y \frac{dy}{dx}$$

$$\Rightarrow (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = m^{2}y$$

$$\Rightarrow (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = m^{2}y$$

$$\Rightarrow \sqrt{1 - x^{2}} \frac{dy}{dx} = 2 (\sin^{-1}x - \cos^{-1}x)$$
Differentiating both sides w.r.t. x , we get
$$\sqrt{1 - x^{2}} \cdot \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} - \frac{1}{\sqrt{1 - x^{2}}} \cdot (-2x)$$

$$= 2 \left(\frac{1}{\sqrt{1 - x^{2}}} - \frac{(-1)}{\sqrt{1 - x^{2}}} \right) = \frac{4}{\sqrt{1 - x^{2}}}$$

$$\therefore (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 4$$

150.
$$y = \cos(m \sin^{-1}x)$$
(i)
∴ $y_1 = -\sin(m \sin^{-1}x) \cdot \frac{m}{\sqrt{1-x^2}}$
 $\Rightarrow \sqrt{1-x^2} y_1 = -m \sin(m \sin^{-1}x)$
Differentiating both sides w.r.t. x , we get
 $\sqrt{1-x^2} y_2 - \frac{xy_1}{\sqrt{1-x^2}} = -m \cos(m \sin^{-1}x) \cdot \frac{m}{\sqrt{1-x^2}}$
 $\Rightarrow (1-x^2) y_2 - xy_1 = -m^2 y$ [From (i)]
 $\Rightarrow (1-x^2) y_2 - xy_1 + m^2 y = 0$
151. $y^2 = ax^2 + bx + c$
Differentiating both sides w.r.t. x , we get
 $2y \frac{d^2y}{dx^2} = 2ax + b$
Differentiating both sides w.r.t. x , we get
 $2y \frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot 2\frac{dy}{dx} = 2a$
Multiplying both the sides by y^2 , we get
 $y^3 \frac{d^2y}{dx^2} = ay^2 - \left(y \frac{dy}{dx}\right)^2$
 $= a(ax^2 + bx + c) - \left(ax + \frac{b}{2}\right)^2$
 $= a^2x^2 + abx + ac - a^2x^2 - \frac{b^2}{4} - abx$
 $= ac - \frac{b^2}{4} = a constant$
152. $y = \tan^{-1}\left[\frac{\log ex}{\log \frac{e}{x}}\right] + \tan^{-1}\left[\frac{8 - \log x}{1 + 8\log x}\right]$
 $\Rightarrow y = \tan^{-1}\left[\frac{1 + \log x}{1 - \log x}\right] + \tan^{-1}\left[\frac{8 - \log x}{1 + 8\log x}\right]$
 $\Rightarrow y = \tan^{-1}1 + \tan^{-1}(\log x) + \tan^{-1}(\log x)$
 $\Rightarrow y = \tan^{-1}1 + \tan^{-1}8$
 $\therefore \frac{d^2y}{dx} = 0, \qquad \therefore \frac{d^2y}{dx^2} = 0$
153. $x = \sin t$ and $y = \sin^3 t$
 $\therefore \frac{d^2y}{dx} = 3x^2 \qquad \therefore \frac{d^2y}{dx^2} = 6x$
At $t = \frac{\pi}{2}, x = \sin \frac{\pi}{2} = 1$
 $\therefore \left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{2}} = \left(\frac{d^2y}{dx^2}\right)_{x=1} = 6(1) = 6$

154.
$$x = a (1 - \cos \theta) \text{ and } y = a(\theta + \sin \theta)$$

 $\therefore \frac{dx}{d\theta} = a \sin \theta \text{ and } \frac{dy}{d\theta} = a (1 + \cos \theta)$
 $\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1 + \cos \theta)}{a \sin \theta} = \frac{2 \cos^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} = \cot \frac{\theta}{2}$
 $\therefore \frac{d^2 y}{dx^2} = -\csc^2 \frac{\theta}{2} \cdot \frac{1}{2} \cdot \frac{d\theta}{dx}$
 $= -\frac{1}{2} \csc^2 \frac{\theta}{2} \cdot \frac{1}{a \sin \theta}$
 $\therefore \left(\frac{d^2 y}{dx^2}\right)_{\theta = \frac{\pi}{2}} = -\frac{1}{2} (\sqrt{2})^2 \cdot \frac{1}{a(1)} = -\frac{1}{a}$
155. Let $y = a \sin^3 t$ and $x = a \cos^3 t$
 $\therefore \frac{dy}{dt} = 3a \sin^2 t \cos t$
 $and \frac{dx}{dt} = -3a \cos^2 t \sin t$ (i)
 $\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = -\tan t$
 $\therefore \frac{d^2 y}{dx^2} = -\sec^2 t \cdot \frac{dt}{dx}$
 $= -\sec^2 t \cdot \frac{1}{-3a \cos^2 t \sin t}$ [From (i)]
 $= \frac{1}{3a \cos^4 t \sin t}$
 $\therefore \left(\frac{d^2 y}{dx^2}\right)_{t=\frac{\pi}{4}} = \frac{1}{3a \cos^4 \left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{4}\right)}$
 $= \frac{1}{3a \left(\frac{1}{\sqrt{2}}\right)^5} = \frac{4\sqrt{2}}{3a}$

156.
$$e^{y} + xy = e$$

Differentiating both sides w.r.t.*x*, we get
 $e^{y} \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$ (i)
Again, differentiating both sides w.r.t.*x*, we get

$$e^{y} \frac{d^{2} y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} + 2 \frac{dy}{dx} + x \frac{d^{2} y}{dx^{2}} = 0 \quad \dots \text{(ii)}$$

Putting $x = 0$ in $e^{y} + xy = e$, we get $y = 1$
Putting $x = 0, y = 1$ in (i), we get
$$\frac{dy}{dx} = -\frac{1}{e}$$
Chapter 02: Differentiation

Putting $x = 0, y = 1, \frac{dy}{dx} = -\frac{1}{e}$ in (ii), we get $e \frac{d^2 y}{dr^2} + e \cdot \frac{1}{e^2} - \frac{2}{e} + 0 = 0 \implies \frac{d^2 y}{dr^2} = \frac{1}{e^2}$ 158. f(-x) = -f(x) [:: f(x) is an odd function] f(x) = -f(-x)*.*.. Differentiating w.r.t.x, we get f'(x) = -[-f'(-x)] \Rightarrow f'(x) = f'(-x) \Rightarrow f'(3) = f'(-3) \Rightarrow f'(-3) = 2 159. $\left(\frac{y}{x}\right) + \left(\frac{x}{y}\right) = 2$ $\Rightarrow y^2 + x^2 = 2xy$ $\Rightarrow (x - y)^2 = 0$ $\Rightarrow x - y = 0$ $\Rightarrow x = y$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$ *.*.. 160. $y = e^x \cdot e^{2x} \cdot e^{3x} \cdot \dots \cdot e^{nx}$ $\Rightarrow y = e^{x(1+2+3+\dots+n)}$ $\Rightarrow y = e^{x\left[\frac{n(n+1)}{2}\right]}$ $\Rightarrow \log y = x \left[\frac{n(n+1)}{2} \right]$ Differentiating both sides w.r.t. x, we get $\frac{1}{y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{n}(\mathrm{n}+\mathrm{l})}{2}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{n}(\mathrm{n}+1)y}{2}$

161.
$$y = \sqrt{\frac{1+e^x}{1-e^x}} \implies y^2 = \frac{1+e^x}{1-e^x}$$

Differentiating both sides w.r.t. *x*, we get

$$2y\frac{dy}{dx} = \frac{(1-e^x)e^x + (1+e^x)e^x}{(1-e^x)^2} = \frac{2e^x}{(1-e^x)^2}$$

$$\therefore \quad \frac{dy}{dx} = \frac{e^x}{(1-e^x)^2} \sqrt{\frac{1-e^x}{1+e^x}}$$

$$= \frac{e^x}{(1-e^x)^2} \sqrt{\left(\frac{1-e^x}{1+e^x}\right)\left(\frac{1-e^x}{1-e^x}\right)}$$

$$= \frac{e^x}{(1-e^x)\sqrt{1-e^{2x}}}$$

Competitive Thinking

1.
$$Lf'(0) = \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h}$$

 $= \lim_{h \to 0^{+}} \frac{1-1}{h} = 0$
 $Rf'(0) = \lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h}$
 $= \lim_{h \to 0} \frac{1+\sinh -1}{h}$
 $= \lim_{h \to 0} \frac{\sinh h}{h} = 1$
 $\therefore Lf'(0) \neq Rf'(0)$
 $\therefore f'(0) \text{ does not exist.}$
2. $f(x) = \begin{cases} \frac{1}{x-1} , & \text{if } x \neq 1, 2\\ 2 , & \text{if } x = 1\\ 1 , & \text{if } x = 2 \end{cases}$
 $\therefore \lim_{x \to 2} \frac{f(x) - f(2)}{x-2} = \lim_{x \to 2} \frac{1}{x-2}$
 $= -\lim_{x \to 2} \frac{x-2}{(x-1)(x-2)}$
 $= -\lim_{x \to 2} \frac{1}{x-1}$
 $= -1$
3. $f(x) = \begin{cases} \frac{1}{2x-5}, & \text{for } x \neq 1\\ -\frac{1}{3}, & \text{for } x = 1\\ -\frac{1}{3}, & \text{for } x = 1 \end{cases}$
 $\therefore f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x-1}$
 $= \lim_{x \to 1} \frac{2x-5}{x-1} - (-\frac{1}{3})}{x-1}$
 $= \lim_{x \to 1} \frac{2x-2}{3(2x-5)(x-1)}$
 $= \frac{2}{3} \lim_{x \to 1} \frac{1}{2x-5} = -\frac{2}{9}$

4.
$$f'(0^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$$

 $= \lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h}$
 $= \lim_{h \to 0} \frac{\frac{h^2 \log(\cosh)}{\log(1 + h^2)} - 0}{-h}$
 $= \lim_{h \to 0} \frac{-\log(\cosh)}{h} \lim_{h \to 0} \frac{1}{\frac{\log(1 + h^2)}{h^2}}$
 $= \lim_{h \to 0} \frac{-\log(\cosh)}{h} .(1)$

Applying L'Hospital rule, we get

$$= \lim_{h \to 0} \frac{\sinh}{\cosh}$$

= 0
$$f(0^{+}) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{h^{2} \log(\cosh)}{\log(1 + h^{2})} - 0}{h}$$

= 0

:.
$$f'(0^{-}) = f'(0^{+})$$

 \therefore f(x) is differentiable at zero.

5.
$$\operatorname{Lf}'(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$$
$$= \lim_{x \to 1^{-}} \frac{\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} - 2}{x - 1}$$
$$= \lim_{x \to 1^{-}} \frac{x^2 - 6x + 5}{4(x - 1)}$$
$$= \lim_{x \to 1^{-}} \frac{(x - 5)(x - 1)}{4(x - 1)}$$
$$= \frac{1}{4} \lim_{x \to 1^{-}} (x - 5) = -1$$
$$\operatorname{Rf}'(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{|x - 3| - 2}{x - 1}$$
$$= \lim_{x \to 1^{+}} \frac{3 - x - 2}{x - 1} = -1$$

- :. f'(1) = -1
- $\therefore \quad f(x) \text{ is differentiable at } x = 1.$ If f(x) is differentiable, it has to be continuous.
- \therefore f(x) is continuous and differentiable at x = 1.

6.
$$\lim_{x \to 0^{+}} f(x) = 0$$
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x = 0$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x) = f(0)$$

$$\therefore$$
 The function is continuous at $x = 0$

Since the function has a sharp edge at x = 0, The function is not differentiable.

7. $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x-1) = 1-1 = 0$ $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{3}-1) = 1-1 = 0$ f(1) = 0

$$\therefore \quad f(x) \text{ is continuous at } x = 1.$$

$$Lf'(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x - 1 - 0}{x - 1} = 1$$

$$Rf'(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{x^{3} - 1}{x - 1} = \lim_{x \to 1^{+}} \frac{3x^{2}}{1} = 3$$

 $\therefore \quad Lf'(1) \neq Rf'(1)$

...

$$\therefore$$
 f(x) is not differentiable at $x = 1$.

8. Since,
$$f(x)$$
 is differentiable at $x = 1$

$$\therefore \quad Lf'(1) = Rf'(1)$$

$$\Rightarrow \left[\frac{d}{dx}(x^2 + bx + c)\right]_{x=1} = \left[\frac{d}{dx}(x)\right]_{x=1}$$

$$\Rightarrow [2x + b]_{x=1} = 1$$

$$\Rightarrow 2 + b = 1$$

$$\Rightarrow b = -1 \qquad \dots(i)$$

$$f(x) \text{ is differentiable at } x = 1.$$

$$\Rightarrow f(x) \text{ is continuous at } x = 1.$$

Chapter 02: Differentiation

$$\therefore \quad f(1) = \lim_{x \to 1^{-}} f(x)$$

$$\Rightarrow 1 = \lim_{x \to 1} (x^{2} + bx + c)$$

$$\Rightarrow 1 = 1 + b + c$$

$$\Rightarrow b + c = 0$$

$$\Rightarrow c = 1 \qquad \dots [From (i)]$$

$$\therefore \quad b - c = -1 - 1 = -2$$

9. $\lim_{x \to 1} \frac{x^2 f(1) - f(x)}{x - 1}$ Applying L' Hospital rule, we get $\lim_{x \to 1} 2x f(1) - f'(x) = 2f(1) - f'(1)$

10. Applying L'Hospital rule, we get

$$\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} = \lim_{x \to 2} \frac{f(2) - 2f'(x)}{1}$$

$$= f(2) - 2f'(2)$$

$$= 4 - 2(1) = 2$$

- 11. Since, f(x) is differentiable at x = a.
- \therefore f'(x) exists

Let
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
(i)
Now, $\lim_{x \to a} \frac{x^2 f(a) - a^2 f(x)}{x - a}$
 $= \lim_{x \to a} \frac{x^2 f(a) - a^2 f(a) + a^2 f(a) - a^2 f(x)}{x - a}$
 $= \lim_{x \to a} \frac{(x^2 - a^2) f(a) - a^2 \{f(x) - f(a)\}}{x - a}$
 $= \lim_{x \to a} \left[\frac{(x^2 - a^2) f(a)}{x - a} - a^2 \{ \frac{f(x) - f(a)}{x - a} \} \right]$
 $= \lim_{x \to a} (x + a) f(a) - a^2 \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
 $= 2a f(a) - a^2 f'(a)$ [From (i)]

12. Since, f(x) is differentiable for all x. So, it is everywhere continuous.

$$\therefore \lim_{x \to 1} f(x) = f(1)$$

$$\Rightarrow \lim_{h \to 0} f(1+h) = f(1)$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1+h)}{h} \times h = f(1)$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1+h)}{h} \times \lim_{h \to 0} h = f(1)$$

$$\Rightarrow 5 \times 0 = f(1)$$

$$\Rightarrow f(1) = 0$$

Now,
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$\Rightarrow f'(1) = \lim_{h \to 0} \frac{f(1+h) - 0}{h}$$

$$\Rightarrow f'(1) = 5$$

13. The continuous line shown in the figure below represents the graph of f(x).

Clearly, f(x) is not differentiable at x = -1, 0, 1.

14. Let
$$f(x) = |x - 1| = \begin{cases} x - 1, & x \ge 1\\ 1 - x, & x < 1 \end{cases}$$

$$\Rightarrow p = \inf_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{1 - x - 0}{x - 1} = -1$$
Now, $\lim_{x \to 1^{+}} g(x) = p$

$$\Rightarrow \lim_{h \to 0} g(1 + h) = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{h^{n}}{\log \cos^{m} h} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{h^{n}}{\log \cosh} = -1$$
Applying L'Hospital rule on L.H.S., we get
$$\frac{1}{m} \lim_{h \to 0} \frac{h^{n-1}}{-\tan h} = -1$$

$$\Rightarrow \frac{n}{m} \lim_{h \to 0} \frac{h^{n-2}}{(\frac{\tan h}{h})} = 1$$

$$\Rightarrow n = 2 \text{ and } \frac{n}{m} = 1$$

$$\Rightarrow m = n = 2$$

15.
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \left| \cos \frac{\pi}{x} \right| - 0}{x}$$
$$= \lim_{x \to 0} x \left| \cos \frac{\pi}{x} \right| = 0$$
So, f(x) is differentiable at x = 0.
Now, Rf'(2) =
$$\lim_{h \to 0^+} \frac{f(2 + h) - f(2)}{h}$$
$$= \lim_{h \to 0} \frac{(2 + h)^2 \cos\left(\frac{\pi}{2 + h}\right) - 0}{h}$$
$$= \lim_{h \to 0} \frac{(2 + h)^2 \sin\left(\frac{\pi}{2} - \frac{\pi}{2 + h}\right)}{h}$$
$$= \lim_{h \to 0} \frac{(2 + h)^2 \sin\left\{\frac{\pi h}{2(2 + h)}\right\}}{h}$$
$$= \lim_{h \to 0} \frac{\sin\left\{\frac{\pi h}{2(2 + h)}\right\}}{x} \times \frac{(2 + h)\pi}{2} = \pi$$

Similarly, $Lf'(2) = -\pi$ \therefore $Lf'(2) \neq Rf'(2)$ So, f(x) is not differentiable at x = 2.

16. $\operatorname{Lg}'(3) = \lim_{x \to 3^{-}} \frac{g(x) - g(3)}{x - 3} = \lim_{x \to 3^{-}} \frac{k\sqrt{x + 1} - 2k}{x - 3}$ $= \lim_{x \to 3^{-}} k \left[\frac{x + 1 - 4}{(x - 3)(\sqrt{x + 1} + 2)} \right]$ $=\lim_{x\to 3^{-}}\frac{k}{\sqrt{x+1}+2}=\frac{k}{4}$ $\operatorname{Rg}'(3) = \lim_{x \to 3^{+}} \frac{g(x) - g(3)}{x - 3} = \lim_{x \to 3^{+}} \frac{mx + 2 - 2k}{x - 3}$ Applying L'Hospital rule, we get Rg'(3) = mSince, g'(3) exists. Rg'(3) must exist. *.*.. 3m + 2 - 2k = 0*.*..(i) Since, g(x) is differentiable. Lg'(3) = Rg'(3)*.*.. $\frac{k}{4} = m \Longrightarrow k = 4m$ *:*..(ii)

Solving (i) and (ii), we get $m = \frac{2}{5}$ and $k = \frac{8}{5}$ $\therefore \quad k + m = \frac{8}{5} + \frac{2}{5} = 2$

17. Differentiability at $x = \pi$: Ls'(π) $= \lim_{h \to 0} \frac{|\pi - h - \pi| (e^{|\pi - h|} - 1) \sin|\pi - h| - 0}{-h}$ = 0

Rs'(
$$\pi$$
)
= $\lim_{h \to 0} \frac{|\pi + h - \pi|(e^{|\pi + h|} - 1)\sin|\pi + h| - 0}{h}$
= 0

Differentiability at x = 0:

$$Ls'(0) = \lim_{h \to 0} \frac{|-h - \pi| (e^{|-h|} - 1) \sin| - h| - 0}{-h}$$

= 0
$$Rs'(0) = \lim_{h \to 0} \frac{|h - \pi| (e^{|h|} - 1) \sin| h| - 0}{h}$$

= 0

The function f(x) is differentiable at $x = 0, \pi$. \Rightarrow Set S is an empty set.

18.
$$y = \cos (2x + 45)$$

 $\therefore \quad \frac{dy}{dx} = -\sin (2x + 45) \cdot \frac{d}{dx} (2x + 45)$
 $= -2 \sin (2x + 45)$
19. $y = \sqrt{\sin \sqrt{x}}$
 $\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{\sin \sqrt{x}}} \cdot \frac{d}{dx} (\sin \sqrt{x})$

$$= \frac{1}{2\sqrt{\sin\sqrt{x}}} \cdot \cos\sqrt{x} \cdot \frac{1}{2\sqrt{x}}$$
$$= \frac{\cos\sqrt{x}}{4\sqrt{x}\sqrt{\sin\sqrt{x}}}$$

20.
$$\frac{\mathrm{d}}{\mathrm{d}x}\log_{|x|} e = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\log|x|}\right)$$
$$= \frac{-1}{\log^2|x|} \times \frac{1}{x} = \frac{-1}{x\left(\log|x|\right)^2}$$

21.
$$f(x) = \log x$$

 \therefore $f[\log x] = \log(\log x)$
 \therefore $f'[\log x] = \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$
 $= \frac{1}{x \log x}$
22. $y = \log_2(\log_2 x)$
 $= \frac{\log(\frac{\log x}{\log 2})}{\log 2}$
 $= \frac{\log(\log x) - \log(\log 2)}{\log 2}$
 \therefore $\frac{dy}{dx} = \frac{1}{\log 2} \left(\frac{1}{\log x} \cdot \frac{1}{x} - 0\right)$
 $= \frac{1}{(x \log x) \log 2}$
23. $y = \log\left(\frac{1-x^2}{1+x^2}\right)$
 \therefore $\frac{dy}{dx} = \frac{1}{(\frac{1-x^2}{1+x^2})} \cdot \frac{(1+x^3)(0-2x) - (1-x^2)(0+2x)}{(1+x^2)^2}$
 $= \frac{1}{(1-x^2)} \cdot \frac{-2x-2x^3-2x+2x^3}{(1+x^2)}$
 \therefore $\frac{dy}{dx} = \frac{-4x}{1-x^4}$
24. $\frac{d}{dx} [\cos(1-x^2)^2] = -\sin(1-x^2)^2 \cdot \frac{d}{dx} [(1-x^2)^2]$
 $= -\sin(1-x^2)^2 \cdot 2(1-x^2) \cdot \frac{d}{dx} (1-x^2)$
 $= -\sin(1-x^2)^2 \cdot 2(1-x^2) \cdot (-2x)$
 $= 4x(1-x^2)\sin(1-x^2)^2$
25. $\frac{d}{dx} [e^x \log(1+x^2)]$
 $= \log(1+x^2)e^x + e^x \cdot \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2)$
 $= e^x \log(1+x^2) + \frac{e^x}{1+x^2} \cdot 2x$
 $= e^x [\log(1+x^2) + \frac{2x}{1+x^2}]$

26.
$$\frac{d}{dx} \left(e^{x} \log \sin 2x \right)$$

$$= \log \sin 2x \cdot e^{x} + e^{x} \cdot \frac{1}{\sin 2x} \cdot \frac{d}{dx} (\sin 2x)$$

$$= e^{x} \log \sin 2x + e^{x} \cdot \frac{1}{\sin 2x} \cdot \cos 2x \cdot \frac{d}{dx} (2x)$$

$$= e^{x} \log \sin 2x + e^{x} \cot 2x.2$$

$$= e^{x} (\log \sin 2x + 2 \cot 2x)$$
27.
$$\frac{d}{dx} \left(e^{\sqrt{1-x^{2}}} \cdot \tan x \right)$$

$$= e^{\sqrt{1-x^{2}}} \cdot \sec^{2} x + \tan x \cdot e^{\sqrt{1-x^{2}}} \cdot \frac{d}{dx} (\sqrt{1-x^{2}})$$

$$= e^{\sqrt{1-x^{2}}} \cdot \sec^{2} x + \tan x \cdot e^{\sqrt{1-x^{2}}} \cdot \frac{1}{2\sqrt{1-x^{2}}} \cdot (-2x)$$

$$= e^{\sqrt{1-x^{2}}} \left[\sec^{2} x - \frac{x \tan x}{\sqrt{1-x^{2}}} \right]$$
28.
$$y = \frac{e^{2x} + e^{-2x}}{e^{2x} - e^{-2x}}$$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{(e^{2x} - e^{-2x})^{2}} \left[(e^{2x} - e^{-2x}) \cdot 2(e^{2x} - e^{-2x}) \right]$$

$$= \frac{-8}{(e^{2x} - e^{-2x})^{2}}$$
29.
$$y = \log x \cdot e^{(\tan x + x^{2})}$$

$$= e^{(\tan x + x^{2})} \cdot \frac{1}{x} + \log x \cdot e^{(\tan x + x^{2})} \cdot \frac{d}{dx} (\tan x + x^{2})$$

$$= e^{(\tan x + x^{2})} \cdot \frac{1}{x} + \log x \cdot e^{(\tan x + x^{2})} (\sec^{2} x + 2x)$$

$$= e^{(\tan x + x^{2})} \left[\frac{1}{x} + (\sec^{2} x + 2x) \log x \right]$$
30.
$$H(x) = G[F(x)]$$

$$= e^{-x}$$

$$\therefore \quad H'(x) = -e^{x} \cdot e^{-e^{x}}$$

$$\therefore \quad H'(x) = -e^{x} \cdot e^{-e^{x}}$$

Ţ

- 31. h(x) = f(g(x)) $\Rightarrow h(x) = f(sin^{-1}x) = e^{sin^{-1}x}$ (i) $\therefore h'(x) = e^{sin^{-1}x} \cdot \frac{d}{dx} (sin^{-1}x) = e^{sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}}$ $\therefore \frac{h'(x)}{h(x)} = \frac{1}{\sqrt{1-x^2}}$ [From (i)]
- 32. At x = 1, f(x) is not defined. For $x \in \mathbb{R} - \{1\}$,

$$g(x) = f\left[f\left\{f\left(x\right)\right\}\right] = f\left[f\left(\frac{1}{1-x}\right)\right] = f\left(\frac{1}{1-\frac{1}{1-x}}\right)$$
$$= f\left(\frac{x-1}{x}\right) = \frac{1}{1-\frac{x-1}{x}} = x$$

 $\therefore \quad g'(x) = 1 \text{ for all } x \in \mathbf{R} - \{1\}$

33. Let
$$t = \frac{2x-1}{x^2+1}$$
. Then, $y = f(t)$
 $\therefore \quad \frac{dy}{dx} = f'(t) \cdot \frac{dt}{dx} = \sin t^2 \cdot \frac{d}{dx} \left(\frac{2x-1}{x^2+1}\right)$
 $\dots [\because f'(x) = \sin x^2 \text{ (given)}]$
 $= \sin t^2 \left[\frac{(x^2+1)(2-0) - (2x-1)(2x+0)}{(x^2+1)^2} \right]$
 $= \frac{-2x^2 + 2x + 2}{(x^2+1)^2} \cdot \sin \left(\frac{2x-1}{x^2+1}\right)^2$

34. $f^{-1}(x) = g(x)$ $\Rightarrow x = f[g(x)]$ Differentiating w.r.t. x, we get $f'[g(x)] \cdot g'(x) = 1$ $\Rightarrow \frac{1}{1 + [g(x)]^4} \cdot g'(x) = 1 \dots \left[\because f'(x) = \frac{1}{1 + x^4} \right]$ $\Rightarrow g'(x) = 1 + [g(x)]^4$

35. g (x) =
$$[f(2f(x)+2)]^2$$

∴ g'(x) = 2 [f (2f (x) + 2)] . [f (2f (x) + 2)]'
= 2 [(2f (x) + 2] f '[2f (x) + 2] . 2f '(x)
∴ g'(0) = 2 [f (-2 + 2)] f '[2f (0) + 2] . 2(1)
= 2 [f (0)] (1) 2
= 4 (-1)
= -4

36.
$$y = 5x(1-x)^{-\frac{2}{3}} + \cos^{2}(2x+1)$$

 $\therefore \quad \frac{dy}{dx} = 5x \cdot \frac{-2}{3}(1-x)^{-\frac{5}{3}} \cdot \frac{d}{dx}(1-x) + 5(1-x)^{-\frac{2}{3}}$
 $+ 2\cos(2x+1) \cdot \frac{d}{dx}[\cos(2x+1)]$
 $= \frac{10x}{3(1-x)^{\frac{5}{3}}} + \frac{5}{(1-x)^{\frac{2}{3}}}$

$$-2 \left[2\cos(2x+1)\sin(2x+1)\right]$$
$$= \frac{5}{\left(1-x\right)^{\frac{2}{3}}} \left[\frac{2x}{3(1-x)} + 1\right] - 2\sin(4x+2)$$

...[::
$$2\sin\theta\cos\theta = \sin2\theta$$
]

$$=\frac{5(3-x)}{3(1-x)^{\frac{5}{3}}}-2\sin(4x+2)$$

37.
$$y = f(x^2 + 2)$$

∴ $\frac{dy}{dx} = f'(x^2 + 2).(2x)$
∴ $\left(\frac{dy}{dx}\right)_{x=1} = f'(1^2 + 2).(2 \times 1)$
 $= f'(3).2 = 5.2 = 10$

38.
$$f(x) = \log_x(\log x) = \frac{\log(\log x)}{\log x}$$

$$\therefore \quad f'(x) = \frac{\log x \cdot \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) - \log(\log x) \cdot \frac{1}{x}}{(\log x)^2}$$
$$= \frac{\frac{1}{x} - \frac{1}{x} \log(\log x)}{(\log x)^2}$$
$$\therefore \quad f'(x) = \frac{\frac{1}{e} - 0}{1}$$

:.
$$f'(e) = \frac{e}{(1)^2} = \frac{1}{e}$$

39.
$$f(x) = \sqrt{1 + \cos^2(x^2)}$$

$$\therefore \quad f'(x) = \frac{1}{2\sqrt{1 + \cos^2(x^2)}} .(2 \cos x^2) .(-\sin x^2) .(2x)$$
$$\therefore \quad f'(x) = \frac{-x \sin 2x^2}{\sqrt{1 + \cos^2(x^2)}}$$
$$\therefore \quad f'\left(\frac{\sqrt{\pi}}{2}\right) = \frac{-\frac{\sqrt{\pi}}{2} .\sin \frac{2\pi}{4}}{\sqrt{1 + \cos^2\frac{\pi}{4}}} = \frac{-\frac{\sqrt{\pi}}{2} .1}{\sqrt{\frac{3}{2}}} = -\sqrt{\frac{\pi}{6}}$$

40.
$$f(x) = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x}$$

$$= \frac{\sin^2 x (\sin x)}{\sin x + \cos x} + \frac{\cos^2 x (\cos x)}{\cos x + \sin x}$$

$$= \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x}$$

$$= \sin^2 x - \sin x \cos x + \cos^2 x$$

$$\dots \left[\because a^3 + b^3 = (a + b)(a^2 - ab + b^2)\right]$$

$$= (\sin^2 x + \cos^2 x) - \frac{1}{2}(2\sin x \cos x)$$

$$= 1 - \frac{1}{2} \cdot \sin 2x$$

$$\therefore \quad f'(x) = -\cos 2x \Rightarrow f'\left(\frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{2}\right) = 0$$

41.
$$\frac{d}{dx} \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{d}{dx} [\tan^{-1}(1) - \tan^{-1}(x)]$$

$$= 0 - \frac{1}{1+x^2} = \frac{-1}{1+x^2}$$

42.
$$y = \tan^{-1}\left(\frac{\sqrt{a} - \sqrt{x}}{1 + \sqrt{ax}}\right) = \tan^{-1} \sqrt{a} - \tan^{-1} \sqrt{x}$$

$$\therefore \quad \frac{dy}{dx} = 0 - \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{d}{dx} (\sqrt{x}) = -\frac{1}{(1+x)} \cdot \frac{1}{2\sqrt{x}}$$

43.
$$y = \tan^{-1}\left(\frac{\sin x + \cos x}{\cos x - \sin x}\right) = \tan^{-1}\left(\frac{1 + \tan x}{1 - \tan x}\right)$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4} + x\right)\right] = \frac{\pi}{4} + x$$

$$\therefore \quad \frac{dy}{dx} = 1$$

44.
$$y = \tan^{-1}\left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x}\right)$$

$$= \tan^{-1}\left(\frac{a}{b} - \tan^{-1}(\tan x)$$

$$\therefore \quad y = \tan^{-1}\left(\frac{a}{b}\right) - \tan^{-1}(\tan x)$$

$$\therefore \qquad y = \tan^{-1}\left(\frac{a}{b}\right) - x \qquad \therefore \qquad \frac{dy}{dx} = -1$$

Chapter 02: Differentiation 45. $y = \sec(\tan^{-1} x)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \sec(\tan^{-1} x) \tan(\tan^{-1} x). \ \frac{1}{1+r^2}$ $=\sqrt{1+x^2} \cdot \frac{x}{1+x^2}$[:: $\tan^{-1} x = \sec^{-1} \sqrt{1 + x^2}$] $=\frac{x}{\sqrt{1+x^2}}$ 46. Let $y = \tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right) = \tan^{-1}\left|\frac{6x^{\frac{3}{2}}}{1-\left(3x^{\frac{3}{2}}\right)^2}\right|$ $= \tan^{-1} \left| \frac{2 \times 3x^{\frac{3}{2}}}{1 - \left(3x^{\frac{3}{2}}\right)^2} \right|$ $= 2 \tan^{-1} 3x^{\frac{3}{2}}$ $\therefore \qquad \frac{dy}{dx} = \frac{2}{1 + \left(3x^{\frac{3}{2}}\right)^2} \cdot 3 \times \frac{3}{2} \times x^{\frac{1}{2}} = \frac{9}{1 + 9x^3} \sqrt{x}$ Comparing with $\sqrt{x} g(x)$, we get $g(x) = \frac{9}{1+9x^3}$ $47. \quad y = e^{m \sin^{-1} x}$(i) $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\mathrm{m}\sin^{-1}x} \cdot \frac{\mathrm{m}}{\sqrt{1-x^2}}$ $\Rightarrow \sqrt{1-x^2} \frac{dy}{dr} = my$ [From (i)] $\Rightarrow (1 - x^2) \left(\frac{dy}{dx}\right)^2 = m^2 y^2$ $A = m^2$ *.*. 48. Putting $x = \sin A$ and $\sqrt{x} = \sin B$, we get $y = \sin^{-1} \left(\sin A \sqrt{1 - \sin^2 B} + \sin B \sqrt{1 - \sin^2 A} \right)$ $= \sin^{-1} (\sin A \cos B + \sin B \cos A)$

 $= \sin^{-1}[\sin(A+B)] = A + B = \sin^{-1}x + \sin^{-1}\sqrt{x}$

MHT-CET Triumph Maths (Hints) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-(\sqrt{x})^2}} \cdot \frac{1}{2\sqrt{x}}$ $=\frac{1}{\sqrt{1-r^2}}+\frac{1}{2\sqrt{r-r^2}}$ 49. $y = \tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right) + \sin\left(2\tan^{-1}\sqrt{\frac{1-x}{1+x}}\right)$ Put $x = \cos \theta \Rightarrow \theta = \cos^{-1} x$ $y = \tan^{-1} \left(\frac{\cos \theta}{1 + \sin \theta} \right) + \sin \left(2 \tan^{-1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \right)$ *:*. $= \tan^{-1} \left(\frac{1 - \tan \frac{\theta}{2}}{1 + \tan \frac{\theta}{2}} \right) + \sin \left[2 \tan^{-1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \right]$ $= \tan^{-1} \left| \tan \left(\frac{\pi}{4} - \frac{\theta}{2} \right) \right| + \sin \left| 2 \tan^{-1} \left(\tan \frac{\theta}{2} \right) \right|$ $=\frac{\pi}{4}-\frac{\theta}{2}+\sin\theta$ $=\frac{\pi}{4}-\frac{\cos^{-1}x}{2}+\sin(\cos^{-1}x)$ $=\frac{\pi}{4}-\frac{\cos^{-1}x}{2}+\sin\left(\sin^{-1}\sqrt{1-x^2}\right)$ $=\frac{\pi}{4}-\frac{\cos^{-1}x}{2}+\sqrt{1-x^2}$ $\therefore \qquad \frac{dy}{dx} = \frac{1}{2\sqrt{1-x^2}} + \frac{(-2x)}{2\sqrt{1-x^2}}$ $=\frac{1-2x}{2\sqrt{1-x^2}}$ Put $x^x = \tan \theta \Rightarrow \theta = \tan^{-1} (x^x)$ 50. $f(x) = \cot^{-1}\left(\frac{\tan^2 \theta - 1}{2 \tan \theta}\right)$ *.*.. $= \cot^{-1} (-\cot 2\theta)$ $=\pi-\cot^{-1}(\cot 2\theta)$ $f(x) = \pi - 2\theta = \pi - 2\tan^{-1}(x^x)$ *.*.. $f'(x) = \frac{-2}{1 + x^{2x}} \cdot x^{x} (1 + \log x)$... $f'(1) = \frac{-2}{1+1^2} \cdot 1(1+0) = -1$

51.
$$y = \tan^{-1} \left(\frac{\sqrt{x} - x}{1 + x^{\frac{3}{2}}} \right) = \tan^{-1} (\sqrt{x}) - \tan^{-1} (x)$$

 $\therefore \quad y' = \frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{1 + x^{2}}$
 $\therefore \quad y'(1) = \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} = \frac{-1}{4}$
52. $y = \tan^{-1} \left(\frac{\sqrt{1 + x^{2}} - 1}{x} \right)$
Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$
 $\therefore \quad y = \tan^{-1} \left(\frac{\sqrt{1 + \tan^{2} \theta} - 1}{\tan \theta} \right) = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right)$
 $= \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta} \right)$
 $= \tan^{-1} \left(\frac{2 \sin^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \right)$
 $= \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$
 $\therefore \quad y' = \frac{1}{2(1 + x^{2})}$
 $\therefore \quad y'(1) = \frac{1}{2(1 + 1^{2})} = \frac{1}{4}$

53. $y = \left(1 + \frac{1}{r}\right)$

Taking logarithm on both sides, we get

$$\log y = x \log \left(1 + \frac{1}{x} \right)$$

Differentiating w.r.t. x, we get

$$\frac{1}{y} \cdot \frac{dy}{dx} = \log\left(1 + \frac{1}{x}\right) + x \cdot \frac{1}{1 + \frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right)$$
$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \log\left(1 + \frac{1}{x}\right) - \frac{1}{1 + x}$$
$$\Rightarrow \frac{dy}{dx} = \left(1 + \frac{1}{x}\right)^x \left[\log\left(1 + \frac{1}{x}\right) - \frac{1}{1 + x}\right]$$

...

 $y = (\sin x)^{\tan x}$ 54. Taking logarithm on both sides, we get $\log y = \tan x \cdot \log (\sin x)$ Differentiating w.r.t. x, we get $\frac{1}{v} \cdot \frac{dy}{dx} = \tan x \cdot \cot x + \log(\sin x) \cdot \sec^2 x$ $\Rightarrow \frac{dy}{dx} = (\sin x)^{\tan x} \left[1 + \sec^2 x \log(\sin x) \right]$

55. $y = \frac{e^{2x}\cos x}{x\sin x}$

...

Taking logarithm on both sides, we get $\log y = 2x + \log (\cos x) - \log x - \log (\sin x)$ Differentiating w.r.t. x, we get

$$\frac{1}{y} \cdot \frac{dy}{dx} = 2 + \left(\frac{-\sin x}{\cos x}\right) - \frac{1}{x} - \frac{\cos x}{\sin x}$$
$$\implies \frac{dy}{dx} = \frac{e^{2x} \cos x}{x \sin x} \left(2 - \frac{\sin x}{\cos x} - \frac{1}{x} - \frac{\cos x}{\sin x}\right)$$
$$= e^{2x} \left(\frac{2}{x} \cot x - \frac{1}{x} - \frac{1}{x^2} \cot x - \frac{\cot^2 x}{x}\right)$$
$$= \frac{e^{2x}}{x^2} \left[2x \cot x - \cot x - x(1 + \cot^2 x)\right]$$
$$= \frac{e^{2x}}{x^2} \left[(2x - 1) \cot x - x \csc^2 x\right]$$

56. $y = {f(x)}^{\phi(x)}$ Taking logarithm on both sides, we get $\log y = \phi(x) \log \{f(x)\}$ $\Rightarrow v = e^{\phi(x) \log f(x)}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\phi(x)\log f(x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} [\phi(x)\log f(x)]$

$$dx \qquad dx = e^{\phi(x) \log f(x)} \left\{ \phi(x) \cdot \frac{f'(x)}{f(x)} + \log f(x) \cdot \phi'(x) \right\}$$

57. $y = (x \log x)^{\log(\log x)}$ Taking logarithm on both sides, we get $\log y = \log (\log x) [\log x + \log (\log x)]$ Differentiating w.r.t. x, we get $\frac{1}{x} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x} \left[\log x + \log(\log x) \right]$

$$y \, dx \, x \log x^2$$

$$+ \log(\log x) \left(\frac{1}{x} + \frac{1}{x \log x}\right)$$

$$\Rightarrow \frac{dy}{dx} = (x \log x)^{\log(\log x)} \left\{\frac{1}{x \log x} \left[\log x + \log(\log x)\right] + \log(\log x) \left(\frac{1}{x} + \frac{1}{x \log x}\right)\right\}$$

 $y = \left[(\tan x)^{\tan x} \right]^{\tan x}$ 58. Taking logarithm on both sides, we get $\log y = \tan x \log(\tan x)^{\tan x}$ $\Rightarrow \log y = (\tan x)^2 \log (\tan x)$ Differentiating w.r.t. x, we get $\frac{1}{v} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = (\tan x)^2 \cdot \frac{1}{\tan x} \cdot \sec^2 x$ $+\log(\tan x).2\tan x.\sec^2 x$ $\Rightarrow \frac{dy}{dx} = \left[(\tan x)^{\tan x} \right]^{\tan x} \tan x \sec^2 x \left[1 + 2\log(\tan x) \right]$ $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\left(x=\frac{\pi}{2}\right)} = 1.1.\left(\sqrt{2}\right)^2 (1+0) = 2$... 59. $y = 1 + x e^{y}$(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}r} = \mathrm{e}^{y}.1 + x. \,\mathrm{e}^{y}.\frac{\mathrm{d}y}{\mathrm{d}r}$ $\Rightarrow (1 - x e^{y}) \frac{dy}{dx} = e^{y}$ $\Rightarrow (2-y) \frac{dy}{dr} = e^y \qquad \dots [From (i)]$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{y}}{2-v}$

Chapter 02: Differentiation

60.
$$xy = 1 + \log y$$

Differentiating both sides w.r.t.*x*, we get
 $x \cdot \frac{dy}{dx} + y \cdot 1 = \frac{1}{y} \cdot \frac{dy}{dx}$
 $\Rightarrow (xy - 1) \frac{dy}{dx} + y^2 = 0$
∴ $k = xy - 1$
61. $\tan^{-1} (x^2 + y^2) = \alpha$
 $\Rightarrow x^2 + x^2 = \tan \alpha$

 $\Rightarrow x^2 + y^2 = \tan \alpha$ Differentiating both sides w.r.t. x, we get

$$2x + 2y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = \frac{-x}{y}$$

62.
$$y = e^{\sin^{-1}(t^2 - 1)}$$
 and $x = e^{\sec^{-1}(\frac{1}{t^2 - 1})} = e^{\cos^{-1}(t^2 - 1)}$
 $\therefore xy = e^{\frac{\pi}{2}} \qquad \dots \left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right]$

Differentiating both sides w.r.t. x, we get

$$x\frac{dy}{dx} + y.1 = 0$$
$$\Rightarrow \frac{dy}{dx} = \frac{-y}{x}$$

- 63. $2x^{2} 3xy + y^{2} + x + 2y 8 = 0$ Differentiating w.r.t. x, we get $4x - 3\left(x \cdot \frac{dy}{dx} + y\right) + 2y\frac{dy}{dx} + 1 + 2\frac{dy}{dx} = 0$ $\Rightarrow (-3x + 2y + 2)\frac{dy}{dx} + 4x - 3y + 1 = 0$ $\Rightarrow \frac{dy}{dx} = \frac{3y - 4x - 1}{2y - 3x + 2}$
- 64. $y \sec x + \tan x + x^2 y = 0$ Differentiating w.r.t. x, we get $\sec x \cdot \frac{dy}{dx} + y \cdot \sec x \tan x + \sec^2 x + y \cdot 2x + x^2 \cdot \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{2xy + \sec^2 x + y \sec x \tan x}{x^2 + \sec x}$ 65. If $y = \sqrt{f(x) + \sqrt{f(x) + \sqrt{f(x) + \dots \infty}}}$, then $\frac{dy}{dx} = \frac{f'(x)}{2y - 1}$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2y-1}$$

66. $x^{y} = e^{x-y}$ Taking logarithm on both sides, we get $y \log x = x - y$ $\Rightarrow y = \frac{x}{1 + \log x}$ $\therefore \quad \frac{dy}{dx} = \frac{(1 + \log x) \cdot 1 - x \left(0 + \frac{1}{x}\right)}{(1 + \log x)^{2}}$

$$=\frac{\log x}{\left(1+\log x\right)^2}$$

$$67. \quad x^p y^q = (x+y)^{p+q}$$

Taking logarithm on both sides, we get p log $x + q \log y = (p + q)\log(x + y)$ Differentiating both sides w.r.t.*x*, we get

$$\frac{p}{x} + \frac{q}{y} \cdot \frac{dy}{dx} = \frac{p+q}{x+y} \left(1 + \frac{dy}{dx}\right)$$
$$\Rightarrow \frac{dy}{dx} = \frac{y}{x}$$

68. $y^{v} = x \sin y$ Taking logarithm on both sides, we get $y \log y = \log x + \log (\sin y)$ Differentiating both sides w.r.t. x, we get $y \cdot \frac{1}{v} \cdot \frac{dy}{dr} + \log y \cdot \frac{dy}{dr} = \frac{1}{r} + \frac{1}{\sin v} \cdot \cos y \cdot \frac{dy}{dr}$ $\Rightarrow \frac{dy}{dx} (1 + \log y - \cot y) = \frac{1}{x}$ $\Rightarrow \frac{dy}{dy} = \frac{1}{r(1 + \log v - \cot v)}$ 69. $\log_{10}\left(\frac{x^2-y^2}{x^2+y^2}\right) = 2$ $\Rightarrow \frac{x^2 - y^2}{x^2 + y^2} = 10^2$ $\Rightarrow x^2 - y^2 = 100 x^2 + 100 y^2$ $\Rightarrow 99x^2 + 101y^2 = 0$ Differentiating w.r.t. x, we get $99(2x) + 101\left(2y\frac{dy}{dx}\right) = 0$ $\Rightarrow \frac{dy}{dr} = -\frac{99x}{101y}$ 70. $\log_{10}\left(\frac{x^3-y^3}{x^3+y^3}\right) = 2$ $\Rightarrow \frac{x^3 - y^3}{x^3 + y^3} = 10^2$ $\Rightarrow x^3 - y^3 = 100 x^3 + 100y^3$ $\Rightarrow 99x^3 = -101y^3 \qquad \dots (i)$ Differentating w.r.t. x, we get $99(3x^2) = -101 (3y^2) \frac{dy}{dx}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-99x^2}{101y^2}$ $\Rightarrow \frac{dy}{dr} = \left(\frac{101y^3}{r}\right) \times \frac{1}{101v^2} \quad \dots [From (i)]$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x}$ 71. $\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = \log a$ $\therefore \qquad \frac{x^2 - y^2}{x^2 + y^2} = \cos(\log a)$

Chapter 02: Differentiation

Differentiating both sides w.r.t. x, we get

$$\frac{(x^2 + y^2)\left(2x - 2y\frac{dy}{dx}\right) - (x^2 - y^2)\left(2x + 2y\frac{dy}{dx}\right)}{(x^2 + y^2)^2} = 0$$

$$\Rightarrow (x^2 + y^2)\left(2x - 2y\frac{dy}{dx}\right) - (x^2 - y^2)\left(2x + 2y\frac{dy}{dx}\right) = 0$$

$$\Rightarrow 4xy^2 - 4x^2y\frac{dy}{dx} = 0$$

$$\Rightarrow 4xy^2 = 4x^2y\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x}$$

72. $\sin y = x \sin(a + y)$

$$\Rightarrow x = \frac{\sin y}{\sin(a+y)}$$

Differentiating both sides w.r.t.x, we get

$$1 = \frac{\sin(a+y) \cdot \cos y \frac{dy}{dx} - \sin y \cdot \cos(a+y) \frac{dy}{dx}}{\sin^2(a+y)}$$
$$\Rightarrow 1 = \frac{\frac{dy}{dx} \cdot \sin(a+y-y)}{\sin^2(a+y)}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

73. $\cos y = x \cos(a + y)$

$$\Rightarrow x = \frac{\cos y}{\cos(a+y)}$$

Differentiating both sides w.r.t. x, we get

$$1 = \frac{-\cos(a+y)\sin y \frac{dy}{dx} + \cos y \sin(a+y) \frac{dy}{dx}}{\cos^2(a+y)}$$
$$\Rightarrow 1 = \frac{\frac{dy}{dx}\sin(a+y-y)}{\cos^2(a+y)}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$$

74. $\sin(xy) + \frac{x}{y} = x^2 - y$

Differentiating both sides w.r.t. x, we get

$$\cos(xy)\left[y+x\frac{\mathrm{d}y}{\mathrm{d}x}\right]+x\left(-\frac{1}{y^2}\right)\frac{\mathrm{d}y}{\mathrm{d}x}+\frac{1}{y}=2x-\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\Rightarrow \left[x \cos(xy) - \frac{x}{y^2} + 1 \right] \frac{dy}{dx} = 2x - \frac{1}{y} - y \cos(xy)$$

$$\Rightarrow \frac{dy}{dx} = \frac{y[2xy - y^2 \cos(xy) - 1]}{xy^2 \cos(xy) + y^2 - x}$$

$$y\sqrt{x^2 + 1} = \log\left(\sqrt{x^2 + 1} - x\right)$$
Differentiating both sides w.r.t. x, we get
$$\frac{dy}{dx} \cdot \sqrt{x^2 + 1} + y \cdot \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x$$

$$= \frac{1}{\sqrt{x^2 + 1} - x} \times \left(\frac{1}{2\sqrt{x^2 + 1}} \cdot 2x - 1\right)$$

$$\Rightarrow \sqrt{x^2 + 1} \cdot \frac{dy}{dx} + \frac{xy}{\sqrt{x^2 + 1}}$$

$$= \frac{1}{\sqrt{x^2 + 1} - x} \times \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$

$$\Rightarrow (x^2 + 1) \frac{dy}{dx} + xy = \sqrt{x^2 + 1} \cdot \frac{-1}{\sqrt{x^2 + 1}}$$

$$\Rightarrow (x^2 + 1) \frac{dy}{dx} + xy + 1 = 0$$

75.

76.
$$xe^{xy} = y + \sin^2 x$$
 ...(i)
When $x = 0$, $y = 0$
Differentiating (i) w.r.t. x, we get
 $e^{xy} + xe^{xy} \left(x \frac{dy}{dx} + y \right) = \frac{dy}{dx} + 2 \sin x \cos x$
Putting $x = 0, y = 0$, we get
 $\frac{dy}{dx} = 1$

77. $2^{x} + 2^{y} = 2^{x+y}$ Differentiating both sides w.r.t. *x*, we get $2^{x}(\log 2) + 2^{y}(\log 2) \frac{dy}{dx} = 2^{(x+y)} \cdot (\log 2) \left(1 + \frac{dy}{dx}\right)$ $\Rightarrow 2^{x} + 2^{y} \frac{dy}{dx} = 2^{x+y} + 2^{x+y} \left(\frac{dy}{dx}\right)$ $\Rightarrow \frac{dy}{dx} (2^{y} - 2^{x+y}) = 2^{x+y} - 2^{x}$ $\Rightarrow \frac{dy}{dx} = \frac{2^{x+y} - 2^{x}}{2^{y} - 2^{x+y}}$ $\therefore \qquad \left(\frac{dy}{dx}\right)_{x=y=1} = \frac{2^{2} - 2}{2 - 2^{2}} = \frac{2}{-2} = -1$

78.
$$\sin y + e^{-x\cos y} = e$$

Differentiating both sides w.r.t. x, we get
 $\cos y \frac{dy}{dx} + e^{-x\cos y} \left\{ (-x) \left(-\sin y \frac{dy}{dx} \right) + \cos y(-1) \right\} = 0$
 $\Rightarrow \cos y \frac{dy}{dx} + x \sin y e^{-x\cos y} \frac{dy}{dx} - \cos y e^{-x\cos y} = 0$
 $\Rightarrow \frac{dy}{dx} = \frac{\cos y e^{-x\cos y}}{\cos y + x \sin y e^{-x\cos y}}$
 $\therefore \qquad \left(\frac{dy}{dx}\right)_{(1,\pi)} = \frac{\cos \pi e^{-\cos \pi}}{\cos \pi + \sin \pi e^{-\cos \pi}} = \frac{(-1)e}{-1+0} = e$
79. $x^{2x} - 2x^x \cot y - 1 = 0$ (i)
Putting $x = 1$ in (i), we get
 $1 - 2\cot y - 1 = 0 \Rightarrow \cot y = 0 \Rightarrow y = \frac{\pi}{2}$
Differentiating (i) w.r.t. x, we get
 $2x^{2x} (1 + \log x) - 2x^x(1 + \log x) \cot y$
 $+ 2x^x \csc^2 y. \frac{dy}{dx} = 0$
Putting $x = 1$ and $y = \frac{\pi}{2}$, we get
 $2 - 0 + 2\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -1$
80. Let $y = x^6$ and $z = x^3$
 $\therefore \qquad \frac{dy}{dx} = 6x^5$ and $\frac{dz}{dx} = 3x^2$
 $\therefore \qquad \frac{dy}{dx} = \frac{dx}{3x^2} = \frac{6x^5}{3x^2} = 2x^3$
81. Let $y = \sin x$ and $z = \cos x$
 $\therefore \qquad \frac{dy}{dx} = \cos x$ and $\frac{dz}{dx} = -\sin x$
 $\therefore \qquad \frac{dy}{dx} = \frac{dy}{dx} = \frac{\cos x}{-\sin x} = -\cot x$
82. Let $y = \sin^2 x$ and $z = \cos^2 x$
 $\therefore \qquad \frac{dy}{dx} = \sin 2x$ and $\frac{dz}{dx} = -\sin 2x$
 $\therefore \qquad \frac{dy}{dx} = \sin 2x$ and $\frac{dz}{dx} = -\sin 2x$
 $\therefore \qquad \frac{dy}{dx} = \sin 2x$ and $\frac{dz}{dx} = -\sin 2x$
 $\therefore \qquad \frac{dy}{dx} = \frac{dy}{dx} = -1$

83. Let
$$y = \cos^3 x$$
 and $z = \sin^3 x$

$$\therefore \quad \frac{dy}{dx} = -3 \cos^2 x \sin x$$
 and $\frac{dz}{dx} = 3 \sin^2 x \cos x$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{-\cos x}{\sin x} = -\cot x$$
84. Let $y = \log_{10} x$ and $z = x^2$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{x \log_e 10} \text{ and } \frac{dz}{dx} = 2x$$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{1}{2x^2 \log_e 10} = \frac{1}{2x^2} \log_{10} e$$
85. Let $y = \log_{10} x$ and $z = \log_x 10$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{x \log_{10}}$$
and $\frac{dz}{dx} = \log_1 0 \cdot \left[-\frac{1}{(\log x)^2} \cdot \frac{1}{x} \right] = -\frac{\log_1 0}{x (\log x)^2}$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = -\frac{\frac{1}{x \log_{10}}}{-\frac{\log_{10} 0}{x (\log x)^2}} = -\frac{(\log x)^2}{(\log_{10})^2} = -(\log_{10} x)^2$$
86. $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$

$$\therefore \quad \frac{dy}{d\theta} = -3a \cos^2 \theta \cdot \sin \theta$$
and $\frac{dy}{d\theta} = 3a \sin^2 \theta \cdot \cos \theta$

$$\therefore \quad \frac{dy}{dx} = -\tan \theta$$

$$\therefore \quad 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \tan^2 \theta = \sec^2 \theta$$
87. $x = \log(1 + t^2)$ and $y = t - \tan^{-1} t$

$$\therefore \quad \frac{dx}{dt} = \frac{2t}{1 + t^2}$$
 and $\frac{dy}{dt} = 1 - \frac{1}{1 + t^2} = \frac{t^2}{1 + t^2}$

$$\therefore \quad \frac{dy}{dt} = \frac{dt}{\frac{dx}{dt}} = \frac{t}{2}$$

$$\qquad \text{Since, } x = \log(1 + t^2)$$

$$\qquad \text{Since, } x = \log(1 + t^2)$$

442

88.
$$x = a(t - \sin t)$$
 and $y = a(1 - \cos t)$
 $\therefore \frac{dx}{dt} = a(1 - \cos t)$ and $\frac{dy}{dt} = a \sin t$
 $\therefore \frac{dy}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a \sin t}{a(1 - \cos t)} = \frac{2a \sin \frac{t}{2} \cos \frac{t}{2}}{2a \sin^2 \frac{t}{2}}$
 $= \cot \frac{t}{2}$
89. $x = 2 \cos \theta - \cos 2\theta$ and $y = 2 \sin \theta - \sin 2\theta$
 $\therefore \frac{dx}{d\theta} = -2 \sin \theta + 2 \sin 2\theta$ and
 $\frac{dy}{d\theta} = 2 \cos \theta - 2 \cos 2\theta$
 $\therefore \frac{dy}{dt} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dt}} = \frac{\cos \theta - \cos 2\theta}{\sin 2\theta - \sin \theta}$
 $= \frac{2 \sin \frac{3\theta}{2} \sin \frac{\theta}{2}}{2 \cos \frac{3\theta}{2} \sin \frac{\theta}{2}}$
 $= \tan \frac{3\theta}{2}$

90.
$$\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}$$

Putting $t = \tan \theta$ in both equations, we get
 $\sin x = \frac{2 \tan \theta}{1 + \tan^2 \theta}$
 $\Rightarrow \sin x = \sin 2\theta$
 $\Rightarrow x = 2\theta$
 $\therefore \quad \frac{dx}{d\theta} = 2$
 $\tan y = \frac{2 \tan \theta}{1 - \tan^2 \theta}$
 $\Rightarrow \tan y = \tan 2\theta$
 $\Rightarrow y = 2\theta$
 $\therefore \quad \frac{dy}{d\theta} = 2$
 $\frac{dy}{d\theta} = 2$

Chapter 02: Differentiation 91. Let $y = (\log x)^x$ and $z = \log x$ $\log y = x \log(\log x)$ Differentiating both sides w.r.t.x, we get $\frac{1}{v} \cdot \frac{dy}{dr} = \log(\log x) + \frac{1}{\log r}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = (\log x)^x \left[\log(\log x) + \frac{1}{\log x} \right]$ $z = \log x$ $\therefore \qquad \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{x}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}z}} = x(\log x)^x \left[\log(\log x) + \frac{1}{\log x}\right]$ 92. Let $y = \tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$ and $z = \sin^{-1} x$ Put $x = \sin \theta \Rightarrow \theta = \sin^{-1}x$ $\therefore \qquad y = \tan^{-1}\left(\frac{\sin\theta}{1+\cos\theta}\right)$ $= \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2}$ $=\frac{\sin^{-1}x}{2}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{1-x^2}} \text{ and } \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}z}} = \frac{1}{2}$ 93. Let $u = \cos^{-1} (2x^2 - 1)$ and $v = \cos^{-1} x$ Putting $x = \cos \theta$ in both equations, we get $u = \cos^{-1} \left(2 \cos^2 \theta - 1 \right)$ $u = \cos^{-1}(\cos 2\theta)$ $= 2\theta$ $v = \cos^{-1}(\cos \theta)$ $= \theta$ $\therefore \quad \frac{\mathrm{d}u}{\mathrm{d}\theta} = 2 \text{ and } \frac{\mathrm{d}v}{\mathrm{d}\theta} = 1$ $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{v}} = \frac{\left(\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\theta}\right)}{\left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\theta}\right)} = 2$

MHT-CET Triumph Maths (Hints) Let $y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ and $z = \tan^{-1} x$ 94. Put $x = \tan \theta \Longrightarrow \theta = \tan^{-1} x$ $y = \tan^{-1}\left(\frac{\sec\theta - 1}{\tan\theta}\right)$... $=\tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right)$ $=\tan^{-1}\left(\tan\frac{\theta}{2}\right)=\frac{\theta}{2}=\frac{\tan^{-1}x}{2}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2(1+x^2)} \text{ and } \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{1+x^2}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{1}{\mathrm{d}x}}{\mathrm{d}z} = \frac{1}{2}$ Let $y = \sin^{-1}(2x\sqrt{1-x^2})$ 95. and $z = \sin^{-1}(3x - 4x^3)$ Put $x = \sin \theta \Rightarrow \theta = \sin^{-1} x$ $v = \sin^{-1}(2\sin\theta\sqrt{1-\sin^2\theta})$ and *.*.. $z = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$ $\Rightarrow y = \sin^{-1}(\sin 2\theta)$ and $z = \sin^{-1}(\sin 3\theta)$ $\Rightarrow y = 2\theta = 2 \sin^{-1}x$ and $z = 3\theta = 3\sin^{-1}x$ $\frac{dy}{dx} = \frac{2}{\sqrt{1-r^2}} \text{ and } \frac{dz}{dx} = \frac{3}{\sqrt{1-r^2}}$ *.*.. $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}z} = \frac{2}{3}$ 96. Let $y = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$ and $z = \sin^{-1}(3x - 4x^3)$ Put $x = \sin \theta \Rightarrow \theta = \sin^{-1} x$ $y = \tan^{-1}\left(\frac{\sin\theta}{\sqrt{1-\sin^2\theta}}\right)$... $= \tan^{-1} (\tan \theta) = \theta = \sin^{-1} x$ and $z = \sin^{-1} (3\sin \theta - 4\sin^3 \theta)$ $=\sin^{-1}(\sin 3\theta)=3\theta=3\sin^{-1}x$ $\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}z} = \frac{1}{\sqrt{1-x^2}} = \frac{1}{3}$ *.*.. dx

97. $f(x) = x^{\tan^{-1}x}$ *.*.. $\log f(x) = \tan^{-1} x \log x$ $\therefore \qquad \frac{1}{f(x)} f'(x) = \frac{\log x}{1+x^2} + \frac{\tan^{-1} x}{x}$ $\Rightarrow \mathbf{f}'(x) = x^{\tan^{-1}x} \left[\frac{\log x}{1+r^2} + \frac{\tan^{-1}x}{r} \right]$ $g(x) = \sec^{-1}\left(\frac{1}{2r^2 - 1}\right)$ $g(x) = \cos^{-1}(2x^2 - 1)$ *.*.. Put $x = \cos\theta \implies \theta = \cos^{-1}x$ $g(x) = \cos^{-1}(2\cos^2\theta - 1)$ *.*.. $=\cos^{-1}(\cos 2\theta)$ $= 2\theta$ $g(x) = 2\cos^{-1}x$ *.*.. $g'(x) = \frac{-2}{\sqrt{1-r^2}}$ *.*.. Now. $\frac{f'(x)}{g'(x)} = \frac{x^{\tan^{-1}x} \left[\frac{\log x}{1+x^2} + \frac{\tan^{-1}x}{x}\right]}{\frac{-2}{\sqrt{1-x^2}}}$ $= -\frac{1}{2}\sqrt{1-x^{2}}x^{\tan^{-1}x}\left[\frac{\log x}{1+x^{2}} + \frac{\tan^{-1}x}{x}\right]$ 98. x = ct and $y = \frac{c}{t}$ $\therefore \quad \frac{dx}{dt} = c \text{ and } \frac{dy}{dt} = \frac{-c}{t^2}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{-\mathrm{c}}{\mathrm{t}^2}}{\frac{-\mathrm{c}}{\mathrm{c}}} = \frac{-\mathrm{l}}{\mathrm{t}^2}$ $\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x=0)} = \frac{-1}{2^2} = \frac{-1}{4}$ 99. $y = a \sin^3 \theta$ and $x = a \cos^3 \theta$ $\therefore \qquad \frac{dy}{d\theta} = 3a\sin^2\theta\cos\theta \text{ and } \frac{dx}{d\theta} = -3a\cos^2\theta\sin\theta$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}x}} = \frac{-\sin\theta}{\cos\theta} = -\tan\theta$ $\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\theta=\frac{\pi}{2}} = -\tan \frac{\pi}{3} = -\sqrt{3}$

100. $x = e^{\theta}(\sin\theta - \cos\theta)$ $\therefore \frac{dx}{d\theta} = e^{\theta}(\cos\theta + \sin\theta) + e^{\theta}(\sin\theta - \cos\theta)$ $= 2e^{\theta}\sin\theta$ $y = e^{\theta}(\sin\theta + \cos\theta)$ $\therefore \frac{dy}{d\theta} = e^{\theta}(\cos\theta - \sin\theta) + e^{\theta}(\sin\theta + \cos\theta)$ $= 2e^{\theta}\cos\theta$ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2e^{\theta}\cos\theta}{2e^{\theta}\sin\theta} = \cot\theta$ $\therefore \frac{dy}{dx}_{\left(\theta = \frac{\pi}{4}\right)} = 1$

101. Let
$$y = \log(\sec \theta + \tan \theta)$$
 and $z = \sec \theta$

$$\therefore \quad \frac{dy}{d\theta} = \frac{1}{\sec \theta + \tan \theta} \cdot (\sec \theta \tan \theta + \sec^2 \theta) = \sec \theta$$
and $\frac{dz}{d\theta} = \sec \theta \tan \theta$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{d\theta}}{\frac{dz}{d\theta}} = \frac{\sec \theta}{\sec \theta \tan \theta} = \frac{1}{\tan \theta} = \cot \theta$$

$$\therefore \quad \left(\frac{dy}{dz}\right)_{\theta = \frac{\pi}{4}} = \cot \frac{\pi}{4} = 1$$
102. Let $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$ and $z = \sqrt{1 - x^2}$

$$\therefore \quad y = \cos^{-1}(2x^2 - 1)$$
Put $x = \cos \theta \Rightarrow \theta = \cos^{-1}x$

$$\therefore \quad y = \cos^{-1}(2\cos^2\theta - 1)$$

$$= \cos^{-1}(\cos 2\theta) = 2\theta = 2\cos^{-1}x$$

$$\therefore \quad \frac{dy}{dx} = \frac{-2}{\sqrt{1 - x^2}}$$
and $\frac{dz}{dx} = \frac{-2x}{2\sqrt{1 - x^2}} = \frac{-x}{\sqrt{1 - x^2}}$

$$\therefore \quad \frac{dy}{dz} = \frac{\frac{dy}{dz}}{\frac{dz}{dx}} = \frac{2}{x}$$

 $\left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)_{\left(x=\frac{1}{2}\right)}$

...

Chapter 02: Differentiation 103. Let $y = f(\tan x)$ and $z = g(\sec x)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}'(\tan x).\mathrm{sec}^2 x$ and $\frac{dz}{dx} = g'(\sec x) \cdot \sec x \tan x$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}z}} = \frac{\mathrm{f}'(\tan x)}{\mathrm{g}'(\sec x)}.\mathrm{cosec}\,x$ $\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}z}\right)_{\left(x=\frac{\pi}{4}\right)} = \frac{f'(1)}{g'(\sqrt{2})} \cdot \sqrt{2} = \frac{2\sqrt{2}}{4} = \frac{1}{\sqrt{2}}$ 104. $y = A \sin 5x$...(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 5 \mathrm{A} \cos 5x$ $\therefore \quad \frac{d^2 y}{dx^2} = -25 \text{ A} \sin 5x$ $\Rightarrow \frac{d^2 y}{dr^2} = -25 y \qquad \dots [From (i)]$ 105. $x = A \cos 4t + B \sin 4t$ $\therefore \quad \frac{\mathrm{d}x}{\mathrm{d}t} = -4\mathrm{A}\sin 4t + 4\mathrm{B}\cos 4t$ $\therefore \quad \frac{d^2x}{dt^2} = -16A\cos 4t - 16B\sin 4t$ $= -16 (A \cos 4t + B \sin 4t)$ = -16x106. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\Rightarrow b^2 x^2 + a^2 v^2 = a^2 b^2$

Differentiating w.r.t x, we get

 $2b^2x + 2a^2y \frac{dy}{dr} = 0$

 $\Rightarrow 2a^2y \frac{dy}{dx} = -2b^2x$

 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\mathrm{b}^2}{\mathrm{a}^2} \left(\frac{x}{\mathrm{v}}\right)$

445

MHT-CET Triumph Maths (Hints) $\Rightarrow \frac{d^2 y}{dx^2} = \frac{-b^2}{a^2} \left| \frac{y - x \frac{dy}{dx}}{y^2} \right|$ $=\frac{-b^2}{a^2v^2}\left[y-x\left(\frac{-b^2x}{a^2v}\right)\right]$ $= \frac{-b^2}{a^2 v^2} \left[\frac{a^2 y^2 + b^2 x^2}{a^2 v} \right]$ $=\frac{-b^2}{a^2 v^2} \times \frac{a^2 b^2}{a^2 v}$ $=\frac{-b^4}{a^2v^3}$ 107. $y = \log(\log x)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{r\log x}$ $\therefore \quad \frac{d^2 y}{dx} = \frac{-1}{\left(x \log x\right)^2} \left[1 + \log x\right]$ 108. Let $y = \frac{e^x + 1}{e^x} = 1 + \frac{1}{e^x} = 1 + e^{-x}$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}^{-x}$ $\therefore \qquad \frac{\mathrm{d}^2 y}{\mathrm{d}^2 x} = \mathrm{e}^{-x} = \frac{1}{x}$ 109. $y = (\tan^{-1} x)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\tan^{-1}x}{1+x^2}$ $\Rightarrow \frac{dy}{dx}(1+x^2) = 2\tan^{-1}x$ $\therefore \quad \frac{dy}{dr}(2x) + (1+x^2)\frac{d^2y}{dr^2} = \frac{2}{1+r^2}$ $\Rightarrow (x^2+1)^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2x(x^2+1)\frac{\mathrm{d}y}{\mathrm{d}x} = 2$ 110. $y = (\sin^{-1} x)^2$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sin^{-1}x}{\sqrt{1-x^2}}$(i)

 $dx \quad \sqrt{1 - x^{2}}$ $\therefore \quad \frac{d^{2}y}{dx^{2}} = 2\left[\frac{1 + x.\sin^{-1}x.(1 - x^{2})^{-1/2}}{1 - x^{2}}\right]$ $\Rightarrow (1 - x^{2})\frac{d^{2}y}{dx^{2}} = 2\left[1 + x.\sin^{-1}x.(1 - x^{2})^{-1/2}\right]$ $\Rightarrow (1 - x^{2})\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} = 2 \qquad \dots [From (i)]$

111. $y = \frac{(\sin^{-1} x)^2}{2}$ $\therefore \quad \frac{dy}{dx} = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$ $\Rightarrow \sqrt{1-x^2} \frac{dy}{dx} = \sin^{-1}x$ $\Rightarrow \sqrt{1-x^2} \frac{d^2 y}{dx^2} + \frac{dy}{dx} \left(\frac{-x}{\sqrt{1-x^2}} \right) = \frac{1}{\sqrt{1-x^2}}$ $\Rightarrow (1-x^2)y_2 - xy_1 =$ 112. $\sqrt{y} = \cos^{-1}x \implies y = (\cos^{-1}x)^2$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}r} = -\frac{2\cos^{-1}x}{\sqrt{1-x^2}}$ $\Rightarrow \frac{d^2 y}{dx^2} = \frac{2 - \frac{2x \cos^{-1} x}{\sqrt{1 - x^2}}}{1 - x^2}$ $\Rightarrow \frac{d^2 y}{dx^2} = \frac{2 + x \frac{dy}{dx}}{1 - x^2}$ $\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2$ 113. $\sqrt{r} = a \cdot e^{\theta(\cot \alpha)} \implies r = a^2 \cdot e^{2\theta(\cot \alpha)}$ $\therefore \qquad \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\alpha} = a^2 \cdot e^{2\theta(\cot\alpha)} \cdot 2 \cot\alpha$ $\Rightarrow \frac{dr}{d\alpha} = 2a^2 \cot \alpha . e^{2\theta(\cot \alpha)}$ $\therefore \qquad \frac{d^2 r}{d\theta^2} = 4a^2 \cot^2 \alpha . e^{2\theta(\cot \alpha)}$ $\therefore \frac{d^2r}{d\Omega^2} - 4r \cot^2 \alpha$ $=4a^2 \cot^2 \alpha . e^{2\theta(\cot \alpha)} - 4a^2 \cot^2 \alpha . e^{2\theta(\cot \alpha)} = 0$ 114. $y = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1} \left(\sqrt{\frac{a - b}{a + b}} \tan \frac{x}{2} \right)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{a^2 - b^2}} \frac{1}{1 + \left(\frac{a - b}{a + b}\right) \tan^2 \frac{x}{2}}$ $\times \sqrt{\frac{a-b}{a+b}} \sec^2 \frac{x}{2} \left(\frac{1}{2}\right)$ $= \frac{1}{a+b} \times \frac{\sec^2 \frac{x}{2}}{1 + \left(\frac{a-b}{a+b}\right) \tan^2 \frac{x}{2}}$

$$\Rightarrow \frac{dy}{dx} = \frac{\sec^2 \frac{x}{2}}{(a+b) + (a-b)\tan^2 \frac{x}{2}}$$

$$\begin{bmatrix} (a+b) + (a-b)\tan^2 \frac{x}{2} \\ \frac{1}{2} \left[(a+b) + (a-b)\tan^2 \frac{x}{2} \right] \left[\sec \frac{x}{2} \sec \frac{x}{2} \tan \frac{x}{2} \right] \\ \frac{1}{2} \left[(a+b) + (a-b)\tan^2 \frac{x}{2} \right]^2 \\ (a+b+a-b)(\sqrt{2} \times \sqrt{2} \times 1) \\ \left(\frac{d^2 y}{dx^2} \right)_{\left(0,\frac{\pi}{4}\right)} = \frac{-(\sqrt{2})^2 \left[(a-b)(\sqrt{2})^2 \right]}{(a+b+a-b)^2} \\ = \frac{4a-4(a-b)}{4a^2} \\ = \frac{4b}{4a^2} = \frac{b}{a^2} \end{bmatrix}$$
115. Here, $\frac{dx}{ds} = 1$, $\frac{dy}{ds} = 2$ (i)
and $\frac{d^2x}{ds^2} = 0$, $\frac{d^2y}{ds^2} = 0$ (ii)
Now, $u = x^2 + y^2$
 $\therefore \qquad \frac{du}{ds} = 2x$. $\frac{dx}{ds} + 2y$. $\frac{dy}{ds}$
 $\therefore \qquad \frac{d^2u}{ds^2} = 2\left(\frac{dx}{ds}\right)^2 + 2x\left(\frac{d^2x}{ds^2}\right) + 2\left(\frac{dy}{ds}\right)^2 + 2y\left(\frac{d^2y}{ds^2}\right)$
From (i) and (ii), we get
 $\frac{d^2u}{ds^2} = 2(1) + 0 + 2(4) + 0 = 10$
116. $x = at^2$
 $\therefore \qquad \frac{dy}{dt} = 2a$ (i)
 $\therefore \qquad \frac{dy}{dy} = \frac{2at}{2a}$ (i)
 $\therefore \qquad \frac{d^2x}{dy} = \frac{2at}{2a}$ (i)
 $\therefore \qquad \frac{d^2x}{dy^2} = \frac{dt}{dy}$

Chapter 02: Differentiation 117. x = f(t) and y = g(t) $\therefore \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{f}'(t) \text{ and } \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{g}'(t)$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}x} = \frac{\mathrm{g}'(\mathrm{t})}{\mathrm{f}'(\mathrm{t})}$ $\therefore \qquad \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{f'(t) \cdot g''(t) - g'(t) \cdot f''(t)}{\left[f'(t)\right]^2} \cdot \frac{\mathrm{d} t}{\mathrm{d} x}$ $= \frac{f'(t).g''(t) - g'(t).f''(t)}{[f'(t)]^2} \cdot \frac{1}{f'(x)}$ $= \frac{f'(t).g''(t) - g'(t)f''(t)}{[f'(t)]^3}$ 118. $y = (x + \sqrt{1 + x^2})^n$ (i) ∴ $\frac{dy}{dx} = n(x + \sqrt{1 + x^2})^{n-1} \cdot \left(1 + \frac{x}{\sqrt{1 + x^2}}\right)^{n-1}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{n\left(x + \sqrt{1 + x^2}\right)^n}{\sqrt{1 + x^2}}$ $\Rightarrow \left(\sqrt{1+x^2}\right) \frac{dy}{dx} = n(x+\sqrt{1+x^2})^n$ Again, differentiating both sides w.r.t. x, we get $\sqrt{1+x^2} \cdot \frac{d^2 y}{dx^2} + \frac{dy}{dx} \cdot \left(\frac{x}{\sqrt{1+x^2}}\right)$ $= n^{2} (x + \sqrt{1 + x^{2}})^{n-1} \left(1 + \frac{x}{\sqrt{1 + x^{2}}} \right)$ $\Rightarrow (1+x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = n^2 (x + \sqrt{1+x^2})^n$ $\Rightarrow (1+x^2) \frac{d^2 y}{dr^2} + x \frac{dy}{dr} = n^2 y \quad \dots [From (i)]$ 119. $x^2y^3 = (x+y)^5$ Taking logarithm on both sides, we get $2\log x + 3\log y = 5\log(x + y)$ Differentiating both sides w.r.t. x, we get $\frac{2}{r} + \frac{3}{v} \cdot \frac{dy}{dr} = \frac{5}{r+v} \left(1 + \frac{dy}{dr}\right)$ $\Rightarrow \frac{dy}{dr} \left(\frac{3}{v} - \frac{5}{r+v} \right) = \frac{5}{r+v} - \frac{2}{r}$

 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} \qquad \dots (\mathrm{i})$

$$\therefore \qquad \frac{d^2 y}{dx^2} = \frac{x \frac{dy}{dx} - y}{x^2}$$
$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{x \left(\frac{y}{x}\right) - y}{x^2} \qquad \dots [From (i)]$$
$$\Rightarrow \frac{d^2 y}{dx^2} = 0$$

120. $x = \sin t$ and $y = \sin pt$

$$\therefore \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \cos t$$

and
$$\frac{dy}{dt} = p \cos pt$$

$$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\mathrm{p}\cos\mathrm{pt}}{\mathrm{cos}\,\mathrm{t}}$$

$$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{p\sqrt{1-y^2}}{\sqrt{1-x^2}} \qquad \dots (i)$$

Again, differentiating w.r.t. *x*, we get

$$\frac{d^2 y}{dx^2} = \frac{p\sqrt{1-x^2} \left(\frac{-2y}{2\sqrt{1-y^2}}\right) \frac{dy}{dx} - p\sqrt{1-y^2} \left(\frac{-2x}{2\sqrt{1-x^2}}\right)}{\left(\sqrt{1-x^2}\right)^2}$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} = -py \frac{\sqrt{1-x^2}}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} + px \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} = -p^2 y + x \frac{dy}{dx} \qquad \dots [From (i)]$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + p^2 y = 0$$

121. $x = \cos \theta$ and $y = \sin 5\theta$
 $dx = x + y + y + y = 0$

$$\therefore \quad \frac{dy}{d\theta} = -\sin\theta \text{ and } \frac{y}{d\theta} = 5\cos 5\theta$$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\frac{5\cos 5\theta}{\sin \theta}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{5\sqrt{1-y^2}}{\sqrt{1-x^2}} \qquad \dots (i)$$

$$\therefore \quad \frac{d^2 y}{dx^2} = \frac{-5\sqrt{1-x^2} \left(\frac{-2y}{2\sqrt{1-y^2}}\right) \frac{dy}{dx} + 5\sqrt{1-y^2} \left(\frac{-2x}{2\sqrt{1-x^2}}\right)^2}{(\sqrt{1-x^2})^2}$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} = \frac{5y\sqrt{1-x^2}}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} - \frac{5x\sqrt{1-y^2}}{\sqrt{1-x^2}}$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} = -25y + x \frac{dy}{dx} \quad \dots [From (i)]$$

$$\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = -25y$$
122. $y = e^{\sqrt{x}} + e^{-\sqrt{x}}$

$$\therefore \quad \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{2\sqrt{x}} - \frac{e^{-\sqrt{x}}}{2\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \left(e^{\sqrt{x}} - e^{-\sqrt{x}} \right)$$

$$\therefore \quad \frac{d^2 y}{dx^2} = \frac{1}{2\sqrt{x}} \left(\frac{e^{\sqrt{x}}}{2\sqrt{x}} + \frac{e^{-\sqrt{x}}}{2\sqrt{x}} \right) + \frac{(e^{\sqrt{x}} - e^{-\sqrt{x}})}{2(2x^{3/2})}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{4x} - \frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{4x\sqrt{x}}$$

$$\therefore \quad x \frac{d^2 y}{dx^2} + \frac{1}{2} \cdot \frac{dy}{dx} = x \left(\frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{4x\sqrt{x}} - \frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{4\sqrt{x}} \right)$$

$$= \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{4}$$

$$\therefore \quad x \frac{d^2 y}{dx^2} + \frac{1}{2} \cdot \frac{dy}{dx} = \frac{1}{4} y \quad \dots [From (i)]$$
123. $x = 2at^2$ and $y = at^4$

$$\therefore \quad \frac{dx}{dt} = 4at$$
 and $\frac{dy}{dt} = 4at^3$

$$\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = t^2$$

$$\therefore \qquad \frac{d^2 y}{dx^2} = 2t. \frac{dt}{dx} = 2t. \frac{1}{4at} = \frac{1}{2a}$$
$$\therefore \qquad \left(\frac{d^2 y}{dx^2}\right)_{(t=2)} = \frac{1}{2a}$$

124. $x = a \sin \theta$ and $y = b \cos \theta$ $\therefore \quad \frac{dx}{d\theta} = a \cos \theta$ and $\frac{dy}{d\theta} = -b \sin \theta$ $\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-b}{a} \tan \theta$ $\therefore \quad \frac{d^2 y}{dx^2} = \frac{-b}{a} \sec^2 \theta \cdot \frac{d\theta}{dx} = \frac{-b}{a^2} \sec^3 \theta$ $\therefore \quad \left(\frac{d^2 y}{dx^2}\right)_{\left(\theta = \frac{\pi}{4}\right)} = \frac{-b}{a^2} \sec^3 \frac{\pi}{4}$ $= -2\sqrt{2}\frac{b}{a^2}$

125. $y = x^3 \log \log_e(1+x)$

$$\therefore \qquad y' = 3x^2 \log \log_e (1+x) + \frac{x^3}{\log_e (1+x)} \cdot \frac{1}{1+x}$$
$$\therefore \qquad y'' = 6x \log \log_e (1+x) + \frac{3x^2}{\log_e (1+x)} \cdot \frac{1}{(1+x)}$$
$$+ \left[\frac{(1+x)\log_e (1+x) \cdot 3x^2 - x^3 \left[(1+x) \cdot \frac{1}{1+x} + \log_e (1+x) \right]}{(1+x)^2 \left[\log_e (1+x) \right]^2} \right]$$

$$\therefore \quad y^{\prime\prime}(0) = 0$$

126. At (1, 1),
$$1 = e^{t} \sin t$$
 and $1 = e^{t} \cos t$
 \therefore tan $t = 1 \Rightarrow t = \frac{\pi}{4}$
Now, $x = e^{t} \sin t$ and $y = e^{t} \cos t$
 $\therefore \frac{dx}{dt} = e^{t} (\sin t + \cos t)$ and $\frac{dy}{dt} = e^{t} (\cos t - \sin t)$
 $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t - \sin t}{\cos t + \sin t}$
 $\therefore \frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{\cos t - \sin t}{\cos t + \sin t}\right) \frac{dt}{dx}$
 $= \left[\frac{(\cos t + \sin t)(-\sin t - \cos t) - (\cos t - \sin t)(-\sin t + \cos t)}{(\cos t + \sin t)^{2}}\right] \frac{dt}{dx}$
 $= \frac{-2}{(\cos t + \sin t)^{2}} \cdot \frac{1}{e^{t} (\sin t + \cos t)}$

$$\begin{aligned} = \frac{-2}{(e^{t} \sin t + e^{t} \cos t)} \cdot \frac{1}{(\cos t + \sin t)^{2}} \\ = \frac{-2}{x + y} \cdot \frac{1}{(\cos t + \sin t)^{2}} \\ \therefore \quad \left(\frac{d^{2}y}{dx^{2}}\right)_{(1,1)} = \frac{-2}{1 + 1} \cdot \frac{1}{\left(\cos \frac{\pi}{4} + \sin \frac{\pi}{4}\right)^{2}} = \frac{-1}{2} \\ 127. \quad At \left(\frac{3}{2}\sqrt{2}, 2\sqrt{2}\right) \\ \cos t = \frac{1}{\sqrt{2}} \text{ and } \sin t = \frac{1}{\sqrt{2}} \\ \therefore \quad \tan t = 1 \Rightarrow t = \frac{\pi}{4} \\ \text{Now, } x = 3\cos t \text{ and } y = 4\sin t \\ \therefore \quad \frac{dx}{dt} = -3\sin t \text{ and } \frac{dy}{dt} = 4\cos t \\ \therefore \quad \frac{dy}{dt} = \frac{dy}{dt} = -\frac{4}{3}\cot t \\ \therefore \quad \frac{d^{2}y}{dx^{2}} = \frac{4}{3}\operatorname{cosec^{2}t} \frac{dt}{dx} = \frac{4}{3}\operatorname{cosec^{2}t} \times -\frac{1}{3\sin t} \\ \therefore \quad \left(\frac{d^{2}y}{dx^{2}}\right)_{\left(\frac{3}{2}\sqrt{2},2\sqrt{2}\right)} = \frac{4}{3}\operatorname{cosec^{2}(\pi/4)} \times \frac{-1}{3\sin(\pi/4)} \\ = \frac{-8\sqrt{2}}{9} \\ 128. \quad f(x) = \frac{x^{2} - ax + 1}{x^{2} + ax + 1} \\ \therefore \quad f'(x) = \frac{(x^{2} + ax + 1)(2x - a) - (x^{2} - ax + 1)(2x + a)}{(x^{2} + ax + 1)^{2}} \\ \Rightarrow f'(x) = \frac{2a(x^{2} - 1)}{(x^{2} + ax + 1)^{2}} \\ \therefore \quad f''(x) \\ = \frac{4ax(x^{2} + ax + 1)^{2} - 4a(x^{2} - 1)(2x + a)(x^{2} + ax + 1)}{(x^{2} + ax + 1)^{4}} \\ \Rightarrow f''(x) = \frac{4a\left[x(x^{2} + ax + 1) - (x^{2} - 1)(2x + a)\right]}{(x^{2} + ax + 1)^{3}} \\ \therefore \quad f''(1) = 0, f''(1) = \frac{4a}{(2 + a)^{2}} \operatorname{and} f''(-1) = -\frac{4a}{(2 - a)^{2}} \\ \vdots \quad (2 + a)^{2} f''(1) + (2 - a)^{2} f''(-1) = 0 \end{aligned}$$

MHT-CET Triumph Maths (Hints) $129. \quad y = \frac{a^{\cos^{-1}x}}{1 + a^{\cos^{-1}x}} \text{ and } z = a^{\cos^{-1}x} \Rightarrow y = \frac{z}{1 + z}$ $\therefore \quad \frac{dy}{dz} = \frac{(1 + z)1 - z(1)}{(1 + z)^2} = \frac{1}{(1 + z)^2} = \frac{1}{(1 + a^{\cos^{-1}x})^2}$ $130. \quad \text{Let } f(x) = \cos^{-1}\left(\sin\sqrt{\frac{1 + x}{2}}\right) + x^x$ $= \cos^{-1}\left[\cos\left(\frac{\pi}{2} - \sqrt{\frac{1 + x}{2}}\right)\right] + x^x$ $= \frac{\pi}{2} - \sqrt{\frac{1 + x}{2}} + x^x$ $\therefore \quad f'(x) = -\frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{1 + x}} + x^x (1 + \log x)$ $\therefore \quad f'(1) = -\frac{1}{4} + 1 = \frac{3}{4}$

131. Since, g(x) is the inverse of f(x).

$$\therefore \quad \log(x) = x$$

$$\Rightarrow \frac{d}{dx} [fog(x)] = \frac{d}{dx} (x)$$

$$\Rightarrow f'[g(x)].g'(x) = 1$$

$$\Rightarrow \frac{1}{1 + [g(x)]^3} .g'(x) = 1$$

$$\dots \left[\because f'(x) = \frac{1}{1 + x^3} (given) \right]$$

$$\Rightarrow g'(x) = 1 + [g(x)]^3$$

132. $f(x) = \tan^{-1}x$

 $\therefore \qquad f'(x) = \frac{1}{1+x^2}$ $\therefore \qquad f''(x) = \frac{-1}{\left(1+x^2\right)^2} \cdot 2x$

Since, f'(x) + f''(x) = 0

$$\therefore \qquad \frac{1}{1+x^2} - \frac{2x}{(1+x^2)^2} = 0$$
$$\Rightarrow 1 + x^2 - 2x = 0$$
$$\Rightarrow x = 1$$

133.
$$x = a\left(t - \frac{1}{t}\right)$$
(i)
and $y = a\left(t + \frac{1}{t}\right)$ (ii)

Squaring (i) and (ii) and subtracting, we get $x^2 - y^2 = a^2(-4) \Rightarrow y^2 - x^2 = 4a^2$

Differentiating both sides w.r.t. *x*, we get

$$2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2x = 0 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$

134.
$$2y = \sin^{-1}(x + 5y)$$

 $\Rightarrow \sin 2y = x + 5y$
Differentiating both sides w.r.t. *x*, we get

$$2 \cos 2y \left(\frac{dy}{dx}\right) = 1 + 5 \left(\frac{dy}{dx}\right)$$
$$\Rightarrow \frac{dy}{dx} (2 \cos 2y - 5) = 1$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{2 \cos 2y - 5}$$
Now, $\frac{dx}{dy} = \frac{1}{(dy/dx)}$
$$\Rightarrow \frac{dx}{dy} = 2 \cos 2y - 5$$

135.
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$
Putting $x = 0$ and $y = 0$, we get
 $f(0) = f(0) + f(0) \implies f(0) = 0$
Now, $f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$
 $\Rightarrow f'(0) = \lim_{h \to 0} \frac{f(h)}{h} \qquad \dots (i)$
 $\therefore \quad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h}$
 $\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h} = f'(0) \qquad \dots [From (i)]$
 $\Rightarrow f(x) = xf'(0) + c$

Chapter 02: Differentiation 13

But,
$$f(0) = 0$$

c = 0*.*..

> Hence, f(x) = xf'(0) for all $x \in \mathbb{R}$ Clearly, f(x) is everywhere continuous and differentiable and f'(x) is constant for all $x \in \mathbb{R}$. Hence, option (D) is incorrect.

136. $x^2 + y^2 = t + \frac{2}{t}$

...

:.

Squaring on both sides, we get

$$x^{4} + y^{4} + 2x^{2}y^{2} = t^{2} + \frac{4}{t^{2}} + 4$$

$$\Rightarrow \left(t^{2} + \frac{4}{t^{2}}\right) + 2x^{2}y^{2} = t^{2} + \frac{4}{t^{2}} + 4$$

$$\Rightarrow x^{2}y^{2} = 2 \qquad \dots (i)$$

Differentiating both sides w.r.t. x, we get

$$x^{2}.2y \frac{dy}{dx} + y^{2}.2x = 0$$

$$\Rightarrow x^{2} y \frac{dy}{dx} = -xy^{2}$$

$$\Rightarrow x^{3} y \frac{dy}{dx} = -x^{2} y^{2}$$

$$\Rightarrow x^{3} y \frac{dy}{dx} = -2 \quad \dots [From (i)]$$

 $\log\left(\frac{1+x}{1-x}\right) = \log(1+x) - \log(1-x)$

 $=2\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+....\right]$

137.
$$\frac{d}{dx} f_n(x) = \frac{d}{dx} e^{f_{n-1}(x)}$$
Let $n = 3$

$$\therefore \quad \frac{d}{dx} f_3(x) = \frac{d}{dx} e^{f_2(x)}$$

$$= e^{f_2(x)} \frac{d}{dx} f_2(x)$$

$$= e^{f_2(x)} \frac{d}{dx} e^{f_1(x)}$$

$$= e^{f_2(x)} e^{f_1(x)} \frac{d}{dx} f_1(x)$$

$$= e^{f_2(x)} e^{f_1(x)} \frac{d}{dx} e^x$$

$$= e^{f_2(x)} e^{f_1(x)} e^x$$

$$\frac{d}{dx} f_3(x) = f_3(x) f_2(x) f_1(x)$$
Similarly,
$$\frac{d}{dx} f_n(x) = f_n(x) f_{n-1}(x) \dots f_1(x)$$

138. f(x) = f(-x)[: f(x) is an even function]

$$\therefore f'(x) = -f'(-x)$$

$$\therefore f'(0) = -f'(0)$$

$$\therefore 2f'(0) = 0$$

$$\therefore$$
 f'(0) = 0

Evaluation Test

1. $y = \frac{x-1}{4} + \frac{(x-1)^3}{12} + \frac{(x-1)^5}{20} + \frac{(x-1)^7}{28} + \dots$ $= \frac{1}{4} \left[(x-1) + \frac{(x-1)^3}{3} + \frac{(x-1)^5}{5} + \frac{(x-1)^7}{7} + \dots \right]$ Now, $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ $\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \dots$

$$\therefore \quad x - 1 + \frac{(x-1)^3}{3} + \frac{(x-1)^3}{5} + \frac{(x-1)^7}{7} + \dots$$
$$= \frac{1}{2} \log \left[\frac{1+x-1}{1-(x-1)} \right]$$
$$= \frac{1}{2} \log \left(\frac{x}{2-x} \right)$$
$$\therefore \quad y = \frac{1}{8} \log \left(\frac{x}{2-x} \right)$$

$$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8} \left(\frac{2-x}{x}\right) \left[\frac{(2-x)(1)-x(-1)}{(2-x)^2}\right]$$
$$= \frac{1}{8} \left(\frac{2-x}{x}\right) \left[\frac{2-x+x}{(2-x)^2}\right] = \frac{1}{4x(2-x)}$$

 $y = (\cos x + i \sin x) (\cos 3x + i \sin 3x)$ 2. $\dots(\cos(2n-1)x + i\sin(2n-1)x)$

Since, $\cos \theta + i \sin \theta = e^{i\theta}$

$$\therefore \qquad y = e^{ix} \cdot e^{i3x} \cdot e^{i5x} \dots e^{i(2n-1)x}$$
$$= e^{ix[1+3+5+\dots+(2n-1)]}$$
$$= e^{in^2x}$$
$$\therefore \qquad \frac{dy}{dt} = in^2 e^{in^2x}$$

$$\therefore \quad \frac{dy}{dx} = in^2 e^{in^2 x}$$
$$\therefore \quad \frac{d^2 y}{dx^2} = i^2 n^4 e^{in^2 x} = -n^4 y$$

3.
$$y = f\left(\frac{3x+\pi}{5x+4}\right)$$

$$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}' \left(\frac{3x+\pi}{5x+4}\right) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{3x+\pi}{5x+4}\right)$$
$$= \mathbf{f}' \left(\frac{3x+\pi}{5x+4}\right) \left[\frac{(5x+4)^3 - 5(3x+\pi)}{(5x+4)^2}\right]$$
$$\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=0} = \mathbf{f}' \left(\frac{\pi}{4}\right) \left[\frac{12-5\pi}{16}\right]$$
$$= \tan^2 \left(\frac{\pi}{4}\right) \left(\frac{12-5\pi}{16}\right)$$
$$= (1)^2 \left(\frac{12-5\pi}{16}\right)$$
$$= \frac{12-5\pi}{16}$$

4.
$$y = |\cos x| + |\sin x|$$

Since, $\frac{d}{dx} |x| = \frac{|x|}{x}$
 $\therefore \quad \frac{dy}{dx} = \frac{|\cos x|}{\cos x} \cdot \frac{d}{dx} (\cos x) + \frac{|\sin x|}{\sin x} \cdot \frac{d}{dx} (\sin x)$
 $= \frac{|\cos x|}{\cos x} (-\sin x) + \frac{|\sin x|}{\sin x} \cos x$

When
$$x = \frac{2\pi}{3}$$
, $\cos x = \cos \frac{2\pi}{3} = \frac{-1}{2}$, $|\cos x| = \frac{1}{2}$
and $\sin x = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$, $|\sin x| = \frac{\sqrt{3}}{2}$
 $\therefore \qquad \left(\frac{dy}{dx}\right)_{x=\frac{2\pi}{3}} = -1\left(\frac{-\sqrt{3}}{2}\right) + 1\left(\frac{-1}{2}\right)$
 $= \frac{\sqrt{3}-1}{2}$
5. $y = \left(1+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)\left(1+\frac{2}{x}\right)\left(1+\frac{3}{x}\right)\dots\left(1+\frac{n}{x}\right)$
 $+ \left(1+\frac{1}{x}\right)\left(-\frac{2}{x^2}\right)\left(1+\frac{3}{x}\right)\dots\left(1+\frac{n}{x}\right)$
 $+ \left(1+\frac{1}{x}\right)\left(1+\frac{2}{x}\right)\left(-\frac{3}{x^2}\right)\dots\left(1+\frac{n}{x}\right) + \dots$
When $x = -1$, $1 + \frac{1}{x} = 1 + \frac{1}{(-1)} = 1 - 1 = 0$
 \therefore Except 1st term all terms are 0.
 $\therefore \qquad \left(\frac{dy}{dx}\right)_{(x=-1)} = (-1)(-1)(-2)\dots(1-n)$
 $= (-1)^n (n-1)!$
6. $f(x) = \begin{cases} \frac{x}{1+x}, & x \ge 0\\ \frac{x}{1-x}, & x < 0 \end{cases}$

Lf'(0) =
$$\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\overline{1 - x}^{-0}}{x} = 1$$

Rf'(0) =
$$\lim_{x \to 0^+} \frac{\overline{1+x}^{-0}}{x-0} = 1$$

f(x) is differentiable at
$$x = 0$$
 and f'(0) = 1.

7.
$$f(x) = \sin(\log x)$$

.'

$$\therefore \quad f'(x) = \cos(\log x) \cdot \frac{1}{x}$$

$$y = f\left(\frac{2x+3}{3-2x}\right)$$

$$\therefore \quad \frac{dy}{dx} = f'\left(\frac{2x+3}{3-2x}\right) \cdot \frac{d}{dx} \left(\frac{2x+3}{3-2x}\right) \\ = \cos\left(\log\left(\frac{2x+3}{3-2x}\right)\right) \\ \cdot \left[\frac{(3-2x)(2)-(-2)(2x+3)}{(3-2x)^2}\right] \cdot \left(\frac{3-2x}{2x+3}\right) \\ = \cos\left(\log\left(\frac{2x+3}{3-2x}\right)\right) \left[\frac{6-4x+4x+6}{3-2x}\right] \\ \cdot \frac{1}{2x+3} \\ = \frac{12}{9-4x^2} \cos\left\{\log\left(\frac{2x+3}{3-2x}\right)\right\} \\ 8. \quad \frac{d}{dx} \left[a \tan^{-1}x + b \log\left(\frac{x-1}{x+1}\right)\right] = \frac{1}{x^4-1} \\ \therefore \quad a \tan^{-1}x + b \log\left(\frac{x-1}{x+1}\right) \\ = \int \frac{1}{x^4-1} \\ = \int \frac{1}{x^4-1} \\ = \int \frac{1}{(x^2-1)(x^2+1)} \\ = \frac{1}{2} \int \left(\frac{1}{x^2-1} - \frac{1}{x^2+1}\right) dx \\ = \frac{1}{2} \cdot \frac{1}{2} \log\left(\frac{x-1}{x+1}\right) - \frac{1}{2} \tan^{-1}x \\ \therefore \quad a -2b = -\frac{1}{2} - 2\left(\frac{1}{4}\right) = -\frac{1}{2} - \frac{1}{2} = -1 \\ 9. \quad f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \\ = \frac{1}{32} \times \frac{16}{\sin x} (2 \sin x \cos 2x \cos 4x \cos 8x \\ \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{8}{\sin x} (\sin 4x \cos 4x \cos 8x \\ \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{\sin x} (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{3} \sin x (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{4}{3} \sin x (\sin 8x \cos 8x \cos 16x) \\ = \frac{1}{32} \times \frac{1}{3$$

Chapter 02: Differentiation $=\frac{1}{32}\times\frac{2}{\sin x}\sin 16x\cos 16x$ $=\frac{\sin 32x}{32\sin x}$ $\therefore \qquad f'(x) = \frac{1}{32} \left[\frac{\sin x \cdot 32 \cos 32x - \sin 32x \cos x}{\sin^2 x} \right]$ $\therefore \qquad f'\left(\frac{\pi}{4}\right) = \frac{1}{32} \frac{\left[\frac{1}{\sqrt{2}} \cdot 32(1) - 0\right]}{\left(\frac{1}{\sqrt{2}}\right)^2}$ $=\frac{1}{32} \times \frac{1}{\sqrt{2}} \times 32 \times 2 = \frac{2}{\sqrt{2}} = \sqrt{2}$ 10. $1 + x^4 + x^8 = 1 + 2x^4 + x^8 - x^4$ = $(1 + x^4)^2 - x^4$ = $(1 + x^4 + x^2)(1 + x^4 - x^2)$ $= (1 + x^{4} + x^{2})$ $\therefore \qquad \frac{1 + x^{4} + x^{8}}{1 + x^{2} + x^{4}} = 1 - x^{2} + x^{4}$ $\therefore \qquad \frac{d}{dx} \left(\frac{1 + x^4 + x^8}{1 + x^2 + x^4} \right) = \frac{d}{dx} (1 - x^2 + x^4)$ $= 4x^3 - 2x = ax^3 + bx$ $\therefore \quad a = 4, b = -2$ 11. $2x = y^{\frac{1}{5}} + y^{-\frac{1}{5}}$ Let $y^{\frac{1}{5}} = a$ $\therefore \quad y^{-\frac{1}{5}} = \frac{1}{a}, \qquad \therefore \quad a + \frac{1}{a} = 2x$ $\therefore \quad a^2 - 2ax + 1 = 0$ $\therefore \quad a = \frac{2x + \sqrt{4x^2 - 4}}{2}$ $\therefore \qquad y^{\frac{1}{5}} = x + \sqrt{x^2 - 1}$ $\therefore \qquad y = \left(x + \sqrt{x^2 - 1}\right)^5$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 5\left(x + \sqrt{x^2 - 1}\right)^4 \left(1 + \frac{1}{2\sqrt{x^2 - 1}}2x\right)$ $\therefore \qquad \sqrt{x^2 - 1} \frac{\mathrm{d}y}{\mathrm{d}x} = 5 \left(x + \sqrt{x^2 - 1} \right)^4 \left(x + \sqrt{x^2 - 1} \right)$ $\therefore \qquad (x^2 - 1) \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 25y^2$ $\therefore \qquad (x^2 - 1) \times \frac{2dy}{dr} \cdot \frac{d^2y}{dr^2} + \left(\frac{dy}{dx}\right)^2 (2x) = 25 \times 2y \frac{dy}{dx}$

Given, $y = x^2 f(x) = \frac{x^2}{28} \left(8x - \frac{6}{r} + 10 \right)$ $y = \frac{1}{28}(8x^3 - 6x + 10x^2)$ *.*.. $\therefore \qquad \frac{dy}{dx} = \frac{1}{28}(24x^2 - 6 + 20x)$ $\left(\frac{dy}{dx}\right)_{m=1} = \frac{1}{28}(24 - 6 - 20) = -\frac{2}{28} = -\frac{1}{14}$ ÷. $f(x^3) = x^5$ 17. Diff. w.r.t. x, we get $f'(x^3) \cdot 3x^2 = 5x^4$ $f'(x^3) = \frac{5}{2}x^2$ *.*.. $f'(27) = f'(3^3) = \frac{5}{2}(3)^2 = 15$ *.*.. 18. Since, g(x) is the inverse of f(x). f[g(x)] = x*.*.. \Rightarrow f'(g(x))g'(x) = 1 \Rightarrow f'(g(1))g'(1) = 1 \Rightarrow g'(1) = $\frac{1}{f'(g(1))}$(i) $f(x) = x^3 + e^{x/2}$ f(0) = 1*.*.. $\Rightarrow 0 = f^{-1}(1)$ \dots [:: g(x) = f⁻¹(x)(given)] \Rightarrow g(1) = 0 From (i), we get $g'(1) = \frac{1}{f'(0)}$ Now, $f(x) = x^3 + e^{x/2}$ \Rightarrow f'(x) = 3x² + $\frac{1}{2}e^{x/2}$ \Rightarrow f'(0) = $\frac{1}{2}$ $g'(1) = \frac{1}{1/2} = 2$... 19. $v = f(x^3)$ $\frac{dy}{dx} = f'(x^3).3x^2 = 3x^2 \tan(x^3)$ *.*.. $z = g(x^5)$ $\frac{dz}{dx} = g'(x^5).5x^4 = 5x^4 \sec(x^5)$ *.*.. $\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x}}{\mathrm{d}z} = \frac{3x^2 \tan x^3}{5x^4 \sec x^5} = \frac{3\tan x^3}{5x^2 \sec x^5}$

Chapter 02: Differentiation $\sqrt{1-x^6} + \sqrt{1-v^6} = a^3(x^3-v^3)$ 20. Put $x^3 = \sin \alpha$ and $y^3 = \sin \beta$ $\sqrt{1-\sin^2\alpha} + \sqrt{1-\sin^2\beta} = a^3(\sin\alpha - \sin\beta)$ ÷. $\therefore \quad \cos \alpha + \cos \beta = a^3 (\sin \alpha - \sin \beta)$ $\therefore 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$ $= a^{3}.2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$ $\therefore \operatorname{cot}\left(\frac{\alpha-\beta}{2}\right) = a^3$ $\therefore \quad \alpha - \beta = 2 \cot^{-1} a^3$ $\sin^{-1} x^3 - \sin^{-1} y^3 = \text{constant}$ ÷ Diff. w.r.t. x, we get $\frac{3x^2}{\sqrt{1-x^6}} - \frac{3y^2}{\sqrt{1-y^6}} \cdot \frac{dy}{dx} = 0$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{v^2} \sqrt{\frac{1-y^6}{1-x^6}}$ 21. Let $f(x) = px^2 + qx + r$ $f(1) = f(-1) \Longrightarrow p + q + r = p - q + r \Longrightarrow q = 0$ *.*.. *.*.. $f(x) = px^2 + r$ \Rightarrow f'(x) = 2px \Rightarrow f'(a) = 2ap, f'(b) = 2bp and f'(c) = 2cp Since, a, b, c are in A.P. 2ap, 2bp, 2cp are in A.P. ... \Rightarrow f'(a), f'(b), f'(c) are in A.P. $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec\theta\tan\theta + \sin\theta$ 22. and $\frac{dy}{d\theta} = n \sec^{n-1} \theta \cdot \sec \theta \tan \theta - n \cos^{n-1} \theta \cdot (-\sin \theta)$ = $n \sec^{n} \theta \tan \theta + n \cos^{n-1} \theta \sin \theta$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\overline{d\theta}}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}x}} = \frac{\mathrm{n}\sec^{n}\theta\tan\theta + \mathrm{n}\cos^{n-1}\theta\sin\theta}{\sec\theta\tan\theta + \sin\theta}$ *.*.. Dividing N^r and D^r by tan θ , we get $\frac{\mathrm{d}y}{\mathrm{d}y} = \frac{\mathrm{n}(\mathrm{sec}^n\,\theta + \mathrm{cos}^n\,\theta)}{\mathrm{d}y}$ dx $\sec\theta + \cos\theta$

MHT-CET Triumph Maths (Hints)			
	$\Rightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{n^2(\sec^n\theta + \cos^n\theta)}{(\sec\theta + \cos\theta)^2}$	2	
	$n^{2}[(\sec^{n}\theta - \cos^{n}\theta)^{2} + 4\sec^{n}\theta]$	$\theta \cos^n \theta$]	
	$=\frac{1}{(\sec\theta - \cos\theta)^2 + 4\sec\theta.c}$	$\cos\theta$	
	$n^2(y^2+4)$		
	$=\frac{1}{x^2+4}$		
	$(x^{2}+4)\left(\frac{dy}{dx}\right)^{2} = n^{2}(y^{2}+4)$		
23.	$f(x) = \begin{vmatrix} x & \sin x & \cos x \\ x^2 & \tan x & -x^3 \\ 2x & \sin 2x & 5x \end{vmatrix}$		
.:.	$f'(x) = \begin{vmatrix} 1 & \sin x & \cos x \\ 2x & \tan x & -x^3 \\ 2 & \sin 2x & 5x \end{vmatrix}$		
	$+\begin{vmatrix} x & \cos x & \cos x \\ x^2 & \sec^2 x & -x^3 \\ 2x & 2\cos 2x & 5x \end{vmatrix} + \begin{vmatrix} x \\ x^2 \\ 2x \end{vmatrix}$	$ \begin{array}{rcl} \sin x & -\sin x \\ \tan x & -3x^2 \\ \sin 2x & 5 \end{array} $	
.:.	$\frac{f'(x)}{x} = \begin{vmatrix} 1 & \sin x & \cos x \\ 2 & \frac{\tan x}{x} & -x^2 \\ 2 & \sin 2x & 5x \end{vmatrix}$		
	$ + \begin{vmatrix} 1 & \cos x & \cos x \\ x & \sec^2 x & -x^3 \\ 2 & 2\cos 2x & 5x \end{vmatrix} + \begin{vmatrix} 1 \\ x \\ 2 \end{vmatrix} $	$ \begin{array}{rcl} \sin x & -\sin x \\ \tan x & -3x^2 \\ \sin 2x & 5 \end{array} $	
÷	$\lim_{x \to 0} \frac{f'(x)}{x} = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 2 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 5 \end{vmatrix}$	
	= -2 - 2 + 0 = -4		
24.	Since, g is the inverse of f.		
.:.	$\mathbf{f}[\mathbf{g}(x)] = x$		
	Diff. w.r.t. <i>x</i> , we get		
	f'(g(x)) g'(x) = 1		
÷	$g'(x) = \frac{1}{f'(g(x))} = 1 + [g(x)]^5$		
0.5	$\sin x$ $\sin x$	$\sin x$	

25	v =	$\sin x$	$+ \frac{\sin x}{+}$	$+ \frac{\sin x}{\cos x}$
23.	<i>y</i> –	$\sin x \sin 2x$	$\sin 2x \sin 3x$	$\sin nx \sin(n+1)x$
	= sin(2x-x)		$\sin(3x-2x)$	$\sin((n+1)x - nx)$
	S	$\sin x \sin 2x^+$	$\sin 2x \sin 3x^{+\dots}$	$+\overline{\sin nx\sin(n+1)x}$

	$= \frac{\sin 2x \cos x}{\sin x \sin 2x} - \frac{\cos 2x \sin x}{\sin x \sin 2x} + \frac{\sin 3x \cos 2x}{\sin 2x \sin 3x}$
	$-\frac{\cos 3x \sin 2x}{\sin 2x \sin 3x} + \dots + \frac{\sin(n+1)x \cos nx}{\sin nx \sin(n+1)x} - \frac{\cos(n+1)x \sin nx}{\sin nx \sin(n+1)x}$
	$= \cot x - \cot 2x + \cot 2x - \cot 3x$ $+ \cot nx - \cot(n+1)x$
<i>.</i>	$y = \cot x - \cot(n+1)x$
<i>.</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\csc^2 x - \left[-\csc^2(n+1)x\right](n+1)$
	$= (n+1)\csc^2(n+1)x - \csc^2 x$
26.	If $ \mathbf{r} < 1$, $\mathbf{a} + \mathbf{ar} + \mathbf{ar}^2 + \dots + \infty = \frac{\mathbf{a}}{1 - \mathbf{r}}$
<i>.</i>	$\sin^2 x + \sin^4 x + \sin^6 x + \dots = \frac{\sin^2 x}{1 - \sin^2 x}$
	$=\frac{\sin^2 x}{\cos^2 x}=\tan^2 x$
<i>.</i>	$y = e^{\tan^2 x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\tan^2 x} . 2 \tan x \sec^2 x = 2\mathrm{e}^{\tan^2 x} \tan x \sec^2 x$
27.	$y = \tan^{-1} \frac{1}{1 + x + x^2} + \tan^{-1} \frac{1}{x^2 + 3x + 3}$
	$+ \tan^{-1} \frac{1}{x^2 + 5x + 7} + \dots$ to n terms
	$= \tan^{-1} \frac{1}{1 + (1 + x)x} + \tan^{-1} \frac{1}{1 + (x + 2)(x + 1)}$
	$+\tan^{-1}\frac{1}{1+(x+3)(x+2)}+\dots$ to n terms
	$= \tan^{-1} \left[\frac{(x+1) - x}{1 + (x+1)x} \right] + \tan^{-1} \left[\frac{(x+2) - (x+1)}{1 + (x+2)(x+1)} \right]$
	+ $\tan^{-1}\left[\frac{(x+3)-(x+2)}{1+(x+3)(x+2)}\right]$ + to n terms
	$= \tan^{-1}(x+1) - \tan^{-1}x + \tan^{-1}(x+2)$
	$-\tan^{-1}(x+1) + \tan^{-1}(x+3) - \tan^{-1}(x+2) + \dots + \tan^{-1}(x+n) - \tan^{-1}(x+(n-1))$
<i>.</i> .	$y = \tan^{-1}(x+n) - \tan^{-1}x$
÷.	$\frac{dy}{dx} = \frac{1}{1 + (x + n)^2} - \frac{1}{1 + x^2}$
	$\left(\frac{dy}{dx}\right)_{x=0} = \frac{1}{1+n^2} - 1 = \frac{1-1-n^2}{1+n^2} = -\frac{n^2}{1+n^2}$

		Chapter 02: Differentiation
28. 	$y = a \sin(bx + c)$ $y_1 = a \cos(bx + c).b = ab \sin\left(\frac{\pi}{2} + bx + c\right)$	$= \cos^{2} \theta (2a^{2} + 2b^{2}) + \sin^{2} \theta (2a^{2} + 2b^{2})$ = $(2a^{2} + 2b^{2}) (\cos^{2} \theta + \sin^{2} \theta)$ = $2a^{2} + 2b^{2}$
	$y_2 = -ab \sin(bx + c).b = ab^2 \sin(\pi + bx + c)$ $y_3 = -ab^2 \cos(bx + c).b = ab^3 \sin\left(\frac{3\pi}{2} + bx + c\right)$	= $2(a^2 + b^2)$ = $2c^2$ [:: $a^2 + b^2 = c^2$ (given)]
	$y_4 = -ab^3(-\sin(bx+c).b) = ab^4\sin(2\pi + bx + c)$ $= ab^4\sin\left(\frac{4\pi}{2} + bx + c\right)$	
	In general, $y_n = ab^n \sin\left(\frac{n\pi}{2} + bx + c\right)$	
29.	$f(x) = x^{n}$ $f'(x) = nx^{n-1}$ $f''(x) = n(n-1) x^{n-2}$ $f'''(x) = n(n-1) (n-2)x^{n-3}$	
÷	$f(1) = 1^{n} = 1 = {}^{n}C_{0}$ $\frac{f'(1)}{1!} = \frac{n(1)^{n-1}}{1} = n = {}^{n}C_{1}$ $f''(1) \qquad n(n-1)(1)^{n-2} \qquad n(n-1) = nC_{1}$	
	$\frac{1}{2!} = \frac{1}{2!} = \frac{1}{3!} $	
	$f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + (-1)^n \frac{f^n(1)}{n!}$ = ${}^{n}C_0 - {}^{n}C_1 + {}^{n}C_2 - {}^{n}C_3 + \dots + (-1)^n {}^{n}C_n$ = 0	
30.	$p = a^2 cos^2 \theta + b^2 sin^2 \theta$	
.:.	$\frac{dp}{d\theta} = a^2.2 \cos \theta (-\sin \theta) + b^2.2 \sin \theta \cos \theta$	
	$= (b^2 - a^2) \sin 2\theta$ $d^2 n$	
<i>.</i>	$\frac{d^2 p}{d\theta^2} = 2(b^2 - a^2)\cos 2\theta$	
	$= 2(b^2 - a^2) (\cos^2\theta - \sin^2\theta)$ $d^2p = 2 (\cos^2\theta - \sin^2\theta)$	
<i>.</i> .	$4p + \frac{d^2}{d\theta^2} = 4a^2 \cos^2\theta + 4b^2 \sin^2\theta$	
	$+ 2(b^{2} - a^{2}) (\cos^{2} \theta - \sin^{2} \theta)$ $= \cos^{2} \theta (4a^{2} + 2b^{2} - 2a^{2})$	
	$+\sin^2\theta(4b^2-2b^2+2a^2)$	

Textbook Chapter No.

Applications of Derivatives

Hints

	Classical Thinking
1.	$x = 3t^2 + 1, y = t^3 - 1$
.:.	$\frac{\mathrm{d}x}{\mathrm{d}t} = 6t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2$
÷	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{3t^2}{6t} = \frac{t}{2}$
∴.	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t=1} = \frac{1}{2}$
2.	$y = x^3 - x$
<i>.</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 1$
<i>.</i>	$\left(\frac{dy}{dx}\right)_{x=2} = 3 (2)^2 - 1 = 11$
	slope of normal at $x = 2 = -\frac{1}{\left(\frac{dy}{dx}\right)_{x=2}} = -\frac{1}{11}$
3.	If the tangent is perpendicular to X-axis, then $\theta = 90^{\circ}$
<i>:</i> .	$\cot \theta = 0$
	$\Rightarrow \frac{1}{\tan \theta} = 0 \Rightarrow \frac{dx}{dy} = 0$
4.	$y = x^{3} - 3x^{2} - 9x + 5 \Rightarrow \frac{dy}{dx} = 3x^{2} - 6x - 9$ Since the tengent is perplied to X axis
<i>.</i>	Since, the tangent is paramet to X-axis. $\frac{dy}{dx} = 0$ $\Rightarrow 3x^2 - 6x - 9 = 0 \Rightarrow x = -1, 3$
5.	$x^2 = -4y$ Differentiating both sides w.r.t. <i>x</i> , we get
	$2x = -4 \frac{dy}{dx}$

 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{2}$

 $\therefore \qquad \text{m = Slope of the tangent at } (-4, -4)$ $= \left(\frac{dy}{dx}\right)_{(-4, -4)} = 2$

 $\therefore \quad \text{equation of the tangent at } (-4, -4) \text{ is}$ $y - y_1 = m (x - x_1)$ $\Rightarrow y + 4 = 2(x + 4)$ $\Rightarrow 2x - y + 4 = 0$ $6. \quad \sqrt{x} + \sqrt{y} = a$

Differentiating both sides w.r.t.x, we get $\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\sqrt{y}}{\sqrt{x}}$ At $\left(\frac{a^2}{4}, \frac{a^2}{4}\right)$, $\frac{dy}{dx} = -\sqrt{\frac{a^2}{\frac{4}{3}}} = -1$ \therefore Equation of the tangent at $\left(\frac{a^2}{4}, \frac{a^2}{4}\right)$ is $y - \frac{a^2}{4} = -1\left(x - \frac{a^2}{4}\right)$ $\Rightarrow x + y = \frac{a^2}{2}$ 7. $y = x^2 - 2x + 1$ $\therefore \qquad \frac{dy}{dx} = 2x - 2$ $\therefore \qquad \text{m = slope of the normal at } (0,1)$ $= \frac{-1}{\left(\frac{dy}{dx}\right)_{(0,1)}} = \frac{-1}{2(0)-2} = \frac{1}{2}$ \therefore Equation of the normal at (0,1) is $y - y_1 = m \left(x - x_1 \right)$ $\Rightarrow y - 1 = \frac{1}{2} (x - 0)$ $\Rightarrow x - 2y + 2 = 0$ 8. $y = \sin \frac{\pi x}{2} \Rightarrow \frac{dy}{dx} = \frac{\pi}{2} \cos \frac{\pi x}{2} \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 0$

 \therefore Equation of the normal at (1,1) is x = 1

9. At
$$x = \frac{\pi}{4}$$
, $y = \frac{2}{\sqrt{2}} = \sqrt{2}$
 $y = 2 \sin x$
 $\therefore \frac{dy}{dx} = 2 \cos x$
 $\therefore \left(\frac{dy}{dx}\right)_{x=\frac{\pi}{4}} = \sqrt{2}$
 \therefore Equation of the tangent at $\left(\frac{\pi}{4}, \sqrt{2}\right)$ is
 $y - \sqrt{2} = \frac{1}{\sqrt{2}} \left(x - \frac{\pi}{4}\right)$
10. At $x = \frac{\pi}{2}$,
 $y = 4 + \cos^2 \frac{\pi}{2} = 4$
 $y = 4 + \cos^2 \frac{\pi}{2} = 4$
 $y = 4 + \cos^2 x$
 $\therefore \frac{dy}{dx} = 2\cos x(-\sin x)$
 $\therefore \left(\frac{dy}{dx}\right)_{x=\frac{\pi}{2}} = 2\cos \frac{\pi}{2} \left(-\sin \frac{\pi}{2}\right) = 0$
 \therefore Equation of the tangent at $\left(\frac{\pi}{2}, 4\right)$ is
 $y - 4 = 0 \left(x - \frac{\pi}{2}\right)$
 $\therefore y - 4 = 0 \Rightarrow y = 4$
11. At $x = \frac{\pi}{2}$,
 $y = \frac{\pi}{2} - \sin \frac{\pi}{2} \cos \frac{\pi}{2} = \frac{\pi}{2}$
 $y = \frac{\pi}{2} - \sin \frac{\pi}{2} \cos \frac{\pi}{2} = \frac{\pi}{2}$
 $\therefore y = \frac{\pi}{2} - \sin \frac{\pi}{2} \cos x - \sin x (-\sin x)$
 $= 1 - \cos^2 x + \sin^2 x$
 $\therefore \qquad \frac{dy}{dx} = 1 - \cos^2 \frac{\pi}{2} + \sin^2 \frac{\pi}{2} = 2$
 $\therefore \qquad \text{Vist}$
 $\therefore \qquad \text{Equation of the tangent at } \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
 $y - \frac{\pi}{2} = 2 \left(x - \frac{\pi}{2}\right)$
 $\therefore \qquad \text{Equation of the tangent at } \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
 $y - \frac{\pi}{2} = 2 \left(x - \frac{\pi}{2}\right)$
 $\therefore \qquad \text{Equation of the tangent at } \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
 $y - \frac{\pi}{2} = 2 \left(x - \frac{\pi}{2}\right)$
 $\therefore \qquad \text{Equation of the tangent at } \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
 $y - \frac{\pi}{2} = 2 \left(x - \frac{\pi}{2}\right)$
 $\Rightarrow y = 2x - \frac{\pi}{2}$

Chapter 03: Applications of Derivatives
At
$$x = \frac{\pi}{3}$$
, $y = 2 \sin \frac{\pi}{3} + \sin \frac{2\pi}{3} = \frac{3\sqrt{3}}{2}$
 $y = 2 \sin x + \sin 2x$
 $\frac{dy}{dx} = 2\cos x + 2\cos 2x$
 $\left(\frac{dy}{dx}\right)_{x=\frac{\pi}{3}} = 2\cos \frac{\pi}{3} + 2\cos \frac{2\pi}{3} = 0$
Equation of the tangent at $\left(\frac{\pi}{3}, \frac{3\sqrt{3}}{2}\right)$ is
 $y - \frac{3\sqrt{3}}{2} = 0\left(x - \frac{\pi}{3}\right) \Rightarrow 2y = 3\sqrt{3}$
At $x = \frac{\pi}{4}$, $y = \frac{2}{\sqrt{2}} = \sqrt{2}$
 $y = 2\cos x$
 $\frac{dy}{dx} = -2$. $\sin x$
 $\left(\frac{dy}{dx}\right)_{x=\pi/4} = -\sqrt{2}$
Equation of the normal at $\left(\frac{\pi}{4}, \sqrt{2}\right)$ is
 $y - \sqrt{2} = \frac{1}{\sqrt{2}}\left(x - \frac{\pi}{4}\right)$
As $s = 3t^2 + 2t - 5$
 $\frac{ds}{dt} = 6t + 2$
Acceleration $= \frac{d^2s}{dt^2} = 6$
Acceleration $= \frac{d^2s}{dt^2} = 6$
Acceleration $= \frac{d^2s}{dt^2} = 6$
 $\frac{ds}{dt} = velocity = 45 + 22t - 3t^2$
When particle will come to rest, then $v = 0$
 $\Rightarrow 3t^2 - 22t - 45 = 0 \Rightarrow t = 9$ $\left[\because t \neq -\frac{5}{3}\right]$
 $\frac{d^2s}{dt^2} = -a \sin t - 4b \cos 2t$
 $\frac{d^2s}{dt^2} = -a \sin 0^\circ - 4b \cos 0^\circ = -4b$

459

Γ

MHT-CET Triumph Maths (Hints)
18.
$$s = 2t^3 - 9t^2 + 12t$$

 $\Rightarrow \frac{ds}{dt} = 6t^2 - 18t + 12$
 $\Rightarrow \frac{d^2s}{dt^2} = 12t - 18 = acceleration$
When acceleration of the particle will be zero,
 $12t - 18 = 0$
 $\Rightarrow t = \frac{3}{2} \sec$
Hence, the acceleration of the particle will be zero after $\frac{3}{2} \sec$.
19. $s = \frac{1}{2}gt^2 \Rightarrow \frac{ds}{dt} = gt \Rightarrow \frac{d^2s}{dt^2} = g$
 \therefore the acceleration of the stone is uniform.
20. $\frac{dr}{dt} = 3$
 $A = \pi r^2 \Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt}$
 $\Rightarrow \left(\frac{dA}{dt}\right)_{r=10} = 2\pi \times 10 \times 3 = 60\pi \text{ cm}^2/\text{sec}$
21. $A = s^2$
 $\therefore \frac{dA}{dt} = 2 s \frac{ds}{dt}$
 $\therefore \frac{dA}{dt} = 2 \times 10 \times 0.5 = 2 \times 5 = 10 \text{ cm}^2/\text{sec}$
22. $V = 5x - \frac{x^2}{6}$
 $\Rightarrow \frac{dV}{dt} = 5 \frac{dx}{dt} - \frac{x}{3} \cdot \frac{dx}{dt}$
 $\Rightarrow \frac{dx}{dt} = \frac{\frac{dV}{dt}}{(5 - \frac{x}{3})}$
 $\Rightarrow \left(\frac{dx}{dt}\right)_{x=2} = \frac{5}{5 - \frac{2}{3}} = \frac{15}{13} \text{ cm/sec}$
23. Let $f(x) = \sqrt{x}$
 $\therefore f'(x) = \frac{1}{2\sqrt{x}}$
Here, $a = 25$ and $h = 0.2$
 $\therefore f(x) = f(25) = -\frac{\sqrt{25}}{5} = 5$

:.
$$f(a) = f(25) = \sqrt{25} = 5$$

and $f'(a) = f'(25) = \frac{1}{2\sqrt{25}} = \frac{1}{10}$

$$\therefore \quad f(a+h) \approx f(a) + h f'(a)$$
$$\approx 5 + (0.2) \left(\frac{1}{10}\right)$$
$$\approx 5 + 0.02$$
$$\therefore \quad \sqrt{25.2} \approx 5.02$$

24. Let
$$f(x) = x^3$$

 \therefore $f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$

Here, a = 27 and h = 2

$$\therefore \quad f(a+h) \approx f(a) + h f'(a)$$

$$\approx (27)^{\frac{1}{3}} + 2\left[\frac{1}{3(27)^{\frac{2}{3}}}\right]$$

$$\approx 3 + 2\left(\frac{1}{27}\right)$$

$$\approx 3 + 0.07407$$

$$(29)^{\frac{1}{3}} \approx 3.07407$$

- 25. If Rolle's theorem is true for any function f(*x*) in [a,b]. Then f(a) = f(b)Only option (B) satisfies this condition.
- According to Lagrange's mean value theorem, 26. in interval [a, b] for f(x), $f'(c) = \frac{f(b) - f(a)}{b - a}$, where a < c < b

$$\therefore$$
 a < x_1 < b

27.
$$f(x) = 2 - 3x$$

f'(x) = -3 < 0*.*..

- f(x) is a decreasing function. *.*..
- $f(x) = x^2 \Longrightarrow f'(x) = 2x$ 28. For increasing function, f'(x) > 0 $\Rightarrow 2x > 0$ $\Rightarrow x \in (0, \infty)$
- f(x) = ax + b29. *.*.. f'(x) = aFor f(x) to be decreasing, f'(x) < 0 $\Rightarrow a < 0$

30.
$$f(x) = 5^{-x}$$

∴ $f'(x) = -5^{-x} \log_e 5 = -\frac{\log_e 5}{5^x}$
⇒ $f'(x) < 0$ for all x

< 0 for all x $\Rightarrow \Gamma(x)$ i.e., f(x) is decreasing for all x.

			Chapter 03: Applications of Derivatives
32.	Let $f(x) = x^4 - 4x \Rightarrow f'(x) = 4x^3 - 4$ For $f(x)$ to be decreasing, $f'(x) < 0$ $\Rightarrow 4x^3 - 4 < 0 \Rightarrow x^3 < 1$ $\Rightarrow x \in (-\infty, 1)$	39. .:	Let $f(x) = \log(\sin x) \Rightarrow f'(x) = \cot x$ the given function is increasing in the interval $\left(0, \frac{\pi}{2}\right)$.
33. .:	$f(x) = 4x^{4} - 2x + 1$ $f'(x) = 16x^{3} - 2$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow 16x^{3} - 2 > 0$ $\Rightarrow x^{3} > \frac{1}{8}$ $\Rightarrow x > \frac{1}{8}$	40. ∴	$f(x) = 2x^{3} - 3x^{2} - 36x + 7$ $f'(x) = 6x^{2} - 6x - 36$ For decreasing function, $f'(x) < 0$ $\Rightarrow x^{2} - x - 6 < 0$ $\Rightarrow (x - 3)(x + 2) < 0$ $\Rightarrow x \in (-2, 3)$
34. 	$f(x) = 2x^{3} + 9x^{2} + 12x + 20$ $f'(x) = 6x^{2} + 18x + 12$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow x^{2} + 3x + 2 > 0$ $\Rightarrow (x + 2) (x + 1) > 0$ $\Rightarrow x \in (-\infty, -2) \cup (-1, \infty)$	41.	$f(x) = 2x^{3} - 3x^{2} - 12x + 5$ $f'(x) = 6x^{2} - 6x - 12$ For maximum or minimum, f'(x) = 0 $\Rightarrow x^{2} - x - 2 = 0$ $\Rightarrow (x - 2) (x + 1) = 0$ $\Rightarrow x = 2, -1$ Now, $f''(x) = 12x - 6$
35. 	$f(x) = 2x^{3} - 3x^{2} - 12x + 12$ $f'(x) = 6x^{2} - 6x - 12$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow x^{2} - x - 2 > 0$ $\Rightarrow (x - 2) (x + 1) > 0$ $\Rightarrow x \in (-\infty, -1) \cup (2, \infty)$	∴ ∴ 43. ∴	f "(2) = 18 > 0 f(x) is minimum at x = 2. f(x) = 7 - 20x + 11x ² f '(x) = -20 + 22x For maximum or minimum, f '(x) = 0 $\Rightarrow -20 + 22x = 0$
36. ∴	$f(x) = x^{3} - 6x^{2} + 9x + 3$ $f'(x) = 3x^{2} - 12x + 9$ For f(x) to be decreasing, f'(x) < 0 $\Rightarrow 3(x^{2} - 4x + 3) < 0$ $\Rightarrow (x - 3) (x - 1) < 0$ $\Rightarrow x \in (1, 3)$	 	$\Rightarrow x = 10/11$ Now, f''(x) = 22 > 0 f(x) is minimum at $x = \frac{10}{11}$. $[f(x)]_{\min} = f\left(\frac{10}{11}\right)$
37. 	Let $f(x) = 2x^3 - 6x + 5$ $f'(x) = 6x^2 - 6$ For $f(x)$ to be increasing, $f'(x) > 0$ $\Rightarrow 6x^2 - 6 > 0 \Rightarrow (x - 1) (x + 1) > 0$ $\Rightarrow x > 1$ or $x < -1$	44. ∴	$= 7 - \frac{200}{11} + \frac{100 \times 11}{121} = -\frac{23}{11}$ Let $f(x) = 2x^2 + x - 1$ f'(x) = 4x + 1 For maximum or minimum,
38. ∴	Let $f(x) = \frac{1}{1+x^2}$ $f'(x) = -\frac{2x}{(1+x^2)^2}$		$f'(x) = 0 \Rightarrow x = -\frac{1}{4}$ Now, $f''(x) = 4 > 0$
	(1+x) For $f(x)$ to be decreasing,		$f(x)$ is minimum at $x = \frac{-1}{4}$.
	$f'(x) < 0 \Longrightarrow -\frac{2x}{(1+x^2)^2} < 0$ $\Longrightarrow x > 0 \Longrightarrow x \in (0, \infty)$		$[f(x)]_{\min} = \left[f\left(-\frac{1}{4}\right)\right] = \frac{2}{16} - \frac{1}{4} - 1 = \frac{-9}{8}$

 $f(x) = 2x^3 - 3x^2 - 12x + 4$ 45. $f'(x) = 6x^2 - 6x - 12$ ÷. For maximum or minimum, $f'(x) = 0 \Longrightarrow x^2 - x - 2 = 0 \Longrightarrow x = 2, -1$ Now, f''(x) = 12x - 6f''(2) = 18 > 0 and f''(-1) = -18 < 0*.*.. the given function has one maximum and one *.*.. minimum. 46. $y = 1 - \cos x$ $y' = \sin x$ *.*.. For maximum or minimum, $y' = 0 \Rightarrow \sin x = 0 \Rightarrow x = 0, \pi$ Now, $y'' = \cos x$ \Rightarrow *y*'' (0) = 1 > 0 and *y*'' (π) = -1 < 0 *y* is maximum when $x = \pi$. *.*... **Critical Thinking** $x_V = 15$ 1. $y = \frac{15}{3}$ *.*.. $y' = -\frac{15}{r^2}$ *.*.. At (3, 5), $y' = -\frac{15}{9}$ Slope of normal at $(3,5) = \frac{9}{15}$ ÷. $\theta = \tan^{-1}\left(\frac{9}{15}\right)$ *.*.. $x^2 = 2v$ 2. Differentiating both sides w.r.t. x, we get 2dv

$$2x = \frac{1}{dx}$$

$$\Rightarrow \frac{dy}{dx} = x$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{\left(1,\frac{1}{2}\right)} = 1$$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = 45^{\circ} \qquad \dots [\because \tan 45^{\circ} = 3$$

$$x^{3} - 8a^{2}y = 0 \qquad \dots (i)$$
Differentiating w.r.t. x, we get
$$3x^{2} - 8a^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{8a^2}$$

- $\therefore \qquad \text{Slope of the normal} = -\frac{1}{\frac{dy}{dx}} = -\frac{1}{\frac{3x^2}{8a^2}} = -\frac{8a^2}{3x^2}$
 - According to the given condition,

 $\frac{-8a^2}{3x^2} = \frac{-2}{3}$ $\Rightarrow 4a^2 = x^2$ $\Rightarrow x = 2a$ From (i), $8a^3 - 8a^2y = 0 \Rightarrow y = a$ the required point is (2a, a).

4. $x^2 = 3 - 2y$ (i) Differentiating both sides w.r.t. *x*, we get

$$2x = -2\frac{\mathrm{d}y}{\mathrm{d}x} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -x$$

... Slope of the tangent = -xSlope of the given line is -1. Since, the tangent is parallel to the given line.

$$-x = -1 \Rightarrow x = 1$$

From (i), $y = 1$

...

 \therefore the required point is (1, 1).

5.
$$y = 6x - x^2$$
(i)

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 2x$$

Slope of the given line is 2. Since, the tangent is parallel to the given line.

$$\therefore \quad 6 - 2x = 2 \implies x = 2$$

From (i), $y = 8$

- \therefore the point of tangency will be (2, 8).
- 6. Let the coordinates of P be (x_1, y_1) . Then, $y_1 = 2x_1^2 - x_1 + 1$ (i) Now, $y = 2x^2 - x + 1$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 1$$

1]

$$\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1,y_1)} = 4x_1 - 1$$

Slope of the given line is 3. Since, the tangent is parallel to the given line. \therefore slope of the tangent = 3 $\Rightarrow 4x_1 - 1 = 3$ $\Rightarrow x_1 = 1$ From (i), $y_1 = 2$

 \therefore the coordinates of P are (1, 2).

7. $y = x \log x$(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \log x$ *.*.. Slope of the normal = $-\frac{1}{\left(\frac{dy}{dx}\right)} = \frac{-1}{1 + \log x}$ Slope of the given line is 1. Since, the normal is parallel to the given line. $\frac{-1}{1+\log x} = 1$ *.*.. $\Rightarrow \log x = -2$ $\Rightarrow x = e^{-2}$ From (i), $y = -2e^{-2}$ Co-ordinates of the point are $(e^{-2}, -2e^{-2})$. *.*.. $v = (x - 3)^2$ 8. y'=2(x-3)*.*.. Since, the tangent is parallel to the line joining (3, 0) and (4, 1). $2(x-3) = \frac{1-0}{4-3}$... $\Rightarrow 2x - 6 = 1 \Rightarrow x = \frac{7}{2}$ When $x = \frac{7}{2}$, $y = \left(\frac{7}{2} - 3\right)^2 = \frac{1}{4}$ the required point is $\left(\frac{7}{2}, \frac{1}{4}\right)$. *:*. $v = x^2 - 4x + 5$ 9.(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4$ Slope of the given line = $-\frac{1}{2}$ Since, the tangent is perpendicular to the given line $(2x-4)\left(-\frac{1}{2}\right) = -1$ ∴. $\Rightarrow 2x - 4 = 2$ $\Rightarrow x = 3$ From (i), y = 2the required point is (3, 2). *.*.. $x^2 + y^2 - 2x - 3 = 0$ (i) 10. Differentiating w.r.t. x, we get $2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 2 = 0$

Chapter 03: Applications of Derivatives $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1-x}{v}$ *.*.. Since, the tangent is parallel to X-axis. $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}r} = 0$ $\Rightarrow \frac{1-x}{v} = 0 \Rightarrow x = 1$ From (i), $y = \pm 2$ 11. $y^3 + 3x^2 - 12y = 0$(i) Differentiating w.r.t.x, we get $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6x}{3v^2 - 12}$ Since, the tangent is parallel to Y-axis. $\therefore \qquad \frac{\mathrm{d}x}{\mathrm{d}v} = 0$ $\Rightarrow 3y^2 - 12 = 0$ $\Rightarrow y^2 = 4 \Rightarrow y = \pm 2$ $\therefore y = 2$ From (i), $x = \pm \frac{4}{\sqrt{2}}$ 12. $y = ax^2 + bx$ $\therefore \qquad \frac{dy}{dx} = 2ax + b \Longrightarrow \left(\frac{dy}{dx}\right)_{x} = 4a + b$ Since, the tangent is parallel to X-axis. $\left(\frac{dy}{dx}\right)_{(2-8)} = 0 \Rightarrow b = -4a$ (i) *.*.. Also, the point (2, -8) lies on the curve $y = ax^2 + bx$. *.*.. -8 = 4a + 2b....(ii) From (i) and (ii), we get a = 2, b = -813. $v = ax^2 - 6x + b$ $\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{a}x - 6$ $\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\left(x=\frac{3}{2}\right)} = 3\mathrm{a} - 6$ Since, the tangent is parallel to X-axis at $x = \frac{3}{2}$. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\left(x=\frac{3}{2}\right)} = 0$:. \Rightarrow 3a - 6 = 0 \Rightarrow a = 2 Now, the given curve passes through (0, 2). *.*.. 2 = 0 - 0 + b \Rightarrow b = 2

463

		_	
МНТ	-CET Triumph Maths (Hints)		
14.	At t = 2, $x = \frac{1}{2}$	1	$7. y^2 = 5x - 1$ $dy 5$
	and $y = 2 - \frac{1}{2} = \frac{3}{2}$		$\frac{dy}{dx} = \frac{v}{2y}$
	$\frac{dy}{dy} = \frac{1+\frac{1}{2}}{2}$		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(1,-2)} = \frac{-5}{4}$
	Now, $\frac{dy}{dx} = \frac{dt}{\frac{dx}{dx}} = \frac{1}{\frac{-1}{2}} = \frac{t^2 + 1}{-1}$		Equation of the normal at $(1, -2)$ is 4
	$dt t^2$		$y - (-2) = \frac{1}{5}(x - 1)$
÷	$\left(\frac{-5}{dx}\right)_{(t=2)} = -5$		4x - 5y - 14 = 0(1) As the normal is of the form $ax - 5y + b = 0$, comparing this with (i) we get
	Equation of the normal at $\left(\frac{1}{2}, \frac{3}{2}\right)$ is		a = 4 and $b = -14$
	$y - \frac{3}{2} = \frac{1}{5} \left(x - \frac{1}{2} \right)$	1	3. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
	x - 5y + 7 = 0		$\frac{2}{2}x^{\frac{-1}{3}} + \frac{2}{2}y^{\frac{-1}{3}} \frac{dy}{dx^{\frac{-1}{3}}} = 0$
15.	At $\theta = \frac{\pi}{6}$,		$3 \qquad 3^{1} \qquad dx$ $\rightarrow dy = -y^{\frac{1}{3}}$
	$x = a \sec \frac{\pi}{6} = \frac{2a}{\sqrt{3}}$ and $y = a \tan \frac{\pi}{6} = \frac{a}{\sqrt{3}}$		$\rightarrow \frac{1}{dx} - \frac{1}{x^{\frac{1}{3}}}$
	$dy = \frac{dy}{d\theta} = a \sec^2 \theta = 1 = \cos \theta$		$\frac{dy}{dx} = -\frac{\cos\theta}{\sin\theta} = -\cot\theta$
	$\frac{dx}{dx} = \frac{dx}{\frac{dy}{d\theta}} = \frac{dx}{a \sec \theta \tan \theta} = \frac{dx}{\sin \theta} = \cos \theta \cos \theta$		slope of the normal is $\tan\theta$.
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{0} = \cos \cos \frac{\pi}{6} = 2$		equation of the normal at (a sin θ , a cos θ) is $y - a \cos^3 \theta = \tan \theta (x - a \sin^3 \theta)$ $\Rightarrow y \cos \theta - a \cos^4 \theta = x \sin \theta - a \sin^4 \theta$
	Equation of the tangent at $\begin{pmatrix} 2a & a \\ \end{pmatrix}$ is		$\Rightarrow y \cos \theta = a \cos \theta = x \sin \theta = a \sin^{4} \theta - a \cos^{4} \theta$
	Equation of the tangent at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{13}$	19	9. Let (x_1, y_1) be a point on the curve $y = x + \frac{4}{x^2}$.
	$y - \frac{u}{\sqrt{3}} = 2\left(x - \frac{2u}{\sqrt{3}}\right)$		Since, the tangent is parallel to X-axis. $\begin{pmatrix} dy \\ \end{pmatrix} = 0 \Rightarrow 1 - \frac{8}{2} = 0 \Rightarrow x_1 = 2$
	$\Rightarrow 2x - y = \sqrt{3} a$		$\left(\frac{dx}{dx}\right)_{(x_1,y_1)} = 0 \implies 1 = \frac{1}{x_1^3} = 0 \implies x_1 = 2$
16.	$y = x^{3} + 2x^{2} - 4x - 43$ $\frac{dy}{dt} = 3x^{2} + 4x - 4$		Now, $y_1 = x_1 + \frac{4}{x_1^2}$
	dx = 3x + 4x - 4		$\Rightarrow y_1 = 2 + \frac{4}{2^2}$
	$\left(\frac{4y}{dx}\right)_{(-2,5)} = 3(-2)^2 + 4(-2) - 4 = 0$		$\Rightarrow y_1 = 3$
	equation of the tangent at $(-2, 5)$ is y - 5 = 0. (x + 2)		$y - 3 = 0 \Rightarrow y = 3$
	i.e., $y = 5$ (parallel to X-axis) Normal is perpendicular to X-axis and passes	20	D. Since, the given curve crosses the X-axis, y=0
	through (-2,5).		$0 = 2 - x \Longrightarrow x = 2$
	equation of the normal is $x = -2$, i.e., $x + 2 = 0$		the given curve crosses the X-axis at (2, 0). Now, $(1 + x^2)y = 2 - x$

Chapter 03: Applications of Derivatives $\frac{dy}{dx} = \frac{-b}{a} \cdot e^{-\frac{x}{a}}$ *.*.. $\left(\frac{dy}{dx}\right)_{(x_1,y_1)} = \frac{-b}{a} \cdot e^{-\frac{x_1}{a}} = \frac{-y_1}{a} \quad \dots [From (i)]$ equation of the tangent at (x_1, y_1) is *.*.. $y - y_1 = \frac{-y_1}{2}(x - x_1)$ $\Rightarrow \frac{x}{a} + \frac{y}{v_1} = \frac{x_1}{a} + 1$ Comparing this equation with $\frac{x}{a} + \frac{y}{b} = 1$, we get $y_1 = b \text{ and } 1 + \frac{x_1}{2} = 1 \implies x_1 = 0$... the required point is (0, b). 24. When x = 0, $y = (1 + 0)^{y} + \sin^{-1}(0) \Rightarrow y = 1$ Now, $y = (1 + x)^{y} + \sin^{-1}(\sin^{2} x)$ $\frac{dy}{dx} = (1+x)^{y} \left\{ \frac{dy}{dx} \log(1+x) + \frac{y}{1+x} \right\} + \frac{\sin 2x}{\sqrt{1-\sin^{4} x}}$ *.*.. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(0,1)} = 1$... *.*.. the equation of the normal at (0, 1) is $v - 1 = -1(x - 0) \Longrightarrow x + v = 1$ Let (x_1, y_1) be the point on the curve 25. $y = 2x^2 + 7$, where the tangent is parallel to the line 4x - y + 3 = 0. Then, $y_1 = 2x_1^2 + 7$(i) Now, $v = 2x^2 + 7$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$ *.*.. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1,y_1)} = 4x_1$ Slope of the given line is 4. Since, the tangent is parallel to the given line. slope of the tangent = 4.... $\Rightarrow 4x_1 = 4$ $\Rightarrow x_1 = 1$ From (i), $y_1 = 9$ the coordinates of the point are (1, 9). *.*.. Equation of the tangent at (1, 9) is *.*.. y - 9 = 4(x - 1) $\Rightarrow 4x - y + 5 = 0$

Differentiating both sides w.r.t. x, we get

$$(1+x^2)\frac{dy}{dx} + 2xy = -1$$

$$\therefore \qquad \frac{dy}{dx} = \frac{-1-2xy}{1+x^2}$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(2,0)} = -\frac{1}{5}$$

- $\therefore \quad \text{equation of the tangent at } (2, 0) \text{ is}$ $y 0 = -\frac{1}{5}(x 2)$ $\Rightarrow x + 5y = 2$
- 21. Since, the given curve crosses the Y-axis, x = 0 $\therefore \quad y = be^0 \Rightarrow y = b$
- \therefore the given curve crosses the Y-axis at (0, b).

Now,
$$y = be^{-\frac{y}{a}}$$

$$\therefore \qquad \frac{dy}{dx} = -\frac{b}{a}e^{-\frac{x}{a}}$$
$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(0,b)} = -\frac{b}{a}$$

 \therefore the equation of the tangent at (0, b) is

$$y - b = -\frac{b}{a}(x - 0)$$
$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$$

22.
$$y = e^{2x}$$

 $\therefore \quad \frac{dy}{dx} = 2e^{2x}$
 $\therefore \quad \left(\frac{dy}{dx}\right)_{(0,1)} = 2$

... equation of the tangent at (0, 1) is y - 1 = 2(x - 0) $\Rightarrow y = 2x + 1$ This tangent meets X-axis, $\therefore y = 0$

$$\therefore \quad 0 = 2x + 1 \Rightarrow x = -\frac{1}{2}$$

$$\therefore \quad \text{the required point is } \left(-\frac{1}{2}, 0\right).$$

23. Let the required point be (x_1, y_1) .

$$\therefore \quad y_1 = be^{-\frac{x_1}{a}} \qquad \dots (i)$$
Now, $y = be^{-\frac{x}{a}}$

- 26. $8y = (x-2)^2$ Differentiating both sides w.r.t.x, we get $\frac{dy}{dx} = \frac{x-2}{4}$ $\therefore \qquad \left(\frac{dy}{dx}\right)_{(-6,8)} = \frac{-6-2}{4} = -2 \qquad \dots(i)$ $y = x + \frac{3}{x}$ $\therefore \qquad \frac{dy}{dx} = 1 - \frac{3}{x^2}$ $\therefore \qquad \left(\frac{dy}{dx}\right)_{(1,4)} = 1 - \frac{3}{1^2} = -2 \qquad \dots(ii)$ From (i) and (ii), T_1 is parallel to T_2
- 27. xy = 1 $\therefore \quad y = \frac{1}{x}$
- $\therefore \qquad y' = \frac{-1}{x^2}$
- $\therefore \quad \text{Slope of the normal} = x^2$ Slope of the line ax + by + c = 0 is $\frac{-a}{b}$.

Since, the line ax + by + c = 0 is a normal to the curve xy = 1.

 $\therefore \qquad x^2 = -\frac{a}{b}$

For this condition to hold true, either a < 0, b > 0 or b < 0, a > 0

28.
$$\frac{dy}{dx} = 1 - 2x + 3x^2$$

 $\therefore \quad \frac{dy}{dx} = 3x^2 - 2x + 1 = 3\left(x^2 - \frac{2}{3}x + \frac{1}{3}\right)$
 $= 3\left(x^2 - \frac{2}{3}x + \frac{1}{9} - \frac{1}{9} + \frac{1}{3}\right)$
 $= 3\left[\left(x - \frac{1}{3}\right)^2 + \frac{2}{9}\right]$
 $= 3\left(x - \frac{1}{3}\right)^2 + \frac{2}{3} > 0$

Slope of the given line is $-\frac{l}{m}$

The slope will be positive only if *l* and m have opposite signs.

 \therefore option (D) is the correct answer.

 $29. \quad \left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$

Differentiating both sides w.r.t.x, we get

$$\frac{1}{a^{n}} nx^{n-1} + \frac{1}{b^{n}} ny^{n-1}y' = 0$$

$$y' = -\frac{-b^{n}}{a^{n}} \cdot \frac{x^{n-1}}{y^{n-1}}$$

At (a, b),

$$y' = -\frac{b^{n}}{a^{n}} \cdot \frac{a^{n-1}}{b^{n-1}} = -\frac{b}{a}$$
, which is

independent of n.

30. Since, (x_1, y_1) lies on the curve $xy = a^2$. $\therefore x_1y_1 = a^2 \dots(i)$ Now, $xy = a^2$

Differentiating w.r.t.
$$x$$
, we get dy

$$x \frac{dy}{dx} + y = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = -\frac{y_1}{x_1}$$

....

 \therefore equation of the tangent at (x_1, y_1) is

$$y - y_1 = -\frac{y_1}{x_1} (x - x_1)$$

$$\Rightarrow xy_1 + yx_1 = 2x_1y_1$$

$$\Rightarrow xy_1 + yx_1 = 2a^2 \qquad \dots [From (i)]$$

This tangent meets the coordinate axes at

$$\left(\frac{2a^2}{y_1}, 0\right) \text{and} \left(0, \frac{2a^2}{x_1}\right).$$

required area= $\frac{1}{2} \left(\frac{2a^2}{y_1}\right) \left(\frac{2a^2}{x_1}\right)$
 $2a^4$

$$= \frac{1}{x_1 y_1}$$
$$= 2a^2 \qquad \dots [From (i)]$$

31.
$$y = x^2 \Rightarrow \frac{dy}{dx} = 2x \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 2 = m_1(\text{say})$$

 $6y = 7 - x^3 \Rightarrow 6. \frac{dy}{dx} = -3x^2$
 $\Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = -\frac{1}{2} = m_2(\text{say})$
Since, $m_1m_2 = -1$
∴ the angle of intersection is $\frac{\pi}{2}$.
32.
$$y = x^2$$

 $\therefore \frac{dy}{dx} = 2x$
 $\therefore \left(\frac{dy}{dx}\right)_{(1,1)} = 2 = m_1(\text{say})$
and $x = y^2$

$$\therefore \quad 1 = 2y \frac{1}{dx}$$
$$\Rightarrow \frac{dy}{dx} = \frac{1}{2y}$$
$$\therefore \quad \left(\frac{dy}{dx}\right) = \frac{1}{2} = m_2(\text{say})$$

 $\left(dx \right)_{(1,1)} = 2$ angle of intersection is tan *.*.. $= \left| \frac{2 - -}{1 + 2\left(\frac{1}{2}\right)} \right| = \frac{3}{4}$

$$\therefore \qquad \theta = \tan^{-1}\left(\frac{3}{4}\right)$$

The point of intersection of the given curves is 33. (0, 1). Now, $y = a^x$

$$\therefore \qquad \frac{dy}{dx} = a^x \log a$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(0,1)} = \log a = m_1 \text{ (say)}$$

Also, $y = b^x$

$$\therefore \qquad \frac{dy}{dx} = b^x \log b$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(0,1)} = \log b = m_2 \text{ (say)}$$

$$\therefore \qquad \tan \alpha = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| = \frac{\log a - \log b}{1 + \log a \log b}$$

34.
$$s = ae^{t} + \frac{b}{e^{t}}$$

 $\therefore \quad \frac{ds}{dt} = velocity = ae^{t} - \frac{b}{e^{t}}$
 $\therefore \quad \frac{d^{2}s}{dt^{2}} = acceleration = ae^{t} + \frac{b}{e^{t}} = s$
35. $\frac{dS}{dt} = velocity = 15 + 12t - 3t^{2}$
When particle comes to rest, $v = 0$
 $\Rightarrow 3t^{2} - 12t - 15 = 0$

 \Rightarrow t = 5 sec

$$\theta = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{l} + \mathbf{m}_1 \mathbf{m}_2} \right|$$

36.
$$s = \sqrt{t} \Rightarrow \frac{ds}{dt} = \frac{1}{2\sqrt{t}}$$

and $\frac{d^2s}{dt^2} = -\frac{1}{4t^{\frac{3}{2}}}$
 $= -\frac{1}{4}\left(\frac{2ds}{dt}\right)^3 = -2\left(\frac{ds}{dt}\right)^3$
Hence, acceleration \propto (velocity)³.
37. $s = \sqrt{at^2 + bt + c}$
 $\therefore v = \frac{ds}{dt} = \frac{1}{2}\frac{2at + b}{\sqrt{at^2 + bt + c}}$
 $= \frac{2at + b}{2s}$
acceleration $= \frac{d^2s}{dt^2} = \frac{dv}{dt}$
 $= \frac{2s(2a) - (2at + b) \cdot 2\frac{ds}{dt}}{4s^2}$
 $= \frac{4as - 2(2at + b)\frac{(2at + b)}{2s}}{4s^2}$
 $= \frac{4as^2 - (2at + b)^2}{4s^3}$
 $= \frac{4a(at^2 + bt + c) - (4a^2t^2 + 4abt + b^2)}{4s^3}$
 $= \frac{4ac - b^2}{4s^3}$
 \therefore acceleration varies as $\frac{1}{s^3}$

38. Area of a circle is
$$A = \pi R^2$$
 and $\frac{dR}{dt} = 0.2$

$$\therefore \quad \frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi R \; \frac{\mathrm{dR}}{\mathrm{dt}} = 1.2\pi \mathrm{cm}^2$$

Let a be each side and A be the area of the 39. square at any time t. Then, $A = a^2$

$$\Rightarrow \frac{dA}{dt} = 2a \frac{da}{dt}$$

= 2(2)(4)
....[:: $\frac{da}{dt}$ = 4 cm / sec and a = 2 cm(given)]
= 16 cm²/sec

MHT-CET Triumph Maths (Hints) Radius of balloon = $r = \frac{3}{4}(2x+3)$ 40. $\Rightarrow \frac{\mathrm{dr}}{\mathrm{dr}} = \frac{3}{2}$ $V = \frac{4}{3}\pi r^3$ $\therefore \qquad \frac{\mathrm{dV}}{\mathrm{dx}} = 4\pi \left(\frac{3}{4}\right)^2 (2x+3)^2 \cdot \frac{3}{2}$ $=\frac{27\pi}{8}(2x+3)^2$ Given, $\frac{dr}{dt} = 2$ cm/sec, where r be the radius of 41. circle and t be the time. Now, area of circle is given by $A = \pi r^2$ $\therefore \qquad \frac{dA}{dt} = 2\pi r \frac{dr}{dt}$ $\Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi \cdot 20.2$ $\frac{\mathrm{dA}}{\mathrm{dt}} = 80 \ \pi \ \mathrm{cm}^2/\mathrm{sec}$ *.*.. the rate of change of area of circle with *.*.. respect to time is 80 π cm²/sec. 42. Let r be the radius and V be the volume of the spherical balloon at any time t. Then, $V = \frac{4}{2}\pi r^3$ $\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ $\therefore \qquad \left(\frac{\mathrm{dV}}{\mathrm{dt}}\right)_{(r=15)} = 4\pi \times (15)^2 \times \left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)_{(r=15)}$ (dr)

$$\Rightarrow 30 = 900\pi \left(\frac{dr}{dt}\right)_{(r=15)}$$
$$\dots \left[\because \frac{dV}{dt} = 30 \text{ ft}^3 / \min(\text{given})\right]$$
$$\Rightarrow \left(\frac{dr}{dt}\right)_{(r=15)} = \frac{1}{30\pi} \text{ ft} / \min$$

43. Let velocity V = 5 cm/sec (Increasing the rate/sec is called the velocity) $\frac{da}{dt} = 5$ (i) But if a is edge of a cube, then V = a^3 $\therefore \frac{dV}{dt} = 3a^2 \frac{da}{dt} = 3a^2$. 5 $= 15a^2 = 15 \times (12)^2$...[\because edge a = 12 cm]

 $= 2160 \text{ cm}^{3}/\text{sec}$

44.
$$\frac{da}{dt} = 60 \text{ cm/sec where a is edge and t is time.}$$

$$V = a^{3}$$

$$\therefore \quad \frac{dV}{dt} = 3a^{2} \frac{da}{dt}$$

$$= 3a^{2} \times 60 = 180a^{2}$$

$$= 180 \times (90)^{2}$$

$$= 1458000 \text{ cm}^{3}/\text{sec.}$$
45.
$$V = \frac{4}{3} \pi (x + 10)^{3}, \text{ where } x \text{ is thickness of ice.}$$

$$\therefore \quad \frac{dV}{dt} = 4\pi (10 + x)^{2} \frac{dx}{dt}$$
But,
$$\frac{dV}{dt} = 50$$

$$\therefore \quad 50 = 4\pi (10 + x)^{2} \frac{dx}{dt}$$
At $x = 5, \frac{dx}{dt} = \frac{50}{4\pi (10 + 5)^{2}}$

$$= \frac{50}{4\pi (225)}$$

$$= \frac{1}{18\pi} \text{ cm/min}$$

46. $\frac{dx}{dt} = 0.5 \text{ cm/sec}$ $\therefore \quad \text{Area} = \frac{x^2}{2}$ $\therefore \quad \frac{dA}{dt} = \frac{2x}{2} \cdot \frac{dx}{dt}$ $A = \frac{1}{2}\sqrt{800}$ $\therefore \quad \left[\frac{dA}{dt}\right]_{A=400} = \frac{1}{2}\sqrt{800}$ $\dots \begin{bmatrix} \because A = 400 \text{ cm}^2 \\ \therefore x = \sqrt{800} \text{ cm} \end{bmatrix}$ $= 10\sqrt{2} \text{ cm}^2/\text{sec}$

47. From the figure,

...

$$\frac{x}{2} = \frac{x+y}{6}$$

$$\Rightarrow 4x = 2y \Rightarrow x = \frac{1}{2}y$$

$$6 \boxed{\frac{2}{y} + \frac{1}{x}}$$

$$\frac{dx}{dt} = \frac{1}{2}\frac{dy}{dt} = \frac{5}{2}$$
 metre/hour

MHT-CET Triumph Maths (Hints) Let $f(x) = x^{\frac{1}{4}}$ 54 $f'(x) = \frac{1}{4}x^{\frac{-3}{4}} = \frac{1}{\frac{3}{4}}$ *.*.. Here, a = 81 and h = -1 $f(a+h) \approx f(a) + h f'(a)$ *.*.. $\approx (81)^{\frac{1}{4}} + (-1) \left[\frac{1}{4(81)^{\frac{3}{4}}} \right]$ $\approx 3 - \frac{1}{108}$ $\approx 3 - 0.009259$ $(80)^{\frac{1}{4}}$ ≈ 2.9907 *.*.. 55. Let $f(x) = \cot^{-1}x$ $f'(x) = \frac{-1}{1+r^2}$ *.*.. Here, a = 1 and h = 0.001 $f(a + h) \approx f(a) + hf'(a)$ *.*... $\approx \frac{\pi}{4} + 0.001 \left(\frac{-1}{2}\right)$ $\approx \frac{3.14}{4} - 0.0005$ $\cot^{-1}(1.001) \approx 0.785 - 0.0005 \approx 0.7845$ *.*.. Let $f(x) = \tan^{-1} x$ 56. $f'(x) = \frac{1}{1 + x^2}$ *.*.. Here, a = 1 and h = -0.001 $f(a + h) \approx f(a) + hf'(a)$ *.*.. $\tan^{-1}(0.999) \approx \frac{\pi}{4} + \frac{1}{1+1} (-0.001)$ Ŀ. $\approx \frac{\pi}{4} - \frac{0.001}{2}$ $\approx \frac{\pi}{4} - 0.0005$ 57. Let $f(x) = \cos x$ $f'(x) = -\sin x$ *.*.. Here, $a = 90^{\circ}$ and $h = 30' = \left(\frac{1}{2}\right)^{\circ} = \left(\frac{1}{2} \times 0.0175\right)^{\circ}$ = 0.00875 $f(a) = f(90^\circ) = \cos 90^\circ = 0$ $f'(a) = f'(90^\circ) = -\sin 90^\circ = -1$ $f(a+h) \approx f(a) + h f'(a)$ *.*.. *.*.. $\cos(90^{\circ} 30') \approx 0 + (0.00875) \times (-1) \approx -0.00875$

 $f'(x) = \cos x$ *.*.. Here, $a = 30^{\circ}$ and $h = 1^{\circ} = 0.0175^{\circ}$ *.*.. $f(a + h) \approx f(a) + h f'(a)$ $\approx \frac{1}{2} + 0.0175 \times 0.8660$ $\approx 0.5 + 0.01515$ $sin(31^{\circ}) \approx 0.51515$ *.*.. ≈ 0.5152 59. Let $f(x) = \tan x$ *.*.. $f'(x) = \sec^2 x$ Here, $a = 45^{\circ} = \left(\frac{\pi}{4}\right)^{c}$ and $h = 1^{\circ} = 0.0175^{c}$ $f(a + h) \approx f(a) + hf'(a)$ $\approx \tan(a) + h \sec^2 a$ $\approx \tan(a) + h \frac{1}{\cos^2 a}$ $\approx \tan\left(\frac{\pi}{4}\right) + (0.0175) \frac{1}{\left(1/\sqrt{2}\right)^2}$ $\approx 1 + 0.035$ $\tan 46^\circ \approx 1.035$ *.*.. 60. Let $f(x) = \log_e x$ $f'(x) = \frac{1}{x}$ *.*.. Here, a = 9 and h = 0.01 $f(a + h) \approx f(a) + hf'(a)$ *.*.. $\approx f(9) + (0.01) f'(9)$ $\approx \log_e 3^2 + \frac{0.01}{2}$ $\approx 2 \log_e 3 + \frac{0.01}{\Omega}$ $\approx 2.1972 + 0.0011$ ≈ 2.1983 Consider option (B), 61. $f(x) = x^2$ is a polynomial function. f(x) is continuous and differentiable in the *.*.. given interval. Also, f(1) = f(-1) = 1So, Rolle's theorem is applicable to $f(x) = x^2$ on [-1, 1].

58.

Let $f(x) = \sin x$

62.
$$f(x) = |x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

$$f'(0^{-}) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$

$$= \lim_{h \to 0} \frac{|-h|}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1$$

$$f'(0^{+}) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

$$\therefore \quad f(x) \text{ is not differentiable at } x = 0.$$
63.
$$f(x) = e^{-2x} \sin 2x$$

$$\Rightarrow f'(x) = 2e^{-2x} (\cos 2x - \sin 2x)$$
Now,
$$f'(c) = 0$$

$$\Rightarrow \cos 2c - \sin 2c = 0$$

$$\Rightarrow \tan 2c = 1 \Rightarrow 2c = \frac{\pi}{4} \Rightarrow c = \frac{\pi}{8}$$
64.
$$f(x) = x^{3} - 6x^{2} + ax + b$$

$$\Rightarrow f'(x) = 3x^{2} - 12x + a$$
Now,
$$f'(c) = 0 \Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$$

$$\Rightarrow 3\left(2 + \frac{1}{\sqrt{3}}\right)^{2} - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$$

$$\Rightarrow 3\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$$

$$\Rightarrow a = 11$$
65.
$$f(x) = x(x+3)e^{-\left(\frac{1}{2}\right)x}$$

$$\therefore \quad f'(x) = (x^{2} + 3x)e^{-\left(\frac{1}{2}\right)x} \cdot \left(-\frac{1}{2}\right) + (2x+3)e^{-\left(\frac{1}{2}\right)x}$$

$$= e^{-\left(\frac{1}{2}\right)x} \left\{-\frac{1}{2}(x^{2} + 3x) + 2x + 3\right\}$$

$$= -\frac{1}{2}e^{-\left(\frac{x}{2}\right)}(x^{2} - x - 6)$$
Since,
$$f(x)$$
 satisfies all the conditions of Rolle's theorem. So, there exists
$$c \in (-3, 0)$$
such that
$$f'(c) = 0$$

$$\Rightarrow c^{2} - c - 6 = 0$$

$$\Rightarrow c = 3, -2$$
But
$$c = -2e = [-3, 0]$$

c = -2

...

Chapter 03: Applications of Derivatives 66. Here, f(x) is continuous and differentiable on (0, 1) for $\alpha > 0$ Also, f(0) = f(1) = 0For f(x) to be continuous at x = 0, $\lim f(x) = f(0) \implies \lim x^{\alpha} \log x = 0$ $x \rightarrow 0^+$ $\Rightarrow \lim_{x \to 0^+} \frac{\log x}{x^{-\alpha}} = 0$ Applying L'Hospital rule, we get $\lim_{x\to 0^+} \frac{\overline{x}}{-\frac{\alpha}{r^{\alpha+1}}} = 0 \implies \lim_{x\to 0^+} -\frac{x^{\alpha}}{\alpha} = 0,$ which is possible only when $\alpha > 0$ option (D) is the correct answer. *.*.. 67. $f(x) = \log_e x$ \therefore f(1) = log_e 1 = 0, $f(3) = \log_e 3$ and $f'(x) = \frac{1}{r}$ By Lagrange's mean value theorem, $f'(c) = \frac{f(3) - f(1)}{3 - 1}$ $\Rightarrow \frac{1}{c} = \frac{\log_e 3 - 0}{2} \Rightarrow c = \frac{2}{\log_3 3} \Rightarrow c = 2 \log_3 e$ 68. $f(x) = x + \frac{1}{r}$:. $f(3) = \frac{10}{3}$, f(1) = 2 and $f'(x) = 1 - \frac{1}{r^2}$ By Lagrange's mean value theorem, $f'(c) = \frac{f(3) - f(1)}{3 - 1}$ $\Rightarrow 1 - \frac{1}{c^2} = \frac{\frac{10}{3} - 2}{2} \Rightarrow 1 - \frac{1}{c^2} = \frac{2}{3}$ \Rightarrow c² = 3 \Rightarrow c = $\sqrt{3}$ 69. $f(x) = \frac{1}{x}$ \Rightarrow f(a) = $\frac{1}{a}$, f(b) = $\frac{1}{b}$ and f'(x) = $-\frac{1}{r^2}$ Given, $f(b) - f(a) = (b - a) f'(x_1)$ $\Rightarrow \frac{1}{b} - \frac{1}{a} = (b-a) \left(-\frac{1}{x_1^2} \right)$ $\Rightarrow \frac{a-b}{ab} = \frac{(a-b)}{x_1^2}$ $\Rightarrow x_1^2 = ab \Rightarrow x_1 = \sqrt{ab}$

MHT-CET Triumph Maths (Hints) $f(x) = x(x-1)^2 = x^3 - 2x^2 + x$ 70. f(0) = 0, f(2) = 2 and $f'(x) = 3x^2 - 4x + 1$ *.*.. By mean value theorem, $f'(c) = \frac{f(2) - f(0)}{2 - 0}$ $\Rightarrow 3c^2 - 4c + 1 = \frac{2-0}{2-0} = 1$ $\Rightarrow 3c^2 - 4c = 0$ \Rightarrow c(3c - 4) = 0 \Rightarrow c = 0, c = $\frac{4}{2}$ 71. f(x) = x(x-1)(x-2)f(a) = f(0) = 0, $f(b) = f\left(\frac{1}{2}\right) = \frac{3}{8}$ and ... f'(x) = (x-1)(x-2) + x(x-2) + x(x-1) \Rightarrow f'(c) = (c-1)(c-2) + c(c-2) + c(c-1) \Rightarrow f'(c) = c² - 3c + 2 + c² - 2c + c² - c \Rightarrow f'(c) = 3c² - 6c + 2 *.*.. Given, $f'(c) = \frac{f(b) - f(a)}{b}$ $\Rightarrow 3c^2 - 6c + 2 = \frac{\frac{5}{8} - 0}{\frac{1}{2} - 0} = \frac{3}{4}$ $\Rightarrow 3c^2 - 6c + \frac{5}{4} = 0$ $c = \frac{6 \pm \sqrt{36 - 15}}{2 \times 3} = \frac{6 \pm \sqrt{21}}{6} = 1 \pm \frac{\sqrt{21}}{6}$ *.*.. ·. $f(x) = 1 - x^3 - x^5 \implies f'(x) = -3x^2 - 5x^4$ 72. *.*.. \Rightarrow f'(x) < 0 for all values of x. 73. $f(x) = 2x^3 + 3x^2 - 12x + 5$ $f'(x) = 6x^2 + 6x - 12$ ÷. $\frac{+ve}{-2}$ $= 6 (x^2 + x - 2)$ *.*.. = 6 (x+2) (x-1)Increasing at $(-\infty, -2) \cup (1, \infty) = l_1$ 80. Decreasing at $(-2, 1) = l_2$ 74. $f(x) = \frac{x}{1+|x|}$ *.*.. $f'(x) = \frac{1 + |x| - x\frac{|x|}{x}}{(1 + |x|)^2} = \frac{1}{(1 + |x|)^2} > 0$ *.*.. the given function is increasing. *.*..

75. $f(x) = \frac{\log x}{\log x}$ $\therefore \quad f'(x) = \frac{1 - \log x}{r^2} < 0$ $\Rightarrow 1 - \log x < 0$ $\Rightarrow 1 < \log x$ $\Rightarrow \log x > 1$ $\Rightarrow x > e$ 76. $\frac{d}{dx}(f(x)) = \frac{-2-x}{(x+1)^2}$ For x > 0. $\frac{\mathrm{d}}{\mathrm{d}x}(\mathbf{f}(x)) < 0$ 77. $f'(x) = 3x^2 + 3x + 3 = 3(x^2 + x + 1)$ $=3\left|\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right|\geq\frac{9}{4}>0$ f(x) is an increasing function. 78. $f'(x) = 2xe^{-x} - x^2 e^{-x} = xe^{-x} (2 - x)$ Since, f is increasing, f'(x) > 0 $\Rightarrow xe^{-x}(2-x) > 0 \Rightarrow x(2-x) > 0$ $\Rightarrow x > 0, 2 - x > 0$ or x < 0, 2 - x < 0 $\Rightarrow x > 0, 2 > x \text{ or } x < 0, 2 < x$ $\Rightarrow 0 < x < 2 \text{ or } 2 < x < 0 \text{ (Not possible)}$ $\Rightarrow 0 < x < 2 \Rightarrow x \in (0, 2)$ 79. $f(x) = e^{ax} + e^{-ax}$ $f'(x) = a(e^{ax} - e^{-ax}) < 0$ But, a < 0 $e^{ax} - e^{-ax} > 0$ $\Rightarrow e^{ax} > e^{-ax}$ $\Rightarrow ax > -ax$ $\Rightarrow 2ax > 0$ ax > 0, then x < 0...[: a < 0] $f'(x) = 3kx^2 - 18x + 9$ $= 3 (kx^2 - 6x + 3)$ Since, f(x) is increasing on R \therefore f'(x) > 0 $kx^2 - 6x + 3 > 0 \ \forall \ x \in \mathbb{R}$ \Rightarrow k > 0 and 36 – 12k < 0 \Rightarrow k > 3 \dots [:: $ax^2 + bx + c > 0 \forall x \in \mathbb{R}$ \Rightarrow a > 0 and b² - 4ac < 0 Hence, f(x) is increasing on R if k > 3.

- $\therefore \quad f'(x) > 0 \text{ for all } x$ $\Rightarrow \frac{K-2}{(\sin x + \cos x)^2} > 0 \text{ for all } x$ $\Rightarrow K - 2 > 0 \Rightarrow K > 2$
- 82. The graph of cosec x is opposite in interval $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

At the point $x = \pi$, cosec x is not defined and

 $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

 \therefore equation is neither increasing nor decreasing.

Also $\frac{d}{dx}$ (tan x) = sec² x > 0 which is a increasing function. Also $y = x^2$ is a parabola, which is increasing

Also y = |x - 1| is a V-shaped upward curve, which is always increasing.

 \therefore option (A) is the correct answer.

83. Let
$$f(x) = x + \frac{1}{x}$$

 \therefore $f'(x) = 1 - \frac{1}{x^2} \le 0 \implies 1 \le \frac{1}{x^2} \implies x^2 \le 1$
 $\implies x \in [-1, 1]$

1

84. Since $f'(x) = \frac{3}{(x+1)^2}$ is greater than '0' in interval $(-\infty, \infty)$, therefore $f(x) = \frac{x-2}{x+1}$ is increasing in interval $(-\infty, \infty)$ or R.

85. Let
$$f(x) = \sin x - bx + c$$

 \therefore $f'(x) = \cos x - b > 0 \Rightarrow \cos x > b \Rightarrow b < -1$

Chapter 03: Applications of Derivatives $f(x) = x^4 - \frac{x^3}{2} \Longrightarrow f'(x) = 4x^3 - x^2$ 86. For f(x) to be increasing, $4x^3 - x^2 > 0$ $\Rightarrow x^2(4x-1) > 0$ the function is increasing for $x > \frac{1}{4}$ Similarly, decreasing for $x < \frac{1}{4}$ $f(x) = 2x^3 - 15x^2 + 36x + 1$ 87. $f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6)$ *.*.. = 6(x-2)(x-3)To be monotonic decreasing, f'(x) < 0 \Rightarrow $(x-2)(x-3) < 0 \Rightarrow x \in (2,3)$ As $f(x) = \sin 2x \Rightarrow f'(x) = 2 \cos 2x$ 88. Here, f'(x) > 0 in $\left(0, \frac{\pi}{4}\right)$ and f'(x) < 0 in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ 89. $f(x) = x + \cos x \implies f'(x) = 1 - \sin x$ f'(x) > 0 for all values of x. *.*.. f(x) is always increasing. $f(x) = \frac{\log x}{x}$ 90. $f'(x) = \frac{1}{r^2} - \frac{\log x}{r^2} = \frac{1 - \log x}{r^2}$ *.*.. For f(x) to be increasing, f'(x) > 0 $\Rightarrow 1 - \log x > 0 \Rightarrow 1 > \log x \Rightarrow e > x$ *.*.. f(x) is increasing in the interval (0, e). $f(x) = 1 - e^{-\frac{x^2}{2}}$ 91. \Rightarrow f'(x) = $-e^{-\frac{x^2}{2}}(-x) = xe^{-\frac{x^2}{2}}$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow xe^{-\frac{x^2}{2}} > 0$ \Rightarrow f(x) is decreasing for x < 0 and increasing for x > 0. $f(x) = \frac{a \sin x + b \cos x}{c \sin x + d \cos x}$ 92. f(x) will be decreasing, if f'(x) < 0 $\frac{1}{\left(c\sin x + d\cos x\right)^2} \left[(c\sin x + d\cos x)(a\cos x - b\sin x) \right]$ *.*.. $-(a\sin x + b\cos x)(c\cos x - d\sin x)] < 0$ $\Rightarrow \arcsin x \cos x - \operatorname{bc} \sin^2 x + \operatorname{ad} \cos^2 x$ $-bd\sin x \cos x - ac\sin x \cos x + ad\sin^2 x$ $-bc\cos^2 x + bd\sin x\cos x < 0$ \Rightarrow ad(sin² x + cos² x) - bc(sin² x + cos² x) < 0 \Rightarrow ad - bc < 0

93.
$$f(x) = x^{4} - 62x^{2} + ax + 9 \quad \dots(i)$$

$$\therefore f'(x) = 4x^{3} - 124x + a$$
For maximum or minimum,
$$f'(x) = 0$$

$$\Rightarrow 4x^{3} - 124 x + a = 0$$
Since,
$$x = 1$$
 is a root of (i).
$$\therefore f'(1) = 4 - 124 + a = 0 \therefore a = 120$$
94.
$$f(x) = (x - \alpha) (x - \beta) = x^{2} - (\alpha + \beta)x + \alpha\beta$$

$$\therefore f'(x) = 2x - (\alpha + \beta)$$
For maximum or minimum,
$$f'(x) = 0$$

$$\Rightarrow x = \frac{\alpha + \beta}{2}$$
Now
$$f''(x) = 2 > 0$$

$$\therefore f(x) = f\left(\frac{\alpha + \beta}{2}\right) \left(\frac{\alpha - \beta}{2}\right) = -\frac{(\alpha - \beta)^{2}}{4}$$
95.
$$y = xe^{x}$$

$$\therefore y' = xe^{x} + e^{x} = e^{x} (x + 1) = 0$$

$$\therefore x = -1$$

$$y'' = xe^{x} + e^{x} + e^{x}$$
At
$$x = -1$$
,
$$y'' = -e^{-1} + e^{-1} + e^{-1} = \frac{1}{e} > 0$$

$$\therefore Minimum at
$$x = -1$$
96.
$$f(x) = x^{5} - 5x^{4} + 5x^{3} - 10$$

$$\therefore f'(x) = 5x^{4} - 20x^{3} + 15x^{2}$$
For maximum or minimum,
$$f'(x) = 0$$

$$\Rightarrow x^{2}(x - 3)(x - 1) = 0$$

$$\Rightarrow x = 0, x = 3, x = 1$$

$$f''(x) = 20x^{3} - 60x^{2} + 30x = 10x (2x^{2} - 6x + 3)$$

$$f''(0) = 0$$

$$f'''(3) = Positive (Minima)$$

$$f'''(1) = Negative (Maxima)$$

$$\therefore (p, q) = (1, 3)$$
97.
$$\frac{dy}{dx} = \frac{a}{x} + 2bx + 1 \Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = a + 2b + 1 = 0$$

$$\Rightarrow a = -2b - 1 \text{ and } \left(\frac{dy}{dx}\right)_{x=2} = \frac{a}{2} + 4b + 1 = 0$$

$$\Rightarrow -b + 4b + \frac{1}{2} = 0$$

$$\Rightarrow 3b = \frac{-1}{2} \Rightarrow b = \frac{-1}{6} \text{ and } a = \frac{1}{3} - 1 = \frac{-2}{3}$$$$

98. $f(x) = 3x^4 - 4x^3$

- $\therefore f'(x) = 12x^3 12x^2$ $\therefore x^2(x-1) = 0 \Rightarrow x = 1, 0$ Now f''(x) = $36x^2 - 24x$ f''(1) = 12 > 0f''(0) = 0 f(1) = 3 - 4 = -1f(-1) = 3 + 4 = 7f(2) = 48 - 32 = 16
- ∴ Maximum at 2 and Minimum at 1 and Maximum value is 16 and Minimum value is -1.

99. Let
$$f(x) = x^3 - 12x^2 + 36x + 17$$

∴ $f'(x) = 3x^2 - 24x + 36 = 0$ at $x = 2$, 6
Again $f''(x) = 6x - 24$ is -ve at $x = 2$
So that $f(6) = 17$, $f(2) = 49$
At the end points, $f(1) = 42$, $f(10) = 177$
So that $f(x)$ has its maximum value as 177

100. $x + y = 16 \Rightarrow y = 16 - x$ $\Rightarrow x^{2} + y^{2} = x^{2} + (16 - x)^{2}$ Let $z = x^{2} + (16 - x)^{2}$ $\Rightarrow z' = 4x - 32$ To be minimum of z, z'' > 0, Therefore $4x - 32 = 0 \Rightarrow x = 8, y = 8$

101.
$$f(x) = (x-1)^{\frac{1}{3}} (x-2)$$

∴ $f'(x) = (x-1)^{\frac{1}{3}} \cdot 1 + (x-2) \cdot \frac{1}{3} (x-1)^{\frac{-2}{3}}$
 $= \frac{4x-5}{3(x-1)^{\frac{2}{3}}}$
For maxima or minima, $f'(x) = 0$
∴ $\frac{4x-5}{3(x-1)^{\frac{2}{3}}} = 0$
∴ $x = \frac{5}{4}$
∴ $f(1) = (1-1)^{\frac{1}{3}} (1-2) = 0$
 $f(\frac{5}{4}) = (\frac{5}{4}-1)^{\frac{1}{3}} (\frac{5}{4}-2) = \frac{-3}{4^{\frac{4}{3}}}, f(9) = 14$
∴ absolute minimum occurs at $x = \frac{5}{4}$ and min.
 $value = \frac{-3}{4^{\frac{4}{3}}}$

Absolute maximum occurs at x = 9 and max. value = 14.

102. Let $f(x) = x\sqrt{1-x^2}$ \Rightarrow f'(x) = $\frac{1-2x^2}{\sqrt{1-x^2}} = 0 \Rightarrow x = \pm \frac{1}{\sqrt{2}}$ But as x > 0, we have $x = \frac{1}{\sqrt{2}}$ Now, $f''(x) = \frac{\sqrt{1 - x^2}(-4x) - (1 - 2x^2)\frac{-x}{\sqrt{1 - x^2}}}{(1 - x^2)}$ $=\frac{2x^3-3x}{(1-x^2)^{3/2}}$ \Rightarrow f'' $\left(\frac{1}{\sqrt{2}}\right) = -ve$ f(x) is maximum at $x = \frac{1}{\sqrt{2}}$ *.*.. 103. Let x and y be two natural numbers such that x + y = 10 and the product is xy. $xy = x (10 - x) = 10x - x^2 = f(x)$ f'(x) = 10 - 2x*.*.. f''(x) = -2*.*.. Roots of f'(x) = 0, i.e., 10 - 2x = 0 i.e., x = 5f'(5) = 10 - 10 = 0f is maximum when x = 5, y = 5*.*.. The product is maximum if x = 5, y = 5*.*.. 104. 2 (x + y) = 24x + y = 12.... *.*.. x = 12 - v $f(x) = xy = x(12 - x) = 12x - x^{2}$ f'(x) = 12 - 2x = 0*.*.. x = 6 At x = 6, y = 6*.*.. max area is 36 m^2 . *.*.. 105. Let x + y = 3According to the given condition, $f(x) = x^2 \times (3 - x) = 3x^2 - x^3$ (i) $f'(x) = 6x - 3x^2 = 0$ *.*.. 3x(x-2) = 0.... x = 0, x = 2*.*.. Now f''(x) is max at x = 2Its maximum value is 4[From (i)] 106. Let one number be (100 - x) and then another is x. Therefore $f(x) = 2(100 - x) + x^2$ $=x^{2}-2x+200$ $f'(x) = 0 \Longrightarrow 2x - 2 = 0 \Longrightarrow x = 1$ Here f''(x) = 2 > 0Therefore function is minimum at x = 1. So the numbers are 99 and 1.

Chapter 03: Applications of Derivatives 107. According to the given condition, $2x + 2y = 100 \Rightarrow x + y = 50$(i) Let the area of rectangle be A. $A = xy \Rightarrow y = \frac{A}{2}$ *.*.. Put in (i), we have $x + \frac{A}{x} = 50 \Rightarrow A = 50x - x^2$ $\Rightarrow \frac{dA}{dx} = 50 - 2x$ For maximum area, $\frac{dA}{dr} = 0$ *.*.. $50 - 2x = 0 \Rightarrow x = 25$ and y = 25Hence, adjacent sides are 25 and 25 cm. 108. Let the number be *x*, then the function $f(x) = \frac{x}{x^2 + 16}$ On differentiating with respect to x, we get $\Rightarrow f'(x) = \frac{(x^2 + 16) \cdot 1 - x(2x)}{(x^2 + 16)^2}$ $=\frac{x^2+16-2x^2}{(x^2+16)^2}$ $=\frac{16-x^2}{(x^2+16)^2}$ Put f'(x) = 0 for maxima or minima $f'(x) = 0 \Longrightarrow 16 - x^2 = 0 \Longrightarrow x = 4, -4$ Again differentiating $f''(x) = \frac{(x^2 + 16)^2(-2x) - (16 - x^2)2(x^2 + 16)2x}{(x^2 + 16)^4}$ At x = 4, f''(x) < 0 and at x = -4, f''(x) > 0 Least value of $f(x) = \frac{-4}{16 + 16} = -\frac{1}{8}$ *.*.. 109. Let $y = x^{2x} \Longrightarrow \log y = 2x \log x$, (x > 0)Differentiating, $\frac{dy}{dx} = 2x^{2x} (1 + \log x);$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ $\Rightarrow \log x = -1 \Rightarrow x = e^{-1} = \frac{1}{2}$ Stationary point is $x = \frac{1}{2}$ *.*.. 110. x + y = 8 $\therefore y = 8 - x$ Now $f(x) = xy = x(8 - x) = 8x - x^2$ f'(x) = 8 - 2x*.*.. For maximum value of f(x), f'(x) = 0*.*.. x = 4 and y = 4So, maximum value of $xy = 4 \times 4 = 16$

111.
$$f(x) = 2x^3 - 21x^2 + 36x - 30$$

⇒ $f'(x) = 6x^2 - 42x + 36$
∴ $f'(x) = 0 \Rightarrow x = 6, 1 and f''(x) = 12x - 42$
Here $f''(1) = -30 < 0$ and $f''(6) = 30 > 0$
∴ $f(x)$ has maxima at $x = 1$ and minima at $x = 6$.
112. $f(x) = \cos x + \cos(\sqrt{2}x)$
∴ $f'(x) = -\sin x - \sqrt{2}\sin(\sqrt{2}x) = 0$
∴ $x = 0$ is the only solution.
 $f''(x) = -\cos x - 2 \cos(\sqrt{2}x) < 0$ at $x = 0$
Hence, maxima occurs at $x = 0$.
113. Let $f(x) = x^3 - 18x^2 + 96x$
∴ $f'(x) = 3x^2 - 36x + 96$
For maximum or minimum, $f'(x) = 0$
⇒ $x^2 - 12x + 32 = 0 \Rightarrow (x - 4)(x - 8) = 0$
⇒ $x = 4, 8$
Now, $f''(x) = 6x - 36$
At $x = 4$, $f'(x)$ will be maximum
and $[f(4)]_{max} = 64 - 288 + 384 = 160$
At $x = 8$, $\frac{d^2y}{dx^2} = 48 - 36 = 12 > 0$
At $x = 8$, $f(x)$ will be minimum and $[f(8)]_{min} = 128$
114. Let PQ = a and PR = b, then $\Delta = \frac{1}{2}$ ab sin θ
∵ $-1 \le \sin 0 \le 1$
Since, area is maximum when sin $\theta = 1$
⇒ $\theta = \frac{\pi}{2}$
115. Here $f(x) = |\sin 4x + 3|$
We know that minimum value of sin x is -1
and maximum is 1.
Hence minimum $|\sin 4x + 3| = |-1 + 3| = 2$ and
maximum $|\sin 4x + 3| = |1 + 3| = 4$
116. $f(x) = |px - 9| + r|x|, x \in (-\infty, \infty)$
Where $p > 0, q > 0$ and $r > 0$ can assume its
minimum value only at one point, if $p = q = r$.
117. $f(x) = 3x^4 - 8x^3 + 12x^2 - 48x + 25$
∴ $f'(x) = 12x^3 - 24x^2 + 24x - 48$
 $= 12(x^3 - 2x^2 + 2x - 4) = 12[(x - 2)(x^2 + 2)]$
For maximum or minimum of $f(x), f'(x) = 0$
 $\Rightarrow x = 2$.

... f has minimum at x = 2 and the minimum value of f at x = 2 is f(2) = 48 - 64 + 48 - 96 + 25 = -39118. $f(x) = (x - \alpha) (x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta$ $f'(x) = 2x - (\alpha + \beta)$ *.*.. For maximum or minimum of f(x), f'(x) = 0 $\Rightarrow 2x - (\alpha + \beta) = 0$ Now, f''(x) = 2 > 0f has minimum at $x = \frac{\alpha + \beta}{2}$ *.*.. and the minimum value of f at $x = \frac{\alpha + \beta}{2}$ is $\left(\frac{\alpha+\beta}{2}-\alpha\right)\left(\frac{\alpha+\beta}{2}-\beta\right)$ $=\left(\frac{\beta-\alpha}{2}\right)\left(\frac{\alpha-\beta}{2}\right)=-\frac{(\alpha-\beta)^2}{4}$ 119. Let $x + y = 20 \Rightarrow y = 20 - x$ (i) and $x^3y^2 = z$ $\Rightarrow z = x^3 (20 - x)^2 \Rightarrow z = 400x^3 + x^5 - 40x^4$ $\therefore \qquad \frac{\mathrm{d}z}{\mathrm{d}x} = 1200x^2 + 5x^4 - 160x^3$ For maximum or minimum, $\frac{\mathrm{d}z}{\mathrm{d}x} = 0$ $\Rightarrow 1200 x^2 + 5x^4 - 160x^3 = 0$ $\Rightarrow x = 12, 20$ $\frac{d^2z}{dr^2} = 2400x + 20x^3 - 480x^2$ $\therefore \qquad \left(\frac{\mathrm{d}^2 z}{\mathrm{d} x^2}\right)_{x=12} = -5760 < 0$ *.*.. z is maximum at x = 12. From (i), y = 20 - 12 = 8the parts of 20 are 12 and 8. *.*.. 120. Let $y = \sin^p x . \cos^q x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = p \sin^{p-1} x. \cos x. \cos^q x + q \cos^{q-1} x.$ *.*.. $(-\sin x)\sin^p x$ $\frac{dy}{dx} = p \sin^{p-1} x. \cos^{q+1} x - q \cos^{q-1} x. \sin^{p+1} x$ *.*.. For maximum or minimum, $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ \therefore $\tan^2 x = \frac{p}{q} \Longrightarrow \tan x = \pm \sqrt{\frac{p}{q}}$ Point of maxima $x = \tan^{-1} \sqrt{\frac{p}{q}}$ *.*..

....

Now, $f''(x) = 12(3x^2 - 4x + 2)$

f''(2) = 12(12 - 8 + 2) = 72 > 0

Chapter 03: Applications of Derivatives

- 2R = 70*:*.
- 124. Let the length of side of each square cut out be x sq cm. Then, each side of base of the box is (12 - 2x) cm and x cm will be height of box.

V = Volume of box
=
$$(12 - 2x)^2 x = 4(36 + x^2 - 12x)x$$

= $4(x^3 - 12x^2 + 36x)$
 $\Rightarrow \frac{dV}{dx} = 4(3x^2 - 24x + 36)$
= $12 (x^2 - 8x + 12)$
and $\frac{d^2V}{dx^2} = 4(6x - 24)$
Now, $\frac{dV}{dx} = 0 \Rightarrow x^2 - 8x + 12 = 0$
 $\Rightarrow (x - 2)(x - 6) = 0 \Rightarrow x = 2 \text{ or } x = 6$
But $x < 6$
 $x = 2$
For $x = 2$, $\frac{d^2V}{dx^2} = 4 (12 - 24) = -48 < 0$
Volume is maximum when each square of 2 cm length is cut out from each corner.
Given equation is $10s = 10ut - 49t^2$
 $\Rightarrow s = ut - 4.9t^2$
 $\Rightarrow \frac{ds}{dx} = u - 9.8t = v$

When stone reaches the maximum height, then \Rightarrow u - 9.8t = 0 \Rightarrow u = 9.8t So the value of $u = 9.8 \times 5 = 49.0$ m/sec

126. Let L be the lamp and PQ be the man and OQ = x metre be his shadow and let MQ = y metre.

 $\frac{dy}{dt}$ = speed of the man = 3 m/s (given)

Since, Δ OPQ and Δ OLM are similar.

$$\therefore \qquad \frac{OM}{OQ} = \frac{LM}{PQ} \Rightarrow \frac{x+y}{x} = \frac{5}{2}$$
$$\Rightarrow y = \frac{3}{2}x$$
$$\therefore \qquad \frac{dy}{dt} = \frac{3}{2} \cdot \frac{dx}{dt}$$
$$\Rightarrow 3 = \frac{3}{2} \cdot \frac{dx}{dt}$$
$$\Rightarrow \frac{dx}{dt} = 2m/s.$$

127. Let A, P and x be the area, perimeter and length of the side of the square respectively at time t seconds. Then, $A = x^2$ and P = 4x

$$\therefore P = 4\sqrt{A}$$

$$\therefore \frac{dP}{dt} = 4 \cdot \frac{1}{2\sqrt{A}} \cdot \frac{dA}{dt}$$

$$= \frac{2}{x} \cdot \frac{dA}{dt} = \frac{2}{16} \cdot 2 = \frac{1}{4} \text{ cm / sec.}$$

128. Let

$$f(A) = \cos A \cos B = \cos A \cos \left(\frac{\pi}{2} - A\right)$$

= cos A sin A
∴ f'(A) = cos² A - sin² A = cos 2 A
For maximum or minimum,
f'(A) = 0 ⇒ cos 2A = 0
⇒ 2A = $\frac{\pi}{2}$ ⇒ A = $\frac{\pi}{4}$
Now, f''(A) = -2 sin 2 A
= -2 sin $\frac{\pi}{2}$ = -2 < 0
∴ f(A) is maximum at A = $\frac{\pi}{4}$.
∴ Maximum value = cos $\frac{\pi}{4}$ sin $\frac{\pi}{4}$ = $\frac{1}{2}$

129. Since, f(x) satisfies all the conditions of Rolle's theorem.

$$f(3) = f(5) = 0$$

$$\Rightarrow x = 3 \text{ and } x = 5 \text{ are the roots of } f(x).$$

$$\Rightarrow f(x) = (x - 3) (x - 5) = x^2 - 8x + 15$$

$$f(x) = \int_{3}^{5} (x^2 - 8x + 15) dx$$

$$= \left[\frac{x^3}{3} - 4x^2 + 15x\right]_{3}^{5}$$

$$= \frac{1}{3}(125 - 27) - 4(25 - 9) + 15(5 - 3)$$

$$= -\frac{4}{3}$$

1.
$$y = x^{2} - \frac{1}{x^{2}}$$

$$\therefore \quad \frac{dy}{dx} = 2x + \frac{2}{x^{3}}$$

$$\therefore \quad \left(\frac{dy}{dx}\right)_{(-1,0)} = 2(-1) + \frac{2}{(-1)^{3}} = -4$$

$$\therefore \quad \text{Slope of normal at } (-1, 0) = -\frac{1}{\left(\frac{dy}{dx}\right)_{(-1,0)}} = \frac{1}{4}$$

2. For the point (2, -1) on the curve

$$x = t^{2} + 3t - 8, y = 2t^{2} - 2t - 5, \text{ we have}$$

$$t^{2} + 3t - 8 = 2 \text{ and } 2t^{2} - 2t - 5 = -1$$

$$\Rightarrow (t + 5) (t - 2) = 0 \text{ and } (t - 2) (t + 1) = 0$$

$$\Rightarrow t = 2$$
Now, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t - 2}{2t + 3}$

$$\therefore \quad \left(\frac{dy}{dx}\right)_{(t=2)} = \frac{4(2) - 2}{2(2) + 3} = \frac{6}{7}$$
3. Slope of the normal $= \frac{-1}{\frac{dy}{dx}}$

$$\Rightarrow \tan \frac{3\pi}{4} = \frac{-1}{\left(\frac{dy}{dx}\right)_{(3,4)}}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(3,4)} = 1 \Rightarrow f'(3) = 1$$

4.
$$y = ax^3 + bx + 4$$

 $\therefore \quad \frac{dy}{dx} = 3ax^2 + b$

Slope of tangent at (2, 14) = $\left(\frac{dy}{dx}\right)_{(2, 14)}$

$$\Rightarrow 21 = 3a(2)^2 + b$$

$$\Rightarrow 21 = 12a + b$$

$$y = ax^3 + bx + 4$$
 ...(i)

$$\therefore \quad 14 = a (8) + b (2) + 4$$

$$\Rightarrow 8a + 2b = 10 \qquad \dots (ii)$$

On solving (i) and (ii), we get

$$a = 2, b = -3$$

5.
$$x = t^2 - 1, y = t^2 - t$$

 $\therefore \qquad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t - 1}{2t}$

$$\frac{dx}{dt}$$

Since, the tangent is perpendicular to X-axis.

$$\therefore \qquad \frac{\mathrm{d}x}{\mathrm{d}y} = 0 \Rightarrow \frac{2\mathrm{t}}{2\mathrm{t}-1} = 0 \Rightarrow \mathrm{t} = 0$$

6. $y = x^3 \Rightarrow \frac{dy}{dx} = 3x^2$ According to the given condition, $3x^2 = y$ $\Rightarrow 3x^2 = x^3$ [$\because y = x^3$] $\Rightarrow x = 0, 3$

Thus, the two points are (0, 0) and (3, 27).

7.
$$y = x^2 - 3x + 2 \Rightarrow \frac{dy}{dx} = 2x - 3$$

Slope of the given line = 1 Since, the tangent is perpendicular to the given line.

- $\therefore \quad (2x-3)(1) = -1$ $\Rightarrow x = 1$ At x = 1, y = 0
- \therefore the required point is (1, 0).
- 8. Given equation of curve is $y = \sqrt{x-1}$ Slope of tangent to the curve is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{x-1}}$$

Slope of line 2x + y - 5 = 0 is -2Since the tangent is perpendicular to the given line,

$$\left(\frac{1}{2\sqrt{x-1}}\right)(-2) = -1$$

Chapter 03: Applications of Derivatives

$$\Rightarrow \sqrt{x-1} = 1 \Rightarrow x = 2$$

$$y = \sqrt{x-1} = \sqrt{2-1} = 1$$

$$\therefore (x, y) = (2, 1)$$
9. $y^2 = px^3 + q$ (i)
Differentiating both sides w.r.t. x, we get
 $2y. \frac{dy}{dx} = 3px^2$
 $\Rightarrow \frac{dy}{dx} = \frac{3p}{2}\left(\frac{x^2}{y}\right)$

$$\therefore \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{3p}{2} \times \frac{4}{3} = 2p$$
Since the line touches the curve, their slopes
are equal.

$$\therefore 2p = 4 \Rightarrow p = 2$$
Since, (2,3) lies on $y^2 = px^3 + q$.

$$\therefore 9 = 2 \times 8 + q \Rightarrow q = -7$$
10. $y^2 = ax^3 + b$ (i)
Differentiating both sides w.r.t. x, we get
 $2y. \frac{dy}{dx} = 3a^2$
 $\Rightarrow \frac{dy}{dx} = \frac{3a}{2}\left(\frac{x^2}{y}\right)$

$$\therefore \left(\frac{dy}{dx}\right)_{(2,3)} = \frac{3a}{2} \times \frac{4}{3} = 2a$$
Since, the line touches the curve, their slopes
are equal.

$$\therefore 2a = 4 \Rightarrow a = 2$$
Since, (2,3) lies on $y^2 = ax^3 + b$.

$$\therefore 9 = 2 \times 8 + b \Rightarrow b = -7$$
Now, $7a + 2b = 7(2) + 2(-7) = 0$
11. $y = \frac{1}{x}$ (i)

$$\therefore \frac{dy}{dx} = \frac{-1}{x^2}$$
Slope of tangent to the curve $= \frac{-1}{x^2}$
Slope of $y = -4x + b$ is -4 .

$$\therefore \frac{-1}{x^2} = -4 \Rightarrow x = \pm \frac{1}{2}$$
From (i),
 $y = \pm 2$
Putting the values of x and y in
 $y = -4x + b$, we get
 $b = \pm 4$

12.
$$y^2 = 2(x-3)$$
(i)
Differentiating w.r.t. *x*, we get
 $2y \frac{dy}{dx} = 2 \Rightarrow \frac{dy}{dx} = \frac{1}{y}$
∴ Slope of the normal = $\frac{-1}{dy} = -y$
Slope of the given line = 2.
Since, the normal is parallel to the given line.
∴ $y = -2$
From (i), $x = 5$
∴ the required point is (5, -2).
13. Given equation of curve is
 $x^2 - 4y^2 = 1$ (i)
Slope of tangent to the curve is
 $\frac{dy}{dx} = \frac{x}{4y}$
Slope of line is $x = 2y$ is $\frac{1}{2}$
Since, the tangent is parallel to the given line,
 $\frac{x}{4y} = \frac{1}{2}$
∴ $x = 2y$
Substituting $x = 2y$ in equation (i), we get
 $(2y)^2 - 4y^2 = 1$
∴ tangent is parallel to curve at zero point.
14. $x = a(1 + \cos \theta)$ and $y = a \sin \theta$
∴ $\frac{dy}{d\theta} = -a \sin \theta$ and $\frac{dy}{d\theta} = a \cos \theta$
∴ $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\cot \theta$
∴ slope of the normal $= -\frac{1}{\frac{dy}{dx}} = \frac{-1}{-\cot \theta} = \tan \theta$
∴ equation of the normal at θ is
 $y - a \sin \theta = \tan \theta [x - a(1 + \cos \theta)]$
Clearly, this line passes through (a, 0).
15. $y^2 = 12x$ (i)
Differentiating w.r.t. *x*, we get
 $2y \frac{dy}{dx} = 12 \Rightarrow \frac{dy}{dx} = \frac{6}{y}$
∴ slope of the normal $= -\frac{1}{\frac{dy}{dx}} = -\frac{y}{6}$

Slope of the line x + y = k is -1. $\therefore \quad -\frac{y}{6} = -1 \Rightarrow y = 6$ From (i), x = 3Putting the values of x and y in x + y = k, we get k = 916. Slope of given line = $-\frac{a}{b}$ $y = \frac{4}{x} \Rightarrow \frac{dy}{dx} = -\frac{4}{x^2}$ $\Rightarrow -\frac{a}{h} = -\frac{4}{r^2}$ $\Rightarrow \frac{a}{b} = \frac{4}{x^2} > 0$ \Rightarrow a < 0, b < 0 17. $y^2 = 4ax$ $\therefore \quad 2y \frac{dy}{dr} = 4a$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{a}}{\mathrm{v}}$ $\Rightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(\mathrm{at}^2,\,2\mathrm{at})} = \frac{2\mathrm{a}}{2\mathrm{at}} = \frac{1}{\mathrm{t}}$ $\therefore \qquad \text{Slope of tangent } (m_1) = \frac{1}{t}$ $x^2 - y^2 = a^2$ $\Rightarrow 2x - 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{v}$ $\Rightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(\mathrm{a\,sec}\,\theta,\,\mathrm{a\,tan}\,\theta)} = \frac{\mathrm{a\,sec}\,\theta}{\mathrm{a\,tan}\,\theta}$ $= \operatorname{cosec} \theta$ Slope of normal $(m_2) = \csc \theta$ *.*.. Now, $m_1 \cdot m_2 = -1$ $\Rightarrow \left(\frac{1}{t}\right)(\csc\theta) = -1$ \Rightarrow t = -cosec θ 18. $9y^2 = x^3$(i) Differentiating w.r.t. x, get $18y\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{6y}$

slope of the normal = $-\frac{6y}{x^2}$ *.*.. Since, the normal to the given curve makes equal intercepts with the axis. $-\frac{6y}{r^2} = \pm 1$ *.*.. $\Rightarrow y = -\frac{x^2}{6} \text{ or } \frac{x^2}{6}$ Putting these values in (i), we get $9\left(\frac{x^4}{36}\right) = x^3 \Rightarrow x = 0 \text{ or } x = 4$ y = 0 or $y = -\frac{16}{6}$ or $\frac{16}{6} = -\frac{8}{3}$ or $\frac{8}{3}$... the required points are $\left(4, \frac{8}{3}\right)$ or $\left(4, -\frac{8}{3}\right)$. *.*.. 19. $y = \frac{2}{2}x^3 + \frac{1}{2}x^2$(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^2 + x$ Since, the tangent makes equal angles with the axis. $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \pm 1$ $\Rightarrow 2x^2 + x = \pm 1$ $\Rightarrow 2x^2 + x = 1$ (taking +ve sign) $\Rightarrow 2x^2 + x - 1 = 0$ $\Rightarrow (2x-1)(x+1) = 0$ $\Rightarrow x = \frac{1}{2}, -1$ From (i), when $x = \frac{1}{2}$, $y = \frac{2}{3} \cdot \frac{1}{8} + \frac{1}{2} \cdot \frac{1}{4} = \frac{5}{24}$ and when x = -1, $y = \frac{2}{2}(-1) + \frac{1}{2} \cdot 1 = -\frac{1}{6}$ the required points are $\left(\frac{1}{2}, \frac{5}{24}\right)$ and $\left(-1, -\frac{1}{6}\right)$ 20. At x = 4, $4^2 = 8y \Longrightarrow y = 2$ Now, $x^2 = 8v$ Differentiating w.r.t. x, we get $2x = 8 \frac{dy}{dr} \Rightarrow \frac{dy}{dr} = \frac{x}{4}$ $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(4,2)} = 1$ *.*.. equation of the normal at (4, 2) is *.*..

 $y-2 = -1(x-4) \Longrightarrow x + y = 6$

Chapter 03: Applications of Derivatives At t = 1, $x = (1)^2 = 1$ and y = 2(1) = 221. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\mathrm{d}x} = \frac{2}{2t} = \frac{1}{t}$ $\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t=1} = 1$ Equation of the normal at (1, 2) is $v-2 = -1(x-1) \Longrightarrow x + v - 3 = 0$ Centre of circle is (1, -2) and point A(2,1) lie 22. on circle. Equation of normal is $y + 2 = \frac{1+2}{2-1}(x-1)$ *.*.. \Rightarrow $y + 2 = 3(x - 1) \Rightarrow y = 3x - 5$ 23. $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ Differentiating w.r.t x, we get $n\left(\frac{x}{a}\right)^{n-1}\left(\frac{1}{a}\right) + n\left(\frac{y}{b}\right)^{n-1}\left(\frac{1}{b}\right)\left(\frac{dy}{dx}\right) = 0$ $\Rightarrow \frac{n}{h} \left(\frac{y}{h}\right)^{n-1} \frac{dy}{dx} = \frac{-n}{a} \left(\frac{x}{a}\right)^{n-1}$ $\Rightarrow \frac{dy}{dx} = \frac{-b}{a} \left(\frac{x}{a}\right)^{n-1} \left(\frac{b}{v}\right)^{n-1}$ Slope of tangent at (a, b) = $\left(\frac{dy}{dx}\right)_{(a,b)}$ $=\frac{-b}{a}\left(\frac{a}{a}\right)^{n-1}\left(\frac{b}{b}\right)^{n-1}$ = -bEquation of tangent is $y - b = \frac{-b}{a}(x - a)$ \Rightarrow ay - ab = -bx + ab $\Rightarrow av + bx = 2ab$ $\Rightarrow \frac{x}{a} + \frac{y}{b} = 2$ 24. At $\theta = \frac{\pi}{4}$ $x = 2\cos^3\frac{\pi}{4} = \frac{1}{\sqrt{2}}$ and $y = 3\sin^3\frac{\pi}{4} = \frac{3}{2\sqrt{2}}$ $x = 2 \cos^3 \theta$ and $v = 3 \sin^3 \theta$ $\frac{dx}{d\theta} = -6\cos^2\theta\sin\theta$ and $\frac{dy}{d\theta} = 9\sin^2\theta\cos\theta$ *.*:.

MHT-CET Triumph Maths (Hints)		
÷	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = -\frac{3}{2}\tan\theta$	
÷	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\left(\theta=\frac{\pi}{4}\right)} = -\frac{3}{2}$	
	equation of the tangent at $\left(\frac{1}{\sqrt{2}}, \frac{3}{2\sqrt{2}}\right)$ is	
	$y - \frac{3}{2\sqrt{2}} = -\frac{3}{2}\left(x - \frac{1}{\sqrt{2}}\right)$	
	$\Rightarrow 3x + 2y = 3\sqrt{2}$	
25.	At $x = 0$, $y = e^{0} + 0 = 1$ $y = e^{2x} + x^{2}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x} + 2x$	
÷	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(0,1)} = 2$	
	Also, $-\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)_{(0,1)} = -\frac{1}{2}$	
	Equation of normal at (0, 1) is	
	$(y-1) = \frac{-1}{2}(x-0)$	
	$\Rightarrow 2y - 2 = -x \Rightarrow x + 2y - 2 = 0$ distance between origin and normal	
	$= \left \frac{0+0-2}{\sqrt{1+4}} \right = \frac{2}{\sqrt{5}}$	
26.	$x^2 + y^2 - 13 = 0$	
	$2x + 2y \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x}{y}$	
	Slope of tangent at (2, 3) = $\left(\frac{dy}{dx}\right)_{(2,3)}$	
	\Rightarrow m = $\frac{-2}{3}$	
	Given equation of circle is $x^2 + y^2 = 13$	
	Centre of circle $0 = (0, 0)$, radius = $\sqrt{13}$ units	
	Given point M $\left(m, \frac{-1}{m}\right) = \left(\frac{-2}{3}, \frac{3}{2}\right)$ = $\left(-0.67, 1.5\right)$	
	OM < radius	
	The point lies inside the circle	

 $y = a(\sin\theta - \theta \cos\theta), x = a(\cos\theta + \theta \sin\theta)$ $\frac{dy}{d\theta} = a(\cos\theta - \cos\theta + \theta\sin\theta) = a\theta\sin\theta$ and $\frac{dx}{d\theta} = a(-\sin\theta + \sin\theta + \theta\cos\theta)$ $= a \theta \cos \theta$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y / \mathrm{d}\theta}{\mathrm{d}x / \mathrm{d}\theta} = \frac{\mathrm{a}\theta\sin\theta}{\mathrm{a}\theta\cos\theta} = \tan\theta$ Slope of the normal $=\frac{-1}{\tan\theta} = -\cot\theta$ Equation of the normal is $v - a \sin \theta + a \theta \cos \theta$ $= -\frac{\cos\theta}{\sin\theta} (x - a\cos\theta - a\theta\sin\theta)$ $\Rightarrow y \sin \theta - a \sin^2 \theta + a\theta \sin \theta \cos \theta$ $= -x\cos\theta + a\cos^2\theta + a\theta\sin\theta\cos\theta$ $\Rightarrow x \cos \theta + y \sin \theta = a(\sin^2 \theta + \cos^2 \theta)$ $\Rightarrow x \cos \theta + y \sin \theta = a$ Distance from origin = $\frac{-a}{\sqrt{\sin^2 \theta + \cos^2 \theta}}$ = a = constant28. $y = x^2 - x + 1$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 1$ $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x=0)} = -1, \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x=-1)} = -3, \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x=\frac{5}{2})} = 4$ equation of normal at (0, 1) and having slope 1 is y - 1 = x - 0 $\Rightarrow x - y + 1 = 0$...(i) Equation of normal at (-1, 3) and having slope $\frac{1}{3}$ is $y-3 = \frac{1}{3}(x+1)$ $\Rightarrow x - 3y + 10 = 0 \qquad \dots (ii)$ Equation of normal at $\left(\frac{5}{2}, \frac{19}{4}\right)$ and having slope $\frac{-1}{4}$ is $y - \frac{19}{4} = \frac{-1}{4} \left(x - \frac{5}{2} \right) \Longrightarrow 4y - 19 = -x + \frac{5}{2}$...(iii) $\Rightarrow 2x + 8y - 43 = 0$ Equation (i), (ii) and (iii) are passes through point $\left(\frac{7}{2}, \frac{9}{2}\right)$. they are concurrent

27.

...

...

...

...

Given, $x^2 + 2xy - 3y^2 = 0$ (i) Differentiating w.r.t.x, we get $2x + 2\left(x\frac{dy}{dx} + y\right) - 6y\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{x + y}{3y - x} \Rightarrow \left(\frac{dy}{dx}\right)_{(1,1)} = 1$

- $\therefore \quad \text{equation of the normal at } (1, 1) \text{ is}$ y - 1 = -1(x - 1) $\Rightarrow y = 2 - x$ Putting <math>y = 2 - x in (i), we get $x^2 + 2x(2 - x) - 3(2 - x)^2 = 0$ $\Rightarrow x^2 - 4x + 3 = 0$ $\Rightarrow x = 1, 3$
- :. the points of intersection are (1,1) and (3,-1).
- :. the normal at (1, 1) meets the curve again at (3, -1) which lies in the fourth quadrant.

30.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

 $\therefore \qquad \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0$
 $\therefore \qquad \frac{dy}{dy} = \sqrt{y}$

 $\frac{1}{dx} = -\frac{1}{\sqrt{x}}$

...

29.

 \therefore Equation of the tangent at (x, y) is

$$Y - y = -\frac{\sqrt{y}}{\sqrt{x}} (X - x)$$
$$X\sqrt{y} + Y\sqrt{x} = \sqrt{xy} (\sqrt{x} + \sqrt{y})$$

$$\therefore \qquad X\sqrt{y} + Y\sqrt{x} = \sqrt{xy} \cdot \sqrt{a}$$
$$\therefore \qquad \frac{X}{\sqrt{a}\sqrt{x}} + \frac{Y}{\sqrt{a}\sqrt{y}} = 1$$

Clearly its intercepts on the axes are $\sqrt{a}\sqrt{x}$ and $\sqrt{a}\sqrt{y}$.

Sum of the intercepts = $\sqrt{a} \left(\sqrt{x} + \sqrt{y} \right) = \sqrt{a} \cdot \sqrt{a} = a$

31. Let the coordinates of P be (x_1, y_1) .

$$\therefore \quad x_1^{\overline{3}} + y_1^{\overline{3}} = a^{\overline{3}} \qquad \dots (i)$$
Now, $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
Differentiating w.r.t. *x*, we get
$$\frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}} \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}}$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1,y_1)} = -\frac{y_1^{\frac{1}{3}}}{x_1^{\frac{1}{3}}}$$

...

 \therefore equation of the tangent at (x_1, y_1) is

$$y - y_{1} = -\frac{y_{1}^{\frac{1}{3}}}{x_{1}^{\frac{1}{3}}} (x - x_{1})$$

$$\Rightarrow \frac{y - y_{1}}{y_{1}^{\frac{1}{3}}} = -\frac{x - x_{1}}{x_{1}^{\frac{1}{3}}}$$

$$\Rightarrow xx_{1}^{-\frac{1}{3}} + yy_{1}^{-\frac{1}{3}} = x_{1}^{\frac{2}{3}} + y_{1}^{\frac{2}{3}}$$

$$\Rightarrow xx_{1}^{-\frac{1}{3}} + yy_{1}^{-\frac{1}{3}} = a^{\frac{2}{3}} \qquad \dots [From (i)]$$
This tangent meets the coordinate axes at
$$A\left(a^{\frac{2}{3}}x_{1}^{\frac{1}{3}}, 0\right) \text{ and } B\left(0, a^{\frac{2}{3}}y_{1}^{\frac{1}{3}}\right).$$

$$\therefore AB = \sqrt{a^{\frac{4}{3}}x_{1}^{\frac{2}{3}} + a^{\frac{4}{3}}y_{1}^{\frac{2}{3}}} = \sqrt{a^{\frac{4}{3}}\left(x_{1}^{\frac{2}{3}} + y_{1}^{\frac{2}{3}}\right)}$$

$$= \sqrt{a^{\frac{4}{3}} \cdot a^{\frac{2}{3}}} \qquad \dots [From (i)]$$

$$= a$$
32. $y = x^{2} - 5x + 6$

$$\therefore \frac{dy}{dx} = 2x - 5$$

$$\therefore \left(\frac{dy}{dx}\right)_{(2,0)} = 2(2) - 5 = -1 = m_{1} (say)$$
and
$$\left(\frac{dy}{dx}\right)_{(3,0)} = 2(3) - 5 = 1 = m_{2} (say)$$
Here, $m_{1} m_{2} = -1$

- \therefore the required angle is $\frac{\pi}{2}$.
- 33. If $\sin x = \cos x$, then $x = \frac{\pi}{4}$ Now, $y = \sin x$

$$\therefore \quad \frac{dy}{dx} = \cos x$$

$$\therefore \quad \left(\frac{dy}{dx}\right)_{\left(x=\frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}} = m_1 \text{ (say)}$$

Also, $y = \cos x$
$$\therefore \quad \frac{dy}{dx} = -\sin x$$

$$\frac{\mathrm{d}x}{\mathrm{d}x} = -\frac{1}{\sqrt{2}} = m_2 \text{ (say)}$$

 \therefore angle between the curves is

$\tan \theta = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2} \right| = \left| \frac{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{1 + \left(\frac{1}{\sqrt{2}}\right) \left(-\frac{1}{\sqrt{2}}\right)} \right|$ $\Rightarrow \tan \theta = 2\sqrt{2}$ $\Rightarrow \theta = \tan^{-1}(2\sqrt{2})$

- 34. $y = e^{x^2}$ (i) $y = e^{x^2} \sin x$ (ii) From (i) and (ii), we get $e^{x^2} = e^{x^2} \sin x$
- \therefore sin $x = 1 \implies x = \frac{\pi}{2}$

Slope of tangent to (i) at
$$x = \frac{\pi}{2}$$
 is given by

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=\frac{\pi}{2}} = \left[2x\mathrm{e}^{x^2}\right]_{x=\frac{\pi}{2}} = \pi \mathrm{e}^{\frac{\pi^2}{4}}$$

Slope of tangent to (ii) at $x = \frac{\pi}{2}$ is given by

$$\left(\frac{dy}{dx}\right)_{x=\frac{\pi}{2}} = \left[2xe^{x^{2}}\sin x + e^{x^{2}}\cos x\right]_{x=\frac{\pi}{2}} = \pi e^{\frac{\pi^{2}}{4}}$$

Since both tangents have equal slopes, the angle between them is zero.

35. Let the given curves intersect each other at $P(x_1, y_1)$.

 $y^2 = 6x$

Differentiating w.r.t. x, we get

$$2y \frac{dy}{dx} = 6 \Rightarrow \left(\frac{dy}{dx}\right)_{P} = \frac{3}{y_{1}}$$

$$9x^{2} + by^{2} = 16$$
Differentiating w.r.t. x, we get

$$18 x + 2by \frac{dy}{dx} = 0$$
$$\Rightarrow \left(\frac{dy}{dx}\right)_{P} = -\frac{9x_{1}}{by_{1}}$$

Since, the given curves intersect each other at right angles.

$$\Rightarrow \left(\frac{3}{y_1}\right) \left(\frac{-9x_1}{by_1}\right) = -1$$
$$\Rightarrow \frac{27x_1}{by_1^2} = 1$$
$$\Rightarrow b = \frac{9}{2} \qquad \dots \left[y_1^2 = 6x_1\right]$$

- 36. Acceleration, $\frac{dv}{dt} = 2t$, then acceleration after 3 second = 2 × 3 = 6 cm / sec².
- 37. Motion of a particle $s = 15t 2t^2$

$$\therefore \quad \text{velocity} = \frac{ds}{dt} = 15 - 4t$$
$$\Rightarrow \left(\frac{ds}{dt}\right)_{t=0} = 15 \text{ and } \left(\frac{ds}{dt}\right)_{t=3} = 3$$

$$\therefore$$
 average velocity $=\frac{15+3}{2}=9$ units

38. Velocity, $v^2 = 2 - 3x$ Differentiating both sides w.r.t.t, we get $2u \frac{dv}{dx} = -2 \frac{dx}{dx}$

$$2v \frac{dt}{dt} = -3 \frac{dt}{dt}$$
$$\Rightarrow 2v \frac{dv}{dt} = -3v$$
$$\Rightarrow \frac{dv}{dt} = -\frac{3}{2}$$

Hence, the acceleration is uniform.

39.
$$x = At^2 + Bt + C$$

 \therefore $v = 2At + B \Rightarrow v^2 = 4A^2t^2 + 4ABt + B^2$
and $4Ax = 4A^2t^2 + 4ABt + 4AC$
 $\Rightarrow v^2 - 4Ax = B^2 - 4AC$
 $\Rightarrow 4Ax - v^2 = 4AC - B^2$

40.
$$t = \frac{v^2}{2} \Longrightarrow v^2 = 2t$$

Differentiating both sides w.r.t.t., we get

$$2v \frac{dv}{dt} = 2$$

$$\Rightarrow \frac{dv}{dt} = \frac{1}{v} = f$$

$$\Rightarrow \frac{df}{dt} = -\frac{1}{v^2} \cdot \frac{dv}{dt} = -\frac{1}{v^2} \times \frac{1}{v}$$

$$\Rightarrow -\frac{df}{dt} = \frac{1}{v^3} = f^3$$

41.
$$\frac{d^{2}t}{dx^{2}} = \frac{d}{dx} \left(\frac{dt}{dx} \right) = \frac{d}{dx} \left(\frac{1}{v} \right) = -\frac{1}{v^{2}} \cdot \frac{dv}{dx}$$
Since, $v \frac{dv}{dx} = f \Rightarrow \frac{dv}{dx} = \frac{f}{v}$

$$\therefore \qquad \frac{d^{2}t}{dx^{2}} = -\frac{1}{v^{2}} \cdot \frac{f}{v} \Rightarrow -v^{3} \frac{d^{2}t}{dx^{2}} = f$$

42.
$$s = \frac{1}{2}vt \Rightarrow 2s = vt \Rightarrow 2 \frac{ds}{dt} = v + t. \frac{dv}{dt}$$

 $\Rightarrow 2\frac{d^2s}{dt^2} = \frac{dv}{dt} + t. \frac{d^2v}{dt^2} + \frac{dv}{dt}$
But $\frac{dv}{dt} = \text{acceleration (a)}$
 $\Rightarrow 2a = a + t. \frac{da}{dt} + a \Rightarrow \frac{da}{dt} = 0 \text{ or } t = 0$
But $t = 0$ is impossible
 $\therefore \quad \frac{da}{dt} = 0 \text{ i.e., a is constant.}$
44. $s = 6 + 48t - t^3$
 $\therefore \quad v = \frac{ds}{dt} = 0 + 48 - 3t^2$
When direction of motion reverses, $v = 0$
 $\Rightarrow 48 - 3t^2 = 0 \Rightarrow t = -4, 4$
 $\therefore \quad (s)_4 = 6 + 192 - 64 = 134$
45. $a + bv^2 = x^2$
Differentiating both sides w.r.t.t, we get
 $0 + b\left(2v.\frac{dv}{dt}\right) = 2x.\frac{dx}{dt}$
 $\Rightarrow v.b\frac{dv}{dt} = x.\frac{dx}{dt} \Rightarrow \frac{dv}{dt} = \frac{x}{b} \dots \left[\because \frac{dx}{dt} = v\right]$
46. $\frac{dy}{dt} = 1.2.$
From the figure,
 $x = \frac{2}{3}y \Rightarrow \frac{dx}{dt} = \frac{2}{3}\frac{dy}{dt}$
 \therefore Required rate of length
of shadow
 $= \frac{dx}{dt} = 0.8 \text{ m/s}$
47. From the figure, $x^2 + y^2 = 100 \dots(i)$
 $\Rightarrow 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0 \dots(i)$
 $\Rightarrow 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0 \dots(i)$

is moving is $\frac{8}{2}$ cm / sec.

Chapter 03: Applications of Derivatives According to the figure, $x^2 + y^2 = 25$ (i) 48. Differentiate (i) w.r.t. t, we get $2x \frac{\mathrm{d}x}{\mathrm{d}t} + 2y \frac{\mathrm{d}y}{\mathrm{d}t} = 0$(ii) Here x = 4 and $\frac{dx}{dt} = 1.5$ From (i), $4^2 + y^2 = 25 \Rightarrow y = 3$ From (ii), $2(4)(1.5) + 2(3)\frac{dy}{dt} = 0$ $\Rightarrow \frac{dy}{dt} = -2 \text{ m/sec}$ Hence, length of the highest point decreases at the rate of 2 m/sec. According to the figure, $x^2 + y^2 = 400 \dots (i)$ 49. Differentiate (i) w.r.t. t, we get $2x \frac{\mathrm{d}x}{\mathrm{d}t} + 2y \frac{\mathrm{d}y}{\mathrm{d}t} = 0$ Here x = 12 and $\frac{dy}{dt} = 2$ From (i), $12^2 + y^2 = 400$ $\Rightarrow y = 16$ From (ii), 2(12) $\frac{dx}{dt}$ + 2(16)(2) = 0 $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{8}{3}$ 50. Surface area, $S = 4\pi r^2$ and $\frac{dr}{dt} = 2$ $\therefore \quad \frac{\mathrm{dS}}{\mathrm{dt}} = 4\pi \times 2r \frac{\mathrm{dr}}{\mathrm{dt}} = 8\pi r \times 2 = 16\pi r$ $\Rightarrow \frac{\mathrm{dS}}{\mathrm{dt}} \propto \mathrm{r}$ 51. Given the rate of increasing the radius $=\frac{dr}{dt}=3.5$ cm/sec and r = 10 cm Area of circle = $A = \pi r^2$ $\therefore \qquad \frac{dA}{dt} = 2\pi r. \frac{dr}{dt}$ $\Rightarrow \frac{dA}{dt} = 2\pi \times 10 \times 3.5 \Rightarrow \frac{dA}{dt} = 220 \text{ cm}^2/\text{sec}$ If x is the length of each side of an equilateral 52. triangle and A is its area. then $A = \frac{\sqrt{3}}{4}x^2 \Rightarrow \frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2x\frac{dx}{dt}$ Here, x = 10 cm and $\frac{dx}{dt} = 2$ cm / sec A = $10\sqrt{3}$ sq. unit/sec

MHT-CET Triumph Maths (Hints)						
53.	$A_1 = x^2$, and $A_2 = y^2$		x 4 3			
	$\rightarrow \frac{dA_1}{dA_1} = 2r \frac{dx}{dA_2}$ and $\frac{dA_2}{dA_2} = 2v \frac{dy}{dA_2}$	57	$V = -\frac{1}{3}\pi r^3$			
	dt = dt, and $dt = dt$		$\rightarrow 288 \pi - \frac{4}{\pi}r^3$			
	$\frac{dA_2}{dx} = 2y\frac{dy}{dx}$		$\Rightarrow 288 \pi - \frac{-\pi}{3}\pi$			
.:.	$\frac{dA_2}{dA} = \frac{dt}{dA} = \frac{y}{dx} \left(\frac{dy}{dx}\right)$		\Rightarrow r = 6 cm			
	$dA_1 = \frac{dA_1}{dt} = 2x \frac{dt}{dt} = x (dx)$		$V = -\frac{4}{\pi}\pi r^3$			
	Given, $y = x + x^2$		3			
	dy = 1 + 2x		$\frac{dV}{h} = 4\pi r^2 \frac{dr}{h}$			
••	$\frac{dx}{dx} = 1 + 2x$		dt dt			
•	$\frac{\mathrm{dA}_2}{\mathrm{dA}_2} = \frac{y}{(1+2x)}$		$\Rightarrow 4\pi = 4\pi r^2 \frac{dt}{dt}$			
••	$dA_1 = x$		dr 1			
	$=\frac{x+x^2}{(1+2x)}$		$\Rightarrow \frac{dt}{dt} = \frac{1}{r^2}$			
	x		Now, $A = 4\pi r^2$			
	$= (1 + x) (1 + 2x) = 2x^{2} + 3x + 1$		dA dr			
54	$h = 6 m r = 4 m = \frac{2}{2} h$	••	$\frac{dt}{dt} = \frac{\partial dt}{\partial t}$			
0.11	3		$=8\pi r \times \frac{1}{2}$			
	$V = \frac{1}{2}\pi r^2 h$		r^2			
	3		$=\frac{8\pi}{6}=\frac{8\pi}{6}=\frac{4\pi}{2}$ cm ² /sec			
	$\Rightarrow V = \frac{1}{3} \times \frac{7}{9} \times \pi h^3$		r 6 3			
	dV = 4, 2 dh	58	Volume = $V = \frac{4}{\pi}\pi r^3$			
	$\Rightarrow \frac{dt}{dt} = \frac{1}{9}\pi h^{-}\frac{dt}{dt}$		3			
	But $\frac{dV}{dt} = 3 \text{ m}^3/\text{min}$ and $h = 3 \text{ m}^3$		$\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$, at $r = 7 \text{ cm}$			
	dt		at at free dr. 5			
	$3 = \frac{4}{2}\pi \times 9 \times \frac{dh}{dt}$		$\Rightarrow 35 = 4\pi(7)^2 \frac{dt}{dt} \Rightarrow \frac{dt}{dt} = \frac{5}{28\pi}$			
	9 dt $dh = 2$		Surface area, $S = 4\pi r^2$			
	$\Rightarrow \frac{d\Pi}{dt} = \frac{3}{4\pi}$ m/min		dS of $dr = (7)(5) = 10^{-2}$			
			$\frac{dt}{dt} = 8\pi r \frac{dt}{dt} = 8\pi (7) \left(\frac{28\pi}{28\pi}\right) = 10 \text{ cm/min}$			
55.	$V = \frac{4}{2}\pi r^3$		4			
	dV dr dr 1 dV	59	$V = \frac{1}{3}\pi r^3$			
÷	$\frac{dt}{dt} = 4\pi r^2$. $\frac{dt}{dt} \Rightarrow \frac{dt}{dt} = \frac{1}{4\pi r^2}$. $\frac{dt}{dt}$		dV , 2 dr			
	dr 1 ooo		$\frac{dt}{dt} = 4\pi r^2 \frac{dt}{dt} \qquad \dots (1)$			
	$\Rightarrow \frac{d}{dt} = \frac{1}{4 \times \pi \times 15 \times 15} \times 900$		After 49 min, $(4500 - 49 \times 72)\pi = 972 \ \pi \text{m}^3$			
	$\Rightarrow \frac{\mathrm{dr}}{\mathrm{dr}} = \frac{1}{\mathrm{dr}} = \frac{7}{\mathrm{dr}}$		972 $\pi = \frac{4}{\pi}\pi r^3$			
	dt π 22		3			
56	Here $V = \frac{4}{3} \operatorname{gr}^3$ and $S = 4 \operatorname{gr}^2$		$r^3 = 3 \times 243 = 3 \times 3^3$			
50.	Here, $v = \frac{1}{3}m$ and $S = 4m$		r = 9 dV			
	$\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{40}{100} = \frac{5}{100}$		Given, $\frac{dv}{dt} = 72\pi$			
	dt dt dt $4\pi r^2$ 32π		$\frac{1}{dr}$			
:.	$\frac{dS}{dt} = 8\pi r \frac{dI}{dt}$		$7/2\pi = 4\pi \times 9 \times 9 \left(\frac{1}{dt}\right) \dots [From (i)]$			
			dr 2			
	$= 8\pi \times 8 \times \frac{1}{32\pi} = 10 \text{ cm}^2/\text{min}$		$\frac{1}{dt} = \frac{1}{9}$			

Volume of sphere (V) = $\frac{4}{3}\pi r^3$ 60. Surface area of sphere (A) = $4\pi r^2$ $\frac{dV}{dr} = 4\pi r^2$ and $\frac{dA}{dr} = 8\pi r$ $\left(\frac{\mathrm{dV}}{\mathrm{dA}}\right) = \frac{\left(\frac{\mathrm{dV}}{\mathrm{dr}}\right)}{\left(\frac{\mathrm{dA}}{\mathrm{dr}}\right)} = \frac{4\pi r^2}{8\pi r} = \frac{r}{2}$ $\therefore \qquad \left(\frac{\mathrm{dV}}{\mathrm{dA}}\right) = \frac{4}{2} = 2 \text{ cm}^3/\mathrm{cm}^2$ W = nw, $n = 2t^2 + 3$ and $w = t^2 - t + 2$ 61. $\frac{dW}{dt} = w\frac{dn}{dt} + n\frac{dw}{dt}, \frac{dn}{dt} = 4t, \frac{dW}{dt} = 2t - 1$ *.*.. Att = 1 $n = 5, w = 2, \frac{dn}{dt} = 4, \frac{dW}{dt} = 1$ $\left(\frac{dW}{dt}\right)_{(t=1)} = 2(4) + 5(1) = 13$ ÷. According to the given condition. 62. $\frac{\mathrm{d}y}{\mathrm{d}t} = 8\frac{\mathrm{d}x}{\mathrm{d}t}$(i) Given. $6v = x^3 + 2$(ii) $\Rightarrow 6\left(\frac{dy}{dr}\right) = 3x^2 \frac{dx}{dt}$ $\Rightarrow 6\left(\frac{8dx}{dt}\right) = 3x^2 \frac{dx}{dt}$[From (i)] $\Rightarrow 3x^2 = 48 \Rightarrow x^2 = 16 \Rightarrow x = \pm 4$ Putting x = 4 in (ii), we get $6y = (4)^3 + 2 = 64 + 2$ v = 11Putting x = -4 in (ii), we get v = -64 + 2 $y = \frac{-62}{6} = \frac{-31}{3}$ *.*.. the required points on the curve are (4, 11) and *.*.. $\left(-4,\frac{-31}{3}\right)$. $f(x) = x^3 + 5x^2 - 7x + 9$ 63. $f'(x) = 3x^2 + 10x - 7$ *.*.. Here, a = 1 and h = 0.1 $f(a) = f(1) = 1^3 + 5(1)^2 - 7(1) + 9 = 8$ *.*.. and $f'(a) = f'(1) = 3(1)^2 + 10(1) - 7 = 6$ $f(a+h) \approx f(a) + hf'(a)$ *.*.. $\approx 8 + 0.1$ (6) $\approx 8 + 0.6 \approx 8.6$

Chapter 03: Applications of Derivatives 64. Let $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$ $f'(x) = \frac{1}{3} x^{-\frac{2}{3}} = \frac{1}{-\frac{2}{3}}$ Here, a = -1, and h = 0.01 $f(a+h) \approx f(a) + h f'(a)$ $\approx (-1)^{\frac{1}{3}} + 0.01 \times \frac{1}{3(-1)^{\frac{2}{3}}}$ $\approx -1 + 0.0033$ ≈ -0.9967 65. Let $f(x) = \sqrt[5]{x} = x^{1/5}$:. $f'(x) = \frac{1}{5}x^{-4/5} = \frac{1}{5x^{4/5}}$ Here, a = 243 and h = -0.001 $f(a+h) \approx f(a) + h f'(a)$ $= (243)^{1/5} - 0.001 \times \frac{1}{5(243)^{4/5}}$ $=3-\frac{0.001}{5\times81}$ $=3-\frac{1}{405000}$ $f(242.999) = \frac{1214999}{405000}$ *.*.. Let $f(x) = \cos x$ 66. *.*.. $f'(x) = -\sin x$ Here, $a = 30^{\circ}$ and $h = 1^{\circ} = 0.0174$ *.*.. $f(a+h) \approx f(a) + h f'(a)$ $\approx \frac{\sqrt{3}}{2} + 0.0174 \left(\frac{-1}{2}\right)$ $\approx \frac{1.73}{2} - \frac{0.0174}{2}$ ≈ 0.8563 $f(x) = e^x (\sin x - \cos x)$ 67. $f'(x) = e^x (\sin x - \cos x) + e^x (\cos x + \sin x)$ *.*.. $f'(x) = 2e^x \sin x$ *.*.. Now, f'(c) = 0 $\Rightarrow 2 e^{c} \sin c = 0$ $\Rightarrow \sin c = 0 = \sin \pi$ $\Rightarrow c = \pi$ Here, $f\left(\frac{\pi}{2}\right) = e^{0} = 1$ and $f\left(\frac{3\pi}{2}\right) = e^{0} = 1$ 68. $f\left(\frac{\pi}{2}\right) = f\left(\frac{3\pi}{2}\right)$ *.*.. Third condition of Rolle's theorem is satisfied *.*.. by option (A) only.

69. f(x) = |x| is not differentiable at x = 0. (A) $f(x) = \tan x$ is discontinuous at $x = \frac{\pi}{2}$. (B) (C) $f(x) = 1 + (x-2)^{\frac{1}{3}}$ is not differentiable at x = 2. (D) $f(x) = x(x-2)^2$ is a polynomial function. f(x) is continuous on [0, 2] and differentiable *.*.. on (0, 2). Also, f(0) = f(2)Hence, Rolle's theorem is applicable. $f(x) = e^x$ 70. $f(0) = e^0 = 1$, f(1) = e and $f'(x) = e^x$ *.*.. By mean value theorem, $f'(c) = \frac{f(b) - f(a)}{b - a}$ \Rightarrow f'(c) = $\frac{e^{b} - e^{a}}{b - a}$ $\Rightarrow e^{c} = \frac{e-1}{1-e}$ \Rightarrow c = log(e - 1) $f(x) = x^2$ 71. f(2) = 4, f(4) = 16f'(x) = 2x*.*.. By Lagrange's mean value theorem, $f'(c) = \frac{f(4) - f(2)}{4 - 2}$ $\Rightarrow 2c = \frac{16-4}{2}$ $\Rightarrow c = 3$ 72. $f(x) = \sqrt{x}$ $f(a) = f(4) = \sqrt{4} = 2$, $f(b) = f(9) = \sqrt{9} = 3$ and • $f'(x) = \frac{1}{2\sqrt{x}}$ Given, $f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{3 - 2}{9 - 4} = \frac{1}{5}$ $\therefore \qquad \frac{1}{2\sqrt{c}} = \frac{1}{5} \Rightarrow c = \frac{25}{4} = 6.25$ 73. f(x) = (x-1)(x-2) \Rightarrow f (x) = x² - 3x + 2 f(0) = 2 $f\left(\frac{1}{2}\right) = \frac{3}{4}$ f'(x) = 2x - 3

By Lagrange's mean value theorem,

 $f'(c) = \frac{f(\frac{1}{2}) - f(0)}{\frac{1}{2} - 0}$ $\Rightarrow 2c - 3 = \frac{\frac{3}{4} - 2}{\frac{1}{2}}$ $\Rightarrow 2c = \frac{-5}{2} + 3 \Rightarrow c = \frac{1}{4}$ 74. $f(x) = \frac{2x+3}{4x-1}$ $f(1) = \frac{5}{2}, f(2) = 1$ $f'(x) = \frac{(4x-1)(2) - (2x+3)(4)}{(4x-1)^2} = \frac{-14}{(4x-1)^2}$... By Lagrange's mean value theorem, $f'(c) = \frac{f(2) - f(1)}{2 - 1}$ $\Rightarrow \frac{-14}{\left(4c-1\right)^2} = \frac{1-\frac{5}{3}}{1}$ $\Rightarrow (4c-1)^2 = \frac{-14}{-2}$ $\Rightarrow 16c^2 - 8c + 1 = 21$ $\Rightarrow 4c^2 - 2c - 5 = 0$ \Rightarrow c = $\frac{1 + \sqrt{21}}{4}$ 75. $f(x) = \cos x$ f(0) = 1, $f\left(\frac{\pi}{2}\right) = 0$ and $f'(x) = -\sin x$ *.*:. By mean value theorem, $f'(c) = \frac{f(b) - f(a)}{b - a}$ $\Rightarrow -\sin c = \frac{f\left(\frac{\pi}{2}\right) - f(0)}{\frac{\pi}{2} - 0}$ $\Rightarrow -\sin c = \frac{0-1}{\frac{\pi}{2}} = -\frac{2}{\pi}$ $\Rightarrow \sin c = \frac{2}{\pi} \Rightarrow c = \sin^{-1}\left(\frac{2}{\pi}\right)$

Chapter 03: Applications of Derivatives

76.
$$g(x) = \frac{f(x)}{x+1}$$

$$\therefore \quad g(0) = \frac{f(0)}{0+1} = 12 \text{ and } f(6) = \frac{f(6)}{6+1} = \frac{-4}{7}$$

By mean value theorem,

$$(c) = \frac{g(6) - g(0)}{6 - 0}$$
$$= \frac{\frac{-4}{7} - 12}{6}$$
$$= \frac{-4 - 84}{7 \times 6} = -\frac{44}{21}$$

77. Consider option (A),

g′

$$\operatorname{Lf'}\left(\frac{1}{2}\right) = -1 \text{ and } \operatorname{Rf'}\left(\frac{1}{2}\right) = 0$$

So, it is not differentiable at $x = \frac{1}{2} \in (0, 1)$.

Hence, Lagrange's mean value theorem is not applicable.

- 78. $y = x^3 = f(x)$
- $\therefore \quad f(2) = 8, f(-2) = -8 \text{ and } f'(x) = 3x^2$ By mean value theorem,

$$f'(x) = \frac{f(2) - f(-2)}{2 - (-2)}$$
$$\Rightarrow 3x^2 = \frac{8 - (-8)}{4}$$
$$\Rightarrow x^2 = \frac{4}{3}$$
$$\Rightarrow x = \pm \frac{2}{\sqrt{3}}$$

79. f(b) = f(2) = 8 - 24a + 10 = 18 - 24a f(a) = f(1) = 1 - 6a + 5 = 6 - 6a $f'(x) = 3x^2 - 12ax + 5$ By Lagrange's mean value theorem, $f'(x) = \frac{f(b) - f(a)}{b - a} = \frac{18 - 24a - 6 + 6a}{2 - 1}$ ∴ f'(x) = 12 - 18a∴ $3x^2 - 12ax + 5 = 12 - 18a$ At $x = \frac{7}{4}$, $3\left(\frac{49}{16}\right) - 12a\left(\frac{7}{4}\right) + 5 = 12 - 18a$ $\Rightarrow 3a = \frac{147}{16} - 7 \Rightarrow 3a = \frac{35}{16} \Rightarrow a = \frac{35}{48}$

- 80. Since, $f(x) = x^3 \Rightarrow f'(x) = 3x^2$, which is non-negative for all real values of x.
- \therefore Option (C) is the correct answer.
- 81. $f(x) = ax + b \Longrightarrow f'(x) = a$
- $\therefore \quad \text{For strictly increasing, f } '(x) > 0$ $\Rightarrow a > 0 \text{ for all real } x.$

82.
$$f(x) = (x - 1)^2 - 1$$
. Hence decreasing in $x < 1$.

Alternate Method:

f'(x) = 2x - 2 = 2(x - 1)To be decreasing, $2(x - 1) < 0 \Rightarrow (x - 1) < 0$ $\Rightarrow x < 1$

83.
$$y = \tan x - x \Rightarrow \frac{dy}{dx} = \sec^2 x - 1 = \tan^2 x \ge 0$$

84.
$$f(x) = \begin{cases} 0 & , x = 0 \\ x - 3 & , x > 0 \end{cases}$$

∴ $f'(x) = \begin{cases} 0 & , x = 0 \\ 1 & , x > 0 \end{cases}$

- \therefore It is strictly increasing when x > 0.
- 85. f(x) will be monotonically decreasing, if f'(x) < 0. $\Rightarrow f'(x) = -\sin x - 2p < 0$ $\Rightarrow \frac{1}{2}\sin x + p > 0$ $\Rightarrow p > \frac{1}{2}$ [$\because -1 \le \sin x \le 1$]
- 86. Function is monotonically decreasing, when f'(x) < 0 $\Rightarrow 6x^{2} - 18x + 12 < 0$ $\Rightarrow x^{2} - 3x + 2 < 0$ $\Rightarrow x^{2} - 2x - x + 2 < 0$ $\Rightarrow (x - 2)(x - 1) < 0$ $\Rightarrow 1 < x < 2$ 87. $f(x) = x^{2} + 2x - 5$ f'(x) = 2x + 2 = 2(x + 1)For increasing function, f'(x) > 0
 - $\Rightarrow x \in (-1, \infty)$

 $\Rightarrow 2(x+1) > 0$

 $\Rightarrow x > -1$

- 88. $f(x) = x^{3} 3x^{2} 24x + 5$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow 3x^{2} - 6x - 24 > 0$ $\Rightarrow x^{2} - 2x - 8 > 0$ $\Rightarrow x^{2} - 4x + 2x - 8 > 0$ $\Rightarrow (x + 2) (x - 4) > 0$ $\Rightarrow x \in (-\infty, -2) \cup (4, \infty)$
- 89. $f(x) = -2x^{3} 9x^{2} 12x + 1$ $\Rightarrow f'(x) = -6x^{2} - 18x - 12$ For f(x) to be decreasing, f'(x) < 0 $\Rightarrow -6x^{2} - 18x - 12 < 0$ $\Rightarrow x^{2} + 3x + 2 > 0 \Rightarrow (x + 2)(x + 1) > 0$ $\Rightarrow x < -2 \text{ or } x > -1$ $\Rightarrow x \in (-1, \infty) \text{ or } (-\infty, -2)$
- 90. $f(x) = x + \sqrt{1-x}$

Ŀ.

f' (x) =
$$1 - \frac{1}{2\sqrt{1-x}}$$

For f(x) to be decreasing f'(x) < 0

$$\Rightarrow 1 - \frac{1}{2\sqrt{1-x}} < 0$$
$$\Rightarrow 1 < \frac{1}{2\sqrt{1-x}} < 0$$

$$\Rightarrow 1 < \frac{1}{2\sqrt{1-x}}$$
$$\Rightarrow 2\sqrt{1-x} < 1$$
$$\Rightarrow 4 (1-x) < 1$$
$$\Rightarrow 1-x < \frac{1}{4}$$
$$\Rightarrow \frac{3}{4} < x$$
$$\therefore \quad x \in \left(\frac{3}{4}, 1\right)$$

 $f(x) = \sin^4 x + \cos^4 x$ 91. $f'(x) = -\sin 4x$ f'(x) > 0•.• $-\sin 4x > 0$ *.*.. *.*... $\sin 4x < 0$ $(2n+1) \pi < 4x < (2n+2) \pi$ *.*.. $\Rightarrow \frac{(2n+1)\pi}{4} < x < \frac{(n+1)\pi}{2}$ For n = 0, $\frac{\pi}{4} < x < \frac{\pi}{2}$ Now, $\frac{\pi}{2} = \frac{4\pi}{8} > \frac{3\pi}{8}$ f(x) is increasing in $\left(\frac{\pi}{4}, \frac{3\pi}{8}\right)$

If $f(x) = (a + 2)x^3 - 3ax^2 + 9ax - 1$ 92. decreases monotonically for all $x \in \mathbb{R}$. then $f'(x) \le 0$ for all $x \in \mathbb{R}$ \Rightarrow 3(a + 2)x² - 6ax + 9a \leq 0 for all x \in R \Rightarrow (a + 2)x² - 2ax + 3a \leq 0 for all x \in R \Rightarrow a + 2 < 0 and Discriminant \leq 0 $\Rightarrow a < -2, -8a^2 - 24a \le 0$ \Rightarrow a < -2 and a(a + 3) \ge 0 \Rightarrow a < -2, a ≤ -3 or a ≥ 0 $\Rightarrow a \leq -3 \Rightarrow -\infty \leq a \leq -3$ 93. $f(x) = \frac{x}{x^2 + 1}$ $\mathbf{f}'(x) = \frac{\left(x^2 + 1\right)\left(1\right) - x\left(2x\right)}{\left(x^2 + 1\right)^2} = \frac{1 - x^2}{\left(x^2 + 1\right)^2}$ ÷ For f(x) to be increasing $f'(x) > 0 \Longrightarrow \frac{1 - x^2}{\left(x^2 + 1\right)^2} > 0$ $x^2 + 1 \neq 0 \Longrightarrow x^2 \neq -1$ $1 - x^2 > 0$ $\Rightarrow x^2 < 1$ $\Rightarrow x \in (-1, 1)$ 94. $f(x) = \log(1 + x) - \frac{2x}{2 + x}$ $\Rightarrow f'(x) = \frac{1}{1+x} - \frac{(2+x)(2) - 2x(1)}{(2+x)^2}$ $\Rightarrow f'(x) = \frac{x^2}{(x+1)(x+2)^2}$ f'(x) > 0 for all x > 0*.*.. Hence, f(x) is increasing on $(0, \infty)$. 95. $f(x) = (x+2)e^{-x}$ $f'(x) = e^{-x} - e^{-x} (x+2) = -e^{-x} (x+1)$ *.*.. For f(x) to be increasing, $-e^{-x}(x+1) > 0 \Longrightarrow e^{-x}(x+1) < 0$ \Rightarrow (x + 1) < 0 $\Rightarrow x < -1$ $x \in (-\infty, 1)$ *.*.. the function is increasing in $(-\infty, -1)$. *.*.. For f(x) to be decreasing, $-e^{-x}(x+1) < 0$ *.*..

$$\Rightarrow e^{-x} (x+1) > 0$$

$$\Rightarrow x+1 > 0$$

$$\Rightarrow x > -1$$

$$\Rightarrow x \in (-1, \infty)$$

:. the function is decreasing in
$$(-1, \infty)$$
.

Chapter 03: Applications of Derivatives

96.
$$f(x) = 3x^{2} - 2x + 1, \Rightarrow f'(x) = 6x - 2 \ge 0 \Rightarrow x \ge \frac{1}{3}$$
Option (A) is incorrectly matched.
97. Let
$$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$$

$$\therefore f'(x) = \frac{\ln(e + x) \times \frac{1}{\pi + x} - \ln(\pi + x) \times \frac{1}{e + x}}{[\ln(e + x)]^{2}}$$

$$= \frac{(e + x)\ln(e + x) - (\pi + x)\ln(\pi + x)}{[\ln(e + x)]^{2} \times (e + x)(\pi + x)}$$

$$\Rightarrow f'(x) < 0 \text{ for all } x \ge 0 \quad \dots [\because \pi > e]$$

$$\therefore f(x) \text{ is decreasing on } [0, \infty).$$
98.
$$f(x) = x^{3} - 10x^{2} + 200x - 10$$

$$\Rightarrow f'(x) < 0 \text{ for all } x \ge 0 \quad \dots [\because \pi > e]$$

$$\therefore f(x) \text{ is decreasing on } [0, \infty).$$
98.
$$f(x) = x^{3} - 10x^{2} + 200x - 10$$

$$\Rightarrow 5t'(x) = 3x^{2} - 20x + 200$$
For
$$f(x) \text{ to be increasing } f'(x) > 0$$

$$\Rightarrow 3x^{2} - 20x + 200 > 0$$

$$\Rightarrow 3\left(x^{2} - \frac{20}{3}x + \frac{200}{3} + \frac{100}{9} - \frac{100}{9}\right) > 0$$

$$\Rightarrow 3\left[\left(x - \frac{10}{3}\right)^{2} + \frac{500}{9}\right] > 0$$

$$\Rightarrow 3\left[\left(x - \frac{10}{3}\right)^{2} + \frac{500}{3} > 0$$
Always increasing throughout real line.
99.
$$f(x) = x^{\frac{3}{2}}(3x - 10), x \ge 0$$

$$\therefore f'(x) = \frac{3}{2}x^{\frac{1}{2}}(3x - 10) + x^{\frac{3}{2}}(3)$$

$$= \frac{15}{2}x^{\frac{1}{2}}(x - 2)$$
For
$$f(x)$$
 to be increasing,
$$f'(x) \ge 0 \Rightarrow \frac{15}{2}x^{\frac{1}{2}}(x - 2) \ge 0$$

$$\Rightarrow x \ge 2 \Rightarrow x \in [2, \infty)$$
100.
$$f(x) = \tan^{-1}(\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^{2}} \times (\cos x - \sin x)$$

$$= \frac{\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)}{1 + (\sin x + \cos x)^{2}}$$
For
$$f(x)$$
 to be increasing,
$$f'(x) > 0$$

$$\Rightarrow \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) > 0$$

 $\Rightarrow -\frac{\pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2}$ $\Rightarrow -\frac{3\pi}{4} < x < \frac{\pi}{4}$ f(x) is an increasing function in $\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$. *.*.. 101. $f(x) = \log(\sin x + \cos x)$ $\Rightarrow f'(x) = \frac{\cos x - \sin x}{\sin x + \cos x} = \frac{1 - \tan x}{1 + \tan x} = \tan\left(\frac{\pi}{4} - x\right)$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow \tan\left(\frac{\pi}{4} - x\right) > 0$ $\Rightarrow 0 < \frac{\pi}{4} - x < \frac{\pi}{2}$ $\Rightarrow -\frac{\pi}{4} < -x < \frac{\pi}{4}$ $\Rightarrow -\frac{\pi}{4} < x < \frac{\pi}{4}$ $\Rightarrow x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ 102. $f(x) = \int e^x (x-1)(x-2) dx$ \Rightarrow f'(x) = e^x(x - 1) (x - 2) For f(x) to be decreasing, f'(x) < 0 $\Rightarrow e^{x}(x-1)(x-2) < 0$ \Rightarrow (x-1)(x-2) < 0 $\Rightarrow x \in (1, 2)$ 103. $f(x) = \frac{x}{\sin x}$ $\Rightarrow f'(x) = \frac{\sin x - x \cos x}{\sin^2 x} = \frac{\cos x (\tan x - x)}{\sin^2 x}$ f'(x) > 0 for $0 < x \le 1$... \Rightarrow f(x) is an increasing function. Now, $g(x) = \frac{x}{\sin x}$ $\Rightarrow g'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x}$ $=\frac{\sin x \cos x - x}{\sin^2 x}$ $=\frac{\sin 2x-2x}{2\sin^2 x}$ g'(x) < 0 for $0 < x \le 1$. *.*.. \Rightarrow g(x) is a decreasing function.

- 104. $f(x) = \sin x \cos x$ $\Rightarrow f'(x) = \cos x + \sin x = \sqrt{2} \left[\cos \left(x - \frac{\pi}{4} \right) \right]$ For f(x) to be decreasing, f'(x) < 0
 - $\Rightarrow \sqrt{2} \cos\left(x \frac{\pi}{4}\right) < 0$ $\Rightarrow \cos\left(x \frac{\pi}{4}\right) < 0$ $\Rightarrow \frac{\pi}{2} < x \frac{\pi}{4} < \frac{3\pi}{2} \Rightarrow \frac{3\pi}{4} < x < \frac{7\pi}{4}$
- 105. $h(x) = f(x) (f(x))^2 + (f(x))^3$ ∴ $h'(x) = f'(x) - 2f(x) f'(x) + 3(f(x))^2 f'(x)$ $= f'(x) [1 - 2 f(x) + 3 (f(x))^2]$ Here, $1 - 2 f(x) + 3(f(x))^2 > 0$ for all f(x) $\Rightarrow h'(x) > 0$, if f'(x) > 0 and h'(x) < 0, if f'(x) < 0 $\Rightarrow h$ is increasing whenever f is increasing and h is decreasing whenever f is decreasing.

106.
$$f(x) = [x(x-2)]^{2}$$

$$\Rightarrow f(x) = x^{2} (x-2)^{2}$$

$$\Rightarrow f'(x) = x^{2} \{2(x-2)\} + (x-2)^{2} (2x)$$

$$= 2x(x-2) \{x + (x-2)\}$$

$$= 4x(x-2)(x-1)$$

For f(x) to be increasing, f'(x) > 0

$$\Rightarrow 4x(x-1)(x-2) > 0$$

$$\Rightarrow x(x-1)(x-2) > 0 \Rightarrow x \in (0, 1) \cup (2, \infty)$$

107.
$$y = \{x(x-3)\}^2$$

⇒ $y = x^2 (x-3)^2$
∴ $\frac{dy}{dx} = 2x(x-3)^2 + 2(x-3)x^2$
 $= 2x(x-3)[x-3+x]$
 $= 2x(x-3)(2x-3)$
For y to be increasing, $\frac{dy}{dx} > 0$
 $\Rightarrow 2x(x-3) (2x-3) > 0$
 $\Rightarrow x(x-3)(2x-3) > 0 \Rightarrow x \in \left(0, \frac{3}{2}\right)$

108. $f(a) = 2a^{2} - 3a + 10$ $\Rightarrow f'(a) = 4a - 3 \Rightarrow f''(a) = 4 > 0$ For minimum value of f (a), $f'(a) = 0 \Rightarrow a = \frac{3}{4}$

$$\therefore \quad f(a) \text{ is minimum at } a = \frac{3}{4}.$$

$$\therefore \quad [f(a)]_{\min} = f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) + 10 = \frac{71}{8}$$

109.
$$f(x) = a \sin x + \frac{1}{3} \sin 3x$$
$$\Rightarrow f'(x) = a \cos x + \frac{1}{3} \cdot 3 \cos 3x$$
$$\Rightarrow f'(x) = a \cos x + \cos 3x$$
Now,
$$f'\left(\frac{\pi}{3}\right) = 0$$
$$\Rightarrow a \cos \frac{\pi}{3} + \cos \pi = \frac{a}{2} - 1 = 0$$
$$\Rightarrow a = 2$$

110. Clearly, it has a maximum at x = 1.

112.
$$y = x^3 - 3x^2 + 5$$

f (x) = $x^3 - 3x^2 + 5$
f'(x) = $3x^2 - 6x$
f''(x) = $6x - 6$
f'(x) = 0 at x = 0, x = 2
f''(0) < 0, f''(2) > 0
∴ f(x) is maximum at x = 0

113. Let
$$f(x) = 2x^3 - 15x^2 + 36x + 4$$

∴ $f'(x) = 6x^2 - 30x + 36 = 0$ at $x = 3, 2$
∴ $f''(x) = 12x - 30$ is -ve at $x = 2$

- \therefore maximum value of f(x) attained at x = 2
- 114. $f'(x) = 6x^2 6x 12$ $f'(x) = 0 \Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = -1, 2$ Here f(4) = 128 - 48 - 48 + 5 = 37 f(-1) = -2 - 3 + 12 + 5 = 12 f(2) = 16 - 12 - 24 + 5 = -15f(-2) = -16 - 12 + 24 + 5 = 1
- \therefore the maximum value of function is 37 at x = 4.

115. Given
$$f(x) = x(1-x)^2$$
, $f(x) = x^3 - 2x^2 + x$
∴ $f'(x) = 3x^2 - 4x + 1$
Put $f'(x) = 0$ i.e., $3x^2 - 4x + 1 = 0$
 $\Rightarrow 3x^2 - 3x - x + 1 = 0 \Rightarrow x = 1, 1/3$
 $f''(x) = 6x - 4$
∴ $f''(1) = 2 > 0$ and $f''(1/3) = -2 < 0$
∴ $f(x)$ is maximum at $x = \frac{1}{3}$.

$$\therefore \qquad \text{Maximum value} = f\left(\frac{1}{3}\right) = \frac{4}{27}$$

116. Let
$$f(x) = x^2 + \frac{250}{x}$$

 $\Rightarrow f'(x) = 2x - \frac{250}{x^2}$
 $\Rightarrow f''(x) = 2 + \frac{500}{x^3}$

Chapter 03: Applications of Derivatives

For maximum or minimum of f(x), $f'(x) = 0 \Longrightarrow 2x^3 - 250 = 0$ $\Rightarrow x^3 = 125 \Rightarrow x = 5$ $f''(5) = 2 + \frac{500}{125} = 6 > 0$ f has minimum at x = 5 and minimum value of f at x = 5 is f(5) = 25 + 50 = 75117. $f(x) = x \log x$ $f'(x) = 1 + \log x$ for minimum, $f'(x) = 0 \Rightarrow \log x = -1 \Rightarrow x = \frac{1}{2}$ $f''(x) = \frac{1}{r}$ $f''(e) = \frac{1}{e} > 0$ f(x) is minimum at $x = \frac{1}{x}$ $f\left(\frac{1}{e}\right) = \frac{1}{e}\log\left(\frac{1}{e}\right) = -\frac{1}{e}$

÷.

...

...

÷

118. Let $f(x) = \frac{\log x}{r} \Longrightarrow f'(x) = \frac{1}{r^2} - \frac{\log x}{r^2}$ For maximum or minimum value of f(x), f'(x) = 0 $\Rightarrow \frac{1 - \log_e x}{x^2} = 0$

- $\log_e x = 1$ or x = e, which lie in $(0, \infty)$ For x = e, $\frac{d^2 y}{dx^2} = -\frac{1}{e^3}$, which is -ve.
- y is maximum at x = e*.*.. and its maximum value = $\frac{\log e}{e} = \frac{1}{e}$.
- 119. $x + y = 32 \implies y = 32 x$ $\Rightarrow \tilde{x}^2 + y^2 = \tilde{x}^2 + (32 - x)^2$ Let $z = x^2 + (32 - x)^2$ \Rightarrow z' = 2x + 2(32 - x) (-1) = 4x - 64 Now, z'' = 4 > 0
- at x = 16 and y = 32 x = 32 16 = 16 $x^2 + y^2 = 32$ have minimum value

$$\therefore \qquad \text{minimum value} = x^2 + y^2 = (16)^2 + (16)^2 = 512$$

120. Let $f(x) = x^{25} (1 - x)^{75}$

$$\therefore \quad f'(x) = x^{25} (75)(1-x)^{74} (-1) + 25x^{24} (1-x)^{75}$$

For maximum value of $f(x)$, $f'(x) = 0$
 $\Rightarrow -75x^{25} (1-x)^{74} + 25x^{24} (1-x)^{75} = 0$
 $\Rightarrow 25x^{24} (1-x)^{74} (1-4x) = 0$
 $\Rightarrow x = 0 \text{ or } x = 1 \text{ or } x = \frac{1}{4}$
At $x = \frac{1}{4}$, $f'(\frac{1}{4} - h) > 0$ and $f'(\frac{1}{4} + h) < 0$
 $\therefore \quad f(x)$ has maximum value at $x = \frac{1}{4}$.

4

121.
$$h(x) = \frac{x^2 + \frac{1}{x}}{x - \frac{1}{x}}$$

$$= \frac{\left(x - \frac{1}{x}\right)^2 + 2}{\left(x - \frac{1}{x}\right)}$$

$$= \left(x - \frac{1}{x}\right) + \frac{2}{\left(x - \frac{1}{x}\right)}$$

$$= \left(x - \frac{1}{x}\right) + \frac{2}{\left(x - \frac{1}{x}\right)}$$
When $x - \frac{1}{x} < 0$, $\left(x - \frac{1}{x}\right) + \frac{2}{\left(x - \frac{1}{x}\right)} \le -2\sqrt{2}$
When $x - \frac{1}{x} > 0$, $\left(x - \frac{1}{x}\right) + \frac{2}{\left(x - \frac{1}{x}\right)} \ge 2\sqrt{2}$
The local minimum value of $h(x)$ is $2\sqrt{2}$.
122.
$$f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$$

$$\Rightarrow f'(x) = 6x^2 - 18ax + 12a^2$$

$$\Rightarrow f''(x) = 12x - 18a$$
For maximum or minimum of $f(x)$, $f'(x) = 0$

$$\Rightarrow ca^2 - 18ax + 12a^2 = 0$$

$$\Rightarrow x^2 - 3ax + 2a^2 = 0$$

$$\Rightarrow x = a \text{ or } x = 2a$$
At $x = a$, f has maximum $(5a^3 + 1)$
and at $x = 2a$, f has minimum $(4a^3 + 1)$
Since, $p^3 = q$

$$\therefore a^3 = 2a \Rightarrow a = \sqrt{2} \text{ or } a = 0$$
But $a > 0$

$$\therefore a = \sqrt{2}$$
123.
$$f(x) = x^2 + 2bx + 2c^2$$

$$f'(x) = 2x + 2b = 0$$
, at $x = -b$

$$f'''(x) = 2 > 0$$

$$\therefore f(-b) = b^2 - 2b^2 + 2c^2 = 2c^2 - b^2$$

$$g(x) = -x^2 - 2cx + b^2$$

$$g'(x) = -2 < 0$$

$$\therefore g(x)$$
 is maximum at $x = -c$

$$\therefore g(-c) = -c^2 + 2c^2 + b^2 = b^2 + c^2$$
Given, minimum value of $f(x) > maximum of$

 $\Rightarrow 2c^2 - b^2 > b^2 + c^2$

 $\Rightarrow c^2 > 2b^2$

- 124. $f(x) = x^{2} + e^{x}$ $f'(x) = 2x + e^{x}$ $f''(x) = 2 + e^{x}$ $f'''(x) = e^{x}$ $f''''(x) = e^{x}$ $\Rightarrow f_{3} = f_{4} \Rightarrow n = 3$
- 125. Let x and y be the lengths of two adjacent sides of the rectangle. Then, its perimeter is 2(x + y) = 36 $\Rightarrow x + y = 18 \Rightarrow y = 18 - x$ (i) Area of rectangle, $A = xy = x (18 - x) = 18x - x^2$ ∴ $\frac{dA}{dx} = 18 - 2x$ For maximum or minimum, $\frac{dA}{dx} = 0 \Rightarrow 18 - 2x = 0 \Rightarrow x = 9$

From (i),
$$y = 18 - 9 = 9$$

126. Total length of wire = $r + r + r\theta$ $\Rightarrow 20 = 2r + r\theta$ $\Rightarrow 0 = \frac{20 - 2r}{r}$

$$\Rightarrow \theta = \frac{1}{r}$$

$$A = \frac{1}{2}r^{2}\theta$$

$$= \frac{1}{2}r^{2}\left(\frac{20-2r}{r}\right) = 10r - r^{2}$$

θ

$$\therefore \quad \frac{dA}{dr} = 10 - 2r$$

For maximum area,
$$\frac{dA}{dr} = 0$$

 $\Rightarrow 0 = 10 - 2r \Rightarrow 10 = 2r \Rightarrow r = 5 m$
 $\therefore \quad Area = \frac{1}{2}r(20 - 2r)$

$$=\frac{1}{2} \times 5 \times (20 - 10) = 25$$
 sq.m.

127. Let
$$x + y = 4 \implies y = 4 - x$$

 $\frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy}$
 $f(x) = \frac{4}{xy} = \frac{4}{x(4 - x)} = \frac{4}{4x - x^2}$
∴ $f'(x) = \frac{-4}{(x - x)^2} \cdot (4 - 2x)$

 $f'(x) = \frac{-4}{(4x - x^2)^2} \cdot (4 - 2x)$ For maximum or minimum of f(x), $f'(x) = 0 \Longrightarrow 4 - 2x = 0$ x = 2 and y = 2

$$\therefore \quad x = 2 \text{ and } y = 2$$

$$\therefore \quad \min\left(\frac{1}{x} + \frac{1}{y}\right) = \frac{1}{2} + \frac{1}{2} = 1$$

128. Let x and y be the lengths of two adjacent sides
of the rectangle.
Then, its perimeter is
$$P = 2(x + y)$$
(i)
 $\Rightarrow y = \frac{P - 2x}{2}$
Area of rectangle, $A = xy$
 $= x\left(\frac{P - 2x}{2}\right) = \frac{Px - 2x^2}{2}$
 $\therefore \frac{dA}{dx} = \frac{P - 4x}{2}$ and $\frac{d^2A}{dx^2} = -2$
For maximum or minimum,
 $\frac{dA}{dx} = 0$
 $\Rightarrow \frac{P - 4x}{2} = 0$
 $\Rightarrow P = 4x$
 $\Rightarrow 2x + 2y = 4x$ [From (i)]
 $\Rightarrow x = y$
(12 $\pm x$)

$$\therefore \qquad \left(\frac{d^2 A}{dx^2}\right)_{x=y} = -2 < 0$$

Hence, the area of a rectangle will be maximum when rectangle is a square.

129. p(t) = 1000 +
$$\frac{1000t}{100 + t^2}$$

∴ $\frac{dp}{dt} = \frac{(100 + t^2)1000 - 1000t.2t}{(100 + t^2)^2}$
 $= \frac{1000(100 - t^2)}{(100 + t^2)^2}$
For extremum,
 $\frac{dp}{dt} = 0 \Rightarrow t = 10$
Now $\frac{dp}{dt}\Big|_{t<10} > 0$ and $\frac{dp}{dt}\Big|_{t>10} < 0$
∴ At t = 10, $\frac{dp}{dt}$ change from positive to negative.
It is a critical point.
∴ p is maximum at t = 10.
∴ p_{max} = p(10)
 $= 1000 + \frac{1000.10}{100 + 10^2} = 1050$
130. $f(x) = x + \frac{1}{x} \Rightarrow f'(x) = 1 - \frac{1}{x^2}$
 $\Rightarrow f'(x) = 0 \Rightarrow x^2 - 1 = 0 \Rightarrow x = 1, -1$
But it is given that x is positive
∴ at x = 1, $f(x) = 1 + \frac{1}{1} = 2$

For maximum or minimum of f(x), f'(x) = 0

- 131. $f(x) = x + \sin x \implies f'(x) = 1 + \cos x$ Now, $f'(x) = 0 \Rightarrow 1 + \cos x = 0 \Rightarrow \cos x = -1$ $\Rightarrow x = \pi$ Now, $f''(x) = -\sin x$, $f''(\pi) = 0$ $f'''(x) = -\cos x$
- $f'''(\pi) = 1 \neq 0$ *.*..
- *.*.. Neither maximum nor minimum.
- 132. Let α , β be the roots of the equation $x^{2} - (a - 2)x - a + 1 = 0$, then $\alpha + \beta = a - 2$, $\alpha\beta = -a + 1$
- $z = \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} 2\alpha\beta$ $= (a 2)^{2} + 2(a 1) = a^{2} 2a + 2$ *.*..
- $\frac{\mathrm{d}z}{\mathrm{d}a} = 2a 2 = 0 \Longrightarrow a = 1$ *.*.. $\frac{d^2z}{da^2} = 2 > 0$, so z has minima at a = 1So $\alpha^2 + \beta^2$ has least value for a = 1. This is

because we have only one stationary value at which we have minima. Hence a = 1.

133.
$$f(x) = \frac{x^2 - 1}{x^2 + 1} = \frac{x^2 + 1 - 2}{x^2 + 1} = 1 - \frac{2}{x^2 + 1}$$

∴ $f(x) < 1 \ \forall x \text{ and } f(x) \ge -1 \text{ as } \frac{2}{x^2 + 1} \le 2$

 $-1 \leq f(x) < 1$ *.*..

... f(x) has minimum value -1.

134. Let
$$y = \frac{x^2 - x + 1}{x^2 + x + 1}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x^2 + x + 1)(2x - 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 - 2}{(x^2 + x + 1)^2} = 0$$

$$\Rightarrow 2x^2 - 2 = 0 \Rightarrow x = -1, + 1$$

$$\frac{d^2y}{dx^2} = \frac{4(-x^3 + 3x + 1)}{x^2 + x + 1}$$
At $x = -1, \ \frac{d^2y}{dx^2} < 0$ the function will occupy maximum value,

∴
$$f(-1) = 3$$
 and at $x = 1$, $\frac{d^2 y}{dx^2} > 0$ the function will occupy minimum value.

$$\therefore$$
 f(1) = $\frac{1}{3}$

135. Let
$$f(x) = \exp(2 + \sqrt{3} \cos x + \sin x)$$

 $\Rightarrow f'(x) = \exp(2 + \sqrt{3} \cos x + \sin x)$
 $\times (-\sqrt{3} \sin x + \cos x)$

 $\Rightarrow \exp(2+\sqrt{3}\cos x+\sin x)(-\sqrt{3}\sin x+\cos x)=0$ $\Rightarrow -\sqrt{3}\sin x + \cos x = 0$ $\Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = 0$ $\Rightarrow \sin\left(x - \frac{\pi}{6}\right) = 0$ $\Rightarrow x = \frac{\pi}{6}$ At $x = \frac{\pi}{6}$, f''(x) is negative f has maximum at $x = \frac{\pi}{6}$ and maximum value of f at $x = \frac{\pi}{6}$ is $f\left(\frac{\pi}{6}\right) = \exp\left(2 + \sqrt{3}\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2}\right) = \exp(4)$ 136. Let $y = x^x \Longrightarrow \log y = x \cdot \log x$, (x > 0)Differentiating, $\frac{dy}{dx} = x^x (1 + \log x);$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ *.*.. $\Rightarrow \log x = -1 \Rightarrow x = e^{-1} = \frac{1}{2}$ Stationary point is $x = \frac{1}{e}$ *.*.. 137 Let $f(x) = (1)^x$

...

137. Let
$$I(x) = \left(\frac{-}{x}\right)$$

 $\Rightarrow f(x) = x^{-x}$
 $\Rightarrow f'(x) = -x^{-x}(1 + \log x)$
 $\Rightarrow f''(x) = x^{-x}(1 + \log x)^2 - x^{-x-1}$
For maximum or minimum of $f(x)$, $f'(x) = 0$
 $\Rightarrow -x^{-x}(1 + \log x) = 0$
 $\Rightarrow 1 + \log x = 0$
 $\Rightarrow \log x = -1 = \log \frac{1}{e}$
 $\Rightarrow \log x = \frac{1}{e}$
 $\therefore f''\left(\frac{1}{e}\right) = \left(\frac{1}{e}\right)^{\frac{-1}{e}} \left(1 + \log \frac{1}{e}\right)^2 - \left(\frac{1}{e}\right)^{-\frac{1}{e}-1}$
 $= e^{\frac{1}{e}}(1-1)^2 - e^{\frac{1}{e}+1}$
 $= -e^{\frac{1}{e}+1} < 0$

- $\therefore \quad \text{f has maximum at } x = \frac{1}{e} \text{ and maximum value}$ of f at $x = \frac{1}{e}$ is f $\left(\frac{1}{e}\right) = (e)^{1/e}$
- 138. Let r be the radius and h be the height, then $(h)^2$

 $\Rightarrow r = 36 - h$ Now, $V = \pi r^2 h$ $\Rightarrow V = \pi (36 - h^2) h$ $\therefore \qquad \frac{dV}{dh} = \pi (36 - 3h^2)$

...

- for max or min, $\frac{dV}{dh} = 0$ $\Rightarrow \pi(36 - 3h^2) = 0 \Rightarrow h^2 = 12 \Rightarrow h = 2\sqrt{3}$

 $\therefore \quad \text{V is max., when } r = \sqrt{\frac{2}{3}} \text{ R.}$

140. Let diameter of sphere be AE = 2r Let radius of cone be x and height be y. A A A B C B C C A A D C C A A D C C A D C Since, BD² = AD.DE $\Rightarrow x^2 = y(2r - y)$ Volume of cone V = $\frac{1}{3} \pi x^2 y = \frac{1}{3} \pi y (2r - y)y$ $= \frac{1}{3} \pi (2ry^2 - y^3)$ $\Rightarrow \frac{dV}{dy} = \frac{1}{3} \pi (4ry - 3y^2)$ Now $\frac{dV}{dy} = 0$ $\Rightarrow \frac{1}{3} \pi (4ry - 3y^2) = 0 \Rightarrow y(4r - 3y) = 0$ $\Rightarrow y = \frac{4}{2}r, 0$

Now
$$\frac{d^2 V}{dy^2} = \frac{1}{3}\pi(4r-6y)$$

 $\Rightarrow \left(\frac{d^2 V}{dy^2}\right)_{y=\frac{4}{3}r} = \frac{1}{3}\pi\left(4r-6\times\frac{4}{3}r\right) < \frac{1}{3}\pi\left(4r-6\times\frac{4}{3}r\right) > \frac{1}{3}\pi$

So, volume of cone is maximum at $y = \frac{4}{3}$ r.

0

 $\frac{\text{Height of Cone}}{\text{Diameter of Sphere}} = \frac{y}{2r} = \frac{2}{3}$

...

141. $(-a\cos\theta, b\sin\theta) \xrightarrow{Y} (a\cos\theta, b\sin\theta)$ $A \xrightarrow{X} (-a\cos\theta, -b\sin\theta) \xrightarrow{Y} (a\cos\theta, -b\sin\theta)$

> Area of rectangle ABCD = $(2a \cos \theta) (2b \sin \theta) = 2ab \sin 2\theta$ Hence, area of greatest rectangle is equal to 2ab, when $\sin 2\theta = 1$.

Chapter 03: Applications of Derivatives

142. Let
$$f(x) = x^3 - px + q$$
. Then,
 $f'(x) = 3x^2 - p$
 $= 3\left(x - \sqrt{\frac{p}{3}}\right)\left(x + \sqrt{\frac{p}{3}}\right)$

The signs of f'(x) for different values of x are as shown below:

$$\begin{array}{c|c} + & - & + \\ \hline -\infty & - \sqrt{\frac{p}{3}} & \sqrt{\frac{p}{3}} \\ \end{array}$$

Since, f'(x) changes its sign form positive to negative in the neighbourhood of $-\sqrt{\frac{p}{3}}$.

- So, $-\sqrt{\frac{p}{3}}$ is a point of local maximum. Similarly, $x = \sqrt{\frac{p}{3}}$ is a point of local minimum.
- 143. For any $x \in [0, 1]$, we have $x^2 \le x \le 1$ $\Rightarrow x^2 e^{x^2} \le x e^{x^2} \le e^{x^2}$ $\Rightarrow e^{-x^2} + x^2 e^{x^2} \le e^{-x^2} + x e^{x^2} \le e^{-x^2} + e^{x^2}$ $\Rightarrow h(x) \le g(x) \le f(x)$ Now, $f(x) = e^{x^2} + e^{-x^2}$ $\Rightarrow f'(x) = 2x(e^{x^2} - e^{-x^2}) > 0$ for all $x \in (0, 1]$ $\Rightarrow f(x)$ is increasing on (0, 1] $\Rightarrow f(1)$ is the maximum value of f(x) on [0, 1] $\Rightarrow a = e + e^{-1}$ Also, $f(1) = g(1) = h(1) = e + e^{-1}$ $\therefore a = b = c = e + e^{-1}$
- 144. If f(x) has a local minimum at x = -1, then $\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (k - 2x)$ $\Rightarrow -2 + 3 = k + 2 \Rightarrow k = -1$ f(x) = k - 2x
 - f(x) = 2x+3 f(x) = 2x+3 f(x) = 2x+3

145. $f(x) = \int_{0}^{x} \sqrt{t} \sin t \, dt \implies f'(x) = \sqrt{x} \sin x$

For local maximum or minimum of f(x),

$$f'(x) = 0 \Rightarrow \sqrt{x} \sin x = 0$$

f

$$\Rightarrow x = \pi, 2\pi \qquad \qquad \dots \left[\because x \in \left(0, \frac{5\pi}{2}\right) \right]$$

The changes in signs of f '(x) in the neighbourhoods of π and 2π are as shown below: + - +

$$\begin{array}{c|c} & - & - \\ \hline & & - & - \\ \hline & & & - & - \\ \hline & & & & - \\ \pi & & 2\pi \end{array}$$

Clearly, f'(x) changes its sign from positive to negative in the neighbourhood of $x = \pi$ and negative to positive in the neighbourhood of $x = 2\pi$. Thus, f(x) has a local maximum at $x = \pi$ and a local minimum at $x = 2\pi$.

146.
$$f(x) = |x| + |x^2 - 1| = \begin{cases} -x + x^2 - 1, & x \le -1 \\ -x - x^2 + 1, & -1 \le x < 0 \\ x - x^2 + 1, & 0 \le x < 1 \\ x + x^2 - 1, & x \ge 1 \end{cases}$$

∴ $f'(x) = \begin{cases} 2x - 1, & x < -1 \\ -2x - 1, & -1 < x < 0 \\ -2x + 1, & 0 < x < 1 \\ 2x + 1, & x > 1 \end{cases}$

Here, f(x) is not differentiable at x = -1, 0, 1. The changes in signs of f '(x) for different values of x are as shown below:

$$-$$
 + - + - +
-1 -1/2 0 1/2 1

So, f'(x) changes its sign at 5 points. Hence, total number of points of local maximum or local minimum of f(x) is 5.

147.
$$f(x) = \begin{cases} e^{x} , 0 \le x \le 1\\ 2 - e^{x-1} , 1 < x \le 2\\ x - e , 2 < x \le 3 \end{cases}$$

and
$$g(x) = \int_{0}^{x} f(t)dt, x \in [1, 3]$$

∴
$$g'(x) = f(x) = \begin{cases} 2 - e^{x-1} & 1 < x \le 2\\ x - e & 2 < x \le 3 \end{cases}$$

Now,
$$g'(x) = 0 \Longrightarrow x = 1 + \log_{e} 2 \text{ and } x = e$$

Also,
$$g'(x) > 0 \text{ for } x \in (1, 1 + \log_{e} 2)$$

and
$$g'(x) < 0 \text{ for } x \in (1 + \log_{e} 2, 2).$$

So, g(x) attains a local maximum at $x = 1 + \log_e 2$. Similarly, g'(x) < 0 for 2 < x < eand g'(x) > 0 for e < x < 3So, g(x) attains a local minimum at x = e. We have,

$$f'(x) = \begin{cases} e & , & 0 < x < 1 \\ -e^{x-1} & , & 1 < x < 2 \\ 1 & , & 2 < x < 3 \end{cases}$$

Clearly, f'(x) > 0 for $x \in (0, 1)$ f'(x) < 0 for $x \in (1, 2)$ f'(x) > 0 for $x \in (2, 3)$ So, f(x) attains local maximum at x = 1 and local minimum at x = 2.

Hence, option (C) is incorrect.

148.
$$f(x) = \begin{cases} (2+x)^3 , & -3 < x \le -1 \\ x^{2/3} , & -1 < x < 2 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} 3(2+x)^2 , & -3 < x < -1 \\ \frac{2}{3}x^{-1/3} , & -1 < x < 2 \end{cases}$$

Clearly, f'(x) changes its sign from positive to negative as x passes through x = -1 from left to right. So, f(x) attains a local maximum at x = -1. Here, f'(x) > 0 for all $x \in (-3, -1)$ and f'(x) < 0 for $x \in (-1, 0)$. Also, f'(x) > 0 for $x \in (0, 2)$. But, f'(0) does not exist. So, f(x) attains a local minimum at x = 0Hence, the total number of local maxima and local minima is 2.

149.
$$f(x) = (1 + b^{2})x^{2} + 2bx + 1$$

$$\Rightarrow f'(x) = 2(1 + b^{2})x + 2b$$

$$\Rightarrow f''(x) = 2(1 + b^{2}) > 0$$

For minimum value of $f(x)$,

$$f'(x) = 0$$

$$\Rightarrow 2(1 + b^{2})x + 2b = 0$$

$$\Rightarrow x = -\frac{b}{1 + b^{2}}$$

∴
$$f(x) \text{ is minimum at } x = -\frac{b}{1 + b^{2}}$$

∴ Minimum value of
$$f(x) = \frac{1}{1 + b^{2}}$$

$$\therefore \qquad m(b) = \frac{1}{1+b^2}$$

Since,
$$\frac{1}{1+b^2} \le 1$$
 and $\frac{1}{1+b^2} > 0 \ \forall \ b \in R$

 \therefore 0 < m(b) ≤ 1

 \therefore range of m (b) is (0, 1].

- 150. $P(x) = x^4 + ax^3 + bx^2 + cx + d$ ⇒ $P'(x) = 4x^3 + 3ax^2 + 2bx + c$ (i) Since, x = 0 is the only real root of P'(x) = 0. ∴ $P'(0) = 0 \Rightarrow c = 0$
 - Putting c = 0 in (i), we get $P'(x) = x(4x^2 + 3ax + 2b)$ Since, x = 0 is the only real root of P '(x) = 0.

$$\therefore \quad 4x^2 + 3ax + 2b = 0 \text{ has no real root.}$$

$$\Rightarrow 9a^2 - 32b < 0$$

Given, P(-1) < P(1)

$$\Rightarrow 1 - a + b - c + d < 1 + a + b + c + d$$

$$\Rightarrow a > 0$$

But, 9a^2 - 32b < 0. Therefore, b > 0

$$\therefore \quad P'(x) = x(4x^2 + 3ax + 2b) > 0 \text{ for all } x \in (0, 1]$$

$$\Rightarrow P(x) \text{ is increasing in } (0, 1]$$

$$\Rightarrow P(1) \text{ is the maximum value of } P(x).$$

Also, P'(x) = x(4x^2 + 3ax + 2b) < 0 for all $x \in [-1, 0)$

$$\dots [\because 4x^2 + 3ax + 2b > 0 \text{ for all } x]$$

 \Rightarrow P(x) is decreasing in [-1, 0). \Rightarrow P(-1) is not the minimum value of P.

151.
$$f(x) = \ln \{g(x)\}$$

 $\Rightarrow g(x) = e^{f(x)}$
 $\Rightarrow g'(x) = e^{f(x)} f'(x)$
For local maximum of $g(x)$,
 $g'(x) = 0$
 $\Rightarrow e^{f(x)} f'(x) = 0$
 $\Rightarrow 2010(x - 2009) (x - 2010)^2 (x - 2011)^3$
 $\times (x - 2012)^4 = 0$
 $\Rightarrow x = 2009, 2010, 2011, 2012$

- \therefore f'(x) changes its sign from positive to negative in the neighbourhood of x = 2009.
- \therefore g(x) has a local maximum at x = 2009 only.
- 152. According to the given condition,

$$\frac{dy}{dx} = 0$$

⇒ 12 - 3x² = 0
⇒ x = ± 2
When x = 2, y = 16
When x = -2, y = -16
∴ the required points are (2, 16) and (-2, -16).

153.
$$v = \frac{dx}{dt} = 4t^3 - 3kt^2$$

∴ $\frac{dv}{dt} = 12t^2 - 6kt$
At $t = 2$, $\frac{dv}{dt} = 0$
 $\Rightarrow 48 - 12k = 0 \Rightarrow k = 4$

- 154. Since, f(x) satisfies the conditions of Rolle's theorem.
- :. f(2) = f(1)Now, $\int_{1}^{2} f'(x) dx = [f(x)]_{1}^{2} = f(2) - f(1) = 0$
- 155. It is always increasing.

- 156. $f(x) = x^3 + bx^2 + cx + d$ ∴ $f'(x) = 3x^2 + 2bx + c$ Now its discriminant = $4(b^2 - 3c)$ $\Rightarrow 4(b^2 - c) - 8c < 0$, as $b^2 < c$ and c > 0 $\Rightarrow f'(x) > 0$ for all $x \in R$ \Rightarrow f is strictly increasing on R.
- 157. Since x = 1 and x = 3 are extreme points of p(x).
- :. p'(1) = 0 and p'(3) = 0

$$\therefore$$
 $(x-1)$ and $(x-3)$ are the factors of p'(x).
 \therefore $p'(x) = k(x-1)(x-2) = k(x^2 - 4x + 3)$

$$\Rightarrow p(x) = k(x-1)(x-3) - k(x-4x+3)$$

$$\Rightarrow p(x) = k\left(\frac{x^3}{3} - 2x^2 + 3x\right) + c$$

Given, p(1) = 6 and p(3) = 2

$$\Rightarrow 6 = k\left(\frac{1}{3} - 2 + 3\right) + c \text{ and } 2$$

$$= k(9 - 18 + 9) + c$$

$$\Rightarrow 6 = \frac{4k}{3} + c \text{ and } c = 2 \Rightarrow k = 3$$

∴ p'(x) = 3(x^2 - 4x + 3)
∴ p'(0) = 9
158. Let f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4
Given, $\lim_{x \to 0} \left[1 + \frac{f(x)}{x^2}\right] = 3$

$$\Rightarrow \lim_{x \to 0} \frac{f(x)}{x^2} = 3 - 1 = 2$$

$$\Rightarrow \lim_{x \to 0} \frac{a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4}{2} = 2$$

 x^2

 $x \rightarrow 0$

Chapter 03: Applications of Derivatives $a_0 = 0, a_1 = 0, a_2 = 2$ *.*.. $f(x) = 2x^2 + a_3x^3 + a_4x^4$ *.*.. $f'(x) = 4x + 3a_3x^2 + 4a_4x^3 = x(4 + 3a_3x + 4a_4x^2)$ *.*.. Given, f'(1) = 0 and f'(2) = 0 \Rightarrow 4 + 3a₃ + 4a₄ = 0(i) and $4 + 6a_3 + 16a_4 = 0$ (ii) Solving (i) and (ii), we get $a_4 = \frac{1}{2}, a_3 = -2$ $f(x) = 2x^2 - 2x^3 + \frac{x^4}{2}$ ÷ f(2) = 8 - 16 + 8 = 0÷. 159. tan A. tan B is maximum if A = B = $\frac{\pi}{c}$ Maximum of tanA.tanB = $\frac{1}{2}$ *.*.. 160. According to the given condition, $4x + 2\pi r = 2$ $\Rightarrow 2x + \pi r = 1$(i) A = $x^2 + \pi r^2 = \left(\frac{1 - \pi r}{2}\right)^2 + \pi r^2$ $\therefore \qquad \frac{\mathrm{dA}}{\mathrm{dr}} = 2\left(\frac{1-\pi \mathrm{r}}{2}\right)\left(-\frac{\pi}{2}\right) + 2\pi \mathrm{r}$ For maximum or minimum, $\frac{dA}{dr} = 0$ $\Rightarrow \pi(1-\pi r) = 4\pi r$ $\Rightarrow 1 = 4r + \pi r$...(ii) From (i) and (ii), we get $2x + \pi r = 4r + \pi r$ $\Rightarrow x = 2r$ 161. $f(x) = \tan^{-1} \sqrt{\frac{1+\sin x}{1-\sin x}}$ $= \tan^{-1} \sqrt{\frac{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2}{\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2}}$ $= \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) = \frac{\pi}{4} + \frac{x}{2}$ \Rightarrow f'(x) = $\frac{1}{2}$ and at x = $\frac{\pi}{6}$, f(x) = $\frac{\pi}{3}$ equation of the normal at $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ is *:*. $y - \frac{\pi}{3} = -2\left(x - \frac{\pi}{6}\right) \Longrightarrow y + 2x = \frac{2\pi}{3}$ Only option (A) satisfies this equation.

Evaluation Test

...

4.

...

...

5.

- Let $f(x) = ax^4 + bx^3 + cx^2 + dx$ 1. f(0) = 0*.*..
 - and $f(3) = a.3^4 + b.3^3 + c.3^2 + d.3$ = 81a + 27b + 9c + 3d= 3(27a + 9b + 3c + d) $= 3 \times 0$
- f(0) = f(3) = 0*.*.. f(x) is a polynomial function, it is continuous and differentiable. Now, $f'(x) = 4ax^3 + 3bx^2 + 2cx + d$ By Rolle's theorem, there exist at least 1 root of the equation f'(x) = 0 in between 0 and 3.
- The equation of the curve is $y = x^2 + bx + c$. 2.
- $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + \mathrm{b}$(i) *.*..

Since, the curve touches the line y = x at (1,1).

- $[2x+b]_{(1,1)}=1$
- 2(1) + b = 1*.*..
 - $\Rightarrow b = -1$ Substituting the value of b in equation (i), we get

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 1$$

Since, gradient is negative.

- $\frac{\mathrm{d}y}{\mathrm{d}x} < 0$ *.*.. $\Rightarrow 2x - 1 < 0$ $\Rightarrow 2x < 1$ $\Rightarrow x < \frac{1}{2}$
- The equation of the parabola is $y^2 = 8x$. 3.
- $2y\frac{dy}{dr} = 8$...
- $\frac{dy}{dr} = \frac{8}{2v} = \frac{4}{v} = m_1$ Ŀ.

Slope of given line, $m_2 = 3$

Since,
$$\tan \theta = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2} \right|$$

$$\therefore \quad \tan \frac{\pi}{4} = \left| \frac{\frac{4}{y} - 3}{1 + \frac{4}{y} \cdot 3} \right|$$

$$\Rightarrow 1 = \left| \frac{4 - 3y}{y + 12} \right|$$

$$\therefore \quad y = -2 \text{ or } y = 8$$

Putting y = -2 in the equation of the curve, we get $x = \frac{1}{2}$ the point of contact is $\left(\frac{1}{2}, -2\right)$. $f(x) = \tan^{-1}x - \frac{1}{2}\log x$ $f'(x) = \frac{1}{1+r^2} - \frac{1}{2r} = -\frac{(x-1)^2}{2r(1+r^2)}$ Now, $f'(x) = 0 \Longrightarrow x = 1$ $f(1) = \tan^{-1} 1 - \frac{1}{2} \log 1 = \frac{\pi}{4} = \frac{3.14}{4} = 0.785$ Since, we are finding maxima on an interval $\left(\frac{1}{\sqrt{2}},\sqrt{3}\right)$. We have to find the value of f(x) at $\left(\frac{1}{\sqrt{3}}\right)$ and $\left(\sqrt{3}\right)$ $f\left(\frac{1}{\sqrt{3}}\right) = \tan^{-1}\frac{1}{\sqrt{3}} + \frac{1}{4}\log 3 = \frac{\pi}{6} + \frac{1}{4}\log 3$ $=\frac{3.14}{6}+\frac{1}{4}\log 3=0.52+\frac{1}{4}\times 1.0986$ = 0.52 + 0.2746 = 0.7946 $f(\sqrt{3}) = \tan^{-1}(\sqrt{3}) - \frac{1}{4}\log 3 = \frac{\pi}{3} - \frac{1}{4}\log 3$ $=\frac{3.14}{3}-0.2746$ = 1.04 - 0.2746= 0.7654the greatest value of f(x) is $\frac{\pi}{6} + \frac{1}{4} \log 3$. $\alpha + \beta = \frac{\pi}{2}$ $\therefore \quad \cos \beta = \cos \left(\frac{\pi}{2} - \alpha \right) = \sin \alpha$

Let
$$y = \cos \alpha \cos \beta = \cos \alpha \sin \alpha = \frac{1}{2} \sin 2\alpha$$

$$\therefore \quad \frac{dy}{d\alpha} = \frac{1}{2}\cos 2\alpha.2 = \cos 2\alpha$$
Now, $\frac{dy}{d\alpha} = 0 \Rightarrow \cos 2\alpha = 0 \Rightarrow 2\alpha = \frac{\pi}{2}$

$$\Rightarrow \alpha = \frac{\pi}{4}$$

	Chapter 03: Applications of Derivatives
<i>.</i>	$\frac{x}{2} = \frac{\pi}{2}$ or $\frac{3x}{2} = \frac{\pi}{2}$
	$x = \pi$ or $x = \frac{\pi}{3}$
	f ''(x) = $-\sin x - 2\sin 2x < 0$, only when
	$x = \frac{\pi}{3}$
	The maximum value of function is at $\frac{\pi}{3}$
<i>.</i>	$f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\left(1 + \frac{1}{2}\right) = \frac{\sqrt{3}}{2} \times \frac{3}{2} = \frac{3\sqrt{3}}{4}$
9.	$f(x) = \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x$
.:.	$f(x) = 1 - \frac{1}{2}\sin^2 2x$
.:.	$f'(x) = -\frac{1}{2}(2\sin 2x\cos 2x) \times 2$
	$f'(x) = -2 \sin 2x \cos 2x$
	Now, $f'(x) = 0$
	$\Rightarrow \sin 2x = 0 \text{ or } \cos 2x = 0$
	$\Rightarrow x = 0 \text{ or } x = \frac{\pi}{4}$
	Since, $f'(x) = -2 \sin 2x \cos 2x$
	$\Rightarrow f'(x) = -\sin 4x$
÷	$f''(x) = -4\cos 4x$ For $x = 0$, $f''(x) = -4 < 0$
	For $x = 0$, $f'(x) = 4 > 0$ For $x = \frac{\pi}{2}$, $f''(x) = 4 > 0$
	4
	At $x = \frac{\pi}{4}$, f(x) is minimum
	Minimum value of $f(x) = 1 - \frac{1}{2}(1) = 1 - \frac{1}{2} = \frac{1}{2}$
10.	$2^{(x^2-3)^3+27}$ is minimum when $(x^2-3)^3+27$ is
	minimum.
	Since, $(x^2 - 3)^3 + 27$
	$= x^{2} - 9x^{2} + 2/x^{2}$ $= x^{2}(x^{4} - 9x^{2} + 27)$
	$\begin{bmatrix} x & x \\ y & y \\ z \end{bmatrix} = \begin{bmatrix} x \\ z \\ z \\ z \end{bmatrix}$
	$= x^{2} \left[\left(x^{2} - \frac{9}{2} \right) + \frac{27}{4} \right] \ge 0, \text{ for all } x$
<i>.</i>	Minimum value of $(x^2 - 3)^3 + 27$ is 0.
÷	Minimum value of $2^{(x^2-3)^3+27} = 2^0 = 1$

м	HT-CET Triumph Maths (Hints)		
11	$f(x) = 3 \cos x - 6ax + b$ $= 3 \cos x - 6ax + b$	1.	3. $y = \frac{ax+b}{(x-4)(x-1)} = \frac{ax+b}{x^2-5x+4}$
.:.	$\dots [\because \cos(-x) = \cos x]$ f'(x) = -3 sin x - 6a		$\frac{dy}{dx} = \frac{(x^2 - 5x + 4)a - (ax + b)(2x - 5)}{(x^2 - 5x + 4)^2}$
:.	The function $f(x)$ is increasing for all $x \in K$. f'(x) > 0		For extreme (i.e., maximum or minimum) $\frac{dy}{dx} = 0$
	$\Rightarrow 6a < -3 \sin x$		a($x^2 - 5x + 4$) - ($ax + b$) ($2x - 5$) = 0 Since, y has an extreme at P(2, -1)
	$\Rightarrow a < -\frac{1}{2}\sin x$ $\Rightarrow a < -\frac{1}{2}$.∴ 	$x = 2 \text{ satisfies above equation} a(4 - 10 + 4) - (2a + b) (-1) = 0 \Rightarrow -2a + 2a + b = 0$
12	Let $f(x) = a^2 \sec^2 x + b^2 \csc^2 x$		$\Rightarrow b = 0$ x = 2, y = -1 satisfies the equation of the curve
<i>.</i>	$f'(x) = a^{2}.2 \sec x \sec x \tan x$ + b ² .2 cosec x (- cosec x cot x)		$-1 = \frac{a(2) + b}{4 - 10 + 4}$
	$= 2a^{2} \sec^{2} x \tan x - 2b^{2} \csc^{2} x \cot x$ Now, f'(x) = 0 $\Rightarrow 2a^{2} \sec^{2} x \tan x - 2b^{2} \csc^{2} x \cot x = 0$. $-1 = \frac{2a+6}{-2} = -a$. $a = 1$ ∴ $a = 1, b = 0$
	$2a^{2} \cdot \frac{1}{\cos^{2} x} \cdot \frac{\sin x}{\cos x} = 2b^{2} \frac{1}{\sin^{2} x} \cdot \frac{\cos x}{\sin x}$	14	4. Let $f(x) = x \tan x$. $f'(x) = x \sec^2 x + \tan x$
.:	$\frac{\sin^4 x}{\cos^4 x} = \frac{b^2}{a^2}$		$f'(x) > 0 \text{ for } x \in \left(0, \frac{\pi}{2}\right)$
.:	$\tan^4 x = \frac{b^2}{a^2}$		f(x) is increasing in the interval $\left(0, \frac{\pi}{2}\right)$
	$\tan^2 x = \frac{b}{a} \text{ and } \cot^2 x = \frac{a}{b}$		Since, $0 < \alpha < \beta < \frac{\pi}{2}$
	Also, $f''(x) = 2a^{2} \left[\sec^{2} x \cdot \sec^{2} x + \tan x \cdot 2 \sec x \sec x \tan x \right]$ $\left[\cos^{2} x (\cos^{2} x) - \cos^{2} x \right]$		$\begin{array}{l} \alpha \tan \alpha < \beta \tan \beta \\ \Rightarrow \frac{\alpha}{\beta} < \frac{\tan \beta}{\tan \alpha} \end{array}$
	$-2b^{2} \begin{bmatrix} \cos x (-\cos x x) \\ + \cos x \cdot 2 \csc x (-\cos x \cot x) \end{bmatrix}$ $= 2a^{2} \begin{bmatrix} \sec^{4} x + 2\sec^{2} x \tan^{2} x \end{bmatrix}$	1:	 5. The point of intersection of the given curves is (0, 1).
	$+2b^{2}\left[\operatorname{cosec}^{4}x+2\operatorname{cosec}^{2}x\operatorname{cot}^{2}x\right]$		Now, $y = 3^x$. $\frac{dy}{dr} = 3^x \log 3$
 	f''(x) > 0 for all x. $f(x)$ is minimum when $\tan^2 x = \frac{b}{a}$		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(0,1)} = \log 3 = \mathrm{m}_1(\mathrm{say})$
	Minimum value of $f(x) = a^2(1 + \tan^2 x)$ + $b^2(1 + \cot^2 x)$		Also, $y = 5^x$ $\frac{dy}{dt} = 5^x \log 5$
	$=a^{2}\left(1+\frac{b}{a}\right)+b^{2}\left(1+\frac{a}{b}\right)$ $(a+b)$		$\frac{dx}{dx} = \log 5$ $\frac{dy}{dx} = \log 5 = m_2 \text{ (say)}$
	$= a^{2} \left(\frac{a+b}{a} \right) + b^{2} \left(\frac{a+b}{b} \right)$ $= a(a+b) + b(a+b) = (a+b)^{2}$		$\tan \alpha = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right = \frac{\log 3 - \log 5}{1 + \log 3 \log 5}$
Let $f(x) = ax^2 + bx + c$ 16. f'(x) = 2ax + b*.*.. since, α and β are roots of the equation $ax^2 + bx + c = 0$ $f(\alpha) = f(\beta) = 0$ *.*.. f(x) being a polynomial function in x, *.*.. it is continuous and differentiable. There exists k in (α, β) such that f'(k) = 0*.*.. \therefore $k = -\frac{b}{2a}$ 2ak + b = 0, *.*.. But $k \in [\alpha, \beta]$ $\alpha < k < \beta$ *.*.. $\alpha < -\frac{b}{2a} < \beta$ *.*.. $f(x) = \tan^{-1} \left(\sin x + \cos x \right)$ 17. $f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$ *.*.. $=\frac{\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)}{1+(\sin x+\cos x)^2}$ For f(x) to be increasing, f'(x) > 0 $\Rightarrow \sqrt{2}\cos\left(x+\frac{\pi}{4}\right) > 0$ $\Rightarrow \cos\left(x + \frac{\pi}{4}\right) > 0$ $\Rightarrow -\frac{\pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2} \Rightarrow -\frac{3\pi}{4} < x < \frac{\pi}{4}$ f(x) is an increasing function in $\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$. *.*.. $f(x) = x^3 - 12ax^2 + 36a^2x - 4$ 18. Diff. w.r.t. x, we get $f'(x) = 3x^2 - 12a(2x) + 36a^2(1)$ $=3x^2-24ax+36a^2$ Now, $f'(x) = 0 \implies 3x^2 - 24ax + 36a^2 = 0$ $x^2 - 8ax + 12a^2 = 0$ *.*.. (x-2a)(x-6a)=0*.*... *.*... x = 2a or x = 6aAlso, f''(x) = 6x - 24a $[f''(x)]_{x=2a} = 12a - 24a = -12a < 0$ $[f''(x)]_{x=6a} = 36a - 24a = 12a > 0$ Maxima at p = 2a and minima at q = 6a*.*.. $3p = q^2$(given) $3 \times 2a = (6a)^2$ *.*.. $6a = 36a^2$ *.*.. $a = \frac{1}{6}$

...

Chapter 03: Applications of Derivatives

19. The functions e^{-x} , sin *x*, cos *x* are continuous and differentiable in their respective domains. *.*.. f(x) is continuous and differentiable Also $f\left(\frac{\pi}{4}\right) = 0 = f\left(\frac{5\pi}{4}\right)$ Now, $f'(x) = -e^{-x}(\sin x - \cos x) + e^{-x}(\cos x + \sin x)$ $= e^{-x} (-\sin x + \cos x + \cos x + \sin x)$ $=2e^{-x}\cos x$ Also, $f'(x) = 0 \Rightarrow \cos x = 0$ $\therefore \quad x = \frac{\pi}{2} \in \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ 20. $av^2 = x^3$(i) Diff. w.r.t.x, we get $2ay\frac{dy}{dr} = 3x^2$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2\mathrm{a}v}$ slope of the normal = $-\frac{2ay}{3r^2}$ *.*.. Since, the normal to the given curve makes equal intercepts with the axis. $\therefore -\frac{2ay}{3r^2} = -1$ $\Rightarrow y = \frac{3x^2}{2x}$ Substituting $y = \frac{3x^2}{2x}$ in (i) and solving, we get

the point $\left(\frac{4a}{9}, \frac{8a}{27}\right)$.

Textbook Chapter No.

04 Integration

Hints

Classical Thinking $\int 7e^{7x+5} dx = 7 \cdot \frac{e^{7x+5}}{7} + c = e^{7x+5} + c$ 1. $\int (a^x - a^{2x}) dx$ 2. $=\frac{a^{x}}{\log a}-\frac{a^{2x}}{\log a}\cdot\frac{1}{2}+c$ $=\frac{1}{\log a}\left(a^{x}-\frac{a^{2x}}{2}\right)+c$ 3. $\int \frac{2^x + 3^x}{5^x} dx = \int \left(\frac{2^x}{5^x} + \frac{3^x}{5^x}\right) dx$ $=\int \left(\left(\frac{2}{5}\right)^x + \left(\frac{3}{5}\right)^x\right) dx$ $=\frac{\left(\frac{2}{5}\right)^{x}}{\log\left(\frac{2}{5}\right)} + \frac{\left(\frac{3}{5}\right)^{x}}{\log\left(\frac{3}{5}\right)} + c$ 4. $\int \frac{1}{(x-5)^2} dx = \frac{(x-5)^{-2+1}}{-2+1} + c$ $=\frac{(x-5)^{-1}}{-1}+c=-\frac{1}{(x-5)}+c$ $\int \frac{\mathrm{d}x}{\sqrt{1-x}} = \int (1-x)^{-1/2} \,\mathrm{d}x$ 5. $=\frac{(1-x)^{\frac{-1}{2}+1}}{(-1)\left(-\frac{1}{2}+1\right)}+c$ $= -2\sqrt{1-x} + c$ 6. $\int \frac{x^2 - 1}{x^3} dx = \int \frac{1}{x} - \int x^{-3} dx$ $= \log x + \frac{1}{2r^2} + c$

7.
$$\int \frac{3x^3 - 2\sqrt{x}}{x} dx = 3 \int x^2 dx - 2 \int x^{\frac{-1}{2}} dx$$
$$= x^3 - 4\sqrt{x} + c$$

 $\int \frac{ax^{-2} + bx^{-1} + c}{x^{-3}} dx = \int (ax + bx^{2} + cx^{3}) dx$ 8. $=\frac{1}{2}ax^{2}+\frac{1}{2}bx^{3}+\frac{1}{4}cx^{4}+k$ 9. $\int \left(x + \frac{1}{x}\right)^3 dx = \int \left(x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}\right) dx$ $=\frac{x^4}{4}+\frac{3x^2}{2}+3\log x-\frac{1}{2x^2}+c$ 10. $\int \frac{1}{x^2} (2x+1)^3 dx = \int \frac{(8x^3 + 12x^2 + 6x + 1)}{x^2} dx$ $=\int \left(8x+12+\frac{6}{r}+\frac{1}{r^{2}}\right) dx$ $=4x^{2}+12x+6\log x-\frac{1}{x}+c$ 11. $\int \frac{3x^3 - 2\sqrt{x}}{x} dx = 3 \int x^2 dx - 2 \int x^{-1/2} dx$ $=x^{3}-4\sqrt{x}+c$ 12. $\int \frac{(\sqrt{x} + \sqrt[3]{x^2})^2}{(\sqrt{x} + \sqrt[3]{x^2})^2} \, dx = \int \frac{(x^{\frac{1}{2}} + x^{\frac{2}{3}})^2}{(x^{\frac{1}{2}} + x^{\frac{2}{3}})^2} \, dx$ $= \int \frac{1}{x} \left(x + 2x^{\frac{1}{2}} x^{\frac{2}{3}} + x^{\frac{4}{3}} \right) dx$ $= \int \left(1 + 2x^{\frac{1}{6}} + x^{\frac{1}{3}}\right) dx = x + \frac{2x^{\frac{7}{6}}}{\frac{7}{2}} + \frac{x^{\frac{3}{3}}}{\frac{4}{2}} + c$ $=x+\frac{12}{7}x^{\frac{7}{6}}+\frac{3}{4}x^{\frac{4}{3}}+c$ 13. $\frac{(1+x)^2}{r(1+r^2)} = \frac{(1+x^2)+2x}{r(1+r^2)}$ $=\frac{1}{1}+2\cdot\frac{1}{1+n^2}$ $\therefore \int \frac{(1+x)^2}{r(1+r^2)} \, dx = \int \frac{1}{r} dx + \int \frac{2}{(1+r^2)} \, dx$ $= \log x + 2 \tan^{-1} x + c$ 15. $\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \sec^2 x dx - \int \csc^2 x dx$ $= \tan x + \cot x + c$

Chapter 04: Integration

 $\int \sqrt{1 + \cos x} \, dx$ 16. $=\int \sqrt{2\cos^2\frac{x}{2}} dx$ $=\sqrt{2}\int \cos\left(\frac{x}{2}\right) dx$ $=2\sqrt{2}\sin\left(\frac{x}{2}\right)+c$ 17. $\int \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)^2 dx$ $= \int \left(\cos^2\frac{x}{2} + \sin^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}\right) dx$ $= \int (1 - \sin x) dx = x + \cos x + c$ 18. $f(x) = \int f'(x) dx$ $=\int (x^2+5)dx$ $=\frac{x^3}{3}+5x+c$: $f(0) = \frac{0}{3} + 0 + c$ \Rightarrow c = -:. $f(x) = \frac{x^3}{3} + 5x - 1$ 19. $f(x) = \int f'(x) dx = \int \left(\frac{1}{x} + x\right) dx$ $=\log x + \frac{x^2}{2} + c$ $f(1) = \log 1 + \frac{1^2}{2} + c$ $\Rightarrow \frac{5}{2} = 0 + \frac{1}{2} + c \Rightarrow c = 2$ $f(x) = \log x + \frac{x^2}{2} + 2$... Put $\cos x = t \Rightarrow -\sin x \, dx = dt$ 20. $\int \sin x \cos^4 x \, dx = \int t^4 \, (-dt) = -\frac{t^5}{5} + c$ *.*.. $=-\frac{\cos^5 x}{5}+c$ 21. Put $(1 + \log x) = t \Rightarrow \frac{1}{x} dx = dt$ $\therefore \qquad \int \frac{(1+\log x)^2}{x} dx = \int t^2 dt = \frac{t^3}{3} + c$ $=\frac{(1+\log x)^3}{3}+c$

22. Put
$$1 + x^2 = t \Rightarrow x \, dx = \frac{dt}{2}$$

$$\therefore \int x\sqrt{1 + x^2} \, dx = \frac{1}{2} \int t^{1/2} dt$$

$$= \frac{1}{2} \times \frac{t^{3/2}}{3/2} = \frac{1}{3} (1 + x^2)^{3/2} + c$$
23. Put $t = \tan^{-1} x \Rightarrow dt = \frac{1}{1 + x^2} \, dx$

$$\therefore \int \frac{e^{\tan^{-1} x}}{1 + x^2} \, dx = \int e^t dt = e^t + c = e^{\tan^{-1} x} + c$$
24. Put $t = 1 + \tan x \Rightarrow dt = \sec^2 x \, dx$

$$\therefore \int \frac{\sec^2 x}{1 + \tan x} \, dx = \int \frac{1}{t} \, dt = \log|t| + c$$

$$= \log|t| + \tan x| + c$$
25. Put $\log \sin x = t$

$$\Rightarrow \cot x \, dx = dt$$

$$\therefore \int \frac{\cot x}{\log \sin x} \, dx = \int \frac{dt}{t} = \log t + c$$

$$= \log(\log \sin x) + c$$
26. Put $(1 + \sin^2 x) = t \Rightarrow \sin 2x \, dx = dt$

$$\therefore \int \frac{\sin 2x}{1 + \sin^2 x} \, dx = \int \frac{1}{t} \, dt = \log t + c$$

$$= \log(1 + \sin^2 x) + c$$
27. Let $I = \int \frac{e^x - e^{-x}}{e^x + e^{-x}} \, dx$
Put $e^x + e^{-x} = t \Rightarrow (e^x - e^{-x}) \, dx = dt$

$$\therefore I = \int \frac{dt}{t} = \log |t| + c = \log |e^x + e^{-x}| + c$$
28. Put $\cos^{-1} x = t \Rightarrow -\frac{1}{\sqrt{1 - x^2}} \, dx = dt$

$$\therefore \int \frac{1}{\cos^{-1} x \sqrt{1 - x^2}} \, dx = -\int \frac{1}{t} \, dt = -\log |t| + c$$

$$= -\log |\cos^{-1} x| + c$$
29. Put $x + \cos^2 x = t$

$$\Rightarrow [1 + 2 \cos x (-\sin x)] \, dx = dt$$

$$\therefore \int \frac{1 - \sin 2x}{x + \cos^2 x} \, dx = \int \frac{dt}{t} = \log |t| + c$$

$$= \log |x + \cos^2 x| + c$$
30. Put $\sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} \, dx = dt$

$$\therefore \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx = 2\int \cos t \, dt$$

$$= 2 \sin t + c$$

$$= 2 \sin \sqrt{x} + c$$

MHT-CET Triumph Maths (Hints) 31. Put $e^{\sqrt{x}} = t \Rightarrow \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 dt$ $\therefore \int \frac{e^{\sqrt{x}} \cos\left(e^{\sqrt{x}}\right)}{\sqrt{x}} dx$ $= 2 \int \cos t \, dt$ $= 2 \sin t + c = 2 \sin \left(e^{\sqrt{x}} \right) + c$ 32. Put $a^x = t \Longrightarrow a^x dx = \frac{dt}{\log a}$ $\therefore \int \frac{1}{\log a} (a^x \cos a^x) dx = \int \frac{1}{(\log a)^2} \cos t dt$ $=\frac{1}{\left(\log a\right)^2}\sin t + c$ $=\frac{1}{\left(\log a\right)^{2}}\sin a^{x}+c$

33. Put
$$\log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \int \frac{\tan(\log x)}{x} dx = \int \tan(t) dt = \log |\sec(t)| + c$$

$$= \log |\sec(\log x)| + c$$

34. Put $\log x = t$

$$\Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \qquad \int \frac{\sec^2(\log x)}{x} dx = \int \sec^2 t dt = \tan t + c$$
$$= \tan (\log x) + c$$

 $\int \log(\log x)$

35. Let
$$I = \int \frac{\log(\log x)}{x \log x} dx$$

Put $\log(\log x) = t \Rightarrow \frac{1}{x \log x} dx = dt$
 $\therefore \quad I = \int t dt = \frac{t^2}{2} + c = \frac{[\log(\log x)]^2}{2} + c$
36. Let $I = \int \sec x \cdot \log(\sec x + \tan x) dx$
Put $\log(\sec x + \tan x) = t$
 $\Rightarrow \sec x dx = dt$
 $\therefore \quad I = \int t dt = \frac{t^2}{2} + c = \frac{1}{2} [\log(\sec x + \tan x)]^2 + c$
37. $\int \frac{dx}{\sqrt{1 + 1}} = \int \frac{dx}{\sqrt{1 + 1}}$

37.
$$\int \frac{dx}{\sqrt{1 - 16x^2}} = \int \frac{dx}{\sqrt{1 - (4x)^2}}$$
$$= \frac{1}{4} \sin^{-1}(4x) + c$$

38.
$$\int \frac{dx}{\sqrt{2x - x^2}} = \int \frac{dx}{\sqrt{1 - (x - 1)^2}}$$
$$= \sin^{-1}(x - 1) + c$$

39.
$$\int \frac{dx}{x^2 - 2x + 2}$$
$$= \int \frac{dx}{x^2 - 2x + 1 + 2 - 1}$$
$$= \int \frac{dx}{(x - 1)^2 + 1}$$
$$= \tan^{-1}\left(\frac{x - 1}{1}\right) + c = \tan^{-1}(x - 1) + c$$

40.
$$\int \frac{dx}{x^2 + 4x + 13} = \int \frac{dx}{(x + 2)^2 + 3^2}$$
$$= \frac{1}{3}\tan^{-1}\left(\frac{x + 2}{3}\right) + c$$

41. Let I =
$$\int \frac{1}{9x^2 - 25} dx = \frac{1}{9} \int \frac{dx}{x^2 - \left(\frac{5}{3}\right)^2}$$

$$= \frac{1}{9} \cdot \frac{1}{2\left(\frac{5}{3}\right)} \cdot \log \left| \frac{x - \frac{5}{3}}{x + \frac{5}{3}} \right| + c$$
$$= \frac{1}{30} \log \left| \frac{3x - 5}{3x + 5} \right| + c$$

- 42. Integrating by parts, taking x as the first function.
- $\therefore \qquad \int x \cos x dx = x \int \cos x dx \int \left[\frac{d}{dx} (x) \int \cos x dx \right] dx$ $= x \sin x - \int 1 \sin x \, dx = x \sin x - \int \sin x \, dx$ $= x \sin x + \cos x + c$

43.
$$\int x e^{x} dx = x \int e^{x} dx - \int \left[\frac{d}{dx} (x) \int e^{x} dx \right] dx$$
$$= x e^{x} - \int 1 e^{x} dx$$
$$= x e^{x} - e^{x} + c = e^{x} (x - 1) + c$$

44.
$$\int \frac{x}{\cos^2 x} dx = \int x \sec^2 x \, dx$$
$$= x \tan x - \int 1 \tan x \, dx$$
$$= x \tan x + \log|\cos x| + c$$

45. $\int x \sin 2x \, dx$ $= x \int \sin 2x \, dx - \int \left[\frac{d}{dx}(x) \int \sin 2x \, dx \right] dx$ $= x \left(-\frac{\cos 2x}{2} \right) - \int 1 \cdot \left(-\frac{\cos 2x}{2} \right) dx$ $= -\frac{x \cos 2x}{2} + \frac{1}{2} \cdot \frac{\sin 2x}{2} + c$ $= \frac{\sin 2x}{4} - \frac{x \cos 2x}{2} + c$ 46. $\int x^2 \log x \, dx$

$$= \log x \cdot \frac{x^{2}}{3} - \int \frac{1}{x} \cdot \frac{x^{3}}{3} dx$$

$$= \frac{1}{3} x^{3} \cdot \log x - \frac{1}{3} \left[\frac{x^{3}}{3} \right] + c$$

$$= \frac{1}{3} x^{3} \log x - \frac{1}{9} x^{3} + c$$

47.
$$\int (x-1) e^{-x} dx = \frac{(x-1)e^{-x}}{-1} - \int \frac{e^{-x}}{-1} dx$$
$$= -xe^{-x} + e^{-x} - e^{-x} + c$$
$$= -xe^{-x} + c$$

48. Let
$$I = \int e^x \sin x \, dx$$

$$= \sin x \cdot e^x - \int \cos x \cdot e^x \, dx$$

$$= e^x \sin x - \cos x \cdot e^x + \int (-\sin x) \cdot e^x \, dx$$

$$= e^x \sin x - e^x \cos x - \int e^x \sin x \, dx$$

$$\therefore \quad I = e^x \sin x - e^x \cos x - I$$

$$\therefore \quad 2I = e^x (\sin x - \cos x) + c$$

$$\therefore \quad I = \frac{e^x}{2} (\sin x - \cos x) + c$$

49.
$$\int e^x (\sin x + \cos x) dx = e^x \sin x + c$$
$$\dots [\because \int e^x [f(x) + f'(x)] dx = e^x f(x) + c]$$

50.
$$\int e^{x} (\sec x + \sec x \tan x) dx = e^{x} \sec x + c$$
$$\dots \left[\because \int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} f(x) + c \right]$$
$$51. \int \frac{dx}{x - x^{2}} = \int \left(\frac{1}{x} + \frac{1}{1 - x} \right) dx$$

 $= \log x - \log (1 - x) + c$

52.
$$\int \frac{dx}{(x+1)(x+2)} = \int \left(\frac{1}{x+1} - \frac{1}{x+2}\right) dx$$

$$= \log |x+1| - \log |x+2| + c$$

$$= \log \left|\frac{x+1}{x+2}\right| + c$$

53. Let $\frac{x-1}{(x-3)(x-2)} = \frac{A}{x-3} + \frac{B}{x-2}$
 $\therefore x-1 = A(x-2) + B(x-3)$ (i)
Putting $x = 2$ in (i), we get
 $B = -1$
Putting $x = 3$ in (i), we get
 $A = 2$
 $\therefore \int \frac{x-1}{(x-3)(x-2)} dx = \int \left(\frac{2}{x-3} - \frac{1}{x-2}\right) dx$

$$= 2 \log |x-3| - \log |x-2| + c$$

$$= \log |(x-3)^2| - \log |x-2| + c$$

54. $\int \frac{x}{(x-2)(x-1)} dx = -\int \frac{1}{x-1} dx + \int \frac{2}{x-2} dx$

$$= -\log|x-1| + 2\log|x-2| + p$$

$$= \log \left|\frac{(x-2)^2}{(x-1)}\right| + p$$

55. $\int \frac{dx}{x^4 + 5x^2 + 4} = \int \frac{dx}{(x^2 + 1)(x^2 + 4)}$

$$= \frac{1}{3} \int \left[\frac{1}{x^2 + 1} - \frac{1}{x^2 + 4}\right] dx$$

$$= \frac{1}{3} \tan^{-1} x - \frac{1}{6} \tan^{-1}\left(\frac{x}{2}\right) + c$$

💓 Critical Thinking

1.
$$\int \frac{(x^3 + 3x^2 + 3x + 1)}{(x+1)^5} dx = \int \frac{(x+1)^3}{(x+1)^5} dx$$
$$= \int \frac{1}{(x+1)^2} dx = \int (x+1)^{-2} dx$$
$$= -\frac{1}{x+1} + c$$

2.
$$\int (1+2x+3x^{2}+4x^{3}+....)dx$$
$$=\int (1-x)^{-2}dx$$
$$= (1-x)^{-1}+c$$
3.
$$\int \left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+...\right)dx = \int e^{x}dx = e^{x}+c$$

507

Chapter 04: Integration

MHT-CET Triumph Maths (Hints)

4. Rationalizing the denominator, we get $\int \frac{dx}{dx}$

$$\int \frac{\sqrt{x+3} - \sqrt{x+2}}{\sqrt{x+3} - \sqrt{x+2}} = \int \frac{\sqrt{x+3} + \sqrt{x+2}}{(\sqrt{x+3} - \sqrt{x+2})(\sqrt{x+3} + \sqrt{x+2})} dx$$

$$= \int \frac{\sqrt{x+3} + \sqrt{x+2}}{(x+3) - (x+2)} dx = \int \frac{\sqrt{x+3} + \sqrt{x+2}}{x+3 - x - 2} dx$$

$$= \int \{(x+3)^{\frac{1}{2}} + (x+2)^{\frac{1}{2}}\} dx$$

$$= \frac{(x+3)^{\frac{3}{2}}}{\frac{3}{2}} + \frac{(x+2)^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$= \frac{2}{3} \left[(x+3)^{\frac{3}{2}} + (x+2)^{\frac{3}{2}} \right] + c$$
5.
$$\int \frac{x-1}{(x+1)^2} dx = \int \frac{x+1-2}{(x+1)^2} dx$$

$$= \int \frac{1}{x+1} dx - \int \frac{2}{(x+1)^2} dx$$

$$= \log|x+1| + \frac{2}{(x+1)} + c$$

 $6. \quad \ \ Since, the degree of the N^r is more than degree of the D^r, divide the N^r by D^r.$

$$x^{2} + 1) x^{4} + 1$$

$$x^{4} + x^{2}$$

$$\frac{-}{-x^{2} + 1}$$

$$-x^{2} - 1$$

$$\frac{+}{-x^{2} + 1}$$

$$\frac{-}{-x^{2} + 1}$$

8.
$$\int 2^{x} 3^{x+1} 4^{x+2} dx = 16 \times 3j 2^{x} 3^{x} 4^{x} dx$$
$$= 48j(24)^{x} dx = \frac{48(24)^{x}}{\log 24} + c$$
$$= \frac{2^{x} 3^{x+1} 4^{x+2}}{\log 24 + \log 3} + c$$
9.
$$f(x) = \frac{1}{1-x}$$
$$\therefore f(f(f(x))) = f\left(f\left(\frac{1}{1-x}\right)\right)$$
$$= f\left(\frac{1}{1-\left(\frac{1}{1-x}\right)}\right)$$
$$= f\left(\frac{1-x}{1-\left(\frac{1}{1-x}\right)}\right)$$
$$= \frac{1}{1-\left(\frac{1-x}{x}\right)} = \frac{1}{1+\frac{1-x}{x}} = x$$
$$\therefore \text{ Required integral} = \frac{x^{2}}{2} + c$$
10. Since, $a^{\log_{2}m} = m$
$$\therefore \int 9^{\log_{3}(\sec x)} dx$$
$$= \int \sec^{2} x \, dx \qquad \dots \left[\frac{\because 3^{2\log_{3}(\sec x)}}{=(\sec x)^{2}}\right]$$
$$= \tan x + c$$
11.
$$\int (e^{a\log x} + e^{x\log a}) \, dx = \int (e^{\log_{2} x^{a}} + e^{\log_{2} a^{x}}) \, dx$$
$$= \int (x^{a} + a^{x}) \, dx$$
$$= \frac{x^{a+1}}{a+1} + \frac{a^{x}}{\log a} + c$$
12. Since, $\sec^{2} x \cdot \csc^{2} x = \sec^{2} x + \csc^{2} x$
$$\therefore \int \sec^{2} x \cdot \csc^{2} x \, dx = \int \sec^{2} x \, dx + \int \csc^{2} x \, dx$$
$$= \tan x - \cot x + c$$
13.
$$\int (\sin^{-1} x + \cos^{-1} x) \, dx = \int \left(\frac{\pi}{2}\right) \, dx$$
$$\dots \left[\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}\right]$$
$$= \frac{\pi x}{2} + c = x(\cos^{-1} x + \sin^{-1} x) + c$$

14.
$$\int \sin^{-1} (\cos x) dx = \int \left\{ \frac{\pi}{2} - \cos^{-1} (\cos x) \right\} dx$$
$$= \frac{\pi}{2} x - \frac{x^2}{2} = \frac{\pi x - x^2}{2}$$

- 15. $\int (\cos x \sin x) dx$ $= \sin x + \cos x + c$ $= \sqrt{2} \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} \right) + c$ $= \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) + c$ $\therefore \quad \alpha = \frac{\pi}{4}$
- 16. $\int \sin 3x \cos 4x \, dx$

$$= \frac{1}{2} \int 2\sin 3x \cos 4x \, dx$$
$$= \frac{1}{2} \int [\sin (3x + 4x) + \sin (3x - 4x)] \, dx$$
$$[\because 2 \sin A \cos B = \sin (A + B) + \sin (A - B)]$$
$$= \frac{1}{2} \left(\int \sin 7x \, dx - \int \sin x \, dx \right)$$
$$= \frac{1}{2} \left(\frac{-\cos 7x}{7} + \cos x \right) + c$$
$$= \frac{-\cos 7x}{14} + \frac{\cos x}{2} + c$$

17.
$$\int \frac{\mathrm{d}x}{\tan x + \cot x} = \int \frac{\mathrm{d}x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}}$$
$$= \frac{1}{2} \int 2\sin x \cos x \,\mathrm{d}x = \frac{-\cos 2x}{4} + \mathrm{c}$$

18. $\int 2\sin x \cdot \cos x \, dx$

$$= \int \sin 2x \, dx = -\frac{\cos 2x}{2} + c_1$$
$$= -\frac{(1-2\sin^2 x)}{2} + c_1$$
$$= -\frac{1}{2} + \sin^2 x + c_1$$
$$= \sin^2 x + c_1, \text{ where } c = -\frac{1}{2} + c_1$$

Chapter 04: Integration 19. $\int \sqrt{1+\sin 2x} \, dx$ $= \int \sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x} \, \mathrm{d}x$ $\ldots [:: \sin^2 x + \cos^2 x = 1]$ $=\int \sqrt{(\cos x + \sin x)^2} dx$ $=\int (\cos x + \sin x) dx$ $= \int \cos x \, dx + \int \sin x \, dx$ $= \sin x - \cos x + c$ 20. $\int \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx = \int \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^2}} dx$ $=\int dx = x + c$ 21. $\sin^2 2x = (2 \sin x \cdot \cos x)^2$ $=4\sin^2 x \cdot \cos^2 x$ $\therefore \quad 4 \int \frac{\sin^3 x + \cos^3 x}{\sin^2 2x} dx$ $=4\int \frac{\sin^3 x + \cos^3 x}{4\sin^2 x \cos^2 x} dx$ $=\int \frac{\sin x}{\cos^2 x} dx + \int \frac{\cos x}{\sin^2 x} dx$ = $\int \tan x \cdot \sec x \, dx + \int \cot x \cdot \csc x \, dx$ $= \sec x - \csc x + c$ 22. $\int \frac{\mathrm{d}x}{\cos^2 x + \sin^2 x} = \int \frac{\mathrm{d}x}{\cos^2 x - \sin^2 x + \sin^2 x}$ $=\int \frac{\mathrm{d}x}{\cos^2 x} = \int \sec^2 x \,\mathrm{d}x = \tan x + \mathrm{c}$ 23. $\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx = \int \frac{2(\cos^2 x - \cos^2 \alpha)}{\cos x - \cos \alpha} dx$ $= 2 \int (\cos x + \cos \alpha) dx$ $= 2(\sin x + x \cos \alpha) + c$ 24. Since, $1 + \cos 2x = 2 \cos^2 x$ $\therefore \qquad \int \sqrt{2 + \sqrt{2 + 2\cos 8x}} \, \mathrm{d}x$ $=\int \sqrt{2+\sqrt{2+2\cos 4x}} \, \mathrm{d}x$ $=\int \sqrt{2+2\cos 2x} \, \mathrm{d}x$ $= \int 2\cos x \, dx = 2 \sin x + c$ 25. $\sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x) (\sin^2 x + \cos^2 x)$ $= -(\cos^2 x - \sin^2 x)(1)$ $= -\cos 2x$ $\int (\sin^4 x - \cos^4 x) dx = -\int \cos 2x \, dx$ *.*.. $=-\frac{\sin 2x}{2}+c$ $= -\sin x \cos x + c$

MHT-CET Triumph Maths (Hints)
26.
$$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$

$$= \int \frac{(\sin^4 x + \cos^4 x)(\sin^4 x - \cos^4 x)}{(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x} dx$$

$$= \int (\sin^2 x + \cos^2 x)(\sin^2 x - \cos^2 x) dx$$

$$= \int (\sin^2 x - \cos^2 x) dx = \int -\cos 2x dx$$

$$= -\frac{\sin 2x}{2} + c$$
27.
$$\int \tan^{-1} \left(\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \right) dx = \int \tan^{-1} \left(\sqrt{\frac{2\sin^2 x}{2\cos^2 x}} \right) dx$$

$$= \int \tan^{-1} \left(\frac{\sin x}{1 + \cos 2x} \right) dx$$

$$= \int \tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right) dx$$

$$= \int \tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right) dx$$

$$= \int \tan^{-1} \left(\frac{2\sin \frac{x}{2} \cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} \right) dx$$

$$= \int \tan^{-1} \left(\frac{1}{\cos \frac{x}{2}} \right) dx$$

$$= \int \tan^{-1} \left(\tan \frac{x}{2} \right) dx$$

$$= \int \tan^{-1} \left(\tan \frac{x}{2} \right) dx$$

$$= \int \frac{2\cos^2 2x(\sin x \cos x)}{\cos 2x} dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

$$= \int \cos 2x (2\sin x \cos x) dx$$

30.
$$\int \cos \frac{x}{16} \cos \frac{x}{8} \cos \frac{x}{4} \sin \frac{x}{16} dx$$
$$= \int \cos \frac{x}{16} \sin \frac{x}{16} \cos \frac{x}{8} \cos \frac{x}{4} dx$$
$$= \frac{1}{2} \int \sin \frac{x}{8} \cos \frac{x}{8} \cos \frac{x}{4} dx$$
$$= \frac{1}{2} \int \sin \frac{x}{8} \cos \frac{x}{4} dx$$
$$= \frac{1}{4} \int \sin \frac{x}{4} \cos \frac{x}{4} dx$$
$$= \frac{1}{8} \int \sin \frac{x}{2} dx$$
$$= \left(\frac{2}{8}\right) \left(-\cos \frac{x}{2}\right) + c$$
$$= \frac{-1}{4} \cos \frac{x}{2} + c$$
$$31. \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} dx$$
$$= \int \frac{(\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x)}{\sin^2 x \cos^2 x} dx$$
$$= \int \frac{(\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x)}{\sin^2 x \cos^2 x} dx$$
$$= \int \frac{(\sin^2 x + \cos^2 x)^3}{\sin^2 x \cos^2 x} dx$$
$$= \int \frac{(\sin^2 x + \cos^2 x)}{\sin^2 x \cos^2 x} dx$$
$$= \int \frac{(1 - 3\sin^2 x \cos^2 x)}{\sin^2 x \cos^2 x} dx$$
$$= \int \left(\frac{1}{\sin^2 x + \cos^2 x} - 3\right) dx$$
$$= \int \left(\frac{1}{\sin^2 x + \cos^2 x} - 3\right) dx$$
$$= \int \left(\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} - 3\right) dx$$
$$= \tan x - \cot x - 3x + c$$
$$32. \int \frac{\cot x \tan x}{\sec^2 x - 1} dx = \int \frac{1}{\tan^2 x} dx$$
$$= \int (\cot x \tan x)$$
$$= \int (\cos c^2 x - 1) dx$$
$$= \int (\cos c^2 x - 1) dx$$
$$= \int (\cos c^2 x - 1) dx$$
$$= \int (2 \csc^2 x - 1) dx$$

34. $2\int \frac{1+\cos 4x}{1-\cos 4x} dx = 2\int \frac{\cos^2 2x}{\sin^2 2x} dx$ $= 2\int \cot^2 2x dx$ $= 2\int (\cos \sec^2 2x - 1) dx$ $= 2\left(-\frac{\cot 2x}{2}\right) - 2x + c$ $= -\cot 2x - 2x + c$ 35. $\int \left(\frac{1+\tan x}{1-\tan x}\right)^2 dx = \int \left(\tan\left(\frac{\pi}{4}+x\right)\right)^2 dx$ $= \int \left(\sec^2\left(\frac{\pi}{4}+x\right) - 1\right) dx$ $= \tan\left(\frac{\pi}{4}+x\right) - x + c$ 36. $\int (\sec x + \tan x)^2 dx$ $= \int (\sec^2 x + \tan^2 x + 2\sec x \tan x) dx$ $= \int (2\sec^2 x - 1 + 2\sec x \tan x) dx$

$$= 2 \tan x + 2 \sec x - x + c$$

$$= 2 (\sec x + \tan x) - x + c$$

37.
$$\int \frac{\tan x}{(\sec x + \tan x)} dx$$

$$= \int \frac{\tan x (\sec x - \tan x)}{(\sec x + \tan x)(\sec x - \tan x)} dx$$

$$= \int \frac{\tan x (\sec x - \tan x)}{(\sec^2 x - \tan^2 x)} dx$$

$$= \int (\sec x \tan x - \tan^2 x) dx$$

$$= \int \sec x \tan x dx - \int (\sec^2 x - 1) dx$$

$$= \int \sec x \tan x \, dx - \int \sec^2 x \, dx + \int 1 \, dx$$
$$= \sec x - \tan x + x + c$$

38. Put
$$t = 3x - 5 \Rightarrow dt = 3dx$$

 $\therefore \qquad \int \tan(3x - 5) \sec(3x - 5) dx = \frac{1}{3} \int \tan t \cdot \sec t \, dt$

$$=\frac{\sec t}{3}+c=\frac{\sec(3x-5)}{3}+c$$

39. Put
$$f(x) = t \Rightarrow f'(x) dx = dt$$

 $\therefore \qquad \int \frac{f'(x)}{[f(x)]^2} dx = \int \frac{1}{t^2} dt = -\frac{1}{t} + c = -\frac{1}{f(x)} + c$

40. Put
$$x^{10} + 10^x = t \Rightarrow (10x^9 + 10^x \log_e 10) dx = dt$$

$$\therefore \int \frac{10x^9 + 10^x \log_e 10}{10^x + x^{10}} dx = \int \frac{1}{t} dt = \log t + c$$

$$= \log(x^{10} + 10^x) + c$$

41. Put
$$x^2 - 4x + 3 = t$$

 $\Rightarrow (2x - 4)dx = dt \Rightarrow (x - 2)dx = \frac{1}{2}dt$
 $\therefore \quad \int \frac{x - 2}{x^2 - 4x + 3} dx = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \log t + c$
 $= \frac{1}{2} \log(x^2 - 4x + 3) + c$
 $= \log(\sqrt{x^2 - 4x + 3}) + c$
42. Put $5x^7 = t$
 $\Rightarrow 35x^6 dx = dt$
 $\Rightarrow x^6 dx = \frac{dt}{35}$
 $\therefore \quad \int x^6 \sin(5x^7) dx = \int \sin t \cdot \frac{dt}{35}$
 $= -\frac{\cos t}{35} = \frac{-\cos(5x^7)}{35}$

Chapter 04: Integration

$$\therefore \quad k = -\frac{1}{7}$$

43.
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = \int \frac{\sin(x-\alpha+\alpha)}{\sin(x-\alpha)} dx$$
$$= \int \frac{\{\sin(x-\alpha)\cos\alpha + \cos(x-\alpha)\sin\alpha\}}{\sin(x-\alpha)} dx$$
$$= \int \cos \alpha dx + \int \sin \alpha \cot(x-\alpha) dx$$
$$= x \cos \alpha + \sin \alpha. \log |\sin (x-\alpha)| + c$$

44.
$$\int \frac{\cos(x+\alpha)}{\cos x} dx$$
$$= \int \left[\frac{\cos x \cos \alpha - \sin x \sin \alpha}{\cos x}\right] dx$$
$$= \int (\cos \alpha - \sin \alpha \tan x) dx$$
$$= (\cos \alpha) x - \sin \alpha \log |\sec x| + c$$

45.
$$\int \frac{1}{\sqrt{1+\cos x}} dx = \int \frac{dx}{\sqrt{1-x}} = \frac{1}{\sqrt{2}} \int \sec \frac{x}{2} dx$$

MHT-CET Triumph Maths (Hints) 47. $\int \frac{dx}{\sin x + \sqrt{3}\cos x} = \frac{1}{2} \int \frac{dx}{\sin x + \sqrt{3}}$

$$= \frac{1}{2} \int \frac{\sin x}{2} + \frac{\sqrt{3}}{2} \cos x$$
$$= \frac{1}{2} \int \frac{dx}{\sin x \cos \frac{\pi}{3} + \sin \frac{\pi}{3} \cos x}$$
$$= \frac{1}{2} \int \frac{dx}{\sin \left(x + \frac{\pi}{3}\right)}$$
$$= \frac{1}{2} \int \csc \left(x + \frac{\pi}{3}\right) dx$$
$$= \frac{1}{2} \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{6}\right) \right| + c$$

48.
$$\int \frac{\sin 2x}{\sin 3x \sin 5x} dx = \int \frac{\sin(5x - 3x)}{\sin 3x \sin 5x} dx$$
$$= \int \frac{\sin 5x \cos 3x - \cos 5x \sin 3x}{\sin 3x \sin 5x} dx$$
$$= \int \cot 3x \, dx - \int \cot 5x \, dx$$
$$= \frac{1}{3} \log|\sin 3x| - \frac{1}{5} \log|\sin 5x| + c$$

49. Let
$$I = \int \sqrt{\frac{1+x}{1-x}} dx = \int \frac{1+x}{\sqrt{1-x^2}} dx$$

$$= \int \frac{dx}{\sqrt{1-x^2}} + \int \frac{x}{\sqrt{1-x^2}} dx$$
In 2nd integral, put $1 - x^2 = t \Longrightarrow -2x dx = dt$
 \therefore I = $\int \frac{dx}{\sqrt{1-x^2}} - \frac{1}{2} \int \frac{dt}{t^{\frac{1}{2}}}$

$$= \sin^{-1} x - \sqrt{t} + c$$

$$= \sin^{-1} x - \sqrt{1-x^2} + c$$

50. Put
$$t = x + \log x \implies dt = \left(1 + \frac{1}{x}\right) dx$$

$$\therefore \qquad \int \frac{(x+1)(x+\log x)^2}{x} dx = \int t^2 dt = \frac{t^3}{3} + c$$

$$= \frac{1}{3}(x+\log x)^3 + c$$

51. Put $\log (\log x) = t$ $\Rightarrow \frac{1}{x \log x} dx = dt$ $\therefore \int \frac{dx}{x \log x \log(\log x)} = \int \frac{dt}{t} = \log |t| + c$ $= \log |\log(\log x)| + c$

52. Let I =
$$\int \frac{1}{x^3} [\log x^x]^2 dx = \int \frac{1}{x^3} [x \log x]^2 dx$$

= $\int \frac{1}{x} (\log x)^2 dx$
Put log x = t ⇒ $\frac{1}{x} dx = dt$
∴ I = $\int t^2 dt = \frac{t^3}{3} + c = \frac{(\log x)^3}{3} + c$
53. $\frac{dI}{dy} = 3^{\cos y} \sin y$
∴ I = $\int 3^{\cos y} \sin y \cdot dy$
Put cos y = t
⇒ - sin y dy = dt ⇒ sin y dy = - dt
∴ I = $-\int 3^t dt = \frac{-3^t}{\log 3} + c = \frac{-3^{\cos y}}{\log 3} + c$
54. Put $a^x = t$
⇒ $a^x \log a \, dx = dt \Rightarrow a^x \, dx = \frac{1}{\log a} dt$
∴ $\int a^{a^x} a^x \, dx = \frac{1}{\log a} \int a^t dt = \frac{1}{\log a} \cdot a^t \cdot \frac{1}{\log a} + c$
 $= \frac{a^{a^x}}{(\log a)^2} + c$
55. Put $2e^{-x} + 5 = t \Rightarrow -2e^{-x} \, dx = dt$
∴ $\int e^{-x} \csc^2 (2e^{-x} + 5) \, dx = -\frac{1}{2} \int \csc^2 t \, dt$
 $= \frac{1}{2} \cot t + c$
 $= \frac{1}{2} \cot (2e^{-x} + 5) + c$
56. Let I = $\int \frac{dx}{1 + e^x} = \int \frac{e^{-x}}{1 + e^{-x}} \, dx$
Put 1 + $e^{-x} = t \Rightarrow e^{-x} \, dx = -dt$
∴ I = $-\int \frac{dt}{t} = -\log|t| + c = -\log|1 + e^{-x}| + c$
57. Let I = $\int \frac{dt}{(e^{2x} + e^{-2x})^2} \, dx$
 $= \int \frac{e^{4x}}{(e^{4x} + 1)^2} \, dx$
Put $e^{4x} + 1 = t \Rightarrow 4 e^{4x} \, dx = dt$
∴ I = $\frac{1}{4} \int \frac{1}{t^2} \, dt$
 $= \frac{1}{4} \left(\frac{-1}{t}\right) + c = \frac{-1}{4(e^{4x} + 1)} + c$

58. Put
$$\log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$$

$$\therefore \quad \int \frac{\log x}{(1 + \log x)^2} dx = \int \frac{t}{(1 + t)^2} e^t dt$$

$$= \int e^t \left[\frac{t + 1 - 1}{(1 + t)^2} \right] dt$$

$$= \int e^t \left[\frac{1}{1 + t} - \frac{1}{(1 + t)^2} \right] dt$$

$$= \frac{e^t}{1 + t} + c$$

$$= \frac{x}{1 + \log x} + c$$

59. Put
$$x e^{-t}$$

 $\Rightarrow (e^x + xe^x) dx = dt \Rightarrow e^x (1 + x) dx = dt$
 $\therefore \int \frac{e^x (1 + x)}{\sin(xe^x)} dx = \int \frac{dt}{\sin t} = \int \csc t dt$
 $= \log \left| \tan\left(\frac{t}{2}\right) \right| + c$
 $= \log \left| \tan\left(\frac{xe^x}{2}\right) \right| + c$

60. Put
$$\log \left(\tan \frac{x}{2} \right) = t$$

 $\Rightarrow \frac{1}{\tan \frac{x}{2}} \cdot \frac{1}{2} \sec^2 \frac{x}{2} \, dx = dt \implies \csc x \, dx = dt$
 $\therefore \int \frac{\csc x}{\log \left(\tan \frac{x}{2} \right)} \, dx = \int \frac{1}{t} \, dt = \log |t| + c$
 $= \log \left| \log \left(\tan \frac{x}{2} \right) \right| + c$

61. Put
$$\tan^{-1} (x^3) = t$$

 $\Rightarrow \frac{1}{1 + (x^3)^2} \cdot 3x^2 dx = dt \Rightarrow \frac{x^2}{1 + x^6} dx = \frac{dt}{3}$
 $\therefore \int \frac{x^2 \tan^{-1} (x^3)}{1 + x^6} dx = \frac{1}{3} \int t dt = \frac{1}{3} \cdot \frac{t^2}{2} + c$
 $= \frac{(\tan^{-1} x^3)^2}{6} + c$
62. Put $\tan \sqrt{x} = t \Rightarrow \frac{\sec^2 \sqrt{x}}{2\sqrt{x}} dx = dt$
 $\therefore \int \frac{1}{\sqrt{x}} \tan^4 \sqrt{x} \cdot \sec^2 \sqrt{x} dx = 2 \int t^4 dt$
 $= \frac{2t^5}{5} + c = \frac{2}{5} \tan^5 \sqrt{x} + c$

63. Put $e^x = t \Rightarrow e^x dx = dt$ $\therefore \quad \int e^x \tan^2(e^x) dx = \int \tan^2 t dt = \int (\sec^2 t - 1) dt$ $= \tan t - t + c$ $= \tan(e^x) - e^x + c$ 64. Let $I = \int \frac{x^2 + 1}{x(x^2 - 1)} dx = \int \frac{1 + \frac{1}{x^2}}{x - \frac{1}{x}} dx$ Put $x - \frac{1}{x} = t \Rightarrow \left(1 + \frac{1}{x^2}\right) dx = dt$ $\therefore \quad I = \int \frac{dt}{t} = \log t + c = \log\left(x - \frac{1}{x}\right) + c$ $= \log\left(\frac{x^2 - 1}{x}\right) + c$

65. Let I =
$$\int \frac{(x^4 - x)^4 dx}{x^5}$$

$$= \int x \cdot \frac{\left(1 - \frac{1}{x^3}\right)^{\frac{1}{4}}}{x^5} dx = \int \frac{\left(1 - \frac{1}{x^3}\right)^{\frac{1}{4}}}{x^4} dx$$

Put $1 - \frac{1}{x^3} = t \Rightarrow \frac{3}{x^4} dx = dt$
 $\therefore \quad I = \int t^{\frac{1}{4}} \cdot \frac{dt}{3} = \frac{t^{\frac{5}{4}}}{\frac{5}{4}} \cdot \frac{1}{3} + c$
 $= \frac{4}{15} t^{\frac{5}{4}} + c = \frac{4}{15} \left(1 - \frac{1}{x^3}\right)^{\frac{5}{4}} + c$

66. Let I =
$$\int \frac{dx}{x(x^7 + 1)} = \int \frac{dx}{x^8 \left(1 + \frac{1}{x^7}\right)}$$

Put 1 + $\frac{1}{x^7} = t \Rightarrow \frac{-7}{x^8} dx = dt$

$$\therefore \quad I = \frac{-1}{7} \int \frac{dt}{t} = \frac{-1}{7} \log |t| + c$$
$$= -\frac{1}{7} \log \left| \frac{x^7 + 1}{x^7} \right| + c$$
$$= \frac{1}{7} \log \left| \frac{x^7}{x^7 + 1} \right| + c$$

MHT-CET Triumph Maths (Hints)

67.
$$\int \frac{1}{x(x^{n}+1)} dx = \int \frac{dx}{x^{n+1} \left(1 + \frac{1}{x^{n}}\right)}$$
$$= \frac{-1}{n} \int \frac{-nx^{-n-1}}{(1+x^{-n})} dx$$
$$= \frac{-1}{n} \log \left|1 + \frac{1}{x^{n}}\right| + c$$
$$= \frac{-1}{n} \log \left|\frac{x^{n}+1}{x^{n}}\right| + c$$
$$= \frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right| + c$$

68. Let
$$I = \int \frac{1}{\cos^2 x (1 - \tan x)^2} dx = \int \frac{\sec^2 x dx}{(\tan x - 1)^2}$$

Put $\tan x - 1 = t \Rightarrow \sec^2 x dx = dt$
 $\therefore \quad I = \int \frac{1}{t^2} dt = -\frac{1}{t} + c = \frac{-1}{\tan x - 1} + c = \frac{1}{1 - \tan x} + c$

69. Put
$$x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta$$

$$\therefore \qquad \int \frac{1}{x^2 \sqrt{1+x^2}} dx = \int \frac{\sec^2 \theta \, d\theta}{\tan^2 \theta \sec \theta}$$

$$= \int \csc \theta \cot \theta \, d\theta = -\csc \theta + c$$

$$= \frac{-\sqrt{\tan^2 \theta + 1}}{\tan \theta} + c = \frac{-\sqrt{x^2 + 1}}{x} + c$$
70.
$$\int \frac{x^3}{\sqrt{1+x^4}} dx = \frac{1}{4} \int \frac{4x^3}{\sqrt{1+x^4}} dx$$

$$= \frac{1}{4} \int \frac{dt}{t^{1/2}}$$

$$\dots [\operatorname{Put} 1 + x^4 = t \Rightarrow 4x^3 \, dx = dt]$$

$$= \frac{1}{4} \cdot \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c$$

$$= \frac{1}{2} \sqrt{t} + c = \frac{1}{2} \sqrt{1+x^4} + c$$
71. Let $I = \int \frac{\sin 2x}{\sin^2 x + 2\cos^2 x} dx = \int \frac{2\sin x \cos x}{1+\cos^2 x} dx$

Put
$$1 + \cos^2 x = t \implies -2 \sin x \cos x \, dx = dt$$

$$\therefore \qquad I = \int -\left(\frac{dt}{t}\right) = -\log|t| + c$$

$$= -\log|1 + \cos^2 x| + c$$

72. Let
$$I = \int \frac{\cos 2x}{(\cos x + \sin x)^2} dx$$

 $= \int \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)^2} dx$
 $= \int \frac{\cos x - \sin x}{\cos x + \sin x} dx$
Put $t = \sin x + \cos x$
 $\Rightarrow dt = (\cos x - \sin x)dx$
 $\therefore I = \int \frac{1}{t} dt = \log |t| + c = \log|\sin x + \cos x| + c$
73. Put $3\sin^2 x + 5\cos^2 x = t$
 $\Rightarrow (3 \times 2 \sin x \cos x - 5 \times 2 \sin x \cos x) dx = dt$
 $\Rightarrow -4 \sin x \cos x dx = dt$
 $\Rightarrow \sin x \cos x dx = \frac{dt}{-4}$
 $\therefore \int \frac{\sin x \cos x}{3\sin^2 x + 5\cos^2 x} dx = \int \frac{dt}{(-4)t}$
 $= -\frac{1}{4} \int \frac{1}{t} dt = -\frac{1}{4} \log |t| + c$
 $= -\frac{1}{4} \log |3\sin^2 x + 5\cos^2 x| + c$
74. Let $I = \int \frac{\cos x + x \sin x}{x^2 + x \cos x} dx = \int \frac{\frac{\cos x + x \sin x}{x}}{1 + \frac{\cos x}{x}} dx$
Put $1 + \frac{\cos x}{x^2} = t$
 $\Rightarrow \frac{-(x \sin x + \cos x)}{x^2} dx = dt$
 $\therefore I = -\int \frac{dt}{t} = -\log |t| + c$
 $= -\log \left| \frac{x + \cos x}{x} \right| + c$
75. Let $I = \int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx$
Put $\log (x + \sqrt{1 + x^2}) = t$
 $\Rightarrow \frac{1 + \frac{2x}{2\sqrt{1 + x^2}}}{x + \sqrt{1 + x^2}} dx = dt \Rightarrow \frac{dx}{\sqrt{1 + x^2}} = dt$
 $\therefore I = \int t dt = \frac{t^2}{2} + c = \frac{\left[\log(x + \sqrt{1 + x^2})\right]^2}{2} + c$

Put $(x^x)^x = t \Rightarrow \log(x^x)^x = \log t$ $\Rightarrow x^2 \log x = \log t$ $\Rightarrow (2x \log x + x) dx = \frac{1}{t} . dt$ $\Rightarrow (2\log x + 1)x (x^x)^x dx = dt$ $\int x (x^{x})^{x} (2 \log x + 1) dx = \int dt = t + c = (x^{x})^{x} + c$ 77. $1 + 2 \tan x (\sec x + \tan x)$ $= 1 + 2 \tan x \cdot \sec x + 2 \tan^2 x$ $= (1 + \tan^2 x) + 2 \sec x \cdot \tan x + \tan^2 x$ $= \sec^2 x + 2 \sec x \cdot \tan x + \tan^2 x$ $=(\sec x + \tan x)^2$ $\int \sqrt{1+2\tan x(\sec x+\tan x)dx}$ $= \int (\sec x + \tan x) dx$ $=\int \frac{1+\sin x}{\cos x} \, \mathrm{d}x$ $c = 1 - \sin^2 r$

$$= \int \frac{1-\sin x}{\cos x(1-\sin x)} dx$$
$$= -\int \frac{(-\cos x)}{1-\sin x} dx = -\log|1-\sin x| + c$$

76.

:..

...

78. Put
$$\log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \qquad \int \frac{dx}{x\sqrt{1 - (\log x)^2}} = \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1} t + c$$

$$= \sin^{-1} (\log x) + c$$

79. Put
$$t = \cos x \Rightarrow dt = -\sin x \, dx$$

$$\therefore \qquad \int \frac{\sin x}{\sqrt{4 - \cos^2 x}} \, dx = -\int \frac{dt}{\sqrt{2^2 - t^2}}$$

$$= -\sin^{-1}\left(\frac{t}{2}\right) + c = -\sin^{-1}\left(\frac{\cos x}{2}\right) + c$$
80.
$$\int \frac{\sec x \, dx}{2} = \int \frac{\sec x}{2} \, dx$$

$$\int \frac{\sec^2 x \, dx}{\sqrt{\cos^2 x} - \sin^2 x} \, dx$$

$$= \int \frac{\sec^2 x \, dx}{\sqrt{1 - \tan^2 x}}$$
....[Multiplying N^r and D^r by sec x]
Put tan x = t $\Rightarrow \sec^2 x \, dx = dt$

$$\therefore \int \frac{\sec x \, dx}{\sqrt{\cos 2x}} = \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1} t + c$$

= $\sin^{-1} (\tan x) + c$
81. Put $2x = \sin \theta$ $\Rightarrow 2dx = \cos \theta \, d\theta$
$$\therefore \int \frac{2dx}{\sqrt{1 - 4x^2}} = \int \frac{\cos \theta \, d\theta}{\sqrt{1 - \sin^2 \theta}} = \int \frac{\cos \theta}{\cos \theta} \, d\theta$$

= $\int d\theta = \theta + c$

 $=\sin^{-1}(2x)+c$

82.
$$\int \frac{dx}{\sqrt{2-3x-x^2}} = \int \frac{dx}{\sqrt{\left(\frac{17}{4}\right) - \left(x + \frac{3}{2}\right)^2}}$$
$$= \int \frac{dx}{\sqrt{\left(\frac{\sqrt{17}}{2}\right)^2 - \left(x + \frac{3}{2}\right)^2}}$$
$$= \sin^{-1} \left[\frac{\left(x + \frac{3}{2}\right)}{\left(\frac{\sqrt{17}}{2}\right)}\right] + c$$
$$= \sin^{-1} \left(\frac{2x+3}{\sqrt{17}}\right) + c$$
83. Put sin x = t $\Rightarrow \cos x \, dx = dt$

Chapter 04: Integration

$$\therefore \quad \int \cos x \sqrt{4 - \sin^2 x} \, dx = \int \sqrt{4 - t^2} \, dt$$
$$= \int \sqrt{(2)^2 - t^2} \, dt = \frac{t}{2} \sqrt{4 - t^2} + \frac{4}{2} \sin^{-1} \left(\frac{t}{2}\right) + c$$
$$= \frac{1}{2} \sin x \sqrt{4 - \sin^2 x} + 2 \sin^{-1} \left(\frac{1}{2} \sin x\right) + c$$

84. Let
$$I = \int \frac{3x^2}{\sqrt{9 - 16x^6}} dx = \int \frac{3x^2}{\sqrt{(3)^2 - (4x^3)^2}} dx$$

Put $4x^3 = t$
 $\Rightarrow 12x^2 dx = dt$

$$I = \frac{1}{4} \int \frac{dt}{\sqrt{(3)^2 - t^2}}$$
$$= \frac{1}{4} \sin^{-1} \left(\frac{t}{3}\right) + c$$
$$= \frac{1}{4} \sin^{-1} \left(\frac{4x^3}{3}\right) + c$$

85.
$$\int \sqrt{\frac{a-x}{a+x}} dx = \int \frac{a-x}{\sqrt{a^2 - x^2}} dx$$
$$= \int \left(\frac{a}{\sqrt{a^2 - x^2}} - \frac{x}{\sqrt{a^2 - x^2}}\right) dx$$
$$= a \int \frac{1}{\sqrt{a^2 - x^2}} dx + \frac{1}{2} \int \frac{-2x}{\sqrt{a^2 - x^2}} dx$$

$$\sqrt{a^{2} - x^{2}} = a.\sin^{-1}\left(\frac{x}{a}\right) + \frac{1}{2}.2\sqrt{a^{2} - x^{2}} + c$$
$$= a\sin^{-1}\left(\frac{x}{a}\right) + \sqrt{a^{2} - x^{2}} + c$$

MHT-CET Triumph Maths (Hints)
86. Let
$$I = \int \frac{2^x}{\sqrt{1-(2^x)^2}} dx$$

Put $2^x = t \Rightarrow 2^x dx = \frac{dt}{\log 2}$
 $\therefore I = \frac{1}{\log 2} \int \frac{dt}{\sqrt{1-t^2}} = \frac{1}{\log 2} \sin^{-1} t + c$
 $= \frac{1}{\log 2} \sin^{-1} 2^x + c$
 $\therefore K = \frac{1}{\log 2}$
87. $\int \frac{\sqrt{x}}{1+x} dx = \int \frac{\sqrt{x} \sqrt{x}}{\sqrt{x(1+x)}} dx$
 $= \int \frac{\sqrt{x}+1}{\sqrt{x(x+1)}} dx - \int \frac{1}{\sqrt{x(x+1)}} dx$
 $= \int \frac{1}{\sqrt{x}} dx - \int \frac{1}{\sqrt{x} \left[1 + (\sqrt{x})^2\right]} dx$
 $= 2\sqrt{x} - 2\tan^{-1}\sqrt{x} + c$
 $= 2(\sqrt{x} - \tan^{-1}\sqrt{x}) + c$
88. Let $I = \int \frac{e^{\log(1+\frac{1}{x^2})}}{x^2 + \frac{1}{x^2}} dx = \int \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 2} dx$
 $\dots [\because e^{\log a} = a]$
Put $x - \frac{1}{x} = t$
 $\Rightarrow \left(1 + \frac{1}{x^2}\right) dx = dt$
 $\therefore I = \int \frac{dt}{t^2 + 2} = \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{t}{\sqrt{2}}\right) + c$
 $= \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x^2 - 1}{\sqrt{2x}}\right) + c$

89. Put x² = t ⇒ xdx =
$$\frac{1}{2}$$
 dt
∴ $\int \frac{x}{x^4 + x^2 + 1} dx = \frac{1}{2} \int \frac{dt}{t^2 + t + 1}$
 $= \frac{1}{2} \int \frac{dt}{t^2 + t + \frac{1}{4} + \frac{3}{4}}$
 $= \frac{1}{2} \int \frac{dt}{(t + 1/2)^2 + (\frac{\sqrt{3}}{2})^2}$
 $= \frac{1}{2} \cdot \frac{1}{(\sqrt{3}/2)} \tan^{-1} (\frac{t + 1/2}{\sqrt{3}/2}) + c$
 $= \frac{1}{\sqrt{3}} \tan^{-1} (\frac{2t + 1}{\sqrt{3}}) + c$
 $= \frac{1}{\sqrt{3}} \tan^{-1} (\frac{2x^2 + 1}{\sqrt{3}}) + c$
90. Let $I = \int \frac{1}{1 + \sin^2 x} dx = \int \frac{dx}{2\sin^2 x + \cos^2 x}$
 $= \int \frac{\sec^2 x dx}{2\tan^2 x + 1}$
 $= \frac{1}{2} \int \frac{\sec^2 x dx}{\tan^2 x + \frac{1}{2}}$
Put $\tan x = t \Rightarrow \sec^2 x dx = dt$
∴ $I = \frac{1}{2} \int \frac{dt}{t^2 + \frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \tan^{-1} \frac{t}{\sqrt{2}} + c$
 $= \frac{1}{\sqrt{2}} \tan^{-1} (\sqrt{2} \tan x) + c$
91. $\int \frac{1}{1 + \cos^2 x} dx = \int \frac{\sec^2 x}{\sec^2 x + 1} dx = \int \frac{\sec^2 x}{\tan^2 x + 2} dx$
Put $\tan x = t \Rightarrow \sec^2 x dx = dt$
∴ $\int \frac{1}{1 + \cos^2 x} dx = \int \frac{\sec^2 x}{\sec^2 x + 1} dx = \int \frac{\sec^2 x}{\tan^2 x + 2} dx$
Put $\tan x = t \Rightarrow \sec^2 x dx = dt$
∴ $\int \frac{1}{1 + \cos^2 x} dx = \int \frac{\sec^2 x}{\sec^2 x + 1} dx = \int \frac{\sec^2 x}{\tan^2 x + 2} dx$
Put $\tan x = t \Rightarrow \sec^2 x dx = dt$

92. Put
$$\cos x = t$$

⇒ $-\sin x \, dx = dt$
∴ $\int \frac{\sin x}{3 + 4\cos^2 x} dx = \int \frac{-dt}{3 + 4t^2} = \frac{-1}{4} \int \frac{dt}{t^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$
 $= -\frac{1}{4 \cdot \frac{\sqrt{3}}{2}} \cdot \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) + c$
 $= \frac{-1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}}\right) + c$
93. Let $I = \int \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x}$
Dividing N¹ and D¹ by $\cos^2 x$, we get
 $I = \int \frac{\sec^2 x}{a^2 \tan^2 x + b^2} dx$
Put $\tan x = t \Rightarrow \sec^2 x \, dx = dt$
∴ $I = \int \frac{dt}{a^2 t^2 + b^2} = \frac{1}{a^2} \int \frac{dt}{t^2 + \frac{b^2}{a^2}}$
 $= \frac{1}{a^2} \cdot \frac{1}{(\frac{b}{a})} \tan^{-1} \left(\frac{t}{(\frac{b}{a})}\right) + c$
94. Let $I = \int \frac{dx}{4 \tan^2 x + 5}$
 $I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 5}$
 $I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 5}$
 $I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 5}$
 $I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 5}$
 $I = \int \frac{\sec^2 x \, dx}{4 \tan^2 x + 5}$
 $I = \frac{1}{4} \int \frac{dt}{\tan^2 x + 5}$
 $I = \frac{1}{4} \int \frac{dt}{t^2 + \left(\frac{\sqrt{5}}{2}\right)^2} = \frac{1}{4} \cdot \frac{1}{\sqrt{5}} \tan^{-1}\left(\frac{2t}{\sqrt{5}}\right) + c$
 $= \frac{1}{2\sqrt{5}} \tan^{-1}\left(\frac{2\tan x}{\sqrt{5}}\right) + c$

PS. Let
$$I = \int \frac{dx}{2\sin^2 x - 3\cos^2 x + 7}$$

Dividing N^t and D^t by $\cos^2 x$, we get
 $I = \int \frac{\sec^2 x dx}{2\tan^2 x - 3 + 7\sec^2 x}$
 $= \int \frac{\sec^2 x dx}{2\tan^2 x - 3 + 7(1 + \tan^2 x)}$
 $= \int \frac{\sec^2 x dx}{4 + 9\tan^2 x}$
Put $t = \tan x$
 $\Rightarrow dt = \sec^2 x dx$
 \therefore $I = \int \frac{dt}{2^2 + (3t)^2} = \frac{1}{6} \tan^{-1} \left(\frac{3t}{2}\right) + c$
 $= \frac{1}{6} \tan^{-1} \left(\frac{3\tan x}{2}\right) + c$
96. $\int \frac{dx}{2 + \cos x}$
 $= \int \frac{dx}{2\sin^2 \left(\frac{x}{2}\right) + 2\cos^2 \left(\frac{x}{2}\right) + \cos^2 \left(\frac{x}{2}\right) - \sin^2 \left(\frac{x}{2}\right)}$
 $= \int \frac{dx}{\sin^2 \left(\frac{x}{2}\right) + 3\cos^2 \left(\frac{x}{2}\right)} = \int \frac{\sec^2 \left(\frac{x}{2}\right)}{\tan^2 \left(\frac{x}{2}\right) + 3} dx$
Put $\tan \left(\frac{x}{2}\right) = t$
 $\Rightarrow \sec^2 \left(\frac{x}{2}\right) dx = 2dt$
 \therefore $\int \frac{dx}{2 + \cos x} = 2 \int \frac{dt}{t^2 + 3} = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t}{\sqrt{3}}\right) + c$
 $= \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{\tan \left(\frac{x}{2}\right)}{\sqrt{3}}\right) + c$
97. Let $I = \int \frac{dx}{2\sin x + \cos x + 3}$
Put $t = \tan \left(\frac{x}{2}\right)$
 \therefore $dx = \frac{2dt}{1 + t^2}$ and $\cos x = \frac{1 - t^2}{1 + t^2}$, $\sin x = \frac{2t}{1 + t^2}$

MHT-CET Triumph Maths (Hints) $I = \int \frac{\overline{1+t^2}}{2\left(\frac{2t}{1+t^2}\right) + \left(\frac{1-t^2}{1+t^2}\right) + 3}$ *.*.. $= 2 \int \frac{dt}{4t+1-t^2+3+3t^2}$ $= 2 \int \frac{dt}{2t^2 + 4t + 4} = \int \frac{dt}{t^2 + 2t + 2}$ $= \int \frac{dt}{t^2 + 2t + 1 + 1} = \int \frac{dt}{(t+1)^2 + 1^2}$ $= \tan^{-1}\left(\frac{t+1}{1}\right) + c = \tan^{-1}\left(\tan\left(\frac{x}{2}\right) + 1\right) + c$ Put $x^2 = t$ 98. $\Rightarrow 2x \, dx = dt \qquad \Rightarrow dx = \frac{dt}{2x} = \frac{dt}{2\sqrt{t}}$ $\therefore \int \frac{dx}{w \sqrt{u^4 - 1}} = \int \frac{dt}{2t \sqrt{t^2 - 1}} = \frac{1}{2} \sec^{-1} t + c$ $=\frac{1}{2}\sec^{-1}x^{2}+c$ 99. Let I = $\int \frac{x^2 - 1}{(x^2 + 1)\sqrt{x^4 + 1}} dx$ Dividing N^r and D^r by x^2 , we get $= \int \frac{\left(1 - \frac{1}{x^2}\right)}{\left(x + \frac{1}{x^2}\right)\sqrt{x^2 + \frac{1}{x^2}}} dx$ $= \int \frac{\left(1 - \frac{1}{x^2}\right)}{\left(x + \frac{1}{x}\right)\sqrt{\left(x + \frac{1}{x}\right)^2 - 2}} dx$ Put $x + \frac{1}{r} = t \Rightarrow \left(1 - \frac{1}{r^2}\right) dx = dt$ $\therefore \qquad I = \int \frac{dt}{t \sqrt{t^2 - 2}} = \frac{1}{\sqrt{2}} \sec^{-1}\left(\frac{t}{\sqrt{2}}\right) + c$ $= \frac{1}{\sqrt{2}} \sec^{-1} \left| \frac{\left(x + \frac{1}{x} \right)}{\sqrt{2}} \right| + c$ $=\frac{1}{\sqrt{2}}\sec^{-1}\left(\frac{x^2+1}{x\sqrt{2}}\right)+c$

100. Put t = tan $x \Rightarrow$ dt = sec² x dx $\therefore \qquad \int \frac{\sec^2 x}{\sqrt{\tan^2 x + 4}} dx = \int \frac{1}{\sqrt{t^2 + 2^2}} dt$ $= \log \left| t + \sqrt{t^2 + 4} \right| + c$ $= \log \left| \tan x + \sqrt{\tan^2 x + 4} \right| + c$ 101. $\int \sqrt{x^2 - 8x + 7} \, dx = \int \sqrt{(x - 4)^2 - (3)^2} \, dx$ $=\frac{(x-4)}{2}\sqrt{x^2-8x+7}$ $-\frac{9}{2}\log \left|x-4+\sqrt{x^2-8x+7}\right|+c$ 102. Put $x^2 = t$ $\Rightarrow 2x \, dx = dt$ $\Rightarrow x dx = \frac{dt}{2}$ $\therefore \qquad \int \frac{x}{\sqrt{x^4 - 4}} \, \mathrm{d}x = \frac{1}{2} \int \frac{\mathrm{d}t}{\sqrt{t^2 - 2^2}}$ $=\frac{1}{2} \log |t + \sqrt{t^2 - 4}| + c$ $=\frac{1}{2}\log|x^2+\sqrt{x^4-4}|+c$ 103. Let I = $\int \frac{e^x}{\sqrt{e^{2x} + 4e^x + 12}} dx$ Put $e^x = t \Longrightarrow e^x dx = dt$ $\therefore \quad I = \int \frac{dt}{\sqrt{t^2 + 4t + 12}}$ $=\int \frac{dt}{\sqrt{(t+2)^2+3^2}}$ $= \log \left| t + 2 + \sqrt{(t+2)^2 + 3^2} \right| + c$ $= \log \left| e^{x} + 2 + \sqrt{e^{2x} + 4e^{x} + 13} \right| + c$ 104. Let I = $\int \frac{1}{\sqrt{\csc^2 r + \cot^2 r}} dr$ $=\int \frac{\sin x}{\sqrt{1-x^2}} dx$ Put $t = \cos x \implies dt = -\sin x dx$ \therefore I = $-\int \frac{dt}{\sqrt{1+t^2}} = -\log\left(t+\sqrt{1+t^2}\right) + c$ $= -\log\left(\cos x + \sqrt{1 + \cos^2 x}\right) + c$

on

105.
$$\int \frac{dx}{2x^2 + x - 1} = \frac{1}{2} \int \frac{dx}{x^2 + \frac{1}{2}x - \frac{1}{2}}$$
$$= \frac{1}{2} \int \frac{dx}{\left(x + \frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2}$$
$$= \frac{1}{2} \cdot \frac{1}{2 \cdot \left(\frac{3}{4}\right)^2} \log \left| \frac{\left(x + \frac{1}{4}\right) - \frac{3}{4}}{\left(x + \frac{1}{4}\right) + \frac{3}{4}} \right| + c$$
$$= \frac{1}{3} \log \left| \frac{2x - 1}{2(x + 1)} \right| + c$$

106. Put $\log x = t$

$$\Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \qquad \int \frac{dx}{x[(\log x)^2 + 4\log x - 1]} = \int \frac{dt}{t^2 + 4t - 1}$$

$$= \int \frac{dt}{(t+2)^2 - (\sqrt{5})^2}$$

$$= \frac{1}{2\sqrt{5}} \log \left| \frac{t+2-\sqrt{5}}{t+2+\sqrt{5}} \right| + c$$

$$= \frac{1}{2\sqrt{5}} \log \left| \frac{\log x + 2 - \sqrt{5}}{\log x + 2 + \sqrt{5}} \right| + c$$

107. Let
$$I = \int \frac{1}{(x^2 - 1)\sqrt{x^2 + 1}} dx$$

Put $x = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt$
 $\therefore \quad I = \int \frac{-\frac{1}{t^2}}{\left(\frac{1}{t^2} - 1\right)\sqrt{\frac{1}{t^2} + 1}} dt$
 $= -\int \frac{t}{\left(1 - t^2\right)\sqrt{1 + t^2}} dt$
Put $\sqrt{1 + t^2} = u \Rightarrow 1 + t^2 = u^2 \Rightarrow t dt = u du$
 $\therefore \quad I = -\int \frac{u}{\left[1 - (u^2 - 1)\right]u} du$
 $= -\int \frac{du}{\left[2 - u^2\right]} = \int \frac{du}{u^2 - \left(\sqrt{2}\right)^2}$
 $= \frac{1}{2\sqrt{2}} \log \left|\frac{u - \sqrt{2}}{u + \sqrt{2}}\right| + c$

$$\begin{aligned} = \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{1+t^2} - \sqrt{2}}{\sqrt{1+t^2} + \sqrt{2}} \right| + c \\ = \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{1+(\frac{1}{x})^2} - \sqrt{2}}{\sqrt{1+(\frac{1}{x})^2} + \sqrt{2}} \right| + c \\ = \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{x^2+1} - \sqrt{2}x}{\sqrt{x^2+1} + \sqrt{2}x} \right| + c \\ 108. \text{ Let I} = \int \frac{2x+1}{x^4 + 2x^3 + x^2 - 1} dx \\ = \int \frac{2x+1}{[x(x+1)]^2 - 1} dx \\ \text{Put t} = x (x+1) \\ \Rightarrow dt = (2x+1) dx \\ \therefore \quad I = \int \frac{dt}{t^2 - 1} \\ = \frac{1}{2} \log \left| \frac{t-1}{t+1} \right| + c \\ = \frac{1}{2} \log \left| \frac{x^2 + x - 1}{x^2 + x - 1} \right| + c \\ = -\frac{1}{2} \log \left| \frac{x^2 + x - 1}{x^2 + x - 1} \right| + c \\ \therefore \quad A = -\frac{1}{2} \end{aligned}$$

$$109. \int \frac{1}{\sin x \sqrt{\sin x \cdot \cos x}} dx = \int \frac{1}{\sin x \sqrt{\sin^2 x \cdot \frac{\cos x}{\sin x}}} dx \\ = \int \frac{1}{\sqrt{\cot x}} \times \operatorname{cose}^2 x dx \\ = \int \frac{1}{\sqrt{\cot x}} \times \operatorname{cose}^2 x dx \\ \therefore \quad \int \frac{1}{\sin x \sqrt{\sin x \cdot \cos x}} dx = \int \frac{-dt}{\sqrt{t}} = -\int t^{-\frac{1}{2}} dt \\ = -2t^{\frac{1}{2}} + c \\ = -2\sqrt{\cot x} + c \end{aligned}$$

519

MHT-CET Triumph Maths (Hints)

110. Let I = $\int \sin^3 x \sqrt{\cos x} \, dx$ $= \int (1 - \cos^2 x) \sqrt{\cos x} \sin x \, dx$ Put $t = \cos x$ \Rightarrow dt = $-\sin x \, dx$ $\Rightarrow - dt = \sin x dx$ $I = \int (1 - t^2) \sqrt{t} (-dt)$ *.*.. $= -\int \sqrt{t} dt + \int t^{\frac{5}{2}} dt = -\frac{t^{3/2}}{3/2} + \frac{t^{\frac{7}{2}}}{\frac{7}{2}} + c$ $=\frac{2}{7}\left(\sqrt{\cos x}\right)^7 - \frac{2}{2}\left(\sqrt{\cos x}\right)^3 + c$ 111. Let I = $\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$ Put $x^{\frac{1}{6}} = t$ $\Rightarrow x = t^6$ \Rightarrow dx = 6t⁵dt $\therefore \qquad I = \int \frac{6t^5}{t^3 + t^2} dt$ $=\int \frac{6t^{5}}{t^{2}(t+1)} dt = 6\int \frac{t^{3}}{t+1} dt$ $= 6 \int \frac{t^3 + 1 - 1}{t + 1} dt = 6 \int \left(t^2 - t + 1 - \frac{1}{t + 1} \right) dt$ $= 6 \left| \frac{t^3}{3} - \frac{t^2}{2} + t - \log|t+1| \right| + c$ $=2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\log|\sqrt[6]{x} + 1| + c$ 112. Let I = $\int \frac{x^3 dx}{\sqrt{1 + x^3}} = \int \frac{x^3 x^2}{\sqrt{1 + x^3}} dx$ Put $1 + x^3 = t^2$ $\Rightarrow 3x^2 dx = 2t dt$ \therefore I = $\int \frac{(t^2 - 1)}{t} \left(\frac{2}{3}\right) t dt$ $=\frac{2}{3}\int (t^2-1) dt = \frac{2}{3}\left(\frac{t^3}{3}-t\right) + c$ $=\frac{2}{9}t(t^2-3)+c$ $= \frac{2}{9}\sqrt{1+x^3} (1+x^3-3) + c$ $=\frac{2}{9}\sqrt{1+x^3}(x^3-2)+c$

113. Let I = $\int \sec^6 x \, dx = \int \sec^4 x \cdot \sec^2 x \, dx$ $= \int (1 + \tan^2 x)^2 \sec^2 x \, dx$ Put t = tan x \Rightarrow dt = sec² x dx $I = \int (1+t^2)^2 dt = \int (1+2t^2+t^4) dt$ ÷. $=t+\frac{2t^{3}}{2}+\frac{t^{5}}{5}+c$ $= \tan x + \frac{2}{2} \tan^3 x + \frac{1}{5} \tan^5 x + c$ 114. Let I = $\int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx = \int \frac{1}{\cos^{\frac{2}{3}} x \sin^{\frac{4}{3}} x} \, dx$ Dividing N^r and D^r by $\cos^{\frac{1}{3}} x$, we get $I = \int \frac{\sec^2 x}{\frac{4}{2}} \, \mathrm{d}x$ $\tan^3 x$ Put $\tan x = t$ $\Rightarrow \sec^2 x \, dx = dt$:. $I = \int \frac{dt}{t^{4/3}} = \int t^{\frac{-4}{3}} dt = \frac{t^{\frac{-1}{3}}}{-1} + c$ $= -3 (\tan x)^{\frac{-1}{3}} + c$ 115. Let I = $\int \tan^4 x \, dx = \int \tan^2 x (\sec^2 x - 1) dx$ $= \int (\tan^2 x \sec^2 x - \tan^2 x) \, \mathrm{d}x$ $= \int (\tan^2 x . \sec^2 x - \sec^2 x + 1) \, \mathrm{d}x$ $= \int (\tan^2 x - 1) \sec^2 x dx + \int 1 dx$ In 1st integral, Put t = tan x \Rightarrow dt = sec²xdx $\therefore \qquad \mathbf{I} = \frac{\mathbf{t}^3}{3} - \mathbf{t} + \mathbf{x} + \mathbf{c}$ $\therefore \qquad I = \frac{\tan^3 x}{3} - \tan x + x + c$:. $A = \frac{1}{3}, B = -1, f(x) = x + c$ 116. Let I = $\int \frac{\sin^3 2x}{\cos^5 2x} dx$ $=\int \frac{\sin^3 2x}{\cos^3 2x} \cdot \frac{1}{\cos^2 2x} dx$ $=\int \tan^3 2x \sec^2 2x \, dx$

Put
$$\tan 2x = t \Rightarrow 2 \sec^2 2x \, dx = dt$$

$$\therefore \quad I = \int t^3 \cdot \frac{dt}{2} = \frac{1}{2} \cdot \frac{t^4}{4} + c$$

$$= \frac{1}{8} (\tan^4 2x) + c$$
117. $\int \log x \, dx = \int \log x \cdot 1 \, dx$

$$= \log x \cdot x - \int \frac{1}{x} \cdot x dx$$

= $x \log x - x + c = x (\log x - 1) + c$
= $x (\log x - \log e) + c = x \log \left(\frac{x}{e}\right) + c$

118.
$$\int x e^{2x} dx = x \cdot \frac{e^{2x}}{2} - \int 1 \cdot \frac{e^{2x}}{2} dx$$
$$= \frac{x e^{2x}}{2} - \frac{e^{2x}}{4} + c$$
$$= e^{2x} \left(\frac{2x-1}{4}\right) + c$$
∴
$$f(x) = \frac{2x-1}{4}$$

119.
$$\int x^2 e^{3x} dx = x^2 \cdot \frac{e^{3x}}{3} - \int 2x \cdot \frac{e^{3x}}{3} dx$$
$$= \frac{x^2 e^{3x}}{3} - \frac{2}{3} \left[x \cdot \frac{e^{3x}}{3} - \int 1 \cdot \frac{e^{3x}}{3} dx \right]$$
$$= \frac{x^2 e^{3x}}{3} - \frac{2}{3} \left(\frac{x e^{3x}}{3} - \frac{e^{3x}}{9} \right) + c$$
$$= \frac{1}{3} x^2 e^{3x} - \frac{2}{9} x e^{3x} + \frac{2}{27} e^{3x} + c$$

120.
$$\int x^{3} \log x \, dx = \log x \cdot \frac{x^{4}}{4} - \int \frac{1}{x} \cdot \frac{x^{4}}{4} \, dx$$
$$= \frac{x^{4}}{4} \log x - \int \frac{x^{3}}{4} \, dx$$
$$= \frac{x^{4}}{4} \log x - \frac{x^{4}}{16} + c$$
$$= \frac{1}{16} (4x^{4} \log x - x^{4}) + c$$

121.
$$\int \frac{\log x}{x^3} dx = \int \log x \cdot x^{-3} dx$$
$$= \log x \cdot \frac{x^{-2}}{-2} - \int \left(\frac{1}{x} \cdot \frac{x^{-2}}{-2}\right) dx$$
$$= -\frac{\log x}{2x^2} + \frac{1}{2} \int x^{-3} dx$$

Chapter 04: Integration

$$= -\frac{\log x}{2x^{2}} + \frac{1}{2} \cdot \frac{x^{-2}}{-2} + c$$

$$= -\frac{\log x}{2x^{2}} - \frac{1}{4x^{2}} + c$$

$$= -\frac{1}{4x^{2}}(2\log x + 1) + c$$
122. $\int x^{n} \log x \, dx = \log x$. $\frac{x^{n+1}}{n+1} - \int \frac{1}{x} \cdot \frac{x^{n+1}}{n+1} \, dx$

$$= \frac{x^{n+1}}{n+1} \log x - \frac{x^{n+1}}{(n+1)^{2}} + c$$

$$= \frac{x^{n+1}}{n+1} \left(\log x - \frac{1}{n+1} \right) + c$$
123. $\int [f(x) + x f'(x)] \, dx$

$$= \int f(x) \, dx + \int xf'(x) \, dx$$

$$= \int f(x) \, dx + x \cdot f(x) - \int f(x) \, dx + c$$

$$= x f(x) + c$$
124. $\int [f(x) g''(x) - f''(x) g(x)] \, dx$

$$= f(x) g'(x) - \int f'(x) g'(x) \, dx - g(x) f'(x) + \int f'(x) g'(x) \, dx$$

$$= f(x) g'(x) - g(x) f'(x) + c$$
125. $I_{5} + 5I_{4} = \int x^{5} e^{x} \, dx + 5 \int x^{4} \cdot e^{x} \, dx + c$

$$= x^{5} e^{x} + c$$
126. Let $I = \int \tan^{-1} x \cdot 1 \, dx$

$$= \tan^{-1} x - \int \frac{1}{1+x^{2}} \cdot x \, dx$$

$$= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^{2}} \, dx$$

$$= x \tan^{-1} x - \frac{1}{2} \int \frac{1}{1+x^{2}} \, dx$$

$$= \frac{1}{2} x^{2} \tan^{-1} x - \frac{1}{2} \int \frac{x^{2} + 1 - 1}{1+x^{2}} \, dx$$

$$= \frac{1}{2} x^{2} \tan^{-1} x - \frac{1}{2} \int (1 - \frac{1}{x^{2} + 1}) \, dx$$

$$= \frac{1}{2} (x^{2} + 1) \tan^{-1} x - \frac{1}{2} x + c$$

MHT-CET Triumph Maths (Hints)

128. I =
$$\int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$

∴ I = 2 $\int \tan^{-1} x dx$
= 2 $\left(\tan^{-1} x \cdot x - \int \frac{1}{1+x^2} \cdot x dx\right)$
= 2 $\left(x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^2} dx\right)$
∴ I = 2x $\tan^{-1} x - \log(1+x^2) + c$
∴ I - 2x $\tan^{-1} x dx = \tan^{-1} x \cdot \frac{x^4}{4} - \frac{1}{4} \int \frac{x^4}{x^2+1} dx$
= $\frac{x^4}{4} \tan^{-1} x - \frac{1}{4} \int \frac{x^4 - 1 + 1}{x^2 + 1} dx$
= $\frac{x^4}{4} \tan^{-1} x - \frac{1}{4} \int \left[(x^2 - 1) + \frac{1}{x^2 + 1} \right] dx$
= $\frac{x^4}{4} \tan^{-1} x - \frac{1}{4} \int \left[(x^2 - 1) + \frac{1}{x^2 + 1} \right] dx$
= $\frac{1}{4} \left[(x^4 - 1) \tan^{-1} x - \frac{x^3}{3} + x \right] + c$
130. $\int x \log \left(1 + \frac{1}{x} \right) dx$
= $\log \left(1 + \frac{1}{x} \right) \cdot \frac{x^2}{2} + \frac{1}{2} \int \frac{x}{x+1} dx$
= $\frac{x^2}{2} \log \left(1 + \frac{1}{x} \right) + \frac{1}{2}x - \frac{1}{2} \log (x+1) + c$
= $\left(\frac{x^2 - 1}{2} \right) \log (x+1) - \frac{x^2}{2} \log x + \frac{1}{2}x + c$
131. $\int \log(x^2 + x) dx = \int \log[x(x+1)] dx$
= $\log x x - \int \frac{1}{x} \cdot x dx + \log(x+1) \cdot x - \int \frac{1}{x+1} \cdot x dx$
= $x \log x - \int dx + x \log(x+1) - \int \left(\frac{x+1-1}{x+1} \right) dx$

 $= x \log x - x + x \log(x + 1) - \int \left(\frac{1 - x}{x + 1}\right)^{dx}$ = $x \log x - x + x \log(x + 1) - x + \log |x + 1| + c$ = $x [\log x + \log (x + 1)] - 2x + \log |x + 1| + c$ = $x \log (x^2 + x) - 2x + \log |x + 1| + c$ $A = -2x + \log |x + 1| + c$

132. Put sin⁻¹x = t ⇒ x = sin t ⇒ dx = cos t dt
∴
$$\int \sin^{-1} x dx = \int t \cos t dt$$

= t sin t - $\int 1 \cdot \sin t dt$
= t sin t + cos t + c
= t sin t + $\sqrt{1 - \sin^2 t} + c$
= $x \sin^{-1} x + \sqrt{1 - x^2} + c$
133. Put x = t²
⇒ dx = 2t dt
∴ $\int \sin \sqrt{x} dx = \int \sin t (2t) dt$
= 2 $\int t \sin t dt$
= 2 $\int t \sin t dt$
= 2 $\left[t(-\cos t) - \int (1)(-\cos t) dt \right]$
= 2 $\left(-t \cos t + \int \cos t dt \right)$
= -2t cos t + 2 sin t + c
= -2 $\sqrt{x} \cos \sqrt{x} + 2 \sin \sqrt{x} + c$
134. Put x = t² ⇒ dx = 2tdt
∴ $\int \sqrt{x} \cdot e^{\sqrt{x}} dx = 2 \int t^2 \cdot e^t dt$
= 2(t² · e^t - 2te^t + 2e^t) + c
= 2(x · e^{\sqrt{x}} - 2\sqrt{x} e^{\sqrt{x}} + 2 e^{\sqrt{x}}) + c
= $e^{\sqrt{x}} (2x - 4\sqrt{x} + 4) + c$
135. Put x² = t
⇒ 2x dx = dt
∴ $\int x^5 e^{x^2} dx = \frac{1}{2} \int t^2 e^t dt$
= $\frac{1}{2} [t^2 e^t - 2\int te^t dt]$
= $\frac{t^2 e^t}{2} - (te^t - e^t) + c$
= $\frac{1}{2} x^4 e^{x^2} - x^2 e^{x^2} + e^{x^2} + c$
136. Let I = $\int \sin (\log x) dx$

Put
$$\log x = t \Rightarrow x = e^{t} \Rightarrow dx = e^{t} dt$$

$$\therefore \quad I = \int \sin t \cdot e^{t} dt = \sin t \cdot e^{t} - \int \cos t \cdot e^{t} dt$$

$$= \sin t \cdot e^{t} - \left[\cos t \cdot e^{t} + \int \sin t \cdot e^{t} dt \right]$$

$$\therefore \quad I = \sin t \cdot e^{t} - \cos t \cdot e^{t} - I + c_{1}$$

$$\Rightarrow 2I = \sin t \cdot e^{t} - \cos t \cdot e^{t} + c_{1}$$

$$\Rightarrow I = \frac{1}{2} x [\sin(\log x) - \cos(\log x)] + c,$$

where $c = \frac{c_{1}}{2}$

522

...

137.
$$\int \sin x \log(\sec x + \tan x) dx$$

= $\log(\sec x + \tan x) (-\cos x) - \int \sec x (-\cos x) dx$
.... $\left[\because \frac{d}{dx} [\log(\sec x + \tan x)] = \sec x \right]$
= $-\cos x \log(\sec x + \tan x) + \int 1 dx$
= $x - \cos x \log(\sec x + \tan x) + \int 1 dx$
= $x - \cos x \log(\sec x + \tan x) + c$
138. Put $x = \sin\theta$
 $\Rightarrow dx = \cos\theta d\theta$
 $\therefore \quad \int \sin^{-1} (3x - 4x^3) dx$
= $\int \sin^{-1} (\sin 3\theta) \cos\theta d\theta$
= $\int 3\theta \cos\theta d\theta = 3 (\theta \sin\theta - \int \sin\theta d\theta)$
= $3(\theta \sin\theta + \cos\theta) + c$
= $3(x \sin^{-1} x + \sqrt{1 - x^2}) + c$
139. Put $\sin^{-1} x = t \Rightarrow \frac{1}{\sqrt{1 - x^2}} dx = dt$
 $\therefore \quad \int \frac{\sin^{-1} x}{(1 - x^2)^{3/2}} dx = \int t \sec^2 t dt$
= $t \tan t - \int 1 \tan t dt$
= $t \tan t - \int 1 \tan t dt$
= $t \tan t + \log(\cos t) + c$
= $t \cdot \frac{\sin t}{\sqrt{1 - \sin^2 t}} + \log(\sqrt{1 - \sin^2 t}) + c$
140. Put $\tan^{-1} x = \theta \Rightarrow x = \tan \theta \Rightarrow dx = \sec^2 \theta d\theta$
 $\therefore \quad \int \frac{x \tan^{-1} x}{(1 + x^2)^{3/2}} dx = \int \frac{\theta \tan \theta \sec^2 \theta}{(1 + \tan^2 \theta)^{3/2}} d\theta$
= $\int \theta \sin \theta d\theta = -\theta \cos\theta + \sin\theta + c$
= $\frac{t \tan \theta}{\sqrt{1 + \tan^2 \theta}} - \theta \cdot \frac{1}{\sqrt{1 + \tan^2 \theta}} + c$
= $\frac{x}{\sqrt{1 + x^2}} - \tan^{-1} x \frac{1}{\sqrt{1 + x^2}} + c$
= $\frac{x - \tan^{-1} x}{\sqrt{1 + x^2}} + c$

$$\mathbf{Y}$$
141. $\int \sec^3 \theta d\theta = \int \sec \theta \sec^2 \theta d\theta$
 $= \sec \theta \tan \theta - \int (\sec \theta \tan \theta \tan \theta) d\theta$
 $= \sec \theta \tan \theta - \int (\sec \theta \tan \theta \tan \theta) d\theta$
 $= \sec \theta \tan \theta - \int \sec \theta (\sec^2 \theta - 1) d\theta$
 $= \sec \theta \tan \theta - \int \sec \theta (\sec^2 \theta - 1) d\theta$
 $= \sec \theta \tan \theta - \int \sec^3 \theta d\theta + \int \sec \theta d\theta$
 $\therefore 2 \int \sec^3 \theta d\theta = \sec \theta \tan \theta + \int \sec \theta d\theta$
 $\therefore 2 \int \sec^3 \theta d\theta = \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c$
 $\therefore \int \sec^3 \theta d\theta = \frac{1}{2} [\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|] + c$
142. $\int \frac{e^x (x - 1)}{x^2} dx = \int e^x (\frac{1}{x} - \frac{1}{x^2}) dx = \frac{e^x}{x} + c$
 $\dots [\because \int e^x [f(x) + f'(x)] dx = e^x f(x) + c]$
143. $\int e^x (x^5 + 5x^4) dx + \int e^x dx$
 $= e^x x^5 + e^x + c$
144. $\int e^x [\tan x - \log (\cos x)] dx$
 $= \int e^x [\tan x + \log (\sec x)] dx$
 $= e^x \log(\sec x) + c$
 $\dots [\because \int e^x [f(x) + f'(x)] dx = e^x f(x) + c]$
145. $\int e^x (1 - \cot x + \cot^2 x) dx$
 $= e^x (-\cot x + \csc^2 x) dx$
 $= e^x (-\cot x + \csc^2 x) dx$
 $= \int e^x (-\cot x + \csc^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$
 $= \int e^x (-\cot x + \cot^2 x) dx$

MHT-CET Triumph Maths (Hints) 148. $\int \frac{(x+3)e^x}{(x+4)^2} dx = \int \frac{(x+4-1)}{(x+4)^2} e^x dx$ $=\int e^{x}\left(\frac{1}{x+4}-\frac{1}{(x+4)^{2}}\right)dx$ $=\frac{e^x}{x+4}+c$ 149. $\int \frac{e^x(x^2+1)}{(x+1)^2} dx = \int \frac{e^x(x^2-1+2)}{(x+1)^2} dx$ $=\int e^{x}\left|\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right|dx$ $= e^{x}\left(\frac{x-1}{x+1}\right) + c$ 150. $\int \left(\frac{2+\sin 2x}{1+\cos 2x}\right) e^x dx$ $= \int \left(\frac{2+2\sin x \cos x}{2\cos^2 x}\right) e^x dx$ $= \int (\sec^2 x + \tan x) e^x dx$ $= e^x \tan x + c$ 151. $\int e^{x} \left(\frac{1 - \sin x}{1 - \cos x} \right) dx = \int e^{x} \left| \frac{1 - 2\sin \frac{x}{2}\cos \frac{x}{2}}{2\sin^{2}\left(\frac{x}{2}\right)} \right| dx$ $=\int e^{x}\left[\frac{1}{2}\operatorname{cosec}^{2}\left(\frac{x}{2}\right)-\operatorname{cot}\left(\frac{x}{2}\right)\right]dx$ $= -e^{x} \cot\left(\frac{x}{2}\right) + c$ 152. $\int e^{2x} (2\cos x - \sin x) dx = e^{2x} \cos x + c$ $\dots \left[\because \int e^{mx} \left[mf(x) + f'(x) \right] dx = e^{mx} f(x) + c \right]$ 153. Let I = $\int \log x (\log x + 2) dx$ Put $\log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$ $I = \int t (t+2)e^{t}dt = \int e^{t} (t^{2}+2t)dt$ *.*.. $= e^{t}$. $t^{2} + c = x(\log x)^{2} + c$ 154. Put $\log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$ $\therefore \int \left| \frac{1}{\log x} - \frac{1}{(\log x)^2} \right| dx = \int \left(\frac{1}{t} - \frac{1}{t^2} \right) e^t dt$ $=\frac{e^{t}}{t}+c$ $=\frac{x}{\log x}+c$

155. Put $\log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$ $\therefore \qquad \int \frac{\log x}{(1+\log x)^2} dx = \int \frac{t}{(1+t)^2} e^t dt$ $=\int e^{t}\left|\frac{t+1-1}{(1+t)^{2}}\right|dt$ $=\int e^{t} \left| \frac{1}{1+t} - \frac{1}{(1+t)^{2}} \right| dt$ $=\frac{e^{t}}{1+t}+c$ $=\frac{x}{1+\log x}+c$ 156. Let I = $\int \left\{ \log(\log x) + \frac{1}{(\log x)^2} \right\} dx$ Put $\log x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$ $\therefore I = \int e^t \left(\log t + \frac{1}{t^2} \right) dt$ $= \int e^{t} \left(\log t + \frac{1}{t} \right) dt + \int e^{t} \left(-\frac{1}{t} + \frac{1}{t^{2}} \right) dt$ $=e^{t}\log t + e^{t}\left(-\frac{1}{t}\right) + c = x\left(\log(\log x) - \frac{1}{\log x}\right) + c$ \therefore f(x) = log(log x) and g(x) = $\frac{1}{\log x}$ 157. $\int \frac{dx}{x^2 - x^3} = \int \frac{(1 - x)dx}{x^2(1 - x)} + \int \frac{xdx}{x^2(1 - x)}$ $=\int \frac{1}{r^2} dx + \int \frac{dx}{r(1-r)}$

$$= -\frac{1}{x} + \int \frac{dx}{x} + \int \frac{dx}{1-x}$$
$$= -\frac{1}{x} + \log|x| - \log|1-x| + c$$
$$= \log\left|\frac{x}{1-x}\right| - \frac{1}{x} + c$$

158.
$$\int \frac{x^2 + x - 1}{x^2 + x - 6} dx = \int \left[1 + \frac{5}{x^2 + x - 6} \right] dx$$
$$= \int \left[1 + \frac{5}{(x + 3)(x - 2)} \right] dx$$
$$= \int dx + \int \frac{dx}{x - 2} - \int \frac{dx}{x + 3}$$
$$= x + \log|x - 2| - \log|x + 3| + c$$

159. $\int \frac{x}{x^4 - 1} dx = \int \frac{x}{(x^2 - 1)(x^2 + 1)} dx$ $=\frac{1}{2}\int \left(\frac{x}{x^2-1}-\frac{x}{x^2+1}\right)dx$ $=\frac{1}{4}\int \left(\frac{2x}{x^2-1}-\frac{2x}{x^2+1}\right)dx$ $=\frac{1}{4}\log|x^2-1|-\frac{1}{4}\log|x^2+1|+c$ $=\frac{1}{4}\log\left|\frac{x^2-1}{x^2+1}\right|+c$ 160. $\int \frac{x^2}{(x^2+2)(x^2+3)} dx = \int \left[\frac{3}{x^2+3} - \frac{2}{x^2+2}\right] dx$ $=\frac{3}{\sqrt{3}}\tan^{-1}\left(\frac{x}{\sqrt{3}}\right)-\frac{2}{\sqrt{2}}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right)+c$ $=\sqrt{3}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) - \sqrt{2}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + c$ 161. $\int \frac{\mathrm{d}x}{(x^2 - 1)(1 - 2x)} = \int \frac{-1}{(1 - x)(1 + x)(1 - 2x)} \,\mathrm{d}x$ Let $\frac{-1}{(1-x)(1+x)(1-2x)} = \frac{A}{1-x} + \frac{B}{1+x} + \frac{C}{1-2x}$ $\Rightarrow -1 = A (1 + x) (1 - 2x) + B(1 - x) (1 - 2x)$ $+ C (1 - x) (1 + x) \dots(i)$ Putting x = -1 in (i), we get $B = -\frac{1}{6}$ Putting x = 1 in (i), we get $A = \frac{1}{2}$ Putting $x = \frac{1}{2}$ in (i), we get $C = -\frac{4}{3}$ $\therefore \int \frac{\mathrm{d}x}{(x^2-1)(1-2x)}$ $=\frac{1}{2}\int \frac{1}{1-r}dx - \frac{1}{6}\int \frac{1}{1+r}dx - \frac{4}{3}\int \frac{1}{1-2r}dx$ $=-\frac{1}{2}\log|1-x|-\frac{1}{6}\log|1+x|+\frac{2}{2}\log|1-2x|+c$ 162. $\int \frac{1}{x-x^3} dx = \int \frac{1}{x(1+x)(1-x)} dx$ $=\frac{1}{2}\int \left(\frac{2}{r}-\frac{1}{1+r}+\frac{1}{1-r}\right)dx$ $= \frac{1}{2} (2\log|x| - \log|1 + x| - \log|1 - x|) + c$ $= \frac{1}{2} \left(\log |x^2| - \log |1 - x^2| \right) + c = \frac{1}{2} \log \left| \frac{x^2}{1 - x^2} \right| + c$

Chapter 04: Integration 163. Put $e^x = t \Rightarrow e^x dx = dt$ $\therefore \qquad \int \frac{e^x}{(1+e^x)(2+e^x)} dx = \int \frac{dt}{(1+t)(2+t)}$ $= \int \left(\frac{1}{1+t} - \frac{1}{2+t}\right) dt$ $= \log |1 + t| - \log |2 + t| + c$ $= \log |1 + e^{x}| - \log |2 + e^{x}| + c$ $= \log \left| \frac{1 + e^x}{2 + e^x} \right| + c$ 164. $\int \frac{dx}{e^x + 1 - 2e^{-x}} = \int \frac{e^x}{e^{2x} + e^x - 2} dx$ Put $e^x = t \Longrightarrow e^x dx = c$ $\therefore \qquad \int \frac{\mathrm{d}x}{e^{x} + 1 - 2e^{-x}} = \int \frac{\mathrm{d}t}{t^2 + t - 2}$ $=\int \frac{dt}{(t+2)(t-1)} = \frac{1}{3} \int \left(\frac{1}{t-1} - \frac{1}{t+2}\right) dt$ $=\frac{1}{2}\log|t-1|-\frac{1}{2}\log|t+2|+c$ $=\frac{1}{2}\log|e^{x}-1|-\frac{1}{2}\log|e^{x}+2|+c$ 165. Let I = $\int \frac{a}{h+ce^x} dx = \int \frac{ae^x}{h+ce^{2x}} dx$ Put $e^x = t \Longrightarrow e^x dx = dt$ \therefore I = $a \int \frac{dt}{bt + at^2}$ $= a \int \frac{dt}{t(ct+b)}$ $=-\frac{a}{b}\int \left(\frac{c}{ct+b}-\frac{1}{t}\right)dt$ $=-\frac{a}{b}\log|ct+b|+\frac{a}{b}\log|t|+c$ $=\frac{a}{b}\log\left|\frac{t}{ct+b}\right|+c$ $=\frac{a}{b}\log\left|\frac{e^{x}}{b+ce^{x}}\right|+c$ 166. Put $\sin x = t$ $\Rightarrow \cos x \, dx = dx$ $\int \frac{\cos x}{(1+\sin x)(2+\sin x)} dx = \int \frac{dt}{(t+1)(t+2)}$ *.*..

525

 $=\int \frac{1}{t+1} dt - \int \frac{1}{t+2} dt$

MHT-CET Triumph Maths (Hints)

$$= \log|t+1| - \log|t+2| + c$$

$$= \log\left|\frac{t+1}{t+2}\right| + c$$

$$= \log\left|\frac{\sin x+1}{\sin x+2}\right| + c$$

167.
$$\int \frac{x^3 - 1}{x^3 + x} dx = \int \frac{x^3}{x(x^2 + 1)} dx - \int \frac{1}{x(x^2 + 1)} dx$$

$$= \int \frac{x^2}{x^2 + 1} dx - \int \left(\frac{1}{x} - \frac{x}{x^2 + 1}\right) dx$$

$$= \int \left(1 - \frac{1}{x^2 + 1}\right) dx - \int \frac{1}{x} dx + \frac{1}{2} \int \frac{2x}{x^2 + 1} dx$$

$$= x - \tan^{-1} x - \log|x| + \frac{1}{2} \log|x^2 + 1| + c$$

$$= x - \tan^{-1} x - \log|x| + \log\left|\sqrt{x^2 + 1}\right| + c$$

168. Let $\frac{2x+7}{(x-4)^2} = \frac{A}{x-4} + \frac{B}{(x-4)^2}$ \Rightarrow 2x + 7 = A(x - 4) + B = Ax + (-4A+B) A = 2 and -4A + B = 7*.*.. B = 7 + 4A = 7 + 8 = 15÷. $\int \frac{2x+7}{(x-4)^2} \, \mathrm{d}x = \int \left(\frac{2}{x-4} + \frac{15}{(x-4)^2}\right) \, \mathrm{d}x$ *.*.. $=2\log |x-4| - \frac{15}{(x-4)} + c$ 169. Let $\frac{x^2+1}{(x-2)^2(x+3)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+3}$ $\Rightarrow x^2 + 1 = A(x-2)(x+3) + B(x+3) + C(x-2)^2$(i) Putting x = 2 in (i), we get B = 1Putting x = -3 in (i), we get $C = \frac{2}{5}$ Putting x = 3 in (i), we get $6A + 6B + C = 10 \Rightarrow A = \frac{3}{5}$ $\therefore \quad \int \frac{x^2 + 1}{(x-2)^2 (x+3)} \, \mathrm{d}x$ $=\frac{3}{5}\int \frac{1}{x-2}dx + \int \frac{1}{(x-2)^2}dx + \frac{2}{5}\int \frac{1}{x+3}dx$ $=\frac{3}{5}\log|x-2|-\frac{1}{x-2}+\frac{2}{5}\log|x+3|+c$

170. Let
$$\frac{1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$$

∴ $1 = A(x^2+1) + (Bx+C)(x-1)$ (i)
Putting $x = 1$ in (i), we get
 $A = \frac{1}{2}$
Putting $x = 0$ in (i), we get
 $A - C = 1 \Rightarrow C = -\frac{1}{2}$
Comparing the coefficient of x^2 , we get
 $A + B = 0 \Rightarrow B = -\frac{1}{2}$
∴ $\int \frac{1}{(x-1)(x^2+1)} dx = \int \left[\frac{1}{2(x-1)} - \frac{x+1}{2(x^2+1)}\right] dx$
 $= \frac{1}{2} \int \frac{1}{x-1} dx - \frac{1}{4} \int \frac{2x}{x^2+1} dx - \frac{1}{2} \int \frac{1}{x^2+1} dx$
 $= \frac{1}{2} \log(x-1) - \frac{1}{4} \log(x^2+1) - \frac{1}{2} \tan^{-1} x + c$
171. $\int \frac{dx}{1+x+x^2+x^3} = \int \frac{dx}{(1+x)(1+x^2)}$
 $= \frac{1}{2} \int \frac{1}{1+x^2} dx + \frac{1}{2} \int \frac{1}{1+x} dx - \frac{1}{2} \int \frac{x}{1+x^2} dx$
 $= \frac{1}{2} \tan^{-1} x + \log |\sqrt{1+x}| - \frac{1}{2} \log |\sqrt{1+x^2}| + c$

$$172. \quad \int \frac{x^4}{(x-1)(x^2+1)} dx$$

$$= \int \frac{x^4 - 1}{(x-1)(x^2+1)} dx + \int \frac{1}{(x-1)(x^2+1)} dx$$

$$= \int \frac{(x+1)(x-1)(x^2+1)}{(x-1)(x^2+1)} dx + \int \frac{dx}{(x-1)(x^2+1)}$$

$$= \int (x+1) dx + \int \left[\frac{1}{2(x-1)} - \frac{x+1}{2(x^2+1)}\right] dx$$

$$= \int x dx + \int dx + \frac{1}{2} \int \frac{1}{x-1} dx$$

$$-\frac{1}{4} \int \frac{2x}{x^2+1} dx - \frac{1}{2} \int \frac{1}{x^2+1} dx$$

$$= \frac{x^2}{2} + x + \frac{1}{2} \log|x-1| - \frac{1}{4} \log|x^2+1| - \frac{1}{2} \tan^{-1} x + c$$

Chapter 04: Integration

173. $\int \frac{dx}{f(x)} = \log [f(x)]^2 + c$ Differentiating on both sides, we get $\frac{1}{f(x)} = \frac{2f(x)f'(x)}{[f(x)]^2}$ \Rightarrow f'(x) = $\frac{1}{2}$ $f(x) = \int f'(x) dx = \frac{x}{2} + \alpha$ *.*.. 174. $|\mathbf{A}| = \begin{vmatrix} \mathbf{a} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{b} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{c} \end{vmatrix} = \mathbf{a} \mathbf{b} \mathbf{c}$ Let I = $\int |A| dx = \int 7^{x} 7^{7^{x}} 7^{7^{x}} dx$ Put $7^{7^{x}} = t$ $\Rightarrow 7^{7^{x}} (\log 7)^{3} 7^{7^{x}} 7^{x} dx = dt$ $\Rightarrow 7^{7^{x}} 7^{x} dx = \frac{dt}{7^{7^{x}} (\log 7)^{3}} = \frac{dt}{t (\log 7)^{3}}$ $\therefore \qquad I = \frac{1}{\left(\log 7\right)^3} \int dt = \frac{t}{\left(\log 7\right)^3} + c$ $=\frac{7^{7^{7^{*}}}}{(\log 7)^{3}}+c$ 175. Put $x^2 = t \Rightarrow 2x \, dx = dt$ $\int x^3 \cos x^2 dx$ *.*. $=\frac{1}{2}\int t\cos t dt = \frac{1}{2}(t\sin t - \int \sin t dt)$ $=\frac{1}{2}(t\sin t + \cos t) + c$ $=\frac{1}{2}(x^{2}\sin x^{2}+\cos x^{2})+c$ 176. Put $x = \cos \theta \Rightarrow \theta = \cos^{-1} x$ $\therefore \qquad \tan^{-1}\sqrt{\frac{1-x}{1+x}} = \tan^{-1}\left(\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}\right)$ $= \tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}}\right)$ $= \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2}$ $=\frac{1}{2}\cos^{-1}x$

$$\therefore \int \tan^{-1} \sqrt{\frac{1-x}{1+x}} \, dx = \frac{1}{2} \int (\cos^{-1} x. 1 dx) \\ = \frac{1}{2} \left[\cos^{-1} x. x + \int \frac{1}{\sqrt{1-x^2}} . x dx \right] \\ = \frac{1}{2} \left[x \cos^{-1} x. - \sqrt{1-x^2} \right] + c$$
177. Let I = $\int x \sin x \sec^3 x dx \\ = \int x \tan x. \sec^2 x dx$
Put tan $x = t \Rightarrow \sec^2 x dx = dt$

$$\therefore I = \int \tan^{-1} t. t dt \\= \tan^{-1} t. \frac{t^2}{2} - \int \frac{1}{1+t^2} . \frac{t^2}{2} dt \\= \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} \int \left(\frac{t^2 + 1 - 1}{1+t^2} \right) dt \\= \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} \int \left(1 - \frac{1}{1+t^2} \right) dt \\= \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} t + \frac{1}{2} \tan^{-1} t + c \\= \frac{x \tan^2 x}{2} - \frac{1}{2} \tan x + \frac{1}{2} x + c \\= \frac{1}{2} (x \sec^2 x - \tan x) + c$$
178. $\int \log(x+1) dx = \int \log(x+1) . 1 dx \\= \log(x+1) . x - \int \frac{x}{x+1} dx \\= x \log(x+1) - \int \frac{x+1-1}{x+1} dx \\= x \log(x+1) - \int (1 - \frac{1}{x+1}) dx \\= x \log(x+1) - x + \log(x+1) + c \\= (x+1) \log(x+1) - x + c$
179. $\int \frac{1}{\cos x} (1 + \cos x) dx \\= \int \frac{1+\cos x - \cos x}{\cos x} dx \\= \int \frac{1}{\cos x} - \int \frac{dx}{1+\cos x} dx$

MHT-CET Triumph Maths (Hints)

$$= \int \sec x \, dx - \int \frac{dx}{2\cos^2 \frac{x}{2}}$$
$$= \int \sec x \, dx - \frac{1}{2} \int \sec^2 \frac{x}{2} \, dx$$
$$= \log|\sec x + \tan x| - \frac{1}{2} \left(\tan \frac{x}{2} \right) \cdot 2 + c$$
$$= \log|\sec x + \tan x| - \tan \frac{x}{2} + c$$

Competitive Thinking

1. Rationalizing the denominator, we get

$$\int \frac{dx}{\sqrt{x} + \sqrt{x - 2}} = \frac{1}{2} \int (\sqrt{x} - \sqrt{x - 2}) dx$$
$$= \frac{1}{2} \left[\frac{x^{3/2}}{3/2} - \frac{(x - 2)^{3/2}}{3/2} \right] + c$$
$$= \frac{1}{3} \left\{ x^{3/2} - (x - 2)^{3/2} \right\} + c$$

2. Let $f(x) = e^x$

00

$$\therefore \int [f(x)]^2 dx = \int (e^x)^2 dx = \frac{e^{2x}}{2} = \frac{1}{2} [f(x)]^2$$

3.
$$\int e^{x \log a} \cdot e^{x} dx = \int e^{\log a^{x}} \cdot e^{x} dx = \int a^{x} e^{x} dx$$
$$= \int (ae)^{x} dx = \frac{(ae)^{x}}{\log(ae)} + c$$

4.
$$\int \frac{e^{5\log x} - e^{4\log x}}{e^{3\log x} - e^{2\log x}} dx = \int \frac{x^5 - x^4}{x^3 - x^2} dx$$
$$= \int \frac{x^4 (x-1)}{x^2 (x-1)} dx = \int x^2 dx = \frac{x^3}{3} + c$$
$$e^{5\log x} - e^{5\log x} - x^6 - x^5$$

5.
$$\int \frac{e^{-x^{3}} - e^{-x^{3}}}{e^{4\log x} - e^{3\log x}} dx = \int \frac{x^{3} - x^{3}}{x^{4} - x^{3}} dx$$
$$= \int \frac{x^{5}(x-1)}{x^{3}(x-1)} dx$$
$$= \int x^{2} dx = \frac{x^{3}}{3} + c$$

6.
$$\int x^{51} (\tan^{-1} x + \cot^{-1} x) dx = \int x^{51} \cdot \frac{\pi}{2} dx$$
$$\dots \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$
$$= \frac{\pi}{2} \cdot \frac{x^{52}}{52} + c$$
$$= \frac{x^{52}}{52} (\tan^{-1} x + \cot^{-1} x) + c$$

7.
$$\int \frac{x+1}{\sqrt{x}} dx = \int \left(\frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}}\right) dx$$
$$= \int (x^{\frac{1}{2}} + x^{-\frac{1}{2}}) dx$$
$$= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$
$$= \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + c$$

8.
$$\int \frac{x + \sqrt{1 - x^2}}{x\sqrt{1 - x^2}} dx = \int \frac{1}{\sqrt{1 - x^2}} dx + \int \frac{1}{x} dx$$
$$= \sin^{-1} x + \log x + c$$

9.
$$\int \frac{\sin^2 x}{1 + \cos x} dx = \int \frac{1 - \cos^2 x}{1 + \cos x} dx$$
$$= \int (1 - \cos x) dx$$
$$= x - \sin x + C$$

11.
$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{(\cos^2 x + \sin^2 x)}{\cos^2 x \sin^2 x} dx$$
$$= \int \left(\frac{1}{\sin^2 x} + \frac{1}{\cos^2 x}\right) dx$$
$$= \int \csc^2 x \, dx + \int \sec^2 x \, dx$$
$$= -\cot x + \tan x + c$$

12.
$$\int \frac{dx}{\sin x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x} dx$$
$$= \int \frac{\sin x}{\cos^2 x} dx + \int \frac{1}{\sin x} dx$$
$$= \int \sec x \tan x dx + \int \csc x dx$$
$$= \sec x + \log |\csc x - \cot x| + \cos x dx$$

13.
$$\int \frac{1}{1+\cos 8x} dx = \int \frac{1}{2\cos^2 4x} dx$$
$$= \frac{1}{2} \int \sec^2 4x \, dx$$
$$= \frac{\tan 4x}{8} + c$$

14. Let
$$I = \int \frac{\sin 2x}{\sin 5x \sin 3x} dx$$

$$= \int \frac{\sin (5x - 3x)}{\sin 5x \sin 3x} dx$$

$$= \int (\cot 3x - \cot 5x) dx$$

$$= \int (\cot 3x - \cot 5x) dx$$

$$= \frac{1}{3} \log |\sin 3x| - \frac{1}{5} \log |\sin 5x| + c$$
15. $\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx = \int \frac{2(\cos^2 x - \cos^2 \theta)}{\cos x - \cos \theta} dx$

$$= 2\int (\cos x + \cos \theta) dx$$

$$= 2(\sin x + x \cos \theta) + c$$
16. $\int \frac{\cos x - 1}{\cos x + 1} dx = -\int \frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx$

$$= -\int \tan^2 \frac{x}{2} dx = -\int (\sec^2 \frac{x}{2} - 1) dx$$

$$= \int (1 - \sec^2 \frac{x}{2}) dx = x - 2 \tan \frac{x}{2} + c$$
17. $\int \frac{x + \sin x}{1 + \cos x} dx = \int \frac{x + 2\sin \frac{x}{2} \cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx$

$$= \frac{1}{2} \int x \sec^2 \frac{x}{2} dx + \int \tan \frac{x}{2} dx$$

$$= \frac{1}{2} \int x \sec^2 \frac{x}{2} dx + \int \tan \frac{x}{2} dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \frac{1}{2} (-\cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

$$= \int (1 - \cos x) \csc^2 x dx$$

19.
$$\int \sqrt{1-\sin 2x} \, dx$$
$$= \int \sqrt{\cos^2 x + \sin^2 x - 2\sin x \cos x} \, dx$$
$$= \int \sqrt{(\cos x - \sin x)^2} \, dx$$
$$= \int (\cos x - \sin x) dx = \sin x + \cos x + c$$
20.
$$\int \sqrt{1+\sin \frac{x}{2}} \, dx$$
$$= \int \sqrt{\left(\sin^2 \frac{x}{4} + \cos^2 \frac{x}{4} + 2\sin \frac{x}{4} \cos \frac{x}{4}\right)} \, dx$$
$$= \int \left(\sin \frac{x}{4} + \cos \frac{x}{4}\right) dx = 4 \left(\sin \frac{x}{4} - \cos \frac{x}{4}\right) + c$$
21.
$$\int \sqrt{2} \sqrt{1+\sin x} \, dx = \sqrt{2} \int \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right) dx$$
$$= 2 \int \sin \left(\frac{x}{2} + \frac{\pi}{4}\right) dx$$
$$= -4 \cos \left(\frac{x}{2} + \frac{\pi}{4}\right) + c$$
$$\therefore \quad a = \frac{1}{2}, b = \frac{\pi}{4}$$
22.
$$\int (\sin 2x - \cos 2x) \, dx = \frac{1}{\sqrt{2}} \sin(2x - a) + b$$
$$\Rightarrow -\frac{1}{2} (\sin 2x + \cos 2x) = \frac{1}{\sqrt{2}} \sin(2x - a) + b$$
$$\Rightarrow -\left[\frac{1}{\sqrt{2}} \sin 2x + \frac{1}{\sqrt{2}} \cos 2x\right] = \sin(2x - a) + b\sqrt{2}$$
$$\Rightarrow \sin \left(2x + \frac{\pi}{4}\right) = \sin(2x - a) + b\sqrt{2}$$
$$\therefore \quad b \text{ is any constant and } a = \frac{-5\pi}{4}$$
23.
$$\int \frac{dx}{1+\sin x} = \int \frac{dx}{1+\cos\left(\frac{\pi}{2} - x\right)}$$
$$= \int \frac{dx}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}$$
$$= \frac{1}{2} \int \sec^2\left(\frac{x}{2} - \frac{\pi}{4}\right) dx$$

MHT-CET Triumph Maths (Hints) $=\frac{1}{2}\cdot\frac{\tan\left(\frac{x}{2}-\frac{\pi}{4}\right)}{\frac{1}{2}}+c$ $= \tan\left(\frac{x}{2} - \frac{\pi}{4}\right) + c$ $a = \frac{-\pi}{4}$ and b = arbitrary constant *.*.. $\int \frac{\cos \alpha}{\sin x \cos (\alpha - x)} \, dx = \int \frac{\cos[(\alpha - x) + x]}{\sin x \cos(\alpha - x)} \, dx$ 24. $= \int \frac{\cos(\alpha - x)\cos x - \sin(\alpha - x)\sin x}{\sin x \cos(\alpha - x)} \, \mathrm{d}x$ $= \int \int \cot x - \tan(a - x) dx$ $= \log |\sin x| - \log |\cos (\alpha - x)| + c_1$ $= -\log \left| \frac{\cos(\alpha - x)}{\sin x} \right| + c_1$ $= -\log\left|\frac{\cos\alpha\cos x + \sin\alpha\sin x}{\sin x}\right| + c_1$ $= -\log |\cos \alpha (\cot x + \tan \alpha)| + c_1$ $= -\log |\cot x + \tan \alpha| - \log |\cos \alpha| + c_1$ $= -\log |\cot x + \tan \alpha| + c$ 25. $\int \sec^4 x \tan x \, dx = \int \sec^3 x \sec x \tan x \, dx$ Put $t = \sec x \Longrightarrow dt = \sec x \tan x dx$ $\int \sec^4 x \tan x \, dx = \int t^3 dt = \frac{t^4}{4} + c = \frac{1}{4} \sec^4 x + c$ *.*.. $I_4 = \int \tan^4 x \, dx$, $I_6 = \int \tan^6 x \, dx$ 26. $I_4 + I_6 = \int (\tan^4 x + \tan^6 x) dx$ $=\int \tan^4 x (1+\tan^2 x) dx$ $=\int \tan^4 x \cdot \sec^2 x \, dx$ $=\frac{1}{5}\tan^{5}x+c$ Comparing with a $\tan^5 x + bx^5 + c$, we get $a = \frac{1}{5}, b = 0$ ÷. 27. $I_4 - \frac{2}{3}I_2 = \int \left(\sec^4 x - \frac{2}{3}\sec^2 x\right) dx$ $=\int \sec^2 x \left(\sec^2 x - \frac{2}{3} \right) dx$ $= \int \sec^2 x \left(\frac{3\sec^2 x - 2}{3} \right) dx$

 $= \frac{1}{2} \int \sec^2 x (3\tan^2 x + 1) dx$

Put
$$\tan x = t \Rightarrow \sec^2 x \, dx = dt$$

 $\therefore \quad I_4 - \frac{2}{3}I_2 = \frac{1}{3}\int (3t^2 + 1)dt$
 $= \frac{1}{3}(t^3 + t) + c$
 $= \frac{1}{3}[t(t^2 + 1)] + c$
 $= \frac{1}{3}[\tan x (\tan^2 x + 1)] + c$
 $= \frac{1}{3}\sec^2 x \tan x + c$
28. Put $\log x = t \Rightarrow \frac{1}{x}dx = dt$
 $\therefore \quad \int \frac{\cos(\log x)}{x}dx = \int \cot t$
 $= \sin t + c = \sin(\log x) + c$
29. Put $x^2 = t \Rightarrow 2x \, dx = dt$
 $\int x e^{x^2 \log^2} e^{x^2} dx = \frac{1}{2}\int e^t 2t dt$
 $= \frac{1}{2}\int (2e)^t dt$
 $= \frac{1}{2}\int (2e)^t dt$

$$= \frac{(2c)}{2 \log(2e)} + c$$
$$= \frac{2^{x^2} e^{x^2}}{2(\log 2 + 1)} + c$$

30. Put
$$t = \tan^{-1} x^2 \Rightarrow dt = \frac{1}{1 + x^4} \cdot 2x \, dx$$

 $\therefore \qquad \int \frac{2x \tan^{-1} x^2}{1 + x^4} \, dx = \int t \, dt = \frac{t^2}{2} + c$
 $= \frac{1}{2} (\tan^{-1} x^2)^2 + c$

31. Let I =
$$\int (e^x + e^{-x})^2 (e^x - e^{-x}) dx$$

Put $e^x + e^{-x} = t \Rightarrow (e^x - e^{-x}) dx = dt$
∴ I = $\int t^2 dt = \frac{t^3}{3} + c = \frac{1}{3} (e^x + e^{-x})^3 + c$

32. Put
$$t = x + \log \sec x$$

 $\Rightarrow dt = (1 + \tan x)dx$
 $\therefore \qquad \int \frac{1 + \tan x}{x + \log \sec x} dx = \int \frac{1}{t} dt = \log t + c$
 $= \log(x + \log \sec x) + c$

Chapter 04: Integration 39. Let I = $\int \frac{1}{4\sqrt{x} + x} dx = \int \frac{1}{\sqrt{x}(4 + \sqrt{x})} dx$ Put $4 + \sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx = dt$
$$\therefore \quad I = \int \frac{2dt}{t} = 2 \log t + c$$
$$= 2 \log \left(\sqrt{x} + 4\right) + c$$

40. Let I =
$$\int \frac{x \sin x}{x \cos x - \sin x - 1} dx$$

Put x cos x - sin x - 1 = t
 $\Rightarrow x \sin x dx = -dt$

$$\therefore \quad I = -\int \frac{dt}{t} = -\log|t| + c$$
$$= -\log|x \cos x - \sin x - 1| + c$$

41. Let I =
$$\int \frac{dx}{\sin x \cos x + 3 \cos^2 x} = \int \frac{\sec^2 x}{\tan x + 3} dx$$

Put $\tan x + 3 = t$
 $\Rightarrow \sec^2 x \, dx = dt$

$$\therefore \qquad I = \int \frac{dt}{t} = \log |t| + c = \log |\tan x + 3| + c$$

42.
$$\int \frac{\cos x}{\sqrt{1+\sin x}} dx = 2\sqrt{1+\sin x} + c$$
$$\dots \left[\because \int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c \right]$$
$$= 2\sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} + c$$
$$= 2\left[\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) \right] + c$$

43. Put 1 + log tan
$$\frac{x}{2} = t$$

$$\Rightarrow \left(\frac{1}{\tan\left(\frac{x}{2}\right)} \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2}\right) dx = dt$$

$$\Rightarrow \operatorname{cosec} x \, dx = dt$$

$$\therefore \quad \int \frac{\operatorname{cosec} x}{\operatorname{cos}^2 \left(1 + \log \tan \frac{x}{2}\right)} dx = \int \frac{dt}{\operatorname{cos}^2 t}$$
$$= \int \operatorname{sec}^2 t \, dt$$
$$= \tan t + c$$
$$= \tan \left(1 + \log \tan \frac{x}{2}\right) + c$$

531

Γ

33. Put
$$1 + \log x = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \qquad \int \frac{1 + \log x}{x} dx = \int t dt = \frac{t^2}{2} + c = \frac{(1 + \log x)^2}{2} + c$$
34. Put $a^2 + b^2 \sin^2 x = t$

$$\Rightarrow b^2 \sin 2x dx = dt$$

$$\therefore \qquad \int \frac{\sin 2x}{x} dx = \frac{1}{2} \int \frac{dt}{x}$$

$$\int \frac{1}{a^{2} + b^{2} \sin^{2} x} dx - \frac{1}{b^{2}} \int \frac{1}{t}$$
$$= \frac{1}{b^{2}} \log t + c$$
$$= \frac{1}{b^{2}} \log(a^{2} + b^{2} \sin^{2} x) + c$$

35. Put
$$x^3 = t \Rightarrow 3x^2 dx = dt$$

$$\therefore \qquad \int x^2 \sec x^3 dx = \frac{1}{3} \int \sec t \, dt$$

$$= \frac{1}{3} \log(\sec t + \tan t) + c$$

$$= \frac{1}{3} \log(\sec x^3 + \tan x^3) + c$$

36.
$$\int \frac{e^x(x+1)}{\cos^2(xe^x)} dx = \int e^x(x+1)\sec^2(xe^x) dx$$

Put $xe^x = t \Rightarrow (x+1)e^x dx = dt$
$$\therefore \quad \int \frac{e^x(x+1)}{\cos^2(xe^x)} dx = \int \sec^2 t dt = \tan t + c$$
$$= \tan(xe^x) + c$$

37. Let
$$I = \int \frac{1+x}{x+e^{-x}} dx = \int \frac{e^x(1+x)}{xe^x+1} dx$$

Put $xe^x + 1 = t \Rightarrow e^x(1+x)dx = dt$
 $\therefore \quad I = \int \frac{dt}{t} = \log|t| + c = \log|1+xe^x| + c$

38. Put
$$x + \tan^{-1}x = t$$

$$\Rightarrow \left(1 + \frac{1}{1 + x^{2}}\right)dx = dt \Rightarrow \frac{2 + x^{2}}{1 + x^{2}}dx = dt$$

$$\therefore \int \left[\frac{(x^{2} + 2)a^{(x + \tan^{-1}x)}}{x^{2} + 1}\right]dx = \int a^{t}dt$$

$$= \frac{a^{t}}{\log a} + c$$

$$= \frac{a^{x + \tan^{-1}x}}{\log a} + c$$

MHT-CET Triumph Maths (Hints) Put $x = t^2 \Rightarrow dx = 2t dt$ 44. $\int \frac{\log \sqrt{x}}{2r} dx = \int \frac{\log t}{2r^2} (2tdt)$ *.*.. $=\frac{2}{2}\int \frac{\log t}{t}dt$ $=\frac{2}{3}\cdot\frac{(\log t)^2}{2}+c$ $=\frac{\left(\log\sqrt{x}\right)^2}{2}+c$ 45. Let I = $\int \left[\frac{\log x - 1}{1 + (\log x)^2} \right]^2 dx$ Put $\log x = t$ $x = e^{t} \Longrightarrow dx = e^{t} dt$ *.*. \therefore I = $\int \left(\frac{t-1}{1+t^2}\right)^2 e^t dt$ $=\int \left| \frac{1+t^2-2t}{(1+t^2)^2} \right| e^t dt$ $=\int e^{t}\left|\frac{1}{1+t^{2}}+\frac{(-2t)}{(1+t^{2})^{2}}\right|dt$ $= e^t \left(\frac{1}{1+t^2} \right) + c$ $\dots \left[\because \int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} f(x) + c \right]$ $=\frac{x}{1+(\log x)^2}+c$ 46. $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx = \int \frac{\tan x}{\sqrt{\tan x} \sin x \cos x} dx$ $=\int \frac{\sin x \sec x}{\sqrt{\tan x} \sin x \cos x} dx$ $=\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$ Put $t = \tan x \Longrightarrow dt = \sec^2 x dx$ $\therefore \qquad \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx = \int \frac{1}{\sqrt{t}} dt = 2t^{1/2} + c = 2\sqrt{\tan x} + c$ 47. Let I = $\int \frac{x^3 \sin\left[\tan^{-1}\left(x^4\right)\right]}{1+x^8} dx$ Put $x^4 = t \Longrightarrow 4x^3 dx = dt$ $I = \frac{1}{4} \int \frac{\sin(\tan^{-1} t)}{1 + t^2} dt$ *.*..

Put $\tan^{-1} t = z \Longrightarrow \frac{1}{1+t^2} dt = dz$ \therefore I = $\frac{1}{4}\int \sin z \, dz = \frac{1}{4}(-\cos z) + c$ $=-\frac{1}{4}\cos(\tan^{-1}t) + c = \frac{-1}{4}\cos[\tan^{-1}(x^{4})] + c$ 48. Let I = $\int \csc^4 x \, dx = \int \csc^2 x \cdot \csc^2 x \, dx$ $= \int \csc^2 x (1 + \cot^2 x) dx$ $=\int \csc^2 x \, dx + \int \cot^2 x \cdot \csc^2 x \, dx$ In 2^{nd} integral, put $\cot x = t \Rightarrow -\csc^2 x \, dx = dt$ $I = \int \csc^2 x \, dx - \int t^2 dt$ *.*.. $=-\cot x - \frac{t^3}{2} + c = -\cot x - \frac{\cot^3 x}{2} + c$ 49. Let I = $\int (x+1)(x+2)^7 (x+3) dx$ Put $x + 2 = t \Rightarrow dx = dt$ $I = \int (t-1)t^{7}(t+1)dt = \int (t^{2}-1)t^{7}dt$ *.*.. $=\int (t^9 - t^7) dt$ $=\frac{t^{10}}{10}-\frac{t^8}{8}+c$ $=\frac{(x+2)^{10}}{10}-\frac{(x+2)^8}{9}+c$ $\int \sec x \, dx = \log(\sec x + \tan x) + c$ 50. $= \log \left(\frac{\sec^2 x - \tan^2 x}{\sec x - \tan x} \right) + c$ $= \log\left(\frac{1}{\sec x - \tan x}\right) + c$ $= -\log(\sec x - \tan x) + c$ 51. $\int \frac{1 - \tan x}{1 + \tan x} dx = \int \tan\left(\frac{\pi}{4} - x\right) dx$ $= \frac{-\log \cos \left(\frac{\pi}{4} - x\right)}{1} + c$ $=\log\cos\left(\frac{\pi}{4}-x\right)+c$ $=\log \sin \left| \frac{\pi}{2} - \left(\frac{\pi}{4} - x \right) \right| + c$ $= \log \sin \left(\frac{\pi}{4} + x \right) + c$

 $\int \frac{\mathrm{d}x}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \int \frac{\mathrm{d}x}{\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}}$ 52. $=\frac{1}{\sqrt{2}}\int \csc\left(x+\frac{\pi}{4}\right) dx$ $=\frac{1}{\sqrt{2}}\log\tan\left(\frac{\pi}{8}+\frac{x}{2}\right)+c$ 53. $\int \frac{1}{\sqrt{1+\sin x}} dx = \int \frac{1}{\sin \frac{x}{2} + \cos \frac{x}{2}} dx$ $=\int \frac{1}{\sqrt{2}\sin\left(\frac{x}{2}+\frac{\pi}{4}\right)} dx$ $=\frac{1}{\sqrt{2}}\int \operatorname{cosec}\left(\frac{x}{2}+\frac{\pi}{4}\right)dx$ $=\sqrt{2}\log \tan\left(\frac{\pi}{8}+\frac{x}{4}\right)+c$ 54. Let I = $\sqrt{2} \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} dx$ Put $x - \frac{\pi}{4} = t \Longrightarrow dx = dt$ $\therefore \qquad I = \sqrt{2} \int \frac{\sin\left(\frac{\pi}{4} + t\right)}{\sin t} dt = \int \frac{\cos t + \sin t}{\sin t} dt$ $= \int \cot t \, dt + \int dt = \log |\sin t| + t + c_1$ $= x - \frac{\pi}{4} + \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c_1$ $= x + \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c$, where $c = c_1 - \frac{\pi}{4}$ $\int (1+2\tan^2 x + 2\tan x \sec x)^{1/2} dx$ 55. $= \int (\sec^2 x + \tan^2 x + 2 \tan x \sec x)^{1/2} dx$ $=\int (\sec x + \tan x) dx$ $= \log(\sec x + \tan x) + \log \sec x + c$ $= \log \sec x (\sec x + \tan x) + c$ 56. $\int \frac{dx}{e^x + e^{-x}} = \int \frac{e^x}{e^{2x} + 1} dx$ $=\int \frac{dt}{t^2+1}$[Put $e^x = t \Rightarrow e^x dx = dt$]

 $= \tan^{-1}(t) + c$ $= \tan^{-1}(e^{x}) + c$

57. Let I =
$$\int \frac{1}{1+e^x} dx = \int \frac{1}{1+\frac{1}{e^{-x}}} dx$$

= $\int \frac{e^{-x}}{1+e^{-x}} dx$
Put $e^{-x} = t \Rightarrow -e^{-x} dx = dt$
∴ I = $-\int \frac{1}{1+t} dt$
= $-\log(1+t)+c$
= $-\log(1+e^x)+c$
= $-\log(\frac{1+e^x}{e^x})+c$
= $\log(\frac{e^x}{1+e^x})+c$
= $\log(\frac{e^x}{1+e^x})+c$
58. Let I = $\int \frac{dx}{e^x+e^{-x}+2}$
= $\int \frac{e^x dx}{e^{2x}+2e^x+1}$
Put $e^x = t \Rightarrow e^x dx = dt$
∴ I = $\int \frac{dt}{t^2+2t+1} = \int \frac{dt}{(t+1)^2}$
= $\frac{-1}{t+1} + c = \frac{-1}{e^x+1} + c$
59. Put $x^2 = t \Rightarrow xdx = \frac{dt}{2}$
∴ $\int \frac{x}{1+x^4} dx = \frac{1}{2}\int \frac{dt}{1+t^2}$
= $\frac{1}{2}\tan^{-1}t+c$
= $\frac{1}{2}\tan^{-1}(x^2)+c$
60. $\int \frac{1}{(1+x)\sqrt{x}} dx = \int \frac{1}{[1+(\sqrt{x})^2]\sqrt{x}} dx$
Put $\sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx = dt$
∴ $\int \frac{1}{(1+x)\sqrt{x}} dx = \frac{1}{2}2\tan^{-1}t + A$
∴ $\int \frac{1}{(1+x)\sqrt{x}} dx = 2\tan^{-1}\sqrt{x} + A$
∴ $\int \frac{1}{(1+x)\sqrt{x}} dx = 2\tan^{-1}\sqrt{x} + A$
∴ $f(x) = 2\tan^{-1}\sqrt{x}$

Chapter 04: Integration

MHT-CET Triumph Maths (Hints) 61. Let I = $\int \frac{x^2}{1 + (x^3)^2} dx$ Put $x^3 = t \Longrightarrow 3x^2 dx = dt$ $\therefore \qquad I = \frac{1}{3} \int \frac{dt}{1 + t^2}$ $=\frac{1}{2} \tan^{-1} t + c$ $=\frac{1}{2}\tan^{-1}x^3 + c$ 62. Put $x^4 = t \Rightarrow 4x^3 dx = dt$ $\therefore \int \frac{x^3 dx}{1+x^8} = \frac{1}{4} \int \frac{dt}{1+t^2} = \frac{1}{4} \tan^{-1} t + c$ $=\frac{1}{4}\tan^{-1}(x^4)+c$ 63. $\int \frac{dx}{16x^2 + 9} = \int \frac{dx}{(4x)^2 + 3^2}$ $=\frac{1}{12}\tan^{-1}\left(\frac{4x}{3}\right)+c$ 64. Let I = $\int \frac{1}{\sqrt{9 - 16x^2}} dx$ $=\int \frac{1}{\sqrt{3^2 - (4x)^2}} dx$ $=\frac{1}{4}\sin^{-1}\left(\frac{4x}{3}\right)+c$ Comparing with $\alpha \sin^{-1}(\beta x) + c$, we get $\alpha = \frac{1}{4}, \beta = \frac{4}{2}$ $\therefore \qquad \alpha + \frac{1}{\beta} = \frac{1}{4} + \frac{3}{4} = 1$ 65. Let I = $\int \frac{dx}{\sqrt{16 - 9x^2}}$ $=\int \frac{1}{\sqrt{4^2 - (3x)^2}} dx$ $=\frac{1}{3}\sin^{-1}\frac{3x}{4}+C$ Comparing with A $\sin^{-1}(Bx) + C$, we get $A = \frac{1}{2}, B = \frac{3}{4}$ $A + B = \frac{1}{3} + \frac{3}{4} = \frac{13}{12}$ *.*..

66. Let I = $\int \frac{dx}{\sqrt{x^{10} - x^2}}$ $=\int \frac{\mathrm{d}x}{r\sqrt{r^8-1}}$ $=\int \frac{x^3 \,\mathrm{d}x}{x^4 \sqrt{x^8 - 1}}$ Put $x^4 = t \Longrightarrow 4x^3 dx = dt$ $\therefore \qquad I = \frac{1}{4} \int \frac{dt}{t \sqrt{t^2 - 1}}$ $=\frac{1}{4} \sec^{-1} t + c$ $=\frac{1}{4} \sec^{-1}(x^4) + c$ 67. Let I = $\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$ $=\int \frac{2\sin x \cos x}{\sin^4 x + \cos^4 x} dx$ $=\int \frac{2\tan x \sec^2 x}{1+\tan^4 x} dx$ Put $\tan^2 x = t \Longrightarrow 2\tan x \sec^2 x dx = dt$:. $I = \int \frac{dt}{1+t^2} = \tan^{-1} t + c = \tan^{-1}(\tan^2 x) + c$ 68. Let I = $\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$ $=\int \frac{2\sin x \cos x}{\sin^4 x + \cos^4 x} dx$ $=\int \frac{2\tan x \sec^2 x}{1+\tan^4 x} \mathrm{d}x$ Put $\tan^2 x = t \Longrightarrow 2 \tan x \sec^2 x \, dx = dt$ $I = \int \frac{dt}{1+t^2} = \tan^{-1} t + c = \tan^{-1}(\tan^2 x) + c$ *.*.. Comparing with $\tan^{-1}[f(x)] + c$, we get $f(x) = \tan^2 x$ \therefore f $\left(\frac{\pi}{3}\right) = \tan^2 \frac{\pi}{3} = \left(\sqrt{3}\right)^2 = 3$ 69. $=\int \frac{\sin^2 x \cos^2 x}{\left(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x\right)^2} \, dx$ $= \int \frac{\sin^2 x \cos^2 x}{\left[\left(\sin^2 x + \cos^2 x \right) \left(\sin^3 x + \cos^3 x \right) \right]^2} \, \mathrm{d}x$ $= \int \frac{\sin^2 x \cos^2 x}{\left(\sin^3 x + \cos^3 x\right)^2} \,\mathrm{d}x$

Chapter 04: Integration

Dividing numerator and denominator by $\cos^6 x$, we get

$$I = \int \frac{\tan^2 x \cdot \sec^2 x}{\left(1 + \tan^3 x\right)^2} dx$$

Put $1 + \tan^3 x = t \Longrightarrow 3 \tan^2 x \sec^2 x dx = dt$
$$\therefore \quad I = \frac{1}{3} \int \frac{dt}{t^2} = -\frac{1}{3t} + c = \frac{-1}{3\left(1 + \tan^3 x\right)} + c$$

70. Put
$$a^x = t \Rightarrow a^x \log_e a dx = dt$$

$$\therefore \qquad \int \frac{a^x}{\sqrt{1 - a^{2x}}} dx = \frac{1}{\log_e a} \int \frac{dt}{\sqrt{1 - t^2}}$$

$$= \frac{1}{\log_e a} \sin^{-1}(t) + c = \frac{\sin^{-1}(a^x)}{\log_e a}$$

+ c

71.
$$\int \frac{1}{\sqrt{8+2x-x^2}} dx = \int \frac{1}{\sqrt{8+1-(x^2-2x+1)}} dx$$
$$= \int \frac{1}{\sqrt{3^2-(x-1)^2}} dx$$
$$= \sin^{-1}\left(\frac{x-1}{3}\right) + c$$

72.
$$\int \frac{1}{\sqrt{3 - 6x - 9x^2}} \, dx = \int \frac{1}{\sqrt{3 - (9x^2 + 6x)}} \, dx$$
$$= \int \frac{1}{\sqrt{4 - (9x^2 + 6x + 1)}} \, dx$$
$$= \int \frac{1}{\sqrt{2^2 - (3x + 1)^2}} \, dx$$
$$= \frac{1}{3} \sin^{-1} \left(\frac{3x + 1}{2}\right) + c$$

73. I =
$$\int \frac{dx}{\sqrt{(1-x)(x-2)}} = \int \frac{dx}{\sqrt{-2+3x-x^2}}$$

= $\int \frac{dx}{\sqrt{-2+\frac{9}{4}-(x^2-3x+\frac{9}{4})}}$
= $\int \frac{dx}{\sqrt{(\frac{1}{2})^2-(x-\frac{3}{2})^2}}$
= $\sin^{-1}\left(\frac{x-\frac{3}{2}}{\frac{1}{2}}\right) + C$
∴ I = $\sin^{-1}(2x-3) + C$

74. Let I =
$$\int \sqrt{\frac{x-5}{x-7}} \, dx$$

= $\int \frac{x-5}{\sqrt{(x-7)(x-5)}} \, dx$
= $\int \frac{x-5}{\sqrt{x^2-12x+35}} \, dx$
= $\frac{1}{2} \int \frac{2x-10}{\sqrt{x^2-12x+35}} \, dx$
= $\frac{1}{2} \int \frac{2x-12+2}{\sqrt{x^2-12x+35}} \, dx$
= $\frac{1}{2} \int \frac{2x-12}{\sqrt{x^2-12x+35}} \, dx + \frac{2}{2} \int \frac{dx}{\sqrt{x^2-12x+36-11}}$
= $\frac{1}{2} \times 2\sqrt{x^2-12x+35} + \int \frac{dx}{\sqrt{(x-6)^2-11}}$
= $\sqrt{x^2-12x+35} + \log |(x-6) + \sqrt{x^2-12x+35}| + c$
Comparing with $A\sqrt{x^2-12x+35}$
 $+\log |(x-6) + \sqrt{x^2-12x+35}| + c$, we get $A = 1$

75. Let I =
$$\int \sqrt{x^2 + 2x + 5} \, dx$$

= $\int \sqrt{(x+1)^2 + 2^2} \, dx$
= $\frac{x+1}{2} \sqrt{x^2 + 2x + 5}$
+ $2 \log \left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + c$

76. Let
$$I = \int \frac{\sec^8 x}{\csc x} dx$$

$$= \int \frac{\sin x}{\cos^8 x} dx$$

$$= \int \tan x \cdot \sec^7 x dx$$

$$= \int \sec^6 x \sec x \tan x dx$$
Put $\sec x = t \Longrightarrow \sec x \tan x dx = dt$

$$\therefore \quad I = \int t^6 dt$$

$$= \frac{t^7}{7} + c$$

$$= \frac{\sec^7 x}{7} + c$$

MHT-CET Triumph Maths (Hints) $\int \frac{\mathrm{d}x}{5+4\cos x} = \int \frac{\mathrm{d}x}{5+4\left[\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right]}$ 77. $=\int \frac{\sec^2 \frac{x}{2}}{9 + \tan^2 \frac{x}{2}} \, \mathrm{d}x$ Put $\tan \frac{x}{2} = t \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} dx = dt$ $\therefore \qquad \int \frac{\mathrm{d}x}{5+4\cos x} = 2 \int \frac{\mathrm{d}t}{3^2 \pm t^2}$ $=\frac{2}{3}\tan^{-1}\left(\frac{t}{3}\right)+c$ $=\frac{2}{3}\tan^{-1}\left(\frac{1}{3}\tan\frac{x}{2}\right)+c$ 78. Let I = $\int \frac{dx}{7 + 5\cos x} = \int \frac{dx}{7 + 5\left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right)}$ $= \int \frac{\sec^2\left(\frac{x}{2}\right) dx}{12 + 2\tan^2\left(\frac{x}{2}\right)} = \int \frac{\frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx}{6 + \tan^2\left(\frac{x}{2}\right)}$ Put $\tan \frac{x}{2} = t \implies \frac{1}{2}\sec^2 \frac{x}{2} dx = dt$ $\therefore \qquad I = \int \frac{dt}{t^2 + (\sqrt{6})^2} = \frac{1}{\sqrt{6}} \tan^{-1}\left(\frac{t}{\sqrt{6}}\right) + c$ $=\frac{1}{\sqrt{6}}\tan^{-1}\left(\frac{\tan\frac{x}{2}}{\sqrt{6}}\right)+c$ 79. $\int \frac{dx}{1+3\sin^2 x} = \int \frac{dx}{\sin^2 x + \cos^2 x + 3\sin^2 x}$ $=\int \frac{\mathrm{d}x}{4\sin^2 x + \cos^2 x}$ $= \int \frac{\sec^2 x \, \mathrm{d}x}{4 \tan^2 x + 1}$ $=\frac{1}{4}\int \frac{\sec^2 x \, \mathrm{d}x}{\tan^2 x + \frac{1}{4}}$

Put t = tan $x \Rightarrow$ dt = sec² xdx $\therefore \qquad \int \frac{\mathrm{d}x}{1+3\sin^2 x} = \frac{1}{4} \int \frac{\mathrm{d}t}{t^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{4} \cdot 2\tan^{-1}(2t) + c$ $=\frac{1}{2}\tan^{-1}(2t)+c$ $=\frac{1}{2}\tan^{-1}(2\tan x) + c$

80.
$$\int \frac{5 \tan x}{\tan x - 2} dx = \int \frac{5 \sin x}{\sin x - 2 \cos x} dx$$
$$= \int \frac{(\sin x - 2 \cos x) + 2(\cos x + 2 \sin x)}{\sin x - 2 \cos x} dx$$
$$= \int dx + 2 \int \frac{\cos x + 2 \sin x}{\sin x - 2 \cos x} dx$$
$$= x + 2 \log |\sin x - 2 \cos x| + k$$
$$\therefore \quad a = 2$$

81.
$$\int \frac{\sin x \, dx}{\sin x - \cos x} = \frac{1}{2} \int \frac{2 \sin x}{\sin x - \cos x} \, dx$$
$$= \frac{1}{2} \int \frac{(\sin x - \cos x + \sin x + \cos x)}{\sin x - \cos x} \, dx$$
$$= \frac{1}{2} \int \left(1 + \frac{\sin x + \cos x}{\sin x - \cos x}\right) \, dx$$
$$= \frac{1}{2} [x + \log(\sin x - \cos x)] + c$$

82.
$$\int \frac{4e^x - 25}{2e^x - 5} dx = \int \frac{5(2e^x - 5) - 3(2e^x)}{2e^x - 5} dx$$
$$= 5\int dx - 3\int \frac{2e^x}{2e^x - 5} dx$$
$$= 5x - 3\log|2e^x - 5| + c$$

∴ A = 5 and B = -3

$$\therefore$$
 A = 5 and B = -

83.
$$\int \frac{dx}{\sin(x-a)\sin(x-b)}$$
$$= \frac{1}{\sin(a-b)} \int \frac{\sin\{(x-b) - (x-a)\}}{\sin(x-a)\sin(x-b)} dx$$
$$= \frac{1}{\sin(a-b)} \int \frac{\sin(x-b)\cos(x-a) - \cos(x-b)\sin(x-a)}{\sin(x-a)\sin(x-b)} dx$$
$$= \frac{1}{\sin(a-b)} \left[\int \cot(x-a)dx - \int \cot(x-b)dx \right]$$
$$= \frac{1}{\sin(a-b)} \left[\log|\sin(x-a)| - \log|\sin(x-b)| \right] + c$$
$$= \frac{1}{\sin(a-b)} \log \left| \frac{\sin(x-a)}{\sin(x-b)} \right| + c$$

ation

84. Let
$$I = \int \sqrt{e^x - 1} dx$$

Put $e^x - 1 = t^2$
 $\Rightarrow e^x dx = 2t dt$
 $\Rightarrow dx = \frac{2t}{t^2 + 1} dt$
 $\therefore I = \int t \cdot \frac{2t}{t^2 + 1} dt = \int \frac{2t^2}{t^2 + 1} dt$
 $= \int \frac{2(t^2 + 1) - 2}{t^2 + 1} dt$
 $= 2\int dt - 2\int \frac{dt}{t^2 + 1}$
 $= 2t - 2 \tan^{-1} t + c$
 $= 2(\sqrt{e^x - 1} - \tan^{-1} \sqrt{e^x - 1}) + c$

88.

...

89.

85. Let
$$I = \int \frac{1}{(e^x + e^{-x})^2} dx = \int \frac{e^{2x}}{(e^{2x} + 1)^2} dx$$

Put $e^{2x} + 1 = t \Rightarrow 2 e^{2x} dx = dt$
 $\therefore I = \frac{1}{2} \int \frac{1}{t^2} dt = -\frac{1}{2} \cdot \frac{1}{t} + c$
 $= \frac{-1}{2(2e^x + 1)} + c$

86.
$$\int \frac{1}{\sqrt{1-e^{2x}}} dx = \int \frac{e^{-x}}{\sqrt{e^{-2x}-1}} dx$$
Put $e^{-x} = t \Rightarrow -e^{-x} dx = dt$

$$\therefore \quad \int \frac{1}{\sqrt{1-e^{2x}}} dx = -\int \frac{1}{\sqrt{t^2-1}} dt$$

$$= -\log\left[t + \sqrt{t^2-1}\right] + c$$

$$= -\log\left[e^{-x} + \sqrt{e^{-2x}-1}\right] + c$$

$$= -\log\left[\frac{1}{e^x} + \frac{\sqrt{1-e^{2x}}}{e^x}\right] + c$$

$$= -\log\left[1 + \sqrt{1-e^{2x}}\right] + \log e^x + c$$

$$= x - \log\left[1 + \sqrt{1-e^{2x}}\right] + c$$

87. Put
$$x = \sin \theta \Rightarrow dx = \cos \theta \, d\theta$$

$$\therefore \qquad \int \frac{1+x^2}{\sqrt{1-x^2}} \, dx = \int \frac{1+\sin^2 \theta}{\sqrt{1-\sin^2 \theta}} \cdot \cos \theta \, d\theta$$

$$= \int (1 + \sin^2 \theta) d\theta$$

$$= \int d\theta + \int \left(\frac{1 - \cos 2\theta}{2}\right) d\theta$$

$$= \theta + \frac{1}{2} \left(\theta - \frac{\sin 2\theta}{2}\right) + c$$

$$= \frac{3}{2} \theta - \frac{\sin \theta \cos \theta}{2} + c$$

$$= \frac{3}{2} \theta - \frac{\sin \theta \sqrt{1 - \sin^2 \theta}}{2} + c$$

$$= \frac{3}{2} \theta - \frac{\sin \theta \sqrt{1 - \sin^2 \theta}}{2} + c$$

$$= \frac{3}{2} \sin^{-1} x - \frac{1}{2} x \sqrt{1 - x^2} + c$$
Let I = $\int \frac{1}{x^2 (x^4 + 1)^{\frac{3}{4}}} dx = \int \frac{dx}{x^5 \left(1 + \frac{1}{x^4}\right)^{\frac{3}{4}}}$
Put $1 + \frac{1}{x^4} = t \Rightarrow \frac{-4}{x^5} dx = dt$
I = $-\frac{1}{4} \int \frac{dt}{t^{\frac{3}{4}}} = -\frac{1}{4} \times 4t^{\frac{1}{4}} + c = -t^{\frac{1}{4}} + c$

$$= -\left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} + c = -\left(\frac{x^4 + 1}{x^4}\right)^{\frac{1}{4}} + c$$

$$\int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$$

$$= \int \frac{x^{15} \left(\frac{2}{x^3} + \frac{5}{x^6}\right)}{x^{15} \left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^3} dx$$

Put
$$1 + \frac{1}{x^2} + \frac{1}{x^5} = t \implies \left(\frac{-2}{x^3} - \frac{5}{x^6}\right) dx = dt$$

 $\int 2x^{12} + 5x^9$

$$\therefore \qquad \int \frac{2x^{3} + 5x}{\left(x^{5} + x^{3} + 1\right)^{3}} dx = -\int \frac{dt}{t^{3}}$$
$$= \frac{1}{2t^{2}} + C$$

$$= \frac{1}{2\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^2} + C$$
$$= \frac{x^{10}}{2\left(x^5 + x^3 + 1\right)^2} + C$$

537

MHT-CET Triumph Maths (Hints)			
90.	Put $\frac{x-1}{x+2} = t \Rightarrow \frac{1}{(x+2)^2} dx = \frac{1}{3} dt$		$I = \int \frac{2\left(\frac{dt}{-4}\right) \cdot \left(\frac{t-3}{4}\right)}{(t)^3}$
	$\int \frac{1}{\left[\left(x-1\right)^{3} \left(x+2\right)^{5}\right]^{1/4}} \mathrm{d}x$		$= \frac{-1}{8} \int \frac{t-3}{t^3} dt$
	$=\int \frac{1}{\left(x-1\right)^{3/4} \left(x+2\right)^{-3/4} \left(x+2\right)^{2}} dx$		$= \frac{-1}{8} \left(\int \frac{\mathrm{d}t}{\mathrm{t}^2} - 3 \int \frac{\mathrm{d}t}{\mathrm{t}^3} \right)$
	$=\frac{1}{3}\int t^{-3/4}dt = \frac{1}{3}\cdot\frac{t^{\frac{1}{4}}}{\frac{1}{4}} + c$		$= \frac{-1}{8} \left(\frac{-1}{t} + \frac{3}{2t^2} \right) + C$ $= \left(\frac{1}{2t^2} - \frac{3}{2t^2} \right) + C$
	$= \frac{4}{3} \left(\frac{x-1}{x+2}\right)^{1/4} + c$		$\left(\begin{array}{cc} 8t & 16t^2 \end{array}\right)^{1/2} = \frac{2t-3}{16t^2} + C = \frac{2(3+4\cos x)-3}{16(3+4\cos x)^2} + C$
91.	Let I = $\int \frac{(x-2)dx}{\left\{(x-2)^2(x+3)^7\right\}^{1/3}}$		$I = \frac{3 + 8\cos x}{16(3 + 4\cos x)^2} + C$
	$= \int \frac{\mathrm{d}x}{(x-2)^{-1/3}(x+3)^{7/3}}$	93.	Let I = $\int \frac{dx}{\cos x \sqrt{1 + \cos 2x + \sin 2x}}$
	$= \int \frac{\mathrm{d}x}{(x-2)^{-1/3} \cdot (x-2)^{7/3} \left(\frac{x+3}{x-2}\right)^{7/3}}$		$= \int \frac{\mathrm{d}x}{\cos x \sqrt{2\cos^2 x + 2\sin x \cos x}}$
÷	$I = \int \frac{dx}{(x-2)^2 \left(\frac{x+3}{x+3}\right)^{7/3}}$		$= \int \frac{\cos^2 x \sqrt{2 + 2 \tan x}}{\cos^2 x dx}$ $= \int \frac{\sec^2 x dx}{\sqrt{2 + 2 \tan x}}$
	(x-2) (x-2) Put $\frac{x+3}{x-2} = t \Rightarrow \frac{-5}{(x-2)^2} dx = dt$		$\int \sqrt{2 + 2 \tan x}$ Put 2 + 2 tan x = t \Rightarrow 2 sec ² x dx = dt $I = \frac{1}{2} \int \frac{dt}{dt}$
	$\Rightarrow \frac{\mathrm{d}x}{\left(x-2\right)^2} = \frac{-1}{5} \mathrm{d}t$		$2 \int \sqrt{t}$ $= \frac{1}{2} (2) \sqrt{t} + c$
<i>.</i>	$I = \frac{-1}{5} \int \frac{dt}{t^{7/3}} = \frac{-1}{5} \cdot \frac{t^{-4/3}}{\left(\frac{-4}{2}\right)} + c$		$= \sqrt{t} + c = \sqrt{2 + 2\tan x} + c$
	$=\frac{3}{20}\left(\frac{x-2}{x+3}\right)^{\frac{4}{3}}+c$	94.	Let I = $\int \frac{\sin \theta + \cos \theta}{\sqrt{2 \sin \theta \cos \theta}} d\theta$ = $\int \frac{\sin \theta + \cos \theta}{\sqrt{2 \sin \theta - \cos \theta}} d\theta$
92.	$I = \int \frac{\sin 2x}{(3+4\cos x)^3} dx$		$\int \frac{\sqrt{1 - (1 - 2\sin\theta\cos\theta)}}{\sqrt{1 - (\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta)}}$
	$\Rightarrow I = \int \frac{2\sin x \cos x}{(3 + 4\cos x)^3} dx$		$= \int \frac{\sin \theta + \cos \theta}{\sqrt{1 - (\sin \theta - \cos \theta)^2}} d\theta$
	Put 3 + 4 cos x = t \Rightarrow cos x = $\frac{t-3}{4}$		Put $(\sin\theta - \cos\theta) = t$ $\Rightarrow (\cos\theta + \sin\theta) d\theta = dt$
	$\Rightarrow \sin x \mathrm{d}x = \frac{\mathrm{d}t}{(-4)}$		$I = \int \frac{dt}{\sqrt{1 - t^2}} = \sin^{-1}(t) + c = \sin^{-1}(\sin\theta - \cos\theta) + c$
Chapter 04: Integration

95. Let
$$I = \int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}}$$

Put $x = a \tan \theta \Rightarrow dx = a \sec^2 \theta d\theta$
 \therefore $I = \int \frac{a \sec^2 \theta}{(a^2 + a^2 \tan^2 \theta)^{\frac{3}{2}}} d\theta = \int \frac{a \sec^2 \theta}{a^3 (\sec^2 \theta)^{\frac{3}{2}}} d\theta$
 $= \frac{1}{a^2} \int \frac{d\theta}{\sec \theta} = \frac{1}{a^2} \int \cos \theta d\theta = \frac{1}{a^2} \sin \theta + c$
 $= \frac{1}{a^2} \cdot \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} + c$
 $= \frac{x}{a^2 (x^2 + a^2)^{\frac{1}{2}}} + c$
96. Let $I = \int \frac{1}{a + be^x} dx = \int \frac{e^{-x}}{ae^{-x} + b} dx$
Put $ae^{-x} + b = t \Rightarrow -ae^{-x} dx = dt$
 \therefore $I = -\frac{1}{a} \int \frac{dt}{t} = -\frac{1}{a} \log |t| + c$
 $= -\frac{1}{a} \log |a + be^x| + c|$
 $= \frac{1}{a} \log \left| \frac{e^x}{e^x} \right| + c$
97. Put $x^e + e^x = t$
 $\Rightarrow (ex^{e^{-1}} + e^{x^{-1}}) dx = dt$
 $\Rightarrow e(x^{e^{-1}} + e^{x^{-1}}) dx = dt$
 $\Rightarrow (x^{e^{-1}} + e^{x^{-1}}) dx = \frac{dt}{e}$
 \therefore $\int \frac{x^{e^{-1}} + e^{x^{-1}}}{x^e + e^x} dx = \frac{1}{e} \int \frac{dt}{t} = \frac{1}{e} \log |t| + c$
 $= \frac{1}{e} \log |x^e + e^x| + c$
98. Let $I = \int (x^2 + 1) \sqrt{x + 1} dx$

Put $\sqrt{x+1} = t \Longrightarrow x+1 = t^2$

 $\Rightarrow x = t^2 - 1 \Rightarrow dx = 2t dt$ $\therefore \qquad I = \int \left(\left(t^2 - 1\right)^2 + 1 \right) (t) (2tdt)$

 $= \int (t^4 - 2t^2 + 2)(2t^2) dt$

 $= 2 \left[\int t^6 dt - 2 \int t^4 dt + 2 \int t^2 dt \right]$

$$= 2\left[\frac{t^{7}}{7} - \frac{2t^{5}}{5} + \frac{2t^{3}}{3}\right] + c$$

$$= 2\left[\frac{(x+1)^{7/2}}{7} - \frac{2(x+1)^{5/2}}{5} + \frac{2(x+1)^{3/2}}{3}\right] + c$$
99. Let $I = \int \frac{x^{3}dx}{(x^{2}+1)^{3}}$
Put $x^{2} + 1 = t \Rightarrow 2x \, dx = dt$
 $\therefore I = \frac{1}{2}\int \frac{(t-1)dt}{t^{3}} = \frac{1}{2}\int (t^{-2} - t^{-3})dt$

$$= \frac{1}{2}\left[\frac{1}{2(x^{2}+1)^{2}} - \frac{1}{x^{2}+1}\right] + K$$

$$= \frac{1}{2}\left[\frac{1-2x^{2}-2}{2(x^{2}+1)^{2}}\right] + K$$

$$= \frac{1}{2}\left[\frac{-(1+2x^{2})}{2(x^{2}+1)^{2}}\right] + K$$
100. Let $I = \int \frac{x^{2}-1}{x^{4}+3x^{2}+1} \, dx$

$$= \int \frac{1-\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}+3} \, dx = \int \frac{1-\frac{1}{x^{2}}}{(x+\frac{1}{x})^{2}+1} \, dx$$
Put $x + \frac{1}{x} = t \Rightarrow \left(1 - \frac{1}{x^{2}}\right) \, dx = dt$
 $\therefore I = \int \frac{dt}{1+t^{2}}$

$$= \tan^{-1} t + c$$

$$= \tan^{-1} \left(x + \frac{1}{x}\right) + c$$
101. Let $I = \int \frac{2-\sin x}{2+\cos x} \, dx$

$$= \int \frac{2-2 \cos x}{2+\cos x} \, dx - \int \frac{\sin x}{2+\cos x} \, dx$$

$$= \int \frac{2}{2+\cos x} \, dx - \int \frac{\sin x}{2+\cos x} \, dx$$

MHT-CET Triumph Maths (Hints)
Put
$$tan\left(\frac{x}{2}\right) = t$$

∴ $dx = \frac{2dt}{1+t^2} and cos x = \frac{1-t^2}{1+t^2}$
∴ $I_1 = 2\int \frac{1}{2+\frac{1-t^2}{1+t^2}} \cdot \frac{2dt}{1+t^2}$
 $= \int \frac{2.2dt}{t^2+3} = 4\int \frac{dt}{t^2+(\sqrt{3})^2}$
 $= \frac{4}{\sqrt{3}} tan^{-1}\left(\frac{tan(x/2)}{\sqrt{3}}\right) + c_1$
 $and I_2 = \int \frac{sin x}{2+cos x} dx = -log(2+cosx) + c_2$
∴ $I = I_1 - I_2$
 $= \frac{4}{\sqrt{3}} tan^{-1}\left(\frac{tan(x/2)}{\sqrt{3}}\right) + log(2+cosx) + c$
102. Let $I = \int \frac{x^2 dx}{\sqrt{1-x}}$
Put $1 - x = t^2 \Rightarrow dx = -2tdt$
∴ $I = -2\int \frac{(1-t^2)^2 tdt}{t} = -2\int (1-t^2)^2 dt$
 $= -2\left[(1+t^4-2t^2)dt$
 $= -2\left[(1+t^4-2t^2)dt$
 $= -2t\left[\frac{15+3t^4-10t^2}{15}\right]$
 $= \frac{-2}{15}\sqrt{1-x} (15+3(1-x)^2-10(1-x))\right]$
 $= \frac{-2}{15}\sqrt{1-x} (3x^2+4x+8)$
∴ $P = -\frac{2}{15}$
103. Put x = tan $\theta \Rightarrow dx = sec^2 \theta d\theta$
∴ $f(x) = \int \frac{tan^2 \theta d\theta}{sec^2 \theta (1+sec \theta)}$
 $= \int \frac{tan^2 \theta d\theta}{1+sec \theta} = \int \frac{sin^2 \theta d\theta}{cos \theta (1+cos \theta)}$

$$f(x) = \log(x + \sqrt{1 + x^{2}}) - \tan^{-1} x + c$$

∴ $f(0) = \log(0 + \sqrt{1 + 0}) - \tan^{-1}(0) + c$
⇒ $0 = \log 1 - 0 + c \Rightarrow c = 0$
∴ $f(x) = \log(x + \sqrt{1 + x^{2}}) - \tan^{-1} x$
∴ $f(1) = \log(1 + \sqrt{2}) - \frac{\pi}{4}$
104. $J - I = \int \left(\frac{e^{3x}}{e^{4x} + e^{2x} + 1} - \frac{e^{x}}{e^{4x} + e^{2x} + 1}\right) dx$
 $= \int \frac{(e^{2x} - 1)e^{x}}{e^{4x} + e^{2x} + 1} dx$
Put $e^{x} = t \Rightarrow e^{x} dx = dt$
∴ $J - I = \int \frac{t^{2} - 1}{t^{4} + t^{2} + 1} dt = \int \frac{1 - \frac{1}{t^{2}}}{(t + \frac{1}{t})^{2} - 1} dt$
Put $t + \frac{1}{t} = y$
 $\Rightarrow (1 - \frac{1}{t^{2}}) dt = dy$
∴ $J - I = \int \frac{dy}{y^{2} - 1^{2}} = \frac{1}{2} \log \left| \frac{y - 1}{y + 1} \right| + C$
 $= \frac{1}{2} \log \left| \frac{t + \frac{1}{t} - 1}{t + \frac{1}{t} + 1} \right| + C$
 $= \frac{1}{2} \log \left| \frac{e^{2x} - e^{x} + 1}{t^{2} + t + 1} \right| + C$
105. Let $I = \int \frac{\sec^{2} x}{(\sec x + \tan x)^{\frac{9}{2}}} dx$
Put sec $x + \tan x = t$ (i)
 $\Rightarrow \sec x (\sec x + \tan x) dx = dt$
 $\Rightarrow \sec x dx = \frac{1}{t} dt$

 $= \int \frac{(1 - \cos \theta) d\theta}{\cos \theta} = \int \sec \theta \, d\theta - \int d\theta$

 $= \log(\sec \theta + \tan \theta) - \theta + c$

...

:.

...

÷.

:.

...

540

 $=\int\!\frac{1\!-\!\cos^2\theta d\theta}{\cos\theta(1\!+\!\cos\theta)}$

Chapter 04: Integration

Also, sec
$$x - \tan x = \frac{1}{t}$$
(ii)
Adding (i) and (ii), we get
sec $x = \frac{1}{2}\left(t + \frac{1}{t}\right)$
 \therefore I = $\frac{1}{2}\int \frac{\left(t + \frac{1}{t}\right)}{t^{\frac{9}{2}}} \cdot \frac{1}{t} dt = \frac{1}{2}\int \left[\frac{1}{t^{\frac{9}{2}}} + \frac{1}{t^{\frac{11}{2}}}\right] dt$
 $= -\frac{1}{7t^{\frac{7}{2}}} - \frac{1}{11t^{\frac{11}{2}}} + K = -\frac{1}{t^{\frac{11}{2}}}\left(\frac{t^{2}}{7} + \frac{1}{11}\right) + K$
 $= \frac{-1}{(\sec x + \tan x)^{\frac{11}{2}}}\left[\frac{1}{11} + \frac{1}{7}(\sec x + \tan x)^{2}\right] + K$
106. $\int f(x) \cdot g(x) dx = \int x \cdot \sin x dx$
 $= -x \cos x + \int \cos x dx$
 $= -x \cos x + \sin x + c$
107. $\int x \sin x dx = -x \cos x + \int \cos x dx$
 $= -x \cos x + \sin x + \cosh x$
108. $\int \log_{10} x dx = \int \frac{\log x}{\log 10} dx$
 $= \frac{1}{\log 10} (x \log x - x) + c$
 $= x(\log_{10}x - \log_{10}e) + c$
109. $\int x^{2} \sin 2x dx = x^{2} \left(-\frac{\cos 2x}{2}\right) - \int 2x \left(-\frac{\cos 2x}{2}\right) dx$
 $= -\frac{x^{2} \cos 2x}{2} + \int x \cos 2x dx$
 $= -\frac{x^{2} \cos 2x}{2} + \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} dx$
 $= -\frac{x^{2} \cos 2x}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + c$
110. $\int x \sin^{2} x dx = \int x \left(\frac{1 - \cos 2x}{2}\right) dx$
 $= \frac{1}{2} \left[\int x dx - \int x \cos 2x dx\right]$
 $= \frac{1}{2} \left[\frac{x^{2}}{2} - \frac{x \sin 2x}{2} + \int \frac{\sin 2x}{2} dx\right]$
 $= \frac{1}{2} \left[\frac{x^{2}}{2} - \frac{x \sin 2x}{2} + \int \frac{\sin 2x}{2} dx\right]$

$$111. \quad \int x \cos^2 x dx = \int x \left(\frac{1+\cos 2x}{2}\right) dx$$

$$= \frac{1}{2} \left[\int x dx + \int x \cos 2x dx\right]$$

$$= \frac{1}{2} \left[\frac{x^2}{2} + \frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} dx\right]$$

$$= \frac{x^2}{4} + \frac{x \sin 2x}{4} + \frac{\cos 2x}{8} + c$$

$$112. \quad \int \cos^{-1} x dx = \cos^{-1} x \cdot x + \int \frac{1}{\sqrt{1-x^2}} \cdot x dx$$

$$= x \cos^{-1} x - \frac{1}{2} \int \frac{-2x}{\sqrt{1-x^2}} dx$$

$$= x \cos^{-1} x - \sqrt{1-x^2} + c$$

$$113. \quad \int \sin(\log x) dx + \int \cos(\log x) dx$$

$$= x \sin(\log x) - \int \frac{x \cos(\log x)}{x} dx + \int \cos(\log x) dx + c$$

$$= x \sin(\log x) + c$$

$$114. \quad \int \frac{(\sin x + \cos x)(2 - \sin 2x)}{\sin^2 2x} dx$$

$$= -\int \frac{(\sin x + \cos x)(2 - \sin 2x)}{\sin^2 2x} dx$$

$$= -\int \frac{(\sin x + \cos x)(2 \sin x \cos x - 2)}{4 \sin^2 x \cos^2 x} dx$$

$$= -\int \frac{2 \sin^2 x \cos x - 2 \sin x + 2 \sin x \cos^2 x - 2 \cos x}{4 \sin^2 x \cos^2 x} dx$$

$$= -\int \left[\frac{1}{2 \cos x} + \frac{1}{2 \sin x} - \frac{1}{2 \sin^2 x} \cos x dx - \frac{1}{2 \cos^2 x} dx - \frac{1}{2} \left[\int \sec x dx + \int \csc x dx - \int \frac{\csc^2 x}{\cos x} dx - \int \frac{\sec^2 x}{\sin x} dx \right]$$

$$= -\frac{1}{2} \left[\int \sec x dx + \int \csc x dx - \int \frac{1 + \cot^2 x}{\cos x} dx - \int \frac{1 + \tan^2 x}{\sin x} dx \right]$$

541

MHT-CET Triumph Maths (Hints) $= \frac{-1}{2} \left[\int \sec x \, dx + \int \csc x \, dx - \int \sec x \, dx \right]$ $-\int \operatorname{cosec} x \operatorname{cot} x \, dx - \int \operatorname{cosec} x \, dx - \int \operatorname{sec} x \tan x \, dx$ $= \frac{-1}{2} \left[-\int \csc x \cot x \, dx - \int \sec x \tan x \, dx \right]$ $=\frac{\sec x - \csc x}{2} + c$ $=\frac{\sin x - \cos x}{2\sin x \cos x} + c = \frac{\sin x - \cos x}{\sin 2x} + c$ 115. Let I = $\int e^{\sin x} (x \cos x - \sec x \tan x) dx$ $=\int xe^{\sin x}\cos x \, dx - \int e^{\sin x}\sec x \tan x \, dx$ $I_1 = \int x e^{\sin x} \cos x \, dx$ $= x \int e^{\sin x} \cos x \, dx - \int e^{\sin x} \, dx + c_1$ $= x e^{\sin x} - \int e^{\sin x} dx + c_1$ $I_2 = \int e^{\sin x} \sec x \, \tan x \, dx$ $= e^{\sin x} \int \sec x \tan x \, dx - \int \sec x \, \cos x \, e^{\sin x} \, dx + c_2$ $= \sec x \, \mathrm{e}^{\sin x} - \int \mathrm{e}^{\sin x} \, \mathrm{d}x + \mathrm{c}_2$ $I = I_1 - I_2$ $= x e^{\sin x} - \int e^{\sin x} dx - \sec x e^{\sin x} + \int e^{\sin x} dx + c$ $= e^{\sin x} (x - \sec x) + c$ 116. Let I = $\int e^{\sin x} \left(\frac{x \cos^3 x - \sin x}{\cos^2 x} \right)$ $= \int e^{\sin x} (x \cos x - \sec x \tan x) dx$ $= e^{\sin x} (x - \sec x) + c$ 117. Let I = $\int \sin(11x) \cdot \sin^9 x \, dx$ $= \int \sin(10x + x) \cdot \sin^9 x \, \mathrm{d}x$ $=\int \sin 10x \cos x \sin^9 x \, dx$ + $\int \cos 10x \sin x \sin^9 x \, dx$ $= \sin 10x \int \cos x \sin^9 x \, \mathrm{d}x$ $-\int 10\cos 10x \int \cos x \sin^9 x \, dx$ + $\int \cos 10x \sin^{10} x \, dx$ $=\frac{\sin 10x \cdot \sin^{10} x}{10} - \frac{10}{10} \int \cos 10x \sin^{10} x \, dx$ + $\int \cos 10x \sin^{10} x \, dx$ $= \frac{\sin 10x \cdot \sin^{10} x}{10} + c$

118. Let I =
$$\int \left[e^{2x} f(x) + e^{2x} f'(x) \right] dx$$

= $\int e^{2x} f(x) dx + \int e^{2x} f'(x) dx$
= $f(x) \int e^{2x} dx - \int \left[\int e^{2x} dx \right] f'(x) dx$
+ $g(x) + c$
= $\frac{e^{2x} f(x)}{2} - \int \frac{g(x)}{2} f'(x) dx + g(x) + c$
= $\frac{e^{2x} f(x)}{2} - \frac{g(x)}{2} + g(x) + c$
= $\frac{e^{2x} f(x)}{2} + \frac{g(x)}{2} + c$
= $\frac{1}{2} \left[e^{2x} f(x) + g(x) \right] + c$
119. Let I = $\int e^{\sqrt{x}} dx$
Put $\sqrt{x} = t$
 $\Rightarrow \frac{1}{2\sqrt{x}} dx = dt$
 $\Rightarrow dx = 2tdt$
 \therefore I = $\int e^{t} . 2tdt = 2(t.e^{t} - e^{t}) + A$
= $2(\sqrt{x} e^{\sqrt{x}} - e^{\sqrt{x}}) + A$
= $2(\sqrt{x} - 1) e^{\sqrt{x}} + A$
120. Let I = $\int \cos(\log x) dx$
Put log $x = t \Rightarrow x = e^{t} \Rightarrow dx = e^{t} dt$
 \therefore I = $\int e^{t} \cos t dt$
= $e^{t} \cos t - \int e^{t} (-\sin t) dt + c_{1}$
= $e^{t} \cos t + \int e^{t} \sin t dt + c_{1}$
= $e^{t} \cos t + e^{t} \sin t - I + c_{2}$
 $\Rightarrow 2I = e^{t} (\cos t + \sin t) + c$
= $\frac{x}{2} [\cos(\log x) + \sin(\log x)] + c$
121. Put sin⁻¹ $x = t$
 $\Rightarrow \frac{1}{\sqrt{1 - x^{2}}} dx = \int t \sin t dt = -t \cos t + \sin t + c$
= $-sin^{-1} x cos(sin^{-1}x) + sin(sin^{-1}x) + c$
= $x - sin^{-1} x . \sqrt{1 - x^{2}} + c$

Chapter 04: Integration

- 122. Let I = $\int \cos(\log_e x) dx$ Put $\log_e x = t \Rightarrow x = e^t \Rightarrow dx = e^t dt$ ∴ I = $\int \cos t \cdot e^t dt$
- $= \cos t.e^{t} \int (-\sin t).e^{t} dt$ = cos t.e^t + [sin t.e^t - $\int \cos t.e^{t} dt$] ∴ I = cos t.e^t + sin t.e^t - I + c₁ $\Rightarrow 2I = \cos t.e^{t} + \sin t.e^{t} + c_{1}$ $\Rightarrow I = \frac{x}{2} [\cos (\log_{e} x) + \sin (\log_{e} x)] + c,$

where
$$c = \frac{c_1}{2}$$

123. $\int 32x^{3} (\log x)^{2} dx$ $= 32 \int x^{3} (\log x)^{2} dx$ $= 32 \left[(\log x)^{2} \cdot \frac{x^{4}}{4} - \int 2\log x \cdot \frac{1}{x} \cdot \frac{x^{4}}{4} dx \right]$ $= 32 \left[(\log x)^{2} \cdot \frac{x^{4}}{4} - \frac{1}{2} \int x^{3} \log x dx \right]$ $= 32 \left[\frac{(\log x)^{2} x^{4}}{4} - \frac{1}{2} \left(\frac{\log x \cdot x^{4}}{4} - \int \frac{1}{x} \cdot \frac{x^{4}}{4} dx \right) \right]$ $= 32 \left[\frac{(\log x)^{2} x^{4}}{4} - \frac{1}{2} \left(\frac{x^{4} \log x}{4} - \frac{1}{4} \cdot \frac{x^{4}}{4} \right) \right] + c$ $= 8 \left[(\log x)^{2} x^{4} - \frac{1}{2} \left(x^{4} \log x - \frac{x^{4}}{4} \right) \right] + c$ $= 8x^{4} \left[(\log x)^{2} - \frac{\log x}{2} + \frac{1}{8} \right] + c$ $= x^{4} [8 (\log x)^{2} - 4 \log x + 1] + c$ 124. Let I = $\int x^{4} e^{2x} dx$

24. Let
$$I = \int x e^{-x} dx$$

$$= \frac{x^4 e^{2x}}{2} - \int 4x^3 \cdot \frac{e^{2x}}{2} dx$$

$$= \frac{x^4 e^{2x}}{2} - 2 \int x^3 e^{2x} dx$$

$$= \frac{x^4 e^{2x}}{2} - 2 \left[\int \frac{x^3 e^{2x}}{2} dx - \int 3x^2 \cdot \frac{e^{2x}}{2} dx \right]$$

$$= \frac{x^4 e^{2x}}{2} - x^3 e^{2x} + 3 \int x^2 e^{2x} dx$$

$$= \frac{x^4 e^{2x}}{2} - x^3 e^{2x} + 3 \left[\frac{x^2 e^{2x}}{2} - \int 2x \cdot \frac{e^{2x}}{2} dx \right]$$

$$= \frac{x^{4}e^{2x}}{2} - x^{3}e^{2x} + \frac{3x^{2}e^{2x}}{2} - \frac{3xe^{2x}}{2} + 3\int \frac{e^{2x}}{2} dx$$

$$= \frac{x^{4}e^{2x}}{2} - x^{3}e^{2x} + \frac{3x^{2}e^{2x}}{2} - \frac{3xe^{2x}}{2} + 3\frac{e^{2x}}{2} dx$$

$$= \frac{x^{4}e^{2x}}{2} - x^{3}e^{2x} + \frac{3x^{2}e^{2x}}{2} - \frac{3xe^{2x}}{2} + \frac{3e^{2x}}{4} + c$$

$$= \frac{e^{2x}}{4} [2x^{4} - 4x^{3} + 6x^{2} - 6x + 3] + c$$
125.
$$\int x^{3}e^{5x} dx = x^{3} \cdot \frac{e^{5x}}{5} - \int 3x^{2} \cdot \frac{e^{5x}}{5} dx$$

$$= \frac{x^{3}e^{5x}}{5} - \frac{3}{5}x^{2} \cdot \frac{e^{5x}}{5} + \frac{3}{5} \int 2x \cdot \frac{e^{5x}}{5} dx$$

$$= x^{3}\frac{e^{5x}}{5} - \frac{3}{25}x^{2}e^{5x} + \frac{6}{25}x \cdot \frac{e^{5x}}{5} - \frac{6}{25}\cdot \frac{e^{5x}}{25} + c$$

$$\therefore \int x^{3}e^{5x} dx = \frac{e^{5x}}{5^{4}} (5^{3}x^{3} - 75x^{2} + 30x - 6) + c$$

$$\therefore f(x) = 5^{3}x^{3} - 75x^{2} + 30x - 6$$
126.
$$\int \log(a^{2} + x^{2}) dx$$

$$= \log(a^{2} + x^{2}) - 2\int \frac{1}{a^{2} + x^{2}} dx$$

$$= x \log(a^{2} + x^{2}) - 2\int \left(1 - \frac{a^{2}}{a^{2} + x^{2}}\right) dx$$

$$= x \log(a^{2} + x^{2}) - 2x + 2a^{2} \cdot \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c$$

$$= x \log(a^{2} + x^{2}) - 2x + 2a \tan^{-1}\left(\frac{x}{a}\right) + c$$
127. Put logx = t

$$\Rightarrow x = e^{4}$$

$$\Rightarrow dx = e^{2} dt$$

$$\therefore \int (\log x)^{5} - 5(\log x)^{4} + 20(\log x)^{3} - 60(\log x)^{2} + 120(\log x)^{3} - 60(\log x)^{3} + 6(\log x)$$

MHT-CET Triumph Maths (Hints) = $\int \theta .(\sec\theta \tan\theta) d\theta$ $= \theta \sec \theta - \int 1 \cdot \sec \theta d\theta$ $= \theta \sec\theta - \log |\tan\theta + \sec\theta| + c$ $= \theta \sec\theta - \log |\sqrt{(\sec^2 \theta - 1)} + \sec \theta | + c$ $= x \sec^{-1} x - \log |\sqrt{(x^2 - 1)} + x| + c$ 129. $\int e^{x} \left[\frac{1 + x \log x}{x} \right] dx = \int e^{x} \left(\log x + \frac{1}{x} \right) dx$ $= e^{x} \log x + c$ $\dots \left[\because \int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c \right]$ 130. $\int e^x \sin x (\sin x + 2\cos x) dx$ $= \int e^x (\sin^2 x + 2\sin x \cos x) dx$ $= e^x \sin^2 x + c$ 131. $\int e^x \left[\frac{2 + \sin 2x}{1 + \cos 2x} \right] dx = \int e^x \left[\frac{2(1 + \sin x \cos x)}{2 \cos^2 x} \right] dx$ $= \int e^{x} (\sec^{2} x + \tan x) dx$ $= e^{x} \tan x + c$ $\dots \left[\because \left[e^{x} \right] f(x) + f'(x) \right] dx = e^{x} f(x) + c \right]$ 132. $\int \frac{(x+3)e^x}{(x+4)^2} dx = \int \frac{(x+4-1)}{(x+4)^2} e^x dx$ $=\int e^{x}\left(\frac{1}{x+4}-\frac{1}{\left(x+4\right)^{2}}\right)dx$ $=\frac{e^{x}}{x+4}+c$ 133. $\int \left(\frac{x+2}{x+4}\right)^2 e^x dx$ $= \int e^{x} \left[\frac{x^2 + 4x + 4}{(x+4)^2} \right] dx$ $=\int e^{x}\left|\frac{x(x+4)}{(x+4)^{2}}+\frac{4}{(x+4)^{2}}\right|dx$ $= \int e^{x} \left[\frac{x}{x+4} + \frac{4}{(x+4)^2} \right] dx = e^{x} \left(\frac{x}{x+4} \right) + c$ 134. $\int \frac{xe^x}{(x+1)^2} dx = \int e^x \left| \frac{x+1-1}{(x+1)^2} \right| dx$ $=\int e^{x} \left| \frac{1}{x+1} - \frac{1}{(x+1)^{2}} \right| dx$

$$= \frac{e^{x}}{x+1} + c$$

$$\dots \left[\because \int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} f(x) + c \right]$$
135.
$$\int \frac{e^{x} (1 + \sin x)}{1 + \cos x} dx = \int \frac{e^{x} \left[1 + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \right]}{2\cos^{2}\left(\frac{x}{2}\right)} dx$$

$$= \int e^{x} \left(\frac{1}{2} \sec^{2} \frac{x}{2} + \tan \frac{x}{2} \right) dx$$

$$= e^{x} \tan \frac{x}{2} + c$$

$$\dots \left[\because \int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} f(x) + c \right]$$
136.
$$\int \frac{e^{x} (x^{2} \tan^{-1} x + \tan^{-1} x + 1)}{x^{2} + 1} dx$$

$$= \int \frac{e^{x} \left[(x^{2} + 1)\tan^{-1} x + 1 \right]}{x^{2} + 1} dx$$

$$= \int e^{x} \left[(\tan^{-1} x + \frac{1}{1 + x^{2}} \right] dx$$

$$= e^{x} \tan^{-1} x + c$$
137. Let $I = \int e^{\tan x} (\sec^{2} x + \sec^{3} x \cdot \sin x) dx$

$$= \int e^{\tan^{-1} x + c}$$
137. Let $I = \int e^{\tan x} (\sec^{2} x + \sec^{3} x \cdot \sin x) dx$

$$= \int e^{\tan^{-1} x + c}$$
138. Let $I = \int e^{\sin x} \left(\frac{\sin x + 1}{\sec x} \right) dx$

$$= \int e^{\sin x} (\sin x + 1) \cos x dx$$
Put $\sin x = t \Rightarrow \cos x dx = dt$

$$\therefore I = \int e^{t} (1 + t) dx$$

$$= te^{t} - \left[\because \int e^{x} \left[f(x) + f'(x) \right] dx = e^{x} f(x) \right]$$

$$= \sin x \cdot e^{\sin x} + c$$
139. Put $\tan^{-1} x = t \Rightarrow \frac{dx}{1 + x^{2}} = dt$

$$\therefore \int e^{\tan^{-1} x} \left(\frac{1 + x + x^{2}}{1 + x^{2}} \right) dx = \int e^{t} (\tan t + \sec^{2} t) dt$$

$$= e^{t} \tan t + c$$

$$= xe^{\tan^{-1} x} + c$$

140. Put
$$\cot^{-1} x = t \Rightarrow \frac{-dx}{1+x^2} = dt$$

$$\therefore \quad \int e^{\cot^{-1}x} \left(\frac{x^2 - x + 1}{1+x^2}\right) dx$$

$$= -\int e^t \left(\cot^2 t - \cot t + 1\right) dt$$

$$= -\int e^t \left(\operatorname{cosec}^2 t - \cot t\right) dt$$

$$= \int e^t \left(\cot t - \operatorname{cosec}^2 t\right) dt$$

$$= e^t \cot t + c$$

$$= x e^{\cot^{-1}x} + c$$
141.
$$\int e^{2x} \left(\frac{1}{x} - \frac{1}{2x^2}\right) dx = \frac{e^{2x}}{2x} + c$$

$$\dots \left[\because e^{mx} \left[f(x) + \frac{f'(x)}{m}\right] dx = \frac{e^{mx}f(x)}{m} + c\right]$$

142.
$$\int (1+x-x^{-1})e^{x+x^{-1}}dx$$
$$= \int \left[xe^{x+x^{-1}}\left(1-\frac{1}{x^2}\right) + e^{x+x^{-1}}\right]dx$$
$$= xe^{x+x^{-1}} + c$$
$$\dots \left[\because \int [xf'(x) + f(x)]dx = xf(x) + c\right]$$

143.
$$\int \frac{2x+3}{x^2-5x+6} dx = \int \frac{2x+3}{(x-3)(x-2)} dx$$

= $\int \left(\frac{9}{x-3} - \frac{7}{x-2}\right) dx$
= 9 log (x - 3) - 7 log (x - 2) + c
∴ A = constant

144.
$$\int \left(\frac{1}{x-3} - \frac{1}{x^2 - 3x}\right) dx$$
$$= \int \left[\frac{1}{x-3} - \frac{1}{x(x-3)}\right] dx$$
$$= \int \left[\frac{1}{x-3} + \frac{1}{3x} - \frac{1}{3(x-3)}\right] dx$$
$$= \int \left[\frac{2}{3(x-3)} + \frac{1}{3x}\right] dx$$
$$= \frac{2}{3} \log (x-3) + \frac{1}{3} \log x + c$$
$$= \frac{2}{3} \log (x-3) + \frac{2}{3} \log \sqrt{x} + c$$
$$= \frac{2}{3} \log \left[\sqrt{x}(x-3)\right] + c$$

145. Let I =
$$\int \frac{1}{(x^2 + 4)(x^2 + 9)} dx$$

∴ I = $\int \frac{1}{5} \left[\frac{1}{x^2 + 4} - \frac{1}{x^2 + 9} \right] dx$
 $\dots \left\{ \frac{1}{\alpha\beta} = \frac{1}{\beta - \alpha} \left[\frac{1}{\alpha} - \frac{1}{\beta} \right] \right\}$
 $= \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) - \frac{1}{3} \tan^{-1} \left(\frac{x}{3} \right) \right] + c$
 $= \frac{1}{10} \tan^{-1} \left(\frac{x}{2} \right) - \frac{1}{15} \tan^{-1} \left(\frac{x}{3} \right) + c$
Comparing with A $\tan^{-1} \left(\frac{x}{2} \right) + B \tan^{-1} \left(\frac{x}{3} \right) + c$,
we get
 $A = \frac{1}{10}, B = \frac{-1}{15}$
 $A - B = \frac{1}{10} + \frac{1}{15} = \frac{1}{6}$
146. $\int \frac{x}{(x^2 - a^2)(x^2 - b^2)} dx$
 $= \frac{1}{2(a^2 - b^2)} \left[\log(x^2 - a^2) - \log(x^2 - b^2) \right] + c$
 $= \frac{1}{2(a^2 - b^2)} \log \left(\frac{x^2 - a^2}{x^2 - b^2} \right) + c$
147. Let $\frac{2x^2 + 1}{(x^2 - 4)(x^2 - 1)} = \frac{A}{x^2 - 4} + \frac{B}{x^2 - 1}$
∴ $2x^2 + 1 = A(x^2 - 1) + B(x^2 - 4)$
Comparing the coefficient of x^2 and constant term on both sides, we get
 $A + B = 2$ and $-A - 4B = 1$
Solving these two equations, we get
 $A = 3$ and $B = -1$
∴ $\int \frac{2x^2 + 1}{(x^2 - 4)(x^2 - 1)} dx$
 $= \int \left[\frac{3}{x^2 - 4} - \frac{1}{x^2 - 1} \right] dx$
 $= \frac{3}{2 \times 2} \log \left| \frac{x - 2}{x + 2} \right| - \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| + c$
 $= \log \left| \frac{x - 2}{x + 2} \right|^{\frac{3}{4}} + \log \left| \frac{x + 1}{x - 1} \right|^{\frac{1}{2}} + c$

MHT-CET Triumph Maths (Hints) $= \log \left| \left(\frac{x+1}{x-1} \right)^{\frac{1}{2}} \left(\frac{x-2}{x+2} \right)^{\frac{3}{4}} \right| + c$ \therefore $a = \frac{1}{2}$ and $b = \frac{3}{4}$ 148. $\int \frac{2x^2 + 3}{(x^2 - 1)(x^2 - 4)} dx = \int \frac{-\frac{5}{3}}{x^2 - 1} dx + \int \frac{\frac{11}{3}}{x^2 - 4} dx$ $= \frac{-5}{3} \cdot \frac{1}{2 \times 1} \log \left| \frac{x-1}{x+1} \right| + \frac{11}{3} \cdot \frac{1}{2 \times 2} \log \left| \frac{x-2}{x+2} \right| + c$ $= \log \left| \frac{x+1}{x-1} \right|^{\frac{5}{6}} + \log \left| \frac{x-2}{x+2} \right|^{\frac{11}{12}} + c$ $= \log \left[\left(\frac{x+1}{x-1} \right)^{\frac{5}{6}} \left(\frac{x-2}{x+2} \right)^{\frac{11}{12}} \right] + c$ \therefore a = $\frac{11}{12}$ and b = $\frac{5}{6}$ 149. Let I = $\int \frac{5x^2 + 3}{x^2(x^2 - 2)} dx$ $= \int \frac{5}{x^2 - 2} \, \mathrm{d}x \, + \int \frac{3}{x^2 (x^2 - 2)} \, \mathrm{d}x$ $=\frac{5}{2\sqrt{2}}\log\left|\frac{x-\sqrt{2}}{x+\sqrt{2}}\right|$ $+\frac{3}{2}\int \left(\frac{1}{r^2-2}-\frac{1}{r^2}\right)dx$ $=\frac{5}{2\sqrt{2}}\log\left|\frac{x-\sqrt{2}}{x+\sqrt{2}}\right|$ $+\frac{3}{2}\left|\frac{1}{2\sqrt{2}}\log\left|\frac{x-\sqrt{2}}{x+\sqrt{2}}\right|+\frac{1}{x}\right|+c$ $= \frac{13}{4\sqrt{2}} \log \left| \frac{x - \sqrt{2}}{x + \sqrt{2}} \right| + \frac{3}{2} x + c$ 150. $\int \frac{\mathrm{d}x}{x^6 + x^4} = \int \frac{(x^2 + 1)\,\mathrm{d}x}{x^4 (x^2 + 1)} - \int \frac{x^2\,\mathrm{d}x}{x^4 (x^2 + 1)}$ $=\int \frac{1}{x^4} dx - \int \frac{dx}{x^2(x^2+1)}$ $= -\frac{1}{3r^3} - \int \frac{dx}{r^2} + \int \frac{dx}{r^2 + 1}$ $=\frac{-1}{2r^3}+\frac{1}{r}+\tan^{-1}x+c$

151.
$$\int \frac{dx}{e^{2x} - 3e^{x}} = \int \frac{dx}{e^{x}(e^{x} - 3)}$$

$$= -\frac{1}{3} \left[\int \frac{dx}{e^{x}} - \int \frac{dx}{e^{x} - 3} \right]$$

$$= \frac{1}{3} \int \frac{dx}{e^{x} - 3} - \frac{1}{3} \int \frac{dx}{e^{x}}$$

$$= \frac{1}{3} \int \frac{e^{-x}}{1 - 3e^{-x}} dx - \frac{1}{3} \int e^{-x} dx$$

$$= \frac{1}{9} \log \left(1 - 3e^{-x} \right) + \frac{1}{3e^{x}} + c$$

$$= \frac{1}{9} \log \left(\frac{e^{x} - 3}{e^{x}} \right) + \frac{1}{3e^{x}} + c$$

$$= \frac{1}{3e^{x}} + \frac{1}{9} \log(e^{x} - 3) - \frac{1}{9} \log e^{x} + c$$

$$= \frac{1}{3e^{x}} + \frac{1}{9} \log(e^{x} - 3) - \frac{1}{9} \log e^{x} + c$$

$$= \frac{1}{3e^{x}} + \frac{1}{9} \log(e^{x} - 3) - \frac{1}{9} + c$$

152.
$$\int \frac{x}{(x^{2} + 1)(x - 1)} dx$$

$$= \frac{1}{2} \int \frac{1}{x - 1} dx - \frac{1}{2} \int \frac{x}{x^{2} + 1} dx + \frac{1}{2} \int \frac{1}{x^{2} + 1} dx$$

$$= \frac{1}{2} \log |x - 1| - \frac{1}{4} \int \frac{2x}{x^{2} + 1} dx + \frac{1}{2} \int \frac{1}{x^{2} + 1} dx$$

$$= \frac{1}{2} \log |x - 1| - \frac{1}{4} \log |x^{2} + 1| + \frac{1}{2} \tan^{-1} x + D_{1}$$

$$= \frac{1}{2} \log |x - 1| - \frac{1}{4} \log |x^{2} + 1| + \frac{1}{2} \tan^{-1} x + D$$

Comparing with
A log $|x^{2} + 1| + B \tan^{-1}x + C \log |x - 1| + D$,
we get

$$A = -\frac{1}{4}, B = \frac{1}{2}, C = \frac{1}{2}$$

$$\therefore A + B + C = -\frac{1}{4} + \frac{1}{2} + \frac{1}{2} = \frac{3}{4}$$

153.
$$\int \frac{2x + 3}{(x - 1)(x^{2} + 1)} dx$$

$$= \int \frac{5dx}{2(x - 1)} + \int -\frac{(\frac{5}{2}x + \frac{1}{2})}{x^{2} + 1} dx$$

$$= \int \frac{5dx}{2(x - 1)} - \frac{5}{2} \int \frac{x dx}{1 + x^{2}} - \frac{1}{2} \int \frac{dx}{1 + x^{2}}$$

$$= \frac{5}{2} \log(x - 1) - \frac{5}{4} \log(1 + x^{2}) - \frac{1}{2} \tan^{-1} x + A$$

$$= \log(x - 1)^{\frac{5}{2}} (1 + x^{2})^{-\frac{5}{4}} - \frac{1}{2} \tan^{-1} x + A$$

 $a = -\frac{5}{4}$

...

Chapter 04: Integration

154. Let I =
$$\int \frac{1}{x(x^4+1)} dx$$

= $\int \frac{x^3}{x^4(x^4+1)} dx$
Put $x^4 = t \Rightarrow 4x^3 dx = dt$
∴ I = $\frac{1}{4} \int \frac{dt}{t(1+t)}$
= $\frac{1}{4} \int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt$
= $\frac{1}{4} \int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt$
= $\frac{1}{4} \log \left|\frac{t}{1+t}\right| + c$
= $\frac{1}{4} \log \left|\frac{x^4}{1+x^4}\right| + c$
155. $\int \frac{dx}{x^3+3x^2+2x} = \int \frac{1}{x(x^2+3x+2)} dx$
= $\int \frac{1}{2x} dx + \int \frac{1}{2(x+2)} dx - \int \frac{1}{x+1} dx$
= $\int \frac{1}{2x} dx + \int \frac{1}{2(x+2)} dx - \int \frac{1}{x+1} dx$
= $\frac{1}{2} \log |x| + \frac{1}{2} \log |x+2| - \log |x+1| + c$
= $\frac{1}{2} \log |x(x+2)| - \frac{1}{2} \log (x+1)^2 + c$
= $\frac{1}{2} \log \left[\frac{|x^2+2x|}{(x+1)^2}\right] + c$
156. Let I = $\int \frac{dx}{\sin x + \sin 2x}$
= $\int \frac{dx}{\sin x(1+2\cos x)}$
= $\int \frac{\sin x dx}{(1-\cos x)(1+\cos x)(1+2\cos x)}$
Put cos $x = t$
 $\Rightarrow -\sin x dx = dt$
∴ I = $-\int \frac{dt}{(1-t)(1+t)(1+2t)}$

$$\therefore \quad I = -\int \left[\frac{1}{6(1-t)} - \frac{1}{2(1+t)} + \frac{4}{3(1+2t)} \right] dt$$

$$= \frac{1}{6} \log(1-t) + \frac{1}{2} \log(1+t) - \frac{2}{3} \log(1+2t) + c$$

$$= \frac{1}{6} \log(1-\cos x) + \frac{1}{2} \log(1+\cos x)$$

$$- \frac{2}{3} \log(1+2\cos x) + c$$
157.
$$\int \frac{f(x)}{\log \cos x} dx = -\log(\log \cos x) + c$$
Differentiating on both sides, we get
$$\frac{f(x)}{\log \cos x} = \frac{-1}{\log \cos x} \times \frac{1}{\cos x} \times (-\sin x)$$

$$\Rightarrow \frac{f(x)}{\log \cos x} = \frac{\tan x}{\log \cos x} \Rightarrow f(x) = \tan x$$
158.
$$\int \frac{f(x)}{\log(\sin x)} dx = \log(\log \sin x) + c$$
Differentiating on both sides, we get
$$\frac{f(x)}{\log(\sin x)} = \frac{1}{\log(\sin x)} \times \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow \frac{f(x)}{\log(\sin x)} = \frac{\cot x}{\log(\sin x)} \Rightarrow f(x) = \cot x$$
159.
$$\int f(x) \cos x dx = \frac{1}{2} [f(x)]^2 + c$$
Differentiating both sides w.r.t. x, we get
$$f(x) \cos x = f(x) \cdot f'(x)$$

$$\Rightarrow f'(x) = \cos x$$

$$\Rightarrow \int f(x) = \sin x + c$$

$$\therefore \quad f\left(\frac{\pi}{2}\right) = 1 + c$$
160.
$$\int f(x) \cdot \cos x dx = \frac{1}{2} [f(x)]^2 + c$$
Differentiating w.r.t. x, we get
$$f(x) - \sin x + c$$

$$\therefore \quad f\left(\frac{\pi}{2}\right) = 1 + c$$
160.
$$\int f(x) \cdot \cos x dx = \frac{1}{2} [f(x)]^2 + c$$
Differentiating w.r.t. x, we get
$$f(x) - \cos x = \frac{1}{2} \times 2 f(x) \cdot f'(x)$$

$$\Rightarrow \cos x = f'(x)$$

$$\Rightarrow \cos x = f'(x)$$

$$\Rightarrow \cos x = f'(x)$$

$$\Rightarrow \cos 0 = f'(0)$$

$$\Rightarrow f'(0) = 1$$

547

MHT-CET Triumph Maths (Hints)

161.
$$f'(x) = 2 - \frac{5}{x^4}$$

∴ $f(x) = \int \left(2 - \frac{5}{x^4}\right) dx = 2x + \frac{5}{3x^3} + c$
 $f(1) = 2(1) + \frac{5}{3(1)^3} + c$
 $\Rightarrow \frac{14}{3} = 2 + \frac{5}{3} + c \Rightarrow c = 1$
∴ $f(x) = 2x + \frac{5}{3x^3} + 1$
 $f(-1) = 2(-1) + \frac{5}{3(-1)^3} + 1$
 $= -2 - \frac{5}{3} + 1 = \frac{-8}{3}$
162. $\int f(x) \sin x \cos x \, dx = \frac{1}{2(b^2 - a^2)} \log f(x) + c$
Differentiating both sides w.r.t. *x*, we get
 $f(x) \sin x \cos x = \frac{1}{2(b^2 - a^2)} \cdot \left[\frac{f'(x)}{f(x)}\right]$
 $\Rightarrow [f(x)]^2 \sin 2x = \frac{1}{(b^2 - a^2)} f'(x)$
 $\Rightarrow y^2 \sin 2x = \frac{1}{(b^2 - a^2)} f'(x)$
 $\therefore ...[Putting f(x) = y]$
 $\Rightarrow \frac{dy}{y^2} = (b^2 - a^2) \sin 2x \, dx$
 $\Rightarrow \int \frac{dy}{y^2} = (b^2 - a^2) \sin 2x \, dx \sin 2x \, dx$
 $\Rightarrow \frac{-1}{y} = \frac{-(b^2 - a^2)\cos 2x}{2}$
 $\Rightarrow y = \frac{2}{(b^2 - a^2)\cos 2x} = f(x)$
163. $\frac{d}{dx}[f(x)] = x \cos x + \sin x$
 $\Rightarrow f(x) = \int (x \cos x + \sin x) \, dx = x \sin x + c$
Since, $f(0) = 2 \Rightarrow c = 2$
∴ $f(x) = x \sin x + 2$
164. $\int \log(x^2 + x) \, dx = \int \log[x(x + 1)] \, dx$
 $= \log x \cdot x - \int \frac{1}{x} \cdot x \, dx + \log(x + 1) \cdot x - \int \frac{1}{x + 1} \cdot x \, dx$

 $= x \log x - \int dx + x \log(x+1) - \int \left(\frac{x+1-1}{x+1}\right) dx$ $= x \log x - x + x \log(x+1) - \int \left(1 - \frac{1}{x+1}\right) dx$ $= x \log x - x + x \log(x+1) - x + \log |x+1| + c$ $= x[\log x + \log (x + 1)] - 2x + \log |x + 1| + c$ $= x \log (x^{2} + x) - 2x + \log |x + 1| + c$ $A = -2x + \log |x + 1| + c$ ÷ 165. $I_1 = \int \sin^{-1} x dx$ Put $\sin^{-1} x = \theta \Rightarrow x = \sin \theta \Rightarrow dx = \cos \theta d\theta$ $I_1 = \int \theta \cos \theta d\theta = \theta \sin \theta - \int 1 \cdot \sin \theta d\theta$ *.*.. $= \theta \sin \theta + \cos \theta$ $=x\sin^{-1}x+\sqrt{1-x^2}$ Now, $I_2 = \int \sin^{-1} \sqrt{1 - x^2} dx = \int \cos^{-1} x dx$ Put $\cos^{-1} x = \phi \Rightarrow x = \cos \phi \Rightarrow dx = -\sin \phi d\phi$ $I_2 = -\int \phi \sin \phi \, d\phi = \phi \cos \phi + \int 1.(-\cos \phi) \, d\phi$ *.*.. $=\phi\cos\phi-\sin\phi=x\cos^{-1}x-\sqrt{1-x^2}$:. $I_1 + I_2 = x (\sin^{-1}x + \cos^{-1}x) = \frac{\pi}{2}x$ 166. $x = f''(t) \cos t + f'(t) \sin t$ $\therefore \qquad \frac{dx}{dt} = -f''(t)\sin t + f'''(t)\cos t + f''(t)\sin t$ $+ f'(t) \cos t$ $= f'''(t) \cos t + f'(t) \cos t$ $= \cos t [f'''(t) + f'(t)]$ $y = -f''(t) \sin t + f'(t) \cos t$ $\therefore \qquad \frac{dy}{dt} = -f'''(t)\sin t - f''(t)\cos t + f''(t)\cos t$ $-f'(t) \sin t$ $= -\sin t [f''(t) + f'(t)]$ $\therefore \qquad \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \left[\sin^2 t + \cos^2 t\right] \left[f'''(t) + f'(t)\right]^2$ $= [f'''(t) + f'(t)]^2$ Let I = $\int \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right]^{\frac{1}{2}} dt$ $= \int \left\{ \left[f'''(t) + f'(t) \right]^2 \right\}^{\frac{1}{2}} dt$ $= \int \left[f'''(t) + f'(t) \right] dt$ = f''(t) + f(t) + c

Chapter 04: Integration

Evaluation Test

1. Let
$$I = \int \frac{\sqrt{5 + x^{10}}}{x^{16}} dx$$

 $= \int \sqrt{\frac{5 + x^{10}}{x^{10}}} \cdot \frac{1}{x^{11}} dx$
 $= \int \sqrt{\frac{5}{x^{10}}} \cdot \frac{1}{x^{11}} dx$
Put $\frac{5}{x^{10}} + 1 = t$
 $\therefore \quad 5(-10)x^{-11} dx = dt$
 $\therefore \quad \frac{1}{x^{11}} dx = -\frac{1}{50} dt$
 $\therefore \quad I = \int t^{\frac{1}{2}} \left(-\frac{1}{50}\right) dt$
 $= -\frac{1}{50} \cdot \frac{t^{3/2}}{3/2} + c$
 $= -\frac{1}{75} \left(1 + \frac{5}{x^{10}}\right)^{3/2} + c$

2. Multiplying N^r and D^r by sin 3x, we get $\int \frac{\cos 5x + \cos 4x}{1 - 2\cos 3x} dx$ $= \int \frac{\sin 3x \cos 5x + \sin 3x \cos 4x}{\sin 3x - 2\sin 3x \cos 3x} dx$ $= \int \frac{\sin 3x (\cos 5x + \cos 4x)}{\sin 3x - \sin 6x} dx$ $= \int \frac{\left(2\sin \frac{3x}{2}\cos \frac{3x}{2}\right)\left(2\cos \frac{9x}{2}\cos \frac{x}{2}\right)}{-2\cos \frac{9x}{2}\sin \frac{3x}{2}} dx$ $= -\int 2\cos \frac{3x}{2}\cos \frac{x}{2} dx$ $= -\int (\cos 2x + \cos x) dx$ $= -\left[\frac{1}{2}\sin 2x + \sin x\right] + c$ 3. Let I = $\int \sin^{-1} \sqrt{\frac{x}{a + x}} dx$ Put x = a tan²t \therefore dx = 2a tan t sec²t dt

$$\therefore \quad I = \int \sin^{-1} \sqrt{\frac{a \tan^2 t}{a + a \tan^2 t}} \times 2a \tan t \sec^2 t dt$$

$$= \int \sin^{-1} (\sin t) \times 2a \tan \sec^2 t dt$$

$$= 2a \int t \tan \sec^2 t dt - \int \left\{ \frac{d}{dt} (t) \int \tan t \sec^2 t dt \right\} dt \right]$$

$$= 2a \left[t \int \tan t \sec^2 t dt - \int \left\{ \frac{d}{dt} (t) \int \tan t \sec^2 t dt \right\} dt \right]$$

$$= 2a \left[t \tan^2 t - \int (\sec^2 t - 1) dt \right]$$

$$= a \left[t \tan^2 t - \int (\sec^2 t - 1) dt \right]$$

$$= a \left[t \tan^2 t - \tan t + t \right] + c, \text{ where } t = \tan^{-1} \sqrt{\frac{x}{a}}$$

$$= a \left[\frac{x}{a} \tan^{-1} \sqrt{\frac{x}{a}} - \sqrt{\frac{x}{a}} + \tan^{-1} \sqrt{\frac{x}{a}} \right] + c$$

$$4. \quad \text{Let } I = \int \sqrt{\csc x - 1} dx$$

$$= \int \sqrt{\frac{1 - \sin x}{\sin x}} dx$$

$$Put \sin x = t$$

$$\therefore \cos x dx = dt$$

$$\therefore \quad I = \int \frac{1}{\sqrt{t^2 + t}} dt$$

$$= \int \frac{1}{\sqrt{t^2 + t}} dt$$

$$= \int \frac{1}{\sqrt{t^2 + t + \frac{1}{4} - \frac{1}{4}}} dt$$

$$= \log \left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + c, \text{ where } t = \sin x$$

$$= \log \left| \sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x} \right| + c$$

MHT-CET Triumph Maths (Hints) Let I = $\int \sqrt{\tan x} \, dx$ *.*.. From (i) 5. $I = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{t^2 - 1}{\sqrt{2}t} \right) + \frac{1}{2\sqrt{2}} \log \left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + c$ Put $\tan x = t^2$ $\sec^2 x \, dx = 2t dt$ *.*.. $=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\tan x-1}{\sqrt{2}\tan x}\right)$ $dx = \frac{2t}{1+t^4}dt$ *.*.. $+\frac{1}{2\sqrt{2}}\log\left|\frac{\tan x - \sqrt{2\tan x} + 1}{\tan x + \sqrt{2\tan x} + 1}\right| + c$ $\therefore \qquad \mathbf{I} = \int \sqrt{t^2} \cdot \frac{2t}{1+t^4} dt = 2 \int \frac{t^2}{1+t^4} dt$ $= \int \frac{t^2 + 1 + t^2 - 1}{t^4 + 1} dt = \int \frac{t^2 + 1}{t^4 + 1} dt + \int \frac{t^2 - 1}{t^4 + 1} dt$ Let I = $\int x^{13/2} (1+x^{5/2})^{1/2} dx$ 6. $= I_1 + I_2$ (say)(i) $= \int x^5 (1 + x^{5/2})^{1/2} . x^{3/2} dx$ $I_1 = \int \frac{t^2 + 1}{t^4 + 1} dt$ Put $1 + x^{5/2} = t$ $\therefore \quad \frac{5}{2}x^{3/2} \, \mathrm{d}x = \mathrm{d}t, \qquad \qquad \therefore \qquad x^{3/2} \, \mathrm{d}x = \frac{2}{5} \, \mathrm{d}t$ $= \int \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{2}} dt$ $\therefore \qquad \mathbf{I} = \int (t-1)^2 \cdot t^{1/2} \cdot \frac{2}{5} dt$ $= \int \frac{1}{\left(t - \frac{1}{t}\right)^2 + 2} \left(1 + \frac{1}{t^2}\right) dt$ $= \frac{2}{5} \int \left(t^{5/2} - 2t^{3/2} + t^{1/2} \right) dt$ $= \frac{2}{5} \left[\frac{2}{7} t^{7/2} - \frac{4}{5} t^{5/2} + \frac{2}{3} t^{3/2} \right] + c, \text{ where } t = 1 + x^{5/2}$ $=\int \frac{1}{v^2+2} dy$, where $t - \frac{1}{t} = y$ $= \frac{2}{5} \left[\frac{2}{7} \left(1 + x^{5/2} \right)^{7/2} - \frac{4}{5} \left(1 + x^{5/2} \right)^{5/2} \right]$ $=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{y}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)$ $+\frac{2}{2}(1+x^{5/2})^{3/2}$ + c Let I = $\int \frac{\tan x}{1 + \tan x + \tan^2 x} dx$ 7. $=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t^2-1}{\sqrt{2}t}\right)$ $=\int \frac{\tan x}{\sec^2 x + \tan x} dx$ $I_2 = \int \frac{t^2 - 1}{t^4 + 1} dt = \int \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} dt$ $= \int \frac{\cos x}{\frac{1}{x^2 + \frac{\sin x}{x}}} dx = \int \frac{\sin x \cos x}{1 + \sin x \cos x} dx$ $= \int \frac{1}{\left(t+\frac{1}{t}\right)^2 - 2} \left(1 - \frac{1}{t^2}\right) dt$ $= \int \frac{\frac{1}{2}\sin 2x}{1 + \frac{1}{2}\sin 2x} \, dx = \int \frac{\sin 2x}{2 + \sin 2x} \, dx$ $=\int \frac{1}{m^2-2} dm$, where $t + \frac{1}{t} = m$ $= \frac{1}{2\sqrt{2}} \log \left| \frac{m - \sqrt{2}}{m + \sqrt{2}} \right| = \frac{1}{2\sqrt{2}} \log \left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right|$ $= \int \frac{2 + \sin 2x - 2}{2 + \sin 2x} dx = \int \left(1 - \frac{2}{2 + \sin 2x} \right) dx$ $= x - I_1$ (say)(i) $=\frac{1}{2\sqrt{2}}\log\left|\frac{t^2-\sqrt{2}t+1}{t^2+\sqrt{2}t+1}\right|$ $I_1 = \int \frac{2}{2 + \sin 2x} \, \mathrm{d}x$

Put $\tan x = t \Rightarrow \sec^2 x \, dx = dt \Rightarrow dx = \frac{1}{1+t^2} dt$ $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x} = \frac{2t}{1 + t^2}$:. $I_1 = \int \frac{2}{2 + \frac{2t}{1 + t^2}} \times \frac{1}{1 + t^2} dt$ $=\int \frac{1}{t^2+t+1}\,\mathrm{d}t$ $=\int \frac{1}{t^2 + t + \frac{1}{4} + \frac{3}{4}} dt$ $=\int \frac{1}{\left(t+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dt$ $=\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)+c_{1}$ $=\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2\tan x+1}{\sqrt{3}}\right)+c_{1}$ *.*.. From (i), $I = x - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2 \tan x + 1}{\sqrt{3}} \right) + c$ $\sqrt{A} = \sqrt{3}$ *.*.. \therefore A = 3 Let I = $\int \log\left(\frac{x-1}{x+1}\right) \cdot \frac{1}{x^2-1} dx$ 8. Put $\log\left(\frac{x-1}{x+1}\right) = t$ $\therefore \qquad \left(\frac{1}{x-1} - \frac{1}{x+1}\right) dx = dt$ $\therefore \qquad \frac{1}{x^2 - 1} dx = \frac{1}{2} dt$ $\therefore \qquad I = \int t \cdot \frac{1}{2} dt = \frac{1}{4} t^2 + c$ $=\frac{1}{4}\left[\log\left(\frac{x-1}{x+1}\right)\right]^2 + c$ \therefore A = $\frac{1}{4}$

9. Let
$$I = \int \frac{1}{(x^2 + 2x + 2)^2} dx$$

 $= \int \frac{1}{[(x+1)^2 + 1]^2} dx$
Put $x + 1 = \tan \theta$
 $\therefore dx = \sec^2 \theta d\theta$
 $\therefore I = \int \frac{\sec^2 \theta}{(\tan^2 \theta + 1)^2} d\theta$
 $= \int \frac{\sec^2 \theta}{\sec^2 \theta} d\theta$
 $\frac{1}{\sqrt{x^2 + 2x + 2}} d\theta$
 $\frac{1}{2} \int (1 + \cos 2\theta) d\theta$
 $\frac{1}{2} \left[\theta + \frac{\sin 2\theta}{2} \right] + c$
 $\frac{1}{2} \left[\theta + \sin \theta \cos \theta \right] + c$
 $\frac{1}{2} \left[\tan^{-1}(x+1) + \frac{x+1}{\sqrt{x^2 + 2x + 2}} \cdot \frac{1}{\sqrt{x^2 + 2x + 2}} \right] + c$
10. Let $I = \int \frac{1}{\cos^6 x + \sin^6 x} dx$
Since, $a^3 + b^3 = (a + b)^3 - 3ab(a + b)$
 $\therefore \cos^6 x + \sin^6 x = 1 - 3\sin^2 x \cos^2 x$
 $\dots [\because a + b = \cos^2 x + \sin^2 x = 1]$
 $\therefore I = \int \frac{1}{1 - 3\sin^2 x \cos^2 x} dx$
 $= \int \frac{1}{1 - \frac{3}{4} \sin^2 2x} dx$
 $= \int \frac{4}{4 - 3\sin^2 2x} dx$
 $= \int \frac{4\cos^2 2x}{4(1 + \cos^2 2x) - 3} dx$
 $= \int \frac{4\cos^2 2x}{4(1 + \cos^2 2x) - 3} dx$
 $= \int \frac{4\cos^2 2x}{4(1 + \cos^2 2x) - 3} dx$
 $= \int \frac{1}{4 - 3\sin^2 2x} dx$

MHT-CET Triumph Maths (Hints)

$$\therefore \quad I = -\int \frac{1}{t^2 + 1} dt$$

= $-\tan^{-1}(t) + c$
= $-\tan^{-1}(2 \cot 2x) + c$
= $-\tan^{-1}\left(\frac{2\cos^2 x - 2\sin^2 x}{2\sin x \cos x}\right) + c$
= $-\tan^{-1}(\cot x - \tan x) + c$
= $\tan^{-1}(\tan x - \cot x) + c$

11.
$$\int f(x) \sin x \cos x \, dx = \frac{1}{2(b^2 - a^2)} \log[f(x)] + c$$

$$\therefore \qquad \frac{d}{dx} \left[\frac{1}{2(b^2 - a^2)} \log[f(x)] + c \right] = f(x) \sin x \cos x$$

$$\therefore \qquad \frac{1}{2(b^2 - a^2)} \cdot \frac{1}{f(x)} \cdot f'(x) = f(x) \sin x \cos x$$

 $\therefore \quad \frac{f'(x)}{[f(x)]^2} = 2(b^2 - a^2) \sin x \cos x$ Integrating on both sides, we get

$$\int \frac{f'(x)}{[f(x)]^2} dx = (b^2 - a^2) \int 2\sin x \cos x \, dx$$

$$\therefore \quad -\frac{1}{f(x)} = (b^2 - a^2) \int 2\sin x \cos x \, dx$$
$$= b^2 \int 2\sin x \cos x \, dx - a^2 \int 2\sin x \cos x \, dx$$
$$= b^2 (-\cos^2 x) - a^2 (\sin^2 x)$$
$$\therefore \quad -\frac{1}{f(x)} = -b^2 \cos^2 x - a^2 \sin^2 x$$

$$\therefore \qquad f(x) = \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x}$$

12. Let I =
$$\int e^{\sin\theta} \left[\log(\sin\theta) + \csc^2\theta \right] \cos\theta d\theta$$

Put sin θ = t
∴ cos θ dθ = dt

13. log
$$\left(\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta}\right) = \log\left(\frac{1 + \tan\theta}{1 - \tan\theta}\right)$$

 $= \log \tan\left(\frac{\pi}{4} + \theta\right)$
Since, $\int \sec 2\theta d\theta = \frac{1}{2}\log \tan\left(\frac{\pi}{4} + \theta\right)$
∴ $\frac{d}{d\theta}\log \tan\left(\frac{\pi}{4} + \theta\right) = 2\sec 2\theta$ (i)
Integrating the given expression by parts, we get
 $I = \log \tan\left(\frac{\pi}{4} + \theta\right) \cdot \frac{1}{2}\sin 2\theta - \int \frac{\sin 2\theta}{2} \cdot 2\sec 2\theta d\theta$
....[From (i)]
 $= \frac{1}{2}\sin 2\theta \log \tan\left(\frac{\pi}{4} + \theta\right) - \int \tan 2\theta d\theta$
 $= \frac{1}{2}\sin 2\theta \log \tan\left(\frac{\pi}{4} + \theta\right) - \frac{1}{2}\log(\sec 2\theta) + c$
14. Let $\frac{3x - 4}{3x + 4} = t$
 $\Rightarrow \frac{(3x - 4) + (3x + 4)}{(3x - 4) - (3x + 4)} = \frac{t + 1}{t - 1}$
 $\Rightarrow \frac{6x}{-8} = \frac{t + 1}{t - 1} \Rightarrow x = -\frac{4}{3}\left(\frac{t + 1}{t - 1}\right)$
 $\Rightarrow x + 2 = -\frac{4t + 4}{3t - 3} + 2$
 $= -4t - 4 + 6t - 6 - 2t - 10$

L

$$\Rightarrow \frac{(3x-4)+(3x+4)}{(3x-4)-(3x+4)} = \frac{t+1}{t-1}$$

$$\Rightarrow \frac{6x}{-8} = \frac{t+1}{t-1} \Rightarrow x = -\frac{4}{3} \left(\frac{t+1}{t-1}\right)$$

$$\Rightarrow x+2 = -\frac{4t+4}{3t-3} + 2$$

$$= \frac{-4t-4+6t-6}{3t-3} = \frac{2t-10}{3t-3}$$
Given, $f\left(\frac{3x-4}{3x+4}\right) = x+2$

$$\therefore \quad f(t) = \frac{2t-10}{3t-3} = \frac{2}{3} \left(\frac{t-5}{t-1}\right)$$

$$= \frac{2}{3} \left(\frac{t-1-4}{t-1}\right) = \frac{2}{3} \left(1-\frac{4}{t-1}\right) = \frac{2}{3} - \frac{8}{3(t-1)}$$

$$\therefore \quad f(x) = \frac{2}{3} - \frac{8}{3(x-1)}$$

$$\therefore \quad \int f(x) \, dx = \int \left\{\frac{2}{3} - \frac{8}{3(x-1)}\right\} \, dx$$

$$= \frac{2}{3}x - \frac{8}{3} \log|x-1| + c$$

15. Let I =
$$\int \log(1 - \sqrt{x}) dx$$

= $\int \log(1 - \sqrt{x}) (1) dx$
= $\log(1 - \sqrt{x}) \int 1 dx - \int \left\{ \frac{d}{dx} \log(1 - \sqrt{x}) \int 1 dx \right\} dx$
= $\log(1 - \sqrt{x}) x - \int \frac{1}{1 - \sqrt{x}} \left(-\frac{1}{2\sqrt{x}} \right) x dx$
= $x \log(1 - \sqrt{x}) + \frac{1}{2} \int \frac{\sqrt{x}}{1 - \sqrt{x}} dx$
= $x \log(1 - \sqrt{x}) + \frac{1}{2} I_1$ (i)
Now, $I_1 = \int \frac{\sqrt{x}}{1 - \sqrt{x}} dx$
Put $x = t^2$,
∴ $dx = 2t dt$
∴ $I_1 = \int \frac{\sqrt{t^2}}{1 - \sqrt{t^2}} .2t dt = 2 \int \frac{t^2}{1 - t} dt$
= $-2 \int \frac{1 - t^2 - 1}{1 - t} dt$
= $-2 \int \left(1 + t - \frac{1}{1 - t} \right) dt$
= $2 \int \left(\frac{1}{1 - t} - 1 - t \right) dt$
= $2 \int \left(\frac{1}{1 - t} - 1 - t \right) dt$
= $-2 \left[\log(1 - \sqrt{x}) + \sqrt{x} + \frac{1}{2}x \right] + c_1$
∴ From (i),
I = $x \log(1 - \sqrt{x})$

T

$$I = x \log(1 - \sqrt{x})$$

$$- \frac{1}{2} \cdot 2 \left[\log(1 - \sqrt{x}) + \sqrt{x} + \frac{1}{2}x \right] + c$$

$$= (x - 1) \log(1 - \sqrt{x}) - \sqrt{x} - \frac{1}{2}x + c$$

16.
$$P(x) = \int \frac{x^3}{x^3 - x^2} dx, Q(x) = \int \frac{1}{x^3 - x^2} dx$$

$$\therefore P(x) + Q(x) = \int \frac{x^3 + 1}{x^3 - x^2} dx$$

$$= \int \frac{x^3 - x^2 + x^2 + 1}{x^3 - x^2} dx$$

$$= \int \left(1 + \frac{x^2 + 1}{x^3 - x^2}\right) dx$$

$$= x + I \qquad \dots(i)$$

$$I = \int \frac{x^2 + 1}{x^2(x-1)} dx$$
Put $\frac{x^2 + 1}{x^2(x-1)} = \frac{A}{x-1} + \frac{B}{x} + \frac{C}{x^2}$
 $\therefore x^2 + 1 = Ax^2 + Bx(x-1) + C(x-1) \dots(i)$
Putting $x = 0$ in (i), $C = -1$
Putting $x = 1$ in (ii), $A = 2$
Putting $x = -1$ in (ii), $B = -1$
 \therefore
I = $\int \left(\frac{2}{x-1} - \frac{1}{x} - \frac{1}{x^2}\right) dx$
 $= 2 \log |x-1| - \log |x| + \frac{1}{x}$
 \therefore From (i),
P(x) + Q(x) = x + 2 \log |x-1| - \log |x| + \frac{1}{x} + c
 \therefore (P + Q) (2) = P(2) + Q(2)
 $= 2 + 2 \log 1 - \log 2 + \frac{1}{2} + c$
 \therefore $\frac{5}{2} = \frac{5}{2} - \log 2 + c \qquad \dots \left[\because (P+Q)(2) = \frac{5}{2}\right]$
 \therefore c = log 2
 \therefore P(x) + Q(x) = x + 2 log |x-1| - log |x| + \frac{1}{x} + log 2
 \therefore P(3) + Q(3) = 3 + 2 log 2 - log 3 + $\frac{1}{3} + log 2$
 $= \frac{10}{3} + log \frac{8}{3}$
17. Let I = $\int \frac{2a \sin x + b \sin 2x}{(b + a \cos x)^3} dx$
 $= 2 \int \frac{(a + b \cos x)}{(b + a \cos x)^3} \cdot \sin x dx$
Put b + a cos $x = t$
 \therefore - a sin x dx = dt
 \therefore sin x dx = $-\frac{1}{a}$ dt
 $= -\frac{2}{a} \int \frac{a^2 + bt - b^2}{at^3} dt$
 $= -\frac{2}{a^2} \int [(a^2 - b^2)t^{-3} + bt^{-2}] dt$

MHT-CET Triumph Maths (Hints)					
	$= -\frac{2}{a^{2}} \left[\frac{a^{2} - b^{2}}{-2t^{2}} + \frac{b}{-t} \right] + c$				
	$= \frac{1}{a^2} \cdot \frac{a^2 - b^2}{t^2} + \frac{2b}{a^2t} + c$				
18.	Let I = $\int \frac{1}{(x-1)\sqrt{x^2+4}} dx$				
	Put $x - 1 = \frac{1}{t}$, \therefore $dx = -\frac{1}{t^2} dt$				
	$I = \int \frac{1}{\frac{1}{t}\sqrt{\left(\frac{1}{t}+1\right)^2+4}} \left(-\frac{1}{t^2}\right) dt$				
	$= -\int \frac{1}{\sqrt{\frac{1}{t^{2}} + \frac{2}{t} + 1 + 4}} \left(\frac{1}{t}\right) dt$				
	$= -\int \frac{1}{\sqrt{1+2t+5t^2}} dt$				
	$= -\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{t^2 + \frac{2}{5}t + \frac{1}{5}}} dt$				
	$= -\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{t^2 + \frac{2}{5}t + \frac{1}{25} + \frac{4}{25}}} dt$				
	$= -\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{\left(t + \frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2}} dt$				
	$= -\frac{1}{\sqrt{5}} \log \left t + \frac{1}{5} + \sqrt{t^2 + \frac{2t}{5} + \frac{1}{5}} \right + c$				
	$= -\frac{1}{\sqrt{5}}\log\left \frac{1}{x-1} + \frac{1}{5} + \sqrt{\frac{1}{(x-1)^2} + \frac{2}{5(x-1)} + \frac{1}{5}}\right + c$				
	$= -\frac{1}{\sqrt{5}} \log \left \frac{1}{x-1} + \frac{1}{5} + \sqrt{\frac{x^2 + 4}{5(x-1)^2}} \right + c$				
19.	Let I = $\int \frac{1 + x \cos x}{x \left\{ 1 - \left(x e^{\sin x}\right)^2 \right\}} dx$				
	$= \int \frac{e^{\sin x} (1 + x \cos x)}{x e^{\sin x} \left\{ 1 - \left(x e^{\sin x}\right)^2 \right\}} dx$				
	Put $xe^{\sin x} = t$				
.:	$[xe^{\sin x}\cos x + e^{\sin x}(1)] dx = dt$ $e^{\sin x}(1 + x\cos x) dx = dt$				
••	$c = (1 \pm x \cos x) dx - dt$				

$$\begin{array}{ll} \therefore & I = \int \frac{1}{t(1-t^2)} dt = \int \frac{1}{t(1-t)(1+t)} dt \\ & \text{Put } \frac{1}{t(1-t)(1+t)} = \frac{A}{t} + \frac{B}{1-t} + \frac{C}{1+t} \\ & \therefore & I = A(1-t)(1+t) + Bt(1+t) + Ct(1-t) \\ & & \dots(i) \\ & \text{Putting } t = 0 \text{ in } (i), \text{ we get } \\ & A = 1 \\ & \text{Putting } t = 1 \text{ in } (i), \text{ we get } \\ & B = \frac{1}{2} \\ & \text{Putting } t = -1 \text{ in } (i), \text{ we get } \\ & B = \frac{1}{2} \\ & \text{Putting } t = -1 \text{ in } (i), \text{ we get } \\ & C = -\frac{1}{2} \\ & \therefore & I = \int \left(\frac{1}{t} + \frac{1/2}{1-t} - \frac{1/2}{1+t}\right) dt \\ & = \log|t| - \frac{1}{2}\log|1-t| - \frac{1}{2}\log|1+t| + c \\ & = \frac{1}{2}\log\left|\frac{t^2}{1-t^2}\right| + c = \frac{1}{2}\log\left|\frac{x^2 e^{2\sin x}}{1-x^2 e^{2\sin x}}\right| + c \\ \\ & 20. \quad \text{Let } I = \int \tan(\sin^{-1} x) dx \\ & = \int \tan\left[\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)\right] dx \\ & = \int \frac{1}{\sqrt{1-x^2}} dx \\ & \text{Put } 1 - x^2 = t, \\ & \therefore \quad x \ dx = -\frac{1}{2} dt \\ & \therefore \quad I = \int \frac{1}{\sqrt{t}} \left(-\frac{1}{2}\right) dt \\ & = -\int \frac{1}{2\sqrt{t}} dt = -\sqrt{t} + c = -\sqrt{1-x^2} + c \\ \\ \\ & 21. \quad \text{Let } I = \int \sec^{25/13} x \csc^{27/13} x \, dx \\ & = \int \cos^{-25/13} x \sin^{-27/13} x \, dx \\ & = \int \cos^{-25/13} x \sin^{-27/13} x \, dx \\ & \text{Now } -\frac{25}{13} - \frac{27}{13} = -\frac{52}{13} = -4 \\ & \text{Multiplying and dividing by } \cos^4 x, \text{ we get } \\ & I = \int \cos^4 x \cos^{-25/13} x \sin^{-27/13} x \, \sec^4 x \, dx \end{array}$$

 $= \int \cos^4 x \cos^{-25/13} x \sin^{-27/13} x \sec^2 x dx$ = $\int \tan^{-27/13} x (1 + \tan^2 x) \sec^2 x dx$

554

... $\sec^2 x \, dx = dt$ Put tan x = t, $I = \int t^{-27/13} (1+t^2) dt$ ÷. $= \int (t^{-27/13} + t^{-1/13}) dt$ $= -\frac{13}{14}t^{-14/13} + \frac{13}{12}t^{12/13} + c$ $= -\frac{13}{14}(\tan x)^{-14/13} + \frac{13}{12}(\tan x)^{12/13} + c$ 22. Let I = $\int \frac{1}{r + \sqrt{r^2 - r + 1}} dr$ Put $x + \sqrt{x^2 - x + 1} = t$ $\therefore \quad \sqrt{x^2 - x + 1} = t - x$ $x^2 - x + 1 = t^2 - 2tx + x^2$ $\therefore \qquad x = \frac{t^2 - 1}{2t - 1}$ $\therefore \quad \frac{dx}{dt} = \frac{(2t-1).2t - (t^2 - 1).2}{(2t-1)^2}$ $\therefore \quad dx = \frac{2t^2 - 2t + 2}{(2t - 1)^2} dt$:. $I = \int \frac{1}{t} \times \frac{2t^2 - 2t + 2}{(2t - 1)^2} dt$ $=2\int \frac{t^2-t+1}{t(2t-1)^2} dt$ Put $\frac{t^2 - t + 1}{t(2t - 1)^2} = \frac{A}{t} + \frac{B}{2t - 1} + \frac{C}{(2t - 1)^2}$ $t^{2}-t+1 = A(2t-1)^{2} + Bt(2t-1) + Ct$ ÷.(i) Putting t = 0 in (i), we get A = 1Putting $t = \frac{1}{2}$ in (i), we get $C = \frac{3}{2}$ Putting t = 1 in (i), we get 1 = A + B + C \Rightarrow B = 1 - 1 - $\frac{3}{2}$ \Rightarrow B = - $\frac{3}{2}$ \therefore I = 2 $\int \left(\frac{1}{t} - \frac{3}{2(2t-1)} + \frac{3}{2} \cdot \frac{1}{(2t-1)^2}\right) dt$ $= 2 \log t - \frac{3}{2} \log(2t-1) - \frac{3}{2} \cdot \frac{1}{2t-1} + c$ $= 2 \log t - \frac{3}{2} \log(2t-1) - \frac{1}{2} \left(\frac{3}{2t-1} \right) + c,$

Chapter 04: Integration where $t = x + \sqrt{x^2 - x + 1}$ and $2t - 1 = 2x - 1 + 2\sqrt{x^2 - x + 1}$:. $P = 2, Q = -\frac{3}{2}, R = -\frac{1}{2}$ 23. Let I = $\int \frac{1}{(1+r^2)\sqrt{1-r^2}} dr$ Put $x = \frac{1}{x}$, \therefore dx = $-\frac{1}{t^2}$ dt $\therefore \qquad \mathbf{I} = \int \frac{1}{\left(1 + \frac{1}{t^2}\right)\sqrt{1 - \frac{1}{t^2}}} \left(-\frac{1}{t^2}\right) dt$ $= -\int \frac{t\,\mathrm{d}t}{(t^2+1)\sqrt{t^2-1}}$ Put $t^2 - 1 = m^2$ 2t dt = 2m dm*.*.. t dt = m dm $\therefore \qquad I = -\int \frac{mdm}{(m^2 + 2)\sqrt{m^2}}$ $= -\int \frac{1}{m^2 + \left(\sqrt{2}\right)^2} \,\mathrm{d}m$ $=-\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{m}{\sqrt{2}}\right)+c$ $=-\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{t^2-1}}{\sqrt{2}}\right)+c$ $= -\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{\frac{1}{x^2} - 1}}{\sqrt{2}} \right) + c$ $= -\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{1-x^2}}{\sqrt{2}x} \right) + c$ $= -\frac{1}{\sqrt{2}} \left| \frac{\pi}{2} - \cot^{-1} \left(\frac{\sqrt{1-x^2}}{\sqrt{2x}} \right) \right| + c$ $= -\frac{1}{\sqrt{2}} \left| \frac{\pi}{2} - \tan^{-1} \left(\frac{\sqrt{2}x}{\sqrt{1 - x^2}} \right) \right| + c$ $=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{2}x}{\sqrt{1-x^{2}}}\right)-\frac{\pi}{2\sqrt{2}}+c$

MHT-CET Triumph Maths (Hints) Let I = $\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} dx$ 24. Dividing N^r and D^r by x^5 , we get $I = \int \frac{\left(\frac{1}{x^3} - \frac{1}{x^5}\right)}{\sqrt{2 - \frac{2}{x^2} + \frac{1}{4}}} dx$ Put $2 - \frac{2}{r^2} + \frac{1}{r^4} = t \Longrightarrow \left(\frac{4}{r^3} - \frac{4}{r^5}\right) dx = dt$ \therefore I = $\frac{1}{4}\int \frac{dt}{\sqrt{t}} = \frac{1}{2}\sqrt{t} + c$ $=\frac{1}{2}\sqrt{2-\frac{2}{2}+\frac{1}{4}+c}$ $\int \frac{\log x}{(x+1)^2} dx = \int \log x . (x+1)^{-2} dx$ 25. $= \log x \cdot \frac{(x+1)^{-1}}{1} - \int \frac{1}{x} \cdot \frac{(x+1)^{-1}}{1} dx$ $=-\frac{\log x}{r+1}+\int \left(\frac{1}{r(r+1)}\right) dx$ $=-\frac{\log x}{r+1}+\int\left(\frac{1}{r}-\frac{1}{r+1}\right)dx$ $= -\frac{\log x}{m+1} + \log |x| - \log |x+1| + c$ $I_n = \int \sin^n x \, dx$ 26. $=\int \sin^{n-1} x \cdot \sin x \, dx$ $=\sin^{n-1}x\int\sin x\,\mathrm{d}x$ $-\int \left\{ \frac{\mathrm{d}}{\mathrm{d}x} (\sin^{n-1} x) \int \sin x \, \mathrm{d}x \right\} \, \mathrm{d}x$ $=\sin^{n-1}x(-\cos x)$ $-\int (n-1)\sin^{n-2}x\cos x(-\cos x)dx$ $= -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x\cos^2 x \, dx$ $= -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x(1-\sin^2 x)dx$ $=-\sin^{n-1}x\cos x + (n-1)\int (\sin^{n-2}x - \sin^n x)dx$

 $= -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x\,dx$ -(n-1)\int \sin^n x dx $\therefore \qquad I_n = -\sin^{n-1}x\cos x + (n-1)I_{n-2} - (n-1)I_n$ $\therefore \qquad I_n + (n-1)I_n - (n-1)I_{n-2} = -\sin^{n-1}x\cos x$ $\therefore \qquad nI_n - (n-1)I_{n-2} = -\sin^{n-1}x\cos x$

+ f''(θ) cos θ - f'(θ) sin θ $= -f'''(\theta) \sin \theta - f'(\theta) \sin \theta$ $v = f''(\theta) \cos \theta + f'(\theta) \sin \theta$ $\frac{dv}{d\theta} = -f''(\theta)\sin\theta + f'''(\theta)\cos\theta$ ÷. + f'(θ) cos θ + f''(θ) sin θ $= f'''(\theta) \cos \theta + f'(\theta) \cos \theta$ $\therefore \qquad \left(\frac{du}{d\theta}\right)^2 + \left(\frac{dv}{d\theta}\right)^2 = \left[-f'''(\theta)\sin\theta - f'(\theta)\sin\theta\right]^2$ + $[f'''(\theta) \cos \theta + f'(\theta) \cos \theta]^2$ $= [f'''(\theta)]^2 \sin^2 \theta + 2 f'''(\theta) f'(\theta) \sin^2 \theta$ + $[f'(\theta)]^2 \sin^2 \theta$ + $[f'''(\theta)]^2 \cos^2 \theta$ + 2f'''(θ) f'(θ) cos² θ + [f'(θ)]² cos² θ $= [f'''(\theta)]^2 + 2f'''(\theta) f'(\theta) + [f'(\theta)]^2$ \ldots [$\because \sin^2 \theta + \cos^2 \theta = 1$] $= [f''(\theta) + f'(\theta)]^2$ $\int \left[\left(\frac{\mathrm{d}u}{\mathrm{d}\theta} \right)^2 + \left(\frac{\mathrm{d}v}{\mathrm{d}\theta} \right)^2 \right]^{1/2} \mathrm{d}\theta = \int \left[f'''(\theta) + f'(\theta) \right] \mathrm{d}\theta$:. $= f''(\theta) + f(\theta) + c$ 28. Let I = $\int \frac{x-1}{(x+1)\sqrt{x^3+x^2+x}} dx$ $= \int \frac{x^2 - 1}{(x+1)^2 \sqrt{x^3 + x^2 + x}} \, \mathrm{d}x$ $= \int \frac{x^2 - 1}{(x^2 + 2x + 1)\sqrt{x^3 + x^2 + x}} \, \mathrm{d}x$ $= \int \frac{1 - \frac{1}{x^2}}{\left(x + \frac{1}{x} + 2\right)\sqrt{x + \frac{1}{x^2} + 1}} \, \mathrm{d}x$ Put $x + \frac{1}{x} + 1 = t^2$ $\therefore \left(1-\frac{1}{r^2}\right)dx = 2t dt$ $I = \int \frac{2t}{(t^2 + 1)\sqrt{t^2}} dt = 2 \int \frac{1}{t^2 + 1} dt = 2 \tan^{-1} t + c$... $= 2 \tan^{-1} \left(\sqrt{x + \frac{1}{x} + 1} \right) + c$

 $u = -f''(\theta) \sin \theta + f'(\theta) \cos \theta$

 $\frac{du}{d\theta} = -f'''(\theta)\sin\theta - f''(\theta)\cos\theta$

27.

...

Chapter 04: Integration

29. Let
$$I = \int \left(\sqrt{\tan x} + \sqrt{\cot x}\right) dx$$

$$= \int \left(\sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}}\right) dx$$

$$= \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} dx$$

$$= \int \frac{\sqrt{2} (\sin x + \cos x)}{\sqrt{2 \sin x \cos x}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - 1 + 2 \sin x \cos x}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (1 - 2 \sin x \cos x)}} dx$$

$$= \sqrt{2} \int \frac{\sin x + \cos x}{\sqrt{1 - (\sin^2 x - 2 \sin x \cos x + \cos^2 x)}} dx$$

$$= \sqrt{2} \int \frac{1}{\sqrt{1 - (\sin x - \cos x)^2}} (\sin x + \cos x) dx$$
Put sin $x - \cos x = t$

 $Put \sin x - \cos x = t$

 $\therefore \quad (\cos x + \sin x) dx = dt$

$$\therefore \quad I = \sqrt{2} \int \frac{1}{\sqrt{1 - t^2}} dt$$
$$= \sqrt{2} \sin^{-1}(t) + c$$
$$= \sqrt{2} \sin^{-1}(\sin x - \cos x) + c$$

Textbook Chapter No.

05 Definite Integrals

Classical Thinking $\int_{-\infty}^{\infty} \frac{1}{r} dx = [\log x]_{1}^{e} = \log_{e} e - \log 1 = 1$ 1. $\int_{-\infty}^{\infty} (x-1)(x-2)(x-3) \, \mathrm{d}x$ 2. $= \int (x^3 - 6x^2 + 11x - 6) \, \mathrm{d}x$ $=\left[\frac{x^4}{4} - \frac{6x^3}{3} + \frac{11x^2}{2} - 6x\right]^3 = 0$ 3. $\int_{0}^{1} (1-x)^{9} dx = \left[\frac{-(1-x)^{10}}{10}\right]_{1}^{1} = \frac{1}{10}$ 4. $\int_{1}^{1} e^{2\log x} dx = \int_{1}^{1} e^{\log x^2} dx$ $=\int_{-1}^{1} x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^{1} = \frac{1}{3}$ 5. $\int_{1}^{\pi/3} \cos 3x \, dx = \left[\frac{\sin 3x}{3}\right]_{1}^{\frac{1}{3}} = 0$ 6. $\int_{-\infty}^{\pi/2} \csc^2 x \, dx = \left[-\cot x\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} = -\left[\cot \frac{\pi}{2} - \cot \frac{\pi}{4}\right] = 1$ 7. $\int_{0}^{2\pi} (\sin x + \cos x) \, dx = [-\cos x + \sin x]_{0}^{2\pi} = 0$ 8. $\frac{1}{2}\int_{0}^{\pi/8}\sec^2 2x dx = \frac{1}{4}[\tan 2x]_{0}^{\frac{\pi}{8}} = \frac{1}{4}(1) = \frac{1}{4}$ $\int_{-\infty}^{\pi/4} \operatorname{cosec} 2x dx = \frac{1}{2} \left[\operatorname{logtanx} \right]_{\underline{\pi}}^{\underline{\pi}}$ 9. $=\frac{1}{2}\left[\log\tan\frac{\pi}{4} - \log\tan\frac{\pi}{6}\right] = \frac{1}{2}\log\sqrt{3}$ Put $1 + \log x = t \Rightarrow \frac{1}{r} dx = dt$ 10. When x = 1, t = 1 and when x = e, t = 2 $\int_{-\infty}^{\infty} \frac{1 + \log x}{x} \, dx = \int_{-\infty}^{\infty} t \, dt = \left[\frac{t^2}{2}\right]_{-\infty}^{-\infty} = \frac{3}{2}$...

Hints
11. Put
$$t = -\frac{1}{x} \Rightarrow dt = \frac{1}{x^2} dx$$

When $x = 1$, $t = -1$ and when $x = 2$, $t = -\frac{1}{2}$
 $\therefore \int_{1}^{2} \frac{1}{x^2} e^{-\frac{1}{x}} dx = \int_{-1}^{1/2} e^t dt = [e^t]_{-1}^{1/2}$
 $= e^{-\frac{1}{2}} - e^{-1} = \frac{\sqrt{e} - 1}{e}$
12. Put $\log x = t \Rightarrow \frac{1}{x} dx = dt$
When $x = 1$, $t = 0$ and when $x = 2$, $t = \log 2$
 $\therefore \int_{1}^{2} \frac{\cos(\log x)}{x} dx = \int_{0}^{\log 2} \cos t dt$
 $= [\sin t]_{0}^{\log 2} = \sin(\log 2)$
13. $\int_{1}^{\sqrt{3}} \frac{1}{1 + x^2} dx = [\tan^{-1}x]_{0}^{\sqrt{3}} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$
14. Put $\tan^{-1}x = t \Rightarrow \frac{1}{1 + x^2} dx = dt$
When $x = 0$, $t = 0$ and when $x = 1$, $t = \frac{\pi}{4}$
 $\therefore \int_{0}^{1} \frac{\tan^{-1}x}{1 + x^2} dx = \int_{0}^{\pi/4} t dt = \left[\frac{t^2}{2}\right]_{0}^{\frac{\pi}{4}} = \frac{\pi^2}{32}$
15. $\int_{0}^{1} \frac{dx}{x^2 - 2x + 2} = \int_{0}^{1} \frac{dx}{(x - 1)^2 + 1}$
 $= [\tan^{-1}(x - 1)]_{0}^{1}$
 $= 0 - (-\frac{\pi}{4}) = \frac{\pi}{4}$
16. $\int_{1}^{2} \log x dx = [x \log x - x]_{1}^{2}$
 $= 2\log 2 - 2 + 1$
 $= \log 4 - 1 = \log 4 - \log e = \log\left(\frac{4}{e}\right)$
17. $\int_{1}^{2} e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx = \left[\frac{1}{x}e^x\right]_{0}^{\frac{\pi}{4}} = \frac{e^2}{2} - e$

 $\int_{2}^{3} \frac{dx}{x^{2} - x} = \int_{2}^{3} \frac{dx}{x(x - 1)} = \int_{2}^{3} \left| \frac{1}{x - 1} - \frac{1}{x} \right| dx$ 18. $=\int_{-1}^{3}\frac{1}{(x-1)}dx - \int_{-1}^{3}\frac{1}{x}dx$ $= [\log(x-1)]_{2}^{3} - [\log x]_{2}^{3}$ $= (\log 2 - \log 1) - (\log 3 - \log 2) = 2\log 2 - \log 3$ $=\log\left(\frac{4}{3}\right)$ 19. Put $x = a - t \Longrightarrow dx = -dt$ When x = 0, t = a and when x = a, t = 0 $\therefore \int_{a}^{a} f(x) dx = -\int_{a}^{0} f(a-t) dt$ $= \int_{a}^{a} f(a-t) dt \qquad \dots \left[\because \int_{a}^{b} f(x) dx = -\int_{a}^{a} f(x) dx \right]$ $= \int_{a}^{a} f(a-x) dx \qquad \dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt \right]$ 20. Let $I = \int_{0}^{\overline{2}} \frac{\sin x}{\sin x + \cos x} dx$(i) $= \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$ $= \int_{0}^{\frac{1}{2}} \frac{\cos x}{\cos x + \sin x} dx$(ii) Adding (i) and (ii), we get $2I = \int_{0}^{2} dx = [x]_{0}^{\pi/2}$ $2I = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$ *:*. 21. Let I = $\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ (i) $\therefore \qquad \mathbf{I} = \int_{0}^{\pi/2} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} \, \mathrm{d}x$ $\because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx$

$$\therefore I = \int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \qquad \dots (ii)$$
Adding (i) and (ii), we get
$$2I = \int_{0}^{\pi/2} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$$
22. Let $I = \int_{0}^{\pi} x \sin x dx \qquad \dots (i)$

$$\therefore I = \int_{0}^{\pi} (\pi - x) \sin (\pi - x) dx$$

$$\dots \left[\because \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(a - x) dx \right]$$

$$\therefore I = \int_{0}^{\pi} (\pi - x) \sin x dx \qquad \dots (ii)$$
Adding (i) and (ii), we get
$$2I = \pi \int_{0}^{\pi} \sin x dx = \pi [-\cos x]_{0}^{\pi} = 2\pi$$

$$\Rightarrow I = \pi$$
23. Let $I = \int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx \qquad \dots (ii)$

$$\therefore I = \int_{2}^{3} \frac{\sqrt{5 - x}}{\sqrt{x + \sqrt{5 - x}}} dx \qquad \dots (ii)$$

$$\therefore I = \int_{2}^{3} \frac{\sqrt{5 - x}}{\sqrt{x + \sqrt{5 - x}}} dx \qquad \dots (ii)$$

$$\therefore I = \int_{2}^{3} \frac{dx}{\sqrt{x + \sqrt{5 - x}}} dx \qquad \dots (ii)$$

$$\therefore I = \int_{2}^{3} dx = [x]_{2}^{3} = 3 - 2 = 1$$

$$\Rightarrow I = \frac{1}{2}$$
24. Let $f(x) = x^{17} \cos^{4} x$

$$\therefore f(-x) = (-x)^{17} \{\cos(-x)\}^{4} = -f(x)$$

$$\therefore f(x) \text{ is an odd function.}$$

$$\therefore \int_{-1}^{1} x^{17} \cos^{4} x dx = 0$$
25. Since, $\sin^{11} x$ is an odd function.

$$\therefore \int_{-1}^{1} \sin^{11} x dx = 0$$
26. Since, $3 \sin x + \sin^{3} x$ is an odd function.

$$\therefore \int_{-\pi/2}^{\pi/2} (3\sin x + \sin^{3} x) dx = 0$$

MHT-CET Triumph Maths (Hints)

Critical Thinking

.

1.
$$\int_{-2}^{2} (ax^{3} + bx + c)dx = \left[\frac{ax^{4}}{4} + \frac{bx^{2}}{2} + cx\right]_{-2}^{2} = 4c$$

Hence, the value depends on c.

2.
$$\int_{0}^{1} \frac{dx}{\sqrt{1+x} - \sqrt{x}}$$

$$= \int_{0}^{1} \frac{(\sqrt{1+x} + \sqrt{x})}{(\sqrt{1+x} - \sqrt{x})(\sqrt{1+x} + \sqrt{x})} dx$$

$$= \int_{0}^{1} \frac{(\sqrt{1+x} + \sqrt{x})}{(\sqrt{1+x} + \sqrt{x})} dx = \int_{0}^{1} \sqrt{1+x} dx + \int_{0}^{1} \sqrt{x} dx$$

$$= \left[\frac{2}{3}(1+x)^{\frac{3}{2}}\right]_{0}^{1} + \left[\frac{2}{3}(x)^{\frac{3}{2}}\right]_{0}^{1}$$

$$= \frac{4\sqrt{2}}{3} - \frac{2}{3} + \frac{2}{3} - 0 = \frac{4\sqrt{2}}{3}$$

3.
$$I + J = \int_{0}^{\pi/4} (\sin^{2}x + \cos^{2}x) dx = \int_{0}^{\pi/4} dx = \frac{\pi}{4}$$

$$\therefore I = \frac{\pi}{4} - J$$

4.
$$\int_{0}^{\pi/4} \tan^2 x dx = \int_{0}^{\pi/4} (\sec^2 x - 1) dx$$
$$= [\tan x]_{0}^{\frac{\pi}{4}} - [x]_{0}^{\frac{\pi}{4}}$$
$$= 1 - \frac{\pi}{4}$$

5.
$$\int_{0}^{\pi} \frac{dx}{1+\sin x} = \int_{0}^{\pi} \frac{1-\sin x}{\cos^{2} x} dx$$
$$= \int_{0}^{\pi} (\sec^{2} x - \sec x \tan x) dx$$
$$= [\tan x - \sec x]_{0}^{\pi} = \tan \pi - \sec \pi + 1$$
$$= 0 + 1 + 1 = 2$$

6.
$$\int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos x}$$
$$= \int_{\pi/4}^{3\pi/4} \frac{1 - \cos x}{1 - \cos^2 x} \, dx = \int_{\pi/4}^{3\pi/4} \frac{1 - \cos x}{\sin^2 x} \, dx$$
$$= \int_{\pi/4}^{3\pi/4} (\csc^2 x - \cot x \csc x) \, dx$$
$$= \left[-\cot x + \csc x \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = 2$$

7. I =
$$\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{1 + \sin 2x}} dx$$

= $\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{(\sin x + \cos x)^{2}}} dx$
= $\int_{0}^{\pi/2} (\sin x + \cos x) dx = [-\cos x + \sin x]_{0}^{\pi/2}$
= 2
8. $\int_{0}^{2\pi} \sqrt{1 + \sin \frac{x}{2}} dx = \int_{0}^{2\pi} \sqrt{\left(\sin \frac{x}{4} + \cos \frac{x}{4}\right)^{2}} dx$
= $\int_{0}^{2\pi} \left(\sin \frac{x}{4} + \cos \frac{x}{4}\right) dx$
.... $\left[\because x \in (0, 2\pi), \because \left(\sin \frac{x}{4} + \cos \frac{x}{4}\right) > 0\right]$
= $4\left[-\cos \frac{x}{4} + \sin \frac{x}{4}\right]_{0}^{2\pi}$
= $4(0 + 1 + 1 - 0)$
= 8
9. $\int_{-1}^{3} \left\{\tan^{-1}\left(\frac{x}{x^{2} + 1}\right) + \tan^{-1}\left(\frac{x^{2} + 1}{x}\right)\right\} dx$
= $\int_{-1}^{3} \left\{\tan^{-1}\left(\frac{x}{x^{2} + 1}\right) + \cot^{-1}\left(\frac{x}{x^{2} + 1}\right)\right\} dx$
= $\int_{-1}^{3} \frac{\pi}{2} dx$ $\left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}\right]$
= $\frac{\pi}{2} [x]_{-1}^{3} = 2\pi$
10. Put $\tan x = t \Rightarrow \sec^{2} x dx = dt$
When $x = 0$, $t = 0$ and when $x = \frac{\pi}{4}$, $t = 1$
 $\therefore \int_{0}^{\pi/4} \tan^{6} x \sec^{2} x dx = \int_{0}^{1} t^{6} dt = \frac{1}{7} [t^{7}]_{0}^{1} = \frac{1}{7}$
11. Let $I = \int_{\pi/4}^{\pi/2} \cos\theta \frac{1}{\sin^{2}\theta} d\theta$
Put $\sin\theta = t \Rightarrow \cos\theta d\theta = dt$

When
$$\theta = \frac{\pi}{4}$$
, $t = \frac{1}{\sqrt{2}}$ and when $\theta = \frac{\pi}{2}$, $t = 1$
 \therefore $I = \int_{1/\sqrt{2}}^{1} \frac{1}{t^2} dt = \left[\frac{-1}{t}\right]_{1/\sqrt{2}}^{1}$
 $= \sqrt{2} - 1$

12. Let I = $\int_{0}^{\pi/6} \frac{\sin x}{\cos^3 x} dx = \int_{0}^{6} \tan x \sec^2 x dx$ Put $\tan x = t \Longrightarrow \sec^2 x dx = dt$ When x = 0, t = 0 and when $x = \frac{\pi}{6}$, $t = \frac{1}{\sqrt{2}}$ $\therefore \qquad I = \int_{-\infty}^{\sqrt{3}} t \, dt = \left[\frac{t^2}{2}\right]_{-\infty}^{\frac{1}{\sqrt{3}}} = \frac{1}{6}$ 13. Let $I = \int_{-\pi/4}^{\pi/4} \sec^7 \theta \cdot \sin^3 \theta d\theta = \int_{-\pi/4}^{\pi/4} \tan^3 \theta \sec^4 \theta d\theta$ Put $\tan\theta = t \Longrightarrow \sec^2 \theta \, d\theta = d$ When $\theta = 0$, t = 0 and when $\theta = \frac{\pi}{4}$, t = 1 $I = \int_{-1}^{1} t^{3} (1 + t^{2}) dt = \left| \frac{t^{4}}{4} + \frac{t^{6}}{6} \right|^{1} = \frac{5}{12}$ *:*.. Put $x^3 = t \Longrightarrow x^2 dx = \frac{dt}{2}$ 14. When x = 0, t = 0 and when x = a, $t = a^3$ $\int_{0}^{a} x^{2} \sin x^{3} dx = \frac{1}{3} \int_{0}^{a^{3}} \sin t dt = -\frac{1}{3} \left[\cos t \right]_{0}^{a^{3}}$ *.*.. $=-\frac{1}{2}(\cos a^{3}-1)=\frac{1}{2}(1-\cos a^{3})$ 15. Put $\sqrt{x} = t \Rightarrow \frac{1}{\sqrt{x}} dx = 2 dt$ When x = 0, t = 0 and when x = 2, $t = \sqrt{2}$ $\therefore \qquad \int_{-\infty}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int_{-\infty}^{\sqrt{2}} 3^{t} dt = 2 \left[\frac{3^{t}}{\log 3} \right]^{\sqrt{2}} = \frac{2}{\log 3} (3^{\sqrt{2}} - 1)$ Let I = $\int_{1}^{\pi/2} \sin x \sin 2x \, dx = 2 \int_{1}^{\pi/2} \sin^2 x \cos x \, dx$ 16. Put $\sin x = t \Rightarrow \cos x \, dx = dt$ When x = 0, t = 0 and when $x = \frac{\pi}{2}$, t = 1 \therefore I = 2 $\int t^2 dt = \frac{2}{3} [t^3]_0^1 = \frac{2}{3}$ 17. Let I = $\int_{-\infty}^{\infty} \frac{dx}{r(1 + \log r)^2}$ Put $(1 + \log x) = t \Rightarrow \frac{1}{r} dx = dt$ When x = 1, t = 1 and when $x = e^2$, t = 3 $I = \int_{-\frac{1}{2}}^{3} \frac{dt}{t^{2}} = \left[\frac{-1}{t}\right]^{3} = -\left(\frac{1}{3}-1\right) = \frac{2}{3}$ ÷

Chapter 05: Definite Integrals 18. Let I = $\int \sec x \log(\sec x + \tan x) dx$ Put $\log(\sec x + \tan x) = t \Longrightarrow \sec x \, dx = dt$ $\therefore \qquad I = \int_{0}^{\log(\sqrt{2}+1)} t \, dt = \left[\frac{t^2}{2}\right]^{\log(\sqrt{2}+1)} = \frac{[\log(\sqrt{2}+1)]^2}{2}$ 19. $\int_{-\pi/4}^{-\pi/4} \frac{1 + \tan x}{1 - \tan x} dx = \int_{-\pi/4}^{\pi/4} \tan\left(\frac{\pi}{4} + x\right) dx$ $=\left|\log\left\{\sec\left(\frac{\pi}{4}+x\right)\right\}\right|^{-n/4}$ $=-\frac{1}{2}\log 2$ 20. Since, $\sin\theta$ is positive in interval $(0, \pi)$. $\therefore \qquad \int_{0}^{\infty} |\sin^{3}\theta| d\theta = \int_{0}^{\infty} \sin^{3}\theta d\theta = \int_{0}^{\infty} \sin\theta (1 - \cos^{2}\theta) d\theta$ $= \int_{0}^{\pi} \sin\theta \, d\theta + \int_{0}^{\pi} (-\sin\theta) \cos^2\theta \, d\theta$ $= \left[-\cos\theta\right]_0^{\pi} + \left|\frac{\cos^3\theta}{3}\right|^{\pi} = \frac{4}{3}$ 21. Let $I = \int_{0}^{\pi/8} \cos^3 4\theta \, d\theta = \int_{0}^{\pi/8} \cos^2 4\theta . \cos 4\theta \, d\theta$ $= \int_{0}^{\pi/8} (1 - \sin^2 4\theta) \cos 4\theta d\theta$ Put $\sin 4\theta = t \Rightarrow \cos 4\theta d\theta = \frac{dt}{4}$ When $\theta = 0$, t = 0 and when $\theta = \frac{\pi}{8}$, t = 1 \therefore I = $\frac{1}{4} \int_{-1}^{1} (1-t^2) dt = \frac{1}{4} \left| t - \frac{t^3}{3} \right|_{-1}^{1} = \frac{1}{6}$ 22. Let I = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sqrt{1 + \cos x}}{\frac{5}{2}} dx$ $= \int_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{(1 - \cos x)^{\frac{5}{2}}} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} \, dx$ $= \int_{-\infty}^{\pi/2} \frac{\sin x}{(1 - \cos x)^3} \, \mathrm{d}x$ Put $1 - \cos x = t$ $\Rightarrow \sin x \, dx = dt$:. $I = \int_{-2}^{1} \frac{dt}{t^3} = \left| \frac{t^{-2}}{-2} \right|_{-2}^{1} = \frac{3}{2}$

MHT-CET Triumph Maths (Hints) Put $\sin^2 x = t \Longrightarrow 2 \sin x \cos x \, dx = dt$ 23. When x = 0, t = 0 and when $x = \frac{\pi}{2}$, t = 1 $\therefore \int_{1}^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} \, dx = \frac{1}{2} \int_{1}^{1} \frac{1}{1 + t^2} \, dt$ $=\frac{1}{2}[\tan^{-1}t]_{0}^{1}=\frac{\pi}{2}$ 24. Let I = $\int_{0}^{\pi/4} \frac{4\sin 2\theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} = 4 \int_{0}^{\pi/4} \frac{2\sin \theta \cos \theta \, d\theta}{\sin^4 \theta + \cos^4 \theta}$ $=4\int^{\pi/4} \frac{2\tan\theta\sec^2\theta\,d\theta}{\tan^4\theta+1}$ Put $\tan^2 \theta = t \Longrightarrow 2 \tan \theta \sec^2 \theta d \theta = dt$:. $I = 4 \int_{1}^{1} \frac{dt}{t^{2} + 1} = 4 [tan^{-1} t]_{0}^{1} = 4 \left| \frac{\pi}{4} - 0 \right| = \pi$ 25. $k\int x f(3x) dx = \int t f(t) dt$(i) Put $3x = t \Longrightarrow dx = \frac{dt}{2}$ $k\int_{0}^{1} xf(3x)dx = k\int_{0}^{3} \frac{t}{3} \cdot f(t) \cdot \frac{dt}{3} = \frac{k}{9}\int_{0}^{3} tf(t)dt$ ÷. From (i). $\frac{k}{9}\int tf(t)dt = \int tf(t)dt$ $\Rightarrow \frac{k}{0} = 1 \Rightarrow k = 9$ 26. $\int_{0}^{2/3} \frac{dx}{4+9x^{2}} = \frac{1}{9} \int_{0}^{\overline{3}} \frac{dx}{\left(\frac{2}{2}\right)^{2} + x^{2}}$ $=\frac{1}{9} \times \frac{1}{\frac{2}{3}} \tan^{-1} \frac{x}{\frac{2}{3}}$

 $=\frac{1}{6}\times\frac{\pi}{4}=\frac{\pi}{24}$

 $\Rightarrow \frac{1}{4} (\tan^{-1} 2k) = \frac{\pi}{16}$ $\Rightarrow \tan^{-1} 2k = \frac{\pi}{4} \Rightarrow k = \frac{1}{2}$ 28. $\int_{0}^{1} \frac{dx}{x^{2} - x + 1} = \int_{0}^{1} \frac{dx}{\left(x - \frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}}$ $=\frac{2}{\sqrt{2}}\left[\tan^{-1}\left(\frac{2x-1}{\sqrt{2}}\right)\right]^{1}$ $=\frac{2}{\sqrt{2}}\left[\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)-\tan^{-1}\left(-\frac{1}{\sqrt{2}}\right)\right]$ $=\frac{2}{\sqrt{3}}\left|\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)\right|=\frac{2}{\sqrt{3}}\cdot\frac{\pi}{3}=\frac{2\pi}{3\sqrt{3}}$ 29. Let I = $\int_{-\infty}^{1} \frac{dx}{e^x + e^{-x}} = \int_{-\infty}^{1} \frac{e^x}{1 + e^{2x}} dx$ Put $e^x = t \implies e^x dx = dt$:. $I = \int_{1+t^2}^{e} \frac{dt}{1+t^2} = [tan^{-1}t]_1^e = tan^{-1}e - tan^{-1}1$ $= \tan^{-1}\left(\frac{e-1}{e+1}\right)$ $\dots \left[\because \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right) \right]$ 30. $\int_{1/4}^{1/2} \frac{dx}{\sqrt{x-x^2}} = \int_{1/4}^{1/2} \frac{dx}{\sqrt{\left(\frac{1}{2}\right)^2 - \left(x-\frac{1}{2}\right)^2}}$ $=\left[\sin^{-1}\left(\frac{x-\frac{1}{2}}{\frac{1}{2}}\right)\right]^{\frac{1}{2}}$ $= [\sin^{-1}(2x-1)]_{1/4}^{1/2} = \frac{\pi}{6}$ 31. $\int_{-\infty}^{5} \frac{x^2}{x^2 - 4} dx = \int_{-\infty}^{5} \left(1 + \frac{4}{x^2 - 4}\right) dx$ $=\left[x+\frac{4}{2(2)}\log\left|\frac{x-2}{x+2}\right|\right]^{3}$ $=2+\log_{e}\left(\frac{15}{7}\right)$

27. $\int_{0}^{\kappa} \frac{dx}{2+8x^2} = \frac{\pi}{16}$

 $\Rightarrow \frac{1}{2} \int_{1}^{\kappa} \frac{1}{1^2 + (2x)^2} dx = \frac{\pi}{16}$

 $\Rightarrow \frac{1}{2} \left[\frac{\tan^{-1}(2x)}{2} \right]^{\kappa} = \frac{\pi}{16}$

32. Let $I = \int_{0}^{1} \frac{1}{[ax+b(1-x)]^2} dx$ $= \int_{0}^{1} \frac{1}{[(a-b)x+b]^2} dx$ Put $(a-b) x + b = t \Rightarrow (a-b) dx = dt$ When x = 0, t = b and when x = 1, t = a $\therefore I = \frac{1}{a-b} \int_{b}^{a} \frac{1}{t^2} dt$ $= \frac{1}{(a-b)} \left[-\frac{1}{t} \right]_{b}^{a}$ $= \frac{1}{(a-b)} \left(\frac{a-b}{ab} \right)$ $\therefore I = \frac{1}{ab}$ 33. Put $a^2 + x^2 = t \Rightarrow 2xdx = dt$ When x = 0, $t = a^2$ and when x = a, $t = 2a^2$ $\therefore \int_{0}^{a} \frac{xdx}{\sqrt{a^2 + x^2}} = \frac{1}{2} \int_{a^2}^{2a^2} \frac{1}{\sqrt{t}} dt$ $= \left[\sqrt{t} \right]_{a^2}^{2a^2} = (2a^2)^{\frac{1}{2}} - (a^2)^{\frac{1}{2}} = a(\sqrt{2} - 1)$

34. Put $1 + e^{-x} = t \Longrightarrow -e^{-x}dx = dt$

When x = 0, t = 2 and when x = 1, $t = 1 + \frac{1}{e}$

$$\therefore \int_{0}^{1} \frac{e^{-2x}}{1+e^{-x}} dx = \int_{2}^{1+\frac{1}{e}} \frac{(t-1)(-dt)}{t} = \int_{2}^{1+\frac{1}{e}} \left(\frac{1}{t}-1\right) dt$$
$$= \left[\log t - t\right]_{2}^{1+\frac{1}{e}}$$
$$= \log\left(1+\frac{1}{e}\right) - \left(1+\frac{1}{e}\right) - \log 2 + 2$$
$$= \log\left(\frac{e+1}{2e}\right) - \frac{1}{e} + 1$$
35. Let I =
$$\int_{0}^{\pi/2} \frac{dx}{e^{2} \cos^{2} x + b^{2} \sin^{2} x}$$

Let I = $\int_{0}^{\pi/2} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$ Dividing N^r and D^r by cos² x, we get I = $\int_{0}^{\pi/2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} dx$

Put b tan
$$x = t \Rightarrow b \sec^2 x \, dx = dt$$

When $x = 0$, $t = 0$ and when $x = \frac{\pi}{2}$, $t = \infty$

$$\therefore \qquad I = \int_0^\infty \frac{\frac{dt}{b}}{a^2 + t^2} = \frac{1}{b} \left[\frac{1}{a} \tan^{-1} \left(\frac{t}{a} \right) \right]_0^\infty$$
$$= \frac{1}{ab} (\tan^{-1} \infty - \tan^{-1} 0)$$
$$= \frac{1}{ab} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi}{2ab}$$

Chapter 05: Definite Integrals

36. Put
$$e^{x} - 1 = t^{2} \Rightarrow e^{x} dx = 2t dt$$

When $x = 0, t = 0$ and when $x = \log 5, t = 2$
 $\therefore \int_{0}^{\log 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx = \int_{0}^{2} \frac{2t^{2}}{t^{2} + 4} dt$
 $= 2\int_{0}^{2} \left(1 - \frac{4}{t^{2} + 4}\right) dt$
 $= 2\left[t - 4 \cdot \frac{1}{2} \tan^{-1} \frac{t}{2}\right]_{0}^{2}$
 $= 2\left(2 - 2 \cdot \frac{\pi}{4}\right) = 4 - \pi$

37. Put
$$x = 2 \cos\theta \Rightarrow dx = -2 \sin\theta d\theta$$

$$\therefore \int_{0}^{2} \sqrt{\frac{2+x}{2-x}} dx = -2 \int_{\pi/2}^{0} \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} \sin\theta d\theta$$

$$= -4 \int_{\pi/2}^{0} \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \sin\frac{\theta}{2} \cos\frac{\theta}{2} d\theta$$

$$= -2 \int_{\pi/2}^{0} (1+\cos\theta) d\theta$$

$$= -2 [\theta + \sin\theta]_{\frac{\pi}{2}}^{0}$$

$$= 2 \left(\frac{\pi}{2}+1\right) = \pi + 2$$
38. Since, $\int_{a}^{b} \sqrt{\frac{x-a}{b-x}} dx = \frac{\pi}{2}(b-a)$

$$\therefore \int_{3}^{4} \sqrt{\frac{x-3}{4-x}} dx = \frac{\pi}{2}(4-3) = \frac{\pi}{2}$$
39. Since, $\int_{a}^{b} \sqrt{(x-a)(b-x)} dx = \frac{\pi}{8}(b-a)^{2}$

$$\therefore \int_{3}^{7} \sqrt{(x-3)(7-x)} dx = \frac{\pi}{8}(7-3)^{2}$$

$$= \frac{\pi}{8} \times 16 = 2\pi$$

MHT-CET Triumph Maths (Hints) Put $x^2 + 1 = t \implies 2x dx = dt$ When x = 0, t = 1 and when x = 2, t = 540. $\therefore \qquad \int_{0}^{2} \frac{x^{3}}{(x^{2}+1)^{\frac{3}{2}}} dx = \frac{1}{2} \int_{1}^{5} \frac{(t-1)}{t^{\frac{3}{2}}} dt$ $=\frac{1}{2}\int_{1}^{5}\left(t^{\frac{-1}{2}}-t^{\frac{-3}{2}}\right)dt$ $=\frac{1}{2}\left[2\sqrt{t}+2\frac{1}{\sqrt{t}}\right]^{5}$ $=\frac{1}{2}\left[2\sqrt{5}+\frac{2}{\sqrt{5}}-2-2\right]$ $=\sqrt{5}+\frac{1}{\sqrt{5}}-2=\frac{6-2\sqrt{5}}{\sqrt{5}}$ Put $x = a \tan \theta \Rightarrow dx = a \sec^2 \theta d\theta$ 41. $\int_{-\infty}^{a} \frac{x^4}{\left(a^2 + r^2\right)^4} dx = \int_{-\infty}^{\overline{4}} \frac{a^4 \tan^4 \theta \cdot a \sec^2 \theta}{a^8 \sec^8 \theta} d\theta$:. $=\frac{1}{a^3}\int \sin^4\theta\,\cos^2\theta\,d\theta$ $=\frac{1}{a^3}\int (\sin^4\theta - \sin^6\theta)d\theta$ $=\frac{1}{a^3}\int_{-\infty}^{\frac{1}{4}}\left[\frac{(1-\cos 2\theta)^2}{4}-\frac{(1-\cos 2\theta)^3}{8}\right]d\theta$ $=\frac{1}{8a^3}\int_{0}^{4}(1+\cos 2\theta)(1-\cos 2\theta)^2d\theta$ $=\frac{1}{8a^3}\int_{0}^{4}(1-\cos 2\theta-\cos^2 2\theta+\cos^3 2\theta)d\theta$ $=\frac{1}{8a^3}\int \frac{4}{4}\left[2-\cos 2\theta-2\cos 4\theta+\cos 6\theta\right]d\theta$ $\dots \left[\frac{\because \cos^2 A = \frac{1 + \cos 2A}{2}}{\operatorname{and} \cos^3 A = \frac{\cos 3A + 3\cos A}{4}} \right]$ $=\frac{1}{32a^3}\left[2\theta-\frac{\sin 2\theta}{2}-\frac{\sin 4\theta}{2}+\frac{\sin 6\theta}{6}\right]^{\frac{1}{4}}$ $=\frac{1}{16a^3}\left(\frac{\pi}{4}-\frac{1}{3}\right)$

42.
$$\int_{0}^{\pi} \frac{dx}{1-2a\cos x + a^{2}}$$

$$= \int_{0}^{\pi} \frac{dx}{(1+a^{2})\left(\cos^{2}\frac{x}{2} + \sin^{2}\frac{x}{2}\right) - 2a\left(\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2}\right)}$$

$$= \int_{0}^{\pi} \frac{dx}{(1-a)^{2}\cos^{2}\frac{x}{2} + (1+a)^{2}\sin^{2}\frac{x}{2}}$$

$$= \int_{0}^{\pi} \frac{\sec^{2}\frac{x}{2}}{(1-a)^{2} + (1+a^{2})\tan^{2}\frac{x}{2}} dx$$

$$= \frac{2}{(1+a)^{2}} \int_{0}^{\pi} \frac{dt}{\left\{\frac{(1-a)}{(1+a)}\right\}^{2} + t^{2}}$$

$$\dots \left[\text{Put } t = \tan\frac{x}{2} \Rightarrow dt = \frac{1}{2}\sec^{2}\frac{x}{2}dx \right]$$

$$= \frac{2}{(1+a)^{2}} \cdot \frac{(1+a)}{(1-a)} \left[\tan^{-1}\left(\frac{1+a}{1-a},t\right) \right]_{0}^{\pi}$$

$$= \frac{2}{(1-a^{2})} (\tan^{-1}\infty - \tan^{-1}0) = \frac{\pi}{1-a^{2}}$$
43.
$$\int_{0}^{1} x^{2} e^{x} dx = \left[x^{2} \cdot e^{x}\right]_{0}^{1} - \int_{0}^{1} 2xe^{x} dx$$

$$= e - 2 \left[xe^{x} - e^{x}\right]_{0}^{1}$$

$$= e - 2 \left[e - e - (0 - 1)\right] = e - 2$$
44.
$$\text{Let I} = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-x} \sin x dx$$

$$\Rightarrow 2I = \left[e^{-x} (-\sin x - \cos x)\right]_{-\pi/4}^{\pi/2} - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{-x} \sin x dx$$

$$\Rightarrow I = \frac{1}{2} \left[e^{\frac{\pi}{2}} (-1 - 0) - \left\{e^{\frac{\pi}{4}}\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)\right\}\right]$$

$$\Rightarrow I = -\frac{1}{2}e^{\frac{\pi}{2}}$$
45.
$$\int_{0}^{1} \tan^{-1} x dx = \left[(\tan^{-1}x) \cdot x\right]_{0}^{1} - \int_{0}^{1} \frac{1}{1+x^{2}} \cdot x dx$$

$$= \left[x \tan^{-1}x - \frac{1}{2}\log|1+x^{2}|\right]_{0}^{1}$$

46.
$$\int_{0}^{1} \cos^{-1} x \, dx = \left[x \cos^{-1} x - \sqrt{1 - x^{2}} \right]_{0}^{1} = 1$$
47. Put $x = t^{2} \Rightarrow dx = 2t$ dt
When $x = 0, t = 0$ and when $x = \frac{\pi^{2}}{4}, t = \frac{\pi}{2}$

$$\therefore \quad \int_{0}^{\frac{\pi^{2}}{2}} \sin \sqrt{x} \, dx = 2 \int_{0}^{\frac{\pi}{2}} t \sin t \, dt$$

$$= 2[-t \cos t + \sin t]_{0}^{\pi/2} = 2$$
48. Put $x = \tan \theta \Rightarrow dx = \sec^{2} \theta \, d\theta$
When $x = 0, \theta = 0$ and when $x = 1, \theta = \frac{\pi}{4}$

$$\therefore \quad \int_{0}^{1} \sin^{-1} \left(\frac{2x}{1 + x^{2}}\right) \, dx = \int_{0}^{\frac{\pi}{2}} \sin^{-1} \left(\frac{2 \tan \theta}{1 + \tan^{2} \theta}\right) \sec^{2} \theta \, d\theta$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \theta \sec^{2} \theta \, d\theta$$

$$= 2 [0 \tan 0]_{0}^{\pi/4} - 2 \int_{0}^{\frac{\pi}{4}} \tan 0 \, d0$$

$$= \frac{\pi}{2} + 2 [\log \cos x]_{0}^{\pi/4}$$

$$= \frac{\pi}{2} - 2 \log \sqrt{2}$$
49.
$$\int_{0}^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \left[\frac{x + 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^{2} \frac{x}{2}} \right] \, dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left[x \sec^{2} \frac{x}{2} + 2 \tan \frac{x}{2} \right] \, dx$$

$$= \left[x \tan \frac{x}{2} \right]_{0}^{\pi/2} - \int_{0}^{\frac{\pi}{4}} \tan \frac{x}{2} \, dx + \int_{0}^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx$$

$$= \left[(2 + 3x^{2}) \cdot \frac{\sin 3x}{3} \right]_{0}^{\frac{\pi}{6}} - \int_{0}^{\frac{\pi}{6}} 6x \cdot \frac{\sin 3x}{3} \, dx$$

$$\begin{aligned} &= \frac{2}{3} + \frac{\pi^2}{36} + \left[\frac{2x\cos 3x}{3}\right]_0^{\frac{\pi}{6}} - \frac{2}{3}\int_0^{\frac{\pi}{6}} \cos 3x \, dx \\ &= \frac{2}{3} + \frac{\pi^2}{36} + 0 - \frac{2}{9} \left[\sin 3x\right]_0^{\pi/6} \\ &= \frac{2}{3} + \frac{\pi^2}{36} - \frac{2}{9} = \frac{1}{36} (\pi^2 + 16) \end{aligned}$$

$$51. \quad \int_2^6 \left[\frac{1}{\log x} - \frac{1}{(\log x)^2}\right] dx \\ &= \int_2^6 \frac{1}{2\log x} dx - \int_2^6 \frac{1}{(\log x)^2} dx \\ &= \left[\frac{x}{\log x}\right]_2^6 - \int_2^6 \left\{-\frac{1}{x(\log x)^2}\right\} x \, dx - \int_2^6 \frac{1}{(\log x)^2} dx \\ &= \left[\frac{x}{\log x}\right]_2^6 = e - \frac{2}{\log 2} \end{aligned}$$

$$\therefore \quad \alpha = e, \beta = -2 \end{aligned}$$

$$52. \quad \int_1^6 \frac{e^x}{x} (1 + x\log x) \, dx = \int_1^6 e^x \left(\frac{1}{x} + \log x\right) \, dx \\ &= \left[e^x \log x\right]_1^6 = e^e \end{aligned}$$

$$53. \quad \int_{\pi/4}^{\pi/2} e^x (\log \sin x + \cot x) \, dx \\ &= \left[e^x \log x \right]_{\pi}^{\frac{\pi}{4}} \\ &= e^{\frac{\pi}{2}} \log \sin \frac{\pi}{2} - e^{\frac{\pi}{4}} \log \sin \frac{\pi}{4} = \frac{1}{2} e^{\frac{\pi}{4}} \log 2 \end{aligned}$$

$$54. \quad \int_0^1 \frac{e^x(x-1)}{(x+1)^3} \, dx = \int_0^1 \frac{e^x(x+1-2)}{(x+1)^3} \, dx \\ &= \int_0^1 e^x \left[\frac{1}{(1+x)^2} + \frac{-2}{(1+x)^3}\right] \, dx \\ &= \left[\frac{e^x}{(1+x)^2}\right]_0^1 = \frac{e}{4} - 1 \end{aligned}$$

$$55. \quad \phi(x) = \frac{1}{x(x^4+1)} = \frac{1}{x} - \frac{x^3}{x^4+1} \\ \therefore \quad \int_1^2 \phi(x) \, dx = \int_1^2 \left(\frac{1}{x} - \frac{x^3}{x^4+1}\right) \, dx \\ &= \left[\log x\right]_1^2 - \left[\frac{1}{4}\log(x^4+1)\right]_1^2 \\ &= \frac{1}{4}\log \frac{32}{17} \end{aligned}$$

МНТ	-CET Triumph Maths (Hints)			
56.	Put $\sin x = t \Rightarrow \cos x dx = dt$	5	59.	$\int_{1}^{\tan x} \frac{t}{1-t^2} dt + \int_{1}^{\cot x} \frac{dt}{t^2} dt$
	When $x = 0$, $t = 0$ and when $x = \frac{\pi}{2}$, $t = 1$			$\frac{1}{e} \frac{1+t^2}{e} = \frac{1}{e} t(1+t^2)$
	$\int_{0}^{\infty} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx = \int_{0}^{\infty} \frac{dt}{(1+t)(2+t)}$			$= \frac{1}{2} \int_{\frac{1}{2}}^{\frac{\tan x}{2}} \frac{2t}{1+t^2} dt + \int_{\frac{1}{2}}^{\frac{\tan x}{2}} \left(\frac{1}{t} - \frac{t}{1+t^2}\right) dt$
	$= \int_{0}^{1} \left(\frac{1}{1+t} - \frac{1}{2+t} \right) dt$			$= \frac{1}{2} \left[\log(1+t^2) \right]_{1/2}^{\tan x} + \left[\log t - \frac{1}{2} \log(1+t^2) \right]_{1/2}^{\tan x}$
	$= [\log(1+t) - \log(2+t)]_0^1$			$\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}$
	$= \log\left(\frac{2}{3}\right) - \log\left(\frac{1}{2}\right) = \log\left(\frac{4}{3}\right)$			$=\frac{1}{2}\left[\log(\sec^2 x) - \log\left(1 + \frac{1}{e^2}\right)\right] + \log(\cot x)$
57.	Put $1 + \tan x = t \Rightarrow \sec^2 x dx = dt$			$-\log\left(\frac{1}{e}\right) - \frac{1}{2}\left[\log(\csc^2 x) - \log\left(1 + \frac{1}{e}\right)\right]$
	when $x = 0$, $t = 1$ and when $x = \frac{\pi}{4}$, $t = 2$			$= -\log\left(\frac{1}{e}\right) = \log e = 1$
÷	$\int_{0}^{1} \frac{1}{(1 + \tan x)(2 + \tan x)} dx$		0	$\int_{1}^{4} f(x) dx = \int_{1}^{2} (4x + 2) dx + \int_{1}^{4} (2x + 5) dx$
	$= \int_{1}^{2} \frac{dt}{t(1+t)} = \int_{1}^{2} \frac{dt}{t} - \int_{1}^{2} \frac{dt}{1+t}$	C	0 0.	$\int_{1}^{1} I(x) dx - \int_{1}^{1} (4x+3) dx + \int_{2}^{2} (3x+3) dx$
	$= [\log t - \log(1+t)]_{1}^{2}$			$= \left[2x^{2} + 3x \right]_{1}^{2} + \left \frac{3x^{2}}{2} + 5x \right _{2}^{2} = 37$
	$= \log_{e} 2 - \log_{e} 3 + \log_{e} 2 = \log_{e} \left(\frac{4}{3}\right)$	6	51	$\int_{-1}^{2} r dr = \int_{-1}^{0} (-r) dr + \int_{-1}^{2} r dr$
58.	Let I = $\int_{1}^{\pi/4} \frac{\sec x}{1+2\sin^2 x} dx$,	$\int_{-1}^{1} r^{2} \int_{0}^{1} r^{2} \int_{0}^{2} r^{2} \int_{0}^{2} r^{2} \int_{0}^{2} r^{2} \int_{0}^{2} r^{2} \int_{0}^{2} r^{2} \int_{0}^{2} r^{2} r^{2} \int_{0}^{2} r^{2} r^{$
	$= \int_{0}^{\pi/4} \frac{\cos x}{\cos^2 x (1 + 2\sin^2 x)} \mathrm{d}x$			$= -\left\lfloor \frac{x}{2} \right\rfloor_{-1} + \left\lfloor \frac{x}{2} \right\rfloor_{0}$
	$\int_{0}^{\pi/4} \cos x (1+2\sin x)$			$= -\left(0 - \frac{1}{2}\right) + 2$
	$= \int_{0}^{\infty} \frac{1}{(1 - \sin^2 x)(1 + 2\sin^2 x)} dx$			$=2+\frac{1}{2}=\frac{5}{2}$
	Put $\sin x - t \Rightarrow \cos x dx - dt$ $I = \int_{1/\sqrt{2}}^{1/\sqrt{2}} \frac{1}{\sqrt{2}} dt$	6	52.	$\int_{0}^{3} 2-x dx = \int_{0}^{2} (2-x) dx + \int_{0}^{3} -(2-x) dx$
	$\int_{0}^{1} (1-t^{2})(1+2t^{2})^{4t}$			$\int_{0}^{1} \int_{0}^{1} \int_{0}^{2} \int_{2}^{2} \int_{0}^{2} r^{2} \int_{0}^{3} r^{2} \int_{0}^{3} r^{2} r^{3}$
	$= \frac{1}{3} \int_{0} \left(\frac{1}{1-t^{2}} + \frac{2}{1+2t^{2}} \right) dt$			$= \left\lfloor 2x - \frac{x}{2} \right\rfloor_{0} - \left\lfloor 2x - \frac{x}{2} \right\rfloor_{2}$
	$= \frac{1}{3} \left[\frac{1}{2.1} \log \left(\frac{1+t}{1-t} \right) + \frac{2}{\sqrt{2}} \tan^{-1} \left(\sqrt{2} t \right) \right]_{0}^{\frac{1}{\sqrt{2}}}$			$= (4-2) - \left\lfloor 6 - \frac{9}{2} - (4-2) \right\rfloor$
	$= \frac{1}{3} \left[\frac{1}{2} \log \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right) + \sqrt{2} \tan^{-1} 1 \right]$			$=2-\left(4-\frac{9}{2}\right)=\frac{5}{2}$
	$= \frac{1}{3} \left[\frac{1}{2} \log(\sqrt{2} + 1)^2 + \sqrt{2} \cdot \frac{\pi}{4} \right]$	6	53.	$\int_{-4}^{4} x+2 \mathrm{d}x = -\int_{-4}^{-2} (x+2) \mathrm{d}x + \int_{-2}^{4} (x+2) \mathrm{d}x$
	$=\frac{1}{3}\left[\log(\sqrt{2}+1)+\frac{\pi}{2\sqrt{2}}\right]$			$= \left[\frac{-x^2}{2} - 2x\right]_{-4}^{-2} + \left[\frac{x^2}{2} + 2x\right]_{-2}^{4} = 20$

 $t + \int_{\underline{1}}^{\cot x} \left(\frac{1}{t} - \frac{t}{1+t^2}\right) dt$ $\left[2^{2} \right]_{l/e}^{\tan x} + \left[\log t - \frac{1}{2} \log(1 + t^{2}) \right]_{l/e}^{\cot x}$ $(z) - \log\left(1 + \frac{1}{e^2}\right) + \log(\cot x)$ $\frac{1}{2}\left[\log(\operatorname{cosec}^2 x) - \log\left(1 + \frac{1}{e^2}\right)\right]$ $\log e = 1$ $4x+3) dx + \int_{2}^{4} (3x+5) dx$ $x^{2} + 3x \Big]_{1}^{2} + \left[\frac{3x^{2}}{2} + 5x \right]_{2}^{4} = 37$ -x) dx + $\int_{0}^{2} x \, dx$ $\left[\frac{x^2}{2}\right]^0 + \left[\frac{x^2}{2}\right]^2$ $\left(-\frac{1}{2}\right) + 2$ $\frac{1}{2} = \frac{5}{2}$

2.
$$\int_{0}^{3} |2-x| dx = \int_{0}^{2} (2-x) dx + \int_{2}^{3} -(2-x) dx$$
$$= \left[2x - \frac{x^{2}}{2} \right]_{0}^{2} - \left[2x - \frac{x^{2}}{2} \right]_{2}^{3}$$
$$= (4-2) - \left[6 - \frac{9}{2} - (4-2) \right]$$
$$= 2 - \left(4 - \frac{9}{2} \right) = \frac{5}{2}$$

Chapter 05: Definite Integrals $\frac{\pi}{2}$ $\frac{\pi}{2}$

64. Since, sin x is positive in the interval
$$(0, \pi)$$

and negative in the interval $(\pi, 2\pi)$.

$$\therefore \int_{0}^{2\pi} |\sin x| dx = \int_{0}^{\pi} \sin x dx + \int_{\pi}^{2\pi} (-\sin x) dx$$

$$= [-\cos x]_{0}^{\pi} + [\cos x]_{\pi}^{2\pi}$$

$$= 1 + 1 + 1 + 1 = 4$$
65.
$$\int_{0}^{2\pi} (\sin x + |\sin x|) dx = \int_{0}^{\pi} 2\sin x dx + \int_{\pi}^{2\pi} 0.dx$$

$$= 2[-\cos x]_{0}^{\pi} + 0$$

$$= -2(\cos \pi - \cos 0)$$

$$= -2(-1-1) = 4$$
66.
$$\int_{0}^{\pi} \sqrt{\frac{1 + \cos 2x}{2}} dx = \int_{\pi/2}^{\pi} \cos x dx$$

$$= [\sin x]_{0}^{\pi/2} - [\sin x]_{\pi/2}^{\pi}$$

$$= \left[\sin \frac{\pi}{2} - \sin 0\right] - \left[\sin \pi - \sin \frac{\pi}{2}\right] = 1 + 1 = 2$$
67.
$$\int_{0}^{2} x^{2} [x] dx = \int_{0}^{1} x^{2} [x] dx + \int_{1}^{2} x^{2} [x] dx$$

$$= \int_{0}^{1} x^{2} (0) dx + \int_{1}^{2} x^{2} (1) dx$$

$$= 0 + \left[\frac{x^{3}}{3}\right]_{1}^{2} = \frac{7}{3}$$
68. Let I =
$$\int_{0}^{\pi/2} \frac{\cos(\frac{\pi}{2} - x) - \sin(\frac{\pi}{2} - x)}{1 + \sin(\frac{\pi}{2} - x) \cos(\frac{\pi}{2} - x)} dx$$

$$\dots (i)$$

$$\therefore I = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \cos x \sin x} dx \dots (i)$$

$$Adding (i) and (ii), we get$$

$$2I = 0 \Rightarrow I = 0$$
69.
$$\int_{0}^{\frac{\pi}{2}} \log \sin x dx - \int_{0}^{\frac{\pi}{2}} \log \cos x dx$$

64.

$$= \int_{0}^{1} \log \sin x \, dx - \int_{0}^{1} \log \sin x \, dx$$

.... $\left[\because \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \right]$
= 0
70. Let I = $\int_{0}^{2a} \frac{f(x)}{f(x) + f(2a - x)} \, dx$ (i)
 \therefore I = $\int_{0}^{2a} \frac{f(2a - x)}{f(2a - x) + f(x)} \, dx$ (ii)
Adding (i) and (ii), we get
 $2I = \int_{0}^{2a} dx = 2a$
 $\Rightarrow I = a$
71. Let I = $\int_{0}^{\pi/2} \frac{1000^{\sin x} + 1000^{\cos x}}{1000^{\sin (\frac{\pi}{2} - x)}} \, dx$ (i)
 \therefore I = $\int_{0}^{\pi/2} \frac{1000^{\sin (\frac{\pi}{2} - x)}}{1000^{\sin (\frac{\pi}{2} - x)} + 1000^{\cos (\frac{\pi}{2} - x)}} \, dx$
.... $\left[\because \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \right]$
 \therefore I = $\int_{0}^{\pi/2} \frac{1000^{\cos x} + 1000^{\sin x}}{1000^{\cos x} + 1000^{\sin x}} \, dx$ (ii)
Adding (i) and (ii), we get
 $2I = \int_{0}^{\pi/2} 1 \, dx = [x]_{0}^{\pi/2} = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$
72. Let I = $\int_{0}^{\frac{\pi}{2}} \frac{e^{(\frac{\pi}{2} - x)^{2}}}{e^{x^{2}} + e^{(\frac{\pi}{2} - x)^{2}}} \, dx$ (ii)
 \therefore I = $\int_{0}^{\frac{\pi}{2}} \frac{e^{(\frac{\pi}{2} - x)^{2}}}{e^{(\frac{\pi}{2} - x)^{2}} + e^{x^{2}}} \,(ii)$
 \therefore I = $\int_{0}^{\frac{\pi}{2}} \frac{e^{(\frac{\pi}{2} - x)^{2}}}{e^{(\frac{\pi}{2} - x)^{2}} + e^{x^{2}}} \,(ii)$
 \therefore I = $\int_{0}^{\frac{\pi}{2}} \frac{e^{(\frac{\pi}{2} - x)^{2}}}{e^{(\frac{\pi}{2} - x)^{2}} + e^{x^{2}}} \,(ii)$
 $Adding (i) and (ii), we get $2I = \int_{0}^{\frac{\pi}{2}} dx = [x]_{0}^{\pi/2} = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$$

567

Г

MHT-CET Triumph Maths (Hints) 73. Let I = $\int_{0}^{\pi/2} \frac{\sin^{\frac{3}{2}} x \, dx}{\cos^{\frac{3}{2}} x + \sin^{\frac{3}{2}} x} \qquad \dots (i)$ $= \int_{0}^{\pi/2} \frac{\sin^{\frac{3}{2}}\left(\frac{\pi}{2} - x\right)}{\cos^{\frac{3}{2}}\left(\frac{\pi}{2} - x\right) + \sin^{\frac{3}{2}}\left(\frac{\pi}{2} - x\right)} dx$ $= \int_{0}^{\pi/2} \frac{\cos^{\frac{\pi}{2}} x \, dx}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}}} \qquad \dots (ii)$ Adding (i) and (ii), we get $2I = \int_{0}^{\pi/2} dx = [x]_{0}^{\pi/2} = \frac{\pi}{2} \implies I = \frac{\pi}{4}$ **Alternate Method:** $\int_{1}^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} \, \mathrm{d}x = \frac{\pi}{4}$ 74. Let $I = \int_{-\infty}^{2} \frac{dx}{1 + \tan^{3} x}$ $= \int_{-\infty}^{\infty} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} \, dx \qquad \dots (i)$ $\therefore \qquad I = \int_{-\infty}^{\infty} \frac{\sin^3 x}{\cos^3 x + \sin^3 x} dx \qquad \dots (ii)$ $\therefore \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx$ Adding (i) and (ii), we get $2I = \int_{0}^{2} dx = [x]_{0}^{\pi/2}$ $2I = \frac{\pi}{2} \Longrightarrow I = \frac{\pi}{4}$ *.*.. 75. Let I = $\int_{0}^{\pi} e^{\cos^2 x} \cos^5 3x \, dx$ $= \int_{0}^{\pi} e^{\cos^{2}(\pi - x)} \cos^{5} 3(\pi - x) dx$ $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a - x) dx \right|$ $I = -\int_{0}^{\pi} e^{\cos^2 x} \cos^5 3x dx = -I$... $\Rightarrow 2I = 0 \Rightarrow I = 0$

76. Let I = $\int_{1}^{\pi/2} \log\left(\frac{4+3\sin x}{4+3\cos x}\right) dx$ $= \int_{0}^{\pi/2} \log\left(\frac{4+3\cos x}{4+3\sin x}\right) dx$ $\therefore \qquad \mathbf{I} = -\int_{1}^{\pi/2} \log\left(\frac{4+3\sin x}{4+3\cos x}\right) dx = -\mathbf{I}$ $\Rightarrow 2I = 0 \Rightarrow I = 0$ 77. Let $I = \int_{0}^{\overline{2}} \frac{d\theta}{1 + \tan \theta}$(i) $=\int_{0}^{2}\frac{d\theta}{1+\tan\left(\frac{\pi}{2}-\theta\right)}$ $\dots \left| \because \int^{a} f(x) dx = \int^{a} f(a-x) dx \right|$ $\therefore \qquad I = \int_{-\infty}^{\overline{2}} \frac{d\theta}{1 + \cot\theta}$(ii) Adding (i) and (ii), we get $2I = \int_{-\infty}^{2} \left(\frac{1}{1 + \tan \theta} + \frac{1}{1 + \cot \theta} \right) d\theta$ $= \int_{-\infty}^{\frac{1}{2}} \left(\frac{1}{1 + \tan \theta} + \frac{\tan \theta}{\tan \theta + 1} \right) d\theta$ $= \int_{0}^{2} d\theta = [\theta]_{0}^{\pi/2}$ $\therefore \qquad 2I = \frac{\pi}{2} \Longrightarrow I = \frac{\pi}{4}$ 78. Let I = $\int_{-\infty}^{\pi} x \sin^3 x dx$(i) $= \int_{0}^{\pi} (\pi - x) \sin^3 x \, dx \qquad \dots \dots (ii)$ $\therefore \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx$ Adding (i) and (ii), we get

 $2I = \pi \int_{0}^{\pi} \sin^{3} x \, dx = \frac{\pi}{4} \int_{0}^{\pi} (3 \sin x - \sin 3x) \, dx$ $=\frac{\pi}{4}\left[-3\cos x+\frac{\cos 3x}{3}\right]_{a}^{\pi}$ $=\frac{\pi}{4}\left[3-\frac{1}{3}+3-\frac{1}{3}\right]$ $=\frac{4\pi}{3}$ I = $\frac{2\pi}{3}$... Let I = $\int_{1}^{\frac{\pi}{2}} \log \sin x \, dx$ 79. $= \int (\log \sin x + \log \cos x) dx$ $\dots \left[\because \int_{0}^{2a} f(x) dx = \int_{0}^{a} [f(x) + f(2a - x)] dx \right]$ $=\int_{0}^{\pi}\log\sin x\cos x\,\mathrm{d}x$ $=\int_{1}^{\overline{4}}\log\left(\frac{\sin 2x}{2}\right)dx$ $=\int_{0}^{\frac{\pi}{4}}\log\sin 2x\,\mathrm{d}x - \int_{0}^{\frac{\pi}{4}}\log 2\mathrm{d}x$ In 1st integral, put $2x = t \Longrightarrow 2dx = dt$ \therefore I = $\frac{1}{2} \int_{2}^{\frac{\pi}{2}} \log \sin t dt - \frac{\pi}{4} \log 2$ $=\frac{1}{2}\int_{-\infty}^{\frac{1}{2}}\log\sin x\,\mathrm{d}x-\frac{\pi}{4}\log 2$ $\dots \left[\because \int^{\mathbf{b}} \mathbf{f}(x) dx = \int^{\mathbf{b}} \mathbf{f}(t) dt \right]$ $I = \frac{1}{2}I - \frac{\pi}{4}\log 2$ *:*. $I = \frac{-\pi}{2}\log 2$:.

80. Let
$$I = \int_{0}^{\pi} x \log \sin x \, dx$$
(i)

$$\therefore I = \int_{0}^{\pi} (\pi - x) \log \sin x \, dx$$
(ii)

$$\dots \left[\because \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\pi} f(a - x) \, dx \right]$$
Adding (i) and (ii), we get

$$2I = \pi \int_{0}^{\pi} \log \sin x \, dx = 2\pi \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx$$

$$\therefore 2I = 2\pi \left(-\frac{\pi}{2} \log 2 \right)$$

$$\dots \left[\because \int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = -\frac{\pi}{2} \log 2 \right]$$

$$\Rightarrow I = \pi \left(\frac{\pi}{2} \log \frac{1}{2} \right) = \frac{\pi^{2}}{2} \log \frac{1}{2}$$
81. Let $I = \int_{0}^{\frac{\pi}{4}} \log \left[1 + \tan \theta \right] d\theta$

$$= \int_{0}^{\frac{\pi}{4}} \log \left[1 + \tan \left(\frac{\pi}{4} - \theta \right) \right] d\theta$$

$$\dots \left[\because \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\pi} f(a - x) \, dx \right]$$

$$= \int_{0}^{\frac{\pi}{4}} \log 2d\theta - \int_{0}^{\frac{\pi}{4}} \log (1 + \tan \theta) \, d\theta$$

$$\therefore 2I = \int_{0}^{\frac{\pi}{4}} \log 2d\theta \Rightarrow I = \frac{\log 2}{2} \left[\theta \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} \log 2$$
82. $\int_{0}^{1} \tan^{-1} \left(\frac{2x - 1}{1 + x - x^{2}} \right) \, dx$

$$= \int_{0}^{1} (\tan^{-1} x + \tan^{-1} (x - 1)) \, dx$$

Let I = $\int_{0}^{\pi} \sin^2 x \, dx = 2 \int_{0}^{\pi/2} \sin^2 x \, dx$ 88. $\dots \left| \because \int_{a}^{2a} f(x) dx = 2 \int_{a}^{a} f(x) dx, \text{ if } f(2a-x) = f(x) \right|$ $I = 2 \times \frac{1}{2} \times \frac{\pi}{2}$ *.*.. $=\frac{\pi}{2}$ 89. $\int_{0}^{\pi} |\cos x| dx = 2 \int_{0}^{\frac{\pi}{2}} |\cos x| dx$ $\dots \left[\because \int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \\ \text{if } f(2a-x) = f(x) \right]$ $=2[\sin x]_{0}^{\pi/2}=2$ 90. $\int_{0}^{2\pi} \cos^{99} x \, dx = 2 \int_{0}^{\pi} \cos^{99} x \, dx$ $:: \int_{a}^{2a} f(x) dx = 2 \int_{a}^{a} f(x) dx$, if f(2a - x) = f(x)Let $I_1 = \int_{a}^{b} \cos^{99} x \, dx$ \Rightarrow I₁ = $-\int_{0}^{\pi} \cos^{99} x \, dx$ $\dots \left| \because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx \right|$ $\Rightarrow I_1 = -I_1 \Rightarrow 2I_1 = 0 \Rightarrow I_1 = 0$ $\int_{0}^{2\pi} \cos^{99} x \, dx = 2(0) = 0$:. 91. $\int_{0}^{\pi} \log \sin^2 x \, dx = \int_{0}^{\pi} 2\log \sin x \, dx = 2\int_{0}^{2} \log \sin x \, dx$ $= 2\int_{0}^{2} [\log \sin x + \log \sin(\pi - x)] dx$ $\dots \qquad \because \int_{a}^{2a} f(x) dx = \int_{a}^{a} [f(x) + f(2a - x)] dx$ $=4\int \log \sin x \, dx$ $= 4 \times \left(-\frac{\pi}{2}\log 2\right) = -2\pi \log_e 2 = 2\pi \log_e \left(\frac{1}{2}\right)$

92. Let
$$I = \int_{0}^{\pi} \frac{x}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} dx \qquad \dots(i)$$

 $\therefore I = \int_{0}^{\pi} \frac{\pi - x}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} dx \qquad \dots(ii)$
 $\dots \left[\because \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(a - x) dx \right]$
Adding (i) and (ii), we get
 $2I = \pi \int_{0}^{\pi} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$
 $\therefore I = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$
 $= 2 \cdot \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$
 $\dots \left[\because \int_{0}^{2} f(x) dx = 2 \int_{0}^{\pi} f(x) dx, \right]$
 $if f(2a - x) = f(x)$
 $Put b \tan x = t \Rightarrow b \sec^{2} x dx = dt$
 $\therefore I = \frac{\pi}{b} \int_{0}^{\pi} \frac{dt}{a^{2} + t^{2}} = \frac{\pi}{b} \cdot \frac{1}{a} \left[\tan^{-1} \frac{t}{a} \right]_{0}^{\infty}$
 $= \frac{\pi}{ab} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi^{2}}{2ab}$
93. $\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx$
 $In 1^{st}$ integral, put $x = -t \Rightarrow dx = -dt$
 $\therefore \int_{-1}^{0} f(x) dx = -\int_{1}^{0} f(-t) dt$
 $= \int_{0}^{1} f(-t) dt$
 $= \int_{0}^{1} f(-t) dx$
 $\int_{-1}^{1} f(x) dx = \int_{0}^{1} f(-t) dx$

= 0, if f(-x) = -f(x)

÷.

MHT-CET Triumph Maths (Hints)

94. Since,
$$\int_{-a}^{a} f(x)dx = 0, \text{ if } f(-x) = -f(x)$$

$$\therefore \qquad \int_{-1}^{1} f(x)dx = 0$$

$$\Rightarrow \int_{-1}^{0} f(x)dx + \int_{0}^{1} f(x)dx = 0$$

$$\Rightarrow \int_{-1}^{0} f(x)dx = -5$$

$$\Rightarrow \int_{-1}^{0} f(t)dt = -5$$

95. Let
$$f(x) = x |x|$$

 \therefore $f(-x) = -x |-x| = -x |x| = -f(x)$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{-1}^{1} x |x| dx = 0$

96. Since,
$$|\sin x|$$
 is an even function $\frac{\pi}{2}$

$$\therefore \qquad I = 2\int_{0}^{\frac{1}{2}} |\sin x| dx = 2\int_{0}^{\frac{1}{2}} \sin x dx = 2[-\cos x]_{0}^{\pi/2}$$
$$= 2(-0+1) = 2$$

97. Since,
$$\frac{1}{x+x^3}$$
 is an odd function.

$$\therefore \qquad \int_{-a}^{a} \frac{\mathrm{d}x}{x+x^3} = 0$$

98. Let
$$f(x) = \sin x f(\cos x)$$

 $f(-x) = -f(\cos x) = -f(\cos x)$

$$\therefore \quad f(-x) = -\sin x \ f(\cos x) = -f(x)$$

$$\therefore \quad f(x) \text{ is an odd function.}$$

$$\therefore \int_{-a}^{a} f(x) \, dx = 0$$

99. Let
$$f(x) = \frac{\sin x}{1 + \cos^2 x} e^{-\cos^2 x}$$

 \therefore $f(-x) = -\frac{\sin x}{1 + \cos^2 x} e^{-\cos^2 x} = -f(x)$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{-\pi/2}^{\pi/2} f(x) dx = 0$
100. Let $f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$
 \therefore $f(-x) = \sqrt{1 - x + x^2} - \sqrt{1 + x + x^2} = -\frac{1}{2}$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{1}^{1} f(x) dx = 0$

f(x)

$$\therefore \int_{-1}^{1} f(x) dx = 0$$

101. Let
$$f(x) = (e^{x^3} + e^{-x^3})(e^x - e^{-x})$$

 \therefore $f(-x) = (e^{-x^3} + e^{x^3})(e^{-x} - e^x)$
 $= -(e^{x^3} + e^{-x^3})(e^x - e^{-x}) = -f(x)$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{-1}^{1} (e^{x^3} + e^{-x^3})(e^x - e^{-x}) dx = 0$
102. Let $f(x) = \log\left(\frac{1+x}{1-x}\right)$
 \therefore $f(-x) = \log\left(\frac{1+x}{1-x}\right)^{-1} = -\log\left(\frac{1+x}{1-x}\right) = -f(x)$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{-1}^{1} \log\left(\frac{1+x}{1-x}\right) dx = 0$
103. Let $f(x) = \cos x \log\left(\frac{1-x}{1+x}\right)$
 \therefore $f(-x) = \cos x \log\left(\frac{1-x}{1+x}\right)^{-1}$
 $= -\cos x \log\left(\frac{1-x}{1+x}\right) = -f(x)$
 \therefore $f(x)$ is an odd function.
 \therefore $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \log\left(\frac{1-x}{1+x}\right) dx = 0$
104. Let $f(\theta) = \log(\sec \theta - \tan \theta)$
 \therefore $f(-\theta) = \log(\sec \theta + \tan \theta)$
 $= \log\left(\frac{1}{\sec \theta - \tan \theta}\right)$
 $= -\log(\sec \theta - \tan \theta) = -f(\theta)$
 \therefore $f(\theta)$ is an odd function.
 \therefore $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sec \theta - \tan \theta) d\theta = 0$
 $105.$ Let $f(x) = \log(\sqrt{1+x^2} - x)$
 $= \log(\sqrt{1+x^2} - x) \cdot \frac{(\sqrt{1+x^2} + x)}{(\sqrt{1+x^2} + x)}$

 $= \log\left(\frac{1+x^2-x^2}{\sqrt{1+x^2}+x}\right)$ $= \log 1 - \log\left(\sqrt{1+x^2}+x\right)$ $= -\log\left(\sqrt{1+x^2} + x\right) = -f(x)$

f(x) is an odd function. *.*..

$$\therefore \int_{-1}^{1} \log(\sqrt{1+x^2} + x) dx = 0$$

106.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$

 \ldots [:: sin² x is an even function]

...

...

Since,
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \frac{(n-1)(n-3)....1}{n(n-2)....2} \cdot \frac{\pi}{2}$$
,
if n is even

$$\therefore \qquad \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = 2 \left(\frac{2-1}{2} \cdot \frac{\pi}{2} \right) = \frac{\pi}{2}$$

107. Let I =
$$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \sin^{-4} x \, dx = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \csc^{4} x \, dx$$

= $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \cos \sec^{2} x (1 + \cot^{2} x) \, dx$

Put $\cot x = t \Rightarrow \csc^2 x \, dx = -dt$

$$\therefore \quad I = -\int_{-1}^{1} (1+t^{2}) dt$$

$$= -2\int_{0}^{1} (1+t^{2}) dt = -2\left[t + \frac{t^{3}}{3}\right]_{0}^{1}$$

$$= -2\left(1 + \frac{1}{3}\right) = -\frac{8}{3}$$
108.
$$\int_{-1}^{1} \frac{1+x^{3}}{9-x^{2}} dx = \int_{-1}^{1} \frac{1}{9-x^{2}} dx + \int_{-1}^{1} \frac{x^{3}}{9-x^{2}} dx$$

$$= 2\int_{0}^{1} \frac{1}{9-x^{2}} dx + 0$$

$$\dots \left[\because \frac{1}{9-x^{2}} \text{ is an even function and} \right]$$

$$\frac{x^{3}}{9-x^{2}} \text{ is an odd function.}$$

109. Let
$$I = \int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$$

 $= \int_{-\pi}^{\pi} \frac{2x}{1+\cos^2 x} dx + \int_{-\pi}^{\pi} \frac{2x\sin x}{1+\cos^2 x} dx$
Since, $\frac{2x}{1+\cos^2 x}$ is an odd function
and $\frac{2x\sin x}{1+\cos^2 x}$ is an even function.
 $\therefore I = 0 + 2\int_{0}^{\pi} \frac{2x\sin x}{1+\cos^2 x} dx$
 $\Rightarrow I = 4\int_{0}^{\pi} \frac{x\sin x}{1+\cos^2 x} dx$ (i)
 $\Rightarrow I = 4\int_{0}^{\pi} \frac{(\pi-x)\sin x}{1+\cos^2 x} dx$ (ii)
 $\dots \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx \right]$
Adding (i) and (ii), we get

 $= 2 \left[\frac{1}{2 \times 3} \log \left| \frac{3 + x}{3 - x} \right| \right]_{0}^{1} = \frac{1}{3} (\log 2 - \log 1) = \frac{1}{3} \log 2$

Chapter 05: Definite Integrals

$$2I = 4 \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx \implies I = 2\pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx$$
Put $\cos x = t \implies -\sin x dx = dt$

$$I = 2\pi \int_{1}^{-1} \frac{-dt}{1 + t^{2}}$$

$$\implies I = -2\pi \left[\tan^{-1} t \right]_{1}^{-1} = -2\pi \left(\frac{-\pi}{4} - \frac{\pi}{4} \right) = \pi^{2}$$

110. Let
$$I = \int_{0}^{\pi/2} \frac{\sin x}{1 + \cos^2 x} dx$$

Put $\cos x = t \Longrightarrow -\sin x dx = dt$
 $\therefore \qquad I = \int_{1}^{0} \frac{-dt}{1 + t^2} = \int_{0}^{1} \frac{dt}{1 + t^2} = [\tan^{-1} t]_{0}^{1} = \frac{\pi}{4}$

111. Let
$$I = \int_{0}^{\pi/2} \sqrt{\cos\theta} \sin^{3}\theta \, d\theta$$

Put $t = \cos\theta \Rightarrow dt = -\sin\theta \, d\theta$
 $\therefore \quad I = -\int_{1}^{0} t^{\frac{1}{2}} (1 - t^{2}) \, dt = \int_{0}^{1} (t^{\frac{1}{2}} - t^{\frac{5}{2}}) \, dt$
 $= \left[\frac{2}{3}t^{\frac{3}{2}} - \frac{2}{7}t^{\frac{7}{2}}\right]_{0}^{1} = \frac{8}{21}$

MHT-CET Triumph Maths (Hints) 00 112. $\int_{0}^{1} \frac{dx}{x + \sqrt{1 - x^2}} = \int_{0}^{\pi/2} \frac{\cos\theta \,d\theta}{\sin\theta + \cos\theta}$ **Competitive Thinking**[Put $x = \sin\theta \Rightarrow dx = \cos\theta d\theta$] 1. $\int_{-\infty}^{1} \sqrt{x} \, dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]^{1} = \frac{2}{3}$ $=\frac{\pi}{4}$ $\int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sqrt{(\sin x + \cos x)^{2}}} dx$ 113. Since, $\sqrt{1+x^2} > x$, for all $x \in (1,2)$ 2. $\Rightarrow \frac{1}{\sqrt{1-x^2}} < \frac{1}{x}$, for all $x \in (1,2)$ $=\int_{-\infty}^{\infty}dx = \frac{\pi}{2}$ $\Rightarrow \int_{-\infty}^{2} \frac{\mathrm{d}x}{\sqrt{1+x^{2}}} < \int_{-\infty}^{2} \frac{\mathrm{d}x}{x}$ \Rightarrow I₁ < I₂ 3. $\int_{0}^{\frac{\pi}{2}} \log \sec x \, dx = \int_{0}^{\frac{\pi}{2}} \log \frac{1}{\cos x} dx$ 114. Let I = $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} dx$ $= -\int_{0}^{2} \log \cos x \, \mathrm{d}x$ Put $\cos x = t \Longrightarrow -\sin x \, dx = dt$ When x = 0, t = 1 and when $x = \frac{\pi}{2}$, t = 0 $=-\frac{\pi}{2}\log\frac{1}{2}$ $\therefore \qquad I = -\int_{-}^{0} \frac{t}{t^2 + 3t + 2} dt$ $=\frac{\pi}{2}\log 2$ $= \int_{-\infty}^{1} \frac{t}{(t+2)(t+1)} dt \dots \left| \because \int_{-\infty}^{b} f(x) dx = -\int_{-\infty}^{a} f(x) dx \right|$ 4. $\int_{0}^{1} \tan^{-1} \left(\frac{1-x}{1+x} \right) dx = \int_{0}^{1} \tan^{-1} 1 \, dx - \int_{0}^{1} \tan^{-1} x \, dx$ $= \int_{1}^{1} \left(\frac{2}{t+2} - \frac{1}{t+1} \right) dt$ $= (\tan^{-1} 1) [x]_0^1 - p$ $=\frac{\pi}{4}-p$ $= [2\log(t+2) - \log(t+1)]^{1}$ $= 2 \log 3 - \log 2 - 2 \log 2$ 5. $\int_{-\pi/4}^{\pi/4} \frac{\mathrm{d}x}{1+\cos 2x}$ $= 2 \log 3 - 3 \log 2 = \log 9 - \log 8 = \log \left(\frac{9}{8}\right)$ 115. Put $x + 1 = t^2 \Rightarrow dx = 2t dt$ When x = 3, t = 2 and when x = 8, t = 3 $= \int_{-\pi}^{\pi/4} \frac{dx}{2\cos^2 x} = \frac{1}{2} \int_{-\pi}^{\pi/4} \sec^2 x \, dx$ $\therefore \int_{-\infty}^{\infty} \frac{2-3x}{x\sqrt{1+x}} dx = 2 \int_{-\infty}^{\infty} \frac{2-3(t^2-1)}{t^2-1} dt$ $= \frac{1}{2} \left[\tan x \right]_{-\pi/4}^{\pi/4} = \frac{1}{2} \left[1 - (-1) \right]$ $= 2 \int_{1}^{3} \left(\frac{2}{t^2 - 1} - 3 \right) dt$ 6. $\int_{0}^{\overline{2}} \frac{\cos 2x}{\cos x + \sin x} dx$ $= 2 \left| 2 \cdot \frac{1}{2 \times 1} \log \left(\frac{t-1}{t+1} \right) - 3t \right|^{3}$ $= \int_{0}^{2} \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} dx$ $= 2 \left(\log \frac{1}{2} - \log \frac{1}{2} - 3 \right)$ $= 2\left(\log\frac{3}{2} - 3\log e\right) = 2\left(\log\frac{3}{2} - \log e^{3}\right)$ $=\int (\cos x - \sin x) dx$ $=2\log\left(\frac{3}{2e^3}\right)$ $= \left[\sin x + \cos x\right]_0^{\pi/2} = 0$
7.
$$\int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx = \frac{(n-1)(n-3)...1}{n(n-2)...2} \cdot \frac{\pi}{2}, \text{ if n is even,}$$

$$\therefore \int_{0}^{\frac{\pi}{2}} \cos^{6} x \, dx = \frac{(6-1)(6-3)(6-5)}{6(6-2)(6-4)} \cdot \frac{\pi}{2}$$

$$= \frac{5\pi}{32}$$
8.
$$\operatorname{Let I} = \int_{-1}^{0} \frac{dx}{x^{2}+2x+2}$$

$$= \int_{-1}^{0} \frac{dx}{x^{2}+2x+2}$$

$$= \int_{-1}^{0} \frac{dx}{x^{2}+2x+1+1}$$

$$= \int_{-1}^{0} \frac{dx}{x^{2}+2x+1+1}$$

$$= \int_{0}^{0} \frac{dx}{(x+1)^{2}+1}$$

$$= [\tan^{-1}(x+1)]_{-1}^{0}$$

$$= \frac{\pi}{4}$$
9.
$$\int_{0}^{\sqrt{5}} \sqrt{2-x^{2}} \, dx = \left[\frac{x}{2}\sqrt{2-x^{2}} + \frac{2}{2}\sin^{-1}\left(\frac{x}{\sqrt{2}}\right)\right]_{0}^{\sqrt{5}}$$

$$= \sin^{-1} 1$$

$$= \frac{\pi}{2}$$
10.
$$\operatorname{Let I} = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \int_{0}^{1} \frac{e^{x}}{(e^{x})^{2}+1} \, dx$$

$$\therefore f(\frac{3}{4})$$
10.
$$\operatorname{Let I} = \int_{0}^{1} \frac{dx}{e^{x} + e^{-x}} = \int_{0}^{1} \frac{e^{x}}{(e^{x})^{2}+1} \, dx$$

$$\therefore f(\frac{3}{4})$$
11.
$$3a \int_{0}^{1} \left(\frac{ax-1}{a-1}\right)^{2} \, dx = \frac{3a}{(a-1)^{2}} \int_{0}^{1} (ax-1)^{2} \, dx$$

$$= \frac{3a[(ax-1)^{3}]_{0}^{1}}{3a(a-1)^{2}}$$

$$\therefore -1 = \frac{1}{(a-1)^{2}} [(a-1)^{3}+1]$$

$$\therefore I = (a-1) + (a-1)^{-2}$$

12.
$$\int_{0}^{\frac{\pi}{4}} \sin(x - [x])d(x - [x])$$

$$= \int_{0}^{\frac{\pi}{4}} \sin(x - 0)d(x - 0)$$

$$= \int_{0}^{\frac{\pi}{4}} \sin x dx$$

$$= [-\cos x]_{0}^{\pi/4} = -\cos \frac{\pi}{4} + \cos 0 = 1 - \frac{1}{\sqrt{2}}$$
13.
$$L(x) = \int_{1}^{x} \frac{1}{t} dt = [\log t]_{1}^{x} = \log x - \log 1 = \log x$$

$$\therefore \quad L(xy) = \log(xy) = \log x + \log y = L(x) + L(y)$$
14. Given,
$$\int_{a}^{b} \{f(x) - 3x\} dx = a^{2} - b^{2}$$

$$\Rightarrow \int_{a}^{b} f(x) dx - \frac{3}{2}(b^{2} - a^{2}) = a^{2} - b^{2}$$

$$\Rightarrow \int_{a}^{b} f(x) dx = \frac{1}{2}(b^{2} - a^{2})$$

$$\therefore \quad f(x) = x \qquad \dots \left[\because \int_{a}^{b} x dx = \frac{1}{2}(b^{2} - a^{2}) \right]$$

$$\therefore \quad f(\frac{\pi}{6}) = \frac{\pi}{6}$$
15.
$$I = \int_{0}^{1} x(1 - x)^{a} dx$$

$$= \int_{0}^{1} (-x(1 - x)^{a} dx$$

$$= \int_{0}^{1} (1 - x)^{(1 - x)^{a}} dx$$

$$= \left[\frac{(1 - x)^{n+1}}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n}} dx$$

$$= \left[\frac{(1 - x)^{n+1}}{(1 - x)} dx - \frac{1}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n+1}} dx - \frac{1}{(1 - x)^{n}} dx$$

$$= \left[\frac{(1 - x)^{n+1}}{(1 - x)} dx - \frac{1}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n+1}} dx - \frac{1}{(1 - x)^{n}} dx$$

$$= \left[\frac{(1 - x)^{n+1}}{(1 - x)} dx - \frac{1}{(1 - x)^{n}} dx$$

$$= \left[\frac{(1 - x)^{n+1}}{(1 - x)} dx - \frac{1}{(1 - x)^{n}} dx - \frac{1}{(1 - x)^{n}}$$

MHT-CET Triumph Maths (Hints) 16. $\int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx + \int_{2\pi}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{2\pi}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{2\pi}^{\frac{\pi}{4}} (\cos x - \sin x) dx + [\sin x + \cos x]_{0}^{\frac{\pi}{4}} + [\sin x + \cos x]_{2\pi}^{\frac{\pi}{4}} + [\sin x + \sin x]_{2\pi}^{\frac{\pi}{4}} + [\sin x + \sin$

$$= \int_{1}^{4} \frac{3x^{2} e^{\sin x^{3}}}{x^{3}} dx$$
Put $x^{3} = t \Rightarrow 3x^{2} dx = dt$

$$\therefore \quad I = \int_{1}^{64} \frac{e^{\sin t}}{t} dt$$

$$= \left[f(t) \right]_{1}^{64}$$

$$= f(64) - f(1)$$

$$\Rightarrow k = 64$$

18. Let
$$I = \int_{1}^{3} \frac{\sin 2x}{x} dx$$

Put $2x = t \Rightarrow 2dx = dt \Rightarrow dx = \frac{dt}{2}$
 $\therefore I = \int_{2}^{6} \frac{\sin t}{\frac{t}{2}} \frac{dt}{2}$
 $= \int_{2}^{6} \frac{\sin t}{t} dt = [F(t)]_{2}^{6}$
 $= F(6) - F(2)$

19. Put
$$\frac{1}{x} = t \Rightarrow -\frac{1}{x^2} dx = dt$$

When $x = \frac{1}{\pi}$, $t = \pi$ and when $x = \frac{2}{\pi}$, $t = \frac{\pi}{2}$
 $\therefore \int_{1/\pi}^{2/\pi} \frac{\sin\left(\frac{1}{x}\right)}{x^2} dx = -\int_{\pi}^{\pi/2} \sin t dt = [\cos t]_{\pi}^{\pi/2}$
 $= 0 - (-1) = 1$
20. Let $I = \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{\tan x}}{\sin x \cos x} dx$
 $= \int_{0}^{\frac{\pi}{4}} \frac{\tan x}{\sin x \cos x} dx$
 $= \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{\sqrt{\tan x}} dx$
Put $\tan x = t \Rightarrow \sec^2 x dx = dt$
When $x = 0$, $t = 0$ and when $x = \frac{\pi}{4}$, $t = 1$
 $\therefore I = \int_{0}^{1} \frac{dt}{\sqrt{t}} = \left[2\sqrt{t}\right]_{0}^{1} = 2$
21. $I_8 + I_6 = \int_{0}^{\frac{\pi}{4}} (\tan^8 \theta + \tan^6 \theta) d\theta$
 $= \int_{0}^{\frac{\pi}{4}} \tan^6 \theta \sec^2 \theta d\theta$
Put $\tan \theta = t \Rightarrow \sec^2 \theta d\theta = dt$
When $\theta = 0$, $t = 0$ and when $\theta = \frac{\pi}{4}$, $t = 1$
 $\therefore I_8 + I_6 = \int_{0}^{1} t^6 dt = \left[\frac{t^7}{7}\right]_{0}^{1} = \frac{1}{7}$
22. Let $I = \int_{1}^{2} [fg(x)]^{-1} f'[g(x)]g'(x) dx$
Put $f[g(x)] = z \Rightarrow f'[g(x)]g'(x) dx = dz$

When x = 1, z = f[g(1)]and when x = 2, z = f[g(2)]

 $\therefore \qquad I = \int_{f[g(1)]}^{f[g(2)]} \frac{1}{z} dz = \left[\log z \right]_{f[g(1)]}^{f[g(2)]}$

= 0

 $= \log f[g(2)] - \log f[g(1)]$

....[:: g(1) = g(2) (given)]

576

23.
$$\int_{0}^{k} \frac{dx}{2+18x^{2}} = \frac{1}{18} \int_{0}^{k} \frac{dx}{x^{2} + \frac{1}{9}}$$
$$\Rightarrow \frac{\pi}{24} = \frac{1}{18} \int_{0}^{k} \frac{dx}{x^{2} + (\frac{1}{3})^{2}}$$
$$= \frac{1}{18} \cdot \frac{1}{(\frac{1}{3})} \left[\tan^{-1} \frac{x}{(\frac{1}{3})} \right]_{0}^{k}$$
$$= \frac{1}{6} \left[\tan^{-1} 3x \right]_{0}^{k}$$
$$\Rightarrow \frac{\pi}{24} = \frac{1}{6} \left(\tan^{-1} 3k - 0 \right)$$
$$\Rightarrow \frac{\pi}{4} = \tan^{-1} 3k$$
$$\Rightarrow \tan \frac{\pi}{4} = 3k$$
$$\Rightarrow 3k = 1$$
$$\Rightarrow k = \frac{1}{3}$$

24.
$$\int_{-1}^{0} \frac{dx}{x^{2} + 2x + 2} = \int_{-1}^{0} \frac{dx}{(x+1)^{2} + 1}$$
$$= \left[\tan^{-1}(x+1) \right]_{-1}^{0} = \tan^{-1}1 - \tan^{-1}0 = \frac{\pi}{4}$$

25.
$$\int_{0}^{1} \frac{x^{2}}{1+x^{2}} dx = \int_{0}^{1} \left(1 - \frac{1}{1+x^{2}} \right) dx$$
$$= \left[x - \tan^{-1} x \right]_{0}^{1}$$

$$= 1 - \frac{\pi}{4}$$
26.
$$\int_{0}^{1} \frac{x^{4} + 1}{x^{2} + 1} dx = \int_{0}^{1} \frac{x^{4} - 1}{x^{2} + 1} dx + 2 \int_{0}^{1} \frac{dx}{x^{2} + 1}$$

$$= \int_{0}^{1} (x^{2} - 1) dx + 2 \int_{0}^{1} \frac{dx}{x^{2} + 1}$$

$$= \left[\frac{x^{3}}{3} - x \right]_{0}^{1} + \left[2\tan^{-1}x \right]_{0}^{1}$$

$$= -\frac{2}{3} + \frac{\pi}{2}$$

$$= \frac{3\pi - 4}{6}$$

$$\begin{aligned} \text{Chapter 05: Definite Integrals} \\ 27. \quad \int_{0}^{\frac{3}{2}} \frac{3x+1}{x^{2}+9} dx &= \frac{3}{2} \int_{0}^{\frac{3}{2}} \frac{2x}{x^{2}+9} dx + \int_{0}^{\frac{3}{2}} \frac{dx}{x^{2}+9} \\ &= \left[\frac{3}{2} \log(x^{2}+9) + \frac{1}{3} \tan^{-1}\left(\frac{x}{3}\right)\right]_{0}^{3} \\ &= \frac{3}{2} (\log 18 - \log 9) + \frac{1}{3} \left(\frac{\pi}{4}\right) \\ &= \frac{3}{2} \log 2 + \frac{\pi}{12} = \log(2\sqrt{2}) + \frac{\pi}{12} \\ 28. \quad \int_{0}^{\frac{1}{2}} \frac{x^{4}(1-x)^{4}}{1+x^{2}} dx \\ &= \int_{0}^{\frac{1}{2}} \left(x^{6} - 4x^{5} + 5x^{4} - 4x^{2} + 4 - \frac{4}{1+x^{2}}\right) dx \\ &= \left[\frac{x^{7}}{7} - \frac{2x^{6}}{3} + x^{5} - \frac{4}{3}x^{3} + 4x - 4\tan^{-1}x\right]_{0}^{1} \\ &= \frac{1}{7} - \frac{2}{3} + 1 - \frac{4}{3} + 4 - 4 \left(\frac{\pi}{4}\right) \\ &= \frac{22}{7} - \pi \end{aligned}$$

$$29. \quad \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx \\ &= \int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx = \int_{0}^{1} \frac{1-x}{\sqrt{1-x^{2}}} dx \\ &= \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} - \int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx \\ &= \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} - \int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx \\ &= \left[\sin^{-1}x\right]_{0}^{1} + \left[\sqrt{1-x^{2}}\right]_{0}^{1} \\ &= \frac{\pi}{2} - 1 \end{aligned}$$

$$30. \quad \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} dx = \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} \frac{1-x}{1-x} dx \\ &= \int_{-1}^{1} \frac{dx}{\sqrt{1-x^{2}}} - \int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} dx \\ &= \int_{-1}^{1} \frac{dx}{\sqrt{1-x^{2}}} - \int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} dx \\ &= \int_{-1}^{1} \frac{1-x}{\sqrt{1-x^{2}}} dx \\ &= \left[\sin^{-1}x\right]_{-1}^{1} + \left[\sqrt{1-x^{2}}\right]_{-1}^{1} \\ &= \sin^{-1}1 - \sin^{-1}(-1) + 0 \\ &= 2. \frac{\pi}{2} = \pi \end{aligned}$$

MHT-CET Triumph Maths (Hints)

31. Let
$$I = \int_{0}^{\frac{\pi}{2}} \frac{1}{a^2 \cdot \sin^2 x + b^2 \cdot \cos^2 x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos^2 x (a^2 \tan^2 x + b^2)} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 x}{b^2 + a^2 \tan^2 x} dx$$
Put a tan $x = t \Rightarrow a \sec^2 x dx = dt$

$$\therefore I = \frac{1}{a} \int_{0}^{\infty} \frac{dt}{b^2 + t^2}$$

$$= \frac{1}{ab} \left[\tan^{-1} \left(\frac{t}{b} \right) \right]_{0}^{\infty} = \frac{\pi}{2ab}$$
32. Let $I = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta d\theta}{(1 + x^2)\sqrt{1 - x^2}}$
Put $x = \sin \theta \Rightarrow dx = \cos \theta d\theta$

$$\therefore I = \int_{0}^{\frac{\pi}{6}} \frac{\sec^2 \theta}{1 + 2\tan^2 \theta} d\theta$$

$$= \int_{0}^{\frac{\pi}{6}} \frac{\sec^2 \theta}{1 + (\sqrt{2} \tan \theta)^2} d\theta$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{6}} \frac{\sqrt{2} \sec^2 \theta}{1 + (\sqrt{2} \tan \theta)^2} d\theta$$

$$= \frac{1}{\sqrt{2}} \left[\tan^{-1} \left(\sqrt{2} \tan \theta \right) \right]_{0}^{\frac{\pi}{6}}$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} \sqrt{\frac{2}{3}}$$
33. Put $\tan \frac{x}{2} = t$

$$\therefore dx = \frac{2dt}{1 + t^2} and \cos x = \frac{1 - t^2}{1 + t^2}$$

$$\therefore \qquad \int_{0}^{\frac{1}{2}} \frac{dx}{2 + \cos x} = \int_{0}^{1} \frac{2dt}{3 + t^{2}} = \left[\frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{t}{\sqrt{3}}\right)\right]_{0}^{1}$$
$$= \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

34. Put
$$\tan \frac{x}{2} = t$$

$$\therefore dx = \frac{2dt}{1+t^{2}} \text{ and } \cos x = \frac{1-t^{2}}{1+t^{2}}$$

$$\therefore \int_{0}^{\pi} \frac{dx}{5+4\cos x} = \int_{0}^{\infty} \frac{2dt}{9+t^{2}}$$

$$= \left[\frac{2}{3}\tan^{-1}\left(\frac{t}{3}\right)\right]_{0}^{\infty}$$

$$= \frac{2}{3}\left(\tan^{-1}\infty - 0\right)$$

$$= \frac{2}{3} \cdot \frac{\pi}{2} = \frac{\pi}{3}$$
35.
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+\cos x + \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}(x/2) - \sin^{2}(x/2)}{2\cos^{2}(x/2) + 2\sin(x/2)\cos(x/2)} dx$$

$$= \frac{1}{2}\int_{0}^{\frac{\pi}{2}} \frac{1-\tan^{2}(x/2)}{1+\tan(x/2)} dx$$

$$= \frac{1}{2}\int_{0}^{\frac{\pi}{2}} \left[1-\tan\left(\frac{x}{2}\right)\right] dx$$

$$= \frac{1}{2}\left[x+2\log\left|\cos\left(\frac{x}{2}\right)\right|\right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{4} + \log\frac{1}{\sqrt{2}} = \frac{\pi}{4} - \frac{1}{2}\log 2$$
36.
$$\int_{0}^{1} \frac{dx}{x^{2}+2x\cos \alpha + 1} = \int_{0}^{1} \frac{dx}{(x+\cos \alpha)^{2}+1-\cos^{2}\alpha}$$

$$= \int_{0}^{1} \frac{dx}{(x+\cos \alpha)^{2}+\sin^{2}\alpha}$$

$$= \left[\frac{1}{\sin \alpha}\tan^{-1}\left(\frac{x+\cos \alpha}{\sin \alpha}\right)\right]_{0}^{1}$$

$$= \int_{0}^{1} \frac{\mathrm{d}x}{(x+\cos\alpha)^{2}+\sin^{2}\alpha}$$
$$= \left[\frac{1}{\sin\alpha}\tan^{-1}\left(\frac{x+\cos\alpha}{\sin\alpha}\right)\right]_{0}^{1}$$
$$= \frac{1}{\sin\alpha}\left[\tan^{-1}\left(\cot\frac{\alpha}{2}\right) - \tan^{-1}\left(\cot\alpha\right)\right]$$
$$= \frac{1}{\sin\alpha}\left[\tan^{-1}\left(\tan\left(\frac{\pi}{2}-\frac{\alpha}{2}\right)\right) - \tan^{-1}\left(\tan\left(\frac{\pi}{2}-\alpha\right)\right)\right]$$
$$= \frac{\alpha}{2}\left(\sin\alpha\right)^{-1}$$

578

37. Let I = $\int_{-\pi}^{\pi/4} \left(\sqrt{\tan x} + \sqrt{\cot x} \right) dx$ $= \int_{0}^{\pi/4} \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} \, \mathrm{d}x$ $= \sqrt{2} \int_{0}^{\pi/4} \frac{\sin x + \cos x}{\sqrt{1 - (\sin x - \cos x)^2}} \, \mathrm{d}x$ Put $\sin x - \cos x = t \Longrightarrow (\cos x + \sin x) dx = dt$ $I = \sqrt{2} \int_{-\infty}^{0} \frac{dt}{\sqrt{1-t^2}}$ ÷ $=\sqrt{2} [\sin^{-1}t]_{-1}^{0}$ $=\sqrt{2}\left[0-\left(\frac{-\pi}{2}\right)\right]=\frac{\pi}{\sqrt{2}}$ 38. $\int_{\log 2}^{a} \frac{e^{x}}{\sqrt{e^{x}-1}} dx = 2$ Put $e^x - 1 = t \implies e^x dx = dt$ $\therefore \int_{1}^{e^a - 1} \frac{dt}{\sqrt{t}} = 2$ $\Rightarrow \left[2\sqrt{t}\right]_{1}^{e^{a}-1} = 2$ $\Rightarrow \sqrt{e^a - 1} - 1 = 1$ $\Rightarrow \sqrt{e^a - 1} = 2$ $\Rightarrow e^a - 1 = 4$ $\Rightarrow e^a = 5$ \Rightarrow a = log 5 39. $\int_{\log 2}^{x} \frac{du}{(e^{u}-1)^{1/2}} = \frac{\pi}{6}$ $\Rightarrow \int_{\log 2}^{x} \frac{e^{u}}{e^{u}(e^{u}-1)^{1/2}} du = \frac{\pi}{6}$ Put $e^u - 1 = t^2 \Longrightarrow e^u du = 2t dt$ When $u = \log 2$, t = 1and when u = x, $t = \sqrt{e^x - 1}$ $\therefore \int_{1}^{\sqrt{e^x - 1}} \frac{2}{1 + t^2} dt = \frac{\pi}{6}$ $\Rightarrow 2 \left[\tan^{-1} t \right]_{1}^{\sqrt{e^{x}-1}} = \frac{\pi}{6}$ $\Rightarrow \tan^{-1}\left(\sqrt{e^x-1}\right) - \frac{\pi}{4} = \frac{\pi}{12}$ $\Rightarrow \sqrt{e^x - 1} = \tan \frac{\pi}{3} \Rightarrow \sqrt{e^x - 1} = \sqrt{3} \Rightarrow e^x = 4$

$$40. \quad \frac{\pi^2}{\log 3} \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \sec(\pi x) dx$$

$$= \frac{\pi^2}{\log 3} \times \frac{1}{\pi} [\log|\sec \pi x + \tan \pi x|]_{7/6}^{5/6}$$

$$= \frac{\pi}{\log 3} \left[\log \left| \sec \frac{5\pi}{6} + \tan \frac{5\pi}{6} \right| - \log \left| \sec \frac{7\pi}{6} + \tan \frac{7\pi}{6} \right| \right]$$

$$= \frac{\pi}{\log 3} \left[\log \left(\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right) - \log \left(\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right) \right]$$

$$= \frac{\pi}{\log 3} \left[\log \sqrt{3} - \log \left(\frac{1}{\sqrt{3}} \right) \right] = \frac{\pi}{\log 3} (\log 3) = \pi$$

$$41. \quad \text{Put } x = \cos \theta \Rightarrow dx = -\sin \theta \ d\theta$$

$$\therefore \quad \int_{0}^{1} \sin \left(2 \tan^{-1} \sqrt{\frac{1+x}{1-x}} \right) dx$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin \left(2 \tan^{-1} \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} \right) \cdot \sin \theta \ d\theta$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin \left[2 \tan^{-1} \left(\cot \frac{\theta}{2} \right) \right] \cdot \sin \theta \ d\theta$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin \left[2 \tan^{-1} \left\{ \tan \left(\frac{\pi}{2} - \frac{\theta}{2} \right) \right\} \right] \cdot \sin \theta \ d\theta$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin (\pi - \theta) \cdot \sin \theta \ d\theta$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin (\pi - \theta) \cdot \sin \theta \ d\theta$$

$$= -\int_{\frac{\pi}{2}}^{0} \sin \theta \sin \theta \ d\theta$$

$$= -\frac{1}{2} \left[\theta - \frac{\sin 2\theta}{2} \right]_{\frac{\pi}{2}}^{0}$$

MHT-CET Triumph Maths (Hints) $=\left(\frac{\pi}{4}\cdot\frac{1}{2}-0\right)-\frac{1}{2}\left[x-\tan^{-1}x\right]_{0}^{1}$ 42. $\int_{-\infty}^{4} x \sec^2 x \, dx = \left[x \tan x\right]_{0}^{\frac{\pi}{4}} - \int_{-\infty}^{4} \tan x \, dx$ $=\frac{\pi}{8}-\frac{1}{2}\left[(1-0)-\left(\frac{\pi}{4}-0\right)\right]$ $= \left\lceil \frac{\pi}{4} - 0 \right\rceil - \left\lceil \log |\sec x| \right\rceil_{0}^{\frac{\pi}{4}}$ $=\frac{\pi}{2}-\frac{1}{2}+\frac{\pi}{2}=\frac{\pi}{4}-\frac{1}{2}$ $=\frac{\pi}{4} - \log \left| \sec \frac{\pi}{4} \right| + \log \left| \sec 0 \right|$ 46. Let I = $\int_{0}^{1/\sqrt{2}} \frac{\sin^{-1}x}{(1-x^2)^{\frac{3}{2}}} dx$ $=\frac{\pi}{4}-\log\sqrt{2}+\log 1$ $=\frac{\pi}{4}-\log\sqrt{2}$ Put $\sin^{-1} x = t \Rightarrow \frac{1}{\sqrt{1-r^2}} dx = dt$ 43. Let I = $\int_{-\infty}^{\infty} e^x \sin x \, dx$ When x = 0, t = 0 and when $x = \frac{1}{\sqrt{2}}$, $t = \frac{\pi}{4}$ $\therefore \qquad I = \int^{\pi/4} t \cdot \sec^2 t dt = \frac{\pi}{4} - \frac{1}{2} \log 2$ $= \left[\sin x \cdot e^x\right]_0^{\pi/2} - \int_0^{\overline{2}} \cos x \cdot e^x \, \mathrm{d}x$ 47. Put $t = \sin^{-1} x \Rightarrow dt = \frac{1}{\sqrt{1 - r^2}} dx$:. $I = \left[e^x \sin x \right]_0^{\pi/2} - \left[\cos x \cdot e^x \right]_0^{\pi/2} - \int_0^2 \sin x \cdot e^x dx$ $\therefore \int_{-\infty}^{1/2} \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx = \int_{-\infty}^{\pi/6} t \sin t dt$ $\Rightarrow 2I = \left[e^x (\sin x - \cos x) \right]_0^{\pi/2}$ $= [-t \cos t + \sin t]_{0}^{\frac{\pi}{6}}$ $\Rightarrow 2I = e^{\pi/2} + 1$ \Rightarrow I = $\frac{e^{\pi/2} + 1}{2}$ $=-\frac{\pi}{6}\cdot\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{1}{2}-\frac{\sqrt{3}\pi}{12}$ 44. Let I = $\int_{-\infty}^{\infty} \frac{1}{x} \log x \, dx$ 48. Let I = $\int_{-\pi/4}^{3\pi/4} \frac{x}{1+\sin x} dx$ $\Rightarrow I = \left[\log x \log x\right]_{a}^{b} - \int_{x}^{b} \frac{1}{r} \log x dx$ $= \int_{-\infty}^{3\pi/4} \frac{x \sec x}{\sec x + \tan x} \, \mathrm{d}x$ $\Rightarrow 2I = [(\log x)^2]_{a}^{b}$ Let $I_1 = \int \frac{\sec x}{\sec x + \tan x} dx$ $\Rightarrow I = \frac{1}{2} [(\log b)^2 - (\log a)^2]$ Put $\frac{1}{\sec x + \tan x} = t$ $= \frac{1}{2} [(\log b + \log a)(\log b - \log a)]$ $\Rightarrow - \frac{\left(\sec x \tan x + \sec^2 x\right)}{\left(\sec x + \tan x\right)^2} \, \mathrm{d}x = \mathrm{d}t$ $=\frac{1}{2}\log(ab)\log\left(\frac{b}{a}\right)$ $\therefore \qquad I_1 = -\int \frac{-\sec x \left(\sec x + \tan x\right)}{\left(\sec x + \tan x\right)^2} dx$ 45. Let I = $\int x \tan^{-1} x \, dx$ $= \tan^{-1} x \int x \, dx - \int \frac{1}{1+x^2} \cdot \frac{x^2}{2} \, dx$ $= -\int dt$ = -t + c $= \left| \frac{x^2}{2} \tan^{-1} x \right|^{1} - \frac{1}{2} \int \frac{1}{1 + x^2} \frac{1 + x^2 - 1}{1 + x^2} dx$ $=\frac{-1}{\sec x + \tan x} + c$

$$\therefore \quad I = \left[\frac{-x}{\sec x + \tan x}\right]_{\pi/4}^{3\pi/4} - \int_{\pi/4}^{3\pi/4} \frac{-1}{\sec x + \tan x} dx$$

$$\dots \left[\because \int_{a}^{b} (uv) dx = \left[u \int v dx\right]_{a}^{b} - \int_{a}^{b} \left[\frac{du}{dx} \int v dx\right] dx\right]$$

$$= \left(\frac{-3\pi}{4}{-\sqrt{2}-1}\right) - \left(\frac{-\pi}{4}{\sqrt{2}+1}\right) + \int_{\pi/4}^{3\pi/4} \frac{\cos x}{1 + \sin x} dx$$

$$= \frac{\pi}{1+\sqrt{2}} + \left[\log|1 + \sin x|\right]_{\pi/4}^{3\pi/4}$$

$$= \frac{\pi}{1+\sqrt{2}} + \log\left|1 + \frac{1}{\sqrt{2}}\right| - \log\left|1 + \frac{1}{\sqrt{2}}\right|$$

$$= \frac{\pi}{1+\sqrt{2}}$$

$$= \pi(\sqrt{2}-1)$$
49.
$$F(t) = \int_{0}^{t} f(t-y)g(y)dy$$

$$= \int_{0}^{t} e^{t-y}ydy = e^{t}\int_{0}^{t} e^{-y}ydy$$

$$= -e^{t}(ye^{-y} + e^{-y})]_{0}^{t}$$

$$= -e^{t}(te^{-t} + e^{-t} - 0 - 1)$$

$$= e^{t} - (1 + t)$$
50.
$$Let I = \int_{0}^{2\pi} e^{\frac{x}{2}} .sin\left(\frac{x}{2} + \frac{\pi}{4}\right)dx$$

$$Put \frac{x}{2} = t$$

$$\Rightarrow dx = 2dt$$

$$\therefore \quad I = 2\int_{0}^{\pi} e^{tsin}\left(t + \frac{\pi}{4} - \tan^{-1}\frac{1}{1}\right)\right]_{0}^{\pi}$$

$$\left[\because \int e^{e^{ts}} sin bxdx = \frac{e^{e^{ts}}}{\sqrt{a^{2} + b^{2}}}sin\left(bx - \tan^{-1}\frac{b}{a}\right) + c\right]$$

$$= \frac{2}{\sqrt{2}} [0] = 0$$

Solution Chapter 05: Definite Integrals
51.
$$I_{10} = \int_{0}^{\frac{\pi}{2}} x^{10} \sin x \, dx$$

$$= \left[-x^{10} \cos x \right]_{0}^{\frac{\pi}{2}} - 10 \int_{0}^{\frac{\pi}{2}} x^{9} (-\cos x) \, dx$$

$$= \left[-\left(\frac{\pi}{2}\right)^{10} \cos \frac{\pi}{2} + 0 \right]$$

$$+ 10 \left[\left[x^{9} \sin x \right]_{0}^{\frac{\pi}{2}} - 90 \int_{0}^{\frac{\pi}{2}} x^{8} \sin x \, dx \right]$$

$$= 10 \left[x^{9} \sin x \right]_{0}^{\frac{\pi}{2}} - 90 \int_{0}^{\frac{\pi}{2}} x^{8} \sin x \, dx$$

$$\therefore I_{10} = 10 \left(\frac{\pi}{2} \right)^{9} \sin \frac{\pi}{2} - 90 I_{8}$$

$$\Rightarrow I_{10} + 90 I_{8} = 10 \left(\frac{\pi}{2} \right)^{9}$$
52. $\int_{0}^{1} x \log \left(1 + \frac{x}{2} \right) \cdot \frac{x^{2}}{2} \right]_{0}^{1} - \int_{0}^{1} \left[\frac{1}{1 + \frac{x}{2}} \cdot \frac{1}{2} \cdot \frac{x^{2}}{2} \right] \, dx$

$$= \left[\log \left(1 + \frac{x}{2} \right) \cdot \frac{x^{2}}{2} \right]_{0}^{1} - \int_{0}^{1} \left[\frac{1}{1 + \frac{x}{2}} \cdot \frac{1}{2} \cdot \frac{x^{2}}{2} \right] \, dx$$

$$= \frac{1}{2} \log \frac{3}{2} - \frac{1}{2} \int_{0}^{1} \left[x - \frac{2x}{x+2} \right] \, dx$$

$$= \frac{1}{2} \log \frac{3}{2} - \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{0}^{1} + \int_{0}^{1} \frac{x}{x+2} \, dx$$

$$= \frac{1}{2} \log \frac{3}{2} - \frac{1}{4} + \int_{0}^{1} \left[1 - \frac{2}{x+2} \right] \, dx$$

$$= \frac{1}{2} \log \frac{3}{2} - \frac{1}{4} + \left[x - 2 \log (x+2) \right]_{0}^{1}$$

$$= \frac{1}{2} \log \frac{3}{2} - \frac{1}{4} + 1 - 2 \log 3 + 2 \log 2$$

$$= \frac{3}{4} + \frac{3}{2} \log \frac{2}{3}$$

$$\therefore a = \frac{3}{4}, b = \frac{3}{2}$$

MHT-CET Triumph Maths (Hints) $I(m, n) = \int_{-\infty}^{1} t^m (1-t)^n dt$ 53. $I(m+1, n-1) = \int_{-1}^{1} t^{m+1} (1-t)^{n-1} dt$... \Rightarrow I(m + 1, n - 1 $= \left[-\frac{t^{m+1}(1-t)^{n}}{n} \right]^{1} + \frac{m+1}{n} \int_{0}^{1} t^{m}(1-t)^{n} dt$ $\Rightarrow I(m+1, n-1) = 0 + \frac{m+1}{n} I(m, n)$ $\Rightarrow I(m, n) = \frac{n}{m+1}I(m+1, n-1)$ 54. Let $I_1 = \int_{1}^{1} (1 - x^{50})^{100} dx$ and $I_2 = \int_{1}^{1} (1 - x^{50})^{101} dx$ Now, $I_2 = \int (1 - x^{50})^{101} . 1 dx$ $= \left[(1-x^{50})^{101} \cdot x \right]_{0}^{1} + 5050 \int_{0}^{1} (1-x^{50})^{100} \cdot x^{49} \cdot x \, dx$ $= -5050 \int_{-\infty}^{1} \left(1 - x^{50}\right)^{100} \left\{ \left(1 - x^{50}\right) - 1 \right\} dx$ $= -5050 \int_{-1}^{1} (1 - x^{50})^{101} dx + 5050 \int_{-1}^{1} (1 - x^{50})^{100} dx$ $I_2 = -5050 I_2 + 5050 I_1$ *.*.. $\Rightarrow \frac{5050 \,\mathrm{I_1}}{\mathrm{I}} = 5051$ 55. $\int_{-\infty}^{10} \frac{1}{(x-1)(x-2)} dx = \int_{-\infty}^{10} \left(\frac{1}{x-2} - \frac{1}{x-1}\right) dx$ $= \left[\log(x-2) - \log(x-1) \right]_{5}^{10}$ $= \log 8 - \log 9 - (\log 3 - \log 4)$ $=\log \frac{8}{9} - \log \frac{3}{4} = \log \left(\frac{8}{9} \times \frac{4}{3}\right)$ $= \log\left(\frac{32}{27}\right)$ 56. $\int \frac{dx}{x(1+x^2)} = \int \left(\frac{1}{x} - \frac{x}{1+x^2}\right) dx$ $= \int_{-\infty}^{\infty} \frac{1}{x} dx - \frac{1}{2} \int_{-\infty}^{\infty} \frac{2x}{1+x^2} dx$ $= \left[\log x\right]_{1}^{3} - \frac{1}{2} \left[\log(1+x^{2})\right]_{1}^{3}$ $= \log 3 - \log 1 - \frac{1}{2} (\log 10 - \log 2)$

 $= \log 3 - \frac{1}{2}\log 5$ $=\frac{1}{2}\log 3^2 - \frac{1}{2}\log 5$ $=\frac{1}{2}(\log 9 - \log 5) = \frac{1}{2}\log(\frac{9}{5})$ 57. $\int_{-\infty}^{3} \frac{x+1}{x^2(x-1)} dx = \int_{-\infty}^{3} \left(-\frac{1}{x^2} - \frac{2}{x} + \frac{2}{x-1} \right) dx$ $= \left[\frac{1}{x}\right]^{3} - 2[\log x]_{2}^{3} + 2[\log(x-1)]_{2}^{3}$ $=\frac{1}{2}-\frac{1}{2}-2\log\frac{3}{2}+2\log 2$ $=\log \frac{16}{0} - \frac{1}{6}$ 58. Let I = $\int_{0}^{\frac{1}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} dx$ $= \int_{0}^{4} \frac{\sin x + \cos x}{9 + 16 \left[1 - (\sin x - \cos x)^{2}\right]} dx$ Put $\sin x - \cos x = t$ $\Rightarrow (\cos x + \sin x) dx = dt$ When x = 0, t = -1 and when $x = \frac{\pi}{4}$, t = 0 $\therefore \qquad I = \int_{0}^{0} \frac{dt}{9+16(1-t^2)}$ $=\int_{-\infty}^{\infty}\frac{1}{25-16t^2}\,\mathrm{d}t$ $=\int_{-\infty}^{0} \frac{1}{(5-4t)(5+4t)} dt$ $= \int_{-1}^{0} \left| \frac{\frac{1}{10}}{5-4t} + \frac{\frac{1}{10}}{5+4t} \right| dt$ $= \frac{1}{10} \left| \frac{-1}{4} \log(5-4t) + \frac{1}{4} \log(5+4t) \right|^{\circ}$ $=\frac{1}{40}(\log 9 - \log 1)$ $=\frac{1}{20}\log 3$

59.
$$\int_{0}^{2} \frac{\log(x^{2}+2)}{(x+2)^{2}} dx$$

$$= -\left[\frac{\log(x^{2}+2)}{x+2}\right]_{0}^{2} + \int_{0}^{2} \frac{2x}{(x^{2}+2)(x+2)} dx$$

$$= -\frac{1}{4}\log 6 + \frac{1}{2}\log 2 + \int_{0}^{2} \left\{\frac{-2}{3(x+2)} + \frac{2}{3}\frac{x+2}{x^{2}+2}\right\} dx$$

$$= -\frac{1}{4}\log 3 - \frac{1}{4}\log 2 + \frac{1}{2}\log 2$$

$$+ \left[-\frac{2}{3}\log(x+2) + \frac{1}{3}\log(x^{2}+2) + \frac{\sqrt{2}}{3}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right)\right]_{0}^{2}$$

$$= \frac{1}{4}\log 2 - \frac{1}{4}\log 3$$

$$+ \left(-\frac{2}{3}\log 2 + \frac{1}{3}\log 3 + \frac{\sqrt{2}}{3}\tan^{-1}\sqrt{2}\right)$$

$$= \frac{\sqrt{2}}{3}\tan^{-1}\sqrt{2} - \frac{5}{12}\log 2 + \frac{1}{12}\log 3$$
60. Put sin^{-1}\left(\frac{x}{2}\right) = t \Rightarrow x = 2 sin t \Rightarrow dx = 2 cos tdt
$$\therefore \int_{0}^{1} \frac{\sin^{-1}\left(\frac{x}{2}\right)}{x} dx = \int_{0}^{\frac{\pi}{6}} \frac{t}{(2sint)}(2cos t dt)$$

$$= \int_{0}^{\frac{\pi}{6}} \frac{t}{\tan t} dt = \int_{0}^{\frac{\pi}{6}} \frac{x}{\tan x} dx$$

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt\right]$$

61. $I_{1} = \int_{e}^{e^{2}} \frac{dx}{\log x}$ Put $\log x = t$ $\Rightarrow dx = x dt = e^{t} dt$ When x = e, t = 1 and when $x = e^{2}, t = 2$ $\therefore I_{1} = \int_{1}^{2} \frac{e^{t}}{t} dt$ $= \int_{1}^{2} \frac{e^{x}}{x} dx$ $\left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt \right]$ $\therefore I_{1} = I_{2}$

62.
$$\int_{0}^{3} (3ax^{2} + 2bx + c) dx = \int_{1}^{3} (3ax^{2} + 2bx + c) dx$$

$$\Rightarrow \int_{0}^{1} (3ax^{2} + 2bx + c) dx + \int_{1}^{3} (3ax^{2} + 2bx + c) dx$$

$$= \int_{0}^{3} (3ax^{2} + 2bx + c) dx = 0$$

$$\Rightarrow \left[\frac{3ax^{3}}{3} + \frac{2bx^{2}}{2} + cx \right]_{0}^{1} = 0 \Rightarrow a + b + c = 0$$

63.
$$\int_{2}^{4} (3 - f(x)) dx = 7$$

$$\Rightarrow \int_{2}^{4} 3dx - \int_{2}^{4} f(x) dx = 7$$

$$\Rightarrow \int_{2}^{4} f(x) dx = 3 (4 - 2) - 7$$

$$= -1$$

$$\int_{-1}^{4} f(x) dx = \int_{-1}^{2} f(x) dx + \int_{2}^{6} f(x) dx + \int_{c}^{6} f(x) dx$$

$$= \int_{-1}^{2} f(x) dx - 1$$

$$\Rightarrow \int_{-1}^{2} f(x) dx = 5$$

64.
$$g(x + \pi) = \int_{0}^{x + \pi} cos^{4} t dt$$

$$= \int_{\pi}^{\pi} cos^{4} t dt + \int_{\pi}^{x + \pi} cos^{4} t dt$$

In 2nd integral, put t = u + π ⇒ dt = du
∴
$$\int_{\pi}^{x + \pi} cos^{4} t dt = g(x)$$

∴
$$g(x + \pi) = g(x) + g(\pi)$$

MHT-CET Triumph Maths (Hints) Since, |x-1| = -(x-1), if x-1 < 0 i.e., x < 165. = x - 1, if $x - 1 \ge 0$ i.e., $x \ge 1$ $\therefore \qquad \int_{a}^{b} f(x) dx = \int_{a}^{b} |x-1| dx$ $=\int_{1}^{1}(1-x)dx+\int_{1}^{2}(x-1)dx$ $= \left[x - \frac{x^2}{2} \right]^1 + \left[\frac{x^2}{2} - x \right]^2$ $=\left(1-\frac{1}{2}\right)+(2-2)-\left(\frac{1}{2}-1\right)=1$ 66. $\int_{-\infty}^{5} |x+2| dx = -\int_{-\infty}^{-2} (x+2) dx + \int_{-\infty}^{5} (x+2) dx$ $=\left[\frac{-x^2}{2}-2x\right]^{-2}+\left[\frac{x^2}{2}+2x\right]^{5}$ 67. $f(x) = \int_{-\infty}^{x} |t| dt$ $= \int_{0}^{0} (-t) dt + \int_{0}^{x} t dt$ $= \left[\frac{-t^{2}}{2}\right]^{0} + \left[\frac{t^{2}}{2}\right]^{x} = \frac{1}{2} + \frac{x^{2}}{2} = \frac{1}{2}(1+x^{2})$ 68. $\int_{0}^{1} |3x^{2} - 1| dx = \int_{0}^{\frac{1}{\sqrt{3}}} (1 - 3x^{2}) dx + \int_{1}^{1} (3x^{2} - 1) dx$ $= [x - x^3]_0^{1/\sqrt{3}} + [x^3 - x]_1^{1/\sqrt{3}}$ $=\frac{1}{\sqrt{3}}-\frac{1}{3\sqrt{3}}-\frac{1}{3\sqrt{3}}+\frac{1}{\sqrt{3}}=\frac{4}{3\sqrt{3}}$ $69. \qquad \int_{-\infty}^{2} \left|1-x^{2}\right| \mathrm{d}x$ $= \int_{-1}^{-1} \left| 1 - x^2 \right| dx + \int_{-1}^{1} \left| 1 - x^2 \right| dx + \int_{-1}^{2} \left| 1 - x^2 \right| dx$ $= -\int_{-1}^{-1} (1-x^2) dx + \int_{-1}^{1} (1-x^2) dx - \int_{-1}^{2} (1-x^2) dx$ $= -\left[x - \frac{x^{3}}{3}\right]^{-1} + \left[x - \frac{x^{3}}{3}\right]^{-1} - \left[x - \frac{x^{3}}{3}\right]^{2}$ $=\frac{4}{2}+\frac{4}{2}+\frac{4}{2}=4$

70. Since,
$$\left|x - \frac{1}{2}\right| = -\left(x - \frac{1}{2}\right)$$
, if $x < \frac{1}{2}$
 $= x - \frac{1}{2}$, if $x > \frac{1}{2}$
 $\therefore \int_{0}^{1} x \left|x - \frac{1}{2}\right| dx$
 $= -\int_{0}^{\frac{1}{2}} x \left(x - \frac{1}{2}\right) dx + \int_{\frac{1}{2}}^{1} x \left(x - \frac{1}{2}\right) dx$
 $= \int_{0}^{\frac{1}{2}} \left(\frac{1}{2}x - x^{2}\right) dx + \int_{\frac{1}{2}}^{1} \left(x^{2} - \frac{1}{2}x\right) dx$
 $= \left[\frac{x^{2}}{4} - \frac{x^{3}}{3}\right]_{0}^{1/2} + \left[\frac{x^{3}}{3} - \frac{x^{2}}{4}\right]_{1/2}^{1}$
 $= \left(\frac{1}{16} - \frac{1}{24}\right) + \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{16} - \frac{1}{24}\right) = \frac{1}{8}$
71. Let $I = \int_{0}^{100\pi} |\cos x| dx$
 $= 200 \int_{0}^{\frac{\pi}{2}} |\cos x| dx$
 $\dots \left[\because \int_{0}^{\frac{\pi}{2}} f(x) dx = 2\int_{0}^{\pi} f(x) dx$, if $f(2a - x) = f(x)\right]$
Since $\cos x$ is positive in the interval $\left(0, \frac{\pi}{2}\right)$
 $\therefore I = 200 \int_{0}^{\frac{\pi}{2}} \cos x dx$
 $= 200 [\sin x]_{0}^{\frac{\pi}{2}}$
 $= 200$
72. $\int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| dx$
 $= -\int_{0}^{\frac{\pi}{4}} (\sin x - \cos x) dx + \int_{\frac{\pi}{4}}^{\pi/2} (\sin x - \cos x) dx$
 $= -[-\cos x - \sin x]_{0}^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^{\pi/2}$

73. $\int_{0}^{\pi} \sqrt{1 + 4\sin^{2}\frac{x}{2} - 4\sin\frac{x}{2}} \, dx$ $= \int_{0}^{\pi} \left| 2\sin\frac{x}{2} - 1 \right| \, dx$ $= \int_{0}^{\frac{\pi}{3}} \left| 2\sin\frac{x}{2} - 1 \right| \, dx + \int_{\frac{\pi}{3}}^{\pi} \left| 2\sin\frac{x}{2} - 1 \right| \, dx$ $= \int_{0}^{\frac{\pi}{3}} \left(1 - 2\sin\frac{x}{2} \right) \, dx + \int_{\frac{\pi}{3}}^{\pi} \left(2\sin\frac{x}{2} - 1 \right) \, dx$ $= \left[x + 4\cos\frac{x}{2} \right]_{0}^{\frac{\pi}{3}} + \left[-4\cos\frac{x}{2} - x \right]_{\frac{\pi}{3}}^{\pi}$ $= \frac{\pi}{3} + 4 \left(\frac{\sqrt{3}}{2} - 1 \right) + \left[-4 \left(0 - \frac{\sqrt{3}}{2} \right) - \left(\pi - \frac{\pi}{3} \right) \right]$ $= 4\sqrt{3} - 4 - \frac{\pi}{3}$ 74. Since, $|\log x| = -\log x$, if $\frac{1}{e} < x < 1$ $= \log x$, if 1 < x < e

$$\therefore \quad I = \int_{1/e}^{1} \frac{(-10gx)}{x^2} dx + \int_{1}^{1} \frac{10gx}{x^2} dx$$

$$= -\left[-\frac{\log x}{x} - \frac{1}{x} \right]_{1/e}^{1} + \left[-\frac{\log x}{x} - \frac{1}{x} \right]_{1}^{e}$$

$$= \left[0 + 1 - \left(\frac{\log \frac{1}{e}}{\frac{1}{e}} + \frac{1}{\frac{1}{e}} \right) \right] - \left[\frac{\log e}{e} + \frac{1}{e} - (0+1) \right]$$

$$= 1 - (-e + e) - \left(\frac{2}{e} - 1 \right)$$

$$= 2 - \frac{2}{e} = 2\left(1 - \frac{1}{e} \right)$$
75. Let I = $\int_{0}^{3} [x] dx$

$$= \int_{0}^{1} 0 dx + \int_{1}^{2} 1 dx + \int_{2}^{3} 2 dx$$

$$= [x]_{1}^{2} + 2[x]_{2}^{3}$$

$$= (2 - 1) + 2(3 - 2)$$

$$= 3$$

Chapter 05: Definite Integrals $\int (x-[x]) dx = \int (x-[x]) dx + \int (x-[x]) dx$ 76. $= \int_{0}^{\infty} (x+1) dx + \int_{0}^{1} (x-0) dx$ $= \left\lceil \frac{(x+1)^2}{2} \right\rceil^0 + \left\lceil \frac{x^2}{2} \right\rceil^1$ $=\frac{1}{2}+\frac{1}{2}=1$ 77. $\int_{0}^{1.5} [x^2] dx = \int_{0}^{1} [x^2] dx + \int_{0}^{\sqrt{2}} [x^2] dx + \int_{0}^{1.5} [x^2] dx$ $= \int_{0}^{1} 0 \, dx + \int_{0}^{\sqrt{2}} 1 \, dx + \int_{0}^{1.5} 2 \, dx$ $=\sqrt{2}-1+3-2\sqrt{2}=2-\sqrt{2}$ 78. $\int_{-\infty}^{9} \left[\sqrt{x} + 2\right] dx$ $= \int_{1}^{1} [\sqrt{x} + 2] \, dx + \int_{1}^{4} [\sqrt{x} + 2] \, dx + \int_{1}^{9} [\sqrt{x} + 2] \, dx$ $= \int_{-1}^{1} 2 \, dx + \int_{-1}^{4} 3 \, dx + \int_{-1}^{9} 4 \, dx$ $= 2^{0} + (12 - 3) + (36 - 16) = 2 + 9 + 20 = 31$ 79. $\int_{\pi}^{\frac{1}{2}} [2\sin x] dx = \int_{\pi}^{\frac{1}{6}} [2\sin x] dx + \int_{5\pi}^{\pi} [2\sin x] dx$ $+\int_{\pi}^{6} [2\sin x] dx + \int_{7\pi}^{\frac{\pi}{2}} [2\sin x] dx$ $= \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} 1.\,dx + \int_{5\pi}^{\pi} 0\,dx + \int_{\pi}^{\frac{\pi}{6}} (-1)\,dx + \int_{7\pi}^{\frac{3\pi}{2}} (-2)\,dx$ $=\left(\frac{5\pi}{6}-\frac{\pi}{2}\right)-\left(\frac{7\pi}{6}-\pi\right)-2\left(\frac{3\pi}{2}-\frac{7\pi}{6}\right)=-\frac{\pi}{2}$ Let I = $\int_{1}^{2} (x - [\cos x]) dx$ 80. $= \int_{-\infty}^{\infty} x \, \mathrm{d}x - \int_{-\infty}^{\infty} \left[\cos x\right] \mathrm{d}x$ $=\left[\frac{x^2}{2}\right]^{\pi/2} - 0 = \frac{\pi^2}{8}$

MHT-CET Triumph Maths (Hints)

81.
$$\int_{1}^{a} [x]f'(x) dx$$

$$= \int_{1}^{2} 1.f'(x) dx + \int_{2}^{3} 2.f'(x) dx + \dots + \int_{[a]}^{a} [a]f'(x) dx$$

$$= [f(2) - f(1)] + 2[f(3) - f(2)] + \dots + [a][f(a) - f([a])] = [a] f(a) - {f(1) + f(2) + \dots + f([a])}$$
82.
$$\int_{0}^{2} (|x - 2| + [x]) dx = \int_{0}^{2} |x - 2| dx + \int_{0}^{2} [x] dx$$

$$= -\int_{0}^{2} (x - 2) dx + \int_{0}^{1} [x] dx + \int_{1}^{2} [x] dx$$

$$= \int_{0}^{2} (2 - x) dx + \int_{0}^{1} 0 dx + \int_{1}^{2} 1 dx$$

$$= \left[2x - \frac{x^{2}}{2} \right]_{0}^{2} + [x]_{1}^{2}$$

$$= (4 - 2) + (2 - 1) = 3$$
83.
$$\int_{-2}^{2} |[x]| dx$$

$$= \int_{-2}^{-1} |-2| dx + \int_{-1}^{0} |-1| dx + \int_{0}^{1} |0| dx + \int_{1}^{2} |[x]| dx$$

$$= 2 \int_{-2}^{-1} dx + \int_{-1}^{0} dx + \int_{1}^{2} dx$$

$$= 2[x]_{-2}^{-1} + [x]_{-1}^{0} + [x]_{1}^{2}$$

$$= 2(-1 + 2) + (0 + 1) + (2 - 1)$$

$$= 2 + 1 + 1 = 4$$
84.
$$\int_{1}^{5} [[x - 3]] dx$$

$$= \int_{-1}^{3} [-(x - 3)] dx + \int_{3}^{5} [(x - 3)] dx$$

 $= \int_{1}^{2} [-(x-3)] dx + \int_{2}^{3} [-(x-3)] dx$

 $= \int_{1}^{2} 1.dx + \int_{2}^{3} 0.dx + \int_{3}^{4} 0.dx + \int_{4}^{5} 1.dx$

 $= [x]_1^2 + [x]_4^5 = (2-1) + (5-4) = 2$

 $+\int_{3}^{4} [x-3]dx + \int_{4}^{5} [x-3]dx$

85. Let
$$I = \int_{0}^{11} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} dx$$
(i)

$$= \int_{0}^{11} \frac{x^{2}}{(11-x)^{2}+x^{2}} dx$$
(ii)
....[$\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$]
Adding (i) and (ii), we get
 $2I = \int_{0}^{11} dx$
 $\Rightarrow 2I = [x]_{0}^{11}$
 $\Rightarrow I = \frac{11}{2}$
86. Let $I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ (i)

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin (\frac{\pi}{2} - x)}}{\sqrt{\sin (\frac{\pi}{2} - x)} + \sqrt{\cos (\frac{\pi}{2} - x)}} dx$$

....[$\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$]
 $\therefore I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$ (ii)
Adding (i) and (ii), we get
 $2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
 $\Rightarrow 2I = [x]_{0}^{\frac{\pi}{2}}$
 $\Rightarrow I = \frac{\pi}{4}$
87. Since, $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx = \frac{\pi}{4}$
 $\therefore \int_{0}^{\frac{\pi}{2}} \frac{\sin^{1000} x}{\sin^{1000} x} dx = \frac{\pi}{4}$

88. Let I = $\int_{0}^{\overline{2}} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$...(i) $= \int_{0}^{\frac{\pi}{2}} \frac{\tan^{7}\left(\frac{\pi}{2} - x\right)}{\cot^{7}\left(\frac{\pi}{2} - x\right) + \tan^{7}\left(\frac{\pi}{2} - x\right)} \, dx$ $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a - x) dx \right|$ $\therefore \qquad I = \int_{-\infty}^{\frac{1}{2}} \frac{\cot^7 x}{\tan^7 x + \cot^7 x} dx \qquad \dots (ii)$ Adding (i) and (ii), we get $2I = \int_{-\infty}^{\frac{1}{2}} dx$ $\Rightarrow 2I = [x]_0^{\frac{\pi}{2}} \Rightarrow I = \frac{\pi}{2}$ 89. Let I = $\int_{-\infty}^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx \qquad \dots (i)$ $= \int_{0}^{\pi/2} \frac{\sqrt{\cot\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cot\left(\frac{\pi}{2} - x\right)} + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} \, \mathrm{d}x$ $\dots \left| \because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx \right|$ $= \int_{-\pi/2}^{\pi/2} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx \qquad \dots \dots (ii)$ Adding (i) and (ii), w $2I = \int_{-\infty}^{\pi/2} dx = \frac{\pi}{2} \implies I = \frac{\pi}{4}$ 90. Let I = $\int_{-\infty}^{\infty} \left(\frac{\sqrt[n]{\sec x}}{\sqrt[n]{\sec x} + \sqrt[n]{\csc x}} \right) dx \quad \dots (i)$ $\therefore \qquad I = \int_{-\infty}^{\frac{1}{2}} \left(\frac{\sqrt[n]{\cos ec x}}{\sqrt[n]{\cos ec x} + \sqrt[n]{\sin ec x}} \right) dx \qquad \dots (ii)$ $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} (a - x) dx \right|$ Adding (i) and (ii), we get $2 I = \int_{-\infty}^{\infty} dx = [x]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \implies I = \frac{\pi}{4}$

91. Let I = $\int_{0}^{\frac{1}{2}} \frac{dx}{1 + \sqrt{\tan x}}$(i) $=\int_{1}^{2} \frac{\mathrm{d}x}{1+\sqrt{\cot x}}$(ii) $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx \right|$ Adding (i) and (ii), we get $2I = \int_{-\infty}^{\infty} \left(\frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{\cot x}} \right) dx$ $\Rightarrow 2I = \int_{-\infty}^{\frac{1}{2}} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$ 92. Let I = $\int_{-1}^{2} \frac{dx}{1 + (\tan x)^{\sqrt{2018}}}$...(i) $\therefore \qquad I = \int_{0}^{2} \frac{dx}{1 + (\cot x)^{\sqrt{2018}}}$...(ii) $\dots \left| \because \int_{a}^{a} f(x) dx \right| = \int_{a}^{a} f(a-x) dx$ Adding (i) and (ii), we get $2I = \int_{0}^{\frac{1}{2}} \left| \frac{1}{1 + (\tan x)^{\sqrt{2018}}} + \frac{1}{1 + (\cot x)^{\sqrt{2018}}} \right| dx$ $= \int_{0}^{2} \frac{1}{1 + (\tan x)^{\sqrt{2018}}} + \frac{1}{1 + (\frac{1}{1 + (\frac{1}{1 + (1 + 1)^{\sqrt{2018}}})^{\sqrt{2018}}} dx$ $=\int_{0}^{2} \mathrm{d}x$ $\Rightarrow I = \frac{\pi}{I}$ 93. Let I = $\int_{-\infty}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x} + 2^{\cos x}} dx$...(i) $\therefore \qquad I = \int_{-\infty}^{\frac{\pi}{2}} \frac{2^{\cos x}}{2^{\sin x} + 2^{\cos x}} dx$...(ii) $\dots \left| \because \int_{a}^{a} f(x) dx \right| = \int_{a}^{a} f(a-x) dx$

Chapter 05: Definite Integrals

MHT-CET Triumph Maths (Hints) Adding (i) and (ii), we get Let I = $\int \log(\cot x) dx$(i) 96. $2I = \int_{-\infty}^{\infty} \frac{2^{\sin x} + 2^{\cos x}}{2^{\sin x} + 2^{\cos x}} dx = [x]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}$ $=\int \log(\tan x) dx$(ii) $I = \frac{\pi}{4}$ *.*.. 94. Let I = $\int_{-\infty}^{\frac{\pi}{2}} \frac{2008^{\sin x}}{2008^{\sin x} + 2008^{\cos x}} dx$(i) Adding (i) and (ii), we get :. I = $\int_{-\infty}^{\infty} \frac{2008^{\cos x}}{2008^{\cos x} + 2008^{\sin x}} dx$(ii) $2I = \int \log(\cot x \tan x) dx$ $\because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx$ $2I = \int_{0}^{2} \log 1 dx$ $\Rightarrow 2I = 0 \Rightarrow I = 0$ Adding (i) and (ii), we get 97. $\int_{0}^{\frac{\pi}{2}} \log(\operatorname{cosec} x) dx = \int_{0}^{\frac{\pi}{2}} \log(\operatorname{sec} x) dx$ $2\mathbf{I} = \int_{0}^{2} d\mathbf{x} = \left[\mathbf{x} \right]_{0}^{\pi/2} = \frac{\pi}{2} \implies \mathbf{I} = \frac{\pi}{4}$ 95. Let I = $\int_{0}^{\overline{2}} \frac{\cos^3 x}{\sin x + \cos x} dx$...(i) $=\int_{1}^{2}\log\left(\frac{1}{\cos x}\right)dx$ $I = \int_{-\infty}^{\frac{1}{2}} \frac{\sin^3 x}{\cos x + \sin x} dx$...(ii) $= \int_{0}^{2} [\log 1 - \log(\cos x)] dx$ $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx \right|$ $= -\int_{0}^{2} \log(\cos x) dx$ Adding (i) and (ii), we get $2I = \int_{0}^{\overline{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} \, \mathrm{d}x$ $=\frac{\pi}{2}\log 2$ 98. Let I = $\int_{1}^{\pi/2} \sin 2x \log \tan x \, dx$ $= \int_{0}^{2} \left(\sin^{2} x - \sin x \cos x + \cos^{2} x\right) dx$ $= \int_{0}^{\pi/2} \sin 2\left(\frac{\pi}{2} - x\right) \log \tan\left(\frac{\pi}{2} - x\right) dx$ $= \int (1 - \sin x \cos x) dx$ \dots $\left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx \right|$ $= \int_{-\infty}^{\frac{1}{2}} 1 \, dx - \int_{-\infty}^{\frac{1}{2}} \sin x \cos x \, dx$ $= \int_{0}^{\pi/2} \sin 2x \log \cot x \, dx$ $= \left[x\right]_{0}^{\pi/2} - \left[\frac{\sin^{2} x}{2}\right]^{\pi/2} = \frac{\pi}{2} - \frac{1}{2}$ $= -\int_{0}^{\pi/2} \sin 2x \log \tan x \, dx$ $2I = \frac{\pi - 1}{2} \Rightarrow I = \frac{\pi - 1}{4}$ *.*.. $I = -I \Rightarrow 2I = 0 \Rightarrow I = 0$

 $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a-x) dx \right|$

99. Let I =
$$\int_{0}^{\frac{\alpha}{3}} \frac{f(x)}{f(x) + f\left(\frac{\alpha - 3x}{3}\right)} dx$$
$$\Rightarrow I = \int_{0}^{\frac{\alpha}{3}} \frac{f(x)}{f(x) + f\left(\frac{\alpha}{3} - x\right)} dx \dots(i)$$
$$\Rightarrow I = \int_{0}^{\frac{\alpha}{3}} \frac{f\left(\frac{\alpha}{3} - x\right)}{f\left(\frac{\alpha}{3} - x\right) + f(x)} dx \dots(ii)$$
$$\dots \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right]$$

Adding (i) and (ii), we get

$$2I = \int_{0}^{\frac{\alpha}{3}} dx = [x]_{0}^{\alpha/3} = \frac{\alpha}{3}$$
$$\Rightarrow I = \frac{\alpha}{6}$$

100. I =
$$\int_{0}^{a} \frac{dx}{1+f(x)}$$
 ...(i)
= $\int_{0}^{a} \frac{dx}{1+f(a-x)}$... $\left[\int_{0}^{a} f(x) = \int_{0}^{a} f(a-x) dx\right]$
= $\int_{0}^{a} \frac{dx}{1+\frac{1}{f(x)}}$... $\left[\because f(x)f(a-x) = 1\right]$

$$\therefore \qquad \mathbf{I} = \int_{0}^{a} \frac{\mathbf{f}(x)}{1 + \mathbf{f}(x)} \, \mathrm{d}x \qquad \dots (\mathrm{ii})$$

Adding (i) and (ii), we get

$$2I = \int_{0}^{a} dx = [x]_{0}^{a}$$
$$\Rightarrow I = \frac{a}{2}$$

101. Let
$$I = \int_{0}^{\pi} \frac{x}{1 + \sin x} dx$$
 (i)

$$\therefore I = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin x} dx$$
(ii)

$$\dots \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right]$$

٦

Chapter 05: Definite Integrals

Adding (i) and (ii), we get

$$2I = \int_{0}^{\pi} \frac{\pi}{1 + \sin x} dx$$

$$= \pi \int_{0}^{\pi} \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} dx$$

$$= \pi \int_{0}^{\pi} \frac{1 - \sin x}{\cos^{2} x} dx = \pi \int_{0}^{\pi} (\sec^{2} x - \sec x \tan x) dx$$

$$= \pi [\tan x - \sec x]_{0}^{\pi}$$

$$2I = \pi [0 - (-1) - (0 - 1)] = 2\pi$$

$$\Rightarrow I = \pi$$

102. Let
$$I = \int_{0}^{\pi} \frac{x \, dx}{4 \cos^{2} x + 9 \sin^{2} x}$$
 ...(i)

$$\therefore \quad I = \int_{0}^{\pi} \frac{(\pi - x) \, dx}{4 \cos^{2} (\pi - x) + 9 \sin^{2} (\pi - x)}$$

$$\dots \left[\because \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \right]$$

$$I = \int_{0}^{\pi} \frac{(\pi - x)dx}{4\cos^{2} x + 9\sin^{2} x} \qquad \dots (ii)$$

Adding (i) and (ii), we get

Adding (1) and (11), we get
$$\pi dx$$

...

$$2I = \int_{0}^{\pi} \frac{\pi dx}{4\cos^2 x + 9\sin^2 x}$$

$$\therefore \quad I = \frac{\pi}{2} \int_{0}^{\pi} \frac{dx}{4\cos^2 x + 9\sin^2 x}$$

$$= 2\left(\frac{\pi}{2}\right) \int_{0}^{\frac{\pi}{2}} \frac{dx}{4\cos^2 x + 9\sin^2 x}$$

$$\dots \left[\because \int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx\right]$$

$$= \pi \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 x}{4x} dx$$

$$= \frac{\pi}{9} \int_{0}^{\frac{\pi}{2}} \frac{\sec^2 x}{\frac{4}{9} + \tan^2 x} dx$$

Put $\tan x = t \Longrightarrow \sec^2 x \, dx = dt$ π[∞] dt

$$\therefore \quad I = \frac{\pi}{9} \int_{0}^{\infty} \frac{dt}{\frac{4}{9} + t^{2}}$$
$$= \frac{\pi}{9} \times \frac{3}{2} \left[\tan^{-1} \frac{3t}{2} \right]_{0}^{\infty} = \frac{\pi}{6} \left[\frac{\pi}{2} - 0 \right] = \frac{\pi^{2}}{12}$$

589

MHT-CET Triumph Maths (Hints)

103. Let
$$I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} dx$$
(i)
∴ $I = \int_{0}^{\pi} \frac{(\pi - x) \tan x}{\sec x + \cos x} dx$ (ii)
.... $\left[\because \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(a - x) dx \right]$
Adding (i) and (ii), we get
 $2I = \pi \int_{0}^{\pi} \frac{\tan x}{\sec x + \cos x} dx$
 $\Rightarrow I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx$
Put $\cos x = t \Rightarrow \sin x dx = -dt$
∴ $I = -\frac{\pi}{2} \int_{1}^{1} \frac{dt}{1 + t^{2}} = -\frac{\pi}{2} [\tan^{-1} t]_{1}^{-1}$
 $= \left(-\frac{\pi}{2}\right) \left(-\frac{\pi}{2}\right) = \frac{\pi^{2}}{4}$
104. Let $I = \int_{0}^{\pi/2} \frac{x \sin x \cos x}{\cos^{4} x + \sin^{4} x} dx$ (i)
∴ $I = \int_{0}^{\pi/2} \frac{(\frac{\pi}{2} - x) \cos x \sin x}{\sin^{4} x + \cos^{4} x} dx$ (ii)
 $\dots \left[\because \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(a - x) dx \right]$
Adding (i) and (ii), we get
 $2I = \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\cos x \sin x}{\cos^{4} x + \sin^{4} x} dx$
 $\Rightarrow I = \frac{\pi}{4} \int_{0}^{\pi/2} \frac{\tan x \sec^{2} x}{1 + \tan^{4} x} dx$
Put $\tan^{2} x = t \Rightarrow \tan x \sec^{2} x dx = \frac{dt}{2}$
∴ $I = \frac{\pi}{8} [\tan^{-1} t]_{0}^{\pi} = \frac{\pi^{2}}{16}$
105. Let $I = \int_{0}^{1} \frac{\log(1 + x)}{1 + x^{2}} dx$
Put $x = \tan \theta \Rightarrow dx = \sec^{2} \theta d\theta$
 $\therefore I = \int_{0}^{\pi/4} \frac{\log(1 + \tan \theta)}{1 + \tan^{2} \theta}$. $\sec^{2} \theta d\theta$

$$\therefore I = \int_{0}^{\pi/4} \log\left(1 + \tan\theta\right) d\theta \qquad \dots(i)$$

$$= \int_{0}^{\pi/4} \log\left[1 + \tan\left(\frac{\pi}{4} - \theta\right)\right] d\theta$$

$$= \int_{0}^{\pi/4} \log\left[1 + \frac{1 - \tan\theta}{1 + \tan\theta}\right] d\theta$$

$$= \int_{0}^{\pi/4} \log\left(2\frac{2}{1 + \tan\theta}\right) d\theta$$

$$\therefore I = \int_{0}^{\pi/4} \log 2 d\theta - \int_{0}^{\pi/4} \log\left(1 + \tan\theta\right) d\theta$$

$$\Rightarrow I = \int_{0}^{\pi/4} \log 2 d\theta - I \qquad \dots[From (i)]$$

$$\Rightarrow 2I = \int_{0}^{\pi/4} \log 2 d\theta$$

$$= \frac{\pi}{4} \log 2$$

$$\Rightarrow I = \frac{\pi}{8} \log 2$$
106. Put $x = \tan\theta \Rightarrow dx = \sec^{2}\theta d\theta$

$$\therefore \int_{0}^{\pi} \frac{8\log(1 + x)}{1 + x^{2}} dx = \int_{0}^{\frac{\pi}{4}} \frac{8\log(1 + \tan\theta)}{1 + \tan^{2}\theta} (\sec^{2}\theta d\theta)$$

$$= 8\int_{0}^{\frac{\pi}{4}} \log(1 + \tan\theta) d\theta = 8\left(\frac{\pi}{8}\log 2\right) = \pi \log 2$$
107. Let $I = \int_{0}^{\pi} [\cot x] dx \qquad \dots(i)$

$$\Rightarrow I = \int_{0}^{\pi} [\cot(\pi - x)] dx$$

$$\dots\left[\because \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(a - x) dx\right]$$

$$\Rightarrow I = \int_{0}^{\pi} [-\cot x] dx \qquad \dots(i)$$
Adding (i) and (ii), we get
$$2I = \int_{0}^{\pi} -1 dx \qquad \dots[\because [x] + [-x] = -1, \text{ if } x \notin Z]$$

$$\Rightarrow 2I = -\pi \Rightarrow I = -\frac{\pi}{2}$$

108. Let
$$I = \int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x} + \sqrt{10-x}} dx$$
(i)

$$\therefore I = \int_{2}^{8} \frac{\sqrt{x}}{\sqrt{10-x} + \sqrt{x}} dx$$
(ii)

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$$
Adding (i) and (ii), we get

$$2I = \int_{2}^{8} dx = [x]_{2}^{8} = 8 - 2 = 6 \Rightarrow I = \frac{6}{2} = 3$$
109. Let $I = \int_{2016}^{2017} \frac{\sqrt{4033-x}}{\sqrt{4033-x}} dx$...(i)

$$= \int_{2017}^{2017} \frac{\sqrt{4033-x}}{\sqrt{4033-x}} dx$$
 ...(ii)

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$$
Adding (i) and (ii), we get

$$2I = \int_{2016}^{2017} dx = [x]_{2016}^{2017} = 1$$

$$\therefore I = \frac{1}{2}$$
110. Let $I = \int_{\frac{a}{4}}^{\frac{a}{4}} \frac{dx}{1 + \cos x}$ (i)

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(b + a - x) dx \right]$$

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(b + a - x) dx \right]$$

$$\therefore I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x}$$
(ii)

$$Adding (i) and (ii), we get
$$2I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x}$$
(ii)

$$\therefore I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x}$$
(ii)

$$Adding (i) and (ii), we get
$$2I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x}$$
(ii)

$$Adding (i) and (ii), we get
$$2I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \frac{2}{1 - \cos^{2} x} dx$$

$$\therefore I = \int_{\frac{a}{4}}^{\frac{3\pi}{4}} \cos^{2} x dx$$

$$= -[\cot x]_{\pi/4}^{3\pi/4} = 2$$$$$$$$

111. Let I =
$$\int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(36 - 12x + x^{2})} dx$$
(i)
∴ I = $\int_{2}^{4} \frac{\log(6 - x)^{2}}{\log(6 - x)^{2} + \log x^{2}} dx$
....(ii) $\left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$
Adding (i) and (ii), we get
 $2I = \int_{2}^{4} 1 dx = [x]_{2}^{4} = 4 - 2 = 2$
∴ I = 1
112. Let I = $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{e^{\sin x} + 1} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{e^{\sin x} (1 + e^{-\sin x})}$
∴ I = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{-\sin x}}{1 + e^{-\sin x}} dx$...(i)
Also, $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$
 $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$
 $\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(b + a - x) dx \right]$
∴ I = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$...(ii)
Also, $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$...(ii)
Also, $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$...(ii)
Also, $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{e^{\sin x} + 1} dx$...(ii)
Adding (i) and (ii), we get
 $2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx$
 $\Rightarrow 2I = [x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Rightarrow I = \frac{\pi}{2}$
113. Let $I = \int_{\sqrt{\log^{2}}}^{\sqrt{\log^{2}}} \frac{x \sin x^{2}}{\sin x^{2} + \sin(\log 6 - x^{2})} dx$
Put $x^{2} = t \Rightarrow 2x dx = dt$
 \therefore I = $\frac{1}{2} \int_{\log^{2}}^{\log^{3}} \frac{\sin t}{\sin t + \sin(\log 6 - t)} dt$...(i)

MHT-CET Triumph Maths (Hints) $\therefore \qquad I = \frac{1}{2} \int_{0}^{\log 3} \frac{\sin(\log 6 - t)}{\sin(\log 6 - t) + \sin t} dt$(ii) $\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \right]$ Adding (i) and (ii), we get $2I = \frac{1}{2} \int_{-\infty}^{\log 3} dt = \frac{1}{2} (\log 3 - \log 2) = \frac{1}{2} \log \left(\frac{3}{2}\right)$ $\Rightarrow I = \frac{1}{4} \log\left(\frac{3}{2}\right)$ 114. I = $\int_{1}^{2014} \frac{\tan^{-1} x}{x} dx$...(i) Put $x = \frac{1}{t} \implies dx = \frac{-1}{t^2} dt$:. $I = \int_{2014}^{1/2014} \frac{\tan^{-1}\left(\frac{1}{t}\right)}{\frac{1}{2}} \left(\frac{-1}{t^2}\right) dt$ $= \int_{-\infty}^{1/2014} \frac{-\cot^{-1} t}{t} dt = \int_{1/2014}^{2014} \frac{\cot^{-1} t}{t} dt$ $\therefore \qquad \mathbf{I} = \int_{-\infty}^{2014} \frac{\cot^{-1} x}{x} \, \mathrm{d}x$...(ii) Adding (i) and (ii), we get $2I = \int_{-\infty}^{2014} \frac{\tan^{-1} x + \cot^{-1} x}{x} \, dx$ $=\frac{\pi}{2}\int_{1/2014}^{2014}\frac{\mathrm{d}x}{\mathrm{r}}=\frac{\pi}{2}\left[\log x\right]_{1/2014}^{2014}$ $=\frac{\pi}{2}\left[\log 2014 - \log \frac{1}{2014}\right]$ $=\frac{\pi}{2} \times 2 \log 2014$ \Rightarrow I = $\frac{\pi}{2} \log 2014$ 115. I = $\int_{\pi/2}^{5\pi/2} \frac{e^{\tan^{-1}(\sin x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$ $= \int_{-7/2}^{0} \frac{e^{\tan^{-1}(\sin x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$

+ $\int_{0}^{5\pi/2} \frac{e^{\tan^{-1}(\sin x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$

$$\therefore \qquad I = \int_{0}^{5\pi/2} \frac{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$$

$$-\int_{0}^{\pi/2} \frac{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx \dots (i)$$

$$= \int_{0}^{5\pi/2} \frac{e^{\tan^{-1}\sin\left(\frac{5\pi}{2} - x\right)}}{e^{\tan^{-1}\sin\left(\frac{5\pi}{2} - x\right)} + e^{\tan^{-1}\cos\left(\frac{5\pi}{2} - x\right)}} dx$$

$$-\int_{0}^{\pi/2} \frac{e^{\tan^{-1}\sin\left(\frac{\pi}{2} - x\right)}}{e^{\tan^{-1}\sin\left(\frac{\pi}{2} - x\right)} + e^{\tan^{-1}\cos\left(\frac{\pi}{2} - x\right)}} dx$$

$$\therefore \qquad I = \int_{0}^{5\pi/2} \frac{e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\cos x)} + e^{\tan^{-1}(\sin x)}} dx$$

$$-\int_{0}^{\pi/2} \frac{e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\cos x)} + e^{\tan^{-1}(\sin x)}} dx \dots (i)$$

Adding (i) and (ii), we get

$$2I = \int_{0}^{5\pi/2} \frac{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$$

$$- \int_{0}^{\pi/2} \frac{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}}{e^{\tan^{-1}(\sin x)} + e^{\tan^{-1}(\cos x)}} dx$$

$$\Rightarrow 2I = \frac{5\pi}{2} - \frac{\pi}{2} = 2\pi$$

$$\Rightarrow I = \pi$$
116. Let $I = \int_{e}^{\pi} x f(x) dx$

$$= \int_{e}^{\pi} (e + \pi - x) f(e + \pi - x) dx$$

$$\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$$

$$= \int_{e}^{\pi} (e + \pi - x) f(x) dx$$

$$\dots \left[\because f(x) = f(\pi + e - x) (given) \right]$$

$$\therefore I = \int_{e}^{\pi} (e + \pi) f(x) dx - I$$

$$\Rightarrow 2I = (e + \pi) \int_{a}^{\pi} f(x) dx \Rightarrow 2I = (e + \pi) \cdot \frac{2}{e + \pi}$$

 \Rightarrow I = 1

117. Let
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+\sin\phi} d\phi$$
(i)

$$= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\pi - \phi}{1+\sin(\pi - \phi)} d\phi$$
.... $\left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx\right]$

$$\therefore I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\pi - \phi}{1+\sin\phi} d\phi$$
(ii)
Adding (i) and (ii), we get
 $2I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\pi}{1+\sin\phi} d\phi$ (ii)
 $\therefore I = \pi(\sqrt{2} - 1) = \pi \tan \frac{\pi}{8}$ 121
118. $I_{1} = \int_{a}^{\pi-a} xf(\sin x) dx$

$$= \int_{a}^{\pi-a} (\pi - x)f(\sin(\pi - x)) dx$$
.... $\left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx\right]$

$$= \int_{a}^{\pi-a} (\pi - x)f(\sin x) dx$$
.... $\left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx\right]$

$$= \int_{a}^{\pi-a} \pi f(\sin x) dx - I_{1}$$

$$\Rightarrow 2I_{1} = \pi I_{2} \Rightarrow I_{2} = \frac{2}{\pi} I_{1}$$
119. $f(x) = \frac{e^{x}}{1+e^{x}}$
 $\therefore f(a) + f(-a) = \frac{e^{a}}{1+e^{a}} + \frac{e^{-a}}{1+e^{-a}}$
 $\Rightarrow f(a) + f(-a) = \frac{e^{a}}{1+e^{a}} + \frac{1}{1+e^{a}} = 1$
Using $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$, we have

$$\begin{aligned} \text{Chapter 05: Definite Integrals} \\ I_1 &= \int_{f(-n)}^{f(n)} (1-x)g((1-x)x) dx \\ & \dots [\because f(n) + f(-n) = 1] \\ \Rightarrow I_1 &= \int_{r(-n)}^{f(n)} g((1-x)x) dx - \int_{f(-n)}^{f(n)} xg((1-x)x) dx \\ \Rightarrow I_1 &= I_2 - I_1 \Rightarrow 2I_1 = I_2 \Rightarrow \frac{I_2}{I_1} = 2 \end{aligned}$$

$$\begin{aligned} \text{PO} \quad \text{Let } f(x) &= e^{\cos^2 x} \cos^3 (2n+1)x \\ f(\pi-x) &= e^{\cos^2 x} \cos^3 (2n+1)(\pi-x)] \\ &= e^{\cos^2 x} \cos^3 (2n+1)(\pi-2n+1)x] \\ &= -e^{\cos^2 x} \cos^3 (2n+1)(\pi-2n+1)x] \\ &= -e^{\cos^2 x} \cos^3 (2n+1)x = -f(x) \end{aligned}$$

Since, $\int_{0}^{\pi} f(x) dx = 0$, if $f(2n-x) = -f(x) \\ \int_{0}^{\pi} e^{\cos^2 x} \cos^3 (2n+1)x dx = 0 \end{aligned}$
$$\begin{aligned} \text{PO} \quad \text{Let } I &= \int_{0}^{\pi} xf(\sin x) dx \qquad \dots (i) \\ I &= \int_{0}^{\pi} (\pi-x)f(\sin x) dx \qquad \dots (i) \\ \prod &= \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi} f(x) dx = 0 \end{aligned}$$

$$\begin{aligned} \text{PO} \quad \text{PO$$

MHT-CET Triumph Maths (Hints)

122.
$$I_{1} = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx$$
$$= \int_{0}^{\frac{\pi}{2}} \left[f(\sin 2x) \sin x + f\left\{ \sin 2\left(\frac{\pi}{2} - x\right) \right\} \sin\left(\frac{\pi}{2} - x\right) \right] dx$$
$$\dots \left[\because \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \left[f(x) + f(2a - x) \right] dx \right]$$
$$= \int_{0}^{\frac{\pi}{4}} \left[f(\sin 2x) \sin x + f\left\{ \sin(\pi - 2x) \right\} \cos x \right] dx$$
$$\therefore \quad I_{1} = \int_{0}^{\frac{\pi}{4}} \left[f(\sin 2x) \sin x + f(\sin 2x) \cos x \right] dx \dots (i)$$
$$I_{2} = \int_{0}^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx$$
$$= \int_{0}^{\frac{\pi}{4}} f\left[\cos 2\left(\frac{\pi}{4} - x\right) \right] \cdot \cos\left(\frac{\pi}{4} - x\right) \, dx$$
$$\dots \left[\because \int_{0}^{n} f(x) \, dx = \int_{0}^{n} f(a - x) \, dx \right]$$
$$= \int_{0}^{\frac{\pi}{4}} f\left[\sin 2x \right) \left(\frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x \right) \, dx$$
$$= \int_{0}^{\frac{\pi}{4}} f\left[\sin 2x \right) \left(\frac{1}{\sqrt{2}} \cos x + f(\sin 2x) \sin x \right] \, dx$$
$$= \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \left[f(\sin 2x) \cos x + f(\sin 2x) \sin x \right] \, dx$$
$$\therefore \quad I_{2} = \frac{1}{\sqrt{2}} I_{1} \qquad \dots [From (i)]$$
$$\therefore \quad \frac{1}{I_{2}} = \sqrt{2}$$
$$123. \quad I = \int_{0}^{100\pi} \sqrt{(1 - \cos 2x)} \, dx = \int_{0}^{100\pi} \sqrt{2 \sin^{2} x} \, dx$$
$$= \sqrt{2} \int_{0}^{100\pi} \sin x \, dx$$
$$= 100\sqrt{2} \int_{0}^{\frac{\pi}{5}} \sin x \, dx$$
$$= 100\sqrt{2} \int_{0}^{\frac{\pi}{5}} \sin x \, dx$$
$$\therefore \quad \left[\because \int_{0}^{2} f(x) \, dx = 2 \int_{0}^{n} f(x) \, dx, \quad \text{if } f(2a - x) = f(x) \right]$$

124. Let
$$f(x) = x |x|$$

 $f(-x) = -x |-x| = -x |x| = -f(x)$
∴ $f(x)$ is an odd function
∴ $\int_{-1}^{1} x|x| dx = 0$
Let $I = \int_{0}^{\frac{\pi}{2}} \left[1 + \log \left(\frac{4+3\sin x}{4+3\cos x} \right) \right] dx$...(i)
 $= \int_{0}^{\frac{\pi}{2}} \left[1 + \log \left(\frac{4+3\sin \left(\frac{\pi}{2} - x\right)}{4+3\cos \left(\frac{\pi}{2} - x\right)} \right) \right] dx$
... $\left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx \right]$
∴ $I = \int_{0}^{\frac{\pi}{2}} \left[1 + \log \left(\frac{4+3\cos x}{4+3\sin x} \right) \right] dx$...(ii)
Adding (i) and (ii), we get
 $2I = \int_{0}^{\frac{\pi}{2}} \left[1 + \log \left(\frac{4+3\sin x}{4+3\cos x} \right) + 1 + \log \left(\frac{4+3\cos x}{4+3\sin x} \right) \right] dx$
 $= \int_{0}^{\frac{\pi}{2}} \left[2 + \log \left(\frac{4+3\sin x}{4+3\cos x} \right) - \log \left(\frac{4+3\sin x}{4+3\cos x} \right) \right] dx$
 $= \int_{0}^{\frac{\pi}{2}} 2 dx = 2 \left[x \right]_{0}^{\frac{\pi}{2}}$
∴ $2I = 2 \left(\frac{\pi}{2} \right)$
∴ $I = \frac{\pi}{2}$
125. Since, $\sin^{3} x \cos^{2} x$ is an odd function.
∴ $\int_{-1}^{1} \sin^{3} x \cos^{2} x dx = 0$

126. Since,
$$\sin^{103} x \cos^{101} x$$
 is an odd function

$$\therefore \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \sin^{103} x \cos^{101} x dx = 0$$

127. Since,
$$x \cos x + \sin x$$
 is an odd function.

$$\therefore \int_{-2}^{2} (x \cos x + \sin x) dx + \int_{-2}^{2} dx = 0 + [x]_{-2}^{2} = 4$$

128. Let
$$f(x) = \log\left(\frac{9-x}{9+x}\right)$$

 $\therefore \quad f(-x) = \log\left(\frac{9-x}{9+x}\right)^{-1}$
 $= -\log\left(\frac{9-x}{9+x}\right)^{-1}$
 $= -\log\left(\frac{9-x}{9+x}\right)^{-1}$
 $= -\log\left(\frac{9-x}{9+x}\right)^{-1}$
 $= -\log\left(\frac{9-x}{9+x}\right)^{-1}$
 $\therefore \quad f(x) \text{ is an odf function.}$
 $\therefore \quad f(x) = \log\left(\frac{2-\sin x}{2+\sin x}\right)^{-1}$
 $= -\log\left(\frac{2-\sin x}{2}\right)^{-1}$
 $= 2\left[\frac{\pi}{2} x \cos \pi x dx - \frac{\pi}{2}\right]^{-1}$
 $= 2\left[\frac{\pi}{2} x \cos \pi x dx - \frac{\pi}{2}\right]^{-1}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2} + \frac{\pi}{2}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2} + \frac{\pi}{2}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2}$
 $= 2\left[\frac{\pi}{2} x - \frac{\pi}{2}\right] + \frac{\pi}{2}$

:.

...

÷

:.

...

÷

:.

Since, $e^{\cos x} \sin x$

595

MHT-CET Triumph Maths (Hints)

136. Since, $x \tan^{-1} x$ is an even function. $\therefore \int_{-1}^{1} x \tan^{-1} x \, dx = 2 \int_{0}^{1} x \tan^{-1} x \, dx$ $= \left[2\tan^{-1} x \cdot \frac{x^2}{2} \right]_{0}^{1} - 2 \int_{0}^{1} \frac{1}{1+x^2} \cdot \frac{x^2}{2} \, dx$ $= \left[x^2 \tan^{-1} x \right]_{0}^{1} - \int_{0}^{1} \frac{x^2 + 1 - 1}{1 + x^2} \, dx$ $= \left[x^2 \tan^{-1} x \right]_{0}^{1} - \left[x \right]_{0}^{1} + \left[\tan^{-1} x \right]_{0}^{1}$ $= \frac{\pi}{4} - 1 + \frac{\pi}{4} = \frac{\pi}{2} - 1$

137. Let I =
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$$
Since,
$$\frac{\sin^4 x}{\sin^4 x + \cos^4 x}$$
 is an even function.

:.
$$I = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx = 2 \left(\frac{\pi}{4}\right) = \frac{\pi}{2}$$

138. Let
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} dx$$
 ...(i)
 $I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^{-x}} dx$...(ii)
 $\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$
Adding (i) and (ii), we get

$$2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx$$

$$\Rightarrow 2I = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$

$$\dots \left[\because \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \right]$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \left(\frac{1 - \cos 2x}{2} \right) \, dx$$

$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left(\frac{\pi}{2} - 0 \right) = \frac{\pi}{4}$$

139. Let I =
$$\int_{-1}^{1} \frac{\sin x - x^2}{3 - |x|} dx$$

= $\int_{-1}^{1} \frac{\sin x}{3 - |x|} dx - \int_{-1}^{1} \frac{x^2}{3 - |x|} dx$
Since, $\frac{\sin x}{3 - |x|}$ is an odd function and $\frac{x^2}{3 - |x|}$
is an even function.
∴ I = 0 - 2 $\int_{0}^{1} \frac{x^2}{3 - |x|} dx = 2\int_{0}^{1} \frac{-x^2}{3 - |x|} dx$
140. $\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$
= $\int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx - 2\cos ax \sin bx) dx$
= $\int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx) dx - 2\int_{-\pi}^{\pi} \cos ax \sin bx dx$
= $2\int_{0}^{\pi} (\cos^2 ax + \sin^2 bx) dx - 0$
....[$\therefore \cos a x \sin bx is an odd function and$
($\cos^2 ax + \sin^2 bx$) is an even function]
= $2\int_{0}^{\pi} (\frac{1 + \cos 2ax}{2} + \frac{1 - \cos 2bx}{2}) dx$
= $\int_{0}^{\pi} (2 + \cos 2ax - \cos 2bx) dx = 2\pi$
141. Let I = $\int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}} [(x + \pi)^3 + \cos^2(x + 3\pi)] dx$
Put $x + \pi = t \Rightarrow dx = dt$
∴ I = $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [t^3 + \cos^2(2\pi + t)] dt$
= $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^3 dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t dt$
Since, t^3 is an odd function and $\cos^2 t$ is an even function.

:. $I = 0 + 2 \int_{0}^{\frac{\pi}{2}} \cos^2 t \, dt = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$

$$142. \text{ Let } I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left\{ x^{2} + \log\left(\frac{\pi + x}{\pi - x}\right) \right\} \cos x \, dx$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log\left(\frac{\pi + x}{\pi - x}\right) \cos x \, dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} x^{2} \cos x \, dx + 0$$

$$143. \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx$$

$$= 0 + 2 \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x}$$

$$= 0 + 2 \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx$$

$$= 0 + 2 \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx$$

$$= 0 + 2 \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx$$

$$= 0 + 2 \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} \, dx + \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{d$$

Chapter 05: Definite Integrals 144. p'(x) = p'(1 - x)Integrating on both sides, we get p(x) = -p(1-x) + c....(i) p(0) = -p(1-0) + c*.*.. $\Rightarrow 1 = -41 + c \Rightarrow c = 42$ p(x) + p(1 - x) = 42(ii)[From (i)] *.*.. Let I = $\int p(x) dx$ $= \int_{0}^{1} p(1-x) dx \quad \dots \quad \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx \right]$ $= \int_{0}^{1} [42 - p(x)] dx$ [From (ii)] \therefore I = 42 $\int dx - I$ $\Rightarrow 2I = 42 \Rightarrow I = 21$ 145. $A(x) = \begin{vmatrix} 1 & 2 & 3 \\ x+1 & 2x+1 & 3x+1 \end{vmatrix}$ $x^{2}+1$ $2x^{2}+1$ $3x^{2}+1$ Applying $C_2 \rightarrow C_2 - 2C_1$, $C_3 \rightarrow C_3 - 3C_1$, we get $A(x) = \begin{vmatrix} 1 & 0 & 0 \\ x+1 & -1 & -2 \\ x^2+1 & -1 & -2 \end{vmatrix} = 1(2-2) - 0 + 0 = 0$ $\therefore \qquad \int \mathbf{A}(x) \, \mathrm{d}x = 0$ 146. Let I = $\int_{0}^{\sin^2 x} \sin^{-1} \sqrt{t} \, dt + \int_{0}^{\cos^2 x} \cos^{-1} \sqrt{t} \, dt$ Putting $t = \sin^2 u$ in the first integral and $t = \cos^2 v$ in the second integral, we get $I = \int_{0}^{\pi} u \sin 2u \, du - \int_{\pi}^{\pi} v \sin 2v \, dv$ $= \int_{0}^{2} u \sin 2u \, du + \int_{\frac{\pi}{2}}^{x} u \sin 2u \, du - \int_{\frac{\pi}{2}}^{x} v \sin 2v \, dv$ $= \int_{a}^{\frac{\pi}{2}} u \sin 2u du \qquad \dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt \right]$ $= \left[\frac{-u\cos 2u}{2}\right]_{0}^{\pi/2} + \frac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos 2u\,du$ $= \left[\frac{-u\cos 2u}{2}\right]_{0}^{\pi/2} + \frac{1}{4} \left[\sin 2u\right]_{0}^{\pi/2} = \frac{\pi}{4}$

MHT-CET Triumph Maths (Hints) $= \left| a \log |x| - \frac{b}{2}x^2 - 5(a-b)x \right|^2$ 147. N = $\int_{-\infty}^{\overline{4}} \frac{\sin x \cos x}{(x+1)^2} dx = \frac{1}{2} \int_{-\infty}^{\overline{4}} \frac{\sin 2x}{(x+1)^2} dx$ $= alog 2 - 2b - 10(a - b) - alog 1 + \frac{b}{2} + 5(a - b)$ $= \frac{1}{2} \left[\sin 2x \left(-\frac{1}{x+1} \right) \right]_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}} \frac{2\cos 2x}{(x+1)} dx \right]$ $= a \log 2 - 5a + \frac{7}{2}b$ $\therefore \int_{-\infty}^{2} f(x) dx = \frac{1}{(a^2 - b^2)} \left[a \log 2 - 5a + \frac{7}{2} b \right]$ $= -\frac{2}{\pi + 4} + \int_{-\pi + 1}^{\pi} \frac{\cos 2x}{x + 1} dx = \frac{-2}{\pi + 4} + I_2$ 149. Let I = $\frac{2}{\pi} \int_{0}^{\pi} f(x) dx$ In I₂, put $2x = t \Rightarrow dx = \frac{dt}{2}$ $= \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} dx = \frac{4}{\pi} \int_{0}^{\pi} \frac{\sin\left(\frac{9x}{2}\right)}{\sin\left(\frac{x}{2}\right)} dx$ $\therefore \qquad I_2 = \int_{-\infty}^{\infty} \frac{\cos t}{t+2} dt = \int_{-\infty}^{\infty} \frac{\cos x}{x+2} dx = M$ $\therefore \qquad N = -\frac{2}{\pi + 4} + M \qquad \qquad \therefore \qquad M - N = \frac{2}{\pi + 4}$[: f(x) is an even function] Put $\frac{x}{2} = \theta \Longrightarrow dx = 2d\theta$ 148. $af(x) + bf\left(\frac{1}{r}\right) = \frac{1}{r} - 5$(i) $\therefore \qquad I = \frac{8}{\pi} \int_{-\infty}^{2} \frac{\sin 9\theta}{\sin \theta} d\theta$ Replacing x by $\frac{1}{x}$ in (i), we get $(\sin 9\theta - \sin 7\theta) + (\sin 7\theta - \sin 5\theta)$ $af\left(\frac{1}{x}\right) + bf(x) = x - 5$ (ii) $=\frac{8}{\pi}\int_{-\infty}^{2}\frac{+(\sin 5\theta - \sin 3\theta) + (\sin 3\theta - \sin \theta) + \sin \theta}{\sin \theta}d\theta$ Eliminating $f\left(\frac{1}{r}\right)$ from (i) and (ii), we get $=\frac{8}{\pi}\int_{0}^{2}(2\cos 8\theta+2\cos 6\theta+2\cos 4\theta+2\cos 2\theta+1)d\theta$ $(a^2 - b^2)f(x) = \frac{a}{x} - bx - 5a + 5b$ $=\frac{8}{\pi}\times\frac{\pi}{2}=4$ $(a^2-b^2)\int_{-\infty}^{2}f(x)dx$ *.*.. 7 **Evaluation Test** $= \int_{0}^{\overline{4}} \log \left(1 + \frac{1 - \tan t}{1 + \tan t} \right) dt = \int_{0}^{\overline{4}} \log \left(\frac{2}{1 + \tan t} \right) dt$ Let I = $\int_{-1}^{1} \frac{\log(1+x)}{1+x^2} dx$ 1. Put $x = \tan t \Rightarrow dx = \sec^2 t dt$ $= \int_{0} [\log 2 - \log(1 + \tan t)] dt$ When x = 0, t = 0 and when x = 1, $t = \frac{\pi}{4}$ $\therefore \qquad I = \int_{0}^{4} (\log 2) dt - I$ $I = \int_{-1}^{\frac{1}{4}} \frac{\log(1 + \tan t)}{1 + \tan^{2} t} \cdot \sec^{2} t \, dt = \int_{-1}^{\frac{1}{4}} \log(1 + \tan t) \, dt$ ÷ $\therefore \qquad 2I = \log 2 \left[t \right]_0^{\pi/4} = \frac{\pi}{4} \log 2$ $=\int_{1}^{4}\log\left[1+\tan\left(\frac{\pi}{4}-t\right)\right]dt$ \therefore I = $\frac{\pi}{2} \log 2$

 $\int_{0}^{3} f(x) dx = \int_{0}^{1} f(x) dx + \int_{0}^{2} f(x) dx + \int_{0}^{3} f(x) dx$ 2. $+\int_{-\infty}^{4}f(x)dx+\int_{-\infty}^{5}f(x)dx$ $= 0 + \int_{-\infty}^{2} 1^2 dx + \int_{-\infty}^{3} 2^2 dx + \int_{-\infty}^{4} 3^2 dx + \int_{-\infty}^{5} 4^2 dx$ = 1(2-1) + 4(3-2) + 9(4-3) + 16(5-4)= 1 + 4 + 9 + 16 = 30Let I = $\int_{1+2^{f(x)}}^{3} dx \qquad \dots (i)$ 3. $=\int_{1}^{3} \frac{1}{1+2^{f(3-x)}} dx$ $\dots \left| \because \int_{a}^{a} f(x) dx = \int_{a}^{a} f(a - x) dx \right|$ $=\int_{1}^{3} \frac{1}{1+2^{-f(x)}} dx$[:: f(x) + f(3 - x) = 0 (given)] :. $I = \int_{-2^{f(x)}}^{3} \frac{2^{f(x)}}{2^{f(x)} + 1} dx$ (ii) Adding (i) and (ii), we get $2I = \int_{-\infty}^{3} \frac{1}{1+2^{f(x)}} dx + \int_{-\infty}^{3} \frac{2^{f(x)}}{2^{f(x)}+1} dx$ $= \int_{-\infty}^{3} \frac{1+2^{f(x)}}{1+2^{f(x)}} dx = \int_{-\infty}^{3} 1 dx = 3$ \therefore I = $\frac{3}{2}$ Let I = $\int_{-\infty}^{\infty} \frac{x \log x}{(1+x^2)^2} dx$ 4. $= \int_{-\infty}^{\infty} \frac{x \log x}{(1+x^2)^2} dx + \int_{-\infty}^{\infty} \frac{x \log x}{(1+x^2)^2} dx$ $= I_1 + I_2$ (Say)(i) $I_2 = \int \frac{x \log x}{(1+r^2)^2} dx$ Put $x = \frac{1}{x}$ $dx = -\frac{1}{v^2} dy$ *.*..

When x = 1, y = 1 and when $x \to \infty$, $y \to 0$

Chapter 05: Definite Integrals $\therefore \qquad \mathbf{I}_2 = \int_{1}^{0} \frac{\frac{1}{y} \log\left(\frac{1}{y}\right)}{\left(1 + \frac{1}{z}\right)^2} \left(-\frac{1}{y^2}\right) \mathrm{d}y$ $= \int_{1}^{v} \frac{y \log y}{(1+y^2)^2} dy \qquad \dots \left[\because \log\left(\frac{1}{v}\right) = -\log y \right]$ $= -\int_{1}^{1} \frac{y \log y}{(1+y^2)^2} dy$ $= -\int_{1}^{1} \frac{x \log x}{(1+x^2)^2} dx$ $I_2 = -I_1$ *.*.. From (i), $I = I_1 + I_2 = 0$ $\int [x] dx$ 5. $= \int_{0}^{1} [x] dx + \int_{0}^{2} [x] dx + \int_{0}^{3} [x] dx + \dots + \int_{0}^{n} [x] dx$ $= \int_{-1}^{1} 0 \, dx + \int_{-1}^{2} 1 \, dx + \int_{-1}^{3} 2 \, dx + \ldots + \int_{-1}^{n} (n-1) \, dx$ $= 0 + [x]_{1}^{2} + 2[x]_{2}^{3} + \dots + (n-1)[x]_{n-1}^{n}$ $= (2-1) + 2(3-2) + \dots + (n-1)(n-n+1)$ $= 1 + 2(1) + \ldots + (n - 1)(1)$ $= 1 + 2 + \ldots + (n - 1)$ $=\frac{(n-1)n}{2}=\frac{n(n-1)}{2}$ 6. $I_1 = \int_{1}^{\pi/2} \frac{\sin^2 x}{\sin^2 x} dx = \frac{\pi}{2}$ $I_2 = \int_{-\pi/2}^{\pi/2} \frac{\sin^2 2x}{\sin^2 x} dx = \int_{-\pi/2}^{\pi/2} \frac{(2\sin x \cos x)^2}{\sin^2 x} dx$ $=\int_{-\pi}^{\pi/2} 4\cos^2 x \, dx = 4 \times \frac{\pi}{4} = \pi$ $I_3 = \int_{-\infty}^{\pi/2} \frac{\sin^2 3x}{\sin^2 x} dx$ $= \int_{-\infty}^{\pi/2} \frac{(3\sin x - 4\sin^3 x)^2}{\sin^2 x} dx$ $= \int_{0}^{\pi/2} (9 - 24\sin^2 x + 16\sin^4 x) dx$ $=\frac{9\pi}{2}-24.\frac{\pi}{4}+16.\frac{3.1}{4.2}.\frac{\pi}{2}=\frac{3\pi}{2}$ $I_1+I_3 = \frac{\pi}{2} + \frac{3\pi}{2} = 2\pi = 2I_2$ *.*.. I_1, I_2, I_3 are in A.P.

MHT-CET Triumph Maths (Hints)

7. Let
$$I = \int_{\alpha}^{\beta} \frac{1}{\sqrt{(x-\alpha)(\beta-x)}} dx$$

Put $x = \alpha \sin^{2} t + \beta \cos^{2} t$
 \therefore $dx = (\alpha.2 \sin t \cos t + \beta.2 \cos t (-\sin t))dt$
 $= 2 (\alpha - \beta) \sin t \cos t dt$
When $x = \alpha, \alpha = \alpha \sin^{2} t + \beta(1 - \sin^{2} t)$
 $\alpha = \beta + (\alpha - \beta) \sin^{2} t$
 \therefore $\sin t = 1, \qquad \therefore \quad t = \frac{\pi}{2}$
When $x = \beta,$
 $\beta = \alpha(1 - \cos^{2} t) + \beta \cos^{2} t$
 $= \alpha + (\beta - \alpha)\cos^{2} t$
 \therefore $\cos t = 1, t = 0$
 $(x - \alpha) (\beta - x) = (\alpha \sin^{2} t + \beta \cos^{2} t - \alpha)$
 $(\beta - \alpha \sin^{2} t - \beta \cos^{2} t)$
 $= [\beta \cos^{2} t - \alpha(1 - \sin^{2})]$
 $[\beta(1 - \cos^{2} t) - \alpha \sin^{2} t]$
 $= (\beta - \alpha) \cos^{2} t (\beta - \alpha) \sin^{2} t$
Since, $\beta > \alpha$
 $\therefore \quad \sqrt{(x - \alpha)(\beta - x)} = (\beta - \alpha) \sin t \cot t$
 $\therefore \quad I = 2 \int_{\frac{\pi}{2}}^{0} (-1)dt$
 $= 2 \int_{0}^{0} (-1)dt$
 $= 2 \int_{0}^{\frac{\pi}{2}} (-1)dt$
 $= 2 \left(\frac{\pi}{2} - 0\right)$
 $= \pi$
8. Let $h(x) = x^{3}f(x) = x^{3} \left(\frac{e^{x} + 1}{e^{x} - 1}\right)$

$$\therefore \quad h(-x) = (-x)^3 \left(\frac{e^{-x} + 1}{e^{-x} - 1}\right) = -x^3 \left(\frac{1 + e^x}{1 - e^x}\right)$$
$$= x^3 \left(\frac{e^x + 1}{e^x - 1}\right)$$

 $\therefore \quad h(-x) = h(x)$ $\therefore \quad h(x) \text{ is an even function.}$

 $\therefore \int_{-1}^{1} t^{3} f(t) dt = \int_{-1}^{1} h(t) dt = 2 \int_{0}^{1} h(t) dt$ $= 2\int_{0}^{1} t^{3} f(t) dt$ $= 2\int_{0}^{1} x^{3} f(x) dx$ = 2α $\because \int_{\alpha}^{1} x^{3} f(x) dx = \alpha$ 9. $f(m, n) = \int_{0}^{1} (\log x)^{m} x^{n-1} dx$ $= \left[(\log x)^m \int x^{n-1} dx \right]_0^1 - \int_0^1 \left\{ \frac{d}{dx} (\log x)^m \int x^{n-1} dx \right\} dx$ $= \left[(\log x)^m \cdot \frac{x^n}{n} \right]_0^1 - \int_0^1 m(\log x)^{m-1} \cdot \frac{1}{x} \cdot \frac{x^n}{n} dx$ $= 0 - 0 - \frac{m}{n} \int_{0}^{1} (\log x)^{m-1} \cdot x^{n-1} dx \dots [\because \log 1 = 0]$ $=-\frac{m}{n}f(m-1,n)$ 10. $\phi(x) = \int_{\frac{7\pi}{2}}^{x} (4\sin t + 3\cos t) dt$ $\phi'(x) = 4\sin x + 3\cos x$ *.*.. If $x \in \left[\frac{7\pi}{6}, \frac{4\pi}{3}\right]$,

then *x* is in the third quadrant.

$$\therefore$$
 sin x and cos x are both negative.

 $\therefore \quad \phi'(x) = 4 \sin x + 3\cos x < 0$

 $\therefore \quad \phi(x) \text{ is decreasing on the interval} \left[\frac{7\pi}{6}, \frac{4\pi}{3}\right]$

$$\therefore \qquad \text{Minimum (least) value of } \phi(x) \text{ on } \left[\frac{7\pi}{6}, \frac{4\pi}{3}\right]$$

is
$$\phi\left(\frac{4\pi}{3}\right) = \int_{7\pi/6}^{4\pi/3} (4\sin t + 3\cos t)dt$$

= $\left[-4\cos t + 3\sin t\right]_{7\pi/6}^{4\pi/3}$

$$= -4\left(\cos\frac{4\pi}{3} - \cos\frac{7\pi}{6}\right) + 3\left(\sin\frac{4\pi}{3} - \sin\frac{7\pi}{6}\right)$$
$$= -4\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right) + 3\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}\right)$$
$$= \frac{7\left(1 - \sqrt{3}\right)}{2}$$

Let I = $\int f(x) dx$ 11. Put x = (b - a)t + a*.*.. dx = (b - a)dtWhen x = a, t = 0 and when x = b, t = 1 $I = \int_{a}^{b} f[(b-a)t + a](b-a)dt$ ÷. $= (b-a)\int f[(b-a)t+a]dt$ $= (b-a)\int f[(b-a)x+a]dx$ $\lambda = b - a$ *.*.. If $0 \le x \le 1$, then $0 \le x^2 \le 1$, $\therefore [x^2] = 0$ 12 If $1 \le x < \sqrt{2}$, then $1 \le x^2 < 2$, $\therefore [x^2] = 1$ If $\sqrt{2} \le x \le 1.5$, then $2 \le x^2 \le 2.25$, $\therefore [x^2] = 2$ $\therefore \qquad \int_{0}^{1.5} \left[x^{2} \right] dx = \int_{0}^{1} \left[x^{2} \right] dx + \int_{0}^{\sqrt{2}} \left[x^{2} \right] dx + \int_{0}^{1.5} \left[x^{2} \right] dx$ $= \int_{-\infty}^{1} 0 \, dx + \int_{-\infty}^{\sqrt{2}} 1 \, dx + \int_{-\infty}^{1.5} 2 \, dx$ $= 0 + [x]_{5}^{\sqrt{2}} + [2x]_{5}^{1.5}$ $=\sqrt{2} - 1 + 2(1.5 - \sqrt{2})$ $=\sqrt{2} - 1 + 3 - 2\sqrt{2}$ $= 2 - \sqrt{2}$ 13. $f\left(\frac{1}{r}\right) + x^2 f(x) = 0$(given) \therefore f(x) = $-\frac{1}{r^2}$ f $\left(\frac{1}{r}\right)$ Let I = $\int_{0}^{\sec\theta} f(x) dx = \int_{0}^{\sec\theta} -\frac{1}{x^2} f\left(\frac{1}{x}\right) dx$ Put $\frac{1}{r} = t$, $\therefore -\frac{1}{r^2} dx = dt$ When $x = \cos \theta$, $t = \sec \theta$ and when $x = \sec \theta$, $t = \cos \theta$ $I = \int_{0}^{\cos\theta} f(t)dt = -\int_{0}^{\sec\theta} f(t)dt = -\int_{0}^{\sec\theta} f(x)dx = -I$ *.*... $\mathbf{I} + \mathbf{I} = \mathbf{0}$ *.*.. 2I = 0*.*.. *.*.. I = 0

Chapter 05: Definite Integrals 14. $\lim_{n \to \infty} \frac{1}{n} \left| 1 + \sqrt{\frac{n}{n+1}} + \sqrt{\frac{n}{n+2}} \right|$ $+\sqrt{\frac{n}{n+3}}+...+\sqrt{\frac{n}{n+3(n-1)}}$ $= \lim_{n \to \infty} \frac{1}{n} \left| \frac{1}{\sqrt{1 + \frac{0}{n}}} + \frac{1}{\sqrt{1 + \frac{1}{n}}} + \frac{1}{\sqrt{1 + \frac{2}{n}}} + \dots + \sqrt{\frac{1}{1 + \frac{3(n-1)}{n}}} \right|$ $= \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{s(n-1)} \frac{1}{\sqrt{1+\frac{r}{n}}}$ $=\int_{0}^{3}\frac{1}{\sqrt{1+x}}dx$ $=\left\lceil 2\sqrt{1+x}\right\rceil^{3}$ $= 2\left(\sqrt{1+3} - \sqrt{1+0}\right)$ = 2(2 - 1) = 2(1) = 215. $\lim_{n \to \infty} \sum_{r=1}^{4n} \frac{\sqrt{n}}{\sqrt{r} \left(3\sqrt{r} + 4\sqrt{n}\right)^2}$ $= \lim_{n \to \infty} \sum_{r=1}^{4n} \frac{1}{n} \cdot \frac{1}{\sqrt{\frac{r}{n}}} \cdot \frac{1}{\left(3\sqrt{r} + 4\sqrt{n}\right)^2}$ $= \lim_{n \to \infty} \sum_{r=1}^{4n} \frac{1}{n} \cdot \frac{1}{\sqrt{\frac{r}{n}}} \cdot \frac{1}{\left(3\sqrt{\frac{r}{n}} + 4\right)^2}$ $= \int_{0}^{1} \frac{1}{\sqrt{x} \left(3\sqrt{x}+4\right)^2} dx$ Put $3\sqrt{x} + 4 = t$ \therefore 3. $\frac{1}{2\sqrt{x}}$ dx = dt $\therefore \qquad \frac{1}{\sqrt{r}} dx = \frac{2}{3} dt$ When x = 0, t = 4 and when x = 4, t = 10:. $I = \int_{-\infty}^{10} \frac{1}{t^2} \cdot \frac{2}{3} dt = -\frac{2}{3} \left[\frac{1}{t} \right]_{-\infty}^{10}$ $=-\frac{2}{3}\left(\frac{1}{10}-\frac{1}{4}\right)=-\frac{2}{3}\left(\frac{2-5}{20}\right)$ $=-\frac{2}{3}\left(-\frac{3}{20}\right)=\frac{1}{10}$

MHT-CET Triumph Maths (Hints) $f'(x) = f(x) \Rightarrow \frac{f'(x)}{f(x)} = 1$ 16. Integrating on both sides, we get $\log f(x) = x + \log c \Longrightarrow f(x) = ce^{x}$ $f(0) = c \implies c = 1$ *.*.. $f(x) = e^x$ *.*.. Now, $f(x) + g(x) = x^2$ $\Rightarrow g(x) = x^2 - e^x$ $\int_{0}^{1} f(x)g(x)dx = \int_{0}^{1} e^{x}(x^{2} - e^{x})dx$:. $= \int_{0}^{1} x^{2} e^{x} - \int_{0}^{1} e^{2x} dx$ $= \left[x^{2}e^{x} - 2xe^{x} + 2e^{x} - \frac{e^{2x}}{2} \right]_{0}^{1}$ $= e - \frac{1}{2}e^2 - \frac{3}{2}$ 17. Let I = $\int_{0}^{100\pi} (|\sin^3 x| + |\cos^3 x|) dx$ $= \int_{0}^{200\times\frac{\pi}{2}} (|\sin^3 x| + |\cos^3 x|) dx$ $= 200 \int (|\sin^3 x| + |\cos^3 x|) dx$ $\dots \left[\begin{array}{c} \because |\sin^3 x| + |\cos^3 x| \text{ is a periodic} \\ \text{function with period} \frac{\pi}{2} \end{array} \right]$ I = $200\int_{0}^{2} (\sin^3 x + \cos^3 x) dx$ *.*.. $= 200 \left[\int_{0}^{\frac{\pi}{2}} \sin^3 x \, dx + \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \right]$ $= 200[I_1 + I_2] (Say)$ (i) Where $I_1 = \int \sin^3 x \, dx$ $=-\int_{0}^{\infty}(1-\cos^{2}x)(-\sin x)\,\mathrm{d}x$ Put $\cos x = t$, $\therefore -\sin x \, dx = dt$ When x = 0, $t = \cos 0 = 1$ and when $x = \frac{\pi}{2}$, $t = \cos \frac{\pi}{2} = 0$

$$\begin{array}{ll} \therefore & I_{1} = -\int_{1}^{0} (1-t^{2}) dt \\ &= \int_{0}^{1} (1-t^{2}) dt \\ &= \left[t - \frac{t^{3}}{3} \right]_{0}^{1} = 1 - \frac{1}{3} = \frac{2}{3} \\ &I_{2} = \int_{0}^{\frac{\pi}{2}} \cos^{3} x \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{3} \left(\frac{\pi}{2} - x \right) dx \\ &= \int_{0}^{\frac{\pi}{2}} \sin^{3} x \, dx = I_{1} = \frac{2}{3} \\ \therefore & \text{From (i)}, \\ I = 200 \left(\frac{2}{3} + \frac{2}{3} \right) = \frac{800}{3} \\ 18. & I_{1} = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} dx \\ &= \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 - \sin x \cos x} dx \\ &\dots \left[\because \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} f\left(\frac{\pi}{2} - x \right) dx \right] \\ &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 - \sin x \cos x} dx = -I_{1} \\ \therefore & 2I_{1} = 0 \Rightarrow I_{1} = 0 \\ \therefore & I_{2} = \int_{0}^{2\pi} \cos^{6} x \, dx \\ &= 2 \int_{0}^{\pi} \cos^{6} x \, dx \\ &\dots \left[\because \cos^{6} x \text{ is a periodic } f^{n} \text{ with period } \pi \right] \\ &= 2 \int_{0}^{\frac{\pi}{2}} (\cos^{6} x \, dx \\ &\dots \left[\because \int_{0}^{2\pi} f(x) \, dx = \int_{0}^{\pi} [f(x) + f(2a - x)] dx \right] \\ &= 2.2 \int_{0}^{\frac{\pi}{2}} \cos^{6} x \, dx \\ &= 4 \cdot \frac{(6 - 1)(6 - 3)(6 - 5)}{6(6 - 2)(6 - 4)} \cdot \frac{\pi}{2} = \frac{5\pi}{8} \end{array}$$

$$\therefore I_{2} \neq 0$$

$$I_{3} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{3} x \, dx = 0$$

$$\dots [\because \sin^{3} x \text{ is an odd function}]$$

$$I_{4} = \int_{0}^{1} \log\left(\frac{1-x}{x}\right) dx$$

$$= \int_{0}^{1} \log\left(\frac{1-1+x}{1-x}\right) dx$$

$$\dots \left[\because \int_{0}^{n} f(x) \, dx = \int_{0}^{n} f(a-x) \, dx\right]$$

$$= \int_{0}^{1} \log\left(\frac{x}{1-x}\right) dx$$

$$\dots \left[\because \int_{0}^{n} f(x) \, dx = \int_{0}^{n} f(a-x) \, dx\right]$$

$$= \int_{0}^{1} \log\left(\frac{1-x}{x}\right) dx$$

$$\therefore I_{4} = -I_{4}$$

$$\therefore I_{4} = 0$$

$$\therefore I_{4} = 0$$

$$\therefore I_{4} = 0$$

$$19. \text{ Let } I = \int_{0}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$= 2\pi \int_{0}^{2\pi} \frac{(2\pi - x) \sin^{2n} (2\pi - x)}{\sin^{2n} (2\pi - x) + \cos^{2n} (2\pi - x)} \, dx$$

$$= 2\pi \int_{0}^{2\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx - I$$

$$\therefore I = \pi \times 2 \int_{0}^{\pi} \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{\sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{\sin^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x} \, dx$$

$$\left(\because \frac{1}{3\pi x^{2n} x + \cos^{2n} x^{2n} x + \cos^{2n} x^{2n} x^{$$

$$20. \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \left\{ a | \sin x | + \frac{b \sin x}{1 + \cos x} + c \right\} dx = 0$$

i.e., $I_1 + I_2 + I_3 = 0$
$$I_1 = a \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} | \sin x | dx$$
$$= a \left[\int_{\frac{-\pi}{4}}^{0} (-\sin x) dx + \int_{0}^{\frac{\pi}{4}} \sin x dx \right]$$
$$= a \left[\left[\cos x \right]_{-\pi/4}^{0} - \left[\cos x \right]_{0}^{\pi/4} \right]$$
$$= a \left[\left[\cos x \right]_{-\pi/4}^{0} - \left[\cos x \right]_{0}^{\pi/4} \right]$$
$$= a \left[\left[\cos x \right]_{-\pi/4}^{0} - \left[\cos x \right]_{0}^{\pi/4} \right]$$
$$= a \left[\left[- b \log | 1 + \cos x | \right]_{-\pi/4}^{\pi/4}$$
$$= 0 \qquad \dots \left[\because \cos \left(-\frac{\pi}{4} \right) = \cos \frac{\pi}{4} \right]$$
$$I_3 = c \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} 1 dx = c \left[\frac{\pi}{4} + \frac{\pi}{4} \right] = \frac{c\pi}{2}$$
$$\therefore \quad I_1 + I_2 + I_3 = 0 \text{ becomes}$$
$$a \left(2 - \sqrt{2} \right) + \frac{c\pi}{2} = 0 \qquad \dots \left[\because I_2 = 0 \right]$$
$$\therefore \quad \text{The given equation is a relation between a and c.$$
$$21. \quad \text{Let } I = \int_{0}^{\sqrt{\log \left[\frac{\pi}{2}\right]}} \cos \left(e^{x^2} \right) \cdot 2xe^{x^2} dx$$
$$Put \ e^{x^2} = t \Rightarrow 2xe^{x^2} dx = dt$$
$$When x = 0, \ t = e^0 = 1$$
$$When x = \sqrt{\log \frac{\pi}{2}}, \ t = e^{\log \pi/2} = \frac{\pi}{2}$$
$$\therefore \quad I = \int_{1}^{\frac{\pi}{2}} \cos tdt = \left[\sin t \right]_{1}^{\pi/2}$$

 $=\sin\frac{\pi}{2}-\sin 1=1-\sin 1$

603

MHT-CET Triumph Maths (Hints) $f(x) = \int \sin^6 t dt$ 22. $f(x + \pi) = \int_{0}^{x + \pi} \sin^{6} t dt = \int_{0}^{\pi} \sin^{6} t dt + \int_{0}^{x + \pi} \sin^{6} t dt$:. $= f(\pi) + \int \sin^6(u+\pi) du$, where $t = u + \pi$ $= f(\pi) + \int \sin^6 u \, du$ $= f(\pi) + \int \sin^6 t dt = f(\pi) + f(x)$ $f(\pi + x) = f(\pi) + f(x)$ *.*.. Let $f(x) = ax^2 + bx + c$ 23. f'(x) = 2ax + b*.*.. f''(x) = 2af(0) = c = 3f'(0) = b = -7f''(0) = 2a = 8a = 4 *.*.. $f(x) = 4x^2 - 7x + 3$ *.*.. $\int_{-1}^{2} f(x) dx = \int_{-1}^{2} (4x^{2} - 7x + 3) dx$ $=\left[\frac{4x^{3}}{3}-\frac{7x^{2}}{2}+3x\right]^{2}$ $=\frac{32}{3}-14+6-\left(\frac{4}{3}-\frac{7}{2}+3\right)$ $=\frac{32-42+18}{3}-\left(\frac{8-21+18}{6}\right)$ $=\frac{8}{3}-\frac{5}{6}=\frac{16-5}{6}=\frac{11}{6}$ 24. $\int_{-\pi}^{1} f(x) dx = \frac{2A}{\pi}$ $\Rightarrow \int \left[A \sin\left(\frac{\pi x}{2}\right) + B \right] dx = \frac{2A}{\pi}$ $\Rightarrow \left[-\frac{2A}{\pi} \cos\left(\frac{\pi x}{2}\right) + Bx \right]_{1}^{1} = \frac{2A}{\pi}$ $\Rightarrow \frac{2A}{\pi} + B = \frac{2A}{\pi} \Rightarrow B = 0$ Now, $f(x) = A \sin\left(\frac{\pi x}{2}\right) + B$ \Rightarrow f'(x) = A cos $\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}$

$$\Rightarrow f'\left(\frac{1}{2}\right) = \frac{\pi A}{2} \cdot \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sqrt{2} = \frac{\pi A}{2\sqrt{2}} \Rightarrow A = \frac{4}{\pi}$$
25.
$$f(x) = \begin{vmatrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4\sin x & 3 & 4\sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix}$$

$$= \begin{vmatrix} \sin x & \sin 2x & \sin 3x \\ 0 & 3 & 4\sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix} (C_1 \rightarrow C_1 - C_2 - C_3)$$

$$= \sin x (3 - 4 \sin^2 x) = 3\sin x - 4 \sin^3 x = \sin 3x$$

$$\therefore \quad \int_0^{\frac{\pi}{2}} f(x) dx = \int_0^{\frac{\pi}{2}} \sin 3x dx$$

$$= -\frac{1}{3} [\cos 3x]_0^{\pi/2}$$

$$= -\frac{1}{3} [\cos 3x]_0^{\pi/2}$$

$$= -\frac{1}{3} [\cos 3x] + 3 \cos 2x + 3 \sin 2x - 2\cos 2x + 3\cos 2x + 3\cos$$

$$-5 \le a \le 4$$

The positive integer values of a satisfying the above inequality are 1, 2, 3, 4.

 \therefore There are 4 such values.

27. Since, $-1 \le \sin x \le 1 \Longrightarrow -2 \le 2 \sin x \le 2$ $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} [2\sin x] dx = \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} [2\sin x] dx + \int_{\frac{5\pi}{6}}^{\pi} [2\sin x] dx$ $+ \int_{\pi}^{\frac{7\pi}{6}} [2\sin x] dx + \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} [2\sin x] dx$ $= \int_{\frac{\pi}{2}}^{\frac{5\pi}{6}} (1)dx + \int_{\frac{5\pi}{6}}^{\pi} (0)dx + \int_{\pi}^{\frac{7\pi}{6}} (-1)dx + \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} (-2)dx$ $= \left(\frac{5\pi}{6} - \frac{\pi}{2}\right) + 0 - \left(\frac{7\pi}{6} - \pi\right) - 2\left(\frac{3\pi}{2} - \frac{7\pi}{6}\right)$ $=\frac{2\pi}{6}-\frac{\pi}{6}-\frac{4\pi}{6}=-\frac{\pi}{2}$

28. Applying R₁ → R₁ - sec x R₃, we get

$$f(x) = \begin{vmatrix} 0 & 0 & \sec^{2} x + \cot x \csc x - \cos x \\ 1 & \cos^{2} x & \cos^{2} x \end{vmatrix}$$

$$= (\sec^{2} x + \cot x \csc x - \cos x) (\cos^{4} x - \cos^{2} x) \\ = (\sec^{2} x + \cot x \csc x - \cos x) (-\cos^{2} x \sin^{2} x) \\ = -\sin^{2} x - \cos^{3} x + \cos^{3} x \sin^{2} x \\ = -\sin^{2} x - \cos^{3} x (1 - \sin^{2} x) \\ = -\sin^{2} x - \cos^{5} x \\ \therefore \quad \int_{0}^{\frac{\pi}{2}} f(x) dx = -\int_{0}^{\frac{\pi}{2}} (\sin^{2} x + \cos^{5} x) dx \\ = -\left(\frac{1}{2} \times \frac{\pi}{2} + \frac{4.2}{5.3.1}\right) = -\frac{\pi}{4} - \frac{8}{15} \\ 29. \quad \frac{1}{\sqrt{a}} \left[\frac{3}{2} \sqrt{x} + 1 - \frac{1}{\sqrt{x}}\right] dx < 4 \\ \therefore \quad \frac{1}{\sqrt{a}} \left[\frac{3}{2} \cdot \frac{x^{3/2}}{\frac{3}{2}} + x - 2\sqrt{x}\right]_{1}^{a} < 4 \\ \therefore \quad \frac{1}{\sqrt{a}} \left[a\sqrt{a} - 1 + a - 1 - 2\sqrt{a} + 2\right] < 4 \\ \therefore \quad a + \sqrt{a} - 2 < 4 \\ \therefore \quad a + \sqrt{a} - 6 < 0 \\ \therefore \quad (\sqrt{a} + 3)(\sqrt{a} - 2) < 0 \\ \therefore \quad -3 < \sqrt{a} < 2 \\ But \sqrt{a} cannot be negative and according to the problem, a ≠ 0 \\ \therefore \quad 0 < \sqrt{a} < 2 \end{cases}$$

0 < a < 4

...

30. Let
$$I = \int_{1}^{4} \frac{3e^{\sin x^{3}}}{x} dx = \int_{1}^{4} \frac{3x^{2}e^{\sin x^{3}}}{x^{3}} dx$$

Put $x^{3} = t \Rightarrow 3x^{2}dx = dt$
 $\therefore I = \int_{1}^{64} \frac{e^{\sin x}}{t} dt$
 $= [f(x)]_{1}^{64} \qquad \dots \left[\because \frac{d}{dx}[f(x)] = \frac{e^{\sin x}}{x}\right]$
 $= f(64) - f(1)$
 $\therefore k = 64$

Textbook Chapter No.

06

Applications of Definite Integral

		Hints
	Classical Thinking	
1.	Required area = $\int_{1}^{4} x^3 dx = \left[\frac{x^4}{4}\right]_{1}^{4} = \frac{255}{4}$ sq. units	5
2.	Required area = $\int_{1}^{4} y dx = c \int_{1}^{4} \frac{1}{x} dx$ = 2c log 2 sq. units.	
3.	Required area = $\int_{0}^{4} \sqrt{3x+4} dx$	
	$= \left[\frac{(3x+4)^{\frac{3}{2}}}{3\left(\frac{3}{2}\right)^{\frac{3}{2}}}\right]_{0}^{4}$ $= \frac{2}{9} \times 56 = \frac{112}{9} \text{ sq.units}$	
4.	Required area = $\int_{2}^{4} \left(1 + \frac{8}{x^{2}}\right) dx = \left[x - \frac{8}{x}\right]_{2}^{4}$ = $(4 - 2) - (2 - 4)$ = $2 + 2 = 4$)
5.	Required area = $\int_{1}^{2} y dx = \int_{1}^{2} \log x dx$	
	$= [x \log x - x]_{1}^{2}$ $= 2\log 2 - 1$ $= (\log 4 - 1) \text{ sq. units}$	
6.	$X' \longleftarrow O \qquad \qquad$	
	Ŷ'	

Required area = $\int_{0}^{\pi/2} \sin x \, dx$ $= [-\cos x]_{0}^{\pi/2}$ $=-\left(\cos\frac{\pi}{2}-\cos\theta\right)$ = 1 sq. unit Required area = $\int_{-\infty}^{2} (4x - x^2) dx$ 7. $=\left[2x^2-\frac{x^3}{3}\right]^2$ $= 8 - \frac{8}{3}$ $=\frac{16}{3}$ Required area = $\int_{0}^{2} (2x + \sin x) dx$ 8. $= \left[x^2 - \cos x \right]_{2}^{\frac{\pi}{2}}$ $=\left(\frac{\pi^2}{4}-\cos\frac{\pi}{2}\right)-(0-\cos 0)$ $=\frac{\pi^2}{4}-0-(0-1)$ $=\frac{\pi^2}{4}+1$ Required area = $\int_{a}^{a} y \, dx = \int_{a}^{a} x e^{x^2} \, dx$ 9. Put $x^2 = t \Longrightarrow x dx = \frac{dt}{2}$ \therefore required area = $\frac{1}{2} \int_{0}^{a^2} e^t dt$ $=\frac{1}{2}\left[e^{t}\right]_{0}^{a^{2}}$

 $=\frac{e^{a^2}-1}{2}$ sq.units

MHT-CET Triumph Maths (Hints) 8. For Y-axis, x = 0 $y^2 - y = 0$ *.*.. $\Rightarrow y(y-1) = 0$ $\Rightarrow y = 0 \text{ or } y = 1$ required area = $\int_{0}^{1} (y^2 - y) dy = \left[\frac{y^3}{3} - \frac{y^2}{2}\right]_{0}^{1}$ *.*.. $=\frac{1}{3}-\frac{1}{2}=\left|\frac{-1}{6}\right|=\frac{1}{6}$ sq. units For X-axis, y = 09. $4x - x^2 = 0$ *.*.. $\Rightarrow x(4-x) = 0 \Rightarrow x = 0, 4$ Required area = $\int_{a}^{4} (4x - x^2) dx$ $=\left[2x^2-\frac{x^3}{3}\right]^4$ $=32-\frac{64}{3}=\frac{32}{3}$ sq. units According to the given condition, 10. $f(x) dx = (b-1)\sin(3b+4)$ Differentiating w.r.t.b, we get $f(b).1 = 3(b-1)\cos(3b+4) + \sin(3b+4)$ $f(x) = 3(x - 1)\cos(3x + 4) + \sin(3x + 4)$ *.*.. 11. $y^2(2a-x) =$ x = 2a►X \overline{O}

 $Y' = \int_{0}^{2a} y \, dx = \int_{0}^{2a} \sqrt{\frac{x^3}{2a - x}} \, dx$ Put $x = 2a \sin^2 \theta$ $\Rightarrow dx = 4a \sin\theta \cos\theta \, d\theta$ required area $= \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{8a^3 \sin^6 \theta}{\sqrt{2a - 2a \sin^2 \theta}}} \, d\theta$ $= \int_{0}^{\frac{\pi}{2}} \frac{2a \sin^3 \theta \cdot 4a \sin \theta \cos \theta}{\cos \theta} \, d\theta$ $= 8a^2 \int_{0}^{\frac{\pi}{2}} \sin^4 \theta \, d\theta = 8a^2 \cdot \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2} = \frac{3\pi a^2}{2}$

Since, the curve is symmetrical about X-axis.

$$\therefore \quad \text{Required area} = 2\int_{1}^{7} y \, dx$$
$$= 2\int_{1}^{4} \sqrt{2}x^{\frac{1}{2}} \, dx = \frac{28\sqrt{2}}{3} \text{ sq. units}$$

2

Since, the curve is symmetrical about X-axis.

$$\therefore \qquad \text{Required area} = 2 \int_{0}^{\infty} y \, dx$$

Y

$$= 2 \int_{0}^{2} \sqrt{8x} \, dx = 4 \sqrt{2} \int_{0}^{2} \sqrt{x} \, dx$$
$$= 4 \sqrt{2} \left[\frac{x^{3/2}}{\frac{3}{2}} \right]_{0}^{2} = \frac{8\sqrt{2}}{3} \left(2\sqrt{2} \right)$$
$$= \frac{32}{3} \text{ sq. units}$$

14.

Required area =
$$2\int_{0}^{a} y \, dx = 2\int_{0}^{a} \sqrt{4ax} \, dx$$

= $2 \times 2 \sqrt{a} \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{a}$
= $\frac{8}{3} a^{2}$ sq. units

...

Required area = 4(area of the region OABO)

Chapter 06: Applications of Definite Integral Required area = $A_1 + A_2 + A_3 + A_4$ $= 4 A_1$ $= 4 \int_{0}^{\pi/2} \cos x \, \mathrm{d}x$ $=4[\sin x]_{0}^{\pi/2} = 4(\sin \frac{\pi}{2} - \sin 0)$ =4(1-0)= 4 19. $\frac{3\pi}{2}$ 2π ×X X′ ◄ 0 $\pi/2$ $v = \sin x$ Required area = $4 \int_{1}^{\pi/2} y \, dx$ $=4\int_{0}^{2}\sin x\,dx$ $= 4[-\cos x]_0^{\pi/2}$ $=-4\left(\cos\frac{\pi}{2}-\cos 0\right)$ = 4 sq. units 20. x = 1 $x^2 + y^2 = 4$ <u>(2, 0)</u>→X 0 Area of smaller part = $2\int_{-\infty}^{2} \sqrt{4-x^2} dx$ $=2\left[\frac{x}{2}\sqrt{4-x^{2}}+2\sin^{-1}\frac{x}{2}\right]^{2}$ $= 2\left[2.\frac{\pi}{2} - \left(\frac{\sqrt{3}}{2} + 2.\frac{\pi}{6}\right)\right]$ $=\frac{4\pi}{3}-\sqrt{3}$

Since, the curve is symmetrical about Y-axis as well as X-axis.

 \therefore the area of the given ellipse

$$= 4(\text{area of OABO}) = 4 \int_{0}^{\pi} y \, dx$$
$$= 4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} \, dx$$
$$= \frac{4b}{a} \int_{0}^{\frac{\pi}{2}} a \cos \theta . a \cos \theta \, d\theta \qquad \dots [\text{Put } x = a \sin \theta]$$
$$= 4ab \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\theta}{2}\right) \, d\theta$$
$$= 2ab \left[\left[\theta\right]_{0}^{\pi/2} + \left[\frac{\sin 2\theta}{2}\right]_{0}^{\pi/2} \right] = \pi ab \text{ sq. units}$$

22.
$$16x^2 + 9y^2 = 144 \Rightarrow \frac{x^2}{9} + \frac{y^2}{16} = 1$$

Area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab sq. units
Here, $a = 3, b = 4$

$$\therefore \qquad \text{Required area} = \pi ab = \pi (3) (4) = 12 \pi$$

23. Required area =
$$\int_{-1}^{1} x |x| dx$$

= $\left| \int_{-1}^{0} -x^2 dx \right| + \int_{0}^{1} x^2 dx$
= $\left| \frac{-1}{3} \right| + \frac{1}{3} = \frac{2}{3}$

Required area = $\begin{vmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ -1 \end{vmatrix} y \, dx + \int_{-\frac{2}{3}}^{1} y \, dx$ = $\begin{vmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ -1 \end{vmatrix} (3x+2) \, dx + \int_{-\frac{2}{3}}^{1} (3x+2) \, dx$ = $\left| \left[\frac{3x^2}{2} + 2x \right]_{-1}^{-\frac{2}{3}} \right| + \left[\frac{3x^2}{2} + 2x \right]_{-\frac{2}{3}}^{1}$

$$=\frac{1}{6}+\frac{25}{6}=\frac{13}{3}$$
 sq. units.

25.

Required area =
$$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx$$
$$= \frac{1}{\sqrt{3}} \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{3}} + \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$
$$= \frac{\sqrt{3}}{2} + \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} \right] = \frac{\pi}{3}$$

26.

Required area = $\int_{0}^{2} [(2+x) - (2-x)] dx$ $= \left[x^{2} \right]_{0}^{2}$ = 4 sq. units

- 28. The curves y = x and $y = x + \sin x$ intersect at (0, 0) and (π, π) .
- ∴ required area
 - $= \int_{0}^{\pi} (x + \sin x) \, dx \int_{0}^{\pi} x \, dx = \int_{0}^{\pi} \sin x \, dx$ $= [-\cos x]_{0}^{\pi} = -\cos \pi + \cos 0$ = -(-1) + 1 = 2
- 29. The two curves intersect at (0, 0) and (1, 1).

30.

31.

According to the given condition,

$$\int_{0}^{\frac{1}{a}} \left(\sqrt{\frac{x}{a}} - ax^{2} \right) dx = 1$$

$$\Rightarrow \left[\frac{2}{3\sqrt{a}} x^{3/2} - \frac{ax^{3}}{3} \right]_{0}^{1/a} = 1$$

$$\Rightarrow \frac{2}{3\sqrt{a}} \times \frac{1}{a^{3/2}} - \frac{a}{3} \times \frac{1}{a^{3}} = 1$$

$$\Rightarrow \frac{2}{3a^{2}} - \frac{1}{3a^{2}} = 1 \Rightarrow \frac{1}{3a^{2}} = 1$$

$$\Rightarrow a = \frac{1}{\sqrt{3}} \qquad \dots [\because a > 0]$$

MHT-CET Triumph Maths (Hints)

32. The area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16ab}{3}$ sq. units. Given parabolas are $y^2 = \frac{9}{4}x$ and $x^2 = \frac{16}{3}y$ Here, $a = \frac{9}{16}$, $b = \frac{4}{3}$ \therefore Required area $= \frac{16}{3} \times \frac{9}{16} \times \frac{4}{3}$ = 4 sq. units 33. $y = 2x^2$

34. The two curves intersect at (2, 1) and (-2, 1).

Required area =
$$2\int_{0}^{2} \left(\frac{6-x^{2}}{2} - \frac{x^{2}}{4}\right) dx$$

= $2\int_{0}^{2} \left(3 - \frac{3x^{2}}{4}\right) dx = 6\left[x - \frac{x^{3}}{12}\right]_{0}^{2}$
= $6\left(2 - \frac{8}{12}\right) = 6 \times \frac{16}{12}$
= 8 sq. units

- 35. The area of the region bounded by the parabola $y^2 = 4ax$ and the line y = mx is $\frac{8a^2}{3m^3}$ sq.units.
- 36. The area bounded by $x^2 = 4ay$ and the line y = mx is $\frac{8a^2m^3}{3}$. Given, $x^2 = 2y \Rightarrow x^2 = 4\left(\frac{1}{2}\right)y$ and y = 3x

Here, $a = \frac{1}{2}$ and m = 3

- $\therefore \qquad \text{Required area} = \frac{8}{3} \times \frac{1}{4} \times 3 \times 3 \times 3 = 18 \text{ sq. units}$
- 37. Given curves are $y = x^2$ and y = x. On solving, we get x = 0, x = 1

$$\therefore$$
 Required area = $\int_{0}^{0} (x - x^2) dx$

$$= \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1$$
$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

38.
$$y^2 = x$$
 and $2y = x$
 $\therefore \qquad \left(\frac{x}{2}\right)^2 = x \implies x^2 = 4x \implies x = 0, 4$

$$\therefore \quad \text{Required area} = \int_{0}^{4} \left(\sqrt{x} - \frac{x}{2} \right) dx$$
$$= \left[\frac{2x^{3/2}}{3} - \frac{x^{2}}{4} \right]_{0}^{4}$$
$$= \frac{4}{3} \text{ sq. units}$$

39. Given curves are $y = x^3$ and $y = \sqrt{x}$. On solving, we get x = 0, x = 1

$$\therefore \quad \text{Required area} = \int_{0}^{1} \left(\sqrt{x} - x^{3} \right) dx$$
$$= \left[\frac{2x^{\frac{3}{2}}}{3} - \frac{x^{4}}{4} \right]_{0}^{1}$$

 $=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$

Required area $= \int_{-\infty}^{\infty} \frac{1}{4} (x+2) \, \mathrm{d}x - \int_{-\infty}^{\infty} \frac{1}{4} x^2 \, \mathrm{d}x$ $=\frac{1}{4}\left[\frac{x^2}{2}+2x\right]^2$, $-\frac{1}{4}\left[\frac{x^3}{3}\right]^2$, $=\frac{9}{8}$ sq. units The two curves $y^2 = 4ax$ and y = mx intersect at (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$. According to the given condition, $\int_{0}^{\frac{4a}{m^{2}}} (\sqrt{4a x} - mx) \, dx = \frac{a^{2}}{2}$ $\Rightarrow \frac{8}{3} \cdot \frac{a^2}{m^3} = \frac{a^2}{3} \Rightarrow m^3 = 8 \Rightarrow m = 2$ $y = e^{i}$ X' • ►X 0 $\dot{x=1}$ Required area = $\int (e^x - e^{-x}) dx$ $= \left[e^x + e^{-x} \right]_0^1 = e + \frac{1}{2} - 2$ $(2,0) \xrightarrow{} X$ y = 2x - xRequired area = $\int_{0}^{1} [2^{x} - (2x - x^{2})] dx$ $= \left[\frac{2^x}{\log 2} - x^2 + \frac{x^3}{3}\right]^2$ $=\frac{4}{\log 2}-4+\frac{8}{3}-\frac{1}{\log 2}$ $=\frac{3}{\log 2}-\frac{4}{3}$

Chapter 06: Applications of Definite Integral

46.

47.

0

48.	The area between $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight
	line $\frac{x}{a} + \frac{y}{b} = 1$ is $\frac{1}{4}\pi ab - \frac{1}{2}ab$ sq.units.
	Here, $a = 3, b = 2$
<i>.</i>	Required area = $\frac{1}{4}\pi(3)(2) - \frac{1}{2}(3)(2)$
	$=\frac{3}{2}(\pi-2)$ sq.units

Competitive Thinking

= 8 sq. units

 $=\int_{-1}^{4} x \, \mathrm{d}x = \left[\frac{x^2}{2}\right]^4$

8.
8.
8.
Required area =
$$\int_{1-e}^{0} \log_e (x+e) dx$$

 $= \int_{1-e}^{e} \log_t dt \dots [Put x + e = t]$
 $= [t \log t - t]_1^e = 1$ sq. unit
9. For X-axis, $y = 0$
 $\therefore 2x - x^2 = 0$
 $\Rightarrow x (2 - x) = 0 \Rightarrow x = 0, 2$
Required area = $\int_{0}^{2} (2x - x^2) dx$
 $= \left[x^2 - \frac{x^3}{3}\right]_{0}^{2}$
 $= 4 - \frac{8}{3}$
 $= \frac{4}{3}$ sq.units
10. For X-axis, $y = 0$
 $\therefore 1 - x - 6x^2 = 0$
 $\Rightarrow (2x + 1)(3x - 1) = 0$
 $\Rightarrow x = -\frac{1}{2}$ or $x = \frac{1}{3}$
 \therefore Required area = $\int_{-\frac{1}{2}}^{\frac{1}{3}} (1 - x - 6x^2) dx$
 $= \left[x - \frac{x^2}{2} - 2x^3\right]_{-\frac{1}{2}}^{\frac{1}{3}}$
 $= \left[\frac{1}{3} - \frac{1}{18} - \frac{2}{27}\right] - \left[-\frac{1}{2} - \frac{1}{8} + \frac{1}{4}\right]$
 $= \frac{11}{54} + \frac{3}{8}$
 $= \frac{125}{216}$ sq. units.

According to the given condition, $a - \frac{8}{2} + 2 = 2 - a + \frac{8}{2}$ $\Rightarrow 2a = \frac{16}{a} \Rightarrow a^2 = 8$ $\Rightarrow a = 2\sqrt{2}$[:: a > 0]The given curve passes through (1, 2). 16. 2 = a + b*.*...(i) According to the given condition, $\int (a\sqrt{x} + bx) \, dx = 8$ $\Rightarrow \frac{2a}{3} [x^{3/2}]_0^4 + \frac{b}{2} [x^2]_0^4 = 8 \Rightarrow \frac{2a}{3} \cdot 8 + 8b = 8$ $\Rightarrow 2a + 3b = 3$(ii) From (i) and (ii), we get a = 3, b = -1 $\mathbf{R}_1 = \int \mathbf{x} \, \mathbf{f}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$ 17. $= \int (1-x)f(1-x)\,\mathrm{d}x$ $\dots \left[\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \right]$ $= \int_{1}^{2} (1-x)f(x) dx$ \dots [:: f(x) = f(1 - x) (given)] $R_1 = \int_{-\infty}^{\infty} f(x) dx - R_1 \Longrightarrow 2R_1 = \int_{-\infty}^{\infty} f(x) dx$ *.*.. According to the given condition, $R_2 = \int f(x) dx$ *.*.. $R_2 = 2R_1$ 18. x = 0 $y = \cos x$ $x = \pi$ $x' \leftarrow O$ $(0, -1) - \frac{\pi}{2}$ $x = \pi$ π $\frac{3\pi}{2}$ ►X $Y'_{\pi/2}$ Required area = $2 \int \cos x \, dx = 2 [\sin x]_0^{\pi/2}$

= 2 sq. units

Chapter 06: Applications of Definite Integral

22.

23.

25.

Since the curve is symmetrical about X-axis and Y-axis,

Area of region between the two latus-rectum = 4 (Area of the shaded region)

$$= 4 \int_{0}^{ae} y \, dx$$

= $4 \int_{0}^{ae} \frac{b}{a} \sqrt{a^2 - x^2} \, dx$
= $\frac{4b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{0}^{ae}$
= $\frac{4b}{a} \left[\frac{ae}{2} \sqrt{a^2 (1 - e^2)} + \frac{a^2}{2} \sin^{-1} e \right]$
= $\frac{4b}{a} \left[\frac{abe}{2} + \frac{a^2}{2} \sin^{-1} e \right] \dots \left[\because b = a \sqrt{1 - e^2} \right]$
= $2b (be + a \sin^{-1} e)$

Y $y = \cos x$ $y = \sin x$ $X' \leftarrow O (\frac{\pi}{4}, 0)$ Y'Required area = $\int_{0}^{\pi/4} (\cos x - \sin x) dx$ $= [\sin x + \cos x]_{0}^{\pi/4}$ $= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1 = \frac{2}{\sqrt{2}} - 1 = \sqrt{2} - 1$

26.

27. The two curves intersect at (0, 0) and (4a, 4a).

28. The two parabolas intersect at (0, 0) and (1, 1).

$$\therefore$$
 required area = $\int_{0}^{1} (\sqrt{x} - x^2) dx$

$$= \left[\frac{2x^{\frac{3}{2}}}{3} - \frac{x^{3}}{3}\right]_{0}^{1} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

29.

$$X' \leftarrow (-2,1) \qquad (1,0) \leftarrow X$$

$$(-2,-1) \qquad x = 1 - 3y^{2}$$

$$x = -2y^{2} \qquad Y'$$

Area bounded by the parabolas = $2\int_{1}^{1} (1-3y^2+2y^2) dy$

$$= 2 \int_{0}^{1} (1 - y^{2}) dy = 2 \left[y - \frac{y^{3}}{3} \right]_{0}^{1}$$
$$= 2 \left(1 - \frac{1}{3} \right) = \frac{4}{3} \text{ sq. units}$$

30. (-4, 16) $y = x^{2}$ $X' \leftarrow (0, 0)$ Y' Y = 16 Y = 16

> Area bounded by $y = x^2$ and line y = 16 is $2\int_{0}^{4} (x^2 - 16) dx$ $= 2\left[\frac{x^3}{3} - 16x\right]_{0}^{4} = \frac{-256}{3}$

But area cannot be negative

- $\therefore \qquad \text{Required area} = \frac{256}{3} \text{ sq. units}$
- 31. The points of intersection of $y^2 = 4ax$ and y = 2ax are given by $(2ax)^2 = 4ax$ $\Rightarrow 4ax(ax - 1) = 0$ $\Rightarrow x = 0$ or $x = \frac{1}{a}$

When x = 0, y = 0 and when $x = \frac{1}{a}$, y = 2

 \therefore the points of intersection are (0, 0) and $\left(\frac{1}{a}, 2\right)$.

Chapter 06: Applications of Definite Integral 32. The area of the region bounded by the parabola $y^2 = 4ax$ and the line y = mx is $\frac{8a^2}{3m^3}$ sq. units. Here, $a = \frac{1}{2}$ and m = 1Required area = $\frac{8\left(\frac{1}{2}\right)^2}{3(1)^3} = \frac{2}{3}$ sq. units. *.*.. 33. (2, 2) ►X $x = y^2 - 2$ The points of intersection of $x = y^2 - 2$ and x = y are (-1, -1) and (2, 2)Required area = $\int_{1}^{2} (y^2 - 2 - y) dy$ *.*.. $=\left[\frac{y^{3}}{3}-2y-\frac{y^{2}}{2}\right]^{2}$ $=\left[\frac{8}{3}-4-\frac{4}{2}\right]-\left[-\frac{1}{3}+2-\frac{1}{2}\right]$ $=\frac{-9}{2}$ But area cannot be negative. Required area = $\frac{9}{2}$ sq. Units *.*.. 34. $v = ax^2$ X′ < 0 $-x = av^2$ Y′

The two curves intersect at (0, 0) and $\left(\frac{1}{a}, \frac{1}{a}\right)$.

$$= \left[\frac{x^2}{2}\right]_2^{5/2} - \left[2x\right]_2^{5/2} + \left[\left(\frac{x-3}{2}\right)\sqrt{1-(x-3)^2} + \frac{1}{2}\sin^{-1}\left(\frac{x-3}{1}\right)\right]_2^{5/2} + \left[\frac{x-3}{2}\right]\sqrt{1-(x-3)^2} + \frac{1}{2}\sin^{-1}\left(\frac{x-3}{1}\right)\right]_2^{5/2} + \left[\frac{1}{2}\left(\frac{25}{4} - 4\right) - 2\left(\frac{5}{2} - 2\right) + \left(\frac{-\frac{1}{2}}{2}\right)\sqrt{1-\frac{1}{4}} + \frac{1}{2}\sin^{-1}\left(-\frac{1}{2}\right) - \left[0 + \frac{1}{2}\sin^{-1}(-1)\right] + \frac{1}{2}\sin^{-1}\left(-\frac{1}{2}\right) - \left[0 + \frac{1}{2}\sin^{-1}(-1)\right] + \frac{9}{8} - 1 - \frac{1}{4} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2}\left(-\frac{\pi}{6}\right) - \frac{1}{2}\left(-\frac{\pi}{2}\right) + \frac{1}{8} - \frac{\sqrt{3}}{8} + \frac{\pi}{4} - \frac{\pi}{12} = \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8}\right)$$
sq.unit

6. The point of intersection of the curve $y = 2x - x^2$ and the line y = -x are (0, 0) and (3, -3).

$$= \int_{0}^{3} [(2x - x^{2}) - (-x)] dx$$

= $\int_{0}^{3} (3x - x^{2}) dx = \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{3} = \frac{9}{2}$ sq. unit

7.

÷.

Chapter 06: Applications of Definite Integral

$$|x| = 1 \Rightarrow x = 1 \text{ or } x = -1$$
Required Area = $\int_{-1}^{1} \cos x \, dx$

$$= 2 \int_{0}^{1} \cos x \, dx$$
....[:: $\cos x$ is an even f^n]
$$= 2[\sin x]_{0}^{1}$$

$$= 2(\sin 1 - 0)$$

$$= 2 \sin 1$$

Required area

8.

$$= \int_{0}^{\frac{3\pi}{2}} |\cos x - \sin x| dx$$

= $\int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx$
+ $\int_{\frac{5\pi}{4}}^{\frac{3\pi}{2}} (\cos x - \sin x) dx$

$$= \left[\sin x + \cos x\right]_{0}^{\pi/4} - \left[\cos x + \sin x\right]_{\pi/4}^{5\pi/4} + \left[\sin x + \cos x\right]_{5\pi/4}^{3\pi/2}$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - (0+1) - \left[-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \right] + (-1) + 0 - \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)$$
$$= \sqrt{2} - 1 + \sqrt{2} + \sqrt{2} - 1 + \sqrt{2}$$
$$= \left(4\sqrt{2} - 2 \right) \text{ sq.unit}$$

Г

13.

14.

$$y = x^{2} + x + 1$$

$$x = -1$$

$$Y$$

$$D(1, 3)$$

$$X' \leftarrow A$$

$$y = 0$$

$$V'$$

$$y = x^{2} + x + 1 \Rightarrow \frac{dy}{dx} = 2x + 1$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(1,3)} = 2(1) + 1 = 2 + 1 = 3$$

- ... The equation of the tangent at the point (1, 3) is y - 3 = 3(x - 1) i.e., y = 3x.
- \therefore It passes through origin.
- :. Required area = area of the region OABCO + area of the region OCDO

$$= \int_{-1}^{0} y \, dx + \int_{0}^{1} (y_1 - y_2) \, dx$$

$$= \int_{-1}^{0} (x^2 + x + 1) \, dx + \int_{0}^{1} (x^2 + x + 1 - 3x) \, dx$$

$$= \int_{-1}^{0} (x^2 + x + 1) \, dx + \int_{0}^{1} (x^2 - 2x + 1) \, dx$$

$$= \left[\frac{x^3}{3} + \frac{x^2}{2} + x \right]_{-1}^{0} + \left[\frac{x^3}{3} - x^2 + x \right]_{0}^{1}$$

$$= 0 - \left(-\frac{1}{3} + \frac{1}{2} - 1 \right) + \frac{1}{3} - 1 + 1 - 0$$

$$= \frac{4}{3} - \frac{1}{2} + \frac{1}{3} = \frac{8 - 3 + 2}{6} = \frac{7}{6} \text{ sq. unit}$$

Chapter 06: Applications of Definite Integral

The equation $x^2 + 4y^2 = 4$ is of ellipse with centre at origin and the equation $4y^2 = 3x$ is of a parabola with vertex at origin.

Solving the equations, we get $x^2 + 3x - 4 = 0$

 $\therefore \quad (x+4)(x-1) = 0$

But x = -4 is not possible, since both points of intersection lie on the right hand side of Y-axis.

$$\therefore$$
 $x = 1$ and $y = \pm \frac{\sqrt{3}}{2}$

 \therefore The points of intersection are A $\left(1, \frac{\sqrt{3}}{2}\right)$ and

$$B\left(1,-\frac{\sqrt{3}}{2}\right).$$

$$\therefore$$
 Required area

$$= \int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{2}}{2}} (x_2 - x_1) dy$$

$$= \int_{\frac{-\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \left[\sqrt{4 - 4y^2} - \frac{4y^2}{3} \right] dy$$

$$= 2 \int_{0}^{\frac{\sqrt{3}}{2}} \left[\sqrt{4 - 4y^2} - \frac{4y^2}{3} \right] dy$$

 \dots [:: the function is even]

$$= 4\int_{0}^{\frac{\sqrt{3}}{2}} \sqrt{1-y^{2}} \, dy - \frac{8}{3}\int_{0}^{\frac{\sqrt{3}}{2}} y^{2} \, dy$$

$$= 4\left[\frac{y}{2}\sqrt{1-y^{2}} + \frac{1}{2}\sin^{-1}(y)\right]_{0}^{\frac{\sqrt{3}}{2}} - \frac{8}{3}\left[\frac{y^{3}}{3}\right]_{0}^{\frac{\sqrt{3}}{2}}$$

$$= 2\left[\frac{\sqrt{3}}{2}\sqrt{\frac{1}{4}} + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - 0\right] - \frac{8}{3\times3} \times \left(\frac{3\sqrt{3}}{8} - 0\right)$$

$$= 2\left[\frac{\sqrt{3}}{4} + \frac{\pi}{3}\right] - \frac{8}{9} \times \frac{3\sqrt{3}}{8}$$

$$= \frac{2\pi}{3} + \frac{2\sqrt{3}}{4} - \frac{\sqrt{3}}{3}$$

$$= \frac{2\pi}{3} + \frac{2\sqrt{3}}{12}$$

$$= \left(\frac{2\pi}{3} + \frac{1}{2\sqrt{3}}\right) \text{sq. unit}$$

$$= \frac{\pi}{4} \times \frac{1}{\sqrt{2}} - \int_{0}^{\frac{\pi}{4}} \sin y \, dy = \frac{\pi}{4\sqrt{2}} - \left[-\cos y\right]_{0}^{\pi/4}$$
$$= \left[\frac{\pi}{4\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1\right)\right] \text{sq. units}$$

The equation of the parabola is $(y-2)^2 = x - 1$

Diff. w.r.t. *x*, we get

$$2(y-2) \frac{dy}{dx} = 1$$

$$\therefore \qquad \frac{dy}{dx} = \frac{1}{2(y-2)}$$

$$\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(2,3)} = \frac{1}{2(3-2)} = \frac{1}{2}$$

- \therefore Equation of tangent is $y 3 = \frac{1}{2}(x 2)$
- $\therefore \quad 2y-6=x-2$

$$\therefore \quad x-2y+4=0$$

It cuts the X-axis at the point Q (-4, 0) and the parabola cuts the X-axis at the point R(5, 0).

r. required area =
$$\int_{0}^{3} (x_1 - x_2) dy$$

= $\int_{0}^{3} [(y-2)^2 + 1 - (2y-4)] dy$
= $\int_{0}^{3} (y^2 - 6y + 9) dy$
= $\left[\frac{y^3}{3} - 3y^2 + 9y\right]_{0}^{3}$
= $9 - 27 + 27 - 0$
= 9 sq. units

Chapter 06: Applications of Definite Integral

19. Required area =
$$\int_{0}^{\frac{\pi}{4}} \left(\sqrt{\frac{1+\sin x}{\cos x}} - \sqrt{\frac{1-\sin x}{\cos x}} \right) dx$$

.... [:: $\frac{1+\sin x}{\cos x} > \frac{1-\sin x}{\cos x} > 0$]
$$= \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\frac{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^{2}}{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}}} - \sqrt{\frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^{2}}{\cos^{2} \frac{x}{2} - \sin^{2} \frac{x}{2}}} \right) dx$$
$$= \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\frac{\cos \frac{x}{2} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}}} - \sqrt{\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}} \right) dx$$
$$= \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}} - \sqrt{\frac{1-\tan \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}}} \right) dx$$
$$= \int_{0}^{\frac{\pi}{4}} \frac{1+\tan \frac{x}{2} - 1 + \tan \frac{x}{2}}{\sqrt{1-\tan \frac{x}{2}}} dx = \int_{0}^{\frac{\pi}{4}} \frac{2\tan \frac{x}{2}}{\sqrt{1-\tan^{2} \frac{x}{2}}} dx$$
Put $\tan \frac{x}{2} = t \Rightarrow \frac{1}{2} \sec^{2} \frac{x}{2} dx = dt$
$$\therefore \text{ required area} = \int_{0}^{\tan \frac{\pi}{8}} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$
$$= \int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$$
$$\dots \left[:: \tan \frac{\pi}{8} = \sqrt{2} - 1\right]$$

Textbook Chapter No.

Differential Equations

Hints

	⁶ Classical Thinking
1.	Here, the highest order derivative is $\frac{d^2s}{dt^2}$ with
÷	power 2. order = 2 and degree = 2
2.	Here, the highest order derivative is $\frac{d^2y}{dx^2}$ with
<i>.</i> .	power 3. order = 2 and degree = 3
3.	Here, the highest order derivative is $\frac{d^2 y}{dx^2}$ with
÷	power 3. order = 2 and degree = 3
4.	Here, the highest order derivative is $\frac{d^3y}{dx^3}$ with
∴ 5. ∴	power 1. order = 3 and degree = 1 In option (B), y'' is the highest order derivative, of order 2. option (B) is the correct answer.
6.	Here, the highest order derivative is $\frac{d^4y}{dx^4}$ with
:. 7.	power 1. order = 4 and degree = 1 $y = 4 \sin 3x$ (i) $\Rightarrow \frac{dy}{dx} = 12 \cos 3x$
	$\Rightarrow \frac{d^2 y}{dx^2} = -36 \sin 3x = -9 \times 4 \sin 3x = -9y$
	$\Rightarrow \frac{d^2 y}{dx^2} + 9y = 0$ [From (i)]
8.	$y = A \sin x + B \cos x \qquad \dots (i)$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{A}\cos x - \mathrm{B}\sin x$
	$\Rightarrow \frac{d^2 y}{dx^2} = -A \sin x - B \cos x$
	$= -(A \sin x + B \cos x)$ = - y[From (i)]
<i>.</i>	$\frac{d^2 y}{dx^2} + y = 0$

9.
$$y = a \cos (x + b)$$
(i)
 $\Rightarrow \frac{dy}{dx} = -a \sin(x + b)$
 $\Rightarrow \frac{d^2 y}{dx^2} = -a \cos(x + b) = -y$ [From (i)]
 $\Rightarrow \frac{d^2 y}{dx^2} + y = 0$

10.
$$y = ce^{sin^{-1}x}$$
(i)
 $\Rightarrow \frac{dy}{dx} = ce^{sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}}$
 $\Rightarrow \frac{dy}{dx} = \frac{y}{\sqrt{1-x^2}}$ [From (i)]

11.
$$y = (x + k)e^{-x}$$
(i)
 $\Rightarrow \frac{dy}{dx} = -(x + k)e^{-x} + e^{-x}$
 $\Rightarrow \frac{dy}{dx} = -y + e^{-x}$ [From (i)]
 $\Rightarrow \frac{dy}{dx} + y = e^{-x}$

12.
$$x^2y = a$$

Differentiating w.r.t. x, we get
 $x^2 \frac{dy}{dx} + 2xy = 0$

$$\Rightarrow \frac{dy}{dx} + \frac{2y}{x} = 0$$

13.
$$x^{2} + y^{2} = a^{2}$$

Differentiating w.r.t. *x*, we get
$$2x + 2y \frac{dy}{dx} = 0 \Rightarrow x + y \frac{dy}{dx} = 0$$

14.
$$x^{2} \frac{dy}{dx} = 2$$

Integrating on both sides, we get

$$\int dy = \int \frac{2}{x^2} dx + c$$
$$\Rightarrow y = -\frac{2}{x} + c$$

 $\frac{dy}{du} = x^2 + \sin 3x$ 15. Integrating on both sides, we get $\int dy = \int (x^2 + \sin 3x) dx + c$ $\Rightarrow y = \frac{x^3}{2} - \frac{\cos 3x}{2} + c$ 16. $\frac{dy}{dr} = (ae^{bx} + c \cos x)$ Integrating on both sides, we get $\int dy = \int (ae^{bx} + c\cos x) dx + k$ $\Rightarrow y = \frac{ae^{bx}}{b} + \frac{c\sin(mx)}{m} + k$ 17. $\frac{dy}{dx} = \sec x(\sec x + \tan x)$ Integrating on both sides, we get $\int dy = \int (\sec^2 x + \sec x \tan x) dx + c$ \Rightarrow y = tan x + sec x + c 18. $\frac{dy}{dx} = e^x(\sin x + \cos x)$ Integrating on both sides, we get $\int dy = \int e^x (\sin x + \cos x) dx + c$ $\Rightarrow y = e^x \sin x + c$ 19. $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x + \cos x + x + \tan x$ Integrating on both sides, we get $\int dy = \int (e^x + \cos x + x + \tan x) dx + c$ $\Rightarrow y = e^x + \sin x + \frac{x^2}{2} + \log \sec x + c$

20. $(1 + x^2)\frac{dy}{dx} = 1$ Integrating on both sides, we get

$$\int dy = \int \frac{1}{1+x^2} dx + c$$
$$\Rightarrow y = \tan^{-1} x + c$$

21. $\frac{dy}{dx} + \frac{1}{\sqrt{1 - x^2}} = 0$ Integrating on both sides, we get $\int dy + \int \frac{1}{\sqrt{1 - x^2}} dx = c$ $\Rightarrow y + \sin^{-1} x = c$

Chapter 07: Differential Equations 22. $\frac{dy}{dx} + \sin^2 y = 0$ $\Rightarrow \frac{dy}{dy} = -\sin^2 y$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{\csc^2 y}$ Integrating on both sides, we get $\int dx = -\int \csc^2 y \, dy + c$ $\Rightarrow x = \cot y + c$ 23. $\frac{dy}{dx} + \frac{1+x^2}{x} = 0$ Integrating on both sides, we get $\int dy + \int \left(\frac{1}{x} + x\right) dx = c$ \Rightarrow y + log x + $\frac{x^2}{2}$ = c 24. $(1+x^2)\frac{dy}{dx} = x \Rightarrow dy = \frac{x}{1+x^2}dx$ Integrating on both sides, we get $\int dy = \int \frac{x}{1+r^2} dx + c$ $\Rightarrow y = \frac{1}{2} \log_{e}(1 + x^{2}) + c$ 25. $\frac{dy}{dr} = \left(\frac{y}{r}\right)^{1/2}$ $\Rightarrow \frac{dy}{y^{1/3}} = \frac{dx}{r^{1/3}}$ Integrating on both sides, we get $\int \frac{dy}{x^{1/3}} - \int \frac{dx}{x^{1/3}} = c_1$ $\Rightarrow \frac{3}{2}y^{2/3} - \frac{3}{2}x^{2/3} = c_1$ $\Rightarrow y^{2/3} - x^{2/3} = c$, where $c = \frac{2c_1}{2}$ 26. $\frac{dy}{dr} = (1+x)(1+y^2)$ Integrating on both sides, we get $\int \frac{\mathrm{d}y}{1+y^2} = \int (1+x) \,\mathrm{d}x + \mathrm{c}$ $\Rightarrow \tan^{-1} y = \frac{x^2}{2} + x + c$ $\Rightarrow y = \tan\left(\frac{x^2}{2} + x + c\right)$

MHT-CET Triumph Maths (Hints) $\frac{\mathrm{d}y}{\mathrm{d}x} = x \log x \Longrightarrow \mathrm{d}y = x \log x \mathrm{d}x$ 27. Integrating on both sides, we get $\int dy = \int x \log x dx + c$ $\Rightarrow y = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$ 28. $\frac{\mathrm{d}y}{\mathrm{d}x} = (x+y)^2$(i) Put x + y = v....(ii) $\Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$(iii) Substituting (ii) and (iii) in (i), we get $\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{r}} - 1 = \mathbf{v}^2$ $\Rightarrow \frac{dv}{dv} = v^2 + 1$ $\Rightarrow \frac{\mathrm{d}v}{\mathrm{v}^2 + 1} = \mathrm{d}x$ Integrating on both sides, we get $\tan^{-1} v = x + c \Rightarrow v = \tan(x + c)$ $\Rightarrow x + y = \tan(x + c)$ 29. $\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$ This is the linear differential equation of the form $\frac{dy}{dx} + P.y = Q$, where $P = \frac{1}{x}$ $IF = e^{\int Pdx} = e^{\int \frac{1}{x}dx} = e^{\log x} = r$ ÷. The given equation is of the form 30. $\frac{\mathrm{d}y}{\mathrm{d}r} + \mathrm{P}y = \mathrm{Q}.$ Here, $P = \frac{1}{2}$ and Q = 1 $IF = e^{\int \frac{1}{3} dx} = e^{\frac{x}{3}}$ ÷. solution of the given equation is .**.**. $y(I.F.) = \int Q(I.F.) dx + c$ $\Rightarrow y. e^{\frac{x}{3}} = \int 1.e^{\frac{x}{3}} dx + c$ $\Rightarrow v e^{\frac{x}{3}} = 3e^{\frac{x}{3}} + c$ \Rightarrow y = 3 + c. e^{$-\frac{x}{3}$}

31. $\log\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = x + y$ $\Rightarrow \frac{dy}{dy} = e^{x+y}$ $\Rightarrow \frac{dy}{dy} = e^x \cdot e^y$ Integrating on both sides, we get $\int e^{x} dx - \int e^{-y} dy = c$ $\Rightarrow e^x + e^{-y} = c$ 32. Here, $P = \frac{1}{x}$ and $Q = x^2$ $IF = e^{\int \frac{1}{x} dx} = e^{\log x} = x$ ÷ solution of the given equation is ·. $y.x = \int x^2 x \, dx + c_1$ $\Rightarrow xy = \frac{x^4}{4} + c_1 \Rightarrow 4 xy = x^4 + c$, where $c = 4 c_1$ 33. $x\frac{dy}{dx} + 3y = x \Rightarrow \frac{dy}{dx} + \frac{3y}{x} = 1$:. I.F. = $e^{3\int \frac{1}{x} dx} = e^{3\log x} = x^3$ solution of the given equation is *.*.. $yx^3 = \int x^3 \cdot 1 dx + c \implies yx^3 = \frac{x^4}{4} + c$ 34. $\frac{dy}{dx} + \frac{y}{x} = \sin x$ \therefore I.F. = $e^{\int \frac{1}{x} dx} = e^{\log x} = x$ solution of the given equation is *.*.. $y x = \int x \sin x \, dx + c$ $\Rightarrow yx = -x \cos x + \sin x + c$ $\Rightarrow x(y + \cos x) = \sin x + c$ 35. $\frac{dy}{dx} + y = \cos x$ Here, P = 1 and $Q = \cos x$ $I.F. = e^{\int 1dx} = e^x$ *.*.. solution of the given equation is $y.e^x = \int \cos x \cdot e^x dx + c$ \Rightarrow y.e^x = $\frac{e^x(\cos x + \sin x)}{2} + c$ $\Rightarrow y = \frac{1}{2}(\cos x + \sin x) + c.e^{-x}$

 $\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = 1$ 36. $\Rightarrow \frac{dy}{dy} + y \tan x = \sec x$ I.F. $= e^{\int \tan x dx} = e^{\log \sec x} = \sec x$ ÷. *.*.. solution of the given equation is $y \sec x = \int \sec^2 x + c = \tan x + c$ 37. I.F. $= e^{\int Pdx} = e^{\int \cot x dx} = e^{\log \sin x} = \sin x$ *:*. solution of the given equation is $y.\sin x = \int 2\cos x \sin x \, dx + c_1$ $\Rightarrow y \sin x = \int \sin 2x \, dx + c_1$ $\Rightarrow y \sin x = -\frac{1}{2} \cos 2x + c_1$ $\Rightarrow 2y \sin x + \cos 2x = c$, where $c = 2 c_1$ Critical Thinking $\left(\frac{d^2 y}{dx^2}\right)^3 = \left(1 + \frac{dy}{dx}\right)^{1/2} \Longrightarrow \left(\frac{d^2 y}{dx^2}\right)^6 = 1 + \frac{dy}{dx}$ 1. Here, the highest order derivative is $\frac{d^2y}{dr^2}$ with power 6. degree = 6*.*.. $\frac{\mathrm{d}^2 y}{\mathrm{d}r^2} + \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}r}\right)^3} = 0$ 2. $\Rightarrow \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^2 = \left[-\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3}\right]^2$ $\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^3$

Here, the highest order derivative is $\frac{d^2y}{dx^2}$ with

- power 2.
- \therefore degree = 2

3.
$$3\frac{d^2 y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}$$
$$\Rightarrow 9\left(\frac{d^2 y}{dx^2}\right)^2 = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}$$
Here, the highest order derivative is $\frac{d^2 y}{dx^2}$ with

power 2.

$$\therefore$$
 degree = 2

4.
$$\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$$
$$\implies \left(\frac{d^2 y}{dx^2} + x^{\frac{1}{4}}\right)^3 = \left[-\left(\frac{dy}{dx}\right)^{\frac{1}{3}}\right]^3$$
$$\implies \left(\frac{d^2 y}{dx^2} + x^{\frac{1}{4}}\right)^3 = -\frac{dy}{dx}$$

Here, the highest order derivative is $\frac{d^2y}{dx^2}$ with power 3.

$$\therefore$$
 order = 2 and degree = 3

5.
$$\frac{d^2 y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{1/4}$$
$$\implies \left(\frac{d^2 y}{dx^2}\right)^4 = \left\{ \left[y + \left(\frac{dy}{dx}\right)^2 \right]^{1/4} \right\}^4$$
$$\implies \left(\frac{d^2 y}{dx^2}\right)^4 = y + \left(\frac{dy}{dx}\right)^2$$

Here, the highest order derivative is $\frac{d^2y}{dx^2}$ with

power 4.

 \therefore order = 2 and degree = 4

6. Since, the given differential equation cannot be expressed as a polynomial in differential coefficients, the degree is not defined.

7.
$$\sqrt{\frac{dy}{dx}} - 4\frac{dy}{dx} - 7x = 0$$
$$\Rightarrow \left(\sqrt{\frac{dy}{dx}}\right)^2 = \left(4\frac{dy}{dx} + 7x\right)^2$$
$$\Rightarrow \frac{dy}{dx} = 16\left(\frac{dy}{dx}\right)^2 + 56x\frac{dy}{dx} + 49x^2$$

This is a differential equation of order 1 and degree 2.

8.
$$\frac{d^2 y}{dx^2} - \sqrt{\frac{dy}{dx} - 3} = x$$
$$\Rightarrow \left(\frac{d^2 y}{dx^2} - x\right)^2 = \left(\sqrt{\frac{dy}{dx} - 3}\right)^2$$
$$\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^2 - 2x \cdot \frac{d^2 y}{dx^2} + x^2 = \frac{dy}{dx} - 3$$
Here, the highest order derivative is

....

Here, the highest order derivative is $\frac{d^2 y}{dx^2}$ with power 2. degree = 2

MHT-CET Triumph Maths (Hints)

9.
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/4} = \left(\frac{d^2 y}{dx^2}\right)^{1/3}$$
$$\Rightarrow \left\{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/4}\right\}^4 = \left(\frac{d^2 y}{dx^2}\right)^{4/3}$$
$$\Rightarrow \left\{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3\right\}^3 = \left\{\left[\frac{d^2 y}{dx^2}\right]^{4/3}\right\}^3$$
$$\Rightarrow \left[1 + \left(\frac{dy}{dx}\right)^2\right]^9 = \left(\frac{d^2 y}{dx^2}\right)^4$$

Here, the highest order derivative is $\frac{d^2 y}{dx^2}$ with

power 4.

 \therefore degree = 4

10.
$$y = x \frac{dy}{dx} + \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^2}$$

$$\Rightarrow y - x \frac{dy}{dx} = \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^2}$$

Squaring on both sides, we get

$$y^{2} - 2xy\frac{dy}{dx} + x^{2}\left(\frac{dy}{dx}\right)^{2} = a^{2}\left(\frac{dy}{dx}\right)^{2} + b^{2}$$

This is a differential equation of order 1 and degree 2.

11.
$$\left[1 + \left(\frac{d^2 y}{dx^2}\right)^3\right]^{4/5} = \left(\frac{m}{m+1}\right)\frac{d^3 y}{dx^3}$$
$$\Rightarrow \left\{\left[1 + \left(\frac{d^2 y}{dx^2}\right)^3\right]^{4/5}\right\}^5 = \left(\frac{m}{m+1}\right)^5 \left(\frac{d^3 y}{dx^3}\right)^5$$
$$\Rightarrow \left[1 + \left(\frac{d^2 y}{dx^2}\right)^3\right]^4 = \left(\frac{m}{m+1}\right)^5 \left(\frac{d^3 y}{dx^3}\right)^5$$

. 2

Here, the highest order derivative is $\frac{d^3y}{dx^3}$ with power 5.

 \therefore order = 3 and degree = 5

12.
$$\left(\frac{d^2 y}{dx^2}\right)^5 + 4\frac{\left(\frac{d^2 y}{dx^2}\right)^5}{\left(\frac{d^3 y}{dx^3}\right)^5} + \frac{d^3 y}{dx^3} = x^2 - 1$$

$$\therefore \qquad \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^5 \cdot \left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right) + 4\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^3 + \left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)^2 = \left(x^2 - 1\right) \cdot \frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$$

Here, the highest order derivative is $\frac{d^3y}{dx^3}$ with power 2.

- \therefore order = 3 and degree = 2
- \therefore m = 3 and n = 2
- 13. Option (A) has order = 4, degree = 1Option (B) has order = 3, degree = 4Consider option (C),

$$\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^{2/3} = 4\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$$

Cubing on both sides, we get

$$\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^2 = 4^3 \left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)^3$$

Here, order = 3 and degree = 3

- \therefore option (C) is the correct answer.
- 14. Since, the given equation has 3 arbitrary constants i.e., g, f and c, therefore order of the given differential equation is 3.
- 15. Since, the given equation has 3 arbitrary constants i.e., a, b and c, therefore order of the given differential equation is 3.
- 16. The equation of a family of circles of radius r passing through the origin and having centre on Y-axis is $(x - 0)^2 + (y - r)^2 = r^2$ or $x^2 + y^2 - 2ry = 0$. Since this equation has one arbitrary constant, its order is 1.
- 17. The equation of the family of circles which touch both the axes is $(x a)^2 + (y a)^2 = a^2$, where a is a parameter. Since this equation has one arbitrary constant, its order is 1.

18.
$$y = ae^{mx} + be^{-mx}$$
(i)

$$\Rightarrow \frac{dy}{dx} = mae^{mx} - mbe^{-mx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = m^2ae^{mx} + m^2be^{-mx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = m^2(ae^{mx} + be^{-mx}) = m^2y$$
[From (i)]

$$\Rightarrow \frac{d^2y}{dx^2} - m^2y = 0$$

19. $y = cx + c - c^{3}$ (i) $\Rightarrow \frac{dy}{dx} = c$ (ii)

Substituting (ii) in (i), we get

$$y = \frac{\mathrm{d}y}{\mathrm{d}x} \cdot x + \frac{\mathrm{d}y}{\mathrm{d}x} - \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3$$

- 20. $y = A \cos \omega t + B \sin \omega t$ (i) $\Rightarrow y' = -A \omega \sin \omega t + B \omega \cos \omega t$ $\Rightarrow y'' = -A \omega^2 \cos \omega t - B \omega^2 \sin \omega t$ $\Rightarrow y'' = -\omega^2 (A \cos \omega t + B \sin \omega t)$ $\Rightarrow y'' = -\omega^2 y$ [From (i)]
- 21. $y = ax^{n+1} + bx^{-n}$ (i) $\Rightarrow \frac{dy}{dx} = a.(n+1)x^n - bnx^{-n-1}$ $\Rightarrow \frac{d^2y}{dx^2} = a(n+1)nx^{n-1} + n(n+1)bx^{-n-2}$ $\Rightarrow x^2 \frac{d^2y}{dx^2} = a(n+1)nx^{n+1} + bn(n+1).x^{-n}$ $= n(n+1) (ax^{n+1} + bx^{-n})$ ∴ $x^2 \frac{d^2y}{dx^2} = n(n+1)y$ [From (i)]
- 22. $y = c_1 \cos ax + c_2 \sin ax$ (i) $\Rightarrow \frac{dy}{dx} = -c_1 a \sin ax + c_2 a \cos ax$ $\Rightarrow \frac{d^2 y}{dx^2} = -c_1 a^2 \cos ax - c_2 a^2 \sin ax$ $\Rightarrow \frac{d^2 y}{dx^2} = -a^2 (c_1 \cos ax + c_2 \sin ax)$ $\Rightarrow \frac{d^2 y}{dx^2} = -a^2 y \qquad[From (i)]$ $\Rightarrow \frac{d^2 y}{dx^2} + a^2 y = 0$
- 23. $\sin^{-1} x + \sin^{-1} y = c$ Differentiating w.r.t. x, we get $\frac{1}{2} + \frac{1}{2} \cdot \frac{dy}{dy} = 0$

$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}} + \frac{1}{\sqrt{1-y^2}} = 0$$
$$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$
$$\Rightarrow \sqrt{1-x^2} \quad dy + \sqrt{1-y^2} \quad dx = 0$$

24.
$$y = (\sin^{-1}x)^{2} + A \cos^{-1}x + B$$

$$\Rightarrow y = (\sin^{-1}x)^{2} + A \left(\frac{\pi}{2} - \sin^{-1}x\right) + B$$

$$\therefore y = (\sin^{-1}x)^{2} + A \left(\frac{\pi}{2} - \sin^{-1}x\right) + B$$

$$\therefore [\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}]$$

$$\Rightarrow y = (\sin^{-1}x)^{2} - A \sin^{-1}x + \frac{\pi A}{2} + B \qquad \dots(i)$$
Differentiating w.r.t. *x*, we get
$$\frac{dy}{dx} = \frac{2\sin^{-1}x}{\sqrt{1-x^{2}}} - \frac{A}{\sqrt{1-x^{2}}}$$

$$\Rightarrow (1 - x^{2}) \left(\frac{dy}{dx}\right)^{2} = (2 \sin^{-1}x - A)^{2}$$

$$= 4(\sin^{-1}x)^{2} - 4A \sin^{-1}x + A^{2}$$

$$= 4[(\sin^{-1}x)^{2} - 4A \sin^{-1}x] + A^{2}$$

$$= 4[(\sin^{-1}x)^{2} - A \sin^{-1}x] + A^{2}$$

$$= 4[(y - \frac{\pi A}{2} - B) + A^{2}$$

$$\dots[From (i)]$$

$$\therefore (1 - x^{2}) \left(\frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} - 2x \left(\frac{dy}{dx}\right)^{2} = 4 \frac{dy}{dx}$$

$$\Rightarrow (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = 2$$
25. The equation of all the straight lines passing through the origin is

$$y = mx \qquad \dots(i)$$

$$\therefore \frac{dy}{dx} = m$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x} \qquad \dots[From (i)]$$
26. $v = \frac{A}{r} + B$
Differentiating w.r.t. *r*, we get
$$\frac{dv}{dr} = -\frac{A}{r^{2}} \qquad \dots(i)$$

$$\therefore \frac{d^{2}v}{dt^{2}} = 2A \cdot r^{-3} \qquad \dots[From (i)]$$

$$\therefore \frac{d^{2}v}{dt^{2}} = 2A \cdot r^{-3} \qquad \dots[From (i)]$$

MHT-CET Triumph Maths (Hints)

- The equation of the family of lines passing 27. through (1, -1) is y + 1 = m(x - 1) $\Rightarrow y = m(x - 1) - 1$(i) $\Rightarrow \frac{dy}{dx} = m$ Substituting the value of m in (i), we get $y = \frac{\mathrm{d}y}{\mathrm{d}x} (x-1) - 1$ $y = x \cdot e^{cx}$ 28 Taking logarithm on both sides, we get $\log y = \log x + cx$(i) \Rightarrow c = $\frac{1}{y} \log \frac{y}{y}$(ii) Differentiating (i) w.r.t. x, we get $\frac{1}{v} \cdot \frac{dy}{dx} = \frac{1}{x} + c$ $\Rightarrow \frac{1}{v} \cdot \frac{dy}{dr} = \frac{1}{r} + \frac{1}{r} \log\left(\frac{y}{r}\right) \qquad \dots [\text{From (ii)}]$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} \left| 1 + \log\left(\frac{y}{x}\right) \right|$ 29. The system of circles which passes through
- origin and whose centre lies on Y axis is $x^2 + y^2 - 2ay = 0$(i) Differentiating w.r.t. x, we get $2x + 2y \frac{dy}{dx} - 2a \frac{dy}{dx} = 0$ $\Rightarrow 2a = 2y + 2x \frac{dx}{dy}$(ii) Substituting (ii) in (i), we get $x^{2} + y^{2} - 2y^{2} - 2xy \frac{dx}{dy} = 0$ $\Rightarrow (x^2 - y^2) \frac{dy}{dx} - 2xy = 0$ $30. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x-y} + x^2 \mathrm{e}^{-y}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-y}(\mathrm{e}^x + x^2)$

Integrating on both sides, we get $\int e^{y} dy = \int (e^{x} + x^{2}) dx + c$ $\Rightarrow e^{v} = e^{x} + \frac{x^{3}}{2} + c$

 $\log\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = x + y$ 31. $\Rightarrow \frac{dy}{dx} = e^{x+y} \Rightarrow \frac{dy}{dx} = e^x \cdot e^y$

Integrating on both sides, we get $\int e^{x} dx - \int e^{-y} dy = c$ $\Rightarrow e^{x} + e^{-y} = c$

32. $x \cos y dy = (xe^x \log x + e^x) dx$ $\Rightarrow \cos y dy = e^x \left(\log x + \frac{1}{r} \right) dx$

Integrating on both sides, we get $\sin y = e^x \log x + c$

- 33. $\frac{\mathrm{d}y}{\mathrm{d}x} = 2^{y-x}$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2^y}{2^x}$ Integrating on both sides, we get $\int 2^{-y} dy - \int 2^{-x} dx = c_1$ $\Rightarrow \frac{-2^{-y}}{\log 2} + \frac{2^{-x}}{\log 2} = c_1$ $\Rightarrow \frac{1}{2^x} - \frac{1}{2^y} = c_1 \log 2$ $\Rightarrow \frac{1}{2^x} - \frac{1}{2^y} = c$, where $c = c_1 \log 2$
- 34. $\frac{dy}{dx} + 2xy = y \Rightarrow \frac{dy}{dx} = y(1-2x)$ Integrating on both sides, we get $\int \frac{\mathrm{d}y}{y} = \int (1-2x)\mathrm{d}x + \mathrm{c}_1$ $\Rightarrow \log v = x - x^2 + c_1$ $\Rightarrow v = e^{x-x^2} \cdot e^{c_1}$ $\Rightarrow v = c_1 e^{x-x^2}$, where $c = e^{c_1}$ 35. $\frac{dy}{dr} = \frac{1 - \cos x}{1 + \cos x} = \tan^2 \frac{x}{2}$ $\Rightarrow dy = \left(\sec^2 \frac{x}{2} - 1\right) dx$ Integrating on both sides, we get

$$y = 2 \tan \frac{x}{2} - x + c$$

36.
$$\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2x} = 0$$

$$\Rightarrow \frac{dy}{dx} + \frac{2\cos^2 y}{2\sin^2 x} = 0$$

Integrating on both sides, we get

$$\int \sec^2 y \, dy + \int \csc^2 x \, dx = c$$

$$\Rightarrow \tan y - \cot x = c$$

37.
$$x(e^{2y} - 1)dy + (x^2 - 1)e^y \, dx = 0$$

$$\Rightarrow x(e^{2y} - 1) \, dy = (1 - x^2) e^y \, dx$$

Integrating on both sides, we get

$$\int \frac{e^{2y} - 1}{e^y} \, dy = \int \frac{1 - x^2}{x} \, dx + c$$

$$\Rightarrow \int e^y \, dy - \int e^{-y} \, dy = \int \frac{1}{x} \, dx - \int x \, dx + c$$

$$\Rightarrow e^y + e^{-y} = \log x - \frac{x^2}{2} + c$$

38.
$$x^2 \, dy = -2xy \, dx$$

Integrating on both sides, we get

$$\int \frac{2x}{x^2} \, dx + \int \frac{dy}{y} = \log c$$

$$\Rightarrow \log x^2 + \log y = \log c$$

$$\Rightarrow \log x^2 + \log y = \log c$$

$$\Rightarrow \log x^2y = \log c \Rightarrow x^2y = c$$

39.
$$\cot y \, dx = x \, dy$$

Integrating on both sides, we get

$$\int \frac{dx}{x} = \int \tan y \, dy + \log c$$

$$\Rightarrow \log x = \log (\sec y) + \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log x = \log (\sec y) = \log c$$

$$\Rightarrow \log (\sin x) - \log (\sec y) = \log c$$

$$\Rightarrow \log (\frac{\sin x}{x}) = \log (\sec y) = \log c$$

$$\Rightarrow \log (\frac{\sin x}{\sin y}) = \log c \Rightarrow \sin x = c \sec y$$

41.
$$x \sec y \frac{dy}{dx} = 1 \Rightarrow \sec y \, dy = \frac{dx}{x}$$

Integrating on both sides, we get

$$\log(\sec y + \tan y) = \log (x)$$

$$\Rightarrow \log (\sec y + \tan y) = \log (x)$$

y

Chapter 07: Differential Equations 42. $(e^{y} + 1)\cos x \, dx + e^{y}\sin x \, dy = 0$ $\Rightarrow \frac{\mathrm{e}^{y}}{\mathrm{e}^{y}+1}\mathrm{d}y + \frac{\cos x}{\sin x}\mathrm{d}x = 0$ Integrating on both sides, we get $\int \frac{e^{y}}{e^{y}+1} dy + \int \frac{\cos x}{\sin x} dx = \log c$ $\Rightarrow \log(e^{y} + 1) + \log(\sin x) = \log c$ $\Rightarrow (e^{v} + 1) \sin x = c$ 43. $y dx + (1 + x^2) \tan^{-1} x dy = 0$ Integrating on both sides, we get $\int \frac{\mathrm{d}x}{(1+x^2)\tan^{-1}x} + \int \frac{\mathrm{d}y}{v} = \log c$ $\Rightarrow \log (\tan^{-1}x) + \log y = \log c$ $\Rightarrow \log (\tan^{-1} x.y) = \log c$ $\Rightarrow v \tan^{-1} x = c$ 44. $3e^{x} \tan y \, dx + (1 - e^{x}) \sec^{2} y \, dy = 0$ $\Rightarrow \frac{\sec^2 y}{\tan y} dy = -3 \frac{e^x}{1-e^x} dx$ Integrating on both sides, we get $\int \frac{\sec^2 y}{\tan y} \, \mathrm{d}y = -3 \int \frac{\mathrm{e}^x}{1 - \mathrm{e}^x} \, \mathrm{d}x + \log \mathrm{c}$ $\Rightarrow \log(\tan y) = 3 \log(1 - e^x) + \log c$ $\Rightarrow \log (\tan y) = \log [(1 - e^x)^3 c]$ $\Rightarrow \tan v = c(1 - e^x)^3$ 45. $(\sin x + \cos x)dy + (\cos x - \sin x) dx = 0$ \Rightarrow dy = $-\left(\frac{\cos x - \sin x}{\sin x + \cos x}\right) dx$ Integrating on both sides, we get $y = -\log(\sin x + \cos x) + \log c$ $\Rightarrow y = \log\left(\frac{c}{\sin x + \cos x}\right)$ $\Rightarrow e^{v} (\sin x + \cos x) = c$ 46. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy+y}{xy+x}$ $\Rightarrow \left(\frac{1+y}{y}\right) dy = \left(\frac{1+x}{x}\right) dx$ Integrating on both sides, we get $\log y + y = \log x + x + \log A$ $\Rightarrow \log\left(\frac{y}{Ax}\right) = x - y \Rightarrow y = Axe^{x-y}$

MHT-CET Triumph Maths (Hints)

47.
$$x \frac{dy}{dx} + y = y^{2} \Rightarrow x \frac{dy}{dx} = y^{2} - y$$
$$\Rightarrow \frac{dy}{y^{2} - y} = \frac{dx}{x}$$
$$\Rightarrow \left[\frac{1}{y - 1} - \frac{1}{y}\right] dy = \frac{dx}{x}$$
Integrating on both sides, we get $\log(y - 1) - \log y = \log x + \log c$
$$\Rightarrow \log\left(\frac{y - 1}{y}\right) = \log(x c)$$
$$\Rightarrow \frac{y - 1}{y} = xc \Rightarrow y = 1 + cxy$$

- 48. (2y-1) dx (2x+3) dy = 0Integrating on both sides, we get $\int \frac{dx}{2x+3} - \int \frac{dy}{2y-1} = \log c_1$ $\Rightarrow \frac{1}{2} \log(2x+3) - \frac{1}{2} \log(2y-1) = \log c_1$ $\Rightarrow \log (2x+3) - \log (2y-1) = 2 \log c_1$ $\Rightarrow \log \left(\frac{2x+3}{2y-1}\right) = \log c_1^2$ $\Rightarrow \frac{2x+3}{2y-1} = c, \text{ where } c = c_1^2$
- 49. $(x y^2 x) dx = (y x^2 y) dy$ $\Rightarrow x(1 - y^2) dx = y(1 - x^2) dy$ Integrating on both sides, we get

$$\int \frac{x}{1-x^2} dx - \int \frac{y}{1-y^2} dy = \log c$$

$$\Rightarrow -\frac{1}{2} \log (1-x^2) + \frac{1}{2} \log (1-y^2) = \log c$$

$$\Rightarrow \log (1-y^2) - \log (1-x^2) = 2 \log c$$

$$\Rightarrow \frac{1-y^2}{1-x^2} = c^2$$

$$\Rightarrow 1-y^2 = c^2 (1-x^2)$$

50. $(1 - x^{2})dy + xydx = xy^{2}dx$ $\Rightarrow (1 - x^{2})dy = x(y^{2} - y) dx$ Integrating on both sides, we get $\int \frac{dy}{y(y-1)} = \int \frac{x}{1-x^{2}}dx + \log c$ $\Rightarrow \int \left(\frac{1}{y-1} - \frac{1}{y}\right)dy = \frac{-1}{2}\int \frac{-2x}{1-x^{2}}dx + \log c$ $\Rightarrow \log (y-1) - \log y = \frac{-1}{2}\log(1-x^{2}) + \log c$

 $\Rightarrow 2\log(y-1) + \log(1-x^2) = 2\log c + 2\log y$ $\Rightarrow \log[(y-1)^2(1-x^2)] = \log c^2 y^2$ $\Rightarrow (y-1)^2(1-x^2) = c^2 y^2$ 51. $(x^2 - yx^2) \frac{dy}{dx} + y^2 + xy^2 = 0$ $\Rightarrow x^2(1-y) \frac{dy}{dx} + y^2(1+x) = 0$ $\Rightarrow \frac{(1-y)}{y^2} dy + \frac{(1+x)}{x^2} dx = 0$ Integrating on both sides, we get $\int \left(\frac{1}{y^2} - \frac{1}{y}\right) dy + \int \left(\frac{1}{x^2} + \frac{1}{x}\right) dx = c$ $\Rightarrow -\frac{1}{y} - \log y - \frac{1}{x} + \log x = c$ $\Rightarrow \log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$

52.
$$\frac{dy}{dx} \tan y = \sin(x+y) + \sin(x-y)$$
$$\Rightarrow \frac{dy}{dx} \cdot \frac{\sin y}{\cos y} = 2 \sin x \cos y$$
$$\Rightarrow \frac{\sin y}{\cos^2 y} dy = 2 \sin x dx$$

Integrating on both sides, we get $\int \frac{\sin y}{\cos^2 y} \, dy - 2 \int \sin x \, dx = c$ $\Rightarrow \frac{1}{\cos y} + 2 \cos x = c$

$$\Rightarrow \sec y + 2 \cos x = c$$

53.
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$
$$\Rightarrow \frac{dy}{1+y^2} - \frac{dx}{1+x^2} =$$

Integrating on both sides, we get

$$\int \frac{dy}{1+y^2} - \int \frac{dx}{1+x^2} = \tan^{-1}c$$

$$\Rightarrow \tan^{-1}y - \tan^{-1}x = \tan^{-1}c$$

$$\Rightarrow \tan^{-1}\left(\frac{y-x}{1+xy}\right) = \tan^{-1}c$$

$$\Rightarrow y - x = c(1+xy)$$

54. $xy \frac{dy}{dx} = \frac{(1+y^2)(1+x+x^2)}{(1+x^2)}$ Integrating on both sides, we get $\int \frac{y}{1+y^2} dy = \int \frac{1+x^2+x}{x(1+x^2)} dx + c$ $\Rightarrow \frac{1}{2} \int \frac{2y}{1+y^2} dy = \int \frac{1}{r} dx + \int \frac{dx}{1+r^2} + c$ $\Rightarrow \frac{1}{2}\log(1+y^2) = \log x + \tan^{-1} x + c$ $(\csc x \log y)dy + (x^2y)dx = 0$ 55. $\Rightarrow \frac{1}{v} \log y dy + x^2 \sin x dx = 0$ Integrating on both sides, we get $\frac{(\log y)^2}{2} + [x^2(-\cos x) + \int 2x \cos x dx] = c$ $\Rightarrow \frac{(\log y)^2}{2} - x^2 \cos x + 2(x \sin x + \cos x) = c$ $\Rightarrow \frac{(\log y)^2}{2} + (2 - x^2) \cos x + 2x \sin x = c$ 56. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x\log x^2 + x}{\sin y + y\cos y}$ Integrating on both sides, we get $\int (\sin y + y \cos y) dy = \int (x \log x^2 + x) dx + c$ $\Rightarrow -\cos y + y\sin y + \cos y$ $=\frac{x^2}{2}\log x^2 - \int \frac{x^2}{2} \cdot \frac{1}{x^2} \cdot 2x \, dx + \int x \, dx + c$ $\Rightarrow y \sin y = \frac{x^2}{2} \times 2\log x - \int x \, dx + \int x \, dx + c$ $\Rightarrow v \sin v = x^2 \log x + c$ 57. $\cos y \log(\sec x + \tan x) dx$ $= \cos x \log(\sec y + \tan y) dy$ Integrating on both sides, we get $\int \sec x \log(\sec x + \tan x) dx$ = $\int \sec y \log(\sec y + \tan y) dy + c$ Put $\log(\sec x + \tan x) = t \Longrightarrow \sec x \, dx = dt$ and $\log(\sec y + \tan y) = z \Longrightarrow \sec y \, dy = dz$ $\int t dt = \int z dz + c$ *.*.. $\Rightarrow \frac{t^2}{2} = \frac{z^2}{2} + c$ $\Rightarrow \frac{\left[\log(\sec x + \tan x)\right]^2}{2} = \frac{\left[\log(\sec y + \tan y)\right]^2}{2} + c$

_____ dv

58.

$\sqrt{a+x}\frac{dy}{dx}+x=0$

Chapter 07: Differential Equations

Integrating on both sides, we get

$$\int dy + \int \frac{x}{\sqrt{a+x}} dx = c$$

$$\Rightarrow y + \int \frac{x+a-a}{\sqrt{a+x}} dx = c$$

$$\Rightarrow y + \int \left(\sqrt{a+x} - \frac{a}{\sqrt{a+x}}\right) dx = c$$

$$\Rightarrow y + \frac{2}{3}(a+x)^{\frac{3}{2}} - 2a\sqrt{a+x} = c$$

$$\Rightarrow 3y + 2(a+x)^{\frac{3}{2}} - 6a\sqrt{a+x} = 3c$$

$$\Rightarrow 3y + 2\sqrt{a+x} (a+x-3a) = 3c$$

$$\Rightarrow 3y + 2\sqrt{a+x} (x-2a) = 3c$$

59. $ydx + xdy + xy^2 dx - x^2ydy = 0$

$$\Rightarrow \frac{d(xy)}{x^2y^2} + \frac{dx}{x} - \frac{dy}{y} = 0$$

Integrating on both sides, we get

$$-\frac{1}{xy} + \log x - \log y = k$$

$$\Rightarrow \log \frac{x}{y} = \frac{1}{xy} + k$$

60. $y e^{-x/y} dx - (xe^{-x/y} + y^3) dy = 0$

$$\Rightarrow e^{-x/y} (ydx - xdy) = y^3 dy$$

$$\Rightarrow e^{-x/y} (ydx - xdy) = y^3 dy$$

$$\Rightarrow e^{-x/y} \frac{d(x-xdy)}{y^2} = ydy$$

Integrating on both sides, we get

$$-e^{-x/y} \frac{y^2}{2} + c \Rightarrow \frac{y^2}{2} + e^{-x/y} = k,$$

where $k = -c$
61. $y' = 1 + x + y^2 + xy^2$

$$\Rightarrow \frac{dy}{dx} = (1 + x)(1 + y^2)$$

Integrating on both sides, we get

$$\int \frac{dy}{1+y^2} = \int (1+x) dx + c$$

$$\Rightarrow \tan^{-1}y = x + \frac{x^2}{2} + c \qquad \dots (i)$$

		_		
MH.	T-CET Triumph Maths (Hints)			
	Since, $y(0) = 0$ i.e., $y = 0$, when $x = 0$	64	$\frac{\mathrm{d}y}{\mathrm{d}y} = e^{x+y} 1 \tag{i}$	
	$\tan^{-1}(0) = 0 + c \Longrightarrow c = 0$	04.	$\frac{dx}{dx} = e^{-x} = 1 \qquad \dots (1)$	
	$\tan^{-1}y = x + \frac{x^2}{2}$ [From (i)]		$\operatorname{Put} x + y = v \qquad \dots (11)$	1
	$\left(x^{2}\right)$		$\Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}$	
	$\Rightarrow y = \tan\left(x + \frac{x}{2}\right)$		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x} - 1 \qquad \dots (\mathrm{i}\mathrm{i}\mathrm{i}$)
62.	y' - y = 1		Substituting (ii) and (iii) in (i), we ge	et
	$\rightarrow \frac{dy}{dy} - y = 1$		$\frac{dv}{du} = e^{v}$	
	$\rightarrow \frac{dx}{dx}$		Integrating on both sides, we get	
	$\Rightarrow \frac{dy}{dx} = 1 + y$		$\int e^{-v} dv = \int dx + c$	
	Integrating on both sides, we get		$\Rightarrow -e^{-v} = x + c$	
	$\int \frac{dy}{dt} = \int dt + c$		$\Rightarrow x + e^{-v} + c = 0$ $\Rightarrow x + e^{-(x+y)} + c = 0$	
	J_{1+y}		$\Rightarrow x + c + c = 0$	
	$\Rightarrow \log(1+y) = x + c$ Since $x(0) = 1$ i.e. $y = 1$ when $y = 0$	65.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sin(x+y) \qquad \dots (\mathrm{i})$	
÷	Since, $y(0) = 1$ i.e., $y = 1$, when $x = 0$ log $(1 + 1) = 0 + c \Rightarrow c = \log 2$		$Put x + y = v \qquad \dots (ii)$	1
	$\log (1 + y) = x + \log 2$		$\Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$ (iii))
	$\Rightarrow \log\left(\frac{1+y}{y}\right) = x$		Substituting (ii) and (iii) in (i), we ge	et
			$\frac{dv}{dt} - 1 = \sin v$	
	$\Rightarrow \frac{1+y}{2} = e^x$		dx $1-\sin y$	
	$\Rightarrow v = 2e^x - 1$		$\Rightarrow \frac{dv}{1+\sin v} = dx \Rightarrow \frac{1-\sin v}{\cos^2 v} dv = dx$	
	$\Rightarrow y(x) = 2\exp(x) - 1$		Integrating on both sides, we get	
63.	$e^{dy/dx} = (x+1)$		$\int \sec^2 v dv - \int \sec v \tan v dv = \int dx + c$	
	$\Rightarrow \frac{dy}{dt} = \log(x+1)$		$\Rightarrow \tan v - \sec v = x + c$ $\Rightarrow \tan(x + v) - \sec(x + v) = x + c$	
	$\Rightarrow \frac{1}{dx} - \log(x+1)$		$\Rightarrow \tan(x + y) = \sec(x + y) = x + c$	
	Integrating on both sides, we get	66.	$\frac{dy}{dx} = \sin(x+y)\tan(x+y) - 1 \qquad \dots$.(i)
	$\int dy = \int \log (x+1) dx + c$		$\operatorname{Put} x + y = v \qquad \dots$	(ii)
	$\Rightarrow y = x \log (x+1) - \int \frac{x}{x+1} dx + c$		$\Rightarrow 1 + \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x}$	
	$= x \log (x+1) - \int \frac{x+1-1}{x+1} dx + c$		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x} - 1 \qquad \dots$	(iii)
	$\begin{pmatrix} 1 \end{pmatrix}$		Substituting (ii) and (iii) in (i), we ge	et
	$= x \log (x+1) - \int \left(1 - \frac{1}{x+1}\right) dx + c$		$\frac{\mathrm{dv}}{\mathrm{dx}} = \sin v \tan v \implies \frac{\mathrm{dv}}{\mathrm{dx}} = \frac{\sin^2 v}{\cos v}$	
	$y = x \log (x + 1) - x + \log (x + 1) + c$ (i)		Integrating on both sides, we get	\ \
	Since, $y(0) = 3$ i.e., $y = 3$, when $x = 0$ $3 = 0 + c \implies c = 3$		$\int dx - \int \frac{\cos v}{\sin^2 v} dv = c \Longrightarrow x - \left(-\frac{1}{\sin^2 v} \right)^2 dv$	- $= c$
··· .:	$y = x \log (x + 1) + \log (x + 1) - x + 3$		$\frac{1}{1000} = \frac{1}{1000} = 1$	y dy = dt
	[From (i)]		$\Rightarrow x + \operatorname{cosec} v = c$	v uv – utj
<i>:</i> .	$y = (x + 1) \log (x + 1) - x + 3$		$\Rightarrow x + \operatorname{cosec}(x + y) = c$	

640

67. $\frac{\mathrm{d}y}{\mathrm{d}x} = \cos\left(x+y\right) + \sin\left(x+y\right)$(i) Put x + v = v....(ii) $\Rightarrow 1 + \frac{dy}{1} = \frac{dv}{dx}$ $\Rightarrow \frac{dy}{1} = \frac{dv}{1} - 1$(iii) Substituting (ii) and (iii) in (i), we get $\frac{\mathrm{d}v}{\mathrm{d}v} - 1 = \cos v + \sin v$ $\Rightarrow \frac{dv}{dr} = 1 + \cos v + \sin v$ Integrating on both sides, we get $\int \frac{\mathrm{d}v}{1+\cos y + \sin y} = \int \mathrm{d}x + \mathrm{c}$ $\Rightarrow \int \frac{\mathrm{dv}}{1 + \frac{1 - \tan^2 v/2}{1 + \tan^2 v/2} + \frac{2 \tan v/2}{1 + \tan^2 v/2}} = x + c$ $\Rightarrow \int \frac{\sec^2(v/2)}{2(1+\tan v/2)} dv = x + c$ $\Rightarrow \log |1 + \tan v/2| = x + c$ $\Rightarrow \log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = x + c$ 68. $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$(i)(ii) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$(iii) ubstituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dx} = \frac{x^2 + vx^2 + v^2x^2}{x^2} = 1 + v + v^2$ $\Rightarrow x \frac{dv}{dx} = 1 + v^2 \Rightarrow \frac{dv}{1 + v^2} = \frac{dx}{r}$ Integrating on both sides, we get $\tan^{-1} v = \log x + c$ $\Rightarrow \tan^{-1}\left(\frac{y}{x}\right) = \log x + c$ $69. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} \left(\log\frac{y}{x} + 1\right)$(i) Put v = vx....(ii) $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dv} = v(\log v + 1) \Longrightarrow x \frac{dv}{dv} = v \log v$

Chapter 07: Differential Equations Integrating on both sides, we get $\int \frac{\mathrm{d}v}{v \log v} = \int \frac{\mathrm{d}x}{v} + \log c$ $\Rightarrow \log(\log v) = \log x + \log c$ Put log v = t $\Rightarrow \frac{1}{v} dv = dt$ $\Rightarrow \log v = xc \Rightarrow \log\left(\frac{y}{r}\right) = cx$ 70. (x+y) dx + x dy = 0 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\left(\frac{x+y}{x}\right)$(i)(ii) $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{-x - vx}{r} = -1 - v$ $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}v} = -1 - 2v$ Integrating on both sides, we get $\int \frac{\mathrm{d}v}{1+2x} = -\int \frac{\mathrm{d}x}{x} + \log c_1$ $\Rightarrow \frac{1}{2}\log(1+2v) = -\log x + \log c_1$ $\Rightarrow \log\left(1+2\frac{y}{r}\right)=2\log\frac{c_1}{r}$ $\Rightarrow \frac{x+2y}{r} = \left(\frac{c_1}{r}\right)^2$ $\Rightarrow x^2 + 2xv = c_1^2$ $\Rightarrow x^2 + 2xy = c$, where $c = c_1^2$ 71. $x + y \frac{dy}{dx} = 2y \Rightarrow \frac{x}{v} + \frac{dy}{dx} = 2$(i) Put v = vx....(ii) $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$(iii) Substituting (ii) and (iii) in (i), we get $\frac{1}{v} + v + x \frac{dv}{dv} = 2$ \Rightarrow v + x. $\frac{dv}{dx} = \frac{2v-1}{v} \Rightarrow \frac{v}{(v-1)^2} dv = -\frac{dx}{x}$ $\Rightarrow \frac{v-1+1}{(v-1)^2} dv = -\frac{dx}{r}$ $\Rightarrow \left[\frac{1}{(v-1)} + \frac{1}{(v-1)^2}\right] dv = -\frac{dx}{r}$

MHT-CET Triumph Maths (Hints) Integrating on both sides, we get $\int \frac{\mathrm{d}v}{v-1} + \int \frac{\mathrm{d}v}{(v-1)^2} = -\int \frac{\mathrm{d}x}{v} + c$ $\Rightarrow \log(v-1) - \frac{1}{v-1} = -\log x + c$ $\Rightarrow \log(y-x) = \frac{x}{y-x} + c$ 72. $y^2 dx + (x^2 - xy + y^2) dy = 0$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}r} = \frac{-y^2}{r^2 - ry + y^2}$(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$(iii) Substituting (ii) and (iii) in (i), we get $\mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x} = \frac{-\mathbf{v}^2 x^2}{\mathbf{r}^2 - \mathbf{r} \, \mathbf{v} \mathbf{r} + \mathbf{v}^2 \mathbf{r}^2}$ $\Rightarrow x \frac{dv}{dr} = \frac{-v^2}{1-v+v^2} - v$ $\Rightarrow x \frac{dv}{dr} = \frac{-v - v^3}{1 - v + v^2}$ Integrating on both sides, we get $\int \frac{\mathbf{v}^2 - \mathbf{v} + 1}{\mathbf{v}(\mathbf{v}^2 + 1)} d\mathbf{v} = -\int \frac{dx}{\mathbf{v}} + \mathbf{c}$ $\Rightarrow \int \left(\frac{1}{v} - \frac{1}{v^2 + 1}\right) dv = -\int \frac{dx}{v} + c$ $\Rightarrow \log v - \tan^{-1} v = -\log x + c$ $\Rightarrow \log\left(\frac{y}{x}\right) - \tan^{-1}\left(\frac{y}{x}\right) = -\log x + c$ $\Rightarrow \log y = \tan^{-1}\left(\frac{y}{r}\right) + c$ 73. $2xy \frac{dy}{dx} = x^2 + 3y^2$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + 3y^2}{2xy}$(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dx} = \frac{x^2 + 3v^2 x^2}{2vx^2}$ $\Rightarrow x \frac{dv}{dr} = \frac{x^2(1+3v^2)}{2r^2v} - v$

 $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1+3v^2}{2v} - v$ $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1+v^2}{2v}$ Integrating on both sides, we get $\int \frac{2v}{1+v^2} dv = \int \frac{dx}{v} + \log p$ $\Rightarrow \log (1 + v^2) = \log x + \log p$ $\Rightarrow \log\left(\frac{1+v^2}{r}\right) = \log p$ $\Rightarrow \frac{1+v^2}{r} = p \qquad \Rightarrow \quad \frac{x^2+y^2}{r^3} = p$ $\Rightarrow x^2 + v^2 = \mathbf{p} \cdot x^3$ 74. $\frac{dy}{dr} = \frac{x}{2v-r}$(i)(ii) Put v = vx $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{x}{2vr - r} = \frac{1}{2v - 1}$ $\Rightarrow x \frac{dv}{dx} = \frac{1}{2v-1} - v = \frac{1-2v^2+v}{2v-1}$ $\Rightarrow x \frac{\mathrm{dv}}{\mathrm{dv}} = -\frac{(v-1)(2v+1)}{2v-1}$ $\Rightarrow \frac{(2v-1)}{(2v+1)(v-1)} dv = \frac{-dx}{r}$ $\Rightarrow \frac{1}{3(y-1)} + \frac{4}{3(2y+1)} = \frac{-dx}{x}$ Integrating on both sides, we get $\frac{1}{2}\log(v-1) + \frac{4}{2} \cdot \frac{1}{2}\log(2v+1)$ $= -\log x + \log c_1$ $\Rightarrow \log(v-1)^{1/3} + \log(2v+1)^{2/3} = \log \frac{c_1}{r}$ $\Rightarrow (v-1)^{1/3}(2v+1)^{2/3} = \frac{c_1}{2}$ $\Rightarrow \left(\frac{y-x}{r}\right) \left(\frac{2y+x}{r}\right)^2 = \frac{c_1^3}{r^3}$ $\Rightarrow (x-y)(x+2y)^2 = c$, where $c = -c_1^3$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-y}{x+y}$ 75.(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dx} = \frac{x - vx}{x + vx}$ $\Rightarrow x \frac{dv}{dr} = \frac{1-v}{1+v} - v$ $\Rightarrow x \frac{\mathrm{dv}}{\mathrm{dx}} = \frac{1 - 2v - v^2}{1 + v}$ Integrating on both sides, we get $\int \frac{1+v}{2-(1+v)^2} dv = \int \frac{dx}{x} + \log c_1$ $\Rightarrow -\frac{1}{2}\log[2-(1+v)^2] = \log x + \log c_1$ $\Rightarrow -\frac{1}{2} \log(1 - 2v - v^2) = \log (xc_1)$ $\Rightarrow \log\left(\frac{1}{\sqrt{1-2v-v^2}}\right) = \log(xc_1)$ $\Rightarrow \frac{1}{\sqrt{1-2y-y^2}} = xc_1$ $\Rightarrow \frac{1}{1-2y-y^2} = x^2 c_1^2$ $\Rightarrow x^2 c_1^2 (1 - 2v - v^2) = 1$ $\Rightarrow x^2 c_1^2 \left(1 - \frac{2y}{x} - \frac{y^2}{x^2} \right) = 1$ $\Rightarrow c_1^2 (x^2 - 2xy - y^2) = 1$ $\Rightarrow y^2 + 2xy - x^2 = c$, where $c = \frac{-1}{c_c^2}$ A differential equation in which the dependent

76. A differential equation in which the dependent variable (y) and its differential coefficient occur only in the first degree and are not multiplied together is called a linear differential equation.

Hence, $y \frac{dy}{dx} + 4x = 0$ is a non-linear differential equation.

77.
$$x^2 \frac{dy}{dx} + y = e^x$$
 can be written as
 $\frac{dy}{dx} + \frac{y}{x^2} = \frac{e^x}{x^2}$, which is a linear equation.

Chapter 07: Differential Equations
78.
$$\frac{dy}{dx} + \frac{2x}{1+x^2} y = \frac{x^2 - 1}{x^2 + 1}$$

∴ I.F. $= e^{\int \frac{2x}{1+x^2} dx} = e^{\log(1 + x^2)} = 1 + x^2$
79. $(x \log x) \frac{dy}{dx} + y = 2 \log x$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{x \log x} y = \frac{2}{x}$
∴ I.F. $= e^{\int \frac{1}{x \log x} dx} = e^{\log(\log x)} = \log x$
80. $(1 - x^2) \frac{dy}{dx} - xy = 1$
 $\Rightarrow \frac{dy}{dx} - \frac{x}{1-x^2} \cdot y = \frac{1}{1-x^2}$
∴ I.F. $= e^{\int \frac{-x}{1-x^2} dx} = e^{\frac{1}{2}\log(1-x^2)} = e^{\log(\sqrt{1-x^2})} = \sqrt{1-x^2}$
81. $x \frac{dy}{dx} + y \log x = x \cdot e^x x^{-\frac{1}{2}\log x}$
 $\Rightarrow \frac{dy}{dx} + \frac{\log x}{x} \cdot y = e^x x^{-\frac{1}{2}\log x}$
 \therefore I.F. $= e^{\int \frac{\log x}{x} dx} = e^{\frac{1}{2}(\log x)^2}$
 $= \left(e^{\frac{1}{2}\log x}\right)^{\log x} \quad \dots [\because (a^m)^n = a^{mn}]$
 $= (\sqrt{x})^{\log x}$
82. $(1 + y^2) dx - (\tan^{-1}y - x) dy = 0$
 $\Rightarrow (1 + y^2) dx = (\tan^{-1}y - x) dy$
 $\Rightarrow \frac{dx}{dy} = \frac{\tan^{-1}y - x}{1+y^2}$
This is the linear differential equation of the form $\frac{dx}{dy} + P.x = Q$, where $P = \frac{1}{1+y^2}$
∴ I.F. $= e^{\int Pdy} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1}y}$
83. $\frac{dy}{dx} + 2 \cot x \cdot y = 3x^2 \csc^2 x$
∴ I.F. $= e^{\int Pdy} = e^{2\log \sin x} = \sin^2 x$
∴ solution of the given equation is

y. $\sin^2 x = \int 3x^2 \csc^2 x . \sin^2 x dx + c$ $\Rightarrow y \sin^2 x = \int 3x^2 dx + c \Rightarrow y \sin^2 x = x^3 + c$

MHT-CET Triumph Maths (Hints)

- 84. $\frac{dy}{dx} + 2y \tan x = \sin x$ Here, P = 2 tan x and Q = sin x $\therefore \quad I.F. = e^{\int 2 \tan x \, dx}$ $= e^{2\log(\sec x)} = e^{\log \sec^2 x} = \sec^2 x$
- $\therefore \quad \text{solution of the given equation is}$ $y (\sec^2 x) = \int \sin x \sec^2 x \, dx + c$ $\Rightarrow y \sec^2 x = \int \sec x \tan x \, dx + c$ $\Rightarrow y \sec^2 x = \sec x + c$
- 85. $\frac{dy}{dx} = \frac{1}{x+y+1} \Rightarrow \frac{dx}{dy} = x+y+1$ $\Rightarrow \frac{dx}{dy} x = y+1$
- $\therefore \qquad \text{I.F.} = e^{\int -1 dy} = e^{-y}$
- $\therefore \text{ solution of the given equation is}$ $x \cdot e^{-y} = \int (y+1)e^{-y} \, dy + c$ $\Rightarrow xe^{-y} = e^{-y} (-y-2) + c$ $\Rightarrow x = ce^{y} y 2$
- 86. $x \frac{dy}{dx} + y = x^2 + 3x + 2 \Rightarrow \frac{dy}{dx} + \frac{y}{x} = x + 3 + \frac{2}{x}$ Here, $P = \frac{1}{x}$, $Q = x + 3 + \frac{2}{x}$ \therefore I.F. $= e^{\int \frac{1}{x} dx} = e^{\log x} = x$
- \therefore solution of the given equation is

$$y. x = \int \left(x + 3 + \frac{2}{x}\right) x \, dx + c$$
$$\Rightarrow xy = \int x^2 dx + \int 3x \, dx + \int 2 \, dx + c$$
$$\Rightarrow xy = \frac{x^3}{3} + \frac{3x^2}{2} + 2x + c$$

87.
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

 $\Rightarrow \frac{dy}{dx} + \frac{1}{x \log x} y = \frac{2}{x}$
 \therefore I.F. $= e^{\int \frac{1}{x \log x} dx} = e^{\log (\log x)} = \log x$
 \therefore solution of the given equation is
 $y \log x = \int \frac{2}{x} .\log x dx + c$
 $\Rightarrow y \log x = (\log x)^2 + c$

88. $\frac{dy}{dx} + \frac{3x^2}{1+x^3}y = \frac{\sin^2 x}{1+x^3}$ Here, P = $\frac{3x^2}{1+x^3}$ and Q = $\frac{\sin^2 x}{1+x^3}$ $IF = e^{\int \frac{3x^2}{1+x^3} dx} = e^{\log(1+x^3)} = 1 + r^3$ ÷ solution of the given equation is $y.(1+x^3) = \int \frac{\sin^2 x}{1+x^3} (1+x^3) dx$ $\Rightarrow y(1+x^3) = \int \frac{1-\cos 2x}{2} dx$ $\Rightarrow y(1+x^3) = \frac{1}{2}x - \frac{\sin 2x}{4} + c$ 89. $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ Here, $P = \sec^2 x$, $Q = \tan x \sec^2 x$ $IF = e^{\int \sec^2 x \, dx} = e^{\tan x}$ ÷ *.*.. solution of the given equation is $y.e^{\tan x} = \int \tan x.\sec^2 x e^{\tan x} dx + c$ Put $\tan x = t \Longrightarrow \sec^2 x \, dx = dt$ $y e^{\tan x} = \int t e^{t} dt + c$ *.*.. $\Rightarrow y e^{\tan x} = t e^{t} - e^{t} + c$ $\Rightarrow y e^{\tan x} = e^{\tan x} (\tan x - 1) + c$ $\Rightarrow v = \tan x - 1 + c \cdot e^{-\tan x}$ 90. $(x+2y^3)\frac{dy}{dx} - y = 0$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x+2y^3}$ $\Rightarrow \frac{dx}{dy} = \frac{x+2y^3}{y} \Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y^2$ $\therefore \quad \text{I.F.} = e^{\int -\frac{1}{y} dy} = e^{-\log y} = \frac{1}{2}$ solution of the given equation is *.*. $x(I.F.) = \int Q(I.F.) dy + c$ $\Rightarrow x.\frac{1}{v} = \int 2y^2.\frac{1}{v}dy + c$ $\Rightarrow \frac{x}{y} = y^2 + c$ $\Rightarrow x = y^3 + c.y$ $\Rightarrow y^3 - x = -cy$ \Rightarrow $y^3 - x = Ay$, where A = -c

91. $xdy + ydx + \log ydy = 0$ $\Rightarrow xdy + ydx = -\log ydy$ $\Rightarrow y \frac{\mathrm{d}x}{\mathrm{d}y} + x = -\log y \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{x}{v} = -\frac{\log y}{v}$ $I.F. = e^{\int \frac{1}{y} dy} = e^{\log y} = v$ Ŀ. *.*.. solution of the given equation is $x.y = -\int y.\frac{\log y \, dy}{v} + c$ $\Rightarrow xy = -(y \log y - y) + c$ $\Rightarrow xv + (v \log v - v) = c$ 92. $\frac{dy}{dx} = y \tan x - y^2 \sec x$ $\Rightarrow \frac{1}{v^2} \cdot \frac{dy}{dx} - \frac{1}{v} \tan x = -\sec x \quad \dots (i)$ Put $v = v^{-1}$ $\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}r} = -\frac{1}{v^2} \cdot \frac{\mathrm{d}y}{\mathrm{d}r}$ $\therefore -\frac{dv}{dt} - v \tan x = -\sec x$ [From (i)] $\Rightarrow \frac{dv}{du} + v \tan x = \sec x$ This is the standard form of the linear differential equation. I.F. = $e^{\int \tan x \, dx}$ = $e^{\log \sec x}$ = sec x Ŀ. 93. $x \frac{dy}{dr} = 2y + x^3 e^x \Rightarrow \frac{dy}{dr} - \frac{2}{r}y = x^2 e^x$ I.F. = $e^{-\int \frac{2}{x} dx} = e^{-2 \log x} = e^{\log x^{-2}} = \frac{1}{x^2}$ ÷ solution of the given equation is *.*.. $y \cdot \frac{1}{x^2} = \int x^2 e^x \cdot \frac{1}{x^2} dx + c$ $\Rightarrow \frac{y}{r^2} = e^x + c$(i) Since, y = 0, when x = 1*.*.. $0 = e^1 + c \Longrightarrow c = -e$ $\frac{y}{r^2} = e^x - e$[From (i)] $\Rightarrow v = x^2(e^x - e)$ 94. xdy = y(dx + ydy) $\Rightarrow y dx = (x - y^2) dy \Rightarrow \frac{dx}{dy} + \left(-\frac{1}{y}\right)x = -y$

I.F. = $e^{\int -\frac{1}{y} dy} = e^{-\log y} = \frac{1}{2}$

...

Chapter 07: Differential Equations solution of the given equation is *.*.. $x \cdot \frac{1}{y} = \int -y \cdot \frac{1}{y} dy + c$ $\Rightarrow \frac{x}{y} = -y + c$(i) Since, y(1) = 1 i.e., y = 1, when x = 1 $1 = -1 + c \Longrightarrow c = 2$ $\therefore \frac{x}{y} = -y + 2$[From (i)] Putting x = -3, we get $-\frac{3}{v} = -y + 2$ $\Rightarrow v^2 - 2v - 3 = 0$ $\Rightarrow (y-3)(y+1) = 0$ Since v(x) > 0, v = 395. $\frac{\mathrm{d}y}{\mathrm{d}r} = y + 2x$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} - y = 2x$ $I_{r}F_{r} = e^{\int -1.dx} = e^{-x}$ ÷ solution of the given equation is *.*.. $ye^{-x} = \int 2x e^{-x} dx + c$ $= -2xe^{-x} - 2e^{-x} + c$ $ve^{-x} = -2(x+1)e^{-x} + c$ *.*.. $y = -2(x+1) + ce^{x}$ *.*..(i) Since, the curve passes through origin (0, 0). *.*.. $0 = -2(0+1) + ce^{0}$ $\Rightarrow c = 2$ *.*.. $v = -2(x+1) + 2e^{x}$[From (i)] $v + 2(x + 1) = 2e^{x}$ *.*.. 96. Let P be the population at time t years. Then, $\frac{dP}{dt} = kP$ $\Rightarrow \frac{dP}{P} = kdt$ Integrating on both sides, we get $\log P = kt + c$ When t = 0, P = 40000 $\log 40000 = 0 + c \implies c = \log 40000$... $\log P = kt + \log 40000$ *.*.. $\Rightarrow \log\left(\frac{P}{40000}\right) = kt$(i) When t = 40 yrs, P = 60000 $\log\left(\frac{60000}{40000}\right) = 40 \text{ k} \Rightarrow \text{k} = \frac{1}{40} \log\left(\frac{3}{2}\right)$ *.*..

MHT-CET Triumph Maths (Hints)

$$\frac{1}{2} \log \left(\frac{P}{40000}\right) = \frac{t}{40} \log\left(\frac{3}{2}\right) \qquad \dots [From (i)]$$
When t = 60 yrs, we have

$$\log \left(\frac{P}{40000}\right) = \frac{60}{40} \log\left(\frac{3}{2}\right)$$

$$\Rightarrow \frac{P}{40000} = \left(\frac{3}{2}\right)^{\frac{3}{2}} \Rightarrow \frac{P}{40000} = \frac{3}{2}\left(\frac{3}{2}\right)^{\frac{1}{2}}$$

$$\Rightarrow P = 40000 \times \frac{3}{2} \times 1.2247 = 73482$$
97. Let P₀ be the initial population and let the
population after t years be P. Then,

$$\frac{dP}{dt} = kP \Rightarrow \frac{dP}{P} = kdt$$
Integrating on both sides, we get

$$\log P = kt + c$$
When t = 0, P = P₀

$$\therefore \log P_0 = 0 + c \Rightarrow c = \log P_0$$

$$\therefore \log P = kt + \log P_0$$

$$\Rightarrow \log \frac{P}{P_0} = kt \qquad \dots (i)$$
When t = 5 hrs, P = 2P₀

$$\therefore \log \frac{2P_0}{P_0} = 5k$$

$$\Rightarrow k = \frac{\log 2}{5}$$

$$\therefore \log \frac{P}{P_0} = \frac{\log 2}{5} t \qquad \dots [From (i)]$$
When t = 25 hrs, we have

$$\log \frac{P}{P_0} = \frac{\log 2}{5} \times 25 = 5 \log 2 = \log 32$$

$$\therefore P = 32P_0$$
98. Let '0' be the temperature of the body at any
time 't'.

$$\therefore \frac{d\theta}{dt} \propto (\theta - 20)$$

$$\therefore \frac{d\theta}{dt} = k(\theta - 20)$$
Integrating on both sides, we get

$$\log (\theta - 20) = kt + c$$
When t = 0, $\theta = 100^{\circ} C$

$$\therefore \log (100 - 20) = k(0) + c \qquad \Rightarrow c = \log 80$$

$$\Rightarrow k = \frac{1}{20} \log\left(\frac{1}{2}\right)$$

$$\begin{split} &\therefore \quad \log \left(\theta - 20\right) = \frac{t}{20} \log \left(\frac{1}{2}\right) + \log 80 \\ &\qquad \dots [From (i)] \\ & \text{When } \theta = 30^{\circ} \text{ C, we have} \\ & \log \left(30 - 20\right) = t \left(\frac{1}{20}\right) \log \left(\frac{1}{2}\right) + \log 80 \\ &\Rightarrow \log 10 - \log 80 = \frac{t}{20} \log \left(\frac{1}{2}\right) \\ &\Rightarrow \log \left(\frac{1}{8}\right) = \frac{t}{20} \log \left(\frac{1}{2}\right) \\ &\Rightarrow 3\log \left(\frac{1}{2}\right) = \frac{t}{20} \log \left(\frac{1}{2}\right) \\ &\Rightarrow 3\log \left(\frac{1}{2}\right) = \frac{t}{20} \log \left(\frac{1}{2}\right) \\ &\Rightarrow \frac{t}{20} = 3 \\ &\Rightarrow t = 60 \text{ minutes} \\ \end{aligned}$$
99. Let 'x' be the number of bacteria present at time 't'. \\ &\therefore \quad \frac{dx}{dt} \propto x \\ &\therefore \quad \frac{dx}{dt} = kx \\ & \text{Integrating on both sides, we get} \\ & \log (1000) = k(0) + c \\ &\Rightarrow c = \log (1000) \\ &\therefore \quad \log (1000) = k(1) + \log (1000) \\ &\Rightarrow k = \log \left(\frac{2000}{1000}\right) = \log 2 \\ &\therefore \quad \log (2000) = k(1) + \log (1000) \\ &\Rightarrow k = \log \left(\frac{2000}{1000}\right) = \log 2 \\ &\therefore \quad \log x = t \log 2 + \log (1000) \quad \dots [From (i)] \\ & \text{When } t = 2\frac{1}{2} = \frac{5}{2}, \text{ we have} \\ & \log x = \left(\frac{5}{2}\right) \log 2 + \log (1000) \\ &= \log \left(4\sqrt{2}\right) + \log (1000) \\ &= \log (4000 \sqrt{2}) \\ &= \log (4000 \sqrt{2}) \\ &= \log (4000 \sqrt{2}) \\ &= \log (5656) \\ &\Rightarrow x = 5656 \end{aligned}

...
Chapter 07: Differential Equations

õ **Competitive Thinking** Here, the highest order derivative is $\frac{d^3y}{dv^3}$. 1. *.*.. order = 32. Here, the order of the differential equation is 1. Here, the highest order derivative is $\frac{d^3y}{dr^3}$. 3. order = 3*.*.. Here, the highest order derivative is $\frac{d^3y}{dr^3}$ with 6. power 2. *.*.. order = 3, degree = 2 $y = x\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{\underline{\mathrm{d}y}}$ 7. $\Rightarrow y \frac{dy}{dx} = x \left(\frac{dy}{dx}\right)^2 + 2$ order = 1, degree = 2*.*.. $y = x \left(\frac{dy}{dx}\right)^2 + \left(\frac{dx}{dy}\right)^2$ 8. $\Rightarrow y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = x \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^4 + 1$ ÷. order = 1, degree = 49. $\left(1+3\frac{dy}{dx}\right)^{\frac{2}{3}} = 4 \frac{d^{3}y}{dx^{3}}$

 $\Rightarrow \left(1 + 3\frac{dy}{dx}\right)^2 = 4^3 \left(\frac{d^3y}{dx^3}\right)^3$ Here, the highest order derivative is $\frac{d^3y}{dx^3}$ with

power 3.

...

 \therefore order = 3 and degree = 3

10.
$$\frac{d^2 y}{dx^2} = \sqrt[3]{1 + \left(\frac{dy}{dx}\right)^2}$$
$$\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^3 = 1 + \left(\frac{dy}{dx}\right)^2$$

Here, the highest order derivatives is $\frac{d^2 y}{dx^2}$ with power 3 Order = 2 and degree = 3

11.
$$\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^{\frac{7}{3}} = 7\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)$$
$$\Rightarrow \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^7 = 7^3\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^3$$

Here, the highest order derivative is $\frac{d^2y}{dx^2}$ with power 3.

$$\therefore$$
 order = 2 and degree = 3

12.
$$\frac{d^{3}y}{dx^{3}} = \sqrt[5]{1 - \left(\frac{dy}{dx}\right)^{7}}$$
$$\Rightarrow \left(\frac{d^{3}y}{dx^{3}}\right)^{5} = 1 - \left(\frac{dy}{dx}\right)^{7}$$

order = 3, degree =
$$5$$

13. p.
$$\frac{d^2 y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$$

 $\Rightarrow \left(p \cdot \frac{d^2 y}{dx^2}\right)^2 = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3$
 $\therefore \quad \text{order} = 2 \text{ and degree} = 2$

$$\therefore$$
 order = 2 and degree = 2

- 14. $\left(\frac{d^2 y}{dx^2}\right)^{1/3} + \left(x + \frac{dy}{dx}\right)^{1/2} = 0$ $\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^{1/3} = -\left(x + \frac{dy}{dx}\right)^{1/2}$ $\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^2 = \left(x + \frac{dy}{dx}\right)^3$
- \therefore order = 2 and degree = 2

15.
$$(1+y_1^2)^{2/3} = y_2$$

⇒ $(1+y_1^2)^2 = (y_2)^3$
∴ order(n) = 2, degree(m) = 3
∴ $\frac{m+n}{m-n} = \frac{3+2}{3-2} = 5$
16. $y = px + \sqrt[3]{a^2p^2 + b^2}$
⇒ $(y - px)^3 = a^2p^2 + b^2$

$$\Rightarrow y^{3} - 3y^{2}px + 3p^{2}x^{2}y - p^{3}x^{3} = a^{2}p^{2} + Here, p = \frac{dy}{dx}$$

$$\therefore \quad \text{order} = 1, \text{ degree} = 3$$

 b^2

17.
$$\left[1 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right)\right]^{\overline{4}} = \frac{d^2y}{dx^2}$$
$$\Rightarrow \left[1 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right)\right]^3 = \left(\frac{d^2y}{dx^2}\right)^{\overline{4}}$$

Here, the highest order derivative is $\frac{d^2y}{dr^2}$.

- order = 2 Since, the given differential equation cannot be expressed as polynomial in differential coefficients, the degree is not defined.
- 18. $y_2^{3/2} y_1^{1/2} 4 = 0$ $\Rightarrow y_2^{3/2} = y_1^{1/2} + 4$ Squaring on both sides, we get $y_2^3 = (y_1^{1/2} + 4)^2 = y_1 + 16 + 8y_1^{1/2}$ $\Rightarrow y_2^3 - y_1 - 16 = 8y_1^{1/2}$ Squaring on both sides, we get $(y_2^3 - y_1 - 16)^2 = 64y_1$

Here, the highest order derivative is y_2 with power 6.

 \therefore degree = 6

...

19.
$$\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx - dy)$$

 $\Rightarrow \frac{\sqrt{\sin x}}{\sqrt{\cos x}} (dx + dy) = dx - dy$
 $\Rightarrow \sqrt{\tan x} \left(1 + \frac{dy}{dx}\right) = 1 - \frac{dy}{dx}$
 $\Rightarrow \frac{dy}{dx} = \frac{1 - \sqrt{\tan x}}{1 + \sqrt{\tan x}}$

This is a differential equation of order 1 and degree 1.

20.
$$y(x) = 1 + \frac{dy}{dx} + \frac{1}{1.2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1.2.3} \left(\frac{dy}{dx}\right)^3 + \dots$$
$$\Rightarrow y(x) = e^{\frac{dy}{dx}} \quad \dots \left[\because e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right]$$
$$\Rightarrow \frac{dy}{dx} = \log y$$
This is a differential equation of degree 1.

21.
$$y = C_1 e^{2x+C_2} + C_3 e^x + C_4 \sin(x + C_5)$$

= $C_1 e^{C_2} e^{2x} + C_3 e^x + C_4 (\sin x \cos C_5 + \cos x \sin C_5)$
= $A e^{2x} + C_3 e^x + B \sin x + D \cos x$,
where $A = C_1 e^{C_2}$, $B = C_4 \cos C_5$, $D = C_4 \sin C_5$

Since, this equation consists of four arbitrary constants.

 \therefore order of differential equation = 4

22. Consider option (C),

$$y = 2x - 4$$

 $\therefore \qquad \frac{dy}{dx} = 2$

$$\therefore \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - \frac{x\mathrm{d}y}{\mathrm{d}x} + y = 2^2 - 2x + 2x - 4 = 0$$

23.
$$y = a + \frac{b}{x}$$

 $\Rightarrow \frac{dy}{dx} = -\frac{b}{x^2}$ (i)
 $\Rightarrow \frac{d^2 y}{dx^2} = \frac{2b}{x^3} \Rightarrow x \frac{d^2 y}{dx^2} = \frac{2b}{x^2}$
 $\Rightarrow x \frac{d^2 y}{dx^2} - \frac{2b}{x^2} = 0$
 $\Rightarrow x \frac{d^2 y}{dx^2} + \frac{2dy}{dx} = 0$ [From (i)]

24.
$$y = e^{-x} \cos 2x$$

 $\Rightarrow \frac{dy}{dx} = -2e^{-x} \sin 2x - e^{-x} \cos 2x$
 $\Rightarrow \frac{d^2 y}{dx^2} = 4e^{-x} \sin 2x - 3e^{-x} \cos 2x$
 $\therefore \frac{d^2 y}{dx^2} + \frac{2dy}{dx} + 5y = 0$

25.
$$y = mx + \frac{4}{m}$$
(i)
 $\Rightarrow \frac{dy}{dx} = m$
Putting $m = \frac{dy}{dx}$ in (i), we get
 $y\left(\frac{dy}{dx}\right) = x\left(\frac{dy}{dx}\right)^2 + 4$

26.
$$y = ae^{bx}$$
(i)
 $\Rightarrow \frac{dy}{dx} = abe^{bx}$
 $\Rightarrow \frac{dy}{dx} = by$ (ii) [From (i)]
 $\Rightarrow \frac{d^2y}{dx^2} = b\frac{dy}{dx} \Rightarrow y\frac{d^2y}{dx^2} = by\frac{dy}{dx}$
 $\Rightarrow y\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 0$ [From (ii)]

27. $y = \frac{A}{x} + Bx^2$ $\Rightarrow xy = A + Bx^3$ Differentiating w.r.t. x, we get $x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 3\mathrm{B}x^2$(i) Again, differentiating w.r.t. x, we get $x\frac{d^2y}{dr^2} + 2\frac{dy}{dr} = 6Bx$ $\Rightarrow x^2 \frac{d^2 y}{dr^2} + 2x \frac{dy}{dr} = 6Bx^2$ $\Rightarrow x^2 \frac{d^2 y}{1 + 2} + 2(3Bx^2 - y) = 6Bx^2 \dots [From (i)]$ $\Rightarrow x^2 \frac{d^2 y}{dr^2} = 2y$ $v = e^{mx}$ 28. $\Rightarrow \log y = mx$...(i) Differentiating w.r.t. x, we get $\frac{1}{v} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{m}$ $\Rightarrow \frac{1}{v} \cdot \frac{dy}{dr} = \frac{\log y}{r}$[From (i)] $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}r} = \left(\frac{y}{r}\right)\log y$ 29. $y = e^{x} (A \cos x + B \sin x)$ $\Rightarrow y' = e^x (A \cos x + B \sin x)$ $+ e^{x} (B \cos x - A \sin x)$ \Rightarrow y' = y + e^x (B cos x - A sin x) ...(i) $y'' = y' + e^x (B \cos x - A \sin x)$ *.*.. $-e^{x}(A\cos x + B\sin x)$ $\Rightarrow y'' = y' + (y' - y) - y$...[From (i)] \Rightarrow y'' - 2y' + 2y = 030. $y = a \sin(\log x) + b \cos(\log x) \dots(i)$ $\Rightarrow \frac{dy}{dx} = \frac{a\cos(\log x)}{x} - \frac{b\sin(\log x)}{x}$ $\Rightarrow x \frac{dy}{dx} = a\cos(\log x) - b\sin(\log x)$ Differentiating w.r.t. x, we get $x\frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{-a\sin(\log x)}{r} - \frac{b\cos(\log x)}{r}$ $\Rightarrow x \frac{d^2 y}{dr^2} + \frac{dy}{dr} = -\frac{1}{r} [a \sin(\log x) + b \cos(\log x)]$ $\Rightarrow x^2 \frac{d^2 y}{dr^2} + x \frac{dy}{dr} = -y$[From (i)] $\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$

Chapter 07: Differential Equations 31. Differentiating the given equation, we get $\frac{dy}{dr} = A$ $y = x \left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right)^3$, which is of degree 3 *.*.. 32. $x = A \cos(nt + \alpha)$ Diferentiating w.r.t t, we get $\frac{dx}{dt} = -A \sin(nt + \alpha) \cdot n$ $\Rightarrow \frac{dx}{dt} = -An \sin(nt + \alpha)$ Differentiating w.r.t t, we get $\frac{d^2x}{dt^2} = -An^2 \cos(nt + \alpha)$ $\Rightarrow \frac{d^2 x}{dt^2} = -n^2 x$ $\Rightarrow \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \mathrm{n}^2 x = 0$ 33. $v = e^{a \sin x}$ $\Rightarrow \log y = a \sin x$(i) Differentiating w.r.t. x, we get $\frac{1}{v} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{a}\cos x$ $\Rightarrow a = \frac{1}{v \cos x} \cdot \frac{dy}{dx}$ Putting the value of a in (i), we get $y \log y = \tan x \frac{\mathrm{d}y}{\mathrm{d}x}$ $34. \quad y^2 = 2d\left(x + \sqrt{d}\right)$(i) Differentiating w.r.t. x, we get $2y\frac{dy}{dy} = 2d$(ii) Substituting (ii) in (i), we get $y^{2} = 2y \frac{\mathrm{d}y}{\mathrm{d}x} \left(x + \sqrt{y \frac{\mathrm{d}y}{\mathrm{d}x}} \right)$ $\Rightarrow y = 2x \frac{dy}{dr} + 2 \frac{dy}{dr} \cdot \sqrt{y \frac{dy}{dr}}$ $\Rightarrow \left(y - 2x\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4y \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$ This is a differential equation of order 1 and degree 3. 35. Required equation of parabola is $(y-k)^2 = 4a(x-h)$ Since, this equation has two arbitary constants,

it's order is 2.

36. Equation of family of parabolas whose axis is X-axis is $y^2 = 4a(x - h)$ Differentiating w.r.t. *x*, we get

$$2y\frac{dy}{dx} = 4a$$
$$\Rightarrow y\frac{dy}{dx} = 2a$$

Again, differentiating w.r.t. *x*, we get

$$y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 0$$

 \therefore order = 2 and degree = 1

37.
$$y = \operatorname{ax} \cos\left(\frac{1}{x} + b\right) \quad \dots(i)$$
$$\Rightarrow \frac{dy}{dx} = -\operatorname{ax} \sin\left(\frac{1}{x} + b\right) \cdot \left(-\frac{1}{x^2}\right) + \operatorname{a} \cos\left(\frac{1}{x} + b\right)$$
$$\Rightarrow \frac{dy}{dx} = \frac{a}{x} \cdot \sin\left(\frac{1}{x} + b\right) + \operatorname{a} \cos\left(\frac{1}{x} + b\right)$$
$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{a}{x} \cos\left(\frac{1}{x} + b\right) \cdot \left(-\frac{1}{x^2}\right)$$
$$- \frac{a}{x^2} \sin\left(\frac{1}{x} + b\right) - \operatorname{a} \sin\left(\frac{1}{x} + b\right) \cdot \left(-\frac{1}{x^2}\right)$$
$$= -\frac{a}{x^3} \cos\left(\frac{1}{x} + b\right) = -\frac{ax}{x^4} \cos\left(\frac{1}{x} + b\right)$$
$$\therefore \quad \frac{d^2 y}{dx^2} = -\frac{y}{x^4} \qquad \dots[From (i)]$$
$$\Rightarrow x^4 \frac{d^2 y}{dx^2} + y = 0 \Rightarrow x^4 y_2 + y = 0$$

38. The differential equation representing the family of parabolas having vertex at origin is $y^2 = 4ax$ (i) Differentiating w.r.t. *x*, we get

$$2y \frac{dy}{dx} = 4a$$

$$\Rightarrow 2y \frac{dy}{dx} = \frac{y^2}{x} \qquad \dots [From (i)]$$

$$\Rightarrow 2yx \frac{dy}{dx} = y^2$$

$$\Rightarrow y^2 - 2xy \frac{dy}{dx} = 0$$

39. Equation of family of parabolas with focus at (0, 0) and X-axis as axis is $y^2 = 4a(x + a) \dots(i)$ Differentiating (i) w.r.t. *x*, we get

$$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \qquad \dots (\mathrm{ii})$$

Substituting (ii) in (i), we get

$$y^{2} = 2y \frac{dy}{dx} \left(x + \frac{y}{2} \frac{dy}{dx} \right)$$
$$\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^{2}$$
$$\Rightarrow -y \left(\frac{dy}{dx} \right)^{2} = 2x \frac{dy}{dx} - y$$

40. Equation of family of parabolas with focus at (0, 0) and X-axis as axis is $y^2 = 4a(x + a) \dots (i)$ Differentiating (i) w.r.t. x, we get

$$2y \frac{dy}{dx} = 4a \qquad \dots(ii)$$

Substituting (ii) in (i), we get
$$y^{2} = 2y \frac{dy}{dx} \left(x + \frac{y}{2} \frac{dy}{dx} \right)$$
$$\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^{2}$$

- :. order = m = 1, degree = n = 2 Now, mn - m + n = 1(2) - 1 + 2 = 3
- 41. Axis of parabola = X-axis vertex = (m, 0) Equation of all parabolas is $(y - 0)^2 = 4a(x - m)$ $\Rightarrow y^2 = 4ax - 4am$

$$\therefore \quad 2y \frac{dy}{dx} = 4a$$
$$\Rightarrow y \frac{dy}{dx} = 2a$$
$$\therefore \quad y \frac{d^2 y}{dx^2} + \frac{dy}{dx} \left(\frac{dy}{dx}\right) = 0$$
$$\Rightarrow y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

- 42. Axis of parabola = Y-axis Vertex = (0, m)
- ... Equation of parabola is $(x - 0)^2 = 4a (y - m)$ $\Rightarrow x^2 = 4ay - 4am$

Differentiating w.r.t. x, we get dy

$$2x = 4a \frac{dy}{dx}$$
$$\Rightarrow \frac{1}{x} \frac{dy}{dx} = \frac{1}{2a} \Rightarrow \frac{1}{x} \frac{d^2y}{dx^2} - \frac{dy}{dx} \frac{1}{x^2} = 0$$
$$\Rightarrow x \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$

The differential equation of the family of 43. circles touching Y- axis at the origin is $x^2 + y^2 - 2$ ax = 0(i) Differentiating w.r.t.x, we get $2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} - 2a = 0$ $\Rightarrow 2a = 2x + 2y \frac{dy}{dx}$(ii) Substituting (ii) in (i), we get

$$x^{2} + y^{2} - 2x^{2} - 2xy\frac{dy}{dx} = 0$$
$$\Rightarrow x^{2} - y^{2} + 2xy\frac{dy}{dx} = 0$$

44. The system of circles which passes through origin and whose centre lies on X-axis is $x^2 + y^2 - 2bx = 0$...(i) Differentating w.r.t x, we get

$$2x + 2y \frac{dy}{dx} = 2b \qquad \dots (ii)$$

Substituting (ii) in (i), we get

$$x^{2} + y^{2} - 2x^{2} - 2xy\frac{dy}{dx} = 0$$
$$y^{2} - x^{2} - 2xy\frac{dy}{dx} = 0$$

45. The equation of the family of lines which are at a unit distance from the origin is $x \cos \alpha + y \sin \alpha = 1$(1) Differentiating w.r.t. x, we get $\cos\alpha + \sin\alpha \frac{\mathrm{d}y}{\mathrm{d}x} = 0$(ii) By (i) $-x \times$ (ii), we get $\sin \alpha \left(y - x \frac{\mathrm{d}y}{\mathrm{d}x} \right) = 1$

$$\Rightarrow y - x \frac{dy}{dx} = \csc \alpha \qquad \dots (iii)$$

From (ii),
$$\left(\frac{dy}{dx}\right) = \cot^2 \alpha = \csc^2 \alpha - 1$$

 $\therefore \qquad \left(\frac{dy}{dx}\right)^2 = \left(y - x\frac{dy}{dx}\right)^2 - 1 \qquad \dots [From (iii)]$
 $\therefore \qquad 1 + \left(\frac{dy}{dx}\right)^2 = \left(y - x\frac{dy}{dx}\right)^2$

46. $\sec x \, dy - \csc y \, dx = 0$ $\Rightarrow \cos x \, dx - \sin y \, dy = 0$ Integrating on both sides, we get $\sin x + \cos y = c$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + x + y + xy$ $\Rightarrow \frac{dy}{dx} = (1+x)(1+y) \Rightarrow \frac{dy}{1+y} = (1+x)dx$ Integrating on both sides, we get $\log(1+y) = x + \frac{x^2}{2} + c$ 48. $9y\frac{\mathrm{d}y}{\mathrm{d}x} + 4x = 0$ Integrating on both sides, we get $9\int y\,\mathrm{d}y + 4\int x\,\mathrm{d}x = c_1$ $\Rightarrow 9.\frac{y^2}{2} + 4.\frac{x^2}{2} = c_1$ $\Rightarrow \frac{y^2}{4} + \frac{x^2}{9} = \frac{c_1}{18}$ $\Rightarrow \frac{y^2}{4} + \frac{x^2}{9} = c$, where $c = \frac{c_1}{18}$

47.

Chapter 07: Differential Equations

49. $(1 + y^2)\tan^{-1} x \, dx + (1 + x^2) \, 2y \, dy = 0$ $\Rightarrow \frac{\tan^{-1} x dx}{1+x^2} + \frac{2y}{1+y^2} dy = 0$

Integrating on both sides, we get

$$\frac{(\tan^{-1} x)^2}{2} + \log |1 + y^2| = c_1$$

$$\Rightarrow (\tan^{-1} x)^2 + 2\log |1 + y^2| = c, \text{ where } c = 2c_1$$

50. $x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2\sqrt{xy} \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$ $\Rightarrow \left(\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x} + \sqrt{y}\right)^2 = 0$ $\Rightarrow \sqrt{x} \frac{dy}{dx} + \sqrt{y} = 0$

Integrating on both sides, we get

$$\int \frac{dy}{\sqrt{y}} + \int \frac{dx}{\sqrt{x}} = c$$

$$\Rightarrow 2\sqrt{y} + 2\sqrt{x} = c$$

$$\Rightarrow \sqrt{x} + \sqrt{y} = \sqrt{a}, \text{ where } \sqrt{a} = \frac{c}{2}$$

51.
$$\frac{dx}{x} + \frac{dy}{y} = 0$$

Integrating on both sides, we get
 $\log x + \log y = \log c$
 $\Rightarrow \log(xy) = \log c \Rightarrow xy = c$

52.
$$x \frac{dy}{dx} - y = 3$$

$$\Rightarrow x \frac{dy}{dx} = 3 + y$$

$$\Rightarrow \int \frac{1}{3 + y} dy = \int \frac{1}{x} dx$$

$$\Rightarrow \log|y + 3| = \log|x| + \log c$$

$$\Rightarrow y + 3 = xc$$

$$\Rightarrow y = xc - 3$$

This is the equation of family of straight line.

53.
$$\frac{dy}{dx} = \frac{(1+x)y}{(y-1)x}$$
$$\Rightarrow \frac{y-1}{y} dy = \frac{(1+x)}{x} dx$$
$$\Rightarrow \left(1 - \frac{1}{y}\right) dy = \left(1 + \frac{1}{x}\right) dx$$

Integrating on both sides, we get $x + \log x = y - \log y + c$ $\Rightarrow x - y + \log xy = c$

54.
$$y(1 + \log x) \frac{dx}{dy} - x \log x = 0$$

 $\Rightarrow y(1 + \log x) \frac{dx}{dy} = x \log x$
 $\Rightarrow \left(\frac{1 + \log x}{x \log x}\right) dx = \frac{dy}{y}$

Integrating on both sides, we get log(log x) + logx = logy + logc $\Rightarrow log(x logx) = log(yc)$ $\Rightarrow x log x = cy$

55.
$$y - x\frac{dy}{dx} = a\left(y^2 + \frac{dy}{dx}\right)$$

 $\Rightarrow y - ay^2 = a\frac{dy}{dx} + x\frac{dy}{dx}$
 $\Rightarrow y(1 - ay) = (a + x)\frac{dy}{dx}$
Integrating on both sides, we get
 $\int \frac{dx}{a + x} = \int \frac{dy}{y(1 - ay)} + \log c$

$$\Rightarrow \int \frac{dx}{a+x} = \int \left[\frac{1}{y} + \frac{a}{1-ay}\right] dy + \log c$$

$$\Rightarrow \log(a+x) = \log y - \log(1-ay) + \log c$$

$$\Rightarrow \log[(a+x)(1-ay)] = \log cy$$

$$\Rightarrow (x+a) (1-ay) = cy$$

56. $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$

Integrating on both sides, we get

$$\int \frac{dy}{\sqrt{1-y^2}} + \int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}c$$

$$\Rightarrow \sin^{-1}y + \sin^{-1}x = \sin^{-1}c$$

$$\Rightarrow \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) = \sin^{-1}c$$

$$\Rightarrow x\sqrt{1-y^2} + y\sqrt{1-x^2} = c$$

57.
$$\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$$
$$\Rightarrow \frac{dy}{dx} = \sin\left(\frac{x-y}{2}\right) - \sin\left(\frac{x+y}{2}\right)$$
$$\Rightarrow \frac{dy}{dx} = -2\sin\left(\frac{y}{2}\right) \cdot \cos\left(\frac{x}{2}\right)$$
Integrating on both sides, we get

$$\int \operatorname{cosec}\left(\frac{y}{2}\right) dy = -\int 2 \cos\left(\frac{x}{2}\right) dx + c_1$$
$$\Rightarrow \frac{\log \tan\left(\frac{y}{4}\right)}{\frac{1}{2}} = -\frac{2 \sin\left(\frac{x}{2}\right)}{\frac{1}{2}} + c_1$$

$$\Rightarrow \log \tan\left(\frac{y}{4}\right) = c - 2\sin\left(\frac{x}{2}\right), \text{ where } c = \frac{1}{2}c_1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y + y^2 + x + xy + xy^2$$

58.

$$\Rightarrow \frac{dy}{dx} = (1 + y + y^2) (x + 1)$$

Integrating on both sides, we get

$$\int \frac{\mathrm{d}y}{1+y+y^2} = \int (x+1)\mathrm{d}x + \mathrm{c}_1$$

$$\Rightarrow \int \frac{\mathrm{d}y}{\left(y+\frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{x^2}{2} + x + \mathrm{c}_1$$

$$\Rightarrow \frac{1}{\sqrt{3}/2} \cdot \mathrm{tan}^{-1} \left(\frac{y+\frac{1}{2}}{\sqrt{3}/2}\right) = \frac{x^2}{2} + x + \mathrm{c}_1$$

$$\Rightarrow 4 \, \mathrm{tan}^{-1} \left(\frac{2y+1}{\sqrt{3}}\right) = \sqrt{3} \left(x^2 + 2x\right) + \mathrm{c}_1,$$

where $\mathrm{c} = 2\sqrt{3} \, \mathrm{c}_1$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3^{x+y}$ 59. $\Rightarrow 3^{x}dx - 3^{-y}dy = 0$ Integrating on both sides, we get $3^{x} + 3^{-y} = c$ When x = 0 = y, $3^0 + 3^0 = c \Longrightarrow c = 2$ $3^{x} + 3^{-y} = 2$ *.*.. $\Rightarrow 3^x + 3^{-y} - 2 = 0$ 60. x dy + 2y dx = 0 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{v}} + 2\frac{\mathrm{d}x}{\mathrm{x}} = 0$ $\Rightarrow \int \frac{dy}{y} + 2 \int \frac{dx}{r} = 0$ $\Rightarrow \log y + 2 \log x = \log c$ $\Rightarrow \log y + \log x^2 = \log c$ $\Rightarrow \log x^2 y = \log c$ $\Rightarrow x^2 y = c$ Given that x = 2 and y = 1

$$\therefore \quad (2)^2 \ 1 = c$$

$$\Rightarrow c = 4$$

$$\therefore \quad x^2 y = 4 \text{ is the particular solution.}$$

61.
$$2x\frac{dy}{dx} - y = 0$$

$$\Rightarrow 2xdy = ydx$$

$$\Rightarrow 2\int \frac{1}{y}dy = \int \frac{1}{x}dx$$

$$\Rightarrow 2\log y = \log x + \log c$$

$$\Rightarrow y^{2} = xc$$

Since, $y(1) = 2$ i.e., $y = 2$ when $x = 1$

$$\therefore 2^{2} = 1 \times c \Rightarrow c = 4$$

$$\therefore y^{2} = 4x$$

This represents the equation of parabola.
62. $e^{\frac{dy}{dx}} = x$

$$dy$$

$$\Rightarrow \frac{dy}{dx} = \log x$$

$$\Rightarrow \int dy = \int \log x \, dx$$

$$\Rightarrow y = \log x.(x) - \int dx + c$$

$$\Rightarrow y = x \log x - x + c$$

Since, $y(1) = 3$ i.e., $y = 3$ when $x = 1$

$$\therefore \quad 3 = \log 1 - 1 + c$$

$$\Rightarrow c = 4$$

$$\therefore \quad y = x \log x - x + 4$$

Chapter 07: Differential Equations 63. $\log \frac{dy}{dx} = x$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x \Rightarrow \mathrm{d}y = \mathrm{e}^x \mathrm{d}x$ Integrating on both sides, we get $y = e^{x} + c$ At x = 0 and y = 1, $1 = e^0 + c$ $\Rightarrow c = 0$ $v = e^{x}$ *.*.. 64. $\log\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 3x + 4y$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3x+4y}$ $\Rightarrow e^{-4y} dv = e^{3x} dx$ Integrating on both sides, we get $\frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} + c$ When y = 0 = x, $-\frac{1}{4} = \frac{1}{3} + c \implies c = -\frac{7}{12}$ $\therefore \frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} - \frac{7}{12}$ $\Rightarrow 4e^{3x} + 3e^{-4y} - 7 = 0$ $65. \quad \frac{\mathrm{d}y}{\mathrm{d}x} = y + 3$ $\Rightarrow \frac{\mathrm{d}y}{v+3} = \mathrm{d}x$ Integrating on both sides, we get $\int \frac{\mathrm{d}y}{v+3} = \int \mathrm{d}x + \mathrm{c}$ $\Rightarrow \log(y+3) = x + c$(i) Since, y(0) = 2 i.e., y = 2, when x = 0 $\log (2+3) = 0 + c \Rightarrow c = \log 5$ *.*.. $\log(y+3) = x + \log 5$ *.*..[From (i)] $\Rightarrow y + 3 = 5e^x$ $\Rightarrow y = 5e^x - 3$ $y(\log 2) = 5e^{\log 2} - 3 = 10 - 3$ *.*.. = 766. $\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - y$ $\int \frac{\mathrm{d}y}{1-y} = \int \mathrm{d}x + \mathrm{c}$ $\Rightarrow -\log(1-y) = x + \log c$ $-\log(1-y) - \log c = x$ $\log(1-y)c = -x$

МНТ	r-CET Triumph Maths (Hints)
	$(1-y)c = e^{-x}$ (i) Since, $y(0) = 3$ i.e., $y = 3$, when $x = 0$
	$-2\mathbf{c} = \mathbf{e}^0 \Longrightarrow \mathbf{c} = \frac{-1}{2}$
	$(1-y)\left(\frac{-1}{2}\right) = e^{-x}$ [From (i)]
	$\Rightarrow y - 1 = 2e^{-x}$ $\Rightarrow y = 2e^{-x} + 1$ $\Rightarrow y = 2e^{-\log_{e} 8} + 1$
	$\Rightarrow y = 2 \times \frac{1}{8} + 1 = \frac{5}{4}$
67.	$y\left(1 + \log x\right) \frac{\mathrm{d}x}{\mathrm{d}y} - x\log x = 0$
	$\Rightarrow \frac{1 + \log x}{x \log x} dx = \frac{dy}{y}$
	Integrating on both sides, we get $\log (x \log x) = \log y + \log c$ $\Rightarrow \log (x \log x) = \log (y c)$
	$\Rightarrow x \log x = y c \qquad \dots (i)$ When $x = e, y = e^2$
	$e \log e = e^2 c \Longrightarrow c = \frac{1}{e}$
<i>.</i>	$x \log x = \frac{y}{e} \qquad \dots [From (i)]$
	$\Rightarrow y = e x \log x$
68.	$\sin\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \mathrm{a}$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \sin^{-1}a \Rightarrow \mathrm{d}y = \sin^{-1}a \mathrm{d}x$
	Integrating on both sides, we get $y = (\sin^{-1}a)x + c$ (i)
	Since, $y(0) = 1$ i.e., $y = 1$, when $x = 0$
··· 	$y = x \sin^{-1} a + 1$ [From (i)]
	$\Rightarrow \frac{y-1}{x} = \sin^{-1}a$
	$\Rightarrow \sin\left(\frac{y-1}{x}\right) = a$
69.	$\left(\frac{2+\sin x}{1+y}\right)\frac{\mathrm{d}y}{\mathrm{d}x} = -\cos x$
	$\Rightarrow \frac{\mathrm{d}y}{1+y} = \left(\frac{-\cos x}{2+\sin x}\right)\mathrm{d}x$
	Integrating on both sides, we get
	$\int \frac{\mathrm{d}y}{1+y} + \int \frac{\cos x}{2+\sin x} \mathrm{d}x = \log c$

 $\Rightarrow \log(1 + y) + \log(2 + \sin x) = \log c$ \Rightarrow (y + 1) (2 + sin x) = c(i) Since, y(0) = 1 i.e., y = 1, when x = 0÷. $(1+1)(2+\sin 0) = c \Rightarrow c = 4$ *.*.. $(y+1)(2+\sin x) = 4$[From (i)] $\Rightarrow y = \frac{4}{2 + \sin r} - 1$ $\therefore \qquad y\left(\frac{\pi}{2}\right) = \frac{4}{2 + \sin\frac{\pi}{2}} - 1 = \frac{4}{3} - 1 = \frac{1}{3}$ 70. y(1 + xy) dx = xdy $\Rightarrow \frac{y \, \mathrm{d}x - x \, \mathrm{d}y}{v^2} = -x \, \mathrm{d}x$ $\Rightarrow d\left(\frac{x}{y}\right) = -x dx$ Integrating on both sides, we get $\frac{x}{v} = \frac{-x^2}{2} + c$(i) Since, the curve passes through (1, -1). \therefore $-1 = \frac{-1}{2} + c \Rightarrow c = \frac{-1}{2}$ $\therefore \qquad \frac{x}{y} = \frac{-x^2}{2} - \frac{1}{2}$[From (i)] $\Rightarrow y = \frac{-2x}{x^2 + 1}$ i.e., $f(x) = \frac{-2x}{x^2 + 1}$ $\therefore f\left(-\frac{1}{2}\right) = \frac{4}{5}$ 71. $f(x) = \frac{-2x}{1+x^2}$ \therefore f $\left(\frac{1}{2}\right) = \frac{-4}{5}$ 72. $\frac{\mathrm{d}y}{\mathrm{d}x} = x + xy$ $\Rightarrow \frac{1}{1+y} \, \mathrm{d}y = x \, \mathrm{d}x$ Integrating on both sides, we get $\int \frac{1}{1+v} \, \mathrm{d}y = \int x \, \mathrm{d}x + \mathrm{c}$ $\log\left(1+y\right) = \frac{x^2}{2} + c$...(i) Since, the required curve passes through (0, 1). \therefore c = log 2

<i>.</i>	$\log (1 + y) = \frac{x^2}{2} + \log 2$ [From (i)]
	$\Rightarrow \log\left(\frac{1+y}{2}\right) = \frac{x^2}{2}$
	$\Rightarrow y = 2e^{\frac{x^2}{2}} - 1$
73.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y+1}{x+y-1} \qquad \dots (i)$
	$Put x + y = v \qquad \dots (ii)$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x} - 1 \qquad \dots (\mathrm{iii})$
	Substituting (ii) and (iii) in (i), we get
	$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{v}} - 1 = \frac{\mathrm{v} + 1}{\mathrm{v}}$
	dx v-1
	$\Rightarrow \frac{dv}{dr} = \frac{2v}{v-1} \Rightarrow \frac{v-1}{2v} dv = dx$
	Integrating on both sides, we get
	$\frac{v}{2} - \frac{1}{2}\log v = x + c_1$
	\Rightarrow v - log v = 2x + 2c ₁
	$\Rightarrow x + y - \log(x + y) = 2x + 2c_1$
	$\Rightarrow y = x + \log(x + y) + c$, where $c = 2c_1$
74.	$(x+y)^2 \ \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{a}^2$
	Put $x + y = v \implies 1 + \frac{dy}{dx} = \frac{dv}{dx}$
	$v^2\left(\frac{dv}{dr}-1\right) = a^2$

$$v^{2}\left(\frac{1}{dx}-1\right) = a^{2}$$

$$\Rightarrow v^{2} \frac{dv}{dx} - v^{2} = a^{2}$$

$$\Rightarrow \frac{v^{2}}{v^{2} + a^{2}} dv = dx$$

$$\Rightarrow \int \frac{v^{2}}{v^{2} + a^{2}} dv = \int dx$$

$$\Rightarrow \int \frac{v^{2} + a^{2} - a^{2}}{v^{2} + a^{2}} dv = \int dx$$

$$\Rightarrow v - a \tan^{-1} \frac{v}{a} + c = x$$

$$\Rightarrow x + y - a \tan^{-1} \left(\frac{x + y}{a}\right) + c = x$$

$$\Rightarrow \tan^{-1} \left(\frac{x + y}{a}\right) = \frac{y + c}{a}$$

$$\Rightarrow \frac{x + y}{a} = \tan \left(\frac{y + c}{a}\right)$$

(x + y - 1)dx + (2x + 2y - 3)dy = 0 $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\left(\frac{x+y-1}{2x+2y-3}\right) \qquad \dots (i)$ Put x + y = v....(ii) $\Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}$ $\Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1$(iii) Substituting (ii) and (iii) in (i), we get $\frac{\mathrm{d}v}{\mathrm{d}x} - 1 = -\left(\frac{v-1}{2v-3}\right)$ $\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1-\mathrm{v}}{2\mathrm{v}-3} + 1 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{v}-2}{2\mathrm{v}-3}$ Integrating on both sides, we get $\int \frac{2v-3}{v-2} dv = \int dx + c$ $\Rightarrow \int \frac{2(v-2)+1}{v-2} dv = x + c$ $\Rightarrow 2v + \log(v - 2) = x + c$ $\Rightarrow 2(x+y) + \log(x+y-2) = x + c$ $\Rightarrow 2y + x + \log(x + y - 2) = c$

75.

Chapter 07: Differential Equations

76.
$$\frac{dy}{dx} = \frac{x - 2y + 1}{2(x - 2y)}$$
(i)
Put $x - 2y = y$ (ii)

Put
$$x - 2y = v$$
(ii)
 $\Rightarrow 1 - 2\frac{dy}{dx} = \frac{dv}{dx}$
 $\Rightarrow \frac{dy}{dx} = \frac{1}{2}\left(1 - \frac{dv}{dx}\right)$ (iii)

Substituting (ii) and (iii) in (i), we get

$$\frac{1}{2}\left(1 - \frac{dv}{dx}\right) = \frac{v+1}{2v}$$
$$\Rightarrow \frac{dv}{dx} = -\frac{1}{v}$$

Integrating on both sides, we get

$$\int v \, dv = -\int dx + c_1$$

$$\Rightarrow \frac{v^2}{2} = -x + c_1$$

$$\Rightarrow (x - 2y)^2 = -2x + 2c_1$$

$$\Rightarrow (x - 2y)^2 + 2x = c, \text{ where } c = 2c_1$$

77.	$\frac{dy}{dx} = -\frac{x - 2y + 1}{2(x - 2y) + 3} \qquad \dots (i)$
	dx = 2(x-2y)+5 Put $x - 2y = y$ (ii)
	$\Rightarrow 1 - \frac{2dy}{dt} = \frac{dv}{dt}$
	dx dx
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(1 - \frac{dv}{dx} \right) \qquad \dots (iii)$
	Substituting (ii) and (iii) in (i), we get
	$\frac{1}{2}\left(1 - \frac{\mathrm{d}v}{\mathrm{d}x}\right) = -\frac{\mathrm{v} + 1}{2\mathrm{v} + 3}$
	$\Rightarrow \frac{2v+3}{4v+5} dv = dx$
	Integrating on both sides, we get
	$\int \left \frac{1}{2} (4v+5) + \frac{1}{2} \right dv = \int dv + c$
	$\int \frac{1}{4v+5} dv - \int dx + c_1$
	$\Rightarrow \frac{1}{2}\mathbf{v} + \frac{1}{2} \cdot \frac{1}{4} \log(4\mathbf{v} + 5) = x + c_1$
	$\Rightarrow \frac{1}{2}(x-2y) + \frac{1}{8}\log[4(x-2y)+5] = x + c_1$
	$\Rightarrow \log \left[4(x-2y)+5\right] = 8x - 4(x-2y) + 8c_1$
	$\Rightarrow \log [4(x-2y)+5] = 4(x+2y)+c,$ where c = 8c ₁
78.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos(x+y)} \qquad \dots (i)$
	Put $x + y = v$ (ii)
	$\Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}$
	$\rightarrow \frac{dy}{dv} = \frac{dv}{1} $ (iii)
	$\Rightarrow \frac{dx}{dx} = \frac{dx}{dx} - 1 \qquad \dots \dots (m)$
	Substituting (11) and (111) in (1), we get $dy = 1$
	$\frac{dv}{dx} - 1 = \frac{1}{\cos v}$
	$\Rightarrow \frac{dv}{dt} = \frac{1}{1+1} \Rightarrow \frac{\cos v}{dt} = dr$
	$\frac{dx}{dx} = \cos x + 1 \Rightarrow \frac{1}{1 + \cos y} = \frac{dx}{dx} = \frac{1}{1 + \cos y}$
	$\Rightarrow \left[\frac{2\cos^2(v/2)-1}{2\cos^2(v/2)}\right] dv = dx$
	$\Rightarrow \left[1 - \frac{1}{2}\sec^2\left(\frac{v}{2}\right)\right] dv = dx$
	Integrating on both sides, we get
	$\int d\mathbf{v} - \frac{1}{2} \int \sec^2 \left(\mathbf{v}/2 \right) d\mathbf{v} + \mathbf{c} = \int dx$
	$\Rightarrow \mathbf{v} - \tan\left(\frac{\mathbf{v}}{2}\right) + \mathbf{c} = \mathbf{x}$

$$\Rightarrow x + y - \tan\left(\frac{x + y}{2}\right) + c = x$$

$$\Rightarrow y + c = \tan\left(\frac{x + y}{2}\right)$$
79.
$$\frac{dy}{dx} = \tan\left(\frac{y}{x}\right) + \frac{y}{x}$$

Put $\frac{y}{x} = v \Rightarrow y = vx$

$$\therefore \quad \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore \quad v + x \frac{dv}{dx} = \tan v \Rightarrow \int \frac{dv}{\tan v} = \int \frac{dx}{x}$$

$$\Rightarrow \log |\sin v| = \log x + \log c$$

$$\Rightarrow \log |\sin v| = \log x + \log c$$

$$\Rightarrow \log \sin\left(\frac{y}{x}\right) = \log xc$$

80.
$$\frac{dy}{dx} = \frac{x + y}{x - y} \qquad ...(i)$$

Put $y = vx \qquad ...(ii)$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \qquad ...(iii)$$

Substituting (ii) and (iii) in (i), we get

$$v + x \frac{dv}{dx} = \frac{1 + v^2}{1 - v} \Rightarrow \frac{1 - v}{1 + v^2} dv = \frac{dx}{x}$$

Integrating both sides, we get

$$\int \frac{1 - v}{1 + v^2} dv = \int \frac{dx}{x}$$

$$\Rightarrow \int \frac{1}{1 + v^2} dv - \frac{1}{2} \int \frac{2v}{1 + v^2} = \log x + c$$

$$\Rightarrow \tan^{-1} v - \frac{1}{2} \log (1 + v^2) = \log x + c$$

$$\Rightarrow \tan^{-1} \left(\frac{y}{x}\right) = \log \frac{\sqrt{x^2 + y^2}}{x} + \log x + c$$

$$\Rightarrow \tan^{-1} \left(\frac{y}{x}\right) = \log \frac{\sqrt{x^2 + y^2}}{x} + \log x + c$$

656

 $\frac{\mathrm{d}y}{\mathrm{d}r} = \frac{y^2}{rv - r^2}$ 81.(i) Put v = vx....(ii) $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{v^2 x^2}{r v r - r^2} = \frac{v^2}{v - 1}$ $\Rightarrow x \frac{dv}{dr} = \frac{v^2}{v-1} - v \Rightarrow x \frac{dv}{dr} = \frac{v}{v-1}$ Integrating on both sides, we get $\int \left(\frac{v-1}{v}\right) dv = \int \frac{dx}{r} + \log k$ \Rightarrow v - log v = log x + log k \Rightarrow v = log(x.v.k) $\Rightarrow e^{v} = xvk \Rightarrow e^{v/x} = kv$ 82. $(x^2 + xy) y' = y^2$ $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2}{x^2 + xy}$...(i) Put v = vx...(ii) $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{v}}$...(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{v^2 x^2}{r^2 + v r^2}$ \Rightarrow v + x $\frac{dv}{dx} = \frac{v^2}{1+x}$ $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}v} = \frac{v^2}{1+v} - v$ $\Rightarrow x \frac{dv}{dr} = \frac{-v}{1+v}$ $\Rightarrow \int -\frac{1+v}{v} dv = \int \frac{1}{v} dx$ $\Rightarrow -(\log v + v) = \log x + \log c$ $\Rightarrow -v = \log xvc$ $\Rightarrow -\frac{y}{x} = \log y c \Rightarrow e^{-\frac{y}{x}} = cy$ 83. $(x^2 + v^2)dx = 2xvdv$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \left(\frac{y}{x}\right)^2}{2\left(\frac{y}{x}\right)}$(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{du} = v + x \frac{dv}{du}$(iii)

Chapter 07: Differential Equations Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{1 + v^2}{2r}$ $\Rightarrow x \frac{dv}{dr} = \frac{1+v^2}{2v} - v$ $\Rightarrow x \frac{dv}{dr} = \frac{1 - v^2}{2v}$ Integrating on both sides, we get $\int \frac{\mathrm{d}x}{\mathrm{d}x} - \int \frac{2\mathrm{v}}{1-\mathrm{v}^2} \mathrm{d}\mathrm{v} = \mathrm{c}_1$ $\Rightarrow \log x + \log (1 - v^2) = c_1$ $\Rightarrow (1 - v^2) x = e^{c_1}$ $\Rightarrow \left(1 - \frac{y^2}{x^2}\right) x = e^{c_1}$ $\Rightarrow x^2 - v^2 = e^{c_1} x$ \Rightarrow c.($x^2 - y^2$) = x, where c = $\frac{1}{c_1}$ 84. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-x}{v+x}$(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{dy} = v + x \frac{dv}{dy}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dr} = \frac{vx - x}{vr + r} = \frac{v - 1}{v + 1}$ $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}r} = \frac{v-1}{v+1} - v \qquad \Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}r} = \frac{-(v^2+1)}{v+1}$ Integrating on both sides, we get $\int \frac{\mathbf{v}+\mathbf{l}}{\mathbf{v}^2+\mathbf{l}} d\mathbf{v} = -\int \frac{dx}{\mathbf{v}} + \mathbf{c}_1$ $\Rightarrow \frac{1}{2}\int \frac{2v}{v^2+1}dv + \int \frac{1}{v^2+1}dv = -\int \frac{dx}{v} + c_1$ $\Rightarrow \frac{1}{2}\log(v^2+1) + \tan^{-1}v = -\log x + c_1$ $\Rightarrow \log\left(\frac{y^2 + x^2}{r^2}\right) + 2\tan^{-1}\left(\frac{y}{r}\right) = -2\log x + 2c_1$ $\Rightarrow \log(x^2 + y^2) - 2\log x + 2\tan^{-1}\left(\frac{y}{x}\right)$ $= -2 \log x + 2c_1$ $\Rightarrow \log(x^2 + y^2) + 2\tan^{-1}\left(\frac{y}{x}\right) = c$, where $c = 2c_1$

85. $xdy - ydx = \sqrt{x^2 + y^2} dx$ $\Rightarrow xdy = \sqrt{x^2 + y^2} dx + ydx$ $\Rightarrow \frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x} \qquad \dots(i)$ Put $y = vx \qquad \dots(ii)$ $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots(iii)$ Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2} + vx}{x}$ $\Rightarrow v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v$ $\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2}$ Integrating on both sides, we get

$$\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x} + \log c$$

$$\Rightarrow \log\left(v + \sqrt{1+v^2}\right) = \log x + \log c$$

$$\Rightarrow v + \sqrt{1+v^2} = xc$$

$$\Rightarrow \frac{y}{x} + \sqrt{1+\frac{y^2}{x^2}} = xc$$

$$\Rightarrow y + \sqrt{x^2 + y^2} = x^2c$$

86. Putting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$ in the given equation, we get

$$vx\left(v+x\frac{dv}{dx}\right) = x\left[v^2 + \frac{\phi(v^2)}{\phi'(v^2)}\right]$$

Integrating on both sides, we get

$$\int \frac{v\phi'(v^2)}{\phi(v^2)} dv = \int \frac{dx}{x} + \log c_1$$

$$\Rightarrow \frac{1}{2} \log [\phi(v^2)] = \log x + \log c_1$$

$$\Rightarrow \log \left[\phi\left(\frac{y^2}{x^2}\right) \right] = 2 \log x + 2\log c_1$$

$$\Rightarrow \log \left[\phi\left(\frac{y^2}{x^2}\right) \right] = \log x^2 c_1^2$$

$$\Rightarrow \phi \left(\frac{y^2}{x^2}\right) = cx^2, \text{ where } c = c_1^2$$

87.
$$\left(1+e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1-\frac{x}{y}\right) dy = 0$$

 $\Rightarrow \frac{dx}{dy} = \frac{-e^{\frac{x}{y}} \left(1-\frac{x}{y}\right)}{1+e^{\frac{x}{y}}} \qquad \dots (i)$

Put
$$\frac{x}{y} = u$$
(ii)

$$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \mathrm{u} + y \frac{\mathrm{d}\mathrm{u}}{\mathrm{d}y} \qquad \dots (\mathrm{iii})$$

Substituting (ii) and (iii) in (i), we get $u + v = e^{u} (1-u)$

$$\therefore \qquad y \frac{\mathrm{d}u}{\mathrm{d}y} = \frac{-\mathrm{e}^{\mathrm{u}} - \mathrm{u}}{1 + \mathrm{e}^{\mathrm{u}}}$$
$$\therefore \qquad \frac{1 + \mathrm{e}^{\mathrm{u}}}{\mathrm{u} + \mathrm{e}^{\mathrm{u}}} \ \mathrm{d}u = \frac{-\mathrm{d}y}{\mathrm{v}}$$

Integrating on both sides, we get

$$\int \frac{1 + e^u}{u + e^u} du = -\int \frac{dy}{y}$$

$$\therefore \quad \log |\mathbf{u} + \mathbf{e}^{\mathbf{u}}| = -\log |y| + \log |\mathbf{c}|$$
$$|x \quad \frac{x}{|\mathbf{u}|} \quad |\mathbf{c}|$$

$$\frac{100}{y} \left| \frac{-100}{y} \right| = \frac{100}{y} \left| \frac{-100}{y} \right|$$

$$\therefore \quad \frac{x}{y} + e^{\overline{y}} = \frac{c}{y}$$

$$\therefore \qquad y e^y + x = c$$

88.
$$y \cos \frac{y}{x} (x \, dy - y \, dx) + x \sin \frac{y}{x} (x \, dy + y \, dx) = 0$$

$$\Rightarrow \frac{y}{x} \cos \frac{y}{x} \left(\frac{dy}{dx} - \frac{y}{x} \right) + \sin \frac{y}{x} \left(\frac{dy}{dx} + \frac{y}{x} \right) = 0$$
....(i)
Put $y = vx$
....(ii)

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$
(iii)

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dy}{dx} \qquad \dots (iii)$$

Substituting (ii) and (iii) in (i), we get

 $v \cos v \left(v + x \frac{dv}{dx} - v \right) + \sin v \left(v + x \frac{dv}{dx} + v \right) = 0$ $\Rightarrow (v \cos v) x \frac{dv}{dx} + \sin v \left(2v + x \frac{dv}{dx} \right) = 0$ $\Rightarrow x (v \cos v + \sin v) \frac{dv}{dx} + 2v \sin v = 0$

Integrating on both sides, we get $\int \frac{v \cos v + \sin v}{v \sin v} dv = -2 \int \frac{dx}{x} + \log c$

 $\Rightarrow \log(v \sin v) = -2 \log x + \log c$ $\Rightarrow \log(v \sin v) = \log \frac{c}{r^2}$ \Rightarrow v sin v = $\frac{c}{r^2}$ $\Rightarrow \frac{y}{r} \sin \frac{y}{r} = \frac{c}{r^2} \Rightarrow y \sin \frac{y}{r} = \frac{c}{r}$ Since, $y(1) = \frac{\pi}{2}$, i.e., $y = \frac{\pi}{2}$, when x = 1 $\therefore \quad \frac{\pi}{2} \sin \frac{\pi}{2} = c \implies c = \frac{\pi}{2}$ $\therefore y \sin \frac{y}{r} = \frac{\pi}{2r}$ $89. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{2xy}$(i) Put v = vx....(ii) $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$(iii) Substituting (ii) and (iii) in (i), we get $v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2 r v r} = \frac{1 + v^2}{2 v}$ $\Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1 + v^2}{2v} - v \qquad \Rightarrow x \frac{\mathrm{d}v}{\mathrm{d}r} = \frac{1 - v^2}{2v}$ Integrating on both sides, we get $\int \frac{\mathrm{d}x}{v} - \int \frac{2v}{1-v^2} \mathrm{d}v = \log c$ $\Rightarrow \log x + \log (1 - v^2) = \log c$ $\Rightarrow \log x + \log \left(1 - \frac{y^2}{r^2}\right) = \log c$ $\Rightarrow x \left(1 - \frac{y^2}{x^2}\right) = c$ $\Rightarrow x^2 - y^2 = cx$(iv) Since, the required curve passes through (2, 1). $\therefore 4-1=2c \Rightarrow c=\frac{3}{2}$ $\therefore \qquad x^2 - y^2 = \frac{3}{2}x$[From (iv)] $\Rightarrow 2(x^2 - v^2) = 3x$ 90. $\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = x^3 - 3$ I. F. = $e^{\int -\frac{1}{x} dx} = e^{-\log x} = e^{\log x^{-1}} = \frac{1}{2}$ ÷

Chapter 07: Differential Equations 91. $x \frac{dy}{dx} + 2y = x^2 \Rightarrow \frac{dy}{dx} + \frac{2y}{x} = x$:. I.F. = $e^{\int_{x}^{2} dx} = e^{2 \log x} = e^{\log x^{2}} = x^{2}$ 92. $\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$ $\therefore \qquad \text{I.F.} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}$ 93. $\cos x \frac{\mathrm{d}y}{1} + y \sin x = 1$ $\Rightarrow \frac{dy}{dx} + y \tan x = \sec x$ $\therefore \qquad \text{I.F.} = e^{\int \tan x \, dx} = e^{\log \sec x} = \sec x$ 94. $\frac{\mathrm{d}y}{\mathrm{d}x} + y = \frac{1+y}{x}$ $\Rightarrow \frac{dy}{dx} + y = \frac{1}{x} + \frac{y}{x}$ $\Rightarrow \frac{dy}{dr} + \left(1 - \frac{1}{r}\right)y = \frac{1}{r}$ $\therefore \qquad \text{I.F.} = e^{\int \left(1 - \frac{1}{x}\right) dx} = e^{x - \log x} = \frac{e^x}{x}$ 95. $\frac{dy}{dr} = \frac{1}{r+v+2}$ $\Rightarrow \frac{dx}{dy} = x + y + 2 \qquad \Rightarrow \frac{dx}{dy} - x = y + 2$ \therefore I.F. = $e^{\int -dy} = e^{-y}$ 96. I. F. = $\sin x$ $\therefore e^{\int P dx} = \sin x$ $\Rightarrow \int Pdx = \log(\sin x) \quad \Rightarrow P = \frac{d}{dx} [\log(\sin x)]$ $\Rightarrow P = \frac{1}{\sin x} \times \cos x = \cot x$ 97. $\frac{\mathrm{d}y}{\mathrm{d}x} + \mathrm{P}(x).y = 0$ Here, Q = 0 \therefore I.F. = $e^{\int Pdx}$ solution of the given equation is $y(I.F.) = \int Q(I.F.) dx + c$ $\Rightarrow y.e^{\int Pdx} = 0 + c \Rightarrow y = c.e^{-\int Pdx}$

98. I.F. =
$$e^{\int adx} = e^{ax}$$

 \therefore solution of the given equation is
 $y \cdot e^{ax} = \int e^{mx} \cdot e^{ax} dx + c = \frac{e^{(a+m)x}}{a+m} + c$
 $\Rightarrow y = \frac{e^{mx}}{a+m} + ce^{-ax}$
 $\Rightarrow y(a+m) = e^{mx} + c(a+m) e^{-ax}$
99. $\frac{dy}{dx} + y = 1$
I.F. = $e^{\int dx} = e^{x}$
 \therefore Solution of the differential equation is
 $ye^{x} = \int e^{x} dx + c_{1}$
 $\Rightarrow ye^{x} = e^{x} + c_{1} \Rightarrow e^{x} (1-y) = -c_{1}$
 $\Rightarrow \log e^{x} + \log (1-y) = -\log c_{1}$
 $\Rightarrow x + c = -\log (1-y)$
 $\Rightarrow \log \left| \frac{1}{1-y} \right| = x + c$
100. $\frac{dy}{dx} = \frac{y}{x} + x$
 $\Rightarrow \frac{dy}{dx} - \frac{y}{x} = x$
 \therefore I.F. = $e^{\int -\frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$
 \therefore solution of the given equation is
 $\frac{y}{x} = \int x \cdot \frac{1}{x} dx + a$
 $\Rightarrow \frac{y}{x} = x + a \Rightarrow y = x^{2} + ax$
101. $x \frac{dy}{dx} + 2y = x^{2}$
 $\Rightarrow \frac{dy}{dx} + \left(\frac{2}{x}\right)y = x$
 \therefore I.F. = $e^{2\int \frac{1}{x} dx} = e^{2\log x} = x^{2}$

solution of the given equation is

$$yx^{2} = \int x^{3} dx + c_{1}$$

$$\Rightarrow yx^{2} = \frac{x^{4}}{4} + c_{1} = \frac{x^{4} + C}{4}, \text{ where } C = 4 c_{1}$$

$$\Rightarrow y = \frac{x^{4} + C}{4x^{2}}$$

102.
$$y + x^2 = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} - y = x^2$$

∴ I.F. $= e^{\int -dx} = e^{-x}$
∴ solution of the given equation is
 $ye^{-x} = \int e^{-x} \cdot x^2 dx + c$
 $\Rightarrow y \cdot x^2 + 2x + 2 = c \cdot e^x$
103. $(1 + y^2) + (x - e^{\tan^{-1}y}) \frac{dy}{dx} = 0$
 $\Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{-1}y}}{1 + y^2}$
∴ I.F. $= e^{\int \frac{1}{1 + y^2} dy} = e^{\tan^{-1}y}$
∴ solution of the given equation is
 $x \cdot e^{\tan^{-1}y} = \int \frac{e^{\tan^{-1}y}}{1 + y^2} dy + c_1$
 $\Rightarrow xe^{\tan^{-1}y} = \int \frac{e^{2\tan^{-1}y}}{2} dy + c_1$
 $\Rightarrow xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c_1$, where $c = 2c_1$
104. $(y - 3x^2) dx + xdy = 0$
 $\Rightarrow (y - 3x^2) = -x \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{-y}{x} + 3x$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{x} (y) = 3x$
∴ Solution of the given differential equation is
 $xy = \int 3x^2 + c$
 $\Rightarrow xy = \frac{3x^3}{3} + c$
 $\Rightarrow y = x^2 + \frac{c}{x}$
105. $(x - 4y^3) \frac{dy}{dx} - y = 0$
 $\Rightarrow \frac{dy}{dy} = \frac{x - 4y^3}{y} \Rightarrow \frac{dx}{dy} - \frac{x}{y} = -4y^2$
∴ I.F. $= e^{\int -\frac{1}{y} dy} = e^{-\log y} = \frac{1}{y}$

660

.:. .:.

Solution of the given equation is *.*.. $x \cdot \frac{1}{y} = \int -4y^2 \cdot \frac{1}{y} \, \mathrm{d}y + \mathrm{c}$ $\Rightarrow \frac{x}{y} = -2y^2 + c \Rightarrow x + 2y^3 = cy$ 106. $y dx + (x + x^2y) dy = 0$ $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} + \frac{x}{y} = -x^2$ $\Rightarrow -\frac{1}{r^2} \cdot \frac{dx}{dv} + \left(\frac{-1}{v}\right) \cdot \frac{1}{r} = 1$ (i) Put $v = \frac{1}{v}$ $\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}v} = -\frac{1}{r^2} \cdot \frac{\mathrm{d}x}{\mathrm{d}v}$ $\therefore \qquad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{v}} + \left(\frac{-1}{\mathbf{v}}\right) \cdot \mathbf{v} = 1$[From (i)] I.F. = $e^{\int -\frac{1}{y} dy} = e^{-\log y} = \frac{1}{y}$ *.*.. solution of the given equation is *.*.. $\mathbf{v} \cdot \frac{1}{y} = \int \frac{1}{y} dy + \mathbf{c}_1$ $\Rightarrow \frac{1}{yy} = \log y + c_1$ $\Rightarrow -\frac{1}{m} + \log y = -c_1$ $\Rightarrow -\frac{1}{m} + \log y = c$, where $c = -c_1$

107.
$$\frac{dx}{dy} + \frac{x}{y} = x^{2}$$

$$\Rightarrow \frac{1}{x^{2}} \cdot \frac{dx}{dy} + \frac{1}{y} \left(\frac{1}{x}\right) = 1 \qquad \dots (i)$$
Put $v = \frac{1}{x}$

$$\Rightarrow \frac{dv}{dy} = -\frac{1}{x^{2}} \cdot \frac{dx}{dy}$$

$$\therefore \quad -\frac{dv}{dy} + \frac{1}{y} \cdot v = 1 \qquad \dots [From (i)]$$

$$\Rightarrow \frac{dv}{dy} + \left(-\frac{1}{y}\right) \cdot v = -1$$

$$\therefore \quad I.F. = e^{\int -\frac{1}{y} dy} = e^{-\log y} = \frac{1}{y}$$

Chapter 07: Differential Equations solution of the given equation is *.*.. $\mathbf{v} \cdot \left(\frac{1}{v}\right) = \int (-1) \cdot \frac{1}{v} dy + \mathbf{c}$ $\Rightarrow \frac{1}{x} \cdot \frac{1}{y} = -\log y + c \Rightarrow \frac{1}{x} = cy - y \log y$ 108. $\cos x \, dy = y (\sin x - y) \, dx$ $\Rightarrow \frac{dy}{dx} = y \tan x - y^2 \sec x$ $\Rightarrow \frac{1}{v^2} \cdot \frac{dy}{dx} + \tan\left(-\frac{1}{v}\right) = -\sec x$(i) Put $v = -\frac{1}{v} \implies \frac{dv}{dr} = \frac{1}{v^2} \cdot \frac{dy}{dr}$ $\therefore \quad \frac{dv}{dx} + (\tan x)v = -\sec x \qquad \dots [From (i)]$ \therefore I.F. = $e^{\int \tan x \, dx} = e^{\log(\sec x)} = \sec x$ solution of the given equation is v. sec $x = \int -\sec x \cdot \sec x \, dx + c_1$ \Rightarrow v sec $x = -\tan x + c_1$ $\Rightarrow -\frac{1}{v} \sec x = -\tan x + c_1$ \Rightarrow sec $x = v(\tan x + c)$, where $c = -c_1$ 109. $(xy^4 + y) dx - x dy = 0$ $\Rightarrow \frac{dy}{dx} = \frac{xy^4 + y}{x}$ $\Rightarrow \frac{dy}{dy} - \frac{y}{y} = y^4$ $\Rightarrow y^{-4} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y^{-3}}{x} = 1$(i) Put $v = v^{-3}$ $\Rightarrow \frac{dv}{dx} = -3y^{-4} \cdot \frac{dy}{dx}$ $\therefore \quad -\frac{1}{3} \cdot \frac{\mathrm{d}v}{\mathrm{d}r} - \frac{v}{r} = 1$[From (i)] $\Rightarrow \frac{dv}{dr} + \frac{3}{r} \cdot v = -3$ $\therefore \quad \text{I.F.} = e^{\int_x^3 dx} = e^{3\log x} = x^3$ solution of the given equation is $v x^3 = \int -3 x^3 dx + c_1$ $\Rightarrow \mathbf{v} \cdot x^3 = \frac{-3x^4}{4} + \mathbf{c}_1 \Rightarrow \frac{x^3}{v^3} = -\frac{3}{4}x^4 + \mathbf{c}_1$ $\Rightarrow 4x^3 + 3x^4y^3 = 4c_1 \cdot y^3$ $\Rightarrow 4x^3 + 3x^4y^3 = c \cdot y^3, \text{ where } c = 4c_1$

110.
$$\frac{dy}{dx} + y \tan x = \sec x$$

I.F. = $e^{\int \tan x \, dx}$ = $e^{\log \sec x} = \sec x$
∴ Solution of the given differential equation is
 $y \sec x = \int \sec^2 x + c$
 $\Rightarrow y \sec x = \tan x + c$
 $y(0) = 0 \Rightarrow c = 0$
∴ $y \sec x = \tan x$
111. I.F. = $e^{\int \frac{x}{x} \log_e x}} = e^{\log(\log_e x)} = \log_e x$
∴ solution of the given equation is
 $y \cdot \log_e x = \int \frac{\log_e x}{x} dx + c$
 $\Rightarrow y \log_e x = \frac{(\log_e x)^2}{2} + c$
When $x = e, y = 1$
∴ $1 = \frac{1}{2} + c \Rightarrow c = \frac{1}{2}$
∴ $y \log_e x = \frac{(\log_e x)^2}{2} + \frac{1}{2}$
 $\Rightarrow 2y = \log_e x + \frac{1}{\log_e x}$
112. Given, $(x \log x) \frac{dy}{dx} + y = 2x \log x$
When $x = 1, y = 0$
 $(x \log x) \frac{dy}{dx} + y = 2x \log x$
∴ $\frac{dy}{dx} + \frac{y}{x \log x} = 2$
∴ $I.F. = e^{\int \frac{1}{x \log x} dx} = e^{\log(\log x)} = \log x$
∴ solution of the given equation is
 $y \cdot \log x = \int 2\log x dx + c$
∴ $y \log x = 2(x \log x - x) + c$
When $x = 1, y = 0$
∴ $0 = -2 + c \Rightarrow c = 2$
∴ $y \log x = 2(x \log x - x) + 2$
 $y (e) = 2(e - e) + 2 = 2$
113. $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$
 $\Rightarrow \frac{dx}{dy} + \frac{1}{y^2} x = \frac{1}{y^3}$
∴ I.F. = $e^{\int \frac{1}{y^2} dy} = e^{-\frac{1}{y}}$

∴ solution of the given equation is
x.
$$e^{-\frac{1}{y}} = \int \frac{1}{y^3} e^{-\frac{1}{y}} dy + c$$

 $\Rightarrow x e^{-\frac{1}{y}} = e^{-\frac{1}{y}} (\frac{1}{y} + 1) + c$ (i)
Since, $y(1) = 1$ i.e., $y = 1$, when $x = 1$
∴ $1 \cdot e^{-1} = e^{-1}(1 + 1) + c \Rightarrow c = -e^{-1}$
∴ $x e^{-\frac{1}{y}} = e^{-\frac{1}{y}} (\frac{1}{y} + 1) - e^{-1}$ [From (i)]
 $\Rightarrow x = 1 + \frac{1}{y} - \frac{e^{1/y}}{e}$
114. $(1 + x^2) \frac{dy}{dx} + 2xy - 4x^2 = 0$
 $\Rightarrow \frac{dy}{dx} + (\frac{2xy}{1 + x^2}) y = \frac{4x^2}{1 + x^2}$
∴ I.F. $= e^{\int \frac{2x}{1 + x^2} dx} = e^{\log(1 + x^2)} = 1 + x^2$
 $y.(I.F.) = \int Q (I.F.) dx + c$
 $\Rightarrow y(1 + x^2) = \int \frac{4x^2}{1 + x^2} \times (1 + x^2) dx + c$
 $\Rightarrow y(1 + x^2) = \frac{4}{3}x^3 + c$
Since, $y(0) = -1$, i.e., when $x = 0, y = -1$
∴ $c = -1$
 $\Rightarrow y(1 + x^2) = \frac{4}{3}x^3 - 1$
 $\Rightarrow y = \frac{4x^3}{3(1 + x^2)} - \frac{1}{1 + x^2}$
∴ $y(1) = \frac{4}{6} - \frac{1}{2} = \frac{1}{6}$
115. $(1 + t)\frac{dy}{dt} - ty = 1 \Rightarrow \frac{dy}{dt} - \frac{t}{1 + t} \cdot y = \frac{1}{1 + t}$
∴ I.F. $= e^{\int \frac{t}{1 + t^4}} = e^{-\int \frac{1 + t - 1}{1 + t}} = (1 + t) \cdot e^{-t}$
∴ solution of the given equation is
 $y.(1 + t) \cdot e^{-t} = \int (1 + t) \cdot e^{-t} \cdot \frac{1}{1 + t} dt + c$
 $= \int e^{-t} dt + c$
∴ $y(1 + t) \cdot e^{-t} = -e^{-t} + c$
 $\Rightarrow y(1 + t) = -1 + c \cdot e^{t} \dots (i)$
Since, $y(0) = -1$ i.e., $y = -1$, when $t = 0$
∴ $-1(1 + 0) = -1 + c \cdot e^{0} \Rightarrow c = 0$

.:	y(1+t) = -1 .	[From (i)]
	$\Rightarrow y = \frac{-1}{1+t}$	
	$y(1) = \frac{-1}{1+1} = \frac{-1}{2}$	
116.	$dy = \cos x(2 - y \operatorname{cosec} x)dx$	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos x - y\cot x$	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + y \cot x = 2 \cos x$	
<i>.</i>	I.F. = $e^{\int \cot x dx} = e^{\log \sin x} = \sin x$	
<i>.</i> :.	solution of the given equation is	
	$y.\sin x = \int 2\cos x.\sin x + c_1$	
<i>.</i>	$y.\sin x = \int \sin 2x + c_1 = -\frac{\cos 2x}{2}$	$+c_1$
	$= \frac{2\sin^2 x - 1}{2} + c_1 = \sin^2 x - \frac{1}{2} + \frac{1}{2} +$	$-\frac{1}{2}+c_1$
<i>.</i>	$y \sin x = \sin^2 x + c$, where $c = c_1 - c_1 - c_2 + c_2 + c_1 + c_2 + c_2$	$\frac{1}{2}$
	When $x = \frac{\pi}{2}$, $y = 2$	
	$2\sin\frac{\pi}{2} = \sin^2\frac{\pi}{2} + c$	
	$\Rightarrow 2 = 1 + c \Rightarrow c = 1$	
<i>.</i>	$y \sin x = \sin^2 x + 1 \Rightarrow y = \sin x + 0$	cosec x
117.	$\frac{\mathrm{d}y(x)}{\mathrm{d}x} + \mathrm{g}'(x)\mathrm{y}(x) = \mathrm{g}(x)\mathrm{g}'(x)$	
<i>.</i> :.	I.F. = $e^{\int g'(x)dx} = e^{g(x)}$	
<i>.</i> .	solution of the given equation is	
	$y(x).e^{g(x)} = \int g(x)g'(x) \cdot e^{g(x)}dx + e^{g(x)}dx$	c
	$\Rightarrow y(x).e^{g(x)} = e^{g(x)} [g(x) - 1] + c$ Putting $x = 0$ in (i), we get	(i)
	$0 = e^{0}(0-1) + c$ [: $y(0) = 0, g$	(0) = 0 (given)]
	\Rightarrow c = 1	
<i>.</i>	$y(x)e^{g(x)} = e^{g(x)} [g(x) - 1] + 1$	[From (i)]
	Putting $x = 2$, we get	
	$y(2)e^{0} = e^{0}(0-1) + 1 \dots [\because g(2)]$	= 0 (given)
	$\Rightarrow y(2) = 0$	

Chapter 07: Differential Equations 118. $\sin x \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = 4x$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + y \cot x = \frac{4x}{\sin x}$ I. F. = $e^{\int \cot x \, dx} = e^{\log \sin x} = \sin x$ General solution of the given equation is $y.\sin x = \int \sin x \cdot \frac{4x}{\sin x} + c$ $\Rightarrow y \sin x = 2x^2 + c$...(i) $y\left(\frac{\pi}{2}\right) = 0$ i.e. y = 0 when $x = \frac{\pi}{2}$ $0 = 2 \cdot \frac{\pi^2}{4} + c \Longrightarrow c = -\frac{\pi^2}{2}$ $y \sin x = 2x^2 - \frac{\pi^2}{2}$...[From (i)] When $x = \frac{\pi}{6}$, $y \cdot \frac{1}{2} = 2 \cdot \frac{\pi^2}{36} - \frac{\pi^2}{2}$ $\Rightarrow y\left(\frac{\pi}{6}\right) = \frac{-8}{9}\pi^2$ 119. $y' - y \tan x = 2x \sec x$ $\Rightarrow \frac{dy}{dx} + (-\tan x)y = 2x \sec x$ I.F. = $e^{-\int \tan x \, dx} = e^{\log \cos x} = \cos x$ *.*.. solution of the given equation is $y.\cos x = \int 2x \sec x.\cos x \, dx + c$ $\Rightarrow v \cos x = x^2 + c$(i) Since, y(0) = 0 i.e., y = 0, when x = 0 $0 = 0 + c \Longrightarrow c = 0$ *.*.. $v \cos x = x^2$ *.*.[From (i)] $\Rightarrow y = x^2 \sec x$(ii) $\Rightarrow y' = x^2 \sec x \tan x + 2x \sec x$(iii) Putting $x = \frac{\pi}{4}$ in (ii) and (iii), we get $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$ and $y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}} + \frac{\pi}{\sqrt{2}}$ Putting $x = \frac{\pi}{3}$ in (ii) and (iii), we get $y\left(\frac{\pi}{3}\right) = \frac{2\pi^2}{9}$ and $y'\left(\frac{\pi}{3}\right) = \frac{2\pi^2}{3\sqrt{3}} + \frac{4\pi}{3}$

120. 'p' is the population at time 't'. When t = T, $\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{3}{100} \mathrm{p}$ $V(T) = I - \frac{kT^2}{2}$ *.*. $\Rightarrow \frac{dp}{p} = \frac{3}{100} dt$ 122. $\frac{d(p(t))}{dt} = \frac{1}{2}p(t) - 200$ Integrating on both sides, we get Integrating on both sides, we get $\int \frac{\mathrm{d}p}{\mathrm{n}} = \frac{3}{100} \int \mathrm{d}t$ $\int \frac{d(p(t))}{\frac{1}{2}p(t) - 200} = \int dt + c_1$ $\Rightarrow \log p = \frac{3}{100}t + c_1$ $\Rightarrow 2\log\left(\frac{p(t)}{2}-200\right)=t+c_1$ $\Rightarrow \mathbf{p} = \mathbf{e}^{\frac{3}{100}^{t+c_1}} \Rightarrow \mathbf{p} = \mathbf{e}^{\frac{3}{100}^{t}} \mathbf{e}^{c_1}$ \rightarrow n = c e³/₁₀₀t \dots [where $e^{c_1} = c$] $\Rightarrow \frac{\mathbf{p}(t)}{2} - 200 = \mathbf{e}^{\frac{t}{2}} \cdot \mathbf{c}, \left(\text{ where } \mathbf{c} = \mathbf{e}^{\frac{c_1}{2}} \right) \dots (i)$ 121. $\frac{dV}{dt} = -k(T-t)$ Putting t = 0, we get $\Rightarrow dV = -k(T - t)dt$ $\frac{p(0)}{2} - 200 = e^{0}.c$ Integrating on both sides, we get $\int dV = -k \int (T-t) dt + c$ $\Rightarrow \frac{100}{2} - 200 = c \Rightarrow c = -150$ \Rightarrow V(t) = $\frac{k(T-t)^2}{2} + c$(i) :... $\frac{p(t)}{2} - 200 = e^{\frac{t}{2}}(-150)$ [From (i)] Initially i.e., when t = 0, V(t) = I $I = \frac{kT^2}{2} + c \Longrightarrow c = I - \frac{kT^2}{2}$ *:*.. $\Rightarrow p(t) = 400 - 300e^{\frac{t}{2}}$ $V(t) = \frac{k(T-t)^{2}}{2} + I - \frac{kT^{2}}{2} \qquad[From (i)]$ *.*..

Evaluation Test

- 1. The given equation is $\sqrt{1-x^4} + \sqrt{1-y^4} = a(x^2 - y^2)$ Put $x^2 = \sin \alpha$, $y^2 = \sin \beta$ The equation becomes $\cos \alpha + \cos \beta = a (\sin \alpha - \sin \beta)$ $2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$ $= 2a\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$ $\cot\left(\frac{\alpha-\beta}{2}\right) = a$ ÷. $\alpha - \beta = 2 \cot^{-1} a$ *.*.. $\sin^{-1} x^2 - \sin^{-1} y^2 = 2 \cot^{-1} a$ *.*.. Differentiating w.r.t. x, we get $\frac{1}{\sqrt{1-y^4}} \cdot 2x - \frac{1}{\sqrt{1-y^4}} \cdot 2y \frac{dy}{dx} = 0$
- $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y} \sqrt{\frac{1-y^4}{1-x^4}}$
- \therefore Degree and order are both 1.
- 2. Since, the given differential equation cannot be expressed as a polynomial in differential coefficients, so its degree is not defined.
- 3. The equation of tangent at any point P(x, y) is

$$Y - y = \frac{dy}{dx}(X - x)$$

This meets the X-axis at $A\left(x-y\frac{dx}{dy},0\right)$.

Similarly, it meets the Y-axis at $B\left(0, y - x\frac{dy}{dx}\right)$.

According to the given condition, P is the mid-point of AB.

$$\therefore 2x = x - y \frac{dx}{dy} \text{ and } 2y = y - x \frac{dy}{dx}$$

$$\therefore x + y \frac{dx}{dy} = 0 \text{ and } y + x \frac{dy}{dx} = 0$$

Both of these equations reduce to

$$\frac{1}{x} dx + \frac{1}{y} dy = 0$$

Integrating both sides, we get
 $\log x + \log y = \log c$

$$\therefore \log (xy) = \log c$$

$$\therefore xy = c, \text{ which is the equation of rectangular}$$
hyperbola.
4. $\sqrt{1 + x^2} + \sqrt{1 + y^2} = A(x\sqrt{1 + y^2} - y\sqrt{1 + x^2})$
Put $x = \tan \alpha, y = \tan \beta$
The equation becomes
 $\sec \alpha + \sec \beta = A(\tan \alpha \sec \beta - \tan \beta \sec \alpha)$

$$\therefore \frac{1}{\cos \alpha} + \frac{1}{\cos \beta} = A\left(\frac{\sin \alpha}{\cos \alpha} \cdot \frac{1}{\cos \beta} - \frac{\sin \beta}{\cos \alpha} \cdot \frac{1}{\cos \alpha}\right)$$

$$\therefore \cos \alpha + \cos \beta = A\left(\sin \alpha - \sin \beta\right)$$

$$\therefore \cos \alpha + \cos \beta = A\left(\sin \alpha - \sin \beta\right)$$

$$\therefore \cos \alpha + \cos \beta = A\left(\sin \alpha - \sin \beta\right)$$

$$\therefore \cos \alpha + \cos \beta = A\left(\sin \alpha - \sin \beta\right)$$

$$\therefore \cos \left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)$$

$$= A.2 \sin\left(\frac{\alpha - \beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right)$$

$$\therefore \cot\left(\frac{\alpha - \beta}{2}\right) = A$$

$$\therefore \tan^{-1} x - \tan^{-1} y = 2 \cot^{-1} A$$

Differentiating w.r.t. x, we get

$$\frac{1}{1 + x^2} - \frac{1}{1 + y^2} \cdot \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = \frac{1 + y^2}{1 + x^2}$$

$$\therefore Degree and order of the differential equation are both 1.$$

5. $\frac{dy}{dx} = \frac{y}{x} + \frac{f\left(\frac{y}{x}\right)}{f'\left(\frac{y}{x}\right)}$

Put y = vx

Chapter 07: Differential Equations $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$... The given equation becomes, $v + x \frac{dv}{dx} = v + \frac{f(v)}{f'(v)}$ $\therefore \quad \frac{1}{x} \, \mathrm{d}x = \frac{\mathrm{f}'(\mathrm{v})}{\mathrm{f}(\mathrm{v})} \mathrm{d}\mathrm{v}$ Integrating on both sides, we get $\log x = \log f(v) + \log K$ $\Rightarrow x = f(v)K$ $\Rightarrow x = Kf\left(\frac{y}{x}\right)$ \therefore $f\left(\frac{y}{x}\right) = \frac{1}{K} \cdot x = cx$, where $c = \frac{1}{K}$ 6. The given equation is $\frac{dy}{dx} + f'(x)y = f(x)f'(x)$ \therefore I.F. = $e^{\int f'(x)dx} = e^{f(x)}$ \therefore the required solution is $y.e^{f(x)} = \int e^{f(x)} f(x) f'(x) dx$ $= \int e^t dt$, where f(x) = t= t.e^t - $\int e^{t}.dt$ $= t.e^{t} - \int e^{t}.dt$ $= te^{t} - e^{t} + c$ $\therefore \quad y.e^{f(x)} = f(x) e^{f(x)} - e^{f(x)} + c$ $\therefore \quad y = f(x) - 1 + ce^{-f(x)}$ 7. The given equation is (x+1) f'(x) - 2(x² + x) f(x) = $\frac{e^{x^2}}{x+1}$ If y = f(x), the equation is $\frac{dy}{dx} - 2xy = \frac{e^{x^2}}{(x+1)^2}$, which is a linear equation $\therefore \qquad \text{I.F.} = e^{-\int 2x \, dx} = e^{-x^2}$ $\therefore \qquad \text{the required solution is}$ $y \cdot e^{-x^2} = \int \frac{1}{(x+1)^2} dx + c = -\frac{1}{x+1} + c$ When x = 0, y = 5when x = 0, y = 5 \therefore c = 6 \therefore $y \cdot e^{-x^2} = -\frac{1}{x+1} + 6$ $= \frac{-1+6x+6}{x+1} = \frac{6x+5}{x+1}$ \therefore $y = f(x) = \left(\frac{6x+5}{x+1}\right)e^{x^2}$

8.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2 + 1}{2xy}$$

- ... *.*..
- $2xydy = (x^{2} + 1) dx + y^{2} dx$ $2xydy y^{2}dx = (x^{2} + 1) dx$ Dividing by x², we get $\frac{2xydy - y^2dx}{x^2} = \left(\frac{x^2 + 1}{x^2}\right)dx$

$$\therefore \qquad d\left(\frac{y^2}{x}\right) = \left(1 + \frac{1}{x^2}\right) dx$$

Integrating both sides, we get v^2 1

$$\frac{y^2}{x} = x - \frac{y^2}{x} + \frac{y^2}{x}$$

$$\therefore \qquad y^2 = x^2 - 1 + cx$$

When $x = 1, y = 0, \therefore c = 0$ the required solution is $y^2 = x^2 - 1$ i.e., $x^2 - y^2 = 1$, which is the equation of a *.*.. hyperbola.

9.
$$x \, dx + y \, dy + \frac{x \, dy - y \, dx}{x^2 + y^2} = 0$$

$$\therefore \quad \frac{1}{2} (2x dx + 2y dy) + \frac{1}{1 + \frac{y^2}{x^2}} \left(\frac{x dy - y dx}{x^2} \right) = 0$$

Integrating both sides, we get

$$\frac{1}{2} (x^2 + y^2) + \tan^{-1} \left(\frac{y}{x} \right) = \frac{c}{2}$$

$$\therefore \quad x^2 + y^2 + 2 \tan^{-1} \left(\frac{y}{x} \right) = c$$

$$\therefore \quad 2 \tan^{-1} \left(\frac{y}{x} \right) = c - x^2 - y^2$$

$$\therefore \quad \tan^{-1} \left(\frac{y}{x} \right) = \frac{c - x^2 - y^2}{2}$$

$$\therefore \quad \frac{y}{x} = \tan \left(\frac{c - x^2 - y^2}{2} \right)$$

10.
$$2x^2 y \frac{dy}{dx} = \tan (x^2 y^2) - 2x y^2$$

$$\therefore \quad x^2 \cdot 2y \frac{dy}{dx} + y^2 \cdot 2x = \tan (x^2 y^2)$$

$$\therefore \quad \frac{d}{dx} (x^2 y^2) = \tan (x^2 y^2)$$

$$\frac{dz}{dx} = \tan z, \text{ where } z = x^2 y^2$$

$$\frac{dz}{dx} = \cot z dz$$
Integrating both sides, we get
$$x = \log (\sin z) + c \Rightarrow x = \log(\sin x^2 y^2) + c$$
When $x = 1, y = \sqrt{\frac{\pi}{2}}, \therefore z = \frac{\pi}{2}$

$$\frac{\pi}{2}$$

$$\frac{1}{2} = \log 1 + c, \therefore c = 1$$

$$\frac{\pi}{2} + \log (\sin x^2 y^2) = x - 1$$

$$\frac{\pi}{2} + \log (\sin x^2 y^2) = x - 1$$

$$\frac{\pi}{2} + (x^2 + x^2) = e^{x - 1}$$

$$\frac{\pi}{2} + (x^2 + x^2) = e^{x - 1}$$

$$\frac{\pi}{2} + \frac{y}{dx} + \frac{4 \tan y}{x \sec y} = \frac{e^x}{x^3}$$
Put sin $y = t, \therefore \cos y \frac{dy}{dx} = \frac{dt}{dx}$

$$\frac{dt}{dx} + \left(\frac{4}{x}\right)t = \frac{e^x}{x^3}, \text{ which is a linear equation}$$

$$\frac{dt}{dx} + \left(\frac{4}{x}\right)t = \frac{e^{x}}{x^3}, \text{ which is a linear equation}$$

$$\frac{\pi}{2} + \frac{f^4}{x^2} = e^{4\log x} = e^{\log x^4} = x^4$$

$$\frac{\pi}{2} + e^{x} - e^{x} + c$$

$$\frac{\pi}{3}$$

dx

÷.

I.F. $= e^{\int \tan x \, dx}$ *.*.. $= e^{\log(\sec x)} = \sec x$ the required solution is *.*.. $t \sec x = \int \sec^2 x \, dx + c$ $\frac{1}{y} \sec x = \tan x + c$ *.*.. $\sec x = y (c + \tan x)$ *.*.. $(xy - x^2)\frac{\mathrm{d}y}{\mathrm{d}x} = y^2$ 13. $\therefore y^2 \frac{\mathrm{d}x}{\mathrm{d}y} = xy - x^2$ Dividing by x^2y^2 , we get $\frac{1}{x^2}\frac{\mathrm{d}x}{\mathrm{d}v} = \frac{1}{x}\cdot\frac{1}{v} - \frac{1}{v^2}$ $\therefore \qquad -\frac{1}{x^2}\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{1}{x}\cdot\frac{1}{y} = \frac{1}{y^2}$ Put $\frac{1}{r} = t$ $-\frac{1}{x^2}\cdot\frac{\mathrm{d}x}{\mathrm{d}v} = \frac{\mathrm{d}t}{\mathrm{d}v}$ *.*.. The equation becomes *.*.. $\frac{dt}{dv} + \frac{1}{v} \cdot t = \frac{1}{v^2}$, which is a linear equation I.F. = $e^{\int \frac{1}{y} dy} = e^{\log y} = y$ ÷. the required solution is Ŀ. $ty = \int \frac{1}{v} dy + c$ $ty = \log y + c$ *.*.. $\frac{y}{x} = \log y + c$ *.*.. $y = x (\log y + c)$ *.*.. The curve passes through the point (-1, 1). $1 = -1(0 + c), \therefore c = -1$ *.*.. the required solution is $y = x (\log y - 1)$. *.*.. 14. $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x-y} \left(1-\mathrm{e}^{y}\right)$ $\therefore \qquad \mathrm{e}^{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x}\left(1 - \mathrm{e}^{y}\right)$ $\therefore e^{y} \frac{dy}{dx} = e^{x} - e^{x} \cdot e^{y}$ $e^{y} \frac{dy}{dx} + e^{x} e^{y} = e^{x}$ *.*..

Chapter 07: Differential Equations Put $e^{y} = t$, $\therefore e^{y} \frac{dy}{dx} = \frac{dt}{dx}$ The given equation becomes *.*.. $\frac{dt}{dr} + e^x \cdot t = e^x$, which is a linear equation. $I.F. = e^{\int e^x dx} = e^{e^x}$ *.*.. the required solution is ÷ $t.e^{e^x} = \int e^{e^x} \cdot e^x dx$ $=\int e^{z}.dz$, where $e^{x} = z$ $= e^{z} + c$ \therefore t.e^{e^x} = e^{e^x} + c $e^{y} \cdot e^{e^{x}} = e^{e^{x}} + c$ ÷ The equation of the tangent to the curve 15. y = f(x) at P (x, y) is $Y - y = \frac{dy}{dx}(X - x)$ This meets the X-axis at $\left(x - y \frac{dx}{dy}, 0\right)$. According to the given condition, $x - \frac{y}{dy} = y$ dx $x - y = \frac{y}{\underline{dy}}$ *.*. $\frac{dy}{dx} = \frac{y}{x-y}$, which is a homogeneous d.E. Put y = vx $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{v} + x \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x}$ the equation becomes, $v + x \frac{dv}{dx} = \frac{vx}{x - vx} = \frac{v}{1 - v}$ $\therefore x \frac{\mathrm{dv}}{\mathrm{dr}} = \frac{\mathrm{v}}{1-\mathrm{v}} - \mathrm{v}$ $=\frac{\mathbf{v}-\mathbf{v}+\mathbf{v}^2}{1-\mathbf{v}}$ $\therefore \qquad \frac{1-v}{v^2} dv = \frac{1}{r} dx$ Integrating both sides, we get $\int \left(v^{-2} - \frac{1}{v} \right) dv = \int \frac{1}{v} dx + c$

667

MHT-CET Triumph Maths (Hints) $-\frac{1}{v} - \log v = \log x + c$... $\therefore \qquad -\frac{x}{y} - \log\left(\frac{y}{x}\right) = \log x + c$ $\therefore \qquad -\frac{x}{v} - \log y + \log x = \log x + c$ $-\frac{x}{v} - \log y = c$:. This curve passes through (1, 1). c = -1*.*.. $\therefore \qquad -\frac{x}{v} - \log y = -1$ $\therefore \frac{x}{y} + \log y = 1$ $\log y = 1 - \frac{x}{y}$ *.*.. $\therefore \quad y = e^{1 - \frac{x}{y}} = e \cdot e^{-\frac{x}{y}}$ $v e^{\frac{x}{y}} = e$ ÷. 16. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1-y^2}}{v}$ $\int \frac{y}{\sqrt{1-y^2}} \,\mathrm{d}y = \int 1 \,\mathrm{d}x$ *.*.. $-\sqrt{1-y^2} = x + c$ *.*.. $(x + c)^2 = 1 - y^2$ ÷. $(x + c)^2 + y^2 = 1$ *.*.. *.*.. Radius is fixed, which is 1 and the centre is (-c, 0) which is a variable centre on the X-axis. (A) $f(tx, ty) = \frac{tx - ty}{t^2 x^2 + t^2 y^2} = t^{-1} \left(\frac{x - y}{x^2 + y^2} \right)$ 17. $= t^{-1} f(x, y)$ Homogeneous of degree -1. *.*.. (B) $f(tx, ty) = (tx)^{\frac{1}{3}} (ty)^{-\frac{2}{3}} tan^{-1} \left(\frac{tx}{ty}\right)^{\frac{2}{3}}$ $=(t)^{-\frac{1}{3}}x^{\frac{1}{3}}y^{-\frac{2}{3}}\tan^{-1}\left(\frac{x}{v}\right)=t^{-\frac{1}{3}}f(x,y)$

 \therefore Homogeneous of degree $-\frac{1}{3}$.

(C)
$$f(tx, ty) = tx \left[\log \sqrt{t^2 x^2 + t^2 y^2} - \log t y \right]$$

 $+ ty e^{\frac{y}{y}}$
 $= t \left[x \log \sqrt{t^2 x^2 + t^2 y^2} \right] + ty e^{\frac{x}{y}}$
 $= t \left[x \left(\log \sqrt{x^2 + y^2} - \log y \right) + y e^{\frac{x}{y}} \right]$
 $= t f(x, y)$
 \therefore Homogeneous of degree 1.
(D) $f(tx, ty)$
 $= tx \left\{ \log \left[\frac{2t^2 x^2 + t^2 y^2}{tx} \right] - \log(tx + ty) \right\}$
 $+ t^2 y^2 \tan \left(\frac{tx + 2ty}{3tx - ty} \right)$
 $= tx \left[\log \frac{2x^2 + y^2}{x(x + y)} \right] + t^2 y^2 \tan \left(\frac{x + 2y}{3x - y} \right)$
 \therefore Non-Homogeneous.
18. $\frac{dy}{dx} = \frac{\sin 2y}{x + \tan y}$
 \therefore Mon-Homogeneous.
18. $\frac{dy}{dy} = \frac{x + \tan y}{\sin 2y}$
 \therefore $\frac{dx}{dy} - \frac{x}{\sin 2y} = \frac{\tan y}{\sin 2y}$,
 which is a linear equation
 \therefore I.F. $= e^{-\int \csc 2y dy} = e^{-\frac{1}{2} \log(\tan y)} = e^{\log(\tan y)^{-\frac{1}{2}}}$
 $= e^{\log \sqrt{\cot y}}$
 $= \sqrt{\cot y}$
 \therefore the required solution is
 $x\sqrt{\cot y} = \int \frac{\tan y}{\sin 2y} \sqrt{\cot y} \, dy + c$
 $= \int \frac{1}{\sqrt{\tan y}} \cdot \frac{\sin y}{\cos y} \cdot \frac{1}{2\sin y \cos y} \, dy + c$
 $= \int \frac{1}{2\sqrt{\tan y}} \sec^2 y \, dy + c$
 $The curve passes through $\left(1, \frac{\pi}{4}\right)$.
 \therefore I = 1 + c, \therefore c = 0
 \therefore the equation of the curve is$

 $x = \tan y$

Chapter 07: Differential Equations

19. The equation of hyperbola is
$$xy = 2$$

 $\therefore y = \frac{2}{-1}$

- \therefore m₁ = $\frac{dy}{dx}$ = $-\frac{2}{x^2}$ (slope of tangent to the hyperbola)
 - $m_2 = \frac{dy}{dx}$ = slope of tangent to the required family of curves.

The curves are intersecting orthogonally, $m_1m_2 = -1$

- $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} \times \left(-\frac{2}{x^2}\right) = -1$ $\mathrm{d}y \qquad x^2$
- $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{2}$

Integrating both sides, we get $y = \frac{x^3}{6} + c$, which is the equation of required family of curves.

20. The given equation is

$$\frac{dy}{dx} = -\frac{(y+y^3)}{1+x+xy^2} = \frac{-(y+y^3)}{1+x(1+y^2)}$$

$$\therefore \quad \frac{dx}{dy} = -\frac{1+x(1+y^2)}{y(1+y^2)}$$

$$= -\frac{1}{y(1+y^2)} - \frac{x}{y}$$

$$\therefore \quad \frac{dx}{dy} + \frac{1}{1+x} = -\frac{1}{1+x} \text{ which is a line}$$

 $\therefore \quad \frac{dx}{dy} + \frac{1}{y} \cdot x = -\frac{1}{y(1+y^2)}, \text{ which is a linear}$ equation

$$\therefore \quad \text{I.F.} = e^{\int \frac{1}{y} dy} = e^{\log y} = y$$

$$\therefore \quad \text{the required solution is}$$

$$xy = -\int \frac{1}{1+y^2} dy + c$$

 $\therefore \quad xy = -\tan^{-1}y + c$

The curve passes through (0, 1) \therefore $c = \frac{\pi}{4}$

- $\therefore \text{ the required equation of the curve is} xy + \tan^{-1} y = \frac{\pi}{4}$
- 21. Slope of tangent = $\frac{dy}{dx}$ ∴ slope of normal = $-\frac{1}{\frac{dy}{dx}}$

The equation of the normal is

$$Y - y = -\frac{1}{\frac{dy}{dx}}(X - x)$$
$$(Y - y) \frac{dy}{dx} + (X - x) =$$

The normal passes through the point (3, 0).

0

:
$$(0-y) \frac{dy}{dx} + (3-x) = 0$$

$$\therefore y \frac{\mathrm{d}y}{\mathrm{d}x} = 3 - x$$

...

 \therefore y dy = (3 - x) dx

Integrating both sides, we get $\frac{y^2}{2} = 3x - \frac{x^2}{2} + c$ The curve passes through (3, 4), $\therefore c = \frac{7}{2}$

$$\therefore \quad \text{the equation of the curve is } \frac{y}{2} = 3x - \frac{x}{2} + \frac{7}{2}$$
$$\therefore \quad x^2 + y^2 - 6x - 7 = 0$$

22. The given equation can be written as

$$xdy - ydx = xy^{3} (1 + \log x) dx$$

$$\therefore -\left(\frac{ydx - xdy}{y^{2}}\right) = xy (1 + \log x) dx$$

$$\therefore -d\left(\frac{x}{y}\right) = xy (1 + \log x) dx$$

$$\therefore -\frac{x}{y} d\left(\frac{x}{y}\right) = x^{2} (1 + \log x) dx$$
Integrating both sides, we get
$$-\frac{\left(\frac{x}{y}\right)^{2}}{2} = (1 + \log x) \int x^{2} dx$$

$$-\int \left\{\frac{d}{dx}(1 + \log x)\int x^{2} dx\right\} dx + \frac{c}{2}$$

$$\therefore -\frac{x^{2}}{2y^{2}} = (1 + \log x) \cdot \frac{x^{3}}{3} - \int \frac{1}{x} \cdot \frac{x^{3}}{3} dx + \frac{c}{2}$$

$$\therefore -\frac{x^{2}}{2y^{2}} = (1 + \log x) \cdot \frac{x^{3}}{3} - \frac{x^{3}}{9} + \frac{c}{2}$$

$$\therefore -\frac{x^{2}}{y^{2}} = \frac{2x^{3}}{3}(1 + \log x) - \frac{2x^{3}}{9} + c$$

$$= \frac{2x^{3}}{3}\left(1 + \log x - \frac{1}{3}\right) + c$$

$$\therefore -\frac{x^{2}}{y^{2}} = \frac{2x^{3}}{3}\left(\frac{2}{3} + \log x\right) + c$$

23. The equation of the tangent at P(x, y) is $Y - y = \frac{dy}{dx}(X - x)$

This meets the Y-axis at $\left(0, y - x \frac{dy}{dx}\right)$.

According to the given condition,

$$y - x \frac{dy}{dx} = x^{3}$$

$$\Rightarrow \frac{dy}{dx} + \left(-\frac{1}{x}\right)y = -x^{2}$$

I.F. = $e^{\int -\frac{1}{x}dx} = e^{-\log x} = \frac{1}{x}$

...

 \therefore solution of the given equation is

$$y \cdot \frac{1}{x} = \int -x^2 \cdot \frac{1}{x} + c$$

$$\Rightarrow \frac{y}{x} = -\frac{x^2}{2} + c \Rightarrow y = -\frac{x^3}{2} + cx$$

$$\therefore \quad f(x) = -\frac{x^3}{2} + cx \qquad \dots(i)$$

$$\therefore \quad f(1) = -\frac{1}{2} + c$$

$$\Rightarrow 1 = -\frac{1}{2} + c \Rightarrow c = \frac{3}{2}$$

$$\therefore \quad f(x) = -\frac{x^3}{2} + \frac{3}{2}x \qquad \dots[From (i)]$$

$$\therefore \quad f(-3) = \frac{27}{2} - \frac{9}{2} = 9$$

24.
$$\frac{dV}{dt} = -k(T - t)$$

$$\Rightarrow dV = -k(T - t)dt$$

Integrating on both sides, we get

$$\int dV = -k\int (T - t)dt + c$$

$$\Rightarrow V(t) = \frac{k(T - t)^2}{2} + c \qquad \dots(i)$$

Initially i.e., when t = 0, V(t) = I

$$\therefore \qquad I = \frac{kT^2}{2} + c \Rightarrow c = I - \frac{kT^2}{2}$$

$$\therefore \qquad V(t) = \frac{k(T-t)^2}{2} + I - \frac{kT^2}{2} \qquad \dots [From (i)]$$

When t = T,
$$V(T) = I - \frac{kT^2}{2}$$

25.
$$\frac{dy}{dx} = \frac{y}{x} - \cos^2 \frac{y}{x} \qquad \dots (i)$$
Put $y = vx \qquad \dots (ii)$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (iii)$$
Substituting (ii) and (iii) in (i), we get
$$v + x \frac{dv}{dx} = v - \cos^2 v \qquad \Rightarrow \qquad x \frac{dv}{dx} = -\cos^2 v$$
Integrating on both sides, we get
$$\int \sec^2 v \, dv = -\int \frac{dx}{x} + c$$

$$\Rightarrow \tan v = -\log x + c$$

$$\Rightarrow \tan \frac{y}{x} = -\log x + c \qquad \dots (iv)$$
Since, the required curve passes through $\left(1, \frac{\pi}{4}\right)$

$$\therefore \qquad \tan \frac{\pi}{4} = -\log 1 + c \Rightarrow c = 1$$

$$\therefore \qquad \tan \frac{y}{x} = -\log x + 1 \qquad \dots [From (iv)]$$

$$\Rightarrow \tan \frac{y}{x} = -\log x + \log e$$

$$\Rightarrow y = x \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$$

Textbook Chapter No.

Probability Distribution

Hints

1. The sum of all the probabilites in a probability distribution is always unity. $\therefore \quad 0.1 + k + 0.2 + 2k + 0.3 + k = 1$ $\Rightarrow 4k + 0.6 = 1 \Rightarrow 4k = 0.4 \Rightarrow k = 0.1$ 2. Since, $\sum_{k=1}^{4} P(X = x) = 1$

Classical Thinking

- $\therefore \qquad \frac{1}{8} + \frac{1}{2} + \frac{1}{4} + k = 1$ $\Rightarrow k + \frac{1+4+2}{8} = 1$ $\Rightarrow k = 1 \frac{7}{8} = \frac{1}{8}$
- 3. Since, $\sum_{x=0}^{4} P(X = x) = 1$ $\therefore \quad k + 2k + 3k + 2k + k = 1$ $\Rightarrow 9k = 1 \Rightarrow k = \frac{1}{9}$
- 4. The probability distribution of X is

$$\frac{X}{P(X)} = \frac{0}{k} \frac{1}{2k} \frac{2}{3k}$$

Since,
$$\sum_{x=0}^{2} P(X = x) = 1$$
$$k + 2k + 3k = 1$$
$$\Rightarrow 6k = 1 \Rightarrow k = \frac{1}{6}$$

5.
$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

 $= \frac{{}^{5}C_{0}}{2^{5}} + \frac{{}^{5}C_{1}}{2^{5}} + \frac{{}^{5}C_{2}}{2^{5}}$

$$=\frac{1\!+\!5\!+\!10}{2^5}=\frac{16}{32}$$

6. F
$$(-1) = 0.2 + 0.3 = 0.5$$

7.
$$F(x_1) = p_1 = 0.05$$

$$F(x_2) = p_1 + p_2 = 0.05 + 0.2 = 0.25$$

$$F(x_3) = p_1 + p_2 + p_3 = 0.25 + 0.15 = 0.4$$

$$F(x_4) = p_1 + p_2 + p_3 + p_4 = 0.4 + 0.25 = 0.65$$

$$F(x_5) = p_1 + p_2 + p_3 + p_4 + p_5 = 0.65 + 0.35 = 1$$

8. $E(X) = \sum x_i P(x_i)$ $=0\left(\frac{1}{8}\right)+1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)$ $=\frac{3}{8}+\frac{6}{8}+\frac{3}{8}=\frac{3}{2}$ $E(X) = \sum x_i \cdot P(x_i)$ 9. = 0 (0.2) + 1 (0.5) + 3 (0.2) + 5 (0.1)= 0 + 0.5 + 0.6 + 0.5= 1.6Variance = $\sum x_i^2 \cdot P(x_i) - [E(X)]^2$ $=(0)^{2}(0.2)+(1)^{2}(0.5)+(3)^{2}(0.2)$ $+(5)^{2}(0.1)-(1.6)^{2}$ = 48 - 256 = 224Since, $Var(X) = E(X^2) - [E(X)]^2$ 10. $4 = 13 - [E(X)]^{2}$ *.*.. $[E(X)]^2 = 13 - 4 = 9$ *.*.. *.*.. E(X) = 3Since, Var (X) = $E(X^2) - [E(X)]^2$ 11. $6 = E(X^2) - (5)^2$ *.*.. *.*.. $E(X^2) = 25 + 6 = 31$ Mean = E (X) = $\sum x_i \cdot P(x_i)$ 12. $=\frac{1}{6}(1)+\frac{1}{3}(2)+\frac{1}{3}(3)+\frac{1}{6}(4)$ $=\frac{1}{6}+\frac{2}{3}+1+\frac{4}{6}=\frac{1+4+6+4}{6}$ $=\frac{15}{6}=\frac{5}{2}$ Variance = $\sum x_i^2 \cdot P(x_i) - [E(X)]^2$ $= \frac{1}{6}(1)^2 + \frac{1}{3}(2)^2 + \frac{1}{3}(3)^2 + \frac{1}{6}(4)^2 - \left(\frac{5}{2}\right)^2$ $=\frac{1}{6}+\frac{4}{3}+\frac{9}{3}+\frac{16}{6}-\frac{25}{4}$ $=\frac{2+16+36+32-75}{12}$ $=\frac{86-75}{12}=\frac{11}{12}$

13. E(X) = 1(
$$\frac{1}{7}$$
) + 2($\frac{2}{7}$) + 3($\frac{3}{7}$) + 4($\frac{1}{7}$) = $\frac{18}{7}$
E(X²) = (1²)($\frac{1}{7}$) + (2²)($\frac{2}{7}$) + (3²)($\frac{3}{7}$)
+ (4²)($\frac{1}{7}$)
= $\frac{1}{7} + \frac{8}{7} + \frac{27}{7} + \frac{16}{7} = \frac{52}{7}$
∴ Var(X) = E(X²) - [E(X)]²
= $\frac{52}{7} - (\frac{18}{7})^2 = \frac{40}{49}$
14. P(1 < X < 3) = $\int_{1}^{3} f(x) dx$
= $\int_{1}^{3} \frac{1}{5} dx = \frac{1}{5} [x]_{1}^{3} = \frac{2}{5}$
15. P($\frac{1}{3} < X < \frac{1}{2}$) = $\int_{1/3}^{1/2} f(x) dx$
= $\int_{1/3}^{1/2} 2x dx = [x^2]_{1/3}^{1/2} = \frac{5}{36}$
16. P(0.5 ≤ X ≤ 1.5) = $\int_{0.5}^{1.5} f(x) dx = \int_{0.5}^{1.5} 0.5x dx$
= $0.5 [\frac{x^2}{2}]_{0.5}^{1.5} = \frac{1}{2}$
17. P(X > 3) = $\int_{3}^{4} f(x) dx$
= $\frac{4}{3} \frac{x}{8} dx = \frac{1}{8} [\frac{x^2}{2}]_{3}^{4} = \frac{7}{16}$
18. Since, f(x) is the p.d.f. of X.
∴ $\int_{-\infty}^{\infty} f(x) dx = 1$
 $\rightarrow \frac{2}{1} kx^2 dx = 1 \Rightarrow k [\frac{x^3}{x}]^2 = 1$

$$\Rightarrow \int_{0}^{1} kx \, dx = 1 \Rightarrow k \begin{bmatrix} 3 \end{bmatrix}_{0}$$
$$\Rightarrow k \begin{bmatrix} \frac{8}{3} \end{bmatrix} = 1 \Rightarrow k = \frac{3}{8}$$

19. The c.d.f. of X is

$$F(x) = \int_{-1}^{x} \frac{x^2}{3} dx = \frac{1}{3} \left[\frac{x^3}{3} \right]_{-1}^{x}$$
$$= \frac{1}{3} \left(\frac{x^3}{3} + \frac{1}{3} \right) = \frac{x^3}{9} + \frac{1}{9}$$

6

Critical Thinking 1. The sum of all the probabilities in a probability distribution is always unity. In option (A), we have 0.3 + 0.2 + 0.4 + 0.1 = 1Since, $\sum_{i=1}^{4} P(X = x) = 1$ 2. *.*.. k + 2k + 3k + 4k = 1 $\Rightarrow 10k = 1 \qquad \Rightarrow k = \frac{1}{10}$ Now, P(X < 3) = P(X = 1) + P(X = 2)= k + 2k $= 3k = 3\left(\frac{1}{10}\right) = 0.3$ Since, $\sum_{x=0}^{4} P(X = x) = 1$ 3. k + 3k + 5k + 2k + k = 1*.*.. $\Rightarrow 12 \text{ k} = 1 \qquad \Rightarrow \text{ k} = \frac{1}{12}$ Now, $P(X \ge 2) = P(X=2) + P(X=3) + P(X=4)$ = 5k + 2k + k $= 8k = 8\left(\frac{1}{12}\right) = \frac{2}{3}$ Since, $\sum_{x=0}^{6} P(X = x) = 1$ 4. k + 3k + 5k + 7k + 9k + 11k + 13k = 1*.*.. $\Rightarrow 49k = 1 \Rightarrow k = \frac{1}{49}$ P(0 < X < 4)*.*.. = P(X = 1) + P(X = 2) + P(X = 3) $= 3k + 5k + 7k = 15k = \frac{15}{49}$ 5. P(X is odd) = P(X = -3) + P(X = -1) + P(X = 1) + P(X = 3)= 0.05 + 0.15 + 0.25 + 0.10 = 0.556.

...

7. Since,
$$\sum_{x=0}^{7} P(X = x) = 1$$

 $\therefore 0 + P + 2P + 2P + 3P + P^{2} + 2P^{2} + 7P^{2} + P = 1$
 $\therefore 10P^{2} + 9P - 1 = 0$
 $\therefore (P + 1) (10P - 1) = 0$
 $\therefore P = \frac{1}{10} \qquad \dots [\because P \ge 0, \therefore P + 1 \ne 0]$
8. Since, $\sum_{x=0}^{2} P(X = x) = 1$
 $\therefore 3k^{3} + 4k - 10k^{2} + 5k - 1 = 1$
 $\Rightarrow 3k^{3} - 10k^{2} + 9k - 2 = 0$
 $\Rightarrow (k - 1)(k - 2)(3k - 1) = 0$
 $\Rightarrow k = 1 \text{ or } k = 2 \text{ or } k = \frac{1}{3}$
For $k = 1 \text{ or } k = 2$, $P(X = 1) < 0$, which is not possible.
 $\therefore k = \frac{1}{3}$

9. Since,
$$\sum_{x=1}^{3} P(X = x) = 1$$

 $\therefore \quad \frac{1}{20} + \frac{3}{20} + a + b + \frac{1}{20} = 1$
 $\Rightarrow a + b = 1 - \frac{5}{20}$
 $\Rightarrow a + 2a = 1 - \frac{1}{4}$ [$\because b = 2a \text{ (given)}$]
 $\Rightarrow 3a = \frac{3}{4}$
 $\Rightarrow a = \frac{1}{4} \text{ and } b = 2\left(\frac{1}{4}\right) = \frac{1}{2}$

10. The probability distribution of X is

11.

$$P(X = x_2) = \frac{k}{3}, P(X = x_4) = \frac{k}{5}$$

Since, $P(X = x_1) + P(X = x_2) + P(X = x_3)$
 $+ P(X = x_4) = 1$

$$\frac{\mathbf{k}}{\mathbf{k}} + \frac{\mathbf{k}}{\mathbf{k}} + \mathbf{k} + \frac{\mathbf{k}}{\mathbf{k}} = 1 \quad \Rightarrow \mathbf{k} = \frac{30}{2}$$

Chapter 08: Probability Distribution

- $\therefore \quad \frac{\pi}{2} + \frac{\pi}{3} + k + \frac{\pi}{5} = 1 \implies k = \frac{36}{61}$ $\therefore \quad \text{option (A) is the correct answer.}$
- Let X denotes the number of heads. Thus, the possible values of X are 0, 1, 2 and 3.

$$P(X = 0) = P(getting no head)$$

$$= P(TTT) = \frac{1}{8}$$

$$P(X = 1) = P(getting one head)$$

$$= P(HTT, THT, TTH) = \frac{3}{8}$$

$$P(X = 2) = P(getting two heads)$$

$$= P(HHT, THH, HTH) = \frac{3}{8}$$

$$P(X = 3) = P(getting three heads)$$

$$= P(HHH) = \frac{1}{8}$$

- \therefore Option (D) is the correct answer.
- 13. Let X denote the number of red balls drawn from the bag. There are 4 red balls and X can take values 0, 1, 2 and 3.

P(X = 0) = Probability of getting no red ball

$$=\frac{{}^{6}\mathrm{C}_{3}}{{}^{10}\mathrm{C}_{3}}=\frac{1}{6}$$

$$P(X = 1) = Probability of getting one red ball$$
$$= \frac{{}^{4}C_{1} \times {}^{6}C_{2}}{{}^{10}C_{3}} = \frac{1}{2}$$
$$P(X = 2) = Probability of getting two red balls$$

$$=\frac{{}^{4}\mathrm{C}_{2}\times{}^{6}\mathrm{C}_{1}}{{}^{10}\mathrm{C}_{3}}=\frac{3}{10}$$

P(X = 3) = Probability of getting three red balls = $\frac{{}^{4}C_{3}}{{}^{10}C_{3}} = \frac{1}{30}$

14. Let X denote the number of defective mangoes from the bag. X can take values 0, 1, 2, 3 and 4.

P(X = 0) = Probability of getting no defective

mango =
$$\frac{{}^{15}C_4}{{}^{20}C_4} = \frac{91}{323}$$

P(X = 1) = Probability of getting one defective mango = $\frac{{}^{5}C_{1} \times {}^{15}C_{3}}{{}^{20}C_{4}} = \frac{455}{969}$

P(X = 2) = Probability of getting two defective mangoes = $\frac{{}^{5}C_{2} \times {}^{15}C_{2}}{{}^{20}C_{4}} = \frac{70}{323}$ P(X = 3) = Probability of getting three defective mangoes = $\frac{{}^{5}C_{3} \times {}^{15}C_{1}}{{}^{20}C_{4}} = \frac{10}{323}$ P(X = 4) = Probability of getting four defective mangoes = $\frac{{}^{5}C_{4}}{{}^{20}C_{4}} = \frac{1}{969}$ 15. P(x = 2) = F(2) - F(1) = 0.43 - 0.18 = 0.25P(x = 3) = F(3) - F(2) = 0.54 - 0.43 = 0.11P(x = 4) = F(4) - F(3) = 0.68 - 0.54 = 0.14P(1 < x < 5) = P(x = 2) + P(x = 3) + P(x = 4)*.*.. = 0.25 + 0.11 + 0.14 = 0.5016. P(X = 1) = F(1) - F(0) = 0.65 - 0.5 = 0.15P(X = 3) = F(3) - F(1) = 0.75 - 0.65 = 0.10P(X = 5) = 0.85 - 0.75 = 0.10P(X = 7) = 0.90 - 0.85 = 0.05P(X = 9) = 1 - 0.90 = 0.10 $P(X \le 3 | X > 0)$ *.*.. P(X=1) + P(X=3)P(X=1) + P(X=3) + P(X=5) + P(X=7) + P(X=9)0.15 + 0.1 $= \frac{1}{0.15 + 0.1 + 0.1 + 0.05 + 0.1}$ $=\frac{0.25}{0.50}=\frac{1}{2}$

- 17. The sum of all the probabilities in a probability distribution is always unity.
- $\therefore \quad 0.1 + k + 0.2 + 2k + 0.3 + k = 1$ $\Rightarrow 0.6 + 4k = 1$ $\Rightarrow 4k = 0.4$ $\Rightarrow k = 0.1$ $\therefore \quad E(X) = (-2) (0.1) + (-1) (0.1) + 0 (0.2)$
- $+ 1 (2 \times 0.1) + 2 (0.3) + 3 (0.1) = 0.8$ 18. The sum of all the probabilities in a much shifter distribution is chosen emitted.
- probability distribution is always unity. ∴ 0.2 + 0.1 + 0.3 + k = 1 ∴ k = 1 - 0.6 = 0.4 E(X) = $\sum x_i \cdot P(x_i)$ = 1(0.2) + 2(0.1) + 3(0.3) + 4(0.4) = 0.2 + 0.2 + 0.9 + 1.6 = 2.9 Var(X) = E(X²) - [E(X)]² = (1)² (0.2) + (2)² (0.1) + (3)² (0.3) + (4)² (0.4) - (2.9)² = 0.2 + 0.4 + 2.7 + 6.4 - 8.41 = 9.7 - 8.41 = 1.29

19. The sum of all the probabilities in a probability distribution is always unity.

$$\therefore \quad k+3k+3k+k=1$$

$$\Rightarrow 8k = 1$$

$$\Rightarrow k = \frac{1}{8}$$

$$E(X) = 0\left(\frac{1}{8}\right) + 1\left(\frac{3}{8}\right) + 2\left(\frac{3}{8}\right) + 3\left(\frac{1}{8}\right)$$

$$= \frac{3}{2}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= 0^{2}\left(\frac{1}{8}\right) + 1^{2}\left(\frac{3}{8}\right) + 2^{2}\left(\frac{3}{8}\right) + 3^{2}\left(\frac{1}{8}\right) - \left(\frac{3}{2}\right)^{2}$$

$$= \frac{3}{4}$$

20. Mean = E(X) =
$$\sum x_i P(x_i)$$

= 1(0.1) + 2(0.2) + 3(0.3) + 4(0.4) = 3
Var(X) = $\sum x_i^2 P(x_i) - [E(X)]^2$
= 1²(0.1) + 2²(0.2) + 3²(0.3) + 4²(0.4) - (3)²
= 0.1 + 0.8 + 2.7 + 6.4 - 9 = 10 - 9 = 1
∴ S.D. = 1

21. The p.m.f. of the r.v. X is as follows:

$$X = x$$
 -1
 0
 1
 2
 $P(X = x)$
 $\frac{2}{5}$
 $\frac{3}{10}$
 $\frac{1}{5}$
 $\frac{1}{10}$

:.
$$E(X) = -1\left(\frac{2}{5}\right) + 0 + 1\left(\frac{1}{5}\right) + 2\left(\frac{1}{10}\right) = 0$$

$$X = x$$
 1
 2
 3
 4

 $P(X = x)$
 k
 4k
 9k
 16k

Since, P(1) + P(2) + P(3) + P(4) = 1

$$k + 4k + 9k + 16k = 1$$

$$\Rightarrow 30k = 1$$

$$\Rightarrow k = \frac{1}{30}$$

$$\therefore \quad E(X) = 1 \cdot \frac{1}{30} + 2 \cdot \frac{4}{30} + 3 \cdot \frac{9}{30} + 4 \cdot \frac{16}{30}$$

$$= \frac{100}{30}$$

$$= \frac{10}{30}$$

23.
$$P(1) = \frac{C}{1^{3}}, P(2) = \frac{C}{2^{3}}, P(3) = \frac{C}{3^{3}}$$
Since, $P(1) + P(2) + P(3) = 1$

$$\therefore \quad \frac{C}{1^{3}} + \frac{C}{2^{3}} + \frac{C}{3^{3}} = 1$$

$$\Rightarrow C\left(\frac{1}{1} + \frac{1}{8} + \frac{1}{27}\right) = 1$$

$$\Rightarrow C\left(\frac{216 + 27 + 8}{216}\right) = 1$$

$$\Rightarrow C = \frac{216}{251}$$

$$\therefore \quad E(X) = (1) \frac{C}{1^{3}} + (2) \frac{C}{2^{3}} + (3) \frac{C}{3^{3}}$$

$$= C\left(1 + \frac{1}{4} + \frac{1}{9}\right) = C\left(\frac{36 + 9 + 4}{36}\right)$$

$$= \frac{216}{251} \times \frac{49}{36} = \frac{294}{251}$$
24.
$$E(X) = \sum x_{i} \cdot P(x_{i}) = 1.6$$

$$Var(X) = \sum x_{i}^{2} \cdot P(x_{i}) - [E(X)]^{2}$$

$$= 4.8 - 2.56$$

$$= 2.24$$
Now, $4 E(X^{2}) - Var(X)$

$$= 4 \sum x_{i}^{2} \cdot P(x_{i}) - Var(X) = 4 (4.8) - 2.24$$

$$= 19.2 - 2.24$$

$$= 19.2 - 2.24$$

$$= 16.96$$
25.
$$E(X) = \sum x_{i} \cdot P(x_{i})$$

$$= 0(q^{2}) + 1(2qq) + 2(p^{2})$$

$$= 2pq + 2p^{2}$$

$$= 2p(q + p)$$

$$= 2p \qquad ...[\because p + q = 1]$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= 0(q^{2}) + 1^{2}(2pq) + 2^{2}(p^{2}) - (2p)^{2}$$

$$= 2pq + 4p^{2} - 4p^{2}$$

$$= 2pq$$

$$26. \quad E(X) = \sum x_{i} \cdot P(x_{i})$$

$$= 0(q^{2}) + 1(3q^{2}p) + 2(3qp^{2}) + 3(p^{3})$$

$$= 3pq (1 + p) + 3p^{3} \qquad ...[\because p + q = 1]$$

$$= 3p(q + p) \qquad ...[\because p + q = 1]$$

= 3p

Chapter 08: Probability Distribution 27. X can take values 0, 1, 2 and 3. P(X = 0) = Probability of getting no head $\frac{1}{8}$ P(X = 1) = Probability of getting one head $\frac{3}{8}$ = P(X = 2) = Probability of getting two heads $\frac{3}{8}$ P(X = 3) = Probability of getting three heads $=\frac{1}{0}$ $E(X) = (0)\left(\frac{1}{8}\right) + (1)\left(\frac{3}{8}\right) + (2)\left(\frac{3}{8}\right) + (3)\left(\frac{1}{8}\right)$ *.*.. $= 0 + \frac{3}{8} + \frac{3}{4} + \frac{3}{8} = \frac{12}{8} = \frac{3}{2}$ 28. X can take values 0, 1 and 2. P(X = 0) = Probability of getting no tailP(X = 1) = Probability of getting one tail $=\frac{1}{2}$ P(X = 2) = Probability of getting two tails $=\frac{1}{4}$ $E(X) = 0\left(\frac{1}{4}\right) + (1)\left(\frac{1}{2}\right) + 2\left(\frac{1}{4}\right)$ *:*. $= 0 + \frac{1}{2} + \frac{1}{2} = 1$ $Var(X) = E(X^{2}) - [E(X)]^{2}$ $= 0^{2} \left(\frac{1}{4}\right) + 1^{2} \left(\frac{1}{2}\right) + 2^{2} \left(\frac{1}{4}\right) - (1)^{2}$ $=\frac{1}{2}$ X can take values 0, 1 and 2. 29. P(X = 0) = Probability of not getting six = $\frac{25}{36}$

...

...

Х	0	1	2			
$\mathbf{D}(\mathbf{V})$	25	10	1			
P (A)	36	36	36			
$F(X) = \sum r P(r) = 0 \times \frac{25}{10} + 1 \times \frac{10}{10}$						

 $E(X) = \sum x_i \cdot P(x_i) = 0 \times \frac{25}{36} + 1 \times \frac{10}{36} + 2 \times \frac{1}{36}$ $= \frac{10}{36} + \frac{2}{36} = \frac{1}{3}$

30. In a single throw of a pair of dice, the sum of the numbers on them can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. So X can take values 2,3,4,..., 12. The probability distribution of X is 2 3 4 5 6 7 8 9 10 11 12 X: $P(X) : \frac{1}{36} \frac{2}{36} \frac{3}{36} \frac{4}{36} \frac{5}{36} \frac{6}{36} \frac{5}{36} \frac{4}{36} \frac{3}{36} \frac{2}{36} \frac{1}{36}$ $E(X) = \frac{1}{36} \times 2 + \frac{2}{36} \times 3 + \frac{3}{36} \times 4 + \frac{4}{36} \times 5$ *.*.. $+\frac{5}{36}\times 6+\frac{6}{36}\times 7+\frac{5}{36}\times 8+\frac{4}{36}\times 9$ $+\frac{3}{36} \times 10 + \frac{2}{36} \times 11 + \frac{1}{36} \times 12$ $\Rightarrow E(X) = \frac{1}{36}(2+6+12+20+30+42+40)$ +36+30+22+12) $\Rightarrow E(X) = \frac{252}{36} = 7$ 31. $E(X) = \sum x_i \cdot P(x_i)$ $=1\left(\frac{1}{15}\right)+2\left(\frac{1}{15}\right)+\ldots+14\left(\frac{1}{15}\right)+15\left(\frac{1}{15}\right)$ $=\frac{1}{15}(1+2+3+\ldots+14+15)$

$$= \frac{1}{15} \left(\frac{15 \times 16}{2} \right) \qquad \qquad \dots \left[\because \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \right]$$
$$= 8$$

32.

X
 1
 2
 3

 n

 P(X)

$$\frac{2}{n(n+1)}$$
 $\frac{4}{n(n+1)}$
 $\frac{6}{n(n+1)}$

 $\frac{2n}{n(n+1)}$

$$E(X) = \sum x_i \cdot P(x_i)$$

= 1. $\frac{2}{n(n+1)}$ + 2. $\frac{4}{n(n+1)}$ + 3. $\frac{6}{n(n+1)}$
+.... + n. $\frac{2n}{n(n+1)}$

$$= \frac{2}{n(n+1)} (1 + 4 + 9 + \dots + n^2)$$

= $\frac{2}{n(n+1)} (1^2 + 2^2 + 3^2 + \dots + n^2)$
= $\frac{2}{n(n+1)} \cdot \frac{n(n+1)(2n+1)}{6}$
= $\frac{2n+1}{3}$

 \therefore Standard deviation of X

$$=\sqrt{\operatorname{Var}\left(\mathrm{X}\right)}=\sqrt{\frac{\mathrm{n}^{2}-1}{12}}$$

34. Let X = demand for each type of cake (according to the profit)

$$P(X = 3) = 10\% = \frac{10}{100} = 0.1$$
$$P(X = 2.5) = 5\% = \frac{5}{100} = 0.05$$

 $P(X = 2) = 20\% = \frac{20}{100} = 0.2$ $P(X = 1.5) = 50\% = \frac{50}{100} = 0.5$ $P(X = 1) = 15\% = \frac{15}{100} = 0.15$

:. The probability distribution table is as follows:

35. Since, f(x) is the p.d.f. of X

$$\therefore \int_{-\infty} f(x) dx = 1$$

$$\Rightarrow \int_{0}^{3} C(9 - x^{2}) dx = 1$$

$$\Rightarrow C \left[9x - \frac{x^{3}}{3} \right]_{0}^{3} = 1$$

$$\Rightarrow C (27 - 9) = 1 \Rightarrow C = \frac{1}{18}$$

36. Since, f(x) is the p.d.f. of X.

$$\therefore \qquad \int_{-\infty}^{0} f(x)dx = 1$$

$$\Rightarrow \int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{\infty} f(x)dx = 1$$

$$\Rightarrow 0 + \int_{0}^{1} kx^{2}(1-x)dx + 0 = 1$$

$$\Rightarrow k \left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\right]_{0}^{1} = 1 \Rightarrow k = 12$$

37. Since, f(x) is the p.d.f. of X.

$$\therefore \int_{-\infty}^{\infty} f(x) dx = 1$$

$$\Rightarrow \int_{0}^{3} \left(\frac{x}{6} + k\right) dx = 1$$

$$\Rightarrow \left[\frac{x^{2}}{12} + kx\right]_{0}^{3} = 1 \Rightarrow \frac{3}{4} + 3k = 1$$

$$\Rightarrow 3k = \frac{1}{4} \Rightarrow k = \frac{1}{12}$$

$$38. P\left(\frac{1}{4} < X < \frac{1}{3}\right) = \int_{\frac{1}{4}}^{\frac{1}{3}} f(x) dx = \int_{\frac{1}{4}}^{\frac{1}{3}} 3(1-2x^{2}) dx$$
$$= [3x - 2x^{3}]_{1/4}^{1/3}$$
$$= \left(1 - \frac{2}{27}\right) - \left(\frac{3}{4} - \frac{1}{32}\right)$$
$$= \frac{1}{4} + \frac{1}{32} - \frac{2}{27} = \frac{179}{864}$$
$$39. \int_{-\infty}^{\infty} f(x) dx = 1$$
$$\therefore \int_{0}^{4} \frac{K}{\sqrt{x}} dx = 1$$
$$\Rightarrow K \left[2\sqrt{x}\right]_{0}^{4} = 1$$
$$\Rightarrow K \left[2\sqrt{x}\right]_{0}^{4} = 1$$
$$\Rightarrow 4K = 1$$
$$\Rightarrow 4K = 1$$
$$\Rightarrow K = \frac{1}{4}$$
$$\therefore P(X \ge 1) = P(1 \le X < 4)$$
$$= \int_{1}^{4} f(x) dx = 2K \left[\sqrt{x}\right]_{1}^{4}$$
$$= 2 \times \frac{1}{4} (2-1) = \frac{1}{2} = 0.5$$
$$40. P(|X| < 1) = P(-1 < X < 1)$$
$$= \frac{1}{1} \left(\frac{x+2}{18}\right) dx$$
$$= \frac{1}{18} \left[\frac{x^{2}}{2} + 2x\right]_{-1}^{1}$$
$$= \frac{1}{18} \left(\frac{5}{2} + \frac{3}{2}\right) = \frac{4}{18} = \frac{2}{9}$$
$$41. P(0.2 \le X \le 0.5) = \int_{0.2}^{0.5} \frac{x^{2}}{2} dx = \left[\frac{x^{3}}{24}\right]_{0.2}^{0.5}$$
$$= \frac{1}{24} \left[(0.5)^{3} - (0.2)^{3}\right]$$
$$= \frac{0.125 - 0.008}{24} = \frac{0.117}{24}$$

МНТ	-CET Triumph Maths (Hints)			
42.	Since, $f(x)$ is the p.d.f. of X.			$\Gamma(x) = \int_{0}^{x} k dx$
	$\int_{-\infty}^{\infty} f(x) dx = 1$			$\Gamma(x) = \int_{0}^{\infty} \frac{1}{\sqrt{x}} dx$
<i>.</i> .	$\int_{0}^{\infty} K \cdot e^{-\theta x} dx = 1$			$= \mathbf{k} \begin{bmatrix} 2\sqrt{x} \end{bmatrix}_{0}$
	$\mathbf{K} \left[\frac{\mathrm{e}^{-\theta x}}{-\theta} \right]_{0}^{\infty} = 1$	2	45.	$= \frac{\sqrt{n}}{2} \qquad \dots [From (i)]$ $P(C_1 \cup C_2)$
	$\Rightarrow -\frac{K}{\theta} \left[\frac{1}{e^{\theta x}}\right]_{0}^{\infty} = 1$			$= P(C_1) + P(C_2)$ $= \int_{0}^{2} f(x) dx + \int_{0}^{5} f(x) dx$
	$\Rightarrow -\frac{K}{\theta} \left[\frac{1}{e^{\infty}} - \frac{1}{e^{\theta}} \right] = 1$			$-\int_{1}^{1} I(x) dx + \int_{4}^{1} I(x) dx$
	$\Rightarrow -\frac{K}{\theta} \left[\frac{1}{\infty} - \frac{1}{1} \right] = 1$			$= \int_{1}^{1} \frac{1}{x^2} dx + \int_{4}^{1} \frac{1}{x^2} dx$
	$\Rightarrow \frac{K}{\theta} = 1 \Rightarrow K = \theta$			$= \left\lfloor \frac{-1}{x} \right\rfloor_{1}^{2} + \left\lfloor \frac{-1}{x} \right\rfloor_{4}^{3}$
43.	P(0 < X < K) = 0.5			$= -\frac{1}{2} + 1 - \frac{1}{5} + \frac{1}{4}$
	$\Rightarrow \int_{0}^{n} f(x) dx = \frac{1}{2}$			$=\frac{11}{20}$
	$\Rightarrow \int_{0}^{K} a e^{-ax} dx = \frac{1}{2}$	2	46.	Since, $f(x)$ is the p.d.f. of X.
	$\Rightarrow a \left[\frac{e^{-ax}}{-a} \right]^{K} = \frac{1}{2}$			$\int_{0}^{\infty} f(x) dx = 1$
	$\Rightarrow -\left[e^{-ax}\right]_{0}^{K} = \frac{1}{2}$			$\Rightarrow \int_{0}^{2} (k x^{2}) dx = 1$
	$\Rightarrow -(e^{-aK} - e^0) = \frac{1}{2}$			$\Rightarrow k \left[\frac{x^3}{3}\right]_0^2 = 1$
	$\Rightarrow -e^{-aK} + 1 = \frac{1}{2}$			$\Rightarrow k = \frac{3}{8}$
	$\Rightarrow e^{-aK} = \frac{1}{2} $		÷	Required probability = $P(X \le 1) = \int_{0}^{1} f(x) dx$
	$\Rightarrow - aK = \log\left(\frac{1}{2}\right)$			$=\int_{1}^{1}(kx^{2})dx$
	$\Rightarrow aK = \log 2$ $\Rightarrow K = \frac{1}{\log 2}$			$=\frac{3}{1}\int_{0}^{1}r^{2}dr$
44.	a Since, $f_X(x)$ is the p.d.f. of X.			$8 \int_{0}^{1} r^{3} r^{1}$
	$\int_{0}^{4} \frac{k}{\sqrt{x}} \mathrm{d}x = 1$			$= \frac{3}{8} \left\lfloor \frac{x}{3} \right\rfloor_{0}$
	$\Rightarrow \mathbf{k} \left[2\sqrt{x} \right]_0^4 = 1$			$=\frac{3}{8}\left(\frac{1}{3}-0\right)$
	$\Rightarrow k = \frac{1}{4} \qquad \dots (i)$			$=\frac{1}{8}$

Competitive Thinking

1. Since,
$$\sum_{x=1}^{3} P(X=x) = 1$$

 $\therefore \quad 0.3 + k + 2k + 2k = 1$
 $\Rightarrow 5k = 0.7$
 $\Rightarrow k = 0.14$

2. Since,
$$\sum_{x=1}^{b} P(X=x) = 1$$

$$\therefore \quad 0.1 + 2k + k + 0.2 + 3k + 0.1 = 1$$

$$\therefore$$
 6k = 1 - 0.4 = 0.6

:
$$k = \frac{0.6}{6} = 0.1$$

0

$$\dots$$
 $\mathbf{k} = \frac{1}{6} = 0$

- When we get 1, positive divisors = 1
 When we get 2, positive divisors = 2
 When we get 3, positive divisors = 2
 When we get 4, positive divisors = 3
 When we get 5, positive divisors = 2
 When we get 6, positive divisors = 4
- \therefore range of random variable X = {1, 2, 3, 4}
- 4. When a coin is tossed 3 times possibilities are

	HHH	TTT	HHT	HTH
Absolute difference between Heads and Tails $(X=x_i)$	3 - 0 = 3	3 - 0 = 3	2 - 1 = 1	2 - 1 = 1
	TUU	LITT	TTU	тит
	пп	пп	ПП	1111
Absolute				
difference				
between	2 - 1 = 1	2 - 1 = 1	2 - 1 = 1	2 - 1 = 1

Heads and
Tails(X=
$$x_i$$
)
 \therefore P(X = 1) = $\frac{6}{3}$

$$P(X = 1) = \frac{1}{8} = \frac{1}{4}$$

3

Now, P(X = prime value)
= P(X = 2) + P(X = 3) + P(X = 5)
=
$$\frac{3a}{4} + \frac{4a}{8} + \frac{6a}{32}$$

= $\frac{23a}{16}$
= $\frac{23}{16} \times \frac{4}{15}$
= $\frac{23}{60}$
6. Mean = (1) $\left(\frac{1}{4}\right) + (2)\left(\frac{1}{8}\right) + (3)\left(\frac{5}{8}\right)$
= $\frac{19}{8}$
7. Mean = $1\left(\frac{1}{6}\right) + 2\left(\frac{1}{3}\right) + 3\left(\frac{1}{3}\right) + 4\left(\frac{1}{6}\right)$
= $\frac{1}{6} + \frac{2}{3} + \frac{3}{3} + \frac{2}{3}$
= $\frac{1}{6} + \frac{7}{3}$
= $\frac{15}{6}$
= $\frac{5}{2}$
8. Since $\sum_{x=1}^{6} P(X = x) = 1$
 \therefore a + a + a + b + b + 0.3 = 1
 \Rightarrow 3a + 2b = 0.7 ...(i)
Mean = a + 2a + 3a + 4b + 5b + 6 (0.3)
 \Rightarrow 4.2 = 6a + 9b + 1.8
 \Rightarrow 6a + 9b = 2.4 ...(ii)
On solving (i) and (ii), we get
a = 0.1, b = 0.2
9. E (X) = 3 × $\frac{1}{3}$ + 4 × $\frac{1}{4}$ + 12 × $\frac{5}{12}$
= 7
10. $y = 2x$

	x	0	1	2	3	
	У	0	2	4	6	
	P(y)	1	3	3	1	
		8	8	8	8	
Expected gain = $\sum y_i P(y_i)$						
$= 0\left(\frac{1}{8}\right) + 2\left(\frac{3}{8}\right) + 4\left(\frac{3}{8}\right) + 6\left(\frac{1}{8}\right) = 3$						

...

12.
$$E(X) = \sum x_i \cdot P(x_i)$$

= 0(0.1) + 1(0.4) + 2(0.3) + 3(0.2) + 4(0)
= 0 + 0.4 + 0.6 + 0.6 + 0
= 1.6
Variance = $\sum x_i^2 \cdot P(x_i) - [E(x)]^2$
= 0² (0.1) + 1² (0.4) + 2² (0.3)
+ 3² (0.2) + 4² (0) - 1.6²
= 0 + 0.4 + 1.2 + 1.8 - 2.56
= 0.84

13.
$$E(X) = 2x_i \cdot P(x_i)$$

= $0\left(\frac{25}{16}\right) + 1\left(\frac{5}{18}\right) + 2\left(\frac{1}{26}\right) = \frac{1}{2}$

$$V(X) = \Sigma x_i^2 P(x_i) - [E(X)]^2$$

= $(0)^2 \left(\frac{25}{36}\right) + (1)^2 \left(\frac{5}{18}\right) + (2)^2 \left(\frac{1}{36}\right)$
 $- \left(\frac{1}{3}\right)^2$

$$= \frac{7}{18} - \frac{1}{9} = \frac{5}{18}$$

S.D. = $\sqrt{\operatorname{var}(X)} = \sqrt{\frac{5}{18}} = \frac{1}{3}\sqrt{\frac{5}{2}}$

14. E(X) = ∑x_i · P(x_i) =
$$-\frac{1}{3}$$
 + 0 + $\frac{1}{6}$ + $\frac{2}{3}$ = $\frac{1}{2}$
Var(X) = E(X²) - [E(X)]²
= $\frac{(-1)^2}{3}$ + 0 + $\frac{1^2}{6}$ + $\frac{2^2}{3}$ - $\left(\frac{1}{2}\right)^2$
= $\frac{1}{3}$ + $\frac{1}{6}$ + $\frac{4}{3}$ - $\frac{1}{4}$
= $\frac{11}{6}$ - $\frac{1}{4}$ = $\frac{19}{12}$
∴ 6 E (X²) - Var(X)
= $6\left(\frac{1}{3}$ + 0 + $\frac{1}{6}$ + $\frac{4}{3}\right)$ - $\frac{19}{12}$
= $11 - \frac{19}{12}$
= $\frac{113}{12}$

15. Let P(X = 3) = a, then
P(X = 1) =
$$\frac{a}{2}$$
, P(X = 2) = $\frac{a}{3}$ and P(X = 4) = $\frac{a}{5}$
Since, P(X = 1) + P(X = 2) + P(X = 3)
+ P(X = 4) = 1
∴ $\frac{a}{2} + \frac{a}{3} + a + \frac{a}{5} = 1$
⇒ $a = \frac{30}{61}$
Now,
 $\boxed{\frac{X = x \quad 1}{2} \quad \frac{2}{3} \quad \frac{4}{3}}{a} \quad \frac{a}{5}}$
Now, $\mu = \text{mean} = \frac{1}{2}a + \frac{2}{3}a + 3a + \frac{4}{5}a$
 $= \frac{149}{30}a$
 $\sigma^2 = \text{variance}$
 $= \frac{1}{2}a + \frac{4}{3}a + 9a + \frac{16}{5}a - \left(\frac{149}{30}a\right)^2$
 $= \frac{421}{30}a - \left(\frac{149}{30}a\right)^2$
Now, $\sigma^2 + \mu^2 = \frac{421}{30}a - \left(\frac{149}{30}a\right)^2 + \left(\frac{149}{30}a\right)^2$
 $= \frac{421}{30} \times \frac{30}{61} = \frac{421}{61}$
16. Var (X) = $\sigma^2 = 5^2 = 25$
Var (X) = E (X²) - [E(X)]²
 $\Rightarrow 25 = E (X2) - 102$
 $\Rightarrow E (X2) = 125$
 $E \left(\frac{X - 15}{5}\right)^2 = E \left(\frac{X^2 - 30X + 225}{25}\right)$

...

x can take the values 0, 1, 2.
P(X = 0) =
$$\frac{{}^{4}C_{2}}{{}^{6}C_{2}} = \frac{2}{5}$$

= 2

17. Let *x* denote number of defective pens.

 $= \frac{1}{25} \Big[E(X^2) - 30E(X) + 225 \Big]$

 $=\frac{1}{25}(125-300+225)$

			Chapter 08: Probability Distribution
	$P(X=1) = \frac{{}^{2}C_{1} \times {}^{4}C_{1}}{{}^{6}C_{2}} = \frac{8}{15}$		Standard deviation (σ) = $\sqrt{E(X^2) - [E(X)]^2}$
	$P(X=2) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} = \frac{1}{15}$		$=\sqrt{\frac{4}{5}-\frac{4}{9}}$
	$X = x$ 0 1 2 $P(x)$ $\frac{2}{5}$ $\frac{8}{15}$ $\frac{1}{15}$	10	$=\frac{4}{3\sqrt{5}}$
	$E(X) = \sum x_i P(x_i)$	19.	Required probability = $\int_{0}^{1} f(x) dx$
	$= 0\left(\frac{2}{5}\right) + 1\left(\frac{8}{15}\right) + 2\left(\frac{1}{15}\right)$		$= \int_{0}^{4} \frac{1}{5} dx$
	$=\frac{10}{15}$		$= \frac{1}{5} [x]_0^4 = \frac{4}{5} = 0.8$
	$=\frac{2}{3}$	20.	P(X = 4) = F(4) - F(3) = 0.62 - 0.48 = 0.14
	$E(X^2) = \sum x_i^2 P(x_i)$		P(X = 5) = F(5) - F(4) = 0.85 - 0.62 = 0.23
	$= 0\left(\frac{2}{5}\right) + 1\left(\frac{8}{15}\right) + 4\left(\frac{1}{15}\right)$		$P(3 < X \le 5) = P(X = 4) + P(X = 5)$ $= 0.14 + 0.23 = 0.37$
	$=\frac{12}{15}=\frac{4}{5}$		
	Evalua	ation Te	st
1.	Given, P(X=3) = 2P(X=1) and $P(X=2) = 0.3$ (i) Now, mean = 1.3 0 = P(X=0) + 1 = P(X=1) + 2 = P(X=2)	3.	P(E) = P(X = 2 or X = 3 or X = 5 or X = 7) = P(X = 2) +P(X = 3) +P(X = 5)+P(X = 7) = 0.23 + 0.12 + 0.20 + 0.07 = 0.62 P(E) = P(X < 4)
•••	$0 \times P(X - 0) + 1 \times P(X - 1) + 2 \times P(X - 2) + 3 \times P(X = 3) = 1.3$		= P(X = 1) + P(X = 2) + P(X = 3)
	\Rightarrow 7P(X = 1) = 0.7[From (i)]		= 0.15 + 0.23 + 0.12 = 0.50 $P(E - E) = P(X is a prime number less than 4)$
	$\Rightarrow P(X = 1) = 0.1$ Also $P(X = 0) + P(X = 1) + P(X = 2)$		= P(X = 2) + P(X = 3)
	+ P(X = 3) = 1		= 0.23 + 0.12 = 0.35
	$\Rightarrow P(X = 0) + 3P(X = 1) = 0.7$ [From (i)]	<i>.</i> .	$P(E \cup F) = P(E) + P(F) - P(E \cap F)$ = 0.62 + 0.50 - 0.35 = 0.77
	$\Rightarrow P(X=0) + 0.3 = 0.7$		
	$\Rightarrow P(X=0) = 0.4$	4.	Here, $\frac{1+3p}{4}$, $\frac{1-p}{4}$, $\frac{1+2p}{4}$ and $\frac{1-4p}{4}$ are
2.	$\sum_{x=0}^{8} P(X=x) = 1$		probabilities when X takes values -1 , 0, 1 and 2 respectively. Therefore, each is greater than or equal to 0 and less than or equal to 1.
	$\Rightarrow a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1$		i.e., $0 \le \frac{1+3p}{4} \le 1, 0 \le \frac{1-p}{4} \le 1$,
	$\Rightarrow 81a = 1$		4 4 4
	$\Rightarrow a = \frac{1}{81}$		$0 \leq \frac{1}{4} \leq 1$ and $0 \leq \frac{1}{4} \leq 1$

		- TM	
MH	T-CET Triumph Maths (Hints)		
	$\Rightarrow -\frac{1}{3} \le p \le \frac{1}{4}$	$\Rightarrow k\left(\frac{5}{4} + \frac{5}{16}\right) = 1$	
	Mean(X) = $-1 \times \frac{1+3p}{4} + 0 \times \frac{1-p}{4} + 1 \times \frac{1+2p}{4}$	$\Rightarrow \frac{25k}{16} = 1$	
	$+2 \times \frac{1-4p}{4}$	$\Rightarrow k = \frac{16}{25}$	
	$=\frac{2-9p}{4}$		
	Now, $-\frac{1}{3} \le p \le \frac{1}{4}$		
	$\Rightarrow 3 \ge -9p \ge -\frac{9}{4}$		
	$\Rightarrow -\frac{1}{4} \le 2 - 9p \le 5$		
	$\Rightarrow -\frac{1}{16} \le \frac{2-9p}{4} \le \frac{5}{4}$		
5.	$P(X > 1.5) = \int_{1.5}^{2} \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_{1.5}^{2} = 0.4375$		
	and P(X > 1) = $\int_{1}^{2} \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_{1}^{2} = 0.75$		
	$P\left(\frac{X>1.5}{X>1}\right) = \frac{P(X>1.5)}{P(X>1)} = \frac{0.4375}{0.75} = \frac{7}{12}$		
6.	$P(X = x_i) = ki, \text{ where } 1 \le i \le 10$		
	$\sum P(X=x_i)=1$ $\Rightarrow (1+2+3+4+5+6+7+8+9+10)k = 1$		
	$\Rightarrow k = \frac{1}{55}$		
7.	We have, $\sum_{x=0}^{\infty} P(X=x) = 1$		
	$\Rightarrow k \sum_{x=0}^{\infty} (x+1) \left(\frac{1}{5}\right)^x = 1$		
	$\Rightarrow k \left[1 + 2\left(\frac{1}{5}\right) + 3\left(\frac{1}{5}\right)^2 + 4\left(\frac{1}{5}\right)^3 + \dots \right] = 1$		
	$\Rightarrow k \left[\frac{1}{1 - \frac{1}{5}} + \frac{1 \times \frac{1}{5}}{\left(1 - \frac{1}{5}\right)^2} \right] = 1$		
	$\cdots \left[\begin{array}{c} \because a + (a+d)r + (a+2d)r^2 + \dots \\ = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \end{array} \right]$		
Textbook Chapter No.

Binomial Distribution

Hints

- Classical Thinking 2. $P(X = 1) = {}^{10}C_1(0.2)(0.8)^9 = 0.2684$
- 3. Probability of getting head is $p = \frac{1}{2}$
- $\therefore \quad q = 1 \frac{1}{2} = \frac{1}{2}$ Also, n = 4
- $\therefore \quad \text{Required probability} = P (X = 3)$ $= {}^{4}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right) = \frac{1}{4}$

4. Here $p = \frac{1}{2}$, $q = \frac{1}{2}$, n = 10

- $\therefore \quad \text{Required probability} = P (X = 5)$ $= {}^{10}C_5 \left(\frac{1}{2}\right)^5 \cdot \left(\frac{1}{2}\right)^5 = \frac{63}{256}$
- 5. Probability of obtaining 5 is $p = \frac{1}{6}$
- $\therefore \quad q = 1 \frac{1}{6} = \frac{5}{6}$ Also, n = 7
- $\therefore \quad \text{Required probability} = P (X = 4)$ $= {^7C_4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^3$
- 6. Probability of getting on even number is $p = \frac{3}{6} = \frac{1}{2}$

:.
$$q = 1 - \frac{1}{2} = \frac{1}{2}$$
 and $n = 5, r = 3$

- $\therefore \quad \text{Required probability} \\ = {}^{5}\text{C}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2} = \frac{5}{16}$
- 7. Probability of getting an odd number, $p = \frac{3}{6} = \frac{1}{2}$

$$\therefore \quad q=1-\frac{1}{2}=\frac{1}{2}$$

Also, n = 2 \therefore Required probability = P (X = 2) $= {}^{2}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{0} = \frac{1}{4}$

8. Here,
$$p = \frac{1}{2}$$
, $q = \frac{1}{2}$, $n = 3$

$$\therefore \quad \text{Required probability} = P (X \ge 2)$$
$$= {}^{3}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right) + {}^{3}C_{3} \left(\frac{1}{2}\right)^{3}$$
$$= \frac{4}{8} = \frac{1}{2}$$

9. Probability of getting an odd number, $p = \frac{3}{6} = \frac{1}{2}$ $\therefore \qquad q = 1 - \frac{1}{2} = \frac{1}{2} \text{ Also, } n = 5$

$$\therefore \quad \text{Variance} = \text{npq} = 5 \cdot \left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right) = \frac{5}{4}$$

🕘 Critical Thinking

1. Here,
$$q = \frac{1}{5}$$

 $\Rightarrow p = 1 - \frac{1}{5} = \frac{4}{5}$
Also, $n = 5$

- $\therefore \quad \text{Required probability} = {}^{5}C_{1}\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)^{4}$ {Here exactly one student is swimmer}
- 2. Probability of success is $p = \frac{3}{5}$ ⇒ $q = 1 - p = \frac{2}{5}$ Also, n = 5∴ Required probability = P(X = 2)

 $= {}^{5}C_{2}\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right)^{3} = \frac{144}{625}$

MHT-CET Triumph Maths (Hints)

- 3. Probability that bulb will fuse, p = 0.05= $\frac{1}{20}$
- ... Probability that bulb will not fuse,

$$q = 1 - p = 1 - \frac{1}{20} = \frac{19}{20}$$

Also, $n = 5$

- $\therefore \quad \text{Probability that out of 5 bulbs none will fuse} \\ = {}^{5}\text{C}_{0}\left(\frac{1}{20}\right)^{0}\left(\frac{19}{20}\right)^{5} = \left(\frac{19}{20}\right)^{5}$
- 4. Probability of correct prediction, $p = \frac{1}{2} \Rightarrow q = 1 - \frac{1}{2} = \frac{2}{2}$

$$p = \frac{1}{3} \implies q = 1 - \frac{1}{3} = \frac{1}{3}$$

Also, n = 7

 $\therefore \quad \text{Required probability} = P (X = 4)$ $= {^7C_4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^3 = \frac{280}{3^7}$

5. Here,
$$p = \frac{1}{2}$$
, $q = \frac{1}{2}$, $n = 3$

Required probability
 Probability of getting exactly one head + probability of getting exactly two heads

$$= {}^{3}C_{1}\left(\frac{1}{2}\right)^{1} \cdot \left(\frac{1}{2}\right)^{2} + {}^{3}C_{2}\left(\frac{1}{2}\right)^{2} \cdot \left(\frac{1}{2}\right)^{2}$$
$$= \frac{3}{8} + \frac{3}{8} = \frac{6}{8} = \frac{3}{4}$$

6. Here, $p = \frac{1}{2}$, $q = \frac{1}{2}$, n = 10

$$P(X = 4) = {}^{10}C_4 \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^6 = {}^{10}C_4 \left(\frac{1}{2}\right)^{10} = {}^{10}C_6 \left(\frac{1}{2}\right)^{10} \dots \left[\because {}^nC_r = {}^nC_{n-r}\right]^{10}$$

- 7. 9 P (X = 4) = P (X = 2) \therefore 9.⁶C₄ p⁴q² = ⁶C₂ p²q⁴ \Rightarrow 9 p² = q² Putting q = 1 - p, we get p = $\frac{1}{4}$
- 8. Required probability = P(exactly two success) + P(exactly three success) = ${}^{3}C_{2} \cdot \left(\frac{2}{6}\right)^{2} \left(\frac{4}{6}\right) + {}^{3}C_{3} \left(\frac{2}{6}\right)^{3}$ = $\frac{2}{9} + \frac{1}{27} = \frac{7}{27}$

9. We have, $p = \frac{3}{4}$ ⇒ $q = \frac{1}{4}$ and n = 5∴ Required probability = P(X ≥ 3) $= {}^{5}C_{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} + {}^{5}C_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) + {}^{5}C_{5}\left(\frac{3}{4}\right)^{5}$ $= \frac{(10)(27)}{4^{5}} + \frac{(5)(81)}{4^{5}} + \frac{243}{4^{5}}$ $= \frac{270 + 405 + 243}{1024}$ $= \frac{459}{512}$

10. Required probability = P(X ≥ 1)
=
$${}^{3}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{2} + {}^{3}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right) + {}^{3}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{0}$$

= $\frac{91}{216}$

11. Required probability = P (X ≥ 6)
=
$${}^{8}C_{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{2} + {}^{8}C_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right) + {}^{8}C_{8}\left(\frac{1}{2}\right)^{8}$$

= $\frac{37}{256}$

12. Let the coin be tossed n times.
Then, P(7 heads) =
$${}^{n}C_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{n-7} = {}^{n}C_{7}\left(\frac{1}{2}\right)^{n}$$

and P(9 heads) = ${}^{n}C_{9}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{n-9} = {}^{n}C_{9}\left(\frac{1}{2}\right)^{n}$
Now, P(7 heads) = P(9 heads)
 $\Rightarrow {}^{n}C_{7} = {}^{n}C_{9}$
 $\Rightarrow n = 16$
 \therefore P (3 heads) = ${}^{16}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{16-3}$
 $= {}^{16}C_{3}\left(\frac{1}{2}\right)^{16} = \frac{35}{2^{12}}$
14. Here, n = 3, p = $\frac{1}{6}$, q = $\frac{5}{6}$
Mean = np = 3 $\times \frac{1}{6} = \frac{1}{2}$
Variance = npq = 3 $\times \frac{1}{6} \times \frac{5}{6} = \frac{5}{12}$

684

.

Chapter 09: Binomial Distribution

- Here, $p = \frac{2}{6} = \frac{1}{3} \Rightarrow q = 1 \frac{1}{3} = \frac{2}{3}$ 15. Also, n = 2
- Variance = npq = $2 \times \frac{1}{2} \times \frac{2}{2} = \frac{4}{2}$ *.*..
- 16. We have, mean = np = 2and variance = npq = 1 \Rightarrow q = $\frac{1}{2}$, p = $\frac{1}{2}$ and n = 4 $P(X \ge 1) = 1 - P(X = 0)$ *.*.. $= 1 - {}^{4}C_{0}\left(\frac{1}{2}\right)^{4}$ $=\frac{15}{16}$
- Here, np = 4 and npq = 317. $\Rightarrow p = \frac{1}{4}, q = \frac{3}{4}$ Also, n = 16 $P(X = 6) = {}^{16}C_6 \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^{10}$ *.*..
- Probability of getting a red card is 18. $p = \frac{26}{52} = \frac{1}{2}$ $q = 1 - \frac{1}{2} = \frac{1}{2}$ Also, n = 4*.*.. Mean = np = 4 $\left(\frac{1}{2}\right)$ = 2 Variance = npq = $4\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = 1$

19.
$$\frac{P(X = k)}{P(X = k - 1)} = \frac{{}^{n}C_{k}(p)^{k}(q)^{n-k}}{{}^{n}C_{k-1}(p)^{k-1}(q)^{n-k+1}}$$
$$= \frac{{}^{n}C_{k}}{{}^{n}C_{k-1}} \frac{p}{q}$$
$$\therefore \quad \frac{P(X = k)}{P(X = k - 1)} = \frac{n - k + 1}{k} \frac{p}{q}$$

- 20. Let X denote the number of aces obtained in two draws. Then, X follows binomial distribution with n = 2, $p = \frac{4}{52} = \frac{1}{12}$ and $q = \frac{12}{13}$
- Mean of number of aces = np = $\frac{2}{13}$ *.*..

 $\left(\begin{array}{c} 0\\ 0\\ 0 \end{array} \right)$ **Competitive Thinking** Here, $n = 5, p = \frac{1}{2}$ 1. and $q = 1 - \frac{1}{2} = \frac{2}{2}$ ÷ P(2 < X < 4) = P(X = 3) $= {}^{5}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{2}{2}\right)^{2} = \frac{40}{242}$ Probability of getting head, $p = \frac{1}{2}$ 2. \therefore q = 1 - p = 1 - $\frac{1}{2} = \frac{1}{2}$ Also, n = 10Required probability = P(X = 6)... $= {}^{10}C_6 \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^4$ $=\frac{10!}{6!4!}\cdot\frac{1}{2^{10}}=\frac{105}{512}$ Probability of occurrence of '4' is $p = \frac{1}{6}$ 3. $q = 1 - \frac{1}{6} = \frac{5}{6}$ *:*.. Also, n = 2, Required probability = $P(X \ge 1)$ *:*.. $={}^{2}C_{1}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)+{}^{2}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{0}$

$$=\frac{11}{36}$$

- 4. Probability that person will develop immunity (p) = 0.8q = 1 - p = 0.2Required probability = ${}^{8}C_{0} (0.8)^{8} (0.2)^{0}$ = $(0.8)^{8}$...
- 5. Probability of getting rotten egg is $p = \frac{10}{100} = \frac{1}{10}$ $q = 1 - \frac{1}{10} = \frac{9}{10}$ *.*.. Also, n = 5The probability that no egg is rotten *.*.. $= {}^{5}C_{0} \cdot \left(\frac{1}{10}\right)^{0} \left(\frac{9}{10}\right)^{5} = \left(\frac{9}{10}\right)^{5}$

MHT-CET Triumph Maths (Hints)

6. Probability of disease to be fatal = p = 10%

$$p = \frac{10}{100} = \frac{1}{10}, q = \frac{9}{10}$$
Number of patients, n = 6

$$\therefore \quad \text{Required probability} = {}^{6}\text{C}_{3}\left(\frac{1}{10}\right)^{5}\left(\frac{9}{10}\right)^{5}$$
$$= 1458 \times 10^{-5}$$

- 7. Probability of getting a 'six' in one throw is $p = \frac{1}{6}$
- $\therefore \quad q = 1 \frac{1}{6} = \frac{5}{6}$ Also, n = 4
- $\therefore \quad \text{Required probability} \\ = P(x=4) = {}^{4}C_{4}\left(\frac{1}{6}\right)^{4} \cdot \left(\frac{5}{6}\right)^{0}$

$$=\frac{1}{1296}$$

- 8. P(without defect) = $\frac{8}{10} = \frac{4}{5} = p$ P(defected) = $\frac{2}{10} = \frac{1}{5} = q$ and n = 2, r = 2 \therefore Required probability = ${}^{2}C_{2}\left(\frac{4}{5}\right)^{2} \cdot \left(\frac{1}{5}\right)^{0} = \frac{16}{25}$
- 9. 2P(2) = 3P(3) $\Rightarrow 2 {}^{6}C_{2} p^{2} q^{4} = 3 {}^{6}C_{3} p^{3} q^{3}$ Putting q = 1 - p, we get $p = \frac{1}{3}$
- 10. 4P(X = 4) = P(X = 2) $\Rightarrow 4.{}^{6}C_{4}p^{4}q^{2} = {}^{6}C_{2}p^{2}q^{4}$ $\Rightarrow 4p^{2} = q^{2}$ $\Rightarrow 4p^{2} = (1 p)^{2}$ $\Rightarrow 3p^{2} + 2p 1 = 0$ $\Rightarrow p = \frac{1}{3}$
- 11. Here, $p = q = \frac{1}{2}$ Probability that head occurs 6 times $= {}^{n}C_{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{n-6}$ and probability that head occurs 8 times $= {}^{n}C_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{n-8}$

$$\therefore \quad {}^{n}C_{6}\left(\frac{1}{2}\right)^{6} \left(\frac{1}{2}\right)^{n-6} = {}^{n}C_{8}\left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{n-8}$$
$$\Rightarrow {}^{n}C_{6} = {}^{n}C_{8} \Rightarrow (n-6)(n-7) = 56 \Rightarrow n =$$

14

12. We have,
$${}^{100}C_{50} p^{50} (1-p)^{50} = {}^{100}C_{51} p^{51} (1-p)^{49}$$

$$\Rightarrow \frac{1-p}{p} = \frac{100!}{51! \cdot 49!} \times \frac{50! \cdot 50!}{100!}$$

$$= \frac{50}{51}$$

$$\Rightarrow 51 - 51p = 50p \Rightarrow p = \frac{51}{101}$$

- 13. The required probability
 - = 1 Probability of equal number of heads and tails $(1)^{n} (1)^{2n-n}$

$$= 1 - {}^{2n}C_n \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{2n}$$
$$= 1 - \frac{(2n)!}{n!n!} \left(\frac{1}{4}\right)^n$$
$$= 1 - \frac{(2n)!}{(n!)^2} \times \frac{1}{4^n}$$

14. Probability of failure, q =
$$\frac{1}{3}$$

Probability for getting success, p = 1 - $\frac{1}{3} = \frac{2}{3}$
Also, n = 4
∴ Required probability = P (X ≥ 3)
= ${}^{4}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{0} + {}^{4}C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$
= $\left(\frac{2}{3}\right)^{4} + 4\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)$
= $\frac{16}{27}$
15. Probability for white ball, p = $\frac{2}{6} = \frac{1}{3}$
Probability for black ball, q = $\frac{4}{6} = \frac{2}{3}$
Also, n = 5
∴ Required probability = P (X ≥ 4)
= ${}^{5}C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0} + {}^{5}C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)$
= $\left(\frac{1}{3}\right)^{4}\left[\frac{1}{3} + (5)\frac{2}{3}\right]$
= $\frac{11}{3^{5}} = \frac{11}{243}$

Chapter 09: Binomial Distribution

- 16. Required probability = P (X < 2) = ${}^{8}C_{1}\left(\frac{1}{20}\right)^{1}\left(\frac{19}{20}\right)^{7} + {}^{8}C_{0}\left(\frac{1}{20}\right)^{0}\left(\frac{19}{20}\right)^{8}$ = $\frac{27}{20}\left(\frac{19}{20}\right)^{7}$
- 17. P(minimum face value not less than 2 and maximum face value is not greater than 5) = P(2 or 3 or 4 or 5) = $\frac{4}{6} = \frac{2}{3}$

 \therefore required probability = ${}^{4}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{0} = \frac{16}{81}$

- 18. Here, p = probability of getting perfect square in any throw = $\frac{2}{6} = \frac{1}{3}$
- $\therefore \quad q = \frac{2}{3} \text{ and } n = 4$ Now,

P(getting perfect square in at least one throw) = 1 – P(not getting perfect square in any throw) \Rightarrow P(X \ge 1)= 1 – P(X = 0)

$$= 1 - {}^{4}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{2}{3}\right)^{4}$$
$$= 1 - \left(\frac{2}{3}\right)^{4} = \frac{65}{81}$$

19. P(answer is correct) = $p = \frac{1}{2}$

 $q = 1 - \frac{1}{2} = \frac{1}{2}$

...

Also, n = 10

 $\therefore P(\text{at least 7 answers are correct}) = P(X \ge 7)$ = P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) $= {}^{10}C_7 \left(\frac{1}{2}\right)^7 \left(\frac{1}{2}\right)^3 + {}^{10}C_8 \left(\frac{1}{2}\right)^8 \left(\frac{1}{2}\right)^2$ $+ {}^{10}C_9 \left(\frac{1}{2}\right)^9 \left(\frac{1}{2}\right) + {}^{10}C_{10} \left(\frac{1}{2}\right)^{10}$ $= \left({}^{10}C_7 + {}^{10}C_8 + {}^{10}C_9 + {}^{10}C_{10}\right) \frac{1}{2^{10}}$ $= (120 + 45 + 10 + 1) \frac{1}{1024}$ $= \frac{176}{1024}$ $= \frac{11}{64}$

- 20. Probability of green ball (p) = $\frac{15}{25} = \frac{3}{5}$ Probability of yellow ball (q) = $\frac{10}{25} = \frac{2}{5}$ Also, n = 10
- \therefore Variance = npq

$$= 10\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)$$
$$= \frac{12}{5}$$

- 21. Probability of occurence of event A is p = 0.3
- $\therefore \quad q = 0.7$ Also, n = 6

$$\therefore \quad \text{Variance} = \text{npq} \\ = 6 \times 0.3 \times 0.7 = 1.26$$

23. Given np = 6, npq = 4 $\therefore \frac{npq}{4} = \frac{4}{4}$

np 6

$$\Rightarrow q = \frac{2}{3} \text{ and } p = \frac{1}{3}$$

- $\therefore \quad np = 6$ $\Rightarrow n \times \frac{1}{3} = 6$ $\Rightarrow n = 18$
- 24. Mean = np = 18Variance = npq = 12

$$\therefore \quad \frac{npq}{np} = \frac{12}{18} \Rightarrow q = \frac{2}{3}$$

$$p = 1 - q = 1 - \frac{2}{3} = \frac{1}{3}$$
Now, np = 18
(1)

...

$$\Rightarrow n\left(\frac{1}{3}\right) = 18$$

$$\Rightarrow n = 54$$

Values of x are 0, 1, 2, 3, ..., 54 = 55 values

MHT-CET Triumph Maths (Hints)		
25.	$ \begin{array}{c} np = 4 \\ npq = 2 \end{array} \} \Rightarrow q = \frac{1}{2}, p = \frac{1}{2}, n = 8 \end{array} $	
<i>.</i>	$P(X = 1) = {}^{8}C_{1}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{7}$	
	$= 8 \cdot \frac{1}{2^8} = \frac{1}{2^5} = \frac{1}{32}$	
26.	$ \begin{array}{c} np = 8 \\ npq = 4 \end{array} \} \Longrightarrow q = \frac{1}{2}, p = \frac{1}{2}, n = 16 $	
<i>.</i>	$P(X = 1) = {}^{16}C_1 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{15}$	
	$= 16 \times \frac{1}{2} \times \frac{1}{2^{15}}$	
	$=2^4 \times \frac{1}{2} \times \frac{1}{2^{15}} = \frac{1}{2^{12}}$	
27.	$ \begin{array}{c} np = 4 \\ npq = 2 \end{array} \} \Longrightarrow q = \frac{1}{2}, p = \frac{1}{2}, n = 8 \end{array} $	
	$P(X = 2) = {}^{8}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{6}$	
	$= 28.\frac{1}{2^8} = \frac{28}{256}$	
28.	E(X) = 5 and $Var(X) = 2.5$	
	\Rightarrow np - 5 and npq - 2.5	
	\Rightarrow p = $\frac{1}{2}$, q = $\frac{1}{2}$ and n = 10	
	P(X < 1) = P(X = 0)	

$$= {}^{10}C_0 \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^{10} = \left(\frac{1}{2}\right)^{10}$$
29. $E(X) = 6 \text{ and } V(X) = 2$
 $\Rightarrow np = 6 \text{ and } npq = 2$
 $\Rightarrow q = \frac{1}{3}, p = \frac{2}{3} \text{ and } n = 9$

1. We have, $p = \frac{10}{100} = \frac{1}{10}$ $\therefore q = 1 - \frac{1}{10} = \frac{9}{10}$ According to the given condition, $P(X \ge 1) \ge \frac{50}{100}$

$$P(5 \le X \le 7) = P(X = 5) + P(X = 6) + P(X = 7)$$

$$= {}^{9}C_{5} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right)^{4} + {}^{9}C_{6} \left(\frac{2}{3}\right)^{6} \left(\frac{1}{3}\right)^{3}$$

$$+ {}^{9}C_{7} \left(\frac{2}{3}\right)^{7} \left(\frac{1}{3}\right)^{2}$$

$$= \frac{2^{5}}{3^{9}} [{}^{9}C_{5} + {}^{9}C_{6} \times 2 + {}^{9}C_{7} \times 4]$$

$$= \frac{2^{5}}{3^{9}} [126 + 168 + 144]$$

$$= \frac{2^{5} \times 438}{3^{9}} = \frac{2^{5} \times 146}{3^{9}} = \frac{4672}{6561}$$
30. Probability of getting a success, $p = \frac{1}{4}$
Probability of not getting success, $q = \frac{3}{4}$
Standard deviation = $\sqrt{\text{Variance}}$
 $\Rightarrow \text{Variance} = 9$
 $\Rightarrow \text{npq} = 9 \Rightarrow \text{n.} \cdot \frac{1}{4} \cdot \frac{3}{4} = 9 \Rightarrow \text{n} = 48$
Mean = np = $\frac{1}{4} \times 48 = 12$

31. Let X = Number of heads appear in n tosses $X \sim B\left(n, \frac{1}{2}\right)$ Now, P (X ≥ 1) = 1 - P (X = 0) = 1 - $\frac{1}{2^n}$ Since, P(X ≥1) ≥ 0.9 \therefore 1 - $\frac{1}{2^n} \ge 0.9$

$$\Rightarrow \frac{1}{2^{n}} \le \frac{1}{10} \Rightarrow 2^{n} \ge 10 \Rightarrow n \ge 4$$

minimum number of tosses = 4

Evaluation Test

....

$$\Rightarrow 1 - P(X = 0) \ge \frac{1}{2}$$
$$\Rightarrow P(X = 0) \le \frac{1}{2}$$
$$\Rightarrow \left(\frac{9}{10}\right)^{n} \le \frac{1}{2},$$
which is possible if r

which is possible if n is at least 7.

$$\therefore$$
 n = 7

2.
$$P(X = 1) = 8 \cdot P(X = 3), \text{ if } n = 5$$

 $\Rightarrow {}^{5}C_{1}q^{4}p^{1} = 8 \cdot {}^{5}C_{3}q^{2}p^{3}$
 $\Rightarrow \frac{5q^{2}}{p^{2}} = 8(10) \Rightarrow \frac{q^{2}}{p^{2}} = 16$
 $\Rightarrow q = 4p$
 $\Rightarrow 1 - p = 4p$
 $\Rightarrow 5p = 1 \Rightarrow p = \frac{1}{5}$
3. $P(X = 0) = \frac{16}{81}$
 $\Rightarrow {}^{4}C_{0}p^{0}q^{4} = \frac{16}{81} \Rightarrow q^{4} = \left(\frac{2}{3}\right)^{4}$
 $\Rightarrow q = \frac{2}{3} \Rightarrow p = \frac{1}{3}$
 $\therefore P(X = 4) = {}^{4}C_{4}p^{4}q^{0} = p^{4} = \left(\frac{1}{3}\right)^{4} = \frac{1}{81}$
4. Here $p = \frac{3}{6} = \frac{1}{2}$
 $and q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$
 $n = 100$
 \therefore variance = npq = $100 \times \frac{1}{2} \times \frac{1}{2} = 25$
5. Here $n = 8$,
 $p = Probability of getting 1 or $3 = \frac{2}{6} = \frac{1}{3}$
 $\therefore Q = 1 - \frac{1}{3} = \frac{2}{3}$
 $\therefore S.D. = \sqrt{npq} = \sqrt{8 \times \frac{1}{3} \times \frac{2}{3}} = \sqrt{\frac{16}{9}} = \frac{4}{3}$
6. Let X denote the number of failures in 5 trials.
Then, $P(X = r) = {}^{5}C_{r}(1 - p)^{r}p^{5-r}; r = 0, 1, 2, ..., 5$
 $\therefore P(X \ge 1) \ge \frac{31}{32}$
 $\Rightarrow 1 - P(X = 0) \ge \frac{31}{32}$
 $\Rightarrow 1 - p^{5} \ge \frac{31}{32}$
 $\Rightarrow p \le \frac{1}{2} \Rightarrow p \in \left[0, \frac{1}{2}\right]$$

Chapter 09: Binomial Distribution 7. Required probability $= {}^{3}C_{0}\left(\frac{1}{2}\right)^{3} \times {}^{3}C_{0}\left(\frac{1}{2}\right)^{3} + {}^{3}C_{1}\left(\frac{1}{2}\right)^{3} \times {}^{3}C_{1}\left(\frac{1}{2}\right)^{3}$ $+ {}^{3}C_{2}\left(\frac{1}{2}\right)^{3} \times {}^{3}C_{2}\left(\frac{1}{2}\right)^{3} + {}^{3}C_{3}\left(\frac{1}{2}\right)^{3} \times {}^{3}C_{3}\left(\frac{1}{2}\right)^{3}$ $=(1+9+9+1)\times \frac{1}{8}\times \frac{1}{8}=\frac{5}{16}$ P(at least one success) $\ge \frac{9}{10}$ 8. $\Rightarrow P(X \ge 1) \ge \frac{9}{10}$ $\Rightarrow 1 - P(X = 0) \ge \frac{9}{10}$ $\Rightarrow P(X=0) \leq \frac{1}{10}$ $\Rightarrow {}^{n}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{n} \leq \frac{1}{10}$ $\Rightarrow \left(\frac{3}{4}\right)^n \le \frac{1}{10}$ $\Rightarrow \left(\frac{4}{3}\right)^n \ge 10$ $\Rightarrow \operatorname{nlog}_{10}\left(\frac{4}{3}\right) \ge \log_{10} 10$ \Rightarrow n(log₁₀ 4 - log₁₀ 3) \ge 1 $\Rightarrow n \ge \frac{1}{\log_{10} 4 - \log_{10} 3}$ 9. According to the given condition, np + npq = 15 and $(np)^2 + (npq)^2 = 117$ $\frac{n^2 p^2 (1+q^2)}{(np+npq)^2} = \frac{117}{15^2}$ *.*.. $\Rightarrow \frac{1+q^2}{(1+q)^2} = \frac{117}{225}$ $\Rightarrow 6q^2 - 13q + 6 = 0 \Rightarrow q = \frac{2}{3}$ $\therefore \qquad p = 1 - \frac{2}{3} = \frac{1}{3}$ Since, np + npq = 15 \Rightarrow n $\times \frac{1}{3}$ + n $\times \frac{2}{9}$ = 15 \Rightarrow n = 27 $mean = np = 27 \times \frac{1}{3} = 9$...

MHT-CET Triumph Maths (Hints)

10. P(getting head) = p =
$$\frac{1}{2}$$

∴ $q = 1 - \frac{1}{2} = \frac{1}{2}$
Here, P(X = r) = ${}^{n}C_{r}p^{r}q^{n-r} = {}^{n}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{n-r}$
 $= {}^{n}C_{r}\left(\frac{1}{2}\right)^{n}$
Since, P(X = 4), P(X = 5) and P(X = 6) are in A.P.
 $\Rightarrow 2P(X = 5) = P(X = 4) + P(X = 6)$
 $\Rightarrow 2 {}^{n}C_{5}\left(\frac{1}{2}\right)^{n} = {}^{n}C_{4}\left(\frac{1}{2}\right)^{n} + {}^{n}C_{6}\left(\frac{1}{2}\right)^{n}$
 $\Rightarrow 2 {}^{n}C_{5} = {}^{n}C_{4} + {}^{n}C_{6}$
 $\Rightarrow 2 {}^{n}C_{5} = {}^{n}C_{4} + {}^{n}C_{6} + {}^{n}C_$

- 11. Let the probability of success and failure be p and q respectively.
- $\therefore \quad p = 2q$ Since, p + q = 1
- $\therefore \qquad 3q = 1 \Longrightarrow q = \frac{1}{3}$

$$\therefore \qquad p=1-\frac{1}{3}=\frac{2}{3}$$

 $\therefore \quad \text{required probability} \\ (2)^4 (1)^2 = (2)^5 (1)$

$$= {}^{6}C_{4}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) + {}^{6}C_{5}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) + {}^{6}C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{0}$$
$$= \frac{240}{729} + \frac{192}{729} + \frac{64}{729} = \frac{496}{729}$$
Mean = np and variance = npg

12. Mean = np and variance = npq ∴ np = 20 and npq = 16 ∴ 20q = 16 ⇒ q = $\frac{4}{5}$ ∴ p = 1 - $\frac{4}{5} = \frac{1}{5}$ Since, np = 20

$$\therefore \qquad n \times \frac{1}{5} = 20 \Longrightarrow n = 100$$

MHT-CET 2019

6th May 2019 (Afternoon)

Hints

1. $\cos \theta + \sec \theta = 2$ $\Rightarrow \cos \theta + \frac{1}{\cos \theta} = 2$ $\Rightarrow \cos^2 \theta + 1 = 2\cos \theta$ $\Rightarrow (\cos \theta - 1)^2 = 0$ $\Rightarrow \cos \theta = 1$ $\sec \theta = 1$ *.*.. $\sin^2 \theta = 1 - \cos^2 \theta = 1 - 1 = 0$ $\sec^2 \theta - \sin^2 \theta = 1 - 0 = 1$ *.*.. $A - B = \frac{\pi}{4}$ 2. $\tan (A - B) = \tan \frac{\pi}{4}$... $\Rightarrow \frac{\tan A - \tan B}{1 + \tan A \tan B} = 1$ \Rightarrow tan A - tan B - tan A tan B = 1 \Rightarrow 1 + tan A - tan B - tan A tan B = 2 \Rightarrow (1 + tan A) (1 - tan B) = 2 Line AB and line BC are perpendicular. 3. Slope of AB × slope of BC = -1*.*.. $\Rightarrow \frac{4-8}{-3-5} \times \frac{k-4}{7-(-3)} = -1$ $\Rightarrow \frac{1}{2} \times \frac{k-4}{10} = -1$ \Rightarrow k = -16 Equation of parabola is $y^2 = 16x$. 4. *.*.. a = 4 Given, y = 8Substituting y = 8 in $y^2 = 16 x$, we get $(8)^2 = 16 x$ $\Rightarrow x = \frac{64}{16} = 4$ Focal distance = |x + a|= 4 + 4 = 8Conjugate hyperbola of $\frac{x^2}{144} - \frac{y^2}{25} = 1$ 5. is $\frac{y^2}{25} - \frac{x^2}{144} = 1$

	Here, $b = 5$, $a = 12$
	$e = \frac{\sqrt{a^2 + b^2}}{b} = \frac{\sqrt{144 + 25}}{5} = \frac{13}{5}$
<i>.</i>	the foci are $(0, \pm be)$ i.e., (0 ± 13)
6.	Consider option (A), $f(x) = 3 \cos x + 4$
<i>.</i>	$f(-x) = 3 \cos(-x) + 4$ = 3 cos x + 4 = f (x)
÷	f(x) is an even function.
7.	$\sin x \ge 0$ $\Rightarrow x \in [2n\pi, (2n+1)\pi] \qquad(i)$ $16 - x^2 \ge 0$ $\Rightarrow x^2 < 16$
	$\Rightarrow -4 \le x \le 4 \qquad \dots (ii)$ From (i) and (ii), we get $x \in [-4, -\pi] \cup [0, \pi]$
8.	$(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) = (x+y)\left(\frac{x+y}{xy}\right)$
	$=\frac{\left(x+y\right)^2}{xy}$
	$=\frac{x^2+y^2+2xy}{xy}$
	$=\frac{x}{y}+\frac{y}{x}+2$
	Since, A. M. \geq G. M.
<i>.</i>	$\frac{\frac{x}{y} + \frac{y}{x}}{2} \ge \sqrt{\frac{x}{y} \cdot \frac{y}{x}}$
	$\Rightarrow \frac{x}{y} + \frac{y}{x} \ge 2$
	$(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \ge 2+2 \ge 4$
	the minimum value is 4.

MHT-CET Triumph Maths (MCQs) (Hints)

9.
$$\sum_{n=1}^{\infty} t_n = \sum_{n=1}^{\infty} \frac{1}{(n+1)!}$$
$$= \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$
$$= \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots\right) - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots\right)$$
$$= e - 2$$

- 10. No. of defective bulbs = 6
- :. No. of non-defective bulbs = 4 3 bulbs can be selected out of 10 light bulbs in ${}^{10}C_3$ ways.
- $\therefore \quad n(S) = {}^{10}C_3$
 - Let A be the event that room is lit. A' is the event that the room is not lit.
- \therefore A' is the event that the room is not lit. For A' the bulbs should be selected from the 6 defective bulbs. This can be done in ${}^{6}C_{3}$ ways.
- $\therefore \quad n(A') = {}^{6}C_{3}$

$$\therefore \quad P(A') \equiv \frac{n(A')}{n(S)} = \frac{{}^{6}C_{3}}{{}^{10}C_{3}}$$

- \therefore P(Room is lit) = 1 P(Room is not lit)
- $\therefore \quad P(A) = 1 P(A')$

$$= 1 - \frac{{}^{6}C_{3}}{{}^{10}C_{3}}$$
$$= 1 - \frac{6 \times 5 \times 4}{10 \times 9 \times 8}$$
$$= 1 - \frac{1}{6} = \frac{5}{6}$$

- 12. $p \equiv F$ $p \leftrightarrow r \equiv T \text{ and } p \leftrightarrow q \equiv F$ $\Rightarrow p \equiv F, r \equiv F \text{ and } p \equiv F, q \equiv T$ the truth values of a and r are T
- \therefore the truth values of q and r are T and F respectively.

14. A (Adj A) = |A| . (I_n)

$$\therefore \begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix} = |A| \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix} = \begin{bmatrix} |A| & 0\\ 0 & |A| \end{bmatrix}$$

$$\Rightarrow |A| = 10$$

15. Since, inverse of matrix A does not exist. \therefore |A| = 0

$$\Rightarrow \begin{vmatrix} 1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6 \end{vmatrix} = 0$$

 $\Rightarrow 1(6-28) - 2(-24 - 14) + x(16 + 2) = 0$ $\Rightarrow -22 + 76 + 18x = 0$ $\Rightarrow 18x = -54$ $\Rightarrow x = -3$ 16. $3\sin^2 x - 7\sin x + 2 = 0$ $\Rightarrow 3\sin^2 x - 6\sin x - \sin x + 2 = 0$ \Rightarrow 3sin x (sin x - 2) - (sin x - 2) = 0 $\Rightarrow (3 \sin x - 1) (\sin x - 2) = 0$ $\Rightarrow \sin x = \frac{1}{3} \text{ or } 2$ $\Rightarrow \sin x = \frac{1}{2}$ [$\because \sin x \neq 2$] Let $\sin^{-1} \frac{1}{3} = \alpha$, $0 < \alpha < \frac{\pi}{2}$ are the solutions in $[0, 5\pi]$. Then, α , $\pi - \alpha$, $2\pi + \alpha$, $3\pi - \alpha$, $4\pi + \alpha$, $5\pi - \alpha$ are the solutions in [0, 5π]. number of solutions = 6*.*.. 17. Let $\sin^{-1} x = \theta$ $\Rightarrow x = \sin \theta$ $2x\sqrt{1-x^2} = 2\sin\theta\cos\theta$ $= \sin 2\theta$ $\therefore \quad \sin^{-1}\left(2x\sqrt{1-x^2}\right) = \sin^{-1}\left(\sin 2\theta\right)$ $=\sin^{-1}[\sin(\pi-2\theta)]$ $\dots \begin{bmatrix} \because \frac{1}{\sqrt{2}} \le x \le 1 \Rightarrow \frac{\pi}{4} \le \theta \le \frac{\pi}{2} \\ \Rightarrow \frac{\pi}{2} \le 2\theta \le \pi \\ \Rightarrow 0 \le \pi - 2\theta \le \frac{\pi}{2} \end{bmatrix}$ $=\pi-2\theta$ $=\pi - 2 \sin^{-1} x$ $A = \pi, B = -2$ *.*.. 18. $\cot x = -\sqrt{3}$ $\Rightarrow \tan x = \frac{-1}{\sqrt{3}}$ $\Rightarrow \tan x = \tan \frac{5\pi}{6}$ $\Rightarrow x = n\pi + \frac{5\pi}{6}, n \in \mathbb{Z}$...[:: $\tan \theta = \tan \alpha \Rightarrow \theta = n\pi + \alpha, n \in \mathbb{Z}$] 19. By sine rule, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin A}$

 $\frac{b}{\sin B} = \frac{c}{\sin A}$

$$\Rightarrow \frac{2c}{\sin 3C} = \frac{c}{\sin C} \qquad \dots [\because b = 2c, B = 3C]$$
$$\Rightarrow \frac{\sin 3C}{\sin C} = 2$$
$$\Rightarrow \frac{3\sin C - 4\sin^3 C}{\sin C} = 2$$
$$\Rightarrow 3 - 4\sin^2 C = 2$$
$$\Rightarrow \sin C = \frac{1}{2} \Rightarrow C = 30^{\circ}$$
$$B = 3 \times 30^{\circ} = 90^{\circ}$$
$$\therefore \quad A = 60^{\circ} \qquad \dots [\text{Remaining angle of } \Delta ABC]$$
$$\therefore \quad \sin A = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

20. Comparing the given equation with $ax^2 + 2hxy + by^2 = 0$, we get $a = \sin^2 \theta - 1 = -\cos^2 \theta$, $b = \cos^2 \theta$ Here, $a + b = -\cos^2 \theta + \cos^2 \theta = 0$ the lines are perpendicular.

$$\pi$$

$$\therefore \quad \theta = \frac{\pi}{2}$$

- 21. Comparing the given equation with $ax^2 + 2hxy + by^2 = 0$, we get a = 2, 2h = -3, b = 1 $m_1 + m_2 = \frac{-2h}{b} = 3, m_1.m_2 = \frac{a}{b} = 2$ $(m_1)^3 + (m_2)^3 = (m_1 + m_2) (m_1^2 - m_1m_2 + m_2^2)$ $= 3 [(m_1 + m_2)^2 - 3m_1 m_2]$ $= 3 [(3)^2 - 3(2)]$ = 3(3) = 9
- 22. Since, G is the centroid of $\triangle ABC$. $\therefore \quad 2 = \frac{3 + y + 2x}{3} \text{ and } 1 = \frac{x - 2 + 2y}{3}$ $\Rightarrow 6 = 3 + y + 2x \text{ and } 3 = x - 2 + 2y$ $\Rightarrow 2x + y = 3 \text{ and } x + 2y = 5$ Solving these equations, we get $x = \frac{1}{2} \text{ and } y = \frac{7}{2}$
- 23. $\overline{a}, \overline{b}, \overline{c}$ are coplanar vectors. $\Rightarrow \left[\overline{a} \ \overline{b} \ \overline{c}\right] = 0$ Let $\overline{\alpha} = 2 \ \overline{a} - \overline{b}, \quad \overline{\beta} = 2\overline{b} - \overline{c}$ and $\gamma = 2\overline{c} - \overline{a}$. Then, $\left[\overline{\alpha} \ \overline{\beta} \ \overline{\gamma}\right] = \begin{vmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & 0 & 2 \end{vmatrix} \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ $\Rightarrow \left[\overline{\alpha} \ \overline{\beta} \ \overline{\gamma}\right] = 7\left[\overline{a} \ \overline{b} \ \overline{c}\right] = 7(0) = 0$

MHT-CET 2019 (6th May, Afternoon) Paper Since, the given vectors are coplanar. 24. a a c $\begin{vmatrix} 1 & 0 & 1 \end{vmatrix} = 0$ *.*.. c c b $\Rightarrow -ac - a(b - c) + c^2 = 0$ $\Rightarrow -ac - ab + ac + c^2 = 0$ \Rightarrow c² = ab \Rightarrow c is the G. M. of a and b. Putting $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ in the given 26. equation. $x\hat{i} + y\hat{j} + z\hat{k} = (\hat{i} + \hat{j} + \hat{k}) + \lambda(\hat{j} + \hat{k})$ $x\hat{i} + y\hat{j} + z\hat{k} = \hat{i} + (1 + \lambda)\hat{j} + (1 + \lambda)\hat{k}$ *.*.. *.*.. $x = 1, v = 1 + \lambda, z = 1 + \lambda$ *.*.. x = 1, y = z27. Let the XZ plane divides the line segment joining the given points in the ratio k : 1 at the point P (x, y, z). $x = \frac{ka+3}{k+1}$, $y = \frac{-4k+2}{k+1}$ Ŀ. $z = \frac{3k+b}{k+1}$ Since, P (x, y, z) lie on the XZ plane, its y co-ordinate will be zero. $0 = \frac{-4k+2}{k+1}$ *.*.. $\Rightarrow -4k + 2 = 0$ $\Rightarrow k = \frac{1}{2}$ k: 1 = 1:2*.*.. 28. The vector equation of the plane passing through the point $A(\overline{a})$ and parallel to the b vectors non-zero and с is $\overline{\mathbf{r}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}})$ Here, $\bar{a} = -\hat{i} + 2\hat{j} - 5\hat{k}$, $\bar{b} = 4\hat{i} - \hat{j} + 3\hat{k}$, $\bar{c} = \hat{i} + \hat{j} - \hat{k}$ $\therefore \quad \overline{\mathbf{b}} \times \overline{\mathbf{c}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 4 & -1 & 3 \\ 1 & 1 & -1 \end{vmatrix}$ $= -2\hat{i} + 7\hat{i} + 5\hat{k}$

The corner points of the feasible region A(4, 2), B (4, 6) and C (0, 6). At A (4, 2), z = 10At B (4, 6), z = 14At C (0, 6), z = 6

... Maximum value of Z is 14.

...

33.

31. Since, f(x) is continuous at x = 0. $C(\mathbf{n})$

$$f(0) = \lim_{x \to 0} f(x)$$

= $\lim_{x \to 0} (x + 1)^{\cot x}$
= $\lim_{x \to 0} \left[(1 + x)^{\frac{1}{x}} \right]^{\frac{x}{\tan x}}$
= $e^{1} = e$

32. Since, f(x) is continuous at x = a. $f(a) = \lim_{x \to a} f(x)$ *.*.. = lim $\sqrt{x} - \sqrt{a} + \sqrt{x - a}$

$$= \lim_{x \to a} \frac{\sqrt{x^2 - a^2}}{\sqrt{x^2 - a^2}}$$

$$= \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a} + \sqrt{x - a}}{\sqrt{x + a} \cdot \sqrt{x - a}}$$

$$= \lim_{x \to a} \frac{1}{\sqrt{x + a}} \left(\frac{\sqrt{x} - \sqrt{a} + \sqrt{x - a}}{\sqrt{x - a}} \right)$$

$$= \frac{1}{\sqrt{2a}} \lim_{x \to a} \left(\frac{\sqrt{x} - \sqrt{a}}{\sqrt{x - a}} + 1 \right)$$

$$= \frac{1}{\sqrt{2a}} \lim_{x \to a} \left[\frac{\left(\sqrt{x}\right)^2 - \left(\sqrt{a}\right)^2}{\sqrt{x - a}\left(\sqrt{x} + \sqrt{a}\right)} + 1 \right]$$

$$= \frac{1}{\sqrt{2a}} \lim_{x \to a} \left(\frac{x - a}{\sqrt{x - a}\left(\sqrt{x} + \sqrt{a}\right)} + 1 \right)$$

$$= \frac{1}{\sqrt{2a}} \lim_{x \to a} \left[\frac{\sqrt{x - a}}{\sqrt{x - a}\left(\sqrt{x} + \sqrt{a}\right)} + 1 \right]$$

$$= \frac{1}{\sqrt{2a}} \left[\lim_{x \to a} \left[\frac{\sqrt{x - a}}{\sqrt{x + \sqrt{a}}} + 1 \right] \right]$$

$$= \frac{1}{\sqrt{2a}} \left[(0 + 1) = \frac{1}{\sqrt{2a}} \right]$$

$$f'(2^{-}) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{1 + 2 + h - 3}{h}$$

h

 $= \lim_{h \to 0} \frac{h}{h} = 1$

$$f'(2^{+}) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
$$= \lim_{h \to 0} \frac{5 - (2+h) - 3}{h}$$
$$= \lim_{h \to 0} \left(\frac{-h}{h}\right) = -1$$

:. $f'(2^{-}) \neq f'(2^{+})$

 \therefore f'(2) does not exist.

34.
$$y = \csc^{-1}\left(\frac{x^2+1}{x^2-1}\right) + \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right)$$

 $= \sin^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right)$
 $\dots \left[\because \csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right)\right]$
 $= \frac{\pi}{2}$ $\dots \left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$
 $\therefore \quad \frac{dy}{dx} = 0$

35.
$$x = t \log t \text{ and } y = t^{t}$$

 $\therefore x = \log t^{t} = \log y$
Differentiating both sides w.r.t. x, we get
 $1 = \frac{1}{y} \cdot \frac{dy}{dx}$
 $\Rightarrow \frac{dy}{dx} = y = t^{t}$
Since, $x = t \log t$

$$\therefore \qquad x = \log t^{t}$$
$$\Rightarrow e^{x} = t^{t}$$
$$\therefore \qquad \frac{dy}{dx} = e^{x}$$

36.
$$f(x) = x^3 - 3x$$

∴ $f'(x) = 3x^2 - 3$ and $f''(x) = 6x$
 $f'(x) = 0$
 $\Rightarrow 3x^2 - 3 = 0$
 $\Rightarrow 3(x^2 - 1) = 0$
 $\Rightarrow x^2 = 1$
 $\Rightarrow x = \pm 1$
For $x = 1$,
 $f''(1) = 6 > 0$
For $x = -1$
 $f''(-1) = -6 < 0$
∴ $f(x)$ attains minimum value at $x = 1$

MHT-CET 2019 (6th May, Afternoon) Paper 37. $f(x) = x^3 + bx^2 + ax - 6$ f(1) = 1 + b + a - 6 = a + b - 5f(3) = 27 + 9b + 3a - 6 = 3a + 9b + 21f(1) = f(3) \therefore a + b - 5 = 3a + 9b + 21 $\Rightarrow 2a + 8b = -26$ \Rightarrow a + 4b = -13 38. $y = e^x + e^{-x}$...(i) $\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x - \mathrm{e}^{-x}$ The slope of the horizontal tangent is $\frac{dy}{dx} = 0$ *.*.. $0 = e^{x} - e^{-x}$ $\Rightarrow e^x = e^{-x}$ $\Rightarrow e^{2x} = 1$ $\Rightarrow x = 0$ Substituting x = 0 in (i), we get $y = e^0 + e^0 = 2$ 39. Let I = $\int \frac{1}{\sqrt{9 - 16x^2}} dx$ $=\int \frac{1}{\sqrt{(3)^2 - (4x)^2}} dx$ $=\frac{1}{4}\sin^{-1}\left(\frac{4x}{3}\right)+c$ Comparing with a $\sin^{-1}(bx) + c$, we get $a = \frac{1}{4}$ and $b = \frac{4}{3}$ $\therefore \qquad 4a+3b=4\left(\frac{1}{4}\right)+3\left(\frac{4}{3}\right)=5$ 40. Let I = $\int \frac{1}{3+2\cos^2 x} dx$ Dividing Nr and Dr by $\cos^2 x$, we get $I = \int \frac{\sec^2 x \, dx}{3\sec^2 x + 2}$ $=\int \frac{\sec^2 x \, \mathrm{d}x}{3(1+\tan^2 x)+2}$ $=\int \frac{\sec^2 x}{3+3\tan^2 x+2} \, \mathrm{d}x$ $= \int \frac{\sec^2 x}{5 + 3\tan^2 x} \, \mathrm{d}x$ Put $\tan x = t$

MHT-CET Triumph Maths (MCQs) (Hints) $\sec^2 x \, dx = dt$ *.*.. f(x) is an odd function. $I = \int \frac{1}{5+3t^2} dt$ *:*. $\int_{-\pi}^{\overline{8}} \log\left(\frac{2-\sin x}{2+\sin x}\right) dx = 0$ *:*.. $=\int \frac{1}{\left(\sqrt{5}\right)^2 + \left(\sqrt{3} t\right)^2} dt$ 44. $=\frac{1}{\sqrt{3}\sqrt{5}}\tan^{-1}\left(\frac{\sqrt{3}t}{\sqrt{5}}\right)+c$ $\therefore \qquad I = \frac{1}{\sqrt{15}} \tan^{-1} \left(\frac{\sqrt{3} \tan x}{\sqrt{5}} \right) + c$ X′ 0 41. $\int x^2 e^{3x} dx = x^2 \cdot \frac{e^{3x}}{2} - \int 2x \cdot \frac{e^{3x}}{2} dx$ В $=\frac{x^2e^{3x}}{3}-\frac{2}{3}\left|x.\frac{e^{3x}}{3}-\int 1.\frac{e^{3x}}{3}dx\right|$ Y' Required area = $2\int_{1}^{4} 4\sqrt{x} \, dx$ $=\frac{x^2e^{3x}}{3}-\frac{2}{3}\left(\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}\right)+c$ $= 8 \int \sqrt{x} \, \mathrm{d}x$ $=\frac{1}{3}x^2e^{3x}-\frac{2}{9}xe^{3x}+\frac{2}{27}e^{3x}+c$ $=\frac{e^{3x}}{27}(9x^2-6x+2)+c$ $=8\left[\frac{2}{3}x^{\frac{3}{2}}\right]^{4}$ $f(x) = 9x^2 - 6x + 2$ *.*.. $=\frac{16}{3}\left[4^{\frac{3}{2}}-0\right]$ 42. Let I = $\int_{1}^{1} \frac{1}{x + \sqrt{x}} dx$ $=\frac{16}{2} \times 8$ $=\int_{0}^{1}\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\,\mathrm{d}x$ $=\frac{128}{2}$ sq. units Put $t = \sqrt{x} + 1 \Rightarrow dt = \frac{1}{2\sqrt{r}} dx$ 45. $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y+1}{x+1}$ When x = 0, t = 1 and when x = 1, t = 2

$$\therefore \quad I = 2\int_{1}^{2} \frac{dt}{t}$$

$$= 2[\log t]_{1}^{2}$$

$$= 2(\log 2 - \log 1) = 2\log 2 = \log 2^{2} = \log 4$$
43. Let $f(x) = \log\left(\frac{2 - \sin x}{2 + \sin x}\right)$

$$\therefore \quad f(-x) = \log\left(\frac{2 - \sin(-x)}{2 + \sin(-x)}\right)$$

 $= -\log\left(\frac{2-\sin x}{2+\sin x}\right) = -f(x)$

$$\therefore \quad y+1 = \frac{3}{2} (x+1) \qquad \dots [From (i)]$$
$$\Rightarrow 3x - 2y + 1 = 0$$

Integrating on both sides, we get $\log (y + 1) = \log (x + 1) + \log c$ $\Rightarrow \log (y+1) = \log (x+1).c$ \Rightarrow y + 1 = c(x + 1) ...(i)

Since, y(1) = 2 i.e., y = 2 when x = 1

 $\therefore \qquad \frac{\mathrm{d}y}{v+1} = \frac{\mathrm{d}x}{x+1}$

 \therefore 3 = c(2) \Rightarrow c = $\frac{3}{2}$

 $y^2 = 16x$

S(4, 0)

►X

46. Let P be the number of bacteria present at time t. $\frac{dP}{dt} = kP \Longrightarrow \frac{dP}{P} = kdt$ Integrating on both sides, we get $\log P = kt + c$ When t = 0, $P = P_0$ $\log P_0 = 0 + c \implies c = \log P_0$ *.*.. $\log P = kt + \log P_0$... $\Rightarrow \log \frac{P}{P_0} = kt$(i) When t = 5 hrs, $P = 3P_0$ $\log \frac{3P_0}{P_0} = 5k$ *:*. \Rightarrow k = $\frac{\log 3}{5}$ $\log \frac{P}{P_0} = \frac{\log 3}{5}t \qquad \dots [From (i)]$ ∴. When t = 10 hrs, we have $\log \frac{P}{P_0} = \frac{\log 3}{5} \times 10 = 2 \log 3 = \log 9$ $P = 9P_0 = 9$ times the original *.*.. 47. Equation of all rectangular hyperbolas is $xy = c^2$ Differentiating w.r.t.x, we get $x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$ Here, the order is 1. 48. Since, f(x) is the p.d.f. of X.

$$\therefore \int_{-\infty}^{\infty} f(x) dx = 1$$

$$\Rightarrow \int_{-\infty}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{2}^{\infty} f(x) dx = 1$$

$$\Rightarrow 0 + \int_{0}^{2} kx dx + 0 = 1$$

$$\Rightarrow k \left[\frac{x^{2}}{2} \right]_{0}^{2} = 1$$

$$\Rightarrow k (2 - 0) = 1 \qquad \Rightarrow k = \frac{1}{2}$$
49. Since, $\sum_{x=1}^{5} P(X = x) = 1$

$$\therefore \quad \frac{1}{20} + \frac{3}{20} + k + 2k + \frac{1}{20} = 1$$

$$\Rightarrow 3k + \frac{5}{20} = 1$$
$$\Rightarrow 3k = 1 - \frac{5}{20}$$
$$\Rightarrow 3k = \frac{15}{20}$$
$$\Rightarrow k = \frac{1}{4}$$

50.

...

р

1

P(success) = p, P(failure) = q
According to the given condition,

$$p = \frac{3}{4} q$$

$$1 - q = \frac{3}{4} q$$

$$\dots [\because p + q = 1]$$

$$\Rightarrow q = \frac{4}{7}$$
P(at least one success) = P (X \ge 1)
= 1 - P (X < 1)
= 1 - P (X < 0)
= 1 - q^5
$$= 1 - \left(\frac{4}{7}\right)^5$$

MHT-CET 2019 (6th May, Afternoon) Paper