Forces and Newton's Laws

Before You Read

Before you read the chapter, use the "What I know" column to list three things you know about forces. Then list three questions you have about forces in the "What I want to find out" column. Later you will fill in the "What I learned" section.

What I know	What I want to find out	What I learned

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Science Journal

Explain which would be a safer car—a car with a front end that crumples in a crash or one with a front end that doesn't crumple.

Sample answer: A car with a front end that crumples in a crash is safer. It provides a longer distance and a longer time over which a car can decelerate.

Forces and Newton's Laws

Section 1 Forces

| Predict Read the title of Section 1. List three things that might be |
| :--- | :--- | :--- |
| discussed in this section. |

Section 1 Forces (continued)

Main Idea

What is force?
I found this information on page \qquad
SE, p. 72
RE, p. 40

Friction
I found this information on page \qquad
SE, pp. 74-75
RE, pp. 41-43

Details

Model an apple hanging from a tree and a falling apple. Include arrows with labels to show all forces acting on the apples.

Hanging Apple
Accept all reasonable
responses with correct
force arrows.

Analyze the forces acting on the apple in each drawing and how they combine to form the net force.

The force of gravity and the force of the stem and tree holding the apple up are balanced, therefore the apple is remaining at rest.

The force of gravity and the force of air resistance are not balanced, therefore the apple's velocity is changing.

Complete the concept map, using the information in your book.

Fill in the blanks to complete the concept of friction.
The amount of friction between two surfaces depends on the kind of surfaces and the force pressing the surfaces together. Rougher surfaces have more bumps and can form micro welds, increasing the amount of friction.

Section 1 Forces (continued)

Main Idea

Gravity
I found this information on page \qquad
SE, p. 76
RE, pp. 43-44

The Law of Universal Gravitation

I found this information on page \qquad _.
SE, p. 76
RE, p. 44

Weight
I found this information on page

SE, p. 78
RE, p. 44

Details

Predict why Earth's ocean tides are influenced more by the Moon than by the Sun, even though the Sun is much bigger than the Moon. Accept all reasonable responses. The Sun and Moon affect

Earth's tides through gravity, which depends not only on mass
but on distance. The Moon is much closer to Earth than is the Sun, so the effect on Earth's ocean tides must depend more on their relative distances than on their relative sizes.

Summarize the law of universal gravitation in a complete sentence.
Accept all reasonable responses. The gravitational force between an object with mass m_{1} and another object with mass m_{2} is the product of the universal constant, G , and the two masses, divided by the square of the distance between the two objects.

Write the definitions of weight and mass in the boxes.

Section 1 Forces (continued)

Main Idea $>$
Weight
I found this information
SE, p. 78
RE, p. 44

Weight Away from Earth

I found this information on page \qquad
SE, p. 79
RE, p. 44

Find your weight on other planets. Multiply the gravity factor times your mass. $\quad \mathrm{W}=\mathrm{mg}$

Planetary Body	Your mass* (m)	Gravity factor (g)	Your weight in kg (w)
Sun		28	
Mercury		0.4	
Venus		0.9	
Earth		1.0	
Mars		0.4	
Jupiter		2.5	
Saturn		1.1	
Uranus		0.9	
Neptune		1.2	

*To find your mass divide your weight in kg by 9.8 .
Analyze the formula $\mathrm{W}=\mathrm{mg}$ to explain how an object's weight can change even when its mass remains constant. Accept all reasonable responses.

Even though m remains constant, g can change because it represents the strength of local gravity. If g changes, then W changes. On Earth, g is about $9.8 \mathrm{~N} / \mathrm{kg}$, but on the Moon it is $1 / 6$ that. On a larger planet it is greater. In space, far away from any planet or other large body, g is essentially zero, and an object has no weight at all, but its mass will not change.

Explain how Neptune was discovered. Astronomers noticed that Uranus traveled in an orbit slightly different from its calculated orbit. The astronomers thought that there must be another planet whose gravity was affecting the orbit. Calculations predicted the size and location of Neptune.

