
CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

03 - Basic Linear Algebra
and 2D Transformations

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Overview

• We will briefly overview the basic linear algebra concepts that we
will need in the class

• You will not be able to follow the next lectures without a clear
understanding of this material

In this box, you will find
references to Eigen

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Vectors

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Vectors
• A vector describes a direction and a length

• Do not confuse it with a location, which represent a position

• When you encode them in your program, they will both require 2 (or 3) numbers to be
represented, but they are not the same object!

These two are identical! Vectors represent displacements. If you represent
the displacement wrt the origin, then they encode a location.

Origin

Eigen::VectorXd

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Sum

a+ b = b+ a

a

b
a+ b

a

b

Operator +

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Difference

a
a

b

�a

b� a

b� a = �a+ b

Operator -

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Coordinates

c c

c = c1a+ c2b c = a+ 2b

a
b

a

2b

a and b form a 2D basis

Operator []

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Cartesian Coordinates
c = c1x+ c2y

c

x

y

• x and y form a canonical, Cartesian
basis

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Length
• The length of a vector is denoted as ||a||

• If the vector is represented in cartesian coordinates, then it is the L2
norm of the vector:

• A vector can be normalized, to change its length to 1, without
affecting the direction:

||a|| =
q

a21 + a22

a.norm()

b =
a

||a||

CAREFUL:
b.normalize() <— in place

b.normalized() <— returns the
normalized vector

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Dot Product a.dot(b)
a.transpose()*b

a
b

• The dot product is related to the length of
vector and of the angle between them

• If both are normalized, it is directly the
cosine of the angle between them

✓

a · b = ||a|| ||b|| cos ✓

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Dot Product - Projection

• The length of the projection of
b onto a can be computed
using the dot producta

b b ! a = ||b|| cos ✓ =
b · a
||a||

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Cross Product

• Defined only for 3D vectors

• The resulting vector is perpendicular
to both a and b, the direction
depends on the right hand rule

• The magnitude is equal to the area
of the parallelogram formed by a and
b

||a⇥ b|| = ||a|| ||b|| sin ✓

||a⇥ b||

a

b

Eigen::Vector3d v(1, 2, 3);

Eigen::Vector3d w(4, 5, 6);

v.cross(w);

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Coordinate Systems

• You will often need to manipulate coordinate systems (i.e. for finding
the position of the pixels in Assignment 1)

• You will always use orthonormal bases, which are formed by
pairwise orthogonal unit vectors :

2D 3D
||u|| = ||v|| = 1,

u · v = 0

||u|| = ||v|| = ||w|| = 1,
u · v = v ·w = w · u = 0

Right-handed if: w = u⇥ v

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Coordinate Frame

u
vu

v w

e

e is the origin of the reference system

e

p

p is the center of the pixel

p = e+ uu+ vv + ww

u,v,w are the coordinates of p
wrt the frame of reference or coordinate frame

(note that they depend also on the origin e)

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Change of frame

u
v w

e

a
• If you have a vector a expressed in global

coordinates, and you want to convert it into a
vector expressed in a local orthonormal u-v-w
coordinate system, you can do it using
projections of a onto u, v, w (which we assume
are expressed in global coordinates):

aC = (a · u,a · v,a ·w)

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 2

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Matrices

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Overview

• Matrices will allow us to conveniently represent and ally
transformations on vectors, such as translation, scaling and rotation

• Similarly to what we did for vectors, we will briefly overview their
basic operations

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Determinants
• Think of a determinant as an operation between vectors.

|ab|

a

b

Area of the parallelogram

|abc|

a

b

c

Volume of the parallelepiped
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?

curid=29922624

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Matrices

• A matrix is an array of numeric elements

x11 x12

x21 x22

�

Sum

Scalar Product

x11 x12

x21 x22

�
+

y11 y12
y21 y22

�
=

x11 + y11 x12 + y12
x21 + y21 x22 + y22

�

y ⇤

x11 x12

x21 x22

�
=

yx11 yx12

yx21 yx22

�
A.array() + B.array()

Eigen::MatrixXd A(2,2)

A.array() * y

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Transpose
• The transpose of a matrix is a new matrix whose entries are reflected

over the diagonal

B = A.transpose();
A.transposeInPlace();

⇥
1 2

⇤T
=

1
2

�
1 2
3 4

�T
=

1 3
2 4

� 2

4
1 2
3 4
5 6

3

5
T

=

1 3 5
2 4 6

�

(AB)T = BTAT

• The transpose of a product is the product of the transposed, in
reverse order

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Matrix Product
• The entry i,j is given by

multiplying the entries
on the i-th row of A with
the entries of the j-th
column of B and
summing up the results

• It is NOT commutative
(in general):

AB 6= BA

Eigen::MatrixXd A(4,2);

Eigen::MatrixXd B(2,3);

A*B;

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Intuition

2

4
|
y
|

3

5 =

2

4
�r1�
�r2�
�r3�

3

5

2

4
|
x
|

3

5

yi = ri · x
Dot product on each row

2

4
|
y
|

3

5 =

2

4
| | |
c1 c2 c3
| | |

3

5

2

4
x1

x2

x3

3

5

y = x1c1 + x2c2 + x3c3

Weighted sum of the columns

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Inverse Matrix
• The inverse of a matrix is the matrix such that A A�1 AA�1 = I

I =

2

4
1 0 0
0 1 0
0 0 1

3

5where I is the identity matrix

• The inverse of a product is the product of the inverse in opposite order:

(AB)�1 = B�1A�1

Eigen::MatrixXd A(4,4);

A.inverse() <— do not use this
to solve a linear system!

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Diagonal Matrices
• They are zero everywhere except the diagonal:

D =

2

4
a 0 0
0 b 0
0 0 c

3

5

• Useful properties:

D�1 =

2

4
a�1 0 0
0 b�1 0
0 0 c�1

3

5
D = DT

Eigen::Vector3d v(1,2,3);

A = v.asDiagonal()

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Orthogonal Matrices

• An orthogonal matrix is a matrix where

• each column is a vector of length 1

• each column is orthogonal to all the others

• A useful property of orthogonal matrices that their inverse
corresponds to their transpose:

(RTR) = I = (RRT)

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Linear Systems
• We will often encounter in this class linear systems with n linear

equations that depend on n variables.

• For example:

• To find x,y,z you have to “solve” the linear system. Do not use an
inverse, but rely on a direct solver:

5x+ 3y � 7z = 4

�3x+ 5y + 12z = 9

9x� 2y � 2z = �3

2

4
5 3 �7
�3 5 12
9 �2 �2

3

5

2

4
x
y
z

3

5 =

2

4
4
9
�3

3

5

 Matrix3f A;
 Vector3f b;
 A << 5,3,-7, -3,5,12, 9,-2,-2;
 b << 4, 9, -3;
 cout << "Here is the matrix A:\n" << A << endl;
 cout << "Here is the vector b:\n" << b << endl;
 Vector3f x = A.colPivHouseholderQr().solve(b);
 cout << "The solution is:\n" << x << endl;

https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html#a05afed751d3a7277951d1918468e0872

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 5

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Transformations

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Linear Transformations
• Each 2D linear map can be represented by a unique 2×2 matrix

• Concatenation of mappings corresponds to multiplication of matrices

• Linear transformations are very common in computer graphics!

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥

L2(L1(x)) = L2 L1 x L2 * L1 * x;

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Scaling

• Scaling
�

x�

y�

⇥
=

�
sx 0
0 sy

⇥

⇧ ⌅⇤ ⌃
S(sx,sy)

·
�

x
y

⇥

S(0.5, 0.5)

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Rotation

• Rotation

R(20�)

�
x�

y�

⇥
=

�
cos � � sin �
sin� cos �

⇥

⇧ ⌅⇤ ⌃
R(�)

·
�

x
y

⇥

Image Copyright: Mark Pauly

Special case: R(90) =

0 �1
1 0

�

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Shearing

• Shear along x-axis

• Shear along y-axis

�
x�

y�

⇥
=

�
1 a
0 1

⇥

⇧ ⌅⇤ ⌃
Hx(a)

·
�

x
y

⇥

�
x�

y�

⇥
=

�
1 0
b 1

⇥

⇧ ⌅⇤ ⌃
Hy(b)

·
�

x
y

⇥

Hx(0.5)

Hy(0.5)

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Translation

• Translation

• Matrix representation?
�

x�

y�

⇥
= T(tx, ty) ·

�
x
y

⇥

�
x�

y�

⇥
=

�
x
y

⇥
+

�
tx
ty

⇥

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Affine Transformations
• Translation is not linear, but it is affine

• Origin is no longer a fixed point

• Affine map = linear map + translation

• Is there a matrix representation for affine transformations?

• We would like to handle all transformations in a unified framework ->
simpler to code and easier to optimize!

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥
+

�
tx
ty

⇥
= Lx + t

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Homogenous Coordinates
• Add a third coordinate (w-coordinate)

• 2D point = (x, y, 1)T

• 2D vector = (x, y, 0)T

• Matrix representation of translations

�

⇤
x�

y�

w�

⇥

⌅ =

�

⇤
1 0 tx
0 1 ty
0 0 1

⇥

⌅ ·

�

⇤
x
y
1

⇥

⌅ =

�

⇤
x + tx
y + ty

1

⇥

⌅

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Homogenous Coordinates

• Valid operation if the resulting w-coordinate is 1 or 0

• vector + vector = vector

• point - point = vector

• point + vector = point

• point + point = ???

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Homogenous Coordinates

• Geometric interpretation: 2 hyperplanes in R3

vectors
points

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Affine Transformations
• Affine map = linear map + translation

• Using homogenous coordinates:
�

⇤
x�

y�

1

⇥

⌅ =

�

⇤
a b tx
c d ty
0 0 1

⇥

⌅ ·

�

⇤
x
y
1

⇥

⌅

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥
+

�
tx
ty

⇥

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Transformations

• Scale

• Rotation

• Translation T(tx, ty) =

�

⇤
1 0 tx
0 1 ty
0 0 1

⇥

⌅

S(sx, sy) =

�

⇤
sx 0 0
0 sy 0
0 0 1

⇥

⌅

R(�) =

�

⇤
cos � � sin � 0
sin� cos � 0

0 0 1

⇥

⌅

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Concatenation of Transformations

• Sequence of affine maps A1, A2, A3, ...

• Concatenation by matrix multiplication

• Very important for performance!

• Matrix multiplication not commutative, ordering is important!

An(. . . A2(A1(x))) = An · · · A2 · A1 ·

�

⇤
x
y
1

⇥

⌅

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Rotation and Translation
• Matrix multiplication is not commutative!

• First rotation, then translation

• First translation, then rotation

T(tx, 0) R(45�)

R(45�) T(tx, 0)

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

2D Rotation
• How to rotate around a given point c?

1. Translate c to origin
2. Rotate
3. Translate back

• Matrix representation?

T(�c) T(c)R(�)

T(c) · R(�) · T(�c)

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Transform Object or Camera?

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Image Copyright: Mark Pauly

CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley

Chapter 6

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2

