03 - Basic Linear Algebra and 2D Transformations

Overview

In this box, you will find references to Eigen

- We will briefly overview the basic linear algebra concepts that we will need in the class
- You will not be able to follow the next lectures without a clear understanding of this material

Vectors

Vectors

- A vector describes a direction and a length
- Do not confuse it with a location, which represent a position
- When you encode them in your program, they will both require 2 (or 3) numbers to be represented, but they are not the same object!

These two are identical!

Origin

Vectors represent displacements. If you represent the displacement wrt the origin, then they encode a location.

Sum

$$
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}
$$

Difference

Coordinates

Operator []

$$
\mathbf{c}=c_{1} \mathbf{a}+c_{2} \mathbf{b}
$$

$$
\mathbf{c}=\mathbf{a}+2 \mathbf{b}
$$

\mathbf{a} and \mathbf{b} form a 2D basis

Cartesian Coordinates

$$
\mathbf{c}=c_{1} \mathbf{x}+c_{2} \mathbf{y}
$$

- \mathbf{x} and \mathbf{y} form a canonical, Cartesian basis

Length

- The length of a vector is denoted as \|a\|
a.norm()
- If the vector is represented in cartesian coordinates, then it is the $L 2$ norm of the vector:

$$
\|\mathbf{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

- A vector can be normalized, to change its length to 1, without affecting the direction:

$$
\mathbf{b}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

CAREFUL:
b.normalize() <- in place
b.normalized() < - returns the normalized vector

Dot Product

$$
\begin{gathered}
\text { a.dot(b) } \\
\text { a.transpose(()*b }
\end{gathered}
$$

$\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$

- The dot product is related to the length of vector and of the angle between them
- If both are normalized, it is directly the cosine of the angle between them

Dot Product - Projection

- The length of the projection of b onto a can be computed using the dot product

$$
\mathbf{b} \rightarrow \mathbf{a}=\|\mathbf{b}\| \cos \theta=\frac{\mathbf{b} \cdot \mathbf{a}}{\|\mathbf{a}\|}
$$

Cross Product

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

- Defined only for 3D vectors
- The resulting vector is perpendicular to both \mathbf{a} and \mathbf{b}, the direction depends on the right hand rule
- The magnitude is equal to the area of the parallelogram formed by \mathbf{a} and b

Coordinate Systems

- You will often need to manipulate coordinate systems (i.e. for finding the position of the pixels in Assignment 1)
- You will always use orthonormal bases, which are formed by pairwise orthogonal unit vectors :

$$
\begin{array}{cc}
\text { 2D } \\
\|\mathbf{u}\|=\|\mathbf{v}\|=1, & \|\mathbf{u}\|=\|\mathbf{v}\|=\|\mathbf{w}\|=1 \\
\mathbf{u} \cdot \mathbf{v}=0 & \mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{u}=0 \\
\text { Right-handed if: } \mathbf{w}=\mathbf{u} \times \mathbf{v}
\end{array}
$$

Coordinate Frame

\mathbf{e} is the origin of the reference system
\mathbf{p} is the center of the pixel

u, v, w are the coordinates of \mathbf{p}
wrt the frame of reference or coordinate frame (note that they depend also on the origin \mathbf{e})

$$
\mathbf{p}=\mathbf{e}+u \mathbf{u}+v \mathbf{v}+w \mathbf{w}
$$

Change of frame

- If you have a vector a expressed in global coordinates, and you want to convert it into a vector expressed in a local orthonormal $\mathbf{u}-\mathbf{v}-\mathbf{w}$ coordinate system, you can do it using projections of \mathbf{a} onto $\mathbf{u}, \mathbf{v}, \mathbf{w}$ (which we assume are expressed in global coordinates):

$$
\mathbf{a}^{\mathbf{C}}=(\mathbf{a} \cdot \mathbf{u}, \mathbf{a} \cdot \mathbf{v}, \mathbf{a} \cdot \mathbf{w})
$$

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley 4th Edition by Steve Marschner, Peter Shirley

Chapter 2

Matrices

Overview

- Matrices will allow us to conveniently represent and ally transformations on vectors, such as translation, scaling and rotation
- Similarly to what we did for vectors, we will briefly overview their basic operations

Determinants

- Think of a determinant as an operation between vectors.

Area of the parallelogram
|abc|

Volume of the parallelepiped (positive since abc is a right-handed basis)

Matrices

- A matrix is an array of numeric elements $\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]$
$\operatorname{Sum}\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]+\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]=\left[\begin{array}{ll}x_{11}+y_{11} & x_{12}+y_{12} \\ x_{21}+y_{21} & x_{22}+y_{22}\end{array}\right]$
A.array() + B.array()

Scalar Product $\quad y *\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{ll}y x_{11} & y x_{12} \\ y x_{21} & y x_{22}\end{array}\right]$

Transpose

- The transpose of a matrix is a new matrix whose entries are reflected over the diagonal

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{T}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

- The transpose of a product is the product of the transposed, in reverse order
$(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Matrix Product

- The entry i, j is given by multiplying the entries on the i-th row of A with the entries of the j-th column of B and summing up the results
- It is NOT commutative (in general):
$\mathbf{A B} \neq \mathbf{B A}$

> Eigen::MatrixXd A(4,2); Eigen::MatrixXd B(2,3); A $^{*} B ;$

Intuition

$$
\begin{gathered}
{\left[\begin{array}{c}
\mid \\
\mathbf{y} \\
\mid
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{r}_{\mathbf{1}}- \\
-\mathbf{r}_{\mathbf{2}}- \\
-\mathbf{r}_{\mathbf{3}}-
\end{array}\right]\left[\begin{array}{l}
\mid \\
\mathbf{x} \\
\mid
\end{array}\right] \quad\left[\begin{array}{c}
\mid \\
\mathbf{y} \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{c}_{\mathbf{1}} & \mathbf{c}_{\mathbf{2}} & \mathbf{c}_{\mathbf{3}} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \\
y_{i}=\mathbf{r}_{\mathbf{i}} \cdot \mathbf{x}
\end{gathered} \mathbf{y}=x_{1} \mathbf{c}_{\mathbf{1}}+x_{2} \mathbf{c}_{\mathbf{2}}+x_{3} \mathbf{c}_{\mathbf{3}} .
$$

Dot product on each row

Inverse Matrix

- The inverse of a matrix \mathbf{A} is the matrix \mathbf{A}^{-1} such that $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$

- The inverse of a product is the product of the inverse in opposite order:

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
$$

Diagonal Matrices

- They are zero everywhere except the diagonal:

Eigen::Vector3d v(1,2,3);
A = v.asDiagonal()

$$
\mathbf{D}=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

- Useful properties:

$$
\mathbf{D}^{-1}=\left[\begin{array}{ccc}
a^{-} 1 & 0 & 0 \\
0 & b^{-1} & 0 \\
0 & 0 & c^{-1}
\end{array}\right]
$$

$\mathbf{D}=\mathbf{D}^{T}$

Orthogonal Matrices

- An orthogonal matrix is a matrix where
- each column is a vector of length 1
- each column is orthogonal to all the others
- A useful property of orthogonal matrices that their inverse corresponds to their transpose:

$$
\left(\mathbf{R}^{T} \mathbf{R}\right)=\mathbf{I}=\left(\mathbf{R} \mathbf{R}^{T}\right)
$$

Linear Systems

- We will often encounter in this class linear systems with n linear equations that depend on n variables.
- For example:

$$
\begin{array}{r}
5 x+3 y-7 z=4 \\
-3 x+5 y+12 z=9 \\
9 x-2 y-2 z=-3
\end{array}
$$

$$
\left[\begin{array}{ccc}
5 & 3 & -7 \\
-3 & 5 & 12 \\
9 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
9 \\
-3
\end{array}\right]
$$

- To find x, y, z you have to "solve" the linear system. Do not use an inverse, but rely on a direct solver:

```
Matrix3f A;
Vector3f b;
A << 5,3,-7, -3,5,12, 9,-2,-2;
b << 4, 9, -3;
cout << "Here is the matrix A:\n" << A << endl;
cout << "Here is the vector b:\n" << b << endl;
Vector3f x = A.colPivHouseholderQr().solve(b);
cout << "The solution is:\n" << x << endl;
```


References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley 4th Edition by Steve Marschner, Peter Shirley

Chapter 5

2D Transformations

2D Linear Transformations

- Each 2D linear map can be represented by a unique 2×2 matrix

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}
$$

- Concatenation of mappings corresponds to multiplication of matrices

$$
L_{2}\left(L_{1}(\mathbf{x})\right)=\mathbf{L}_{2} \mathbf{L}_{1} \mathbf{x}
$$

- Linear transformations are very common in computer graphics!

2D Scaling

- Scaling $\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right)}_{\mathbf{S}\left(s_{x}, s_{y}\right)} \cdot\binom{x}{y}$

2D Rotation

- Rotation $\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)}_{\mathbf{R}(\alpha)} \cdot\binom{x}{y} \quad \underset{\mathbf{R}\left(20^{\circ}\right)}{\longrightarrow}$

Special case: $\mathbf{R}(90)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

2D Shearing

- Shear along x-axis

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)}_{\mathbf{H}_{x}(a)} \cdot\binom{x}{y}
$$

$\mathbf{H}_{x}(0.5)$

- Shear along y-axis

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)}_{\mathbf{H}_{y}(b)} \cdot\binom{x}{y}
$$

$\mathbf{H}_{y}(0.5)$

2D Translation

- Translation $\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{t_{x}}{t_{y}}$

- Matrix representation?

$$
\binom{x^{\prime}}{y^{\prime}}=\mathbf{T}\left(t_{x}, t_{y}\right) \cdot\binom{x}{y}
$$

Affine Transformations

- Translation is not linear, but it is affine
- Origin is no longer a fixed point
- Affine map = linear map + translation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}}=\mathbf{L x}+\mathbf{t}
$$

- Is there a matrix representation for affine transformations?
- We would like to handle all transformations in a unified framework -> simpler to code and easier to optimize!

Homogenous Coordinates

- Add a third coordinate (w-coordinate)
- 2 D point $=(\mathrm{x}, \mathrm{y}, 1)^{\top}$
- 2 D vector $=(\mathrm{x}, \mathrm{y}, 0)^{\top}$

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right)
$$

- Matrix representation of translations

Homogenous Coordinates

- Valid operation if the resulting w-coordinate is 1 or 0
- vector + vector = vector
- point - point = vector
- point + vector $=$ point
- point + point = ???

Homogenous Coordinates

- Geometric interpretation: 2 hyperplanes in \mathbf{R}^{3}

Affine Transformations

- Affine map = linear map + translation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}+\binom{t_{x}}{t_{y}}
$$

- Using homogenous coordinates:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

2D Transformations

- Scale

$$
\mathbf{S}\left(s_{x}, s_{y}\right)=\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Rotation

$$
\mathbf{R}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Translation

$$
\mathbf{T}\left(t_{x}, t_{y}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)
$$

Concatenation of Transformations

- Sequence of affine maps $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots$
- Concatenation by matrix multiplication

$$
A_{n}\left(\ldots A_{2}\left(A_{1}(\mathbf{x})\right)\right)=\mathbf{A}_{n} \cdots \mathbf{A}_{2} \cdot \mathbf{A}_{1} \cdot\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- Very important for performance!
- Matrix multiplication not commutative, ordering is important!

Rotation and Translation

- Matrix multiplication is not commutative!
- First rotation, then translation

- First translation, then rotation

2D Rotation

- How to rotate around a given point \mathbf{c} ?

1. Translate \mathbf{c} to origin
2. Rotate
3. Translate back

- Matrix representation?

$$
\mathbf{T}(\mathbf{c}) \cdot \mathbf{R}(\alpha) \cdot \mathbf{T}(-\mathbf{c})
$$

Transform Object or Camera?

References

Fundamentals of Computer Graphics, Fourth Edition
4th Edition by Steve Marschner, Peter Shirley 4th Edition by Steve Marschner, Peter Shirley

Chapter 6

