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03 - Basic Linear Algebra 
and 2D Transformations
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Overview

• We will briefly overview the basic linear algebra concepts that we 
will need in the class 

• You will not be able to follow the next lectures without a clear 
understanding of this material

In this box, you will find 
references to Eigen
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Vectors
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Vectors
• A vector describes a direction and a length 

• Do not confuse it with a location, which represent a position 

• When you encode them in your program, they will both require 2 (or 3) numbers to be 
represented, but they are not the same object!

These two are identical! Vectors represent displacements. If you represent 
the displacement wrt the origin, then they encode a location.

Origin

Eigen::VectorXd
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Sum

a+ b = b+ a

a

b
a+ b

a

b

Operator +
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Difference

a
a

b

�a

b� a

b� a = �a+ b

Operator -
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Coordinates

c c

c = c1a+ c2b c = a+ 2b

a
b

a

2b

a and b form a 2D basis

Operator []
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Cartesian Coordinates
c = c1x+ c2y

c

x

y

• x and y form a canonical, Cartesian 
basis



CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Length
• The length of a vector is denoted as ||a|| 

• If the vector is represented in cartesian coordinates, then it is the L2 
norm of the vector: 

• A vector can be normalized, to change its length to 1, without 
affecting the direction:

||a|| =
q

a21 + a22

a.norm()

b =
a

||a||

CAREFUL: 
b.normalize() <— in place 

b.normalized() <— returns the 
normalized vector
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Dot Product a.dot(b) 
a.transpose()*b

a
b

• The dot product is related to the length of 
vector and of the angle between them 

• If both are normalized, it is directly the 
cosine of the angle between them

✓

a · b = ||a|| ||b|| cos ✓
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Dot Product - Projection

• The length of the projection of 
b onto a can be computed 
using the dot producta

b b ! a = ||b|| cos ✓ =
b · a
||a||
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Cross Product

• Defined only for 3D vectors 

• The resulting vector is perpendicular 
to both a and b, the direction 
depends on the right hand rule 

• The magnitude is equal to the area 
of the parallelogram formed by a and 
b 

||a⇥ b|| = ||a|| ||b|| sin ✓

||a⇥ b||

a

b

Eigen::Vector3d v(1, 2, 3);

Eigen::Vector3d w(4, 5, 6);

v.cross(w);
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Coordinate Systems

• You will often need to manipulate coordinate systems (i.e. for finding 
the position of the pixels in Assignment 1) 

• You will always use orthonormal bases, which are formed by 
pairwise orthogonal unit vectors :

2D 3D
||u|| = ||v|| = 1,

u · v = 0

||u|| = ||v|| = ||w|| = 1,
u · v = v ·w = w · u = 0

Right-handed if: w = u⇥ v
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Coordinate Frame

u
vu

v w

e

e is the origin of the reference system

e

p

p is the center of the pixel

p = e+ uu+ vv + ww

u,v,w are the coordinates of p  
wrt the frame of reference or coordinate frame 

(note that they depend also on the origin e)
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Change of frame

u
v w

e

a
• If you have a vector a expressed in global 

coordinates, and you want to convert it into a 
vector expressed in a local orthonormal u-v-w 
coordinate system, you can do it using 
projections of a onto u, v, w (which we assume 
are expressed in global coordinates):

aC = (a · u,a · v,a ·w)
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Fundamentals of Computer Graphics, Fourth Edition  
4th Edition by Steve Marschner, Peter Shirley 

Chapter 2

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Steve+Marschner&search-alias=books&field-author=Steve+Marschner&sort=relevancerank
https://www.amazon.com/Peter-Shirley/e/B00IZTGJ9O/ref=dp_byline_cont_book_2
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Matrices
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Overview

• Matrices will allow us to conveniently represent and ally 
transformations on vectors, such as translation, scaling and rotation 

• Similarly to what we did for vectors, we will briefly overview their 
basic operations
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Determinants
• Think of a determinant as an operation between vectors.

|ab|

a

b

Area of the parallelogram

|abc|

a

b

c

Volume of the parallelepiped  
(positive since abc is a right-handed basis)

By Startswithj - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?

curid=29922624
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Matrices

• A matrix is an array of numeric elements


x11 x12

x21 x22

�

Sum

Scalar Product


x11 x12

x21 x22

�
+


y11 y12
y21 y22

�
=


x11 + y11 x12 + y12
x21 + y21 x22 + y22

�

y ⇤

x11 x12

x21 x22

�
=


yx11 yx12

yx21 yx22

�
A.array() + B.array()

Eigen::MatrixXd A(2,2)

A.array() * y
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Transpose
• The transpose of a matrix is a new matrix whose entries are reflected 

over the diagonal

B = A.transpose();      
A.transposeInPlace();

⇥
1 2

⇤T
=


1
2

� 
1 2
3 4

�T
=


1 3
2 4

� 2

4
1 2
3 4
5 6

3

5
T

=


1 3 5
2 4 6

�

(AB)T = BTAT

• The transpose of a product is the product of the transposed, in 
reverse order
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Matrix Product
• The entry i,j is given by 

multiplying the entries 
on the i-th row of A with 
the entries of the j-th 
column of B and 
summing up the results 

• It is NOT commutative 
(in general):

AB 6= BA

Eigen::MatrixXd A(4,2);

Eigen::MatrixXd B(2,3);

A*B;
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Intuition

2

4
|
y
|

3

5 =

2

4
�r1�
�r2�
�r3�

3

5

2

4
|
x
|

3

5

yi = ri · x
Dot product on each row

2

4
|
y
|

3

5 =

2

4
| | |
c1 c2 c3
| | |

3

5

2

4
x1

x2

x3

3

5

y = x1c1 + x2c2 + x3c3

Weighted sum of the columns
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Inverse Matrix
• The inverse of a matrix      is the matrix           such that A A�1 AA�1 = I

I =

2

4
1 0 0
0 1 0
0 0 1

3

5where I is the identity matrix 

• The inverse of a product is the product of the inverse in opposite order:

(AB)�1 = B�1A�1

Eigen::MatrixXd A(4,4);

A.inverse() <— do not use this 
to solve a linear system!
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Diagonal Matrices
• They are zero everywhere except the diagonal:

D =

2

4
a 0 0
0 b 0
0 0 c

3

5

• Useful properties:

D�1 =

2

4
a�1 0 0
0 b�1 0
0 0 c�1

3

5
D = DT

Eigen::Vector3d v(1,2,3);


A = v.asDiagonal()
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Orthogonal Matrices

• An orthogonal matrix is a matrix where 

• each column is a vector of length 1 

• each column is orthogonal to all the others 

• A useful property of orthogonal matrices that their inverse 
corresponds to their transpose:

(RTR) = I = (RRT )
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Linear Systems
• We will often encounter in this class linear systems with n linear 

equations that depend on n variables. 

• For example: 

• To find x,y,z you have to “solve” the linear system. Do not use an 
inverse, but rely on a direct solver: 

5x+ 3y � 7z = 4

�3x+ 5y + 12z = 9

9x� 2y � 2z = �3

2

4
5 3 �7
�3 5 12
9 �2 �2

3

5

2

4
x
y
z

3

5 =

2

4
4
9
�3

3

5

  Matrix3f A;
  Vector3f b;
  A << 5,3,-7,  -3,5,12,  9,-2,-2;
  b << 4, 9, -3;
  cout << "Here is the matrix A:\n" << A << endl;
  cout << "Here is the vector b:\n" << b << endl;
  Vector3f x = A.colPivHouseholderQr().solve(b);
  cout << "The solution is:\n" << x << endl;

https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html#a05afed751d3a7277951d1918468e0872
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2D Transformations
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2D Linear Transformations
• Each 2D linear map can be represented by a unique 2×2 matrix 

• Concatenation of mappings corresponds to multiplication of matrices 

• Linear transformations are very common in computer graphics!

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥

L2(L1(x)) = L2 L1 x L2 * L1 * x;
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2D Scaling

• Scaling
�

x�

y�

⇥
=

�
sx 0
0 sy

⇥

⇧ ⌅⇤ ⌃
S(sx,sy)

·
�

x
y

⇥

S(0.5, 0.5)

Image Copyright: Mark Pauly
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2D Rotation

• Rotation

R(20�)

�
x�

y�

⇥
=

�
cos � � sin �
sin� cos �

⇥

⇧ ⌅⇤ ⌃
R(�)

·
�

x
y

⇥

Image Copyright: Mark Pauly

Special case: R(90) =


0 �1
1 0

�
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2D Shearing

• Shear along x-axis 

• Shear along y-axis

�
x�

y�

⇥
=

�
1 a
0 1

⇥

⇧ ⌅⇤ ⌃
Hx(a)

·
�

x
y

⇥

�
x�

y�

⇥
=

�
1 0
b 1

⇥

⇧ ⌅⇤ ⌃
Hy(b)

·
�

x
y

⇥

Hx(0.5)

Hy(0.5)

Image Copyright: Mark Pauly
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2D Translation

• Translation 

• Matrix representation?
�

x�

y�

⇥
= T(tx, ty) ·

�
x
y

⇥

�
x�

y�

⇥
=

�
x
y

⇥
+

�
tx
ty

⇥

Image Copyright: Mark Pauly
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Affine Transformations
• Translation is not linear, but it is affine 

• Origin is no longer a fixed point 

• Affine map = linear map + translation 

• Is there a matrix representation for affine transformations?  

• We would like to handle all transformations in a unified framework -> 
simpler to code and easier to optimize!

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥
+

�
tx
ty

⇥
= Lx + t
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Homogenous Coordinates
• Add a third coordinate  (w-coordinate) 

• 2D point   = (x, y, 1)T 

• 2D vector = (x, y, 0)T 

• Matrix representation of translations

�

⇤
x�

y�

w�

⇥

⌅ =

�

⇤
1 0 tx
0 1 ty
0 0 1

⇥

⌅ ·

�

⇤
x
y
1

⇥

⌅ =

�

⇤
x + tx
y + ty

1

⇥

⌅
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Homogenous Coordinates

• Valid operation if the resulting w-coordinate is 1 or 0 

• vector + vector = vector 

• point -  point = vector 

• point + vector = point 

• point + point = ???
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Homogenous Coordinates

• Geometric interpretation: 2 hyperplanes in R3

vectors
points

Image Copyright: Mark Pauly
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Affine Transformations
• Affine map = linear map + translation 

• Using homogenous coordinates:
�

⇤
x�

y�

1

⇥

⌅ =

�

⇤
a b tx
c d ty
0 0 1

⇥

⌅ ·

�

⇤
x
y
1

⇥

⌅

�
x�

y�

⇥
=

�
a b
c d

⇥
·
�

x
y

⇥
+

�
tx
ty

⇥
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2D Transformations

• Scale 

• Rotation 

• Translation T(tx, ty) =

�

⇤
1 0 tx
0 1 ty
0 0 1

⇥

⌅

S(sx, sy) =

�

⇤
sx 0 0
0 sy 0
0 0 1

⇥

⌅

R(�) =

�

⇤
cos � � sin � 0
sin� cos � 0

0 0 1

⇥

⌅



CSCI-GA.2270-001 - Computer Graphics - Daniele Panozzo

Concatenation of Transformations

• Sequence of affine maps A1, A2, A3, ... 

• Concatenation by matrix multiplication 

• Very important for performance! 

• Matrix multiplication not commutative, ordering is important!

An(. . . A2(A1(x))) = An · · · A2 · A1 ·

�

⇤
x
y
1

⇥

⌅
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Rotation and Translation 
• Matrix multiplication is not commutative! 

• First rotation, then translation 

• First translation, then rotation

T(tx, 0) R(45�)

R(45�) T(tx, 0)

Image Copyright: Mark Pauly
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2D Rotation
• How to rotate around a given point c? 

1. Translate c to origin 
2. Rotate 
3. Translate back 

• Matrix representation?

T(�c) T(c)R(�)

T(c) · R(�) · T(�c)

Image Copyright: Mark Pauly
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Transform Object or Camera?

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Image Copyright: Mark Pauly
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