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BACKGROUND AND TOPIC SUMMARIZATION



WHAT IS FUNDAMENTAL MATRIX?

Epipoles and 
Epipolar Lines 

CSE486, Penn State



Background And Topic Summarization

Epiplolar Lines

For point x, Fundamental Matrix (F) relates it to the epipolar line l`:
I` = Fx

CSE486, Penn State



Background And Topic Summarization

Key Characteristics of Fundamental Matrix

• It’s a 3x3 matrix
• It has rank 2
• It depends on both extrinsic (R&T) and intrinsic parameters (K) of camera
• Differs from essential matrix in the fact that essential matrix only depends on external 

parameters



Background And Topic Summarization

Examples

CRCF, UCF



Background And Topic Summarization

Fundamental Matrix Estimation

Eight Point Algorithm

Solution:
• Eigenvector of A with the smallest eigenvalue
• Enforce rank 2 of A by using SVD



Background And Topic Summarization

Main Challenges in Fundamental Matrix Estimation

• Presence of Outliers/imperfect correspondences
• Different noise distribution in Inliers (Gaussian Assumption in most)
• Huge solution space (Can we narrow it down?)



RELATED WORK



RANSAC

The idea is to find a geometric model that has the most support in terms of inliers. Inliers are defined on the basis of some
distance metric from ground truth and a threshold.

Generic steps:

1. A set of points are sampled and a non-robust model is estimated from it.

2. The model is then scored by evaluating a scoring function on all points. The current model is accepted if it’s score is 
better than all previous models.

3. Iterate until a stopping criterion is reached

Shortcoming:

The biggest issue is that as the minimal number of data points required to correctly estimate the model increases, the 
probability of sampling outlier increases exponentially. For example if half of the correspondences are spurious, the 
probability of picking up correct ones is only 0.5**8 = 0.39%.

Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
Tennakoon, R.B., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., Suter, D.: Robust model fitting using higher than minimal subset sampling.



OTHER WORKS

ü Global Optimizations

Yang et al. and Li et al. demonstrate work in which the goal is also achieving consensus set maximaization. But they 
try to achieve it by optimizing globally. Essentially, pose the problem as Integer Programming Problem.

Shortcoming:

¡ Since the underlying problem is NP-Hard the process is slow, at times degrading to exhaustive search.

ü Robust base estimators

Robustly estimate base models using a series of weighted least squares problem (Hoseinnezhad et al.).

Shortcomings:

¡ Careful initialization of weight parameters

¡ Gaussian Noise assumption in inliers

Li, H.: Consensus set maximization with guaranteed global optimality for robust geometryestimation. In: ICCV (2009)
Yang, J., Li, H., Jia, Y.: Optimal essential matrix estimation via inlier-set maximization. In:ECCV (2014)
Hoseinnezhad, R., Bab-Hadiashar, A.: An M-estimator for high breakdown robust estimation in computer vision. Computer Vision and Image Understanding



TECHNICAL DETAILS



PRELIMNARIES

Many geometric problems can be reduced to a least square fitting problem. Given a set of points P ∈ 𝑅$×& , model 
parameters 𝑥 ∈ 𝑅& , the problem can be modelled as:

¡ An example could be fitting a plane given a set of 3D points.



Technical Details

Challenge: Presence of outliers. The estimated model is off depending on the number of outliers. 

Solution: One possible way is to introduce a weighting function which gives low priority to outliers.

• The equation doesn’t adhere to a closed form in general, thus the solution is arrived at by 
successively reweighing and estimating the model parameters.

• The problem now is to find the correct weight which can take care of outliers.



DEEP MODEL FITTING

¡ This work is also based on weighted least squares problem.

¡ Aims to learn the weighing function/parameter 𝑤. 

The method is able to perform better in cases where one or more of following is correct:

1. The input data admits regularity in inlier and outlier distribution. Ex: Uniform outlier distribution.

2. Extra information which can be leveraged to further re-weigh the outliers. Ex: Keypoint geometry information.

3. The output space is limited to a narrow region of solution space. Ex: Driving dataset



Technical Details

Architecture

Basic building blocks:
1. Model Estimator
2. Weight Estimator



Technical Details

Model Estimator

From our least square weighted equation:

We redefine 𝑤 according to our deep network –
where, S = 𝑅$×* collects side information for each point.

Now, our least square weighted equation becomes:



Technical Details

Model Estimator

Solution:

§ Eignevector𝑣,` of the matrix 𝑊/ 𝜃 𝐴 corresponding to the smallest 
eigen value.

§ One step left – enforcing rank 2 of fundamental matrix. It can be 
achieved by considering a function 𝑔 𝑥 which maps the eigenvector 
𝑣,` to the parameters of the model. (Fundamental Matrix)

§ Concisely, we get the model parameters from the matrix 𝑊/ 𝜃 𝐴
by:

§ For training end to end, we need 𝑔 𝑥 𝑎𝑛𝑑	𝑓(𝑋) to be differentiable.



Technical Details

Model Estimator

Recap:

§ Takes input 𝑃 and weight 𝑤 and constructs the matrix 𝑊 𝜃 𝐴
§ Applies SVD on 𝑊 𝜃 𝐴 to get the eigenvecor𝑣,`
§ Applies the function 𝑔 𝑥 to extract the model parameters 

(Fundamental Matrix)



Technical Details

Weight Estimator

• The input is a set of points. 
• Architecture should be order invariant.
• Based on PointNet

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentatio



Technical Details

Weight Estimator

Input:
1. Matrix of points 𝑃
2. Side information 𝑆 for each point
3. Residuals from the current estimate

Architecture:
1. A linear layer separately for each point.
2. Leaky ReLu as the non-linear function
3. Instance normalization 

where, ℎ> - feature vector for point I
𝜇 ℎ - mean along dimension 𝑁
σB ℎ - variance along dimension 𝑁

4. Final softmax layer gives the weight 𝑤/ 𝜃 >



Technical Details

Full Architecture

One Forward Pass:
1. Input weight estimator
2. Repeated application of Estimation Module (Model Estimator + Weight estimator) – optimal 5.
3. Geometric model estimator on the final weights 
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RECAP

1. What is a fundamental Matrix?
2. Means of Estimation – Eight Point Algorithm
3. Main challenges – outliers
4. Different Methods to address it – RANSAC, Global optimization, IRLS
5. The current work builds of IRLS – tries to estimate weight using deep learning
6. Architecture



RECAP

Full Architecture

One Forward Pass:
1. Input weight estimator
2. Repeated application of Estimation Module (Model Estimator + Weight estimator) – optimal 5.
3. Geometric model estimator on the final weights 



FUNDAMENTAL MATRIX ESTIMATION

Some module definitions need to be specified:
1. Preprocessing step 𝐴 𝑃
2. The model extractor 𝑔 𝑥
3. The residual 𝑟(𝑝>, 𝑥)
4. Training Loss



Fundamental Matrix Estimation

The residual 𝑟(𝑝>, 𝑥):

Symmetric epipolar distance

Training Loss: 

𝛾 = 0.5, ensures hard training data doesn’t dominate the loss.



EXPERIMENTS



TANKS AND TEMPLES

• Short Image sequences of Train, Horse, M60 
etc. taken from hand held camera.

• Use COLMAP SFM (Johannes et. al) to 
derive fundamental matrices.

• Use SIFT to find potential correspondences; 
correspondences which are within 1px of 
epipolar lines are kept as groundtruth.



TANKS AND TEMPLES

• Experiments with varying depths 𝐷 of estimation module.
• 𝐷 = 5∗ denotes non-usage of side information
• Direct reg. denotes direct regression from points and correspondences to Fundamental matrix 

estimation (no geometrical information used)

Inliers: Correspondences with epipolar distance < 1 px
F-score: Positives are those correspondences which have epipolar distance from ground truth epipolar line < 1 px
Mean and Median: Mean and median distances to ground truth epipolar matches.



Experiments

Weight Estimator Module Direct Regression



Experiments

Comparison with other methods:
• Two experiments: with and without ratio test. Ratio test is used in SIFT to increase % of inliers.



KITTI

• 22 sequences of driving dataset 
• 11 of them has groundtruth odometry.



KITTI

Even the model trained on T&T achieves comparable performance with the state of the art networks. This 
demonstrates the generalization ability of the proposed method.



COMMUNITY PHOTO COLLECTION

• Dataset contains images taken from variety of cameras and from varying positions.
• The data has no apparent regularity



COMMUNITY PHOTO COLLECTION

• The data has no apparent regularity
• Good performance indicates good generalization Ability



HOMOGRAPHY ON MS-COCO

• Good performance shows the generic nature of proposed 
algorithm – can be adapted for any geometrical modelling 
task based on Direct Linear Transorm



SOME EXAMPLES

• Blue Dot: Outlier
• Red Dot: Inlier
• Green Line: Predicted 
• Blue line: Groundtruth



FAILURE EXAMPLES

What might be the reason for wrong prediction of 
epipolar lines?

ü Failure to correctly estimate inliers/epipolor
lines. Closely look at inlier at bottom.



FAILURE EXAMPLES

ü Left example: Presence of noise
ü Right example: Indistinct features



CRITIQUE



STRENGTHS

1. Demonstrate the advantages of integration of geometrical information into the deep learning pipeline. Also, pure 
data driven pipelines require huge labelled data which may not be available for a number of 3D reconstruction 
tasks.

2. The proposed method can learn models specific to data at hand.

3. It is robust to inlier noise distribution.

4. Good generalization ability to multiple datasets.

5. Generic nature of the proposed method encourages application in other 3D tasks which are based on Direct 
Linear Transform



WEAKNESS

1. The proposed method is still dependent on the accuracy/correctness of correspondence estimator. 

2. Accuracy of Fundamental Matrix estimation increases with the number of estimation modules 𝐷, but so does the 
time of evaluation.



EXTENSIONS AND FOLLOW-UPS



EXTENSIONS AND FOLLOW-UPS

1. Estimating Fundamental Matrix without requiring correspondence estimation from a third party. 

Deep Fundamental Matrix Estimation without Correspondences : Omid Poursaeed, Guandao Yang,  
Aditya Prakash, Qiuren Fang, Hanqing Jiang, Bharath Hariharan, Serge Belongie : ECCV 18



THANK YOU!!
QUESTIONS?



Fundamental Matrix Estimation

Preprocessing step 𝐴 𝑃 :

where, are homogenous coordinates of 
correspondences

𝑇	𝑎𝑛𝑑	𝑇M are noramalization matrices

The model extractor 𝑔 𝑥 :

Essentially enforces rank=2 for fundamental matrix F.


