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MLE, EM
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Outline

HW#1 Discussion

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery



   
   Species Name Description Access

-ion
score 
to #1

1 Homo sapiens (Human) MYOD1_HUMAN Myoblast determination protein 1 P15172 1709

2 Homo sapiens (Human) TAL1_HUMAN T-cell acute lymphocytic leukemia protein 1 (TAL-1) P17542 143

3 Mus musculus (Mouse) MYOD1_MOUSE Myoblast determination protein 1 P10085 1500

4 Gallus gallus (Chicken) MYOD1_CHICK Myoblast determination protein 1 homolog (MYOD1 homolog) P16075 1020

5 Xenopus laevis (African clawed frog) MYODA_XENLA Myoblast determination protein 1 homolog A (Myogenic factor 1) P13904 978

6 Danio rerio (Zebrafish) MYOD1_DANRE Myoblast determination protein 1 homolog (Myogenic factor 1) Q90477 893

7 Branchiostoma belcheri (Amphioxus) Q8IU24_BRABE MyoD-related Q8IU24 428

8 Drosophila melanogaster (Fruit fly) MYOD_DROME Myogenic-determination protein (Protein nautilus) (dMyd) P22816 368

9 Caenorhabditis elegans LIN32_CAEEL Protein lin-32 (Abnormal cell lineage protein 32) Q10574 118

10 Homo sapiens (Human) SYFM_HUMAN Phenylalanyl-tRNA synthetase, mitochondrial O95363 56

HW # 1 Discussion





MyoD

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1MDY&bionumber=1



Permutation Score Histogram vs Gaussian
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Red curve is approx fit of EVD to 
score histogram – fit looks better, 
esp. in tail.  Max permuted score 
has probability ~10-4, about what 
you’d expect in 2x104 trials. 
 

True score is still moderately 
unlikely, < one tenth the above. 



species - hs,mm, gg=chick, cl=frog, bb=amphioxus, fly, elegans

Full pairwise score table, reordered



Take Home

• Recognizable similarity in protein sequences 
over great evolutionary distance

• S-W + p-values allow useful quantification

• Similarity correlates better to “same 
function” than to “same species”

8
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Given: independent samples x1, x2, ..., xn from 
a parametric distribution f(x|θ)

Goal: estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH  
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ

Not formally “conditional probability,” 
but the notation is convenient…



P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s called likelihood
E.g., Σθ P(x | θ) can be anything; relative values are the focus.   
E.g., if θ = prob of heads in a sequence of coin flips then 
    P(HHTHH | .6) > P(HHTHH | .5),  
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And  what θ make HHTHH most likely?

Likelihood
(For Discrete Distributions)
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn 

As a function of θ, what θ maximizes the 
likelihood of the data actually observed?
Typical approach: 

Maximum Likelihood

L(x1, x2, . . . , xn | �) =
n�

i=1

f(xi | �)

@
@✓L(~x | ✓) = 0 or @

@✓ logL(~x | ✓) = 0

(*)

(*) In general, (discrete) likelihood is the joint pmf; product form follows from independence 

Parameter Estimation
(For Discrete Distributions)
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n independent coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  
n0 + n1 = n;  θ = probability of heads 

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0



Likelihood
(For Continuous Distributions)
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Pr(any specific xi) = 0, so “likelihood = probability” won’t work.  Defn: 
“likelihood” of x1, ..., xn is their joint density; = (by indp) product of their 
marginal densities.  (As usual, swap density for pmf.) Why sensible:

a) density captures all that matters: relative likelihood

b) desirable property: better model fit increases likelihood

and

c) if density at x is f(x), for any small δ>0, the probability of a sample 
within ±δ/2 of x is ≈ δf(x), so density really is capturing probability, 
and δ is constant wrt θ, so it just drops out of d/dθ log L(…) = 0.

Otherwise, MLE is just like discrete case:  get likelihood,

-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  

or @
@✓ logL(~x | ✓) = 0
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Parameter Estimation
Given: indp samples x1, x2, ..., xn from a 
parametric distribution f(x|θ), estimate: θ.

E.g.:  Given n normal samples,  
estimate mean & variance 

f(x) = 1⇥
2⇥⇤2 e�(x�µ)2/(2⇤2)

� = (µ,⇤2)

-3 -2 -1 0 1 2 3

µ ± σ

μ



Ex: I got data; a little birdie tells me  
it’s normal, and promises σ2 = 1

17

X          X  XX    X  XXX               X
Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (a) this?

18

X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1



Which is more likely:  (b) or this?
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-3 -2 -1 0 1 2 3

µ ± σ

μ

1

X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

21

X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?

μ unknown, σ2 = 1
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Ex: xi � N(µ,⇥2), ⇥2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0

L(x1, x2, . . . , xn|✓) =
nY

i=1

1p
2⇡

e�(xi�✓)2/2

lnL(x1, x2, . . . , xn|✓) =
nX

i=1

�1

2
ln(2⇡)� (xi � ✓)2

2

d

d✓
lnL(x1, x2, . . . , xn|✓) =

nX

i=1

(xi � ✓)

=

 
nX

i=1

xi

!
� n✓ = 0

b✓ =

 
nX

i=1

xi

!
/n = x

← product of densities

d lnL/dθ = 0



Ex: I got data; a little birdie tells me it’s 
normal (but does not tell me μ, σ2)
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X          X  XX    X  XXX               X
Observed Data

x →



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely: (a) this?

24

X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely: (b) or this?
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μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ 3   

X          X  XX    X  XXX               X
Observed Data

μ ± 3                 

μ



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Which is more likely:  (c) or this?

26

X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 1



Which is more likely:  (d) or this?
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μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

X          X  XX    X  XXX               X
Observed Data

μ ± 0.5



Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ2 ?
μ, σ2  both unknown

-3 -2 -1 0 1 2 3

µ ± σ

μ

μ ± 0.5
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown

-0.4
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0.2

0.4
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0
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3

-0.4

-0.2

0

0.2

0.4θ1

θ2

Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓1
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

(xi � ✓1)

✓2
= 0

b✓1 =

 
nX

i=1

xi

!
/n = x
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Ex. 3, (cont.) 

Sample variance is MLE of 
population variance

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓2
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

�1

2

2⇡

2⇡✓2
+

(xi � ✓1)2

2✓22
= 0

b✓2 =
⇣Pn

i=1(xi � b✓1)2
⌘
/n = s2
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Ex. 3, (cont.) 

A consistent, but biased estimate of population variance. 
(An example of overfitting.)   Unbiased estimate is:

Moral: MLE is a great idea, but not a magic bullet

I.e., limn→∞ 

= correct

lnL(x1, x2, . . . , xn|✓1, ✓2) =
nX

i=1

�1

2
ln(2⇡✓2)�

(xi � ✓1)2

2✓2

@

@✓2
lnL(x1, x2, . . . , xn|✓1, ✓2) =

nX

i=1

�1

2

2⇡

2⇡✓2
+

(xi � ✓1)2

2✓22
= 0

b✓2 =
⇣Pn

i=1(xi � b✓1)2
⌘
/n = s2

b✓02 =
nX

i=1

(xi � b✓1)2

n� 1



MLE Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Defining the “Likelihood Function” (based on the pmf or pdf of the model) 
is often the critical step; the math/algorithms to optimize it are generic

Often simply (d/dθ)(log Likelihood(data|θ)) = 0

Has the intuitively appealing property that the parameters maximize the 
likelihood of the observed data; basically just assumes your sample is 
“representative”

Of course, unusual samples will give bad estimates (estimate normal human heights 
from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being 
unbiased, or at least consistent

32
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Conditional Probability  
& 

Bayes Rule

33



conditional probability

S

S
F

F

Conditional probability of E given F:  probability that E occurs given 

that F has occurred.

 “Conditioning on F”

 Written as P(E|F)

 Means “P(E has happened, given F observed)” E′

E

34

where P(F) > 0

P(EF) = P(E | F) P(F)



law of  total probability

E and F are events in the sample space S

E = EF ∪ EFc

EF ∩ EFc = ∅ 

⇒ P(E) = P(EF) + P(EFc)

S

E                          F       

35



Most common form: 
 
 

Expanded form (using law of total probability):

 
 
 
Proof:

Bayes Theorem

36
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The "EM" Algorithm 
The Expectation-Maximization Algorithm

(for a Two-Component Mixture)



-3 -2 -1 0 1 2 3

µ ± σ

μ

1

Previously:  
How to estimate μ given data

38

X          X  XX    X  XXX               X
Observed Data

For this problem, we got a nice, closed 
form, solution, allowing calculation of the μ, 
σ that maximize the likelihood of the 

observed data.

We’re not always so lucky...



This?

Or this?

(A modeling decision, not a math problem...,  
but if the later, what math?)

39

More Complex Example



A Living Histogram

40

Text

http://mindprod.com/jgloss/histogram.html

male and female genetics students, University of Connecticut in 1996



2 Coins: A Binomial Mixture

One fair coin (p(H)=1/2), and 
one biased coin (p(H) = p,  fixed but unknown)

For i = 1, 2, …, n: 
  pick a coin at random, 
  flip it 10 times 
  record xi = # of heads

What is MLE for p?

41

Expect histogram of 
xi to look like:

redo histos in R



EM as Chicken vs Egg
Hidden Data: let zi = 1 if xi was from biased coin, else 0

• IF I knew zi, I could estimate p

(easy: just use xi s.t. zi = 1)

• IF I knew p, I could estimate zi

(E.g., if p = .8, xi ≥ 8 implies zi more likely 1;  
                    xi ≤ 5 implies zi more likely 0; 
not clear-cut between, but uncertainty is quantifiable.)

The "E-M Algorithm": iterate until convergence:

E-step: given (estimated) p,  (re)-estimate z’s

M-step: given (estimated) z’s, (re)-estimate p  
42

} Be Optimistic!

Sadly, I know  
neither, 

… but …



The E-Step
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E = 0 • P(0) + 1 • P(1)

Bayes

E[
z]

 →



Let b(x | p) = binomial prob of x heads in 10 flips when 
p(H)=p

As above, z = 1 if x was biased, else 0
Then likelihood of x is
    L(x,z | p) = "if z == 1 then b(x | p) else b(x | ½)"
Is there a smoother way?  Especially, a differentiable way?

Yes!  Idea #1:
    L(x,z | p) = z • b(x | p) + (1-z) • b(x | ½)

Better still, idea #2:
    L(x,z | p) = b(x | p)z • b(x |½)(1-z)

Math-Hacking the "if "

44

equal, 
if 

z is 0/1



The M-Step

45

linearity of 
expectation

"θ"
 he

re 
= "p

" 

on
 pr

ev
iou

s s
lid

e



An E-M "Alg" for This Problem

Input: x1, … xn, 0 ≤ xi ≤  10

Guess p

repeat until convergence:

E-step: calculate E[z1], … E[zn], using latest p

M-step: update p using E[zi] (the p that maximizes 
likelihood given those E[zi])

Alternatively: start by guessing E[zi], then do M-E-M-…

46

Maybe randomly restart 
here a few times



Suggested exercise(s)

Redo the math assuming both coins are biased (but 
unequally)

Write code to implement either version

Or a spreadsheet, with "fill down" to do a few iterations

Even in the 1-coin-biased version, there may be multiple 
local maxima (e.g., consider histogram with a small peak at 
.25 and large ones at .5 &  .8)  Does your alg get stuck at 
local max?  How often?  Does random restart pragmatically 
fix this?

47



EM for a Gaussian Mixture

48

I have presented the Gaussian mixture example  
in other courses.  I will NOT lecture on it in 427, 
but I’ll leave the slides (48-60) here in case you 

are interested in seeing another example in detail.  
Happy to discuss in office hours.
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No 
closed-
form
max

Parameters �

means µ1 µ2

variances ⇤2
1 ⇤2

2

mixing parameters ⌅1 ⌅2 = 1� ⌅1

P.D.F. f(x|µ1,⇤2
1) f(x|µ2,⇤2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,⇤2
1 ,⇤2

2 , ⌅1, ⌅2)

=
⇥n

i=1

�2
j=1 ⌅jf(xi|µj ,⇤2

j )

Gaussian Mixture Models / Model-based Clustering

separately

together

Likeli-
hood {
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we  
knew the  
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF parameters θ known, could estimate zij 

E.g., |xi - µ1|/σ1 ≫ |xi - µ2|/σ2 ⇒ P[zi1=1] ≪ P[zi2=1]

IF zij known, could estimate parameters θ 
E.g., only points in cluster 2 influence µ2, σ2

But we know neither; (optimistically!) iterate: 
E-step: calculate expected zij, given parameters

M-step: calculate “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 
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Simple Version: 
“Classification EM”

If E[zij] < .5, pretend zij = 0;  E[zij] > .5, pretend it’s 1

I.e., classify points as component 1 or 2
Now recalc θ, assuming that partition (standard MLE)
Then recalc E[zij], assuming that θ
Then re-recalc θ, assuming new E[zij],  etc., etc.   

“Full EM” is slightly more involved, (to account for 
uncertainty in classification) but this is the crux.

Not 
“E

M,” 
 bu

t m
ay

 

 he
lp 

cla
rif

y c
on

ce
pt

s

“K-means 
clustering,” 
essentially

ho
mew

or
k, 

 bu
t m

ay
 

he
lp 

cla
rif

y c
on

ce
pt

s

Another contrast:  HMM parameter estimation via “Viterbi” vs “Baum-Welch” training. In 
both, “hidden data” is “which state was it in at each step?”  Viterbi is like E-step in 
classification EM: it makes a single state prediction.  B-W is full EM: it captures the 
uncertainty in state prediction, too. For either, M-step maximizes HMM emission/
transition probabilities, assuming those fixed states (Viterbi) / uncertain states (B-W).
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Full EM

I.e., average over possible, but hidden zij’s
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The E-step:   
Find E(zij), i.e., P(zij=1)

Assume θ known & fixed
A (B): the event that xi was drawn from f1 (f2)
D: the observed datum xi

Expected value of zi1 is P(A|D)

Repeat 
for 

each 
zi,j}

E = 0 · P (0) + 1 · P (1)

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)

E[zi1] =
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Complete Data 
Likelihood

(Better):

equal, if zij are 0/1
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M-step: 
Find θ maximizing E(log(Likelihood))

wrt  dist of zij



M-step: calculating mu’s

row sum avg

E[zi1] 0.99 0.98 0.7 0.2 0.03 0.01 2.91
E[zi2] 0.01 0.02 0.3 0.8 0.97 0.99 3.09

xi 9 10 11 19 20 21 90 15
E[zi1]xi 8.9 9.8 7.7 3.8 0.6 0.2 31.02 10.66
E[zi2]xi 0.1 0.2 3.3 15.2 19.4 20.8 58.98 19.09 ne

w
 μ

’s

ol
d 

E’
s

In words:  μj is the average of the observed xi’s, weighted by 
the probability that xi was sampled from component j.

59
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5

Essentially converged in 2 iterations

⇒⇒    (Excel spreadsheet on course web)
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EM Summary

Fundamentally, maximum likelihood parameter 
estimation; broader than just these examples

Useful if 0/1 hidden data, and if analysis would be 
more tractable if 0/1 hidden data z were known

Iterate: 
E-step: estimate E(z) for each z, given θ
M-step: estimate θ maximizing E[log likelihood]  
given E[z] [where “E[logL]” is wrt random z ~ E[z] = p(z=1)]

Ba
ye

s

MLE
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EM Issues
Under mild assumptions (e.g., DEKM sect 11.6), EM is 

guaranteed to increase likelihood with every E-M 
iteration, hence will converge.

But it may converge to a local, not global, max. 
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied 
to NP-hard problems (including clustering, above 
and motif-discovery, soon)

Nevertheless, widely used, often effective,  
esp. with random restarts


