		1MA1 Prac	tice Tests Set 1: Paj	per 2H (Re	egular) mark scheme – Version 1.0		
Que	stion	Working	Answer	Mark	Notes		
1			488	3	M1 600 × 67.1 (= 40260) or 67.1 ÷ 82.5 (= 0.813)		
					M1 (dep) "40260" ÷ 82.5 or "0.813" × 600		
					A1 cao		
					SC: B2 for 712		
2		12, 24, 36, 48, 60, 72, 8, 16, 24, 32, 40, 48, 56,	25.80	5	M1 for listing at least 3 multiples of each of 12 and 8 or 24 in two lists of multiples or from factor trees		
		64, 72,			M1 (dep) for attempt to find a common multiple of 12 and 8 above 60 (= 72)		
					M1 (dep M2) for method to find the number of boxes and the number of packs $72 \div 12 (= 6)$ and $72 \div 8 (= 9)$		
					M1 for finding the total cost by multiplying numbers by cost and adding eg " 6 " × 2.50 + "9" × 1.20		
					A1 for 25.8(0)		
3		62 + 92 = 117	10.8	3	M1 for 62 + 92		
		√117 =			M1 for $\sqrt{(36+81)}$ or $\sqrt{117}$		
					A1 for 10.8 – 10.82		
4	(a)		Negative	1	B1 cao		
	(b)		117–123	2	M1 for a line of best fit drawn between (9,130) and (9, 140) and between (13,100) and (13,110) inclusive		
					A1 for 117 – 123		
5		x + 4x > 2(x + 48)	33	5	B1 for $x + 48$ (or $2x + 96$ oe) and $4x$		
		5x > 2x + 96			M1 for $x + 4x > 2(x + 48)$ oe		
		3x > 96			M1 for subtracting $2x$ from both sides		

1MA1 Practice Tests: Set 1 Regular (2H) mark scheme – Version 1.0 This publication may only be reproduced in accordance with Pearson Education Limited copyright policy. ©2016 Pearson Education Limited.

	1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0				
Question	Working	Answer	Mark	Notes				
	$x > 32$ OR $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A1 for $3x > 96$ oe A1 cao for 33 OR Trial and Improvement B1 for 1 correct trial of S, N and C M1 for an improved correct trial of S, N and C M1 for a correct trial of 32 M1 for a correct trial of 33 A1 (dep on M2) for 33 cao NB: Accept other letters instead of <i>x</i> NB: an answer of 32 without working scores 0 marks				
6	4x + 4x + 3x + 4 + 3x + 4 = 14x + 8 5x + 5x + x - 3 + 7x - 3 = 18x - 6 18x - 6 = 14x + 8 4x = 14 x = 14/4 = 3.5 oe	x = 3.5 L = 14.5 W = 14	6	M1 $4x + 4x + 3x + 4 + 3x + 4$ (= $14x + 8$) M1 $5x + 5x + x - 3 + 7x - 3$ (= $18x - 6$) M1 equating e.g. $18x - 6 = 14x + 8$ ($4x = 14$) A1 $x = 14/4 = 3.5$ oe A1 for 14.5 or " 3.5 " × $3+4$ ft A1 for 14 or " 3.5 " × 4 ft				

		1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	gular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
		Area of trapezium =			
		Length is $3x + 4 = 3 \times 3.5 + 4 =$			
		Width is $4x = 4 \times 3.5 =$			
7	(a)		0.22,0.78,0.74,0.26	2	B1 for 0.78,0.22 correctly placed
					B1 for 0.26,0.74 correctly placed
	*(b)		No	4	M1 for 0.55×0.22 or 0.45×0.74 oe
			As 0.454 < 0.5		M1 for $0.55 \times "0.22" + 0.45 \times "0.74"$ oe
					A1 for 0.454 oe
					C1 (dep on M1) for conclusive statement based on their answer compared to 50%
8		2yy = 3 - 6 or	x = 5, y = -1	3	M1 for a complete method to eliminate one variable (condone one arithmetic error)
		x + 2x = 3 + 12			A1 $x = 5$
					A1 $y = -1$
					NB: Candidates showing no working score 0 marks

		1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	gular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
9			28% or $\frac{14}{50}$	4	M1 for $100 - 30 (= 70)$ or $1 - \frac{3}{10\left(=\frac{7}{10}\right)}$
					M1 for "70" ÷ (3 + 2) (= 14) or $\frac{7}{10}$ ÷ (3 + 2) $\left(=\frac{7}{50}\right)$
					M1 for "14" × 2 or $\frac{7}{50}$ × 2
					A1 for 28% or $\frac{14}{50}$ oe
					OR
					M1 for a correct method to find $(100 - 30)$ % of any actual sum of money
					M1 for " 350 " \div (3 + 2) (= 70)
					M1 for "70" × 2
					A1 for 28% or $\frac{14}{50}$ oe
					OR
					M1 for starting with two numbers in ratio 3:2, e.g. 21 and 14
					M1 for equating sum of their numbers to $100 - 30 (= 70\%)$,
					e.g. '21' + '14' (= 35)
					M1 for scaling sum of their numbers to 100%, e.g. '35' \div 70 \times 100 (= 50)

		1MA1 Prac	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0				
Que	stion	Working	Answer	Mark	Notes				
				A1 for 28% or $\frac{14}{50}$ oe SC: award B3 for oe answers expressed in an incorrect form e.g. $\frac{2.8}{10}$					
10		5, 13, 29, 53, 85, 125	29, 53, 85, 125 (85) 2		M1 for correct evaluation of at least 3 odd cases or sequence of 5, (8), 13, (20), 29 seen or the expression with $n = 9$ or 11 or 19 or 21 or substituted but not evaluated A1 for 85 or 125 or 365 or 445 or identified				
11	(a)		104.5°	3	M1 for substitution into the cosine rule e.g. $3.6^2 = 1.8^2 + 2.7^2 - 2 \times 1.8 \times 2.7 \times \cos A$ M1 for $\cos A = \left(\frac{1.8^2 + 2.7^2 - 3.6^2}{2 \times 1.8 \times 2.7}\right)$ $\left[=\left(\frac{3.24 + 7.29 - 12.96}{9.72}\right) = (-0.25)\right]$ A1 for 104.47				
	(b)		2.4	2	M1 (ft) for $\frac{1}{2} \times 1.8 \times 2.7 \times \sin(a)$ A1 for an answer in the range 2.3 to 2.4 or ft from their (a) if supported by correct working.				

		1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	gular) mark scheme – Version 1.0				
Que	stion	Working	Answer	Mark	Notes				
*12		<i>d</i> : UB = 190.5 (190.49)	7.4	5	B1 for one correct bound of <i>d</i>				
		LB = 189.5			B1 for one correct bound of f				
		<i>f</i> : UB = 25.75 (25.749)	because the LB and		M1 for a correct method to find the upper bound of c ,				
		LB = 25.65	UB agree to that number of figures		e.g. "190.5" + "25.65" (= 7.4269)				
			number of figures		or for a correct method to find the lower bound of c ,				
					e.g. "189.5" + "25.75" (= 7.359)				
					A1 for 7.42(69) and 7.35(92)				
					C1 (dep on M1) for a statement that both LB and UB round to "7.4" to one decimal place oe				
					NB an answer of $7.39(2996)$ or 7.4 without working or from $190 \div 25.7$ scores no marks				
13		Volume of A = $\frac{140}{0.7}$	0.957	4	M1 for finding the volume of either liquid A or B or the mass of liquid C				
		= 200			M1 for a complete method to find the volume AND mass of liquid C				
		128	128		M1 (dep M2) for "total mass" ÷ " total volume"				
		Volume of B = $\frac{128}{1.6} = 80$			A1 for 0.957 to 0.96				
		Mass of $C = 140 + 128$							
		= 268							
		Density of C = $\frac{268}{280}$							

		1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
14	(a)		11	1	B1 cao
	(b) (c) (d) (i) (ii)	y = 2x + 5 y - 5 = 2x OR x = 2y + 5 x - 5 = 2y $(2x + 5)^2 - 25$ $4x^2 + 10x + 10x + 25$ oe	$\frac{x-5}{2}$ -16 $4x^{2} + 20x$ $x = 0, \ x = -5$	2 1 5	M1 for a correct first stage: subtract 5 from both sides or divide all terms by 2 NB Accept f(x) in place of y A1 $\frac{x-5}{2}$ (oe) B1 cao M1 B1 for correct expansion of $(2x + 5)^2$ A1 $4x^2 + 20x$ or a correct fully or partially factorised expression M1 $4x(x + 5) (= 0)$ or $x(4x + 20) (= 0)$ or $2x(2x + 10) (= 0)$ $-20 \pm \sqrt{20^2 - 4 \times 4 \times 0}$ or $x(x + 5) (=0)$ or for, e.g. 2×4 A1 for both solutions

	1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0			
Question	Working	Answer	Mark	Notes			
15	$\frac{5}{20} \times \frac{7}{19} + \frac{5}{20} \times \frac{8}{19} +$		4	M1 for at least one product of the form $\frac{a}{20} \times \frac{b}{19}$			
	$\frac{7}{20} \times \frac{5}{19} + \frac{7}{20} \times \frac{8}{19} +$			M1 for identifying all products			
	$\overline{20}$ $\overline{19}$ $\overline{19}$ $\overline{20}$ $\overline{19}$ $\overline{19}$ $\overline{19}$			(condone 2 errors in 6 products, 1 error in 3 products)			
	$\frac{8}{20} \times \frac{5}{19} + \frac{8}{20} \times \frac{7}{19}$			Either			
	20 19 20 19 OR			$\frac{5}{20} \times \frac{7}{19}, \frac{5}{20} \times \frac{8}{19}, \frac{7}{20} \times \frac{5}{19}, \frac{7}{20} \times \frac{8}{19}, \frac{8}{20} \times \frac{5}{19}, \frac{8}{20} \times \frac{7}{19}$			
	$\left(\frac{5}{20} \times \frac{15}{19} + \frac{7}{20} \times \frac{13}{19} + \frac{8}{20} \times \frac{12}{19}\right)$			OR			
	(20 19 20 19 20 19) OR			$\left(\frac{5}{20} \times \frac{15}{19}, \frac{7}{20} \times \frac{13}{19}, \frac{8}{20} \times \frac{12}{19}\right)$			
	1 –			OR			
	$\left(\frac{5}{20} \times \frac{4}{19} + \frac{7}{20} \times \frac{6}{19} + \frac{8}{20} \times \frac{7}{19}\right)$			$\left(\frac{5}{20} \times \frac{4}{19}, \frac{7}{20} \times \frac{6}{19}, \frac{8}{20} \times \frac{7}{19}\right)$			
				M1 (dep) for			
		$\frac{5}{20} \times \frac{7}{19} + \frac{5}{20} \times \frac{8}{19} + \frac{7}{20} \times \frac{5}{19} + \frac{7}{20} \times \frac{8}{19} + \frac{8}{20} \times \frac{5}{19} + \frac{8}{20} \times \frac{7}{19} + \frac{8}{19} \times \frac{7}{19} + \frac{8}{19} \times \frac{7}{19} + \frac{8}{19} \times \frac{7}{19} + \frac{8}{19} \times \frac{7}{19} \times \frac{7}{19} + \frac{8}{19} \times \frac{7}{19} $					
				OR			
				$\left(\frac{5}{20} \times \frac{15}{19} + \frac{7}{20} \times \frac{13}{19} + \frac{8}{20} \times \frac{12}{19}\right)$ oe			
				OR			
				$1 - \left(\frac{5}{20} \times \frac{4}{19} + \frac{7}{20} \times \frac{6}{19} + \frac{8}{20} \times \frac{7}{19}\right) \text{ oe}$			
				A1 for $\frac{131}{190}$ oe or 0.68947 correct to at least 2 decimal			

	1MA1 Pra	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0					
Questio	n Working	Answer	Mark	Notes					
				places or answer that rounds to 0.69					
				NB : If decimals used for products then must be correct to at least 2 decimal places					
				With replacement					
				M0					
				M1 for identifying all products					
				(condone 2 errors in 6 products, 1 error in 3 products)					
				M1 (dep)					
				A0 for $\frac{269}{400}$ oe or 0.655 (NB: $\frac{269}{400}$ oe or 0.655 implies M2)					
				Partial replacement					
				SC: B2 for $\frac{141}{200}$ oe or 0.705 or $\frac{121}{190}$ oe or 0.6368 correct to at					
				least 2 decimal places					
16	$P = k/x^2$	2.34	3	M1 for $P = k/x^2$ or $P \propto k/x^2$					
	$6 = k/5^2 (k = 150)$			M1 for $6 = k/5^2$ or $(k =)$ 150 seen or $6 \times 5^2 = P \times 8^2$					
	$P = \frac{150}{8^2}$			A1 2.34					
17	3 ² × 180	1620	2	M1 for using a scale factor of $3^2 (= 9)$					
				A1 cao					

	1MA1 Prac	ctice Tests Set 1: Pap	er 2H (Re	egular) mark scheme – Version 1.0				
Question	n Working	Answer	Mark	Notes				
18	e.g.	60.3	4	M1 for attempt to find the area of one bar				
	$1 \times 7.6 + 3 \times 9.4 +$			M1 for attempt to find total area \div 2 (condone one error)				
	$2 \times 5.6 + 6 \times 1.4 = 55.4$			M1 for correct attempt to locate median in second bar (condone				
	$55.4 \div 2 = 27.7$			one arithmetic error)				
	27.7 - 7.6 = 20.1			A1 for 60.3(4)				
	$20.1 \div 9.4 = 2.138$							
	Median = $55 + 2.138$							
	× 2.5 = 60.345							
19		(-15, 0)	4	M1 method to find gradient of tangent, e.g. $-1 \div -\frac{6}{3} (=\frac{1}{2})$				
				M1 for method to find equation of tangent with $m = \frac{1}{2}$				
				M1 for method to find <i>x</i> -axis intercept of tangent				
				A1 cao				

National performan	ce data from Results Plus
--------------------	---------------------------

	Source of questions								Mean score of students achieving grade:						
Qu	Spec	Paper	Session	Qu	Торіс	Max score	Mean % all	ALL	A *	Α	в	С	D	Е	
1	4MA0(R)	2F	1501	Q17	Proportions	2.30	3	77			_	2.67	2.08	1.33	
2	1MA0	2H	1406	Q14	HCF and LCM	3.68	5	74	4.65	4.27	3.97	3.58	2.77	1.58	
3	5MM2	2F	1211	Q26	Pythagoras in 2D	1.00	3	33				2.90	1.88	0.52	
4	1380	2F	911	Q27	Scatter diagrams	1.66	3	55				2.47	1.86	1.21	
5	5AM2	2H	1306	Q14	Solve inequalities	2.71	5	54	4.43	3.48	2.78	1.72	0.79	0.06	
6	5AM1	1H	1106	Q14	Solve linear equations	3.24	6	54	5.84	5.19	3.02	1.17	1.00	1.00	
7	5AM2	2H	1411	Q15	Probability tree diagrams	3.22	6	54	5.78	5.25	4.29	2.36	1.00	0.00	
8	4MA0(R)	2F	1501	Q20	Solving simultaneous equations	0.72	3	24				0.94	0.62	0.00	
9	1MA0	2H	1306	Q07	Ratio	1.58	4	40	3.75	3.07	2.08	1.01	0.33	0.09	
10	2540	2H	811	Q05	Number sequences	0.74	2	37	1.81	1.56	1.05	0.45	0.12	0.09	
11	5MM2	2H	1506	Q21	Sine and cosine rule	1.59	5	32	4.38	2.58	0.80	0.16	0.05	0.10	
12	5AM2	2H	1406	Q18	Bounds	1.57	5	31	3.53	2.65	1.45	0.44	0.10	0.00	
13	1MA0	2H	1506	Q16	Compound measures	0.86	4	22	2.54	1.44	0.82	0.55	0.40	0.28	
14	4MA0	1H	1401	Q20	Functions	4.76	9	53	7.89	5.68	3.42	1.41	0.47	0.25	
15	1380	2H	906	Q26	Conditional probability	0.84	4	21	3.06	1.75	0.41	0.04	0.00	0.00	
16	5MM2	2H	1111	Q23	Direct and indirect proportion	0.60	3	20	2.72	1.37	0.25	0.07	0.00	0.00	
17	1MA0	2H	1506	Q21	Ratio	0.21	2	11	0.93	0.47	0.21	0.06	0.01	0.00	
18	5AM1	1H	1311	Q21	Histograms and grouped data	0.42	4	11	2.04	0.67	0.23	0.12	0.00	0.00	
19				NEW			4			1	No data a	vailable			
							80								