Problem 1-4

The size and cross-sectional areas are obtained from Part 1 of the AISCM as follows:

Size	Self-weight (lb/ft.)	Cross-sectional area (in²)
W14x22	22	6.49
W21x44	44	13.0
HSS 6x6x½	35.11	9.74
L6x4x½	16.2	4.75
C12x30	30	8.81
WT18x128	128	37.7

Problem 1-5

a)

Element	A	y	Ay	I	$\mathbf{d} = \mathbf{y} \cdot \overline{\mathbf{y}}$	$I + Ad^2$
top flange	21	26.25	551.25	3.94	-12.75	3418
web	21	13.5	283.5	1008	0	1008
bot flange	21	0.75	15.75	3.94	12.75	3418
$\Sigma =$	63 in. ²		850.5			I = 7844 in. ⁴

$$\bar{y} = \frac{\Sigma Ay}{\Sigma A} = \frac{850.5}{63} = 13.5 \text{ in.}$$

Self weight = $(63/144)(490 \text{ lb/ft}^3) = 214 \text{ lb/ft}$.

b)

Element	A	y	Ay	I	$\mathbf{d} = \mathbf{y} \cdot \overline{\mathbf{y}}$	$I + Ad^2$
top plate	2.63	18.26	47.93	0.03	-9.04	214.3
beam	10.3	9.23	95.02	510	0	510
bot plate	2.63	0.188	0.49	0.03	9.04	214.3
$\Sigma =$	15.55 in. ²		143.4			$I = 939 \text{ in.}^4$

$$\overline{y} = \frac{\Sigma Ay}{\Sigma A} = \frac{143.4}{15.55} = 9.23 \text{ in.}$$

Self weight = $(15.55/144)(490 \text{ lb/ft}^3) = 52.9 \text{ lb/ft}.$

c) From AISCM Table 1-20,
$$I_x = 314 \text{ in.}^4$$
 Area = 13.8 in² Self weight = 47.1 lb/ft.

Problem 1-7

Determine the most economical layout of the roof framing (joists and girders) and the gage (thickness) of the roof deck for a building with a 25 ft x 35 ft typical bay size. The total roof dead load is 25 psf and the snow load is 35 psf. Assume a $1\frac{1}{2}$ " deep galvanized wide rib deck and an estimated weight of roof framing of 6 psf.

^{*}Total roof load = (25psf + 35psf) - 6psf = 54psf

# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr.	Deck Load
-	, ,	0 0	-	capacity*
2	12.5	none	-	-
3	8.33	16	10'-3"	85psf
4	6.25	22	6'-11"	76psf
5	5	24	5'-10"	130psf

← selec

^{*}Assume beams (or joists) span the 35' direction

^{*} Assume 3-span condition

^{*}Vulcraft deck assumed

- 1-10 Determine the most economical layout of the floor framing (beams and girders), the total depth of the floor slab, and the gage (thickness) of the floor deck for a building with a 30 ft x 47 ft typical bay size. The total floor dead load is 110 psf and the floor live load is 250 psf. Assume normal weight concrete, a 3" deep galvanized composite wide rib.
- *Assume beams span the 47' direction
- * Assume 3-span condition
- * Assume weight of the framing = 10psf
- *Total floor load = (110psf + 250psf) 10psf = 350psf

t = 2.5" (superimposed load = 350psf - 50psf - 2psf) = 298psf)

# of beam	beam spacing	Selected deck	max. constr.	Deck	
spaces	(ft.)	gage	span	Load	
				capacity*	
2	15	16	15'-5"	none	N.G.
3	10	16	15'-5"	218psf	N.G.
4	7.5	18	13'-11"	298psf	← select

t = 3" (superimposed load = 350psf - 57psf - 2psf) = 291psf)

# of beam	beam spacing	Selected deck	max. constr.	Deck	1
	(ft.)			Load	
spaces	(11.)	gage	span		
				capacity*	
2	15	none	-	-	
3	10	16	14'-11"	245psf	N
4	7.5	18	13'-4"	334psf	₹

N.G. ← select

^{*}Vulcraft deck assumed

Problem 1-11

From Equation 1-1, the carbon content is

$$CE = 0.16 + (0.20 + 0.25)/15 + (0.10 + 0.15 + 0.06)/5 + (0.80 + 0.20)/6 = 0.419 < 0.5$$

Therefore, the steel member is weldable.

Problem 1-12

Anticipated expansion or contraction = $(6.5 \times 10^{-6} \text{ in./in.})(300 \text{ ft.})(12 \text{ in./ft.})(70 \text{ }^{\circ}\text{F}) = 1.64 \text{ in.}$

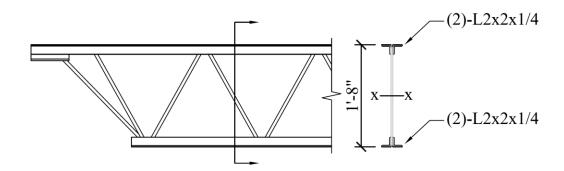
Expansion joint width = (2)(1.64 in.) = 3.28 in.

Therefore, use a 31/4 in. wide expansion joint.

The width of the required expansion joint appears large, and one way to reduce this width is to reduce the length between expansion joints from 300 ft to say 200 ft. That will bring the required expansion joint width down to (200/300)(3.28 in.) = 2.2 in. (i.e. $2\frac{1}{4}$ in. expansion joint)

Problems 1-17

B1-1a



Problem B1-1a

Angle Properties - L2x2x1/4:

$$A_a := 0.944in^2$$
 $wt_a := 3.19plf$ $x_{bar} := 0.609in$ $I_a := 0.346in^4$

$$wt_a := 3.19plf$$

$$x_{\text{bar}} := 0.609 \text{in}$$

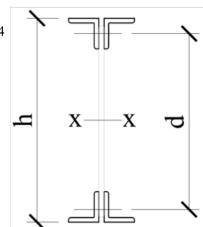
$$I_a := 0.346 \text{in}^4$$

h := 20in

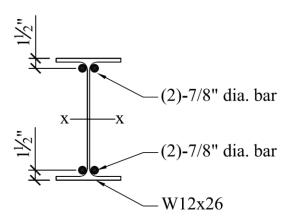
$$d := h - (2) \cdot (x_{bar}) = 18.782 in$$

$$wt_{comp} := 4 \cdot A_a \cdot 490pcf = 12.8 \cdot plf$$

$$I_{comp} := (4)(I_a) + \left[4 \cdot A_a \cdot \left[\left(\frac{d}{2} \right)^2 \right] \right] = 334.4 \text{ in}^4$$



<u>B1-1b</u>

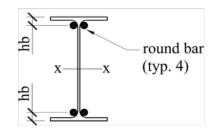


Problem B1-1b

beam := "W12X26"

Beam Properties

$$\begin{array}{ll} A = 7.65 \cdot in^2 & {\color{red} Round \ Bars} \\ I_X = 204 \cdot in^4 & I_b := \frac{\pi \cdot d_b^{\ 4}}{64} = 0.029 \cdot in^4 \\ d = 12.2 \cdot in & A_b := \frac{\pi \cdot d_b^{\ 2}}{4} = 0.601 \cdot in^2 \end{array}$$



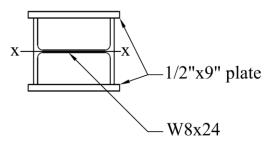
$$I_{comp} := Ix + 4 \cdot \left[A_b \cdot \left(\frac{d}{2} - h_b \right)^2 \right] = 254.9 \cdot in^4$$

 $h_b := 1.5in$

$$y_{\text{bar}} := \frac{d}{2} = 6.1 \cdot \text{in}$$
 $A_{\text{comp}} := A + (4 \cdot A_b) = 10.1 \cdot \text{in}^2$ $wt_{\text{comp}} := A_{\text{comp}} \cdot 490 \text{pcf} = 34.2 \cdot \text{plf}$

$$S_{comp} := \frac{I_{comp}}{y_{bar}} = 41.8 \cdot in^3$$

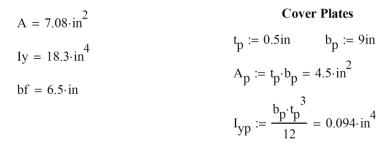
<u>B1-1c</u>

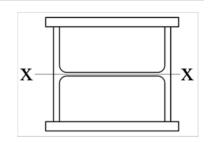


Problem B1-1c

column := "W8X24"

Column Properties





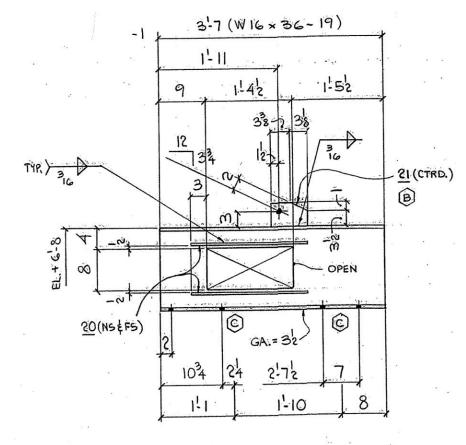
Composite Section Properties

$$y_{\text{bar}} := \frac{\text{bf}}{2} + t_p = 3.75 \cdot \text{in}$$
 $A_{\text{comp}} := A + (2) \cdot A_p = 16.08 \cdot \text{in}^2$ $\text{wt}_{\text{comp}} := A_{\text{comp}} \cdot 490 \text{pcf} = 54.7 \cdot \text{plf}$

$$I_{\text{comp}} := I_y + \left(2 \cdot I_{yp}\right) + 2 \cdot \left[A_p \cdot \left[\left(\frac{t_p}{2} + \frac{\text{bf}}{2}\right)^2\right]\right] = 128.7 \cdot \text{in}^4$$

$$S_{\text{comp}} := \frac{I_{\text{comp}}}{y_{\text{bar}}} = 34.3 \cdot \text{in}^3$$

Problem 1-18



Own-	O - A AA	0 8
ONE-	BEAM	~ (-0

	′~		1			<u> </u>			-	
	50	2-8	ONE	BEAM			170			
	5.1.	. 19 .	1	W16×36	3	7.		. 129	ø	1
	52	20	4	P-12×3	1	102		38		İ
İ	53	21	1	P. 38 × 42	0	6/2		3		
-			+		1	1	1		11 .	

Element	A	y	Ay	I	$\mathbf{d} = \mathbf{y} - \overline{\mathbf{y}}$	Ad^2
beam	10.6	7.93	84.06	448	-0.02	0
hole	-2.36	7.86	-18.55	-12.587	0.05	0
upper pls.	3	12.61	37.83	0.063	-4.7	66.21
lower pls.	3	3.11	9.33	0.063	4.8	69.18
$\Sigma =$	14.24		112.67	435.54		135.4

$$\overline{y} = \frac{\Sigma Ay}{\Sigma A} = \frac{112.67}{14.24} = 7.91 \text{ in.}$$

$$\Sigma I + Ad^2 = 435.54 + 135.4 = 571 \text{ in.}^4$$

Wt = (14.24)(490pcf)/144 = 48.5 plf

Problem 2-3

(a) Determine the factored axial load or the required axial strength, P_u of a column in an office building with a regular roof configuration. The service axial loads on the column are as follows

 $\begin{array}{lll} P_D & = & 200 \text{ kips (dead load)} \\ P_L & = & 300 \text{ kips (floor live load)} \\ P_S & = & 150 \text{ kips (snow load)} \\ P_W & = & \pm 60 \text{ kips (wind load)} \\ P_E & = & \pm 40 \text{ kips (seismic load)} \end{array}$

(b) Calculate the required nominal axial compression strength, P_n of the column.

1:
$$P_u = 1.4 P_D = 1.4 (200k) = 280 \text{ kips}$$

2:
$$P_u = 1.2 P_D + 1.6 P_L + 0.5 P_S$$

= 1.2 (200) + 1.6 (300) + 0.5 (150) = **795 kip**s (governs)

3 (a):
$$P_u = 1.2 P_D + 1.6 P_S + 0.5 P_L$$

$$= 1.2 (200) + 1.6 (150) + 0.5 (300) = 630 \text{ kips}$$

3 (b):
$$P_u = 1.2 P_D + 1.6 P_S + 0.5 P_W = 1.2 (200) + 1.6 (150) + 0.5 (60) = 510 \text{ kips}$$

4:
$$P_{u} = 1.2 P_{D} + 1.0 P_{W} + 0.5 P_{L} + 0.5 P_{S}$$
$$= 1.2 (200) + 1.0 (60) + 0.5 (300) + 0.5 (150) = 525 \text{ kips}$$

5:
$$P_{u} = 1.2 P_{D} + 1.0 P_{E} + 0.5 P_{L} + 0.2 P_{S}$$
$$= 1.2 (200) + 1.0 (40) + 0.5 (300) + 0.2 (150) = 460 \text{ kips}$$

Note that P_D must always oppose P_W and P_E in load combination 6

6:
$$P_{u} = 0.9 P_{D} + 1.0 P_{W}$$

$$= 0.9 (200) + 1.0 (-60) = 120 \text{ kips (no net uplift)}$$

7:
$$P_{u} = 0.9 P_{D} + 1.0 P_{E}$$
$$= 0.9 (200) + 1.0 (-40) = 140 \text{ kips (no net uplift)}$$

$$\phi P_n > P_u$$

$$\phi_c = 0.9$$

$$(0.9)(P_n) = (795 \text{ kips})$$

 $P_n = 884 \text{ kips}$

(a) Determine the ultimate or factored load for a roof beam subjected to the following service loads:

Dead Load = 29 psf (dead load) Snow Load = 35 psf (snow load)

Roof live load = 20 psf

Wind Load = 25 psf upwards / 15 psf downwards

(b) Assuming the roof beam span is 30 ft and tributary width of 6 ft, determine the factored moment and shear.

Since, $S = 35psf > L_r = 20psf$, use S in equations and ignore L_r .

1:
$$p_u = 1.4D = 1.4 (29) = 40.6 \text{ psf}$$

2:
$$p_u = 1.2 D + 1.6 L + 0.5 S$$

= 1.2 (29) + 1.6 (0) + 0.5 (35) = 52.3 psf

3 (a):
$$p_u = 1.2D + 1.6S + 0.5W$$

= 1.2 (29) + 1.6 (35) + 0.5 (15) = **98.3 psf** (governs)

3 (b):
$$p_u = 1.2D + 1.6S + 0.5L$$
$$= 1.2 (29) + 1.6 (35) + (0) = 90.8 \text{ psf}$$

4:
$$p_u = 1.2 D + 1.0 W + L + 0.5S$$

= 1.2 (29) + 1.0 (15) + (0) + 0.5 (35) = 67.3 psf

5:
$$p_u = 1.2 D + 1.0 E + 0.5L + 0.2S$$
$$= 1.2 (29) + 1.0 (0) + 0.5(0) + 0.2 (35) = 41.8 \text{ psf}$$

6:
$$p_u = 0.9D + 1.0W$$
 (**D** must always oppose **W** in load combinations 6 and 7)
= $0.9 (29) + 1.0(-25)$ (upward wind load is taken as negative)
= 1.1 psf (no net uplift)

7:
$$p_u = 0.9D + 1.0E \text{ (} \textbf{D} \text{ must always oppose } \textbf{E} \text{ in load combinations 6 and 7)} \\ = 0.9 (29) + 1.6(0) \text{ (} \textit{upward wind load is taken as negative)} \\ = 26.1 \text{ psf (} \textit{no net uplift)} \text{`}$$

 $w_u = (98.3psf)(6ft) = \textbf{590 plf} \ (\textit{downward})$

downward	No net uplift
$V_u = \frac{w_u L}{2} = \frac{(590)(30)}{2} = 8850 \text{ lb.}$	
$M_u = \frac{w_u L^2}{8} = \frac{(590)(30)^2}{8} = 66375 \text{ ft-Ib}$ = 66.4 ft-kips	