Problem 1-4

The size and cross-sectional areas are obtained from Part 1 of the AISCM as follows:

Size	Self-weight (lb/ft.)	Cross-sectional area (in ${ }^{2}$)
W14x22	22	6.49
W21x44	44	13.0
HSS $6 \times 6 \mathrm{x}^{1 / 2}$	35.11	9.74
L6x4x $1 / 2$	16.2	4.75
C12x30	30	8.81
WT18x128	128	37.7

Problem 1-5

a)

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d}=\mathbf{y}-\overline{\mathrm{y}}$	$\mathbf{I}+\mathbf{A d}^{\mathbf{2}}$
top flange	21	26.25	551.25	3.94	-12.75	3418
web	21	13.5	283.5	1008	0	1008
bot flange	21	0.75	15.75	3.94	12.75	3418
$\boldsymbol{\Sigma}=$	$\mathbf{6 3}$ in. $^{\mathbf{2}}$		$\mathbf{8 5 0 . 5}$		$\mathbf{I}=\mathbf{7 8 4 4}$ in. $^{\mathbf{4}}$	

$$
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{~A}}=\frac{850.5}{63}=13.5 \mathrm{in} .
$$

Self weight $=(63 / 144)\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)=214 \mathrm{lb} / \mathrm{ft}$.
b)

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d}=\mathbf{y}-\overline{\mathrm{y}}$	$\mathbf{I}+\mathbf{A d}^{\mathbf{2}}$
top plate	2.63	18.26	47.93	0.03	-9.04	214.3
beam	10.3	9.23	95.02	510	0	510
bot plate	2.63	0.188	0.49	0.03	9.04	214.3
$\boldsymbol{\Sigma}=$	$\mathbf{1 5 . 5 5}$ in. $^{\mathbf{2}}$		$\mathbf{1 4 3 . 4}$			$\mathbf{I}=\mathbf{9 3 9}$ in. $^{\mathbf{4}}$

$\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{A}}=\frac{143.4}{15.55}=9.23 \mathrm{in}$.
Self weight $=(15.55 / 144)\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)=52.9 \mathrm{lb} / \mathrm{ft}$.
c) From AISCM Table 1-20, $\mathrm{I}_{\mathrm{x}}=314 \mathrm{in} .{ }^{4}$

Area $=13.8$ in 2
Self weight $=47.1 \mathrm{lb} / \mathrm{ft}$.

Problem 1-7

Determine the most economical layout of the roof framing (joists and girders) and the gage (thickness) of the roof deck for a building with a 25 ft x 35 ft typical bay size. The total roof dead load is 25 psf and the snow load is 35 psf. Assume a $11 / 2$ " deep galvanized wide rib deck and an estimated weight of roof framing of 6 psf.
*Assume beams (or joists) span the 35^{\prime} direction

* Assume 3-span condition
*Total roof load $=(25 \mathrm{psf}+35 \mathrm{psf})-6 \mathrm{psf}=\underline{\mathbf{5 4} \mathbf{p s f}}$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*
2	12.5	none	-	-
3	8.33	16	$10^{\prime}-3^{\prime \prime}$	85 psf
$\mathbf{4}$	$\mathbf{6 . 2 5}$	$\mathbf{2 2}$	$\mathbf{6}^{\prime}-1 \mathbf{1 1}^{\prime \prime}$	$\mathbf{7 6 p s f}$
5	5	24	$5^{\prime}-10^{\prime \prime}$	130psf

*Vulcraft deck assumed

1-10 Determine the most economical layout of the floor framing (beams and girders), the total depth of the floor slab, and the gage (thickness) of the floor deck for a building with a $30 \mathrm{ft} x 47 \mathrm{ft}$ typical bay size. The total floor dead load is 110 psf and the floor live load is 250 psf. Assume normal weight concrete, a 3" deep galvanized composite wide rib.
*Assume beams span the 47 ' direction

* Assume 3-span condition
* Assume weight of the framing $=10 \mathrm{psf}$
$*$ Total floor load $=(110 \mathrm{psf}+250 \mathrm{psf})-10 \mathrm{psf}=350 \mathrm{psf}$
$\mathrm{t}=2.5^{\prime \prime}($ superimposed load $\left.=350 p s f-50 p s f-2 p s f)=298 p s f\right)$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*		
2	15	16	$15^{\prime}-5^{\prime \prime}$	none		
N.G.						
3	10	16	$15^{\prime}-5^{\prime \prime}$	218 psf		
N.G.						
4	7.5	18	$13^{\prime}-11^{\prime \prime}$	298 psf		- select
:---:						

$\mathrm{t}=3 "$ (superimposed load $=350 \mathrm{psf}-57 \mathrm{psf}-2 p s f)=291 \mathrm{psf})$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*		
2	15	none	-	-		
3	10	16	$14^{\prime}-11^{\prime \prime}$	245 psf		
N.G.						
	7.5	18	$13^{\prime}-4 "$	334 psf		select
:---:						

*Vulcraft deck assumed

Problem 1-11

From Equation 1-1, the carbon content is
$\mathrm{CE}=0.16+(0.20+0.25) / 15+(0.10+0.15+0.06) / 5+(0.80+0.20) / 6=0.419<0.5$
Therefore, the steel member is weldable.

Problem 1-12

Anticipated expansion or contraction $=\left(6.5 \times 10^{-6} \mathrm{in} . / \mathrm{in}.\right)(300 \mathrm{ft}).(12 \mathrm{in} . / \mathrm{ft}).\left(70^{\circ} \mathrm{F}\right)=1.64 \mathrm{in}$.
Expansion joint width $=(2)(1.64 \mathrm{in})=.3.28 \mathrm{in}$.
Therefore, use a $31 / 4 \mathrm{in}$. wide expansion joint.
The width of the required expansion joint appears large, and one way to reduce this width is to reduce the length between expansion joints from 300 ft to say 200 ft . That will bring the required expansion joint width down to $(200 / 300)(3.28 \mathrm{in}$. $)=2.2 \mathrm{in}$. (i.e. $2^{1 ⁄ 1} 4 \mathrm{in}$. expansion joint)

Problems 1-17

B1-1a

Problem B1-1a

Angle Properties - L2x2x1/4:
$\mathrm{A}_{\mathrm{a}}:=0.944 \mathrm{in}^{2} \quad \mathrm{wt}_{\mathrm{a}}:=3.19 \mathrm{plf} \quad \mathrm{x}_{\mathrm{bar}}:=0.609 \mathrm{in} \quad \mathrm{I}_{\mathrm{a}}:=0.346 \mathrm{in}^{4}$
$\mathrm{h}:=20 \mathrm{in}$
$\mathrm{d}:=\mathrm{h}-(2) \cdot\left(\mathrm{x}_{\text {bar }}\right)=18.782 \mathrm{in}$
$\mathrm{wt}_{\mathrm{comp}}:=4 \cdot \mathrm{~A}_{\mathrm{a}} \cdot 490 \mathrm{pcf}=12.8 \cdot \mathrm{plf}$
$\mathrm{I}_{\text {comp }}:=(4)\left(\mathrm{I}_{\mathrm{a}}\right)+\left[4 \cdot \mathrm{~A}_{\mathrm{a}} \cdot\left[\left(\frac{\mathrm{d}}{2}\right)^{2}\right]\right]=334.4 \mathrm{in}^{4}$

B1-1b

Problem B1-1b

```
beam := "W12X26"
```

四 Beam Properties

$$
\begin{aligned}
& \mathrm{A}=7.65 \cdot \mathrm{in}^{2} \quad \begin{array}{l}
\text { Round Bars } \\
\mathrm{Ix}=204 \cdot \mathrm{in}^{4} \\
\mathrm{~d}=12.2 \cdot \mathrm{in} \\
\mathrm{~d}_{\mathrm{b}}:=0.875 \mathrm{in} \\
\mathrm{~A}_{\mathrm{b}}:=\frac{\pi \cdot \mathrm{d}_{\mathrm{b}}^{2}}{4}=0.601 \cdot \mathrm{in}^{2} \\
\mathrm{I}_{\mathrm{comp}}:=1.5 \mathrm{in} \\
\left.\mathrm{I}_{\mathrm{bar}}:=\frac{\mathrm{I}_{\mathrm{b}}}{2}:=\frac{\pi \cdot \mathrm{d}_{\mathrm{b}}^{4}}{64}=0.029 \cdot \mathrm{in}^{4}=6 \mathrm{~A}_{\mathrm{b}} \cdot\left(\frac{\mathrm{~d}}{2}-\mathrm{h}_{\mathrm{b}}\right)^{2}\right]=254.9 \cdot \mathrm{in}^{4} \\
\mathrm{~S}_{\mathrm{comp}}:=\frac{\mathrm{I}_{\mathrm{comp}}}{\mathrm{y}_{\mathrm{bar}}}=41.8 \cdot \mathrm{in}^{3}
\end{array} \quad \begin{array}{l}
\text { round bar } \\
\text { (typ. 4) }
\end{array} \\
&
\end{aligned}
$$

B1-1c

Problem B1-1c

column := "W8X24"
風-Column Properties

$$
\begin{aligned}
& \mathrm{A}=7.08 \cdot \mathrm{in}^{2} \\
& \mathrm{Iy}=18.3 \cdot \mathrm{in}^{4} \\
& \mathrm{bf}=6.5 \cdot \mathrm{in}
\end{aligned}
$$

Cover Plates

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{p}}:=0.5 \mathrm{in} \quad \mathrm{~b}_{\mathrm{p}}:=9 \mathrm{in} \\
& \mathrm{~A}_{\mathrm{p}}:=\mathrm{t}_{\mathrm{p}} \cdot \mathrm{~b}_{\mathrm{p}}=4.5 \cdot \mathrm{in}^{2} \\
& \mathrm{I}_{\mathrm{yp}}:=\frac{\mathrm{b}_{\mathrm{p}} \cdot \mathrm{t}_{\mathrm{p}}^{3}}{12}=0.094 \cdot \mathrm{in}^{4}
\end{aligned}
$$

Composite Section Properties

$$
\begin{aligned}
& y_{b a r}:=\frac{\mathrm{bf}}{2}+t_{p}=3.75 \cdot \mathrm{in} \quad A_{\text {comp }}:=A+(2) \cdot A_{p}=16.08 \cdot \mathrm{in}^{2} \quad \mathrm{wt}_{\mathrm{comp}}:=A_{\text {comp }} \cdot 490 \mathrm{pcf}=54.7 \cdot \mathrm{plf} \\
& \mathrm{I}_{\mathrm{comp}}:=\mathrm{Iy}+\left(2 \cdot \mathrm{I}_{\mathrm{yp}}\right)+2 \cdot\left[\mathrm{~A}_{\mathrm{p}} \cdot\left[\left(\frac{\mathrm{t}_{\mathrm{p}}}{2}+\frac{\mathrm{bf}}{2}\right)^{2}\right]\right]=128.7 \cdot \mathrm{in}^{4} \\
& S_{\text {comp }}:=\frac{I_{\text {comp }}}{y_{\text {bar }}}=34.3 \cdot \mathrm{in}^{3}
\end{aligned}
$$

https://www.book4me.xyz/solution-manual-for-structural-steel-design-aghayere-vigil/
Problem 1-18
S-1

ONE-BEAM-2-8

50	2.8	One	BEAM			170			
5.1	. 19	1	W 16×36	3	7.		. 12.9	ϕ	
52.	20	4	用. 2×3	1	$10^{1} 2$		38		
53	21	1	代. ${ }^{3} \times 4^{\prime} 2$	0	$6 \frac{1}{2}$		3		

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d}=\mathbf{y}-\overline{\mathbf{y}}$	$\mathbf{A d}^{\mathbf{2}}$
beam	10.6	7.93	84.06	448	-0.02	0
hole	-2.36	7.86	-18.55	-12.587	0.05	0
upper pls.	3	12.61	37.83	0.063	-4.7	66.21
lower pls.	3	3.11	9.33	0.063	4.8	69.18
$\boldsymbol{\Sigma}=$	$\mathbf{1 4 . 2 4}$		$\mathbf{1 1 2 . 6 7}$	$\mathbf{4 3 5 . 5 4}$		$\mathbf{1 3 5 . 4}$

$$
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{~A}}=\frac{112.67}{14.24}=7.91 \mathrm{in} . \quad \Sigma \mathrm{I}+\mathrm{Ad}^{2}=435.54+135.4=571 \mathrm{in} .4
$$

$\mathrm{Wt}=(14.24)(490 \mathrm{pcf}) / 144=48.5 \mathrm{plf}$

Problem 2-3

(a) Determine the factored axial load or the required axial strength, P_{u} of a column in an office building with a regular roof configuration. The service axial loads on the column are as follows
$\mathrm{P}_{\mathrm{D}} \quad=\quad 200 \mathrm{kips}$ (dead load)
$\mathrm{P}_{\mathrm{L}} \quad=\quad 300$ kips (floor live load)
$\mathrm{P}_{\mathrm{S}} \quad=\quad 150 \mathrm{kips}$ (snow load)
$\mathrm{P}_{\mathrm{W}} \quad=\quad \pm 60 \mathrm{kips}$ (wind load)
$\mathrm{P}_{\mathrm{E}} \quad=\quad \pm 40 \mathrm{kips}$ (seismic load)
(b) Calculate the required nominal axial compression strength, P_{n} of the column.

1: $\quad \mathrm{P}_{\mathrm{u}}=1.4 \mathrm{P}_{\mathrm{D}}=1.4(200 \mathrm{k})=280 \mathrm{kips}$
2: $\quad \mathrm{P}_{\mathrm{u}} \quad=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}}$

$$
=1.2(200)+1.6(300)+0.5(150)=795 \text { kips } \text { (governs) }
$$

3 (a): $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{L}}$

$$
=1.2(200)+1.6(150)+0.5(300)=630 \mathrm{kips}
$$

3 (b): $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{W}}$
$=1.2(200)+1.6(150)+0.5(60)=510 \mathrm{kips}$
4: $\quad \mathrm{P}_{\mathrm{u}} \quad=1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{W}}+0.5 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}}$

$$
=1.2(200)+1.0(60)+0.5(300)+0.5(150)=525 \mathrm{kips}
$$

5: $\quad \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}+0.5 \mathrm{P}_{\mathrm{L}}+0.2 \mathrm{P}_{\mathrm{S}}$

$$
=1.2(200)+1.0(40)+0.5(300)+0.2(150)=460 \mathrm{kips}
$$

Note that P_{D} must always oppose P_{W} and P_{E} in load combination 6
6 :

$$
\begin{aligned}
\mathrm{P}_{\mathrm{u}} & =0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{w}} \\
& =0.9(200)+1.0(-60)=120 \mathrm{kips} \text { (no net uplift) }
\end{aligned}
$$

7: $\quad \mathrm{P}_{\mathrm{u}}=0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}$
$=0.9(200)+1.0(-40)=140 \mathrm{kips}($ no net uplift)
$\phi \mathrm{P}_{\mathrm{n}}>\mathrm{P}_{\mathrm{u}}$
$\phi_{c}=0.9$
$(0.9)\left(\mathrm{P}_{\mathrm{n}}\right)=(795 \mathrm{kips})$
$P_{n}=884$ kips

Problem 2-4

(a) Determine the ultimate or factored load for a roof beam subjected to the following service loads:

Dead Load $=29 \mathrm{psf}$ (dead load)
Snow Load $=35 \mathrm{psf}$ (snow load)
Roof live load $=\quad 20 \mathrm{psf}$
Wind Load $=25 \mathrm{psf}$ upwards $/ 15 \mathrm{psf}$ downwards
(b) Assuming the roof beam span is 30 ft and tributary width of 6 ft , determine the factored moment and shear.

Since, $S=35 p s f>L_{r}=20 p s f$, use S in equations and ignore L_{r}.

$$
\begin{aligned}
& \text { 1: } \quad \mathrm{p}_{\mathrm{u}}=1.4 \mathrm{D}=1.4(29)=40.6 \mathrm{psf} \\
& \text { 2: } \quad \mathrm{p}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~S} \\
& =1.2(29)+1.6(0)+0.5(35)=52.3 \mathrm{psf} \\
& 3(\mathrm{a}): \quad \mathrm{p}_{\mathrm{u}} \quad=1.2 \mathrm{D}+1.6 \mathrm{~S}+0.5 \mathrm{~W}, 0.5(15)=\mathbf{9 8 . 3} \mathbf{~ p s f} \text { (governs) } \\
& 3 \text { (b): } \quad \mathrm{p}_{\mathrm{u}} \quad=1.2 \mathrm{D}+1.6 \mathrm{~S}+0.5 \mathrm{~L} \\
& =1.2(29)+1.6(35)+(0)=90.8 \mathrm{psf} \\
& \text { 4: } \quad \mathrm{p}_{\mathrm{u}} \quad=1.2 \mathrm{D}+1.0 \mathrm{~W}+\mathrm{L}+0.5 \mathrm{~S} \\
& =1.2(29)+1.0(15)+(0)+0.5(35)=67.3 \mathrm{psf} \\
& \text { 5: } \quad \mathrm{p}_{\mathrm{u}} \quad=1.2 \mathrm{D}+1.0 \mathrm{E}+0.5 \mathrm{~L}+0.2 \mathrm{~S} \\
& =1.2(29)+1.0(0)+0.5(0)+0.2(35)=41.8 \mathrm{psf} \\
& \text { 6: } \quad \mathrm{p}_{\mathrm{u}} \quad=0.9 \mathrm{D}+1.0 \mathrm{~W} \text { (} \mathbf{D} \text { must always oppose } \mathbf{W} \text { in load combinations } 6 \text { and 7) } \\
& =0.9(29)+1.0(-25) \quad \text { (upward wind load is taken as negative) } \\
& =1.1 \mathrm{psf} \text { (no net uplift) } \\
& \text { 7: } \quad \mathrm{p}_{\mathrm{u}} \quad=0.9 \mathrm{D}+1.0 \mathrm{E} \text { (} \mathbf{D} \text { must always oppose } \mathbf{E} \text { in load combinations } 6 \text { and 7) } \\
& =0.9(29)+1.6(0) \quad \text { (upward wind load is taken as negative) } \\
& =26.1 \mathrm{psf} \text { (no net uplift) }{ }^{\text { }} \\
& \mathrm{w}_{\mathrm{u}}=(98.3 \mathrm{psf})(6 \mathrm{ft})=\mathbf{5 9 0} \mathbf{p l f}(\text { downward })
\end{aligned}
$$

downward	No net uplift
$V_{u}=\frac{w_{u} L}{2}=\frac{(590)(30)}{2}=8850 \mathrm{lb}$.	.
$M_{u}=\frac{w_{u} L^{2}}{8}=\frac{(590)(30)^{2}}{8}=66375 \mathrm{ft}-\mathrm{Ib}$ $=66.4 \mathrm{ft}-\mathrm{kips}$	

