Cold Air Damming
VU2: Course Number 707813

Jim Steenburgh
Fulbright Visiting Professor of Natural Sciences University of Innsbruck
Department of Atmospheric Sciences
University of Utah
jim.steenburgh@utah.edu

Learning Objectives

- After this class you should
- Recognize areas of the world that are prone to cold air damming and its impacts
- Understand the processes that contribute to the development and maintenance of cold air damming
- Be prepared to analyze and forecast events

Cold Air Damming

- What is it?
- The phenomenon of cold air becoming entrenched along the slopes of a mountain range
- General characteristics
- Cold air in the form of a dome
- Accompanying "U-shaped" ridge in the sea level pressure field

Cold Air Damming

- Impacts
- Locally low temperatures
- Sleet, snow, or freezing rain
- Fog and stratus
- Enhancement of gap winds

Appalachian Cold Air Damming

Basic Dynamics

Discussion

Other than terrain driven flows, what other processes contribute to the development and maintenance of colddair damming?

Event Types

- Morphology based on
- Three-dimensional scale variations
- Relative roles of synoptic-scale and diabatic processes
- Types
- Classic damming
- Hybrid damming
- In situ damming
- "Look alikes"

Classic Damming

Strong forcing by synopticscale features

- Interaction of large-scale flow with topography results in upslope adiabatic cooling and along-barrier cold advection east of Appalachians
- Diabatic processes not needed to initiate event, but can strengthen it

tartield (1999)

Hybrid Damming

- Synoptic-scale and diabati processes play nearly equal roles
- Parent high may be:
- In a good position but weak
- Progressive (limited CAA)
- Diabatic processes
- Cool low levels
- Enhance low-level stability
- Ultimately enhance upslope cooling, high-pressure, and
along-barrier cold advection

Hartifield (1999)

Erosion

- Not handled well by current NWP models
- Rules of thumb
- Strong events require cold-front passage to mix out cold dome (particularly during winter)
- Shallow, weak events with only fog or low cloud cover are susceptible to erosion by insolation and mixing from aloft

Hartfield (1999)

Gap Effects

Along-barrier cold advection not as pronounced as with Rockies/Appalachians

- With approach of a cyclone cold air remains entrenched along Cascades, but mixes out along southern and eastern periphery of Columbia Basin
- Cold pooling also common

Cascades

- Cold, continental air dams along east slopes of Cascades
- Along-barrier cold advection as pronounced as w
 east of Cascades

Cascade Example

- Antecedent conditions
- Cold air moves into and/or a period of persistent ridging establishes a cold pool over th Columbia Basin (Whiteman et al. 2001)
- Initiation
- Front or frontal cyclone approaches from Pacific
- Cold air begins to mix out along southern and southeastern Columbia Basin
- U-shaped mesoscale ridg develops east of Cascades

Cascade Example

- Downslope flow develops north of Blue Mountains
- Cold air remains entrenched along Cascades and over central Columbia Basin
- Cross-barrier pressure and temperature gradients increase

Cascade Example

- Cold air channels through mountain gaps, producing locally lower temperatures and snow levels compared to sites west of Cascade Crest

Cascade Example

- Cold air begins to mix or be advected out as front moves across Cascades
- Cold air may remain entrenched along eastern slopes and in passes well after passage of front aloft
- Eventually, westerly flow develops in passes and eastern Cascades

Cascade Example

- Development of westerly flow results in movement of mild maritime air into passes
- Rapid temperature rise
- Snow may change to rain
- Dangerous avalanche conditions may develop
- Effects are most dramatic at pass level
- Sites west of crest and away from passes may see a more "typical" passes
 fropa

Summary

- Cold-air damming is the phenomenon of cold air becoming entrenched along the slopes of a mountain range
- Contributing mechanisms
- Windward adiabatic cooling
- Along-barrier cold advection (enhanced by blocked low-Froude
number flow
- Cooling due to evaporation/melting
- Reduced insolation due to cloud cover
- Event erosion
- Need cold/occluded front passage to mix out most strong events during winter
- Solar insolation or turbulent mixing more effective if dammed airmass is shallow or during the fall/spring

References

Bell, G. D., and L. F. Bosara, 1988: Appalachian cold.air damming. Mon. Wea. Rev, 116, 137.-16.
 Sunn, L, 1987: Cold air damming by the front Range of the Colorado Rockies and its relationship to locally heavy snows. Wea. Forecasting. $2,177-189$,
 Houre, R. A, J. J., 2012: Orographic effects on precipitataing cloud. Rev, Geophys, 50, AG1001, doi110.1029/2011R6003365. Jung, T., and P. B. Phines, 2007: Greenland's pressure drag and the Atantic storm track. . Atmos. Sci, 64,4000 - 4030 .
 Linacre, E. and B. Geeers, 1997 : Climates ond Weather Explained. Routedege, 464 pp . Rev, 129, 1021.1 .1041.

 Schwerdteger, W., 1975: The effect of the Antarctic peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev., $103,45551$.

Steenburgh, W.J.c. C. . Mass, and S. . . .erguson, 1997.
Wastington Cascades. Wea. Forecosting, 12, 208.227.

