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Lecture 07
Introduction to the MIPS ISA
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MIPS vs. The 6-instruction Processor

University of Notre Dame

Motivation: Why MIPS?

+ Shortcomings of the simple processor
— Only 16 bits for data and instruction
— Data range can be too small
— Addressable memory is small
— Only support at most 16 instructions

+ MIPS ISA: 32-bit RISC processor

— A representative RISC ISA
» (RISC - Reduced Instruction Set Computer)

— Afixed-length, regularly encoded instruction set and
uses a load/store data model

— Used by NEC, Cisco, Silicon Graphics, Sony, Nintendo

University of Notre Dame
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A quick look: more complex ISAs

U 6-instruction processor:
Add instruction: 0010 rasrazrairap rbsrbarb1rbo rcarcarcirco
Add Ra, Rb, Rc—specifies the operation RF[a]=RF[b] + RF[c]

U MIPS processor:

e (add: op+func)

31 ¥ 2625 ¥ 21207 1615 * 1110 65 0
op (6) rs (5) rt (5) rd (5) shamt (5) | funct (6)

Machine:
B: 000000 00111 01000 01001  xxxxx 100000
D: 0 7 8 9 X 32

University of Notre Dame
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A quick look: more complex ISAs A quick look: Egre complex ISAs

U 6-instruction processor: o @l | paws

Sub instruction: 0010 rasrazrairao rbsrbzrbirbo resreareirco —HiF D TN s
SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] — RF[c] u Cf] Y W_data R_data
? } ) 1
U A MIPS subtract d 12 3 3 :; 1 data
Assembly: sub $9, $7, $8 # sub rd, rs, rt: RF[rd] = RF[rs]-RF[rt] e ALr-0) =
oo 5 V RE_W_addr
......................... Controller BF_Rp adk
., T RF_Ra_ addr
31 ¥ 2625 * 2120" 1615 * 1110 68> 0
op (6) rs (5) rt (5) rd (5) shamt (5) | funct (6) RE_Rp.zero
M~ alu_s1
alu_s0
Machine: Control unit I Datapath ;—16
s1 s0 | ALU operation
B: 000000 00111 01000 01001  xxxxx 100010 o9 |PasAtouy
D: 0 7 8 9 X 34 1o |a8
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A quick look: more complex ISAs [patape™ In terms of course work:

+ In class and in homework assignments, we look at
design issues that relate to modern machines

+ In labs, we apply these ideas on a smaller scale (i.e. the
6-instruction processor) and tie lessons learned in the
\ lab back to class work

struction [25 -21] Rod
g / regis Read
o Instruction [20 -16] Read data 1
I o 1 regiter 2
o fmor—red
) "
data 2

e
Instruction register
memory Instruction [15 -11]

data —|
Instruction [15 -0] 1 [ sign |32
extend
Instruction [5-0]
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Instruction [31-26]
e on e

« Before we talk more about MIPS, let’s spend a few
slides thinking about how this fits into the big picture.

Read
Address data
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Back to course goals...

+ At the end of the semester, you should be able to...
— ...describe the fundamental components required in a
single core of a modern microprocessor

* (Also, teract
i nal storag
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Apple Memory Module 2GB
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on-chip memory, A
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main memory, /’ @
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A reason today’s compilers work like this:

Dependencies: Function:

- Language dependent Pass

Transform language to
common, intermediate

language form

Intermediate | representation

Front-end per

- Machine independent

For example,
procedure inlining and
loop transformations

- Somewhat language dependent

High-level

- Largely machine independent optimizations

- Small language dependencies Including global and

local optimization +
register allocation

Global

« Machine dependencies slight

optimizer

- (l.e. register counts/types)

Detailed instruction
selection and machine-
dependent optimizations
(assembler next?)

University of Notre Dame

- Highly machine dependent Code

- Language independent generator

CSE 30321 - Lecture 07 - Introduction to the MIPS ISA 10

Back to course goals...

+ At the end of the semester, you should be able to...

— ...understand how code written in a high-level language
(e.g. C) is eventually executed on-chip...
In Java:

(3
xan?!
public static void insertionSort(int[] list, int length) {

In C: int firstOutOfOrder, location, temp;
void insertionSort(int numbers[], int array_size) for(firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++) {
¢ if(list[firstOutOfOrder] < list[firstOutOfOrder - 1]) {

temp = list[firstOutOfOrder];
location = firstOutOfOrder;

int i, j, index;
for (i=1; i < array_size; i++)
{

index = numbers([i];

= do{
J i;
while ((j > 0) && (numbers[j-1] > index)) list[location] = list[location-1];
numbers([j] = numbers([j-1]; location--;
4 =3 =1
} while (location > 0 && list[location-1] > temp);
numbers[j] = index;

list[location] = temp;

Both programs could be run on the same processor... how
does this happen?

University of Notre Dame
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We’ll discuss MIPS more in a bit...
...but 1st, a few slides on ISAs in general.

University of Notre Dame
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Instructions Sets

+ “Instruction set architecture is the structure of a
computer that a machine language programmer (or a
compiler) must understand to write a correct (timing
independent) program for that machine”

— IBM introducing 360 (1964)

+ an instruction set specifies a processor’s functionality
— what operations it supports
— what storage mechanisms it has & how they are accessed

— how the programmer/compiler communicates programs to
processor

ISA = “interface” between HLL and HW

ISAs may have different sytnax (6-instruction vs. MIPS), but can
still support the same general types of operations (i.e. Reg-Reg)

University of Notre Dame

What makes a good instruction set

implementability
— supports a (performance/cost) range of implementations
+ implies support for high performance implementations
*+ | programmability A bit more on this one...
— easy to express programs (for human and/or compiler)
+ backward/forward compatibility

— implementability & programmability across generations

> e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II,
Pentium lll, Pentium 4...

+ think about these issues as we discuss aspects of ISAs

University of Notre Dame
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Instruction Set Architecture

* Must have instructions that
— Access memory (read and write)
— Perform ALU operations (add, multiply, etc.)
— Implement control flow (jump, branch, etc.)
+ l.e. to take you back to the beginning of a loop

+ Largest difference is in accessing memory
— Operand location
+ (stack, memory, register)
— Addressing modes

* (computing memory addresses)
— (Let’s digress on the board and preview how MIPS does a load)
— (Compare to 6-instruction processor?)

University of Notre Dame

Programmability

+ a history of programmability
— pre - 1975: most code was hand-assembled

— 1975 - 1985: most code was compiled
+ but people thought that hand-assembled code was superior

— 1985 — present: most code was compiled
+ and compiled code was at least as good as hand-assembly

over time, a big shift in what
“programmability” means

University of Notre Dame
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Today’s Semantic Gap

+ popular argument: today’s ISAs are targeted to one
HLL, and it just so happens that this HLL (C) is very
low-level (assembly++)

—je.i=j+k; vs. AddRi,Rj, Rk

— would ISAs be different if Java was dominant?
* more object oriented?
+ support for garbage collection (GC)?
» support for bounds-checking?
+ security support?

University of Notre Dame

Aspect #1: Instruction Format

- fixed length (most common: 32-bits)
— (plus) easy for pipelining (e.g. overlap) and for multiple
issue (superscalar)

« don’t have to decode current instruction to find next
instruction

— (minus) not compact
« Does the MIPS add “waste” bits?

+ variable length
— (plus) more compact
— (minus) hard (but do-able) to superscalarize/pipeline
« PC=PC +2??

University of Notre Dame
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Instruction Set Aspects

+ #1 format
- length, encoding
+ #2 operations
— operations, data types, number & kind of operands
+ #3 storage
— internal: accumulator, stack, general-purpose register
— memory: address size, addressing modes, alignments
* #4 control

— branch conditions, special support for procedures,
predication

University of Notre Dame

Variable Addressing Mode

- Variable addressing mode - allows virtually all
addressing modes with all operations

- Best when many addressing modes & operations

Variable
Operation & Address Address Address Address
# of operands | Specifier 1 Field 1 ees o |Specifier n Field n

i.e. register-memory, memory-memory,
register-register... all possible

University of Notre Dame
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Some random comments

- Variable addressing mode - allows virtually all
addressing modes with all operations e register-memory, memory-

memory, register-register...

- Best when many addressing modes & operations
- Fixed addressing mode — combines operation &
addressing mode into opcode
- Best when few addressing modes and operations
- Good for RISC Wwnat's Risc? “Primitives not solutions.”  This is us.

University of Notre Dame

Aspect #2: Operations

- arithmetic and logical:

— add, mult, and, or, xor, not
+ data transfer:

— move, load, store

If no instruction for
HLL operation, can

+ control: ’ perat
- conditional branch, jump, call, return fake it” - i.e. lots
+ system: of adds instead of

— syscall, traps multiply.
+ floating point:

— add, mul, div, sqrt
+ decimal:

— addd, convert (not common today)
« string:

— move, compare (also not common today)
+  multimedia:

- e.g., Intel MMX/SSE and Sun VIS €—

Examples...
— arithmetic/data transfer, but on vectors of data

* vector:
University of Notre Dame
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Some random comments

- Variable addressing mode - allows virtually all
addressing modes with all operations

- Best when many addressing modes & operations

- Fixed addressing mode — combines operation &
addressing mode into opcode

- Best when few addressing modes and operations
- Good for RISC  wnatsRisc? “Primitives not solutions.” This is us.
- Hybrid approach is 3rd alternative
- Usually need a separate address specifier per operand

Operation Address Address

Specifier Field
Operation Address Address Address .

P Specifier 1 Specifier 2 Field HYbr'ld
Operation & Address Address Address
# of operands | Specifier Field 1 Field 2
University of Notre Dame
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Data Sizes and Types

- fixed point (integer) data
— 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit (double)
- floating point data
— 32/64 bit (IEEE754 single/double precision)
— 80-bit (Intel proprietary)
+ address size (aka “machine size”)
- e.g., 32-bit machine means addresses are 32-bits
— virtual memory size key: 32-bits —> 4GB (not enough)

— famous lesson:

- one of the few big mistakes in an architecture is not enabling
a large enough address space

University of Notre Dame
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Aspect #3: Internal Storage Model Storage Model: Stack

push A S[++TOS] = M[A];
push B S[++TOS] = M[B];
add T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=T1+T2;
pop C M[C] = S[TOS--];

+ choices

— stack
accumulator
memory-memory
register-memory

— register-register (also called “load/store”) — operands implicitly on top-of-stack (TOS)
- running example: — ALU operations have zero explicit operands
— addC,A,B (C:=A+B) + (plus) code density (top of stack implicit)

+ (minus) memory, pipelining bottlenecks (why?)
— mostly 1960’s & 70’s
+ x86 uses stack model for FP
— (bad backward compatibility problem)
+ JAVA bytecodes also use stack model
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Storage Model: Accumulator Storage Model: Memory-Memory

add C,A,B M[C] = M[A] + M[B];
load A accum = M[A];

add B accum += M[B];

store C M[C] = accum; — no registers

+ (plus) best code density (most compact)
— Why? Total # of instructions smaller for one...

— acc is implicit destination/source in all instructions - (minus) large variations in instruction lengths
— ALU operations have one operand + (minus) large variations in work per-instruction
+ (plus) less hardware, better code density (acc implicit) + (minus) memory bottleneck
* (minus) memory bottleneck — no current machines support memory-memory

— mostly pre-1960’s
+ examples: UNIVAC, CRAY
+ x86 (IA32) uses extended accumulator for integer code

University of Notre Dame University of Notre Dame
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Storage Model: Memory-Register

load R1,A R1 = M[A];
add R1,B R1 = R1 + M[B];
store C,R1 M[C] = R1;

- like an explicit (extended) accumulator

+ (plus) can have several accumulators at a time

+ (plus) good code density, easy to decode instructions
— asymmetric operands, asymmetric work per instruction
— 70’s and early 80’s

- IBM 360/370

* Intel x86, Motorola 68K

University of Notre Dame

On to MIPS

+ MIPS is a register-register machine

- Aside from enhancements we made, 6-instruction is
too!

University of Notre Dame
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Storage Model: Register-Register (Ld/St)
load R1,A R1 = M[A];
load R2,B R2 = M[B];
add R3,R1,R2 R3 = Rl + R2;
store C,R3 M[C] = R3;

— load/store architecture: ALU operations on regs only
» (minus) poor code density
+ (plus) easy decoding, operand symmetry
» (plus) deterministic length ALU operations
+ (plus) fast decoding helps pipelining and superscalar
— 1960’s and onwards
+ RISC machines: Alpha, MIPS, PowerPC (but also Cray)
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MIPS Registers (R2000/R3000)
0O 32x32-bit GPRs (General purpose registers) 32 bits
m $0 = $zero (therefore only 31 GPRs) ro 0

B $1 = $at (reserved for assembler)

m $2 - $3 = $v0 - $v1 (return values)

B $4 - $7 = $a0 - $a3 (arguments) ty B by
m $8 - $15 = $t0 - $t7 (temporaries) PC
® $16 - $23 = $s0 - $s7 (saved) HI

H $24 - $25 = $t8 - $t9 (more temporaries) L0

m $26 - $27 = $kO0 - $k1 (reserved for OS)

m $28 = $gp (global pointer)
m $29 = $sp (stack pointer)
m $30 = $fp (frame pointer)
H $31 = $ra (return address)

University of Notre Dame

* 32x32-bit floating point

registers (paired double precision)
* HI, LO, PC
« Status, Cause, BadVAddr, EPC
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Board digression
+ Programmer visibility
* Procedure calls

University of Notre Dame

Effect of Byte Addressing

MIPS: Most data items are contained in words,a word is
32 bits or 4 bytes. Registers hold 32 bits of data

0 32 bits of data 8 bits of data

8 bits of data

‘™
0
0
0
0
.
‘e
0

4 32 bits of data N

0

1

2 | 8 bits of data
8 | 32bits of data 3

8 bits of data

C | 32bits of data

O 232 pytes with byte addresses from 0 to 232-1

O 230 words with byte addresses 0, 4, 8, ... 232-4

O Words are aligned

O What are the least 2 significant bits of a word address?

University of Notre Dame
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Memory Organization
O Addressable unit: Addr — nbits
H smallest number of consecutive 0
bits (word length) can be
accessed in a single operation
B Example, n=8, byte addressable
Given 1K bit memory, 16 bit word P P bo
addressable:
How many words? 2.

How many address bits? (N*2%) bits = (n*23) bytes

MIPS uses byte-addressable memory

University of Notre Dame

A View from 10 Feet Above

+ Instructions are characterized into basic types
+ Each type interpret a 32-bit instruction differently
+ 3 types of instructions:
— R type
- Il type
- J type
+ Look at both assembly and machine code

* In other words:

— As seen with Add, instruction encoding broken down into
X different fields

— With MIPS, only 3 ways X # of bits arranged
+ Think about datapath: Why might this be good?

University of Notre Dame
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R-Type: Assembly and Machine Format

U R-type: All operands are in registers

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

31 ¥ 2625 >':21 20 1615 1‘1 10 65 -
op (6) rs (5) rt (5) rd (5) shamt (5) | funct (6)

Machine:
B: 000000 00111 01000 01001  xxxxx 100000
D: 0 7 8 9 X 32

University of Notre Dame

I-Type Instructions

* I-type: One operand is an immediate value and others
are in registers

Example: addi $52 $s1, 128 # addi rt, rs, Imm
L #RF[18] RF[17]+128

Ky

31 £2625 2120 1815 *y 0
Op (6) rs (5) rt (5)

Address/Immediate value (16)

B: 001000 10001 10010 0000000010000000
D: 8 17 18 128

University of Notre Dame
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R-type Instructions

U All instructions have 3 operands

U All operands must be registers

U Operand order is fixed (destination first)
U Example:

Ccode: A =B - C;

(Assume that A, B, C are stored in registers s0, s1, s2.)

MIPS code: sub $s0, $s1, $s2

Machine code:

U Other R-type instructions
B addu, mult, and, or, sll, srl, ...

University of Notre Dame

I-Type Instructions: Another Example

* I-type: One operand is an immediate value and others
are in registers
Example: Iw $s3, 32..($.t'0) # RF[19] = DM[RF[8]+32]

M 2625 72120 1615 0
op®) | rs) | ()

Address/Immediate value (16)

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?

University of Notre Dame
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I-Type Instructions: Yet Another Example

 I-type: One operand is an immediate value and others
are in registers

Example: Agaln bne $t0, $t1, Again
# |f(RF{8]' RF[9]) PC=PC+4+Imm*4
P  #else PC=PC+4 (Why '4?)

31,3625 ,2'% 20 ;1615 0
opE) | rs() | ()

Address/Immediate value (16)

B: 00101 01000 01001 1111111111111
D: 5 8 9 -1

PC-relative addressing

University of Notre Dame
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Example: Memory Access Instructions

+ MIPS is a Load/Store Architecture (a hallmark of RISC)
— Only load/store type instructions can access memory
+ Example: A=B+C;
— Assume: A, B, C are stored in memory, $s2, $s3, and $s4
contain the addresses of A, B and C, respectively.
- Iw $t0, 0($s3)
— RF[8]=DM[RF[19]]
« lw $t1, 0($s4)
— RF[9]=DM[RF[20]]
- add $t2, $t0, $t1
— # RF[10]=RF[8]+RF[9]
- sw $t2, 0($s2)
— DM[RF[18]]=RF[10]
 sw has destination last

+ What is the instruction type of sw?
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J-Type Instructions

4 J-type: only one operand: the target address

Example: j 3_  #PC = (PC+4)[31:28]lITargetll00 (Why “00”?)
M ae2s . 0
Op (6) Target address (26)

B: 000010 00000000000000000000000011
D: 2 3

Pseudo-direct Addressing

University of Notre Dame
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See handout for lots of examples.
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