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Abstract— Service Component Architecture (SCA) is a standard 

for developing independent technology distributed Service 

Oriented-Architecture (SOA). SCA standard proposes using 

components and also architecture descriptors. The standard also 

covers the life cycle stages of implementation and deployment. 

One of the SCA problems is that it does not address the SCA 

application management and support of deployed components. 

This article covers these subjects and defines a platform for 

applications that support run-time management and distribution 

capabilities. Evermore the component-based design of the 

proposed platform provides a high degree of flexibility and 

functionality in the platform itself. This platform can be a good 

context for SOA applications. The results show that in 

comparison with the architecture of SCA, run-time management 

of the platform does not have a negative impact on its 

performance. 
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I. INTRODUCTION 

The emergence of Service Oriented-Architecture (SOA), as 
an important model for online and web-based services, needs a 
software framework for delivery, support and management of 
distributed applications. Service Component Architecture 
(SCA) [1] has created the conditions with an extensive set of 
specifications and definitions on a SOA infrastructure. This set 
of definitions are independent of technology, programming 
language and protocol. 

Although SCA is not the first approach that combines 
software components and services, and there are other 
approaches such as OSGi [2], but the independence of the 
approach from technology and its support for combining 
hierarchical components causes this approach to be attractive in 
the SOA world. Unfortunately, SCA does not address the 
management, configurable and scalability that are expected of 
a modern SOA platform. For example, SCA specification 
defines how the installation and configuration of the 
components of services are controlled, but it says nothing in the 
following discussion: (a) providing the functionality needed to 
manage the runtime configuration of components, (b) 

providing the facilities needed for management of the platform 
itself, and (c) controlling the execution of service components 
(for example, for online changes to the configurations). In 
general, it seems SOA needs a dynamic and runtime 
reconfigurable architecture for issuing these challenges, 
identified by Papazoglou et al. [3] 

This paper introduces an architecture to host SCA 
applications. In comparison with the existing architectures, the 
main goal of this architecture is to address the reconfigurable 
issues mentioned above and to achieve the systematic 
management of a system. These issues must be solved in both 
application components and the platform (nonfunctional 
services, communication protocols, etc.). This is possible 
through the expansion of SCA component model and then 
using this model to implement the components of the service of 
programs and the platform itself. 

II. SCA STANDARD AND ITS RELATED ISSUES 

This section focuses on SCA and key challenges of 
software engineering in the context of implementing flexible 
component. 

SCA [1,4] is a set of specifications for building distributed 
applications based on SOA and component-based software 
engineering (CBSE). This model has been constructed by a 
group of various companies, including BEA, IBM, IONA, 
Oracle, SAP, Sun and TIBCO. 

While SOA offers a way to provide great services, separate 
from each other and accessible remotely, but it does not specify 
how these services should be implemented. SCA fills this gap 
by defining a component model. This model is useful for 
building service-oriented applications. The most important 
entities of these programs are their software components. The 
components can be used together to create composite 
components. Components need and provide the services. The 
required services are named reference. References and services 
either are connected to each other through the facilities called 
wires or included in their composite and promoted for external 
use. Figure 1 shows a symbol for each of these concepts. 
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Figure 1.   SCA Architechture concepts 

The SCA standard [1] is organized based on four main 
elements: assembly language, component implementations, 
bindings and policies. These elements can be used to help 
define a service-oriented architecture that is independent of 
communication protocols and programming language, as much 
as possible. 

Assembly language: this language assembles the 
configuration and communication components, in assistance 
with a grammar-based XML. For example, Figure 2 depicts the 
descriptor related to the communications of Figure 1. 
Composite MyApp (lines 1-20) covers two components View 
(lines 3-12) and Model (lines 13-18). In addition, MyApp 
service interface “run” (line 2) is located inside the component 
View. View and Model have been implemented in Java and in 
classes with names SwingGuiImpl (line 4) and ModelImpl (line 
14). View provides the service interface “run” (lines 5-7) and 
requires the service interface Model (lines 15-17). The explicit 
connection between the interfaces of these two services can be 
seen in line 19. However, SCA, like OSGi, supports the 
autowire mechanism for implicit wiring of services [2]. 

Figure 2.   A sample descriptor 

Component Implementations: This element defines how to 
implement SCA services. SCA assumes nothing about 
technologies used for component implementations, but also 
supports programming languages, like Java, C ++, COBOL, C, 
as well as scripting languages, such as PHP and advanced web 
oriented technologies, like Spring beans, EJB stateless beans or 
BPEL orchestrations. The choice between wide ranges of 
solutions promotes for the integration and implementation 

business services and thus the independence of programming 
languages. 

Binding Specifications: This element specifies how the 
SCA services should be available. This includes access to other 
programs based on SCA or any other kind of service-oriented 
technologies such as EJB [5] or OSGi [2]. Although Web 
services are the preferred option for SCA communication 
technology, but this option may not meet all the needs of the 
system. In some cases, technologies with different properties 
(e.g. in terms of reliability or performance) may be required. 
As a result, SCA defines the concept of connection: a service 
or a reference can be bound to a particular communication 
protocol, such as SOAP for Web services, Java RMI, Sun JMS, 
EJB and JSON-RPC. 

In addition to the concept of binding, SCA does not not 
focus on a special interface description language (IDL), and 
instead, support different languages, such as Web Services 
Description Language (WSDL) and Java Interface. The 
independence from communication protocols and interface 
description languages creates corporations with another 
middleware SOA technologies. 

Policy Frameworks: nonfunctional properties can be added 
to an SCA component by the concept of policy set (or intent), 
so that it can declare the set of nonfunctional parameters that 
the service depends on. After that, the SCA platform should 
ensure that these policies are implemented. Security and 
transactions [6] are two policies that are in the SCA 
specification. However, developers may require to have other 
types of nonfunctional properties (e.g. persistence or logging). 
Therefore, the set of policy set may be extended by the user-
specified values. 

In general, these principles offer a wide range of different 
solutions for the implementation of SCA-based applications. 
Developers can think about the combination of new forms of 
mapping programming languages (e.g. the components of the 
SCA written by Scala [7] or XQuery [8]), language interface 
definition (such as CORBA IDL [9]), communication bindings 
(e.g., JBI [10] and REST [11]) and nonfunctional properties 
(e.g. timing and authentication). So, supporting this diversity of 
technologies needs to define a modular infrastructure for the 
deployment of heterogeneous application configurations. 

The SCA has two important challenges that must be met by 
SCA platform providers. First, although SCA specification has 
all the mechanisms required to declare a wide range of 
variation points in the given application, but it says nothing 
about the architecture of the platform that implements these 
variation points. So the first challenge of designing a SCA 
platform is to be flexible and extensible enough for integrating 
these variation points. 

The second challenge is that the SCA specification focuses 
on the description of assembling and configuration of 
components that are used to write a SOA program. The 
assembly is used as input to initialize and start the program. 
However, the SCA specification does not talk about run-time 
management of the program. This management includes 
monitoring and reconfiguration of the program. In addition, 
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SCA specification does not include the run-time management 
of the platform itself. But these properties are necessary for an 
SOA platform to change the operating conditions, to support 
online evolution, and to deploy the program in a dynamic 
environment (such as cloud computing or ubiquitous 
environment). These problems have been resolved in the 
proposed platform. 

III. HISTORY 

Several implementations of the SCA specification are 
available. These implementations can be divided into two 
categories: commercial (e.g. HYDRASCA, IBM WebSphere 
Application Server Feature Pack for SOA, Oracle Event-driven 
Architecture Suite) and open source (such as TUSCANY, 
NEWTON, and FABRIC3). 

While TUSCANY covers different standards defined by the 
SCA Open SOA group, the proposed platform focuses on the 
main features of SCA in Java in order to gain a run-time core 
with a lighter and faster footprint. In comparison with 
TUSCANY, NEWTON and FABRIC3, the proposed platform 
is based on the SCA reflecting functionality programming 
model to provide a dynamic reconfiguration of SCA 
applications and the platform itself. Using the proposed 
platform, SCA components can change their structure at 
runtime. Also, by using this method, assemblies can be 
reconfigured to address the new requirements. Finally, by using 
this method new components can be constructed. These 
features open a new perspective for agility of SOA, SCA run-
time management of applications and the platform itself. 

Compared to known component models, such as EJB, 
COM/.NET [12] and CCM [13], SCA provides a software 
architecture concept and also the Architecture Description 
Language (ADL) to give a correct vision on assembling 
components. The proposed platform expands SCA model with 
reflection inherited from FRACTAL [14-16] and FAC [17] 
models. 

The proposed platform shares several features such as 
introspection and reconfigurability with component platforms, 
such as OPENCOM [18], HADAS [19], PRISM [20], 
LEGORB [21], K-COMPONENT [22] and JBOSS [23]. 
However, these models have smaller components in 
comparison with the SCA components of the proposed 
platform. These components are comparable with FRACTAL 
components. The purpose of these models is middleware 
platforms, such as OpENORB [18]. The purpose of the 
proposed platform is distributed SOA applications. These 
programs are essentially heterogeneous in communication 
protocols and implementation languages. So this platform 
should be able to integrate several different technologies. 

OSGi Declarative Services [2] is another service-oriented 
component model for SOA. Several platforms, such as Eclipse 
EQUINOX, Apache FELIX and KNOPFLERFISH have 
implemented this component model. OSGi Declarative 
Services is expanded with tools, such as iPOJO [24] to support 
the overlooked features, like composite components. OSGi and 
iPOJO focus on Java, while SCA support from multi mapping 

languages. In addition, OSGi focuses on the life cycle and 
component identification, while SCA emphasizes on an 
architecture-centric approach for deploying services. The 
proposed platform brings the possibility of reconfiguration for 
SCA, which is beyond those available with OSGi and iPOJO. 
In addition, since the proposed platform supports the 
implementation of components with OSGi, a program can be 
fully implemented with OSGi, while takes advantages of 
software architecture explained with SCA assembly language. 
This allows features like OSGi versioning of components to be 
used. 

MADAM [25] and MUSIC [26] are the middleware 
framework that support dynamic run-time reconfiguration and 
mobile applications. In particular, the methods take advantages 
of component paradigm for automatically changing the 
structure of a program when changing its context. While 
MADAM defines its own component model, MUSIC uses the 
OSGi Declarative Services to implement middleware softwares 
and services. In particular, MUSIC compensates weaknesses of 
OSGi by defining a component-based architecture for 
applications and its supporting platform. This configuration of 
this architecture is continuously optimized by an adaptation 
middleware. 

IV. THE PROPOSED PLATFORM 

All components of the proposed platform have been 
designed and implemented based on the SCA component 
model paradigm. Figure 3 shows an overview of the proposed 
platform architecture. Application level is related to end users 
SCA applications and is designed and implemented by the 
development team. Other levels are based on the SCA 
infrastructure and are used to deploy and host applications. In 
the following paragraphs, we will describe each of these areas. 
In each level, we will emphasize reconfigurability that has been 
added to the SCA. 

Figure 3.  The proposed platform 

Kernel level: From a technical perspective, the proposed 
platform is built on the FRACTAL component model [14]. 
FRACTAL is a component model independent from the 
programming languages and is used to create software systems 
with high configurability. FRACTAL software architecture 
model combined the ideas from software architecture and 
distributed configurable systems sources. This model inherits 
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the main concepts of software architecture [27] to build 
modular software systems, encapsulated components and 
explicit communications between them. FRACTAL model is 
used as a basic model for the development of a variety of 
configurable middleware platforms. In addition, the model is 
used for the construction of automated, architecture based and 
distributed system management capabilities. Some of these 
capabilities are deployment and reconfiguration management 
[28,29,30,31], self-repair [32,33], overhead management [34] 
and self-protection capabilities [35]. FRACTAL model is 
specified by the formal description [36] based on Alloy 
language [37]. 

One of the advantages of FRACTAL is that it enables 
customizing execution policy associated with a component. 
FRACTAL implements a particular policy, named component 
personality (or for short personality) for executing the 
implemented components. We are using this policy in our 
platform. Bruneton et al. [14] implemented two personalities 
named JULIA and DREAM. JULIA is a reference personality 
for component with a reconfiguration feature. DREAM also is 
a personality for implementing a message-oriented 
middleware. 

The personalities of each component are implemented by 
controllers and interceptors. Each controller implements a 
particular aspect of a personality, such as life cycle 
management or binding management. The controllers expose 
their services through their interfaces. Similarly, interceptors 
change the behavior of components when receiving requests or 
sending responses. 

All FRACTAL components include a control interface 
named Component. The goal this interface is the same as 
IUnknown interfaces of COM components [12] that allow the 
capabilities and needs of a component to be determined 
dynamically. In other words, the control interface Component 
defines the identity of a component and plays a role similar 
Object in object-oriented languages, such as Java or C#. 

The API of Component interface is depicted in the relevant 
section of Figure 3. The API has methods for getting 
information and type of the interface. The API has separated 
the service interface from the core component of FRACTAL. 
On the core, FRACTAL can define components’ personalities 
in modular mode to improve the implementation of policies 
related to a component and provide several sets of control 
interfaces. 

Personality level: the personality of a component is a 
structural and run-time feature of the component. Among these 
features are cases such: how a component should be 
instantiated, started, wired with peers, activated, reconfigured, 
how requests should be processed, how properties should be 
managed, and so on. These features can vary greatly in order to 
accommodate different operating environments and contexts, 
such as grid computing, Internet applications, embedded 
systems and wireless sensor networks. 

So the personality design of a component includes the 
definition of controllers that are needed to implement this 
meta-level activities. Six of these controllers are included in the 

personality components of the platform. The API of the six 
cases is: 

 WiringController 

o bindFc(in cltItfName: String, in srvItf: 
Object): void 

o listFc(): String[] 

o lookupFc(in cltItfName: String) : Object 

o unbindFc(in cltItfName: String): void 

 InstanceController 

o getFcInstance(): Object 

 Property Controller: 

o getFcValue(in name: String): Object 

o putFcValue(in name: String, in value: 
Object): void 

 HierarchyController 

o addFcSubComponent(in comp : 
Component): void 

o getFcSubComponents() : Component[] 

o removeFcSubComponent(in comp : 
Component): void 

 LifeCycleController 

o startFc(): void 

o stopFc(): void 

 IntentController 

o addFcIntentHandler(in intent: Object): void 

o listFcIntentHandler(): Object[] 

o removeFcIntentHandler(in intent: Object): 
void 

Wiring Controller: The controller allows you to query 
among the list of wires for each component (lookupFc), creates 
new wires (bindFc), remove existing wires (unbindFc) and 
retrieves the list of current wires ( listFc). The operations can 
be done at the run-time. 

Instance Controller: SCA specification defines four states 
for instantiation of a component: STATELESS (all instances of 
a component are equal), REQUEST (an instance is created 
from the component for each request), CONVERSATION (an 
instance is created for each user's session) and COMPOSITE 
(one instance of the component for each composite). So 
Instance Controller creates created the instance of each 
component, based on these four states. Method GetFcInstance, 
prepared by the controller, returns the component instance 
associated with the running thread. 

Property Controller: The controller can add a property, a 
key-value pair, to a component (putFcValue) and recover its 
value (getFcValue). 
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Hierarchy Controller: The SCA Component model is a 
hierarchical model. Each component in this model is primitive 
or composite. The components of a composite are sub-
components that, in turn, can be primitive or composite. The 
management of the hierarchy is done by the Hierarchy 
Controller. The controller has provided methods to 
add/query/delete sub-components to a composite. 

Lifecycle Controller: when working with multithreaded 
applications (the general state of distributed applications 
considered by SCA specification), reconfiguration cannot be 
done in an uncontrollable from. For example, while a customer 
request is being processed, any change in wiring may lead to 
inconsistencies and erroneous results or cause errors to be 
customers. So lifecycle controller ensures that the 
reconfiguration is done in safely and consistently manner. 
Method StopFc turns off a component for performing the 
reconfiguration. Method StartFc allows the software start 
processing normal requests. 

Intent Controller: The controller is responsible for wiring 
non-functional service to an SCA component. 

Each of these controllers implements a specific aspect of 
the execution policy of an SCA component. The controllers, in 
turn, are implemented as FRACTAL components. These 
controllers need to work together to present an overall 
execution logic for a component instance. For example, 
Instance Controller needs to query the Property Controller in 
order to retrieve the properties values and then inject them in 
the instances. As another example, Lifecycle Controller needs 
to create instances of a component at eager initialization, and it 
must query to Instance Controller. Eager initialization is a 
particular SCA concept that says SCA component must be 
instantiated before receiving any client requests. The proposed 
scheme of cooperation between the controllers is shown in 
Figure 4. The architecture is used as the backbone of the 
implementation of component property in the platform. SCA 
software and platform are inherently distributed and 
multithreaded. Even if the level of personality is made thread-
aware, especially with scope management policy by instance 
controller, threads are created and managed by the 
implemented stack protocol. In addition, it is notable that these 
controllers which have been implemented as FRACTAL 
components, use a simple built-in personality, similar to 
implemented personality in JULIA. The rationale of this choice 
lies in the fact that it is the execution policy of business 
component, that probably needs adaptability, not one of 
controller components that implements this policy. 

Reconfiguration Capabilities: compared with the SCA 
assembly language that has only the basic tools for describing 
the configuration of a program, the platform can get access and 
modify the configuration at the run-time. The following 
component elements can be changed at runtime: wires, 
properties and hierarchies. 

For example, based on the program shown in Figure 1, in a 
reconfiguration scenario, View component can be replaced 
with a WebView component. Usually, these reconfiguration 
scenarios include the following steps: (1) stopping the 
component (and thus getting that component unavailable), (2) 
unwiring, (3) creating a new component, (4) make new wires 
with the new component (5) starting the new component. Steps 
1 and 5 ensure that reconfiguration is synchronized with the 
customer's request. Stop a component ensures that no incoming 
request be processed in the reconfiguration step. Note that the 
stop element is not mandatory and if the guarantee is not 
required, then the relevant steps (1 and 5) would be deleted. 
This process of reconfiguration is provided by the methods of 
Lifecycle and Wiring controllers. So the definition of a 
particular reconfiguration policy includes calling the defined 
controllers methods. Note that the personality level which has 
been described as a component assembly (Figure 4), can be 
reconfigurable. As an example, this reconfiguration can 
provide different versions of execution policies, which 
determine before modifying wires to the new component, 
whether the old on should be stopped or not. In fact, we do not 
define new reconfiguration or a particular style by opening the 
personality level and reconfiguring it [38]. 

Figure 4.   Personality level 

By providing a runtime API, the suggested platform 
enables changing of a SCA program. This feature is of 
particular importance for designing and implementing agile 
SCA applications, such as context-aware applications and 
autonomic applications [39]. For example, Sicard et al. [33] 
show that in order to support from the complete self-repair 
feature of a distribution system, the combination of wiring, 
hierarchy management, property, identity and lifecycle is 
mandatory at the meta-level of a component model. Same 
reconfiguration capability is seen in automatic overhead 
management in the component based cluster systems. 
[34,40,41] 

Run-time level: the duty of run-time level of the platform is 
to create instances from of SCA components and assemblies. 
There are three major components at this level that are defined 
below. As shown in Figure 5, these components are composite 
and have been implemented with the same personality of 
business components. 
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Figure 5.   Run-time level 

Description Parser: the task of this component is loading 
and checking the SCA assembly descriptors and constructing 
the runtime model associated with it. This model is consistent 
with the meta-model that consists of two parts: SCA 
Metamodel that categorizes all concepts defined by the SCA 
specification and Arch Metamodel that is used for describing 
some extensions that are not in the specification. The meta-
model isolation in the platform provides a mechanism to 
support the main features that are not defined by the SCA 
specification (e.g. UPnP binding or the FRACTAL 
implementation type). So the role of SCA parser is to pars the 
XML-based descriptor to an EMF [42] consistent with the 
supported meta-model. The EMF then will be finalized by the 
SCA Resolver. 

Personality Factory: The task of this component is creating 
the personality of SCA components. The nature of the code 
generated by personality depends on the type of the component 
implementation (composite, Java, etc.). The platform supports 
two different production techniques: bytecode and source-code. 

Assembly Factory: this component receives the run-time 
model created by Description Parser and constructs its related 
component assemblies. Assembly Factory is organized 
according to the key concepts of SCA model. It is notable that 
the choice in implementation provides a modular 
implementation from the implementation process. For example, 
the Property and Interface components are related to the 
supported property and interface description languages, while 
the Implementation component will be wired to a variety of 
supported implementations. Whenever necessary, Binding 
component relies on the communication protocol to provide 
services. 

By default, the following plugins are available in the 
platform. The plugins offer a wide range of features for 
implementation of distributed and heterogeneous SOA: 

 Interface Description Languages (supported by the 
Interface component): Java, WSDL, UPNP [43] 
service description, 

 Property Description Languages (supported by the 
Property component): Java, XSD, 

 Component Implementation Languages (supported by 
the Implementation component): Java 8, Java Beans, 
Scala, Spring, OSGi, FRACTAL, BPEL, scripts based 
on the Java Scripting API, 

 Binding Technologies (supported by the Binding 
component): either communication protocols, Java 
RMI, SOAP, HTTP, JSON-RPC, or discovery 
protocols, SLP [44], UPNP, or integrated technologies, 
OSGi, JNA. 

In the platform, the run-time level configuration has not 
been hard coded into the architecture description. Instead, the 
runtime level defines a flexible configuration process inspired 
from the extender and whiteboard [45] design patterns of 
OSGi. Therefore, the platform defines the platform plugins as 
architecture fragments that are created dynamically and at the 
run-time (Figure 6). The platform kernel and its various 
extensions are defined as partial SCA architectures (the so-
called architecture fragments) that are added as plugins to the 
program or the platform as needed. So the platform 
configuration process is done in two stages: 

1) The bootstrap of the platform runs with minimal 

configuration. The bootstrap looks for the architecture 

fragments in ClassPath. Whenever a composite is seen in the 

loaded fragments, the bootstrap would merge its descriptor 

content with the main configuration to reaching the final 

configuration of the platform. 

2) When all the fragments of architecture were merged, 

the bootstrap sets up a new instance of the run-time platform 

based on the merged descriptor. This version of the platform is 

then used for creating and managing the business software. 
Figure 6 shows an example of the configuration of the 

platform with OSGi plug-ins and UPnP. OSGi Plugin 
architecture provides interoperability between SCA and OSGi 
[2] technologies. OSGi Implementation supports from the 
implementation of a SCA component as an OSGi package. In 
addition, OSGi Binding retrieves a reference to an OSGi 
service from bundel repository and wires it to a SCA program. 
Assembly Factory supports UPnP Plugin architecture 
fragments for UpnP service description as well as 
communication protocols, such as service discovery protocol. 
Since UPNP is not a member of the standard technologies of 
SCA specification, the Description Parser must be extended by 
the proprietary UPnP model. 

Reconfiguration Capabilities: The main three terms which 
are important at the run-time reconfiguration are: binding 
management, dynamic instantiation and platform extension 
with new plugins. 

In the platform, the binding between components is fully 
dynamic. This means that the communication protocols are 
defined in wiring components and named stubs and skeletons. 
The protocol features, such as message marshaling, are located 
in these components. Since the stubs and skeletons are SCA 
components, the URI of a web service (which is available as an 
option of the component) can be modified at the run-time and 
reconfigured in the distributed software architecture. 
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The other main feature of the platform for reconfiguration 
of SCA system, is dynamic components instantiation. 
Assembly Factory is invoked at the run-time to create new 
instances of components. For example, to be able to wire the 
platform with new extension not seen at bootstrap, the feature 
enables deployment of the new plugins for Personality Factory. 

Figure 6.  The platform auto-configuration process 

 

V. PLATFORM PERFORMANCE EVALUATION 

To evaluate the performance of the platform, we have 
compared it with Apache TUSCANY Java SCA version. In 
practice, this version is the de-facto reference of SCA 
implementation. We have used a simple micro benchmark to 
compare the memory consumption and execution time of the 
platform in full configuration with TUSCANY 1.6. 

The first measurements evaluate the cost of platform 
infrastructure. Figure 7 shows the memory usage comparison 
based on the number of components used. 

Figure 7.   Memory consumption 

The second measurement is the cost of a service call. 
Figure 8 shows the execution time on a local network. In this 
scenario, the root assembly is called which, in turn, it calls its 
two children components. The invocation on each component 
node of the tree is repeated until it reaches the calls to a leaf. 
The leaves are empty components. 

The third measurement focuses on reconfiguration. We 
measured the time taken by the reconfiguration scenario. In this 
scenario, a component is replaced by its equivalent in an 
existing architecture. This scenario involves the following five 
steps: (1) stopping the component, (2) unwiring, (3) creating a 
new component, (4) make new wires with the new component 
(5) starting the new component. The scenario is on assembling 
two previous scenarios. In this reconfiguration, 1,000-times 
repetition of a component replacement took 0.35 seconds. 
Since reconfiguration is a feature available only on the 
proposed platform, thus comparison with other platforms is 
impossible. However, this measure shows that reconfiguration 
cost is low enough to be used in many application areas. 

Figure 8.  Invocation time 

VI. CONCLUSION 

This paper presented a platform for extending Service 
Component Architecture (SCA) [1] based on distributed 
systems for applications. SCA is a standard for Service-
oriented Architectures (SOA). The idea of this platform is to 
enable consistency and run-time reconfiguration for SCA 
applications and the platform itself. Furthermore, the system 
administrator will be able to distribute the components of 
applications at the run-time, and as s/he prefers. As [3] has 
said, these issues are a subset of key challenges for researching 
on SOA. With this platform, the structure of a SCA application 
can be dynamically modified at the run-time to be able to add 
new services to the applications, to reconfigure the application 
according to the new situation and to move running services to 
new systems. With this platform, you can reconfigure both the 
system components and the wiring of the system with external 
services. The flexibility and openness of the platform are also 
provided in the platform itself. 

The proposed platform, like SCA component model 
applications, uses a component-based structure for its 
applications. As shown in evaluation of comparison between 
the platform and Tuscany SCA, the flexibility of the platform 
is not detrimental to performance. 
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