
International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 268

A Component-Based Reconfigurable Platform for

SOA

Mohsen Saberi

Department of Engineering, Bozorgmehr University of Qaenat,

Qaen, South Khorasan, Iran

Email: saberi [AT] pbuqaen.ac.ir

Abstract— Service Component Architecture (SCA) is a standard

for developing independent technology distributed Service

Oriented-Architecture (SOA). SCA standard proposes using

components and also architecture descriptors. The standard also

covers the life cycle stages of implementation and deployment.

One of the SCA problems is that it does not address the SCA

application management and support of deployed components.

This article covers these subjects and defines a platform for

applications that support run-time management and distribution

capabilities. Evermore the component-based design of the

proposed platform provides a high degree of flexibility and

functionality in the platform itself. This platform can be a good

context for SOA applications. The results show that in

comparison with the architecture of SCA, run-time management

of the platform does not have a negative impact on its

performance.

Keywords- Middleware; SOA; Component; Reconfiguration;

Distribution; Load Balancing.

I. INTRODUCTION

The emergence of Service Oriented-Architecture (SOA), as
an important model for online and web-based services, needs a
software framework for delivery, support and management of
distributed applications. Service Component Architecture
(SCA) [1] has created the conditions with an extensive set of
specifications and definitions on a SOA infrastructure. This set
of definitions are independent of technology, programming
language and protocol.

Although SCA is not the first approach that combines
software components and services, and there are other
approaches such as OSGi [2], but the independence of the
approach from technology and its support for combining
hierarchical components causes this approach to be attractive in
the SOA world. Unfortunately, SCA does not address the
management, configurable and scalability that are expected of
a modern SOA platform. For example, SCA specification
defines how the installation and configuration of the
components of services are controlled, but it says nothing in the
following discussion: (a) providing the functionality needed to
manage the runtime configuration of components, (b)

providing the facilities needed for management of the platform
itself, and (c) controlling the execution of service components
(for example, for online changes to the configurations). In
general, it seems SOA needs a dynamic and runtime
reconfigurable architecture for issuing these challenges,
identified by Papazoglou et al. [3]

This paper introduces an architecture to host SCA
applications. In comparison with the existing architectures, the
main goal of this architecture is to address the reconfigurable
issues mentioned above and to achieve the systematic
management of a system. These issues must be solved in both
application components and the platform (nonfunctional
services, communication protocols, etc.). This is possible
through the expansion of SCA component model and then
using this model to implement the components of the service of
programs and the platform itself.

II. SCA STANDARD AND ITS RELATED ISSUES

This section focuses on SCA and key challenges of
software engineering in the context of implementing flexible
component.

SCA [1,4] is a set of specifications for building distributed
applications based on SOA and component-based software
engineering (CBSE). This model has been constructed by a
group of various companies, including BEA, IBM, IONA,
Oracle, SAP, Sun and TIBCO.

While SOA offers a way to provide great services, separate
from each other and accessible remotely, but it does not specify
how these services should be implemented. SCA fills this gap
by defining a component model. This model is useful for
building service-oriented applications. The most important
entities of these programs are their software components. The
components can be used together to create composite
components. Components need and provide the services. The
required services are named reference. References and services
either are connected to each other through the facilities called
wires or included in their composite and promoted for external
use. Figure 1 shows a symbol for each of these concepts.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 269

Figure 1. SCA Architechture concepts

The SCA standard [1] is organized based on four main
elements: assembly language, component implementations,
bindings and policies. These elements can be used to help
define a service-oriented architecture that is independent of
communication protocols and programming language, as much
as possible.

Assembly language: this language assembles the
configuration and communication components, in assistance
with a grammar-based XML. For example, Figure 2 depicts the
descriptor related to the communications of Figure 1.
Composite MyApp (lines 1-20) covers two components View
(lines 3-12) and Model (lines 13-18). In addition, MyApp
service interface “run” (line 2) is located inside the component
View. View and Model have been implemented in Java and in
classes with names SwingGuiImpl (line 4) and ModelImpl (line
14). View provides the service interface “run” (lines 5-7) and
requires the service interface Model (lines 15-17). The explicit
connection between the interfaces of these two services can be
seen in line 19. However, SCA, like OSGi, supports the
autowire mechanism for implicit wiring of services [2].

Figure 2. A sample descriptor

Component Implementations: This element defines how to
implement SCA services. SCA assumes nothing about
technologies used for component implementations, but also
supports programming languages, like Java, C ++, COBOL, C,
as well as scripting languages, such as PHP and advanced web
oriented technologies, like Spring beans, EJB stateless beans or
BPEL orchestrations. The choice between wide ranges of
solutions promotes for the integration and implementation

business services and thus the independence of programming
languages.

Binding Specifications: This element specifies how the
SCA services should be available. This includes access to other
programs based on SCA or any other kind of service-oriented
technologies such as EJB [5] or OSGi [2]. Although Web
services are the preferred option for SCA communication
technology, but this option may not meet all the needs of the
system. In some cases, technologies with different properties
(e.g. in terms of reliability or performance) may be required.
As a result, SCA defines the concept of connection: a service
or a reference can be bound to a particular communication
protocol, such as SOAP for Web services, Java RMI, Sun JMS,
EJB and JSON-RPC.

In addition to the concept of binding, SCA does not not
focus on a special interface description language (IDL), and
instead, support different languages, such as Web Services
Description Language (WSDL) and Java Interface. The
independence from communication protocols and interface
description languages creates corporations with another
middleware SOA technologies.

Policy Frameworks: nonfunctional properties can be added
to an SCA component by the concept of policy set (or intent),
so that it can declare the set of nonfunctional parameters that
the service depends on. After that, the SCA platform should
ensure that these policies are implemented. Security and
transactions [6] are two policies that are in the SCA
specification. However, developers may require to have other
types of nonfunctional properties (e.g. persistence or logging).
Therefore, the set of policy set may be extended by the user-
specified values.

In general, these principles offer a wide range of different
solutions for the implementation of SCA-based applications.
Developers can think about the combination of new forms of
mapping programming languages (e.g. the components of the
SCA written by Scala [7] or XQuery [8]), language interface
definition (such as CORBA IDL [9]), communication bindings
(e.g., JBI [10] and REST [11]) and nonfunctional properties
(e.g. timing and authentication). So, supporting this diversity of
technologies needs to define a modular infrastructure for the
deployment of heterogeneous application configurations.

The SCA has two important challenges that must be met by
SCA platform providers. First, although SCA specification has
all the mechanisms required to declare a wide range of
variation points in the given application, but it says nothing
about the architecture of the platform that implements these
variation points. So the first challenge of designing a SCA
platform is to be flexible and extensible enough for integrating
these variation points.

The second challenge is that the SCA specification focuses
on the description of assembling and configuration of
components that are used to write a SOA program. The
assembly is used as input to initialize and start the program.
However, the SCA specification does not talk about run-time
management of the program. This management includes
monitoring and reconfiguration of the program. In addition,

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 270

SCA specification does not include the run-time management
of the platform itself. But these properties are necessary for an
SOA platform to change the operating conditions, to support
online evolution, and to deploy the program in a dynamic
environment (such as cloud computing or ubiquitous
environment). These problems have been resolved in the
proposed platform.

III. HISTORY

Several implementations of the SCA specification are
available. These implementations can be divided into two
categories: commercial (e.g. HYDRASCA, IBM WebSphere
Application Server Feature Pack for SOA, Oracle Event-driven
Architecture Suite) and open source (such as TUSCANY,
NEWTON, and FABRIC3).

While TUSCANY covers different standards defined by the
SCA Open SOA group, the proposed platform focuses on the
main features of SCA in Java in order to gain a run-time core
with a lighter and faster footprint. In comparison with
TUSCANY, NEWTON and FABRIC3, the proposed platform
is based on the SCA reflecting functionality programming
model to provide a dynamic reconfiguration of SCA
applications and the platform itself. Using the proposed
platform, SCA components can change their structure at
runtime. Also, by using this method, assemblies can be
reconfigured to address the new requirements. Finally, by using
this method new components can be constructed. These
features open a new perspective for agility of SOA, SCA run-
time management of applications and the platform itself.

Compared to known component models, such as EJB,
COM/.NET [12] and CCM [13], SCA provides a software
architecture concept and also the Architecture Description
Language (ADL) to give a correct vision on assembling
components. The proposed platform expands SCA model with
reflection inherited from FRACTAL [14-16] and FAC [17]
models.

The proposed platform shares several features such as
introspection and reconfigurability with component platforms,
such as OPENCOM [18], HADAS [19], PRISM [20],
LEGORB [21], K-COMPONENT [22] and JBOSS [23].
However, these models have smaller components in
comparison with the SCA components of the proposed
platform. These components are comparable with FRACTAL
components. The purpose of these models is middleware
platforms, such as OpENORB [18]. The purpose of the
proposed platform is distributed SOA applications. These
programs are essentially heterogeneous in communication
protocols and implementation languages. So this platform
should be able to integrate several different technologies.

OSGi Declarative Services [2] is another service-oriented
component model for SOA. Several platforms, such as Eclipse
EQUINOX, Apache FELIX and KNOPFLERFISH have
implemented this component model. OSGi Declarative
Services is expanded with tools, such as iPOJO [24] to support
the overlooked features, like composite components. OSGi and
iPOJO focus on Java, while SCA support from multi mapping

languages. In addition, OSGi focuses on the life cycle and
component identification, while SCA emphasizes on an
architecture-centric approach for deploying services. The
proposed platform brings the possibility of reconfiguration for
SCA, which is beyond those available with OSGi and iPOJO.
In addition, since the proposed platform supports the
implementation of components with OSGi, a program can be
fully implemented with OSGi, while takes advantages of
software architecture explained with SCA assembly language.
This allows features like OSGi versioning of components to be
used.

MADAM [25] and MUSIC [26] are the middleware
framework that support dynamic run-time reconfiguration and
mobile applications. In particular, the methods take advantages
of component paradigm for automatically changing the
structure of a program when changing its context. While
MADAM defines its own component model, MUSIC uses the
OSGi Declarative Services to implement middleware softwares
and services. In particular, MUSIC compensates weaknesses of
OSGi by defining a component-based architecture for
applications and its supporting platform. This configuration of
this architecture is continuously optimized by an adaptation
middleware.

IV. THE PROPOSED PLATFORM

All components of the proposed platform have been
designed and implemented based on the SCA component
model paradigm. Figure 3 shows an overview of the proposed
platform architecture. Application level is related to end users
SCA applications and is designed and implemented by the
development team. Other levels are based on the SCA
infrastructure and are used to deploy and host applications. In
the following paragraphs, we will describe each of these areas.
In each level, we will emphasize reconfigurability that has been
added to the SCA.

Figure 3. The proposed platform

Kernel level: From a technical perspective, the proposed
platform is built on the FRACTAL component model [14].
FRACTAL is a component model independent from the
programming languages and is used to create software systems
with high configurability. FRACTAL software architecture
model combined the ideas from software architecture and
distributed configurable systems sources. This model inherits

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 271

the main concepts of software architecture [27] to build
modular software systems, encapsulated components and
explicit communications between them. FRACTAL model is
used as a basic model for the development of a variety of
configurable middleware platforms. In addition, the model is
used for the construction of automated, architecture based and
distributed system management capabilities. Some of these
capabilities are deployment and reconfiguration management
[28,29,30,31], self-repair [32,33], overhead management [34]
and self-protection capabilities [35]. FRACTAL model is
specified by the formal description [36] based on Alloy
language [37].

One of the advantages of FRACTAL is that it enables
customizing execution policy associated with a component.
FRACTAL implements a particular policy, named component
personality (or for short personality) for executing the
implemented components. We are using this policy in our
platform. Bruneton et al. [14] implemented two personalities
named JULIA and DREAM. JULIA is a reference personality
for component with a reconfiguration feature. DREAM also is
a personality for implementing a message-oriented
middleware.

The personalities of each component are implemented by
controllers and interceptors. Each controller implements a
particular aspect of a personality, such as life cycle
management or binding management. The controllers expose
their services through their interfaces. Similarly, interceptors
change the behavior of components when receiving requests or
sending responses.

All FRACTAL components include a control interface
named Component. The goal this interface is the same as
IUnknown interfaces of COM components [12] that allow the
capabilities and needs of a component to be determined
dynamically. In other words, the control interface Component
defines the identity of a component and plays a role similar
Object in object-oriented languages, such as Java or C#.

The API of Component interface is depicted in the relevant
section of Figure 3. The API has methods for getting
information and type of the interface. The API has separated
the service interface from the core component of FRACTAL.
On the core, FRACTAL can define components’ personalities
in modular mode to improve the implementation of policies
related to a component and provide several sets of control
interfaces.

Personality level: the personality of a component is a
structural and run-time feature of the component. Among these
features are cases such: how a component should be
instantiated, started, wired with peers, activated, reconfigured,
how requests should be processed, how properties should be
managed, and so on. These features can vary greatly in order to
accommodate different operating environments and contexts,
such as grid computing, Internet applications, embedded
systems and wireless sensor networks.

So the personality design of a component includes the
definition of controllers that are needed to implement this
meta-level activities. Six of these controllers are included in the

personality components of the platform. The API of the six
cases is:

 WiringController

o bindFc(in cltItfName: String, in srvItf:
Object): void

o listFc(): String[]

o lookupFc(in cltItfName: String) : Object

o unbindFc(in cltItfName: String): void

 InstanceController

o getFcInstance(): Object

 Property Controller:

o getFcValue(in name: String): Object

o putFcValue(in name: String, in value:
Object): void

 HierarchyController

o addFcSubComponent(in comp :
Component): void

o getFcSubComponents() : Component[]

o removeFcSubComponent(in comp :
Component): void

 LifeCycleController

o startFc(): void

o stopFc(): void

 IntentController

o addFcIntentHandler(in intent: Object): void

o listFcIntentHandler(): Object[]

o removeFcIntentHandler(in intent: Object):
void

Wiring Controller: The controller allows you to query
among the list of wires for each component (lookupFc), creates
new wires (bindFc), remove existing wires (unbindFc) and
retrieves the list of current wires (listFc). The operations can
be done at the run-time.

Instance Controller: SCA specification defines four states
for instantiation of a component: STATELESS (all instances of
a component are equal), REQUEST (an instance is created
from the component for each request), CONVERSATION (an
instance is created for each user's session) and COMPOSITE
(one instance of the component for each composite). So
Instance Controller creates created the instance of each
component, based on these four states. Method GetFcInstance,
prepared by the controller, returns the component instance
associated with the running thread.

Property Controller: The controller can add a property, a
key-value pair, to a component (putFcValue) and recover its
value (getFcValue).

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 272

Hierarchy Controller: The SCA Component model is a
hierarchical model. Each component in this model is primitive
or composite. The components of a composite are sub-
components that, in turn, can be primitive or composite. The
management of the hierarchy is done by the Hierarchy
Controller. The controller has provided methods to
add/query/delete sub-components to a composite.

Lifecycle Controller: when working with multithreaded
applications (the general state of distributed applications
considered by SCA specification), reconfiguration cannot be
done in an uncontrollable from. For example, while a customer
request is being processed, any change in wiring may lead to
inconsistencies and erroneous results or cause errors to be
customers. So lifecycle controller ensures that the
reconfiguration is done in safely and consistently manner.
Method StopFc turns off a component for performing the
reconfiguration. Method StartFc allows the software start
processing normal requests.

Intent Controller: The controller is responsible for wiring
non-functional service to an SCA component.

Each of these controllers implements a specific aspect of
the execution policy of an SCA component. The controllers, in
turn, are implemented as FRACTAL components. These
controllers need to work together to present an overall
execution logic for a component instance. For example,
Instance Controller needs to query the Property Controller in
order to retrieve the properties values and then inject them in
the instances. As another example, Lifecycle Controller needs
to create instances of a component at eager initialization, and it
must query to Instance Controller. Eager initialization is a
particular SCA concept that says SCA component must be
instantiated before receiving any client requests. The proposed
scheme of cooperation between the controllers is shown in
Figure 4. The architecture is used as the backbone of the
implementation of component property in the platform. SCA
software and platform are inherently distributed and
multithreaded. Even if the level of personality is made thread-
aware, especially with scope management policy by instance
controller, threads are created and managed by the
implemented stack protocol. In addition, it is notable that these
controllers which have been implemented as FRACTAL
components, use a simple built-in personality, similar to
implemented personality in JULIA. The rationale of this choice
lies in the fact that it is the execution policy of business
component, that probably needs adaptability, not one of
controller components that implements this policy.

Reconfiguration Capabilities: compared with the SCA
assembly language that has only the basic tools for describing
the configuration of a program, the platform can get access and
modify the configuration at the run-time. The following
component elements can be changed at runtime: wires,
properties and hierarchies.

For example, based on the program shown in Figure 1, in a
reconfiguration scenario, View component can be replaced
with a WebView component. Usually, these reconfiguration
scenarios include the following steps: (1) stopping the
component (and thus getting that component unavailable), (2)
unwiring, (3) creating a new component, (4) make new wires
with the new component (5) starting the new component. Steps
1 and 5 ensure that reconfiguration is synchronized with the
customer's request. Stop a component ensures that no incoming
request be processed in the reconfiguration step. Note that the
stop element is not mandatory and if the guarantee is not
required, then the relevant steps (1 and 5) would be deleted.
This process of reconfiguration is provided by the methods of
Lifecycle and Wiring controllers. So the definition of a
particular reconfiguration policy includes calling the defined
controllers methods. Note that the personality level which has
been described as a component assembly (Figure 4), can be
reconfigurable. As an example, this reconfiguration can
provide different versions of execution policies, which
determine before modifying wires to the new component,
whether the old on should be stopped or not. In fact, we do not
define new reconfiguration or a particular style by opening the
personality level and reconfiguring it [38].

Figure 4. Personality level

By providing a runtime API, the suggested platform
enables changing of a SCA program. This feature is of
particular importance for designing and implementing agile
SCA applications, such as context-aware applications and
autonomic applications [39]. For example, Sicard et al. [33]
show that in order to support from the complete self-repair
feature of a distribution system, the combination of wiring,
hierarchy management, property, identity and lifecycle is
mandatory at the meta-level of a component model. Same
reconfiguration capability is seen in automatic overhead
management in the component based cluster systems.
[34,40,41]

Run-time level: the duty of run-time level of the platform is
to create instances from of SCA components and assemblies.
There are three major components at this level that are defined
below. As shown in Figure 5, these components are composite
and have been implemented with the same personality of
business components.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 273

Figure 5. Run-time level

Description Parser: the task of this component is loading
and checking the SCA assembly descriptors and constructing
the runtime model associated with it. This model is consistent
with the meta-model that consists of two parts: SCA
Metamodel that categorizes all concepts defined by the SCA
specification and Arch Metamodel that is used for describing
some extensions that are not in the specification. The meta-
model isolation in the platform provides a mechanism to
support the main features that are not defined by the SCA
specification (e.g. UPnP binding or the FRACTAL
implementation type). So the role of SCA parser is to pars the
XML-based descriptor to an EMF [42] consistent with the
supported meta-model. The EMF then will be finalized by the
SCA Resolver.

Personality Factory: The task of this component is creating
the personality of SCA components. The nature of the code
generated by personality depends on the type of the component
implementation (composite, Java, etc.). The platform supports
two different production techniques: bytecode and source-code.

Assembly Factory: this component receives the run-time
model created by Description Parser and constructs its related
component assemblies. Assembly Factory is organized
according to the key concepts of SCA model. It is notable that
the choice in implementation provides a modular
implementation from the implementation process. For example,
the Property and Interface components are related to the
supported property and interface description languages, while
the Implementation component will be wired to a variety of
supported implementations. Whenever necessary, Binding
component relies on the communication protocol to provide
services.

By default, the following plugins are available in the
platform. The plugins offer a wide range of features for
implementation of distributed and heterogeneous SOA:

 Interface Description Languages (supported by the
Interface component): Java, WSDL, UPNP [43]
service description,

 Property Description Languages (supported by the
Property component): Java, XSD,

 Component Implementation Languages (supported by
the Implementation component): Java 8, Java Beans,
Scala, Spring, OSGi, FRACTAL, BPEL, scripts based
on the Java Scripting API,

 Binding Technologies (supported by the Binding
component): either communication protocols, Java
RMI, SOAP, HTTP, JSON-RPC, or discovery
protocols, SLP [44], UPNP, or integrated technologies,
OSGi, JNA.

In the platform, the run-time level configuration has not
been hard coded into the architecture description. Instead, the
runtime level defines a flexible configuration process inspired
from the extender and whiteboard [45] design patterns of
OSGi. Therefore, the platform defines the platform plugins as
architecture fragments that are created dynamically and at the
run-time (Figure 6). The platform kernel and its various
extensions are defined as partial SCA architectures (the so-
called architecture fragments) that are added as plugins to the
program or the platform as needed. So the platform
configuration process is done in two stages:

1) The bootstrap of the platform runs with minimal

configuration. The bootstrap looks for the architecture

fragments in ClassPath. Whenever a composite is seen in the

loaded fragments, the bootstrap would merge its descriptor

content with the main configuration to reaching the final

configuration of the platform.

2) When all the fragments of architecture were merged,

the bootstrap sets up a new instance of the run-time platform

based on the merged descriptor. This version of the platform is

then used for creating and managing the business software.
Figure 6 shows an example of the configuration of the

platform with OSGi plug-ins and UPnP. OSGi Plugin
architecture provides interoperability between SCA and OSGi
[2] technologies. OSGi Implementation supports from the
implementation of a SCA component as an OSGi package. In
addition, OSGi Binding retrieves a reference to an OSGi
service from bundel repository and wires it to a SCA program.
Assembly Factory supports UPnP Plugin architecture
fragments for UpnP service description as well as
communication protocols, such as service discovery protocol.
Since UPNP is not a member of the standard technologies of
SCA specification, the Description Parser must be extended by
the proprietary UPnP model.

Reconfiguration Capabilities: The main three terms which
are important at the run-time reconfiguration are: binding
management, dynamic instantiation and platform extension
with new plugins.

In the platform, the binding between components is fully
dynamic. This means that the communication protocols are
defined in wiring components and named stubs and skeletons.
The protocol features, such as message marshaling, are located
in these components. Since the stubs and skeletons are SCA
components, the URI of a web service (which is available as an
option of the component) can be modified at the run-time and
reconfigured in the distributed software architecture.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 274

The other main feature of the platform for reconfiguration
of SCA system, is dynamic components instantiation.
Assembly Factory is invoked at the run-time to create new
instances of components. For example, to be able to wire the
platform with new extension not seen at bootstrap, the feature
enables deployment of the new plugins for Personality Factory.

Figure 6. The platform auto-configuration process

V. PLATFORM PERFORMANCE EVALUATION

To evaluate the performance of the platform, we have
compared it with Apache TUSCANY Java SCA version. In
practice, this version is the de-facto reference of SCA
implementation. We have used a simple micro benchmark to
compare the memory consumption and execution time of the
platform in full configuration with TUSCANY 1.6.

The first measurements evaluate the cost of platform
infrastructure. Figure 7 shows the memory usage comparison
based on the number of components used.

Figure 7. Memory consumption

The second measurement is the cost of a service call.
Figure 8 shows the execution time on a local network. In this
scenario, the root assembly is called which, in turn, it calls its
two children components. The invocation on each component
node of the tree is repeated until it reaches the calls to a leaf.
The leaves are empty components.

The third measurement focuses on reconfiguration. We
measured the time taken by the reconfiguration scenario. In this
scenario, a component is replaced by its equivalent in an
existing architecture. This scenario involves the following five
steps: (1) stopping the component, (2) unwiring, (3) creating a
new component, (4) make new wires with the new component
(5) starting the new component. The scenario is on assembling
two previous scenarios. In this reconfiguration, 1,000-times
repetition of a component replacement took 0.35 seconds.
Since reconfiguration is a feature available only on the
proposed platform, thus comparison with other platforms is
impossible. However, this measure shows that reconfiguration
cost is low enough to be used in many application areas.

Figure 8. Invocation time

VI. CONCLUSION

This paper presented a platform for extending Service
Component Architecture (SCA) [1] based on distributed
systems for applications. SCA is a standard for Service-
oriented Architectures (SOA). The idea of this platform is to
enable consistency and run-time reconfiguration for SCA
applications and the platform itself. Furthermore, the system
administrator will be able to distribute the components of
applications at the run-time, and as s/he prefers. As [3] has
said, these issues are a subset of key challenges for researching
on SOA. With this platform, the structure of a SCA application
can be dynamically modified at the run-time to be able to add
new services to the applications, to reconfigure the application
according to the new situation and to move running services to
new systems. With this platform, you can reconfigure both the
system components and the wiring of the system with external
services. The flexibility and openness of the platform are also
provided in the platform itself.

The proposed platform, like SCA component model
applications, uses a component-based structure for its
applications. As shown in evaluation of comparison between
the platform and Tuscany SCA, the flexibility of the platform
is not detrimental to performance.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 275

REFERENCES

[1] B. M., "Service component architecture," 2011. [Online].

Available: http://www.oasis-opencsa.org/sca.

[2] OSGi Alliance. OSGi Service Platform Core Specification

Release 4, 2005.

[3] P. M, T. P, D. S and L. F., "Service-oriented computing: State

of the art and research challenges," IEEE Computer, vol. 40, no.

11, p. 64–71, 2007.

[4] B. M, B. H, B. D, E. M, H. O, I. S, M. A, K. A, M. A, M. J, N.

M, N. E, P. S, P. G, R. M, R. M, T. K, V. S, W. P and W. L.,

"Service component architecture: Building systems using a

service oriented architecture," 2011. [Online]. Available:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-sca/SCA White Paper1 09.pdf.

[5] B. S, A. E, B. J and C. D., The J2EE Tutorial (2nd edn).,

Addison-Wesley, 2004.

[6] Open SOA. SCA Transaction Policy, 2007.

[7] O. M, A. P, C. V, D. I, D. G, E. B, M. S, M. S, M. N, S. M, S.

L, S. E and Z. M., "An overview of the scala programming

language (2nd edn)," 2006.

[8] B. S, C. D, F. MF, F. D, R. J and S. J., "XQuery 1.0: An XML

Query Language. W3C Recommendation," 2011. [Online].

Available: http://www.w3.org/TR/xquery.

[9] "OMG. Common Object Request Broker Architecture

(CORBA/IIOP)," 2008.

[10] "Sun Microsystems. Java Business Integration (JBI) 2.0," 2002.

[11] "Fielding RT. Architectural styles and the design of network-

based software architectures," University of California, 2000.

[12] B. D, Essential COM, Addison-Wesley, 1998.

[13] OMG. CORBA Component Model, 1999.

[14] B. E, C. T, L. M, Q. V and S. J-B., "The FRACTAL component

model and its support in Java. Software Practice and Experience

(SPE)," vol. 36, no. 11-12, p. 1257–1284, 2006.

[15] R. D. Nicola, M. Loreti, R. Pugliese and F. Tiezzi, "A Formal

Approach to Autonomic Systems Programming: The SCEL

Language," ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 2014.

[16] "Designing Autonomic Management Systems by Using

Reactive Control Techniques," IEEE Transactions on Software

Engineering, pp. 640 - 657, 2016.

[17] P. N, S. L, D. L and C. T, "A model for developing component-

based and aspect-oriented systems," in Proceedings of the 5th

International Symposium on Software Composition (SC’06)

(Lecture Notes in Computer Science; vol. 4089), 2006.

[18] C. G, B. G, G. P, T. F, J. A, L. K, U. J and S. T, "A generic

component model for building systems software," ACM

Transactions on Computer Systems, vol. 26, no. 1, pp. 1-42,

2008.

[19] B.-S. I, H. O and L. B, "Dynamic adaptation and deployment of

distributed components in Hadas," IEEE Transaction on

Software Engineering, vol. 27, no. 9, 2001.

[20] M. S, M.-R. M and M. N, "A style-aware architectural

middleware for resource-constrained; distributed systems,"

IEEE Transaction on Software Engineering, vol. 31, no. 3,

2005.

[21] K. F, M. J, Y. T, C. R and M. M, "Design, implementation, and

performance of an automatic configuration service for

distributed component systems," Software Practice and

Experience (SPE), p. 667–703, 2005.

[22] D. J and C. V, "The K-component architecture meta-model for

self-adaptative software," in Proceedings of Reflection’01,

Berlin, 2001.

[23] F. M and R. F, "The JBoss Extensible Server," Proceedings of

the 4th ACM/IFIP/USENIX International Conference on

Distributed Systems Platforms and Open Distributed

Processing (Middleware’03), p. 344–373, 2003.

[24] E. C and H. R, "Dynamically adaptable applications with

iPOJO service components," Proceedings of the 6th

International Symposium on Software Composition (SC’07)

(Lecture Notes in Computer Science; volume 4829), p. 113–

128, 2007.

[25] G. K, B. P, E. F, F. J, F. R, G. E, H. S, H. G, K. MU, M. A, P.

GA, P. N, R. R and S. E, "A comprehensive solution for

application-level adaptation," Software Practice and Experience

(SPE), vol. 39, no. 4, p. 385–422, 2009.

[26] R. R, B. P, D. Y, E. F, H. S, L. J, M. A and S. U, "MUSIC:

Middleware support for self-adaptation in ubiquitous and

service-oriented environments," Software Engineering for Self-

Adaptive Systems (SEfSAS), p. 164–182, 2009.

[27] S. M and G. D., Software Architecture: Perspectives on an

Emerging Discipline, Prentice-Hall, 1996.

[28] T, K. J and S. J., "J2EE packaging; deployment and

reconfiguration using a general component model," in

Proceedings of the 3rd International Working Conference on

Component Deployment (CD’05), 2005.

[29] D, d. C. A and D. C., "Peer-to-Peer and Fault-tolerance:

Towards deployment-based technical services," Future

Generation Computer Systems, vol. 23, no. 7, 2007.

[30] P, L. M, G. H, L. T and C. T., "A multi-stage approach for

reliable dynamic reconfigurations of component-based

systems," in Proceedings of the 8th IFIP International

Conference on Distributed Applications and Interoperable

Systems (DAIS’08), 2008.

[31] F. A and M. P., "A generic deployment framework for grid

computing and distributed applications," in OTM Confederated

International Conferences, Grid computing, High Performance

and Distributed Applications (GADA 2006), 2006.

[32] B. S, B. F, K. S, H. D, M. A, P. ND, Q. V and S. J.,

"Architecture-based autonomous repair management: An

application toJ2EE clusters," Proceedings of the 24th IEEE

Symposium on Reliable Distributed Systems (SRDS’05), 2005.

[33] S. S, B. F and P. ND, "Using components for architecture-based

management: The self-repair case," in Proceedings of 30th

International Conference on Software Engineering (ICSE’08),

Liepzig, Germany, 2008.

[34] B. S, P. ND, H. D and T. C, "Autonomic management of

clustered applications," in Proceedings of the IEEE

International Conference on Cluster Computing

(CLUSTER’06), Barcelona, Spain, 2006.

[35] C. B, P. ND, L. R and H. D, "Self-protection for distributed

component-based applications," in Proceedings of the 8th

International Symposium on Stabilization, Safety, and Security

of Distributed Systems (SSS’06), 2006.

[36] M. P and S. J-B, "A formal specification of the fractal

component model in alloy," INRIA, 2008.

International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 06– Issue 05, September 2017

www.ijcit.com 276

[37] J. D., "Alloy: A lightweight object modelling notation," ACM

Transactions on Software Engineering and Methodology, vol.

11, no. 2, p. 256–290, 2002.

[38] P. P, P. F and K. J, "Model checking of software components:

Combining java pathfinder and behavior protocol model

checker," in Proceedings of the 30th IEEE/NASA Software

Engineering Workshop (SEW’30), 2007.

[39] K. J and C. D, "The vision of autonomic computing," IEEE

Computer, vol. 36, no. 1, p. 41–50, 2003.

[40] C. Delimitrou and C. Kozyrakis, "Quasar: resource-efficient

and QoS-aware cluster management," in ASPLOS '14

Proceedings of the 19th international conference on

Architectural support for programming languages and

operating systems, 2014.

[41] Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune and

J. Wilkes, "Large-scale cluster management at Google with

Borg," in Proceedings of the Tenth European Conference on

Computer Systems, Bordeaux, France, 2015.

[42] S. D, B. F, P. M and M. E, EMF Eclipse Modeling Framework

(2nd edn) (Eclipse), Addison-Wesley, 2009.

[43] "UPnP Forum. UPnP Device Architecture, Version 1.1," 2011.

[Online]. Available: http://www.upnp.org.

[44] G. E, P. C, V. J and D. M, Service Location Protocol, Version

2, 1999.

[45] "OSGi Alliance. Listeners Considered Harmful: The

Whiteboard Pattern," 2004.

[46] P. A, L. F, M. P and S. L, "A component framework for Java-

based real-time embedded systems," in The 9th

ACM/IFIP/USENIX International Middleware Conference

(Middleware’08) (Lecture Notes in Computer Science; vol.

5346), 2008.

