Room 1A

08:00–10:00 M1A • Edge Computing Presider: Yawei Yin; Microsoft Corp, USA

M1A.1 • 08:00

Telemetry-driven Optical 5G Serverless Architecture for Latencysensitive Edge Computing, Istvan Pelle¹, Francesco Paolucci³, Balazs Sonkoly¹, Filippo Cugini²; ¹MTA-BME Network Softwarization Research Group, Hungary; ²CNIT, Italy; ³Scuola Superiore Sant'Anna, Italy. Latencysensitive serverless subfunctions are optimally deployed at edge and cloud according to telemetry-retrieved data from the 5G transport infrastructure. Once deployed, serverless functions provided extremely fast invocation time of less than 450ms.

M1A.2 • 08:15

Flexible Optical Network Enabled Hybrid Recovery for Edge Network with Reinforcement Learning, Menu Lian¹, Rentao Gu¹, Yongyao Qu¹, Zihao Wang¹, Yuefeng Ji¹; 'Beijing Laboratory of Advanced Information Network, Beijing Univ. of Posts and Telecommunications, China. The proposed hybrid recovery utilizes flexible optical network with reinforcement learning to recover IP fault for edge network. The testbed experiments indicate, the recovery time is 20% of reroutingbased strategy for a heavy-loaded network.

08:00–10:00 M1B • Cognitive Optical

Room 1B

Networks Presider: Josue Kuri; Google LLC, USA

M1B.1 • 08:00 Tutorial

Machine Learning in Multi-layer Optical Networks: Why and How, Rui M. Morais¹; 'Infinera, Portugal. This tutorial addresses the questions of why and how machine learning (ML) can be useful in multi-layer optical networks. Some key concepts are illustrated by realistic use-cases highlighting the challenges and requisites of adopting ML.

Rui Morais received his Master of Science in Mathematics and his PhD in electrical engineering, both from the University of Aveiro. He joined Infinera (then NSN and after Coriant) in 2011. He is now serving as an enabler on the adoption of machine learning by identifying use-cases that would pave the way to the appearance of self-driving networks.

08:00–10:00 M1C • Photonic Sensors Presider: Joel Villatoro; Univ. of the Basque Country UPV/ EHU, Spain

Room 2

M1C.1 • 08:00 Invited

Mid-infrared Gas Spectroscopy Using Fiber Laser Driven Supercontinuum, Camille-Sophie Brès', Davide Grassani', Eirini Tagkoudi'; 'Ecole Polytechnique Federale de Lausanne, Switzerland. Middle-infrared (mid-IR) gas spectroscopy based on turnkey fiber lasers offers simplicity and robustness. Here we review recent work on fiber-laser driven mid-IR spectroscopy leveraging efficient dispersive-wave generation in silicon nitride waveguide covering 3-5 micron region.

Room 3

08:00–10:00 M1D • Novel Active Devices Presider: Mitsuru Takenaka; Univ. of Tokyo, Japan

M1D.1 • 08:00 Tutorial

Graphene and Related Materials for Photonics and Optoelectronics, Andrea C. Ferrari'; 'Univ. of *Cambridge, UK.* Graphene is an ideal material for optoelectronics. I will show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for next generation datacom and telecom. Heterostructures based on layers of atomic crystals can also be exploited in novel optical devices, such as single photon emitters, and tuneable light emitting diodes.

Andrea C. Ferrari is Professor of Nanotechnology at the University of Cambridge. He is the founding director of the Cambridge Graphene Centre and of the EPSRC Centre for Doctoral Training in Graphene Technology. He is the chair of the Management Panel and the Science and Technology Officer of the EU Graphene Flaghip.

Room 6C

08:00–10:00 M1E • Symposium: Quantum Information Science and Technology (QIST) in the Context of Optical Communications (Session 1)

M1E.1 • 08:00 Invited D

The Enabling Role of Optics and Photonics in the National Quantum Initiative, Michael G. Raymer¹; ¹OMQ, Unix. of Oregon, USA. Optics and photonics play key roles in integrating Univ., industry and government research to move quantum information science and technology from theory into practice, including the central areas of quantum sensors, communication systems and computers.

Room 6D

08:00–10:00 M1F • Next Generation TOSA/ROSA Components Presider: Yusuke Nasu; NTT Photonics Laboratories,

M1F.1 • 08:00 Invited

Japan

A Single Channel 112 Gb/s PAM4 Optical Transceiver Link Based on Silicon Photonics and CMOS Electronics, Haisheng Rong¹, 'Intel Corporation, USA. Abstract not available.

Room 6E	Room 6F	Room 7	Room 8	Room 9
08:00–10:00 M1G • Machine Learning and its Applications Presider: Hussam Batshon; NEC Laboratories America Inc, USA	08:00–10:00 M1H • Chip-to-chip Optical Interconnects Presider: Madeleine Glick; Columbia Univ., USA	08:00–10:00 M1I • Optical Signal Processing Presider: Youichi Akasaka; Fujitsu Laboratories of America Inc, USA	08:00–10:00 M1J • Positioning Beam- steering for Advanced Wireless Communications Presider: Nan Chi; Fudan Univ., China	08:00–10:00 M1K • Dis-aggregated Access Networks Presider: Michael Freiberger; Verizon Communications Inc, USA
M1G.1 • 08:00 Neural Network Assisted Geometric Shaping for 800Gbit/s and 1Tbit/s Optical Transmis- sion, Maximilian Schaedler ^{1,2} , Stefano Cal- abro ¹ , Fabio Pittalà ¹ , Georg Böcherer ³ , Maxim Kuschnerov ¹ , Christian Bluemm ¹ , Stephan Pachnicke ² , ¹ Huawei Munich Research Center, Germany: ² Chair of Communications. Kiel	M1H.1 • 08:00 Invited Co-packaged TeraPHY Optical I/O Enables Next Generation of Data Center Appli- cations, Vladimir Stojanovic ¹ ; ¹ Ayar Labs, USA. Abstract not available.	M11.1 • 08:00 Invited Narrowband and Low-noise Brillouin Ampli- fication for Coherent Communications, Mark D. Pelusi ¹ , Takashi Inoue ¹ , Shu Namiki ¹ ; 'Na- tional Inst. of Advanced Industrial Science and Technology (AIST), Japan. Advantages of Brillouin amplification for phase noise sensitive 64-QAM coherent communications	M1J.1 • 08:00 Invited O Optically Controlled Beam-steering Wire- less Systems, Ton Koonen ¹ , Ketema Me- konnen ¹ , Zizheng Cao ¹ , Frans Huijskens ¹ , Ngoc-Quan Pham ¹ , Eduward Tangdiong- ga ¹ ; ¹ Technische Universiteit Eindhoven, Neth- erlands. Wavelength-controlled 2D steering of mm-wave beams and infrared beams provides	M1K.1 • 08:00 Tutorial The Telco Cloudification, from Open- cord to SDN-enabled Broadband Access (SEBA), Saurav Das ¹ ; 'Open Networking Foun- dation, USA. Abstract not available.

are described. The limits of narrowband gain

enhancing the carrier-to-noise ratio of noisy

pilot tones for high performance optical signal

carrier recovery are shown.

high communication capacity, privacy and

energy efficiency. Using diffractive elements

and accurate user localization, delivery of

multiple 10GbE video streams by infrared

beams is demonstrated.

Kuschnerov¹, Christian Bluemn¹, Stephan Pachnicke², ¹Huawei Munich Research Center, Germany; ²Chair of Communications, Kiel Univ. (CAU), Germany; ³Huawei Technologies France SASU, France. End-to-end learning for amplified and unamplified links including binary-mapping is proposed to improve the performance of optical coherent systems. 1.0dB and 1.2dB gains are demonstrated on coherent 92GbaudDP-32QAM 800Gb/s and 82GbaudDP-128QAM 1Tb/s measurements, respectively.

M1G.2 • 08:15 D

Deep Learning Based Digital Back Propagation with Polarization State Rotation & Phase Noise Invariance, Bertold Ian Bitachon¹, Amirhossein Ghazisaeidi³, Benedikt Baeuerle^{1,2}, Marco Eppenberger¹, Juerg Leuthold¹; ¹ETH Zurich, Switzerland; ²Polariton AG, Switzerland; ³Nokia Bell Labs, France. A new deep learning training method for digital back propagation (DBP) is introduced. It is invariant to polarization state rotation and phase noise. Applying the method one gains more than 1 dB over standard DBP.

OFC 2020 • 8–12 March 2020

	Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Monday, 9 March	M1A • Edge Computing—Continued	M1B • Cognitive Optical Networks—Continued	M1C • Photonic Sensors—Continued	M1D • Novel Active Devices—Continued	M1E • Sympsium: Quantum Information Science and Technology (QIST) in the context of Optical Communications (Session 1)—Continued	M1F • Next Generation TOSA/ROSA Components—Continued
Mo	M1A.3 • 08:30 Invited Multi-layer Network Slicing for Ac- celerating Business Velocity for Edge Computing, Akihiro Nakao'; 'Interfac- ulty Initiative in Information Studies, The Univ. of Tokyo, Japan. Abstract not available.		M1C.2 • 08:30 Proposal of Brillouin Optical Time Domain Collider for Dynamic Strain Measurement, Yin Zhou ¹ , Lianshan Yan ¹ , Xinpu Zhang ¹ , Wei Pan ¹ ; 'Southwest Jiaotong Univ., China. The dynamic strain sampling rate of Brillouin-based distributed sensors is limited by fiber length. For breaking this limit, a Brillouin optical time domain collider is proposed. A 10-times enhancement on sampling rate is experimentally demonstrated.		M1E.2 • 08:30 Invited S Scalable Measurement-Device- Independent Quantum Key Distri- bution Networks with Untrusted Relays, Hoi-Kwong Lo ¹ , Wenyuan Wang ¹ , Feihu Xu ² ; ¹ Physics, Univ. of Toronto, Canada; ² Univ. of Science and Technology of China, China. I review the recent developments of quantum key distribution networks with untrusted relays based on the Measurement-Device-Independent quantum key distribution MDI-QKD protocol.	MIF.2 • 08:30 Top-Scored High Output Power and Compact LAN-WDM EADFB Laser TOSA for 4 × 100-Gbit/s// 40-km Fiber- Amplifier Less Transmission, Shigeru Kanazawa ¹ , Takahiko Shindo ¹ , Min- gchen Chen ¹ , Naoki Fujiwara ¹ , Ma- sahiro Nada ¹ , Toshihide Yoshimatsu ¹ , Atsushi Kanda ¹ , Yasuhiko Nakanishi ¹ , Fumito Nakajima ² , Kimikazu Sano ¹ , Yozo Ishikawa ³ , Kazuyo Mizuno ³ , Hideaki Matsuzaki ² , ¹ NTT Device In- novation Center, Japan; ² NTT Device Technology Labs., Japan; ² Furukawa Electric Co. Ltd, Japan. We achieved the world's first demonstration of 4 × 100-Gbit/s/A 4-PAM signals 40- km fiber-amplifier-less transmission featuring a power budget over 18 dB using a 4-channel high output power

OFC 2020 • 8–12 March 2020

M1C.3 • 08:45 Silicon-based Integrated Broadband Wavelength-meter with Low Temperature Sensitivity, Long Chen', Chris Doerl', Shenghua Liu', Li Chen', Michelle Xu'; 'Acacia Communications, Inc., USA. We demonstrated an integrated broadband wavelengthmeter with three optical 90-degree mixers, differential photodiodes, and delays of thin TM waveguides, allowing unambiguous wavelength determination over 4 THz with high accuracy and relaxed requirement on temperature control.

M1F.3 • 08:45 D

APD ROSA.

A Hybrid-integrated 400G TROSA Module Using Chip-to-chip Optical Butt-coupling, Young-Tak Han', Seokjun Yun', Hyun-Do Jung', Seok-Tae Kim', Jang-Uk Shin', Sang-Ho Park', Seo-Young Lee', Yongsoon Baek'; 'Electronics and Telecom Research Inst, Korea (the Republic of). Using an optical butt-coupling method, we have developed a lowcost hybrid-integrated 4×100G TROSA module, showing clear Tx optical eye patterns and Rx sensitivities within -7.0 ~ -6.4 dBm at 106-Gbps PAM4 signals for all channels.

LAN-WDM EADFB laser TOSA and

Room 6E	Room 6F	Room 7	Room 8	Room 9
M1G • Machine Learning and its Applications—Continued	M1H • Chip-to-chip Optical Interconnects—Continued	M1I • Optical Signal Processing—Continued	M1J • Positioning Beam- steering for Advanced Wireless Communications—Continued	M1K • Dis-aggregated Access Networks—Continued
M1G.3 • 08:30 16-QAM Probabilistic Constellation Shaping by Learning the Distribution of Transmitted Symbols from the Training Sequence, Ah- mad Fallahpour ¹ , Fatemeh Alishahi ¹ , Amir Minoofar ¹ , Kaiheng Zou ¹ , Ahmed Almaiman ¹ , Peicheng Liao ¹ , Huibin Zhou ¹ , Moshe Tur ² ,	M1H.2 • 08:30 Phase Noise Spectral Properties Across Individual Comb Lines in Quantum-dot Mode-locked Lasers, Mustafa A. Al-Qadi ¹ , Maurice O'Sullivan ² , Chongjin Xie ³ , Rongq- ing Hui ¹ ; ¹ Univ. of Kansas, USA; ² R&D, Ciena Corporation, Canada; ³ R&D, Alibaba Group,	M11.2 • 08:30 Experimental Demonstration of an Optical Second-order Volterra Nonlinear Filter us- ing Wave Mixing and Delays to Equalize a 20-Gbaud 4-APSK Channel, Kaiheng Zou ¹ , Peicheng Liao ¹ , Huibin Zhou ¹ , Ahmad Fallah- pour ¹ , Amir Minoofar ¹ , Ahmed Almaiman ^{1,2} ,	M1J.2 • 08:30 Top-Scored High Speed 2D-PDA FSO Receiver for High Optical Alignment Robustness with Space Diversity, Toshimasa Umezawa ¹ , Yuki Yoshida ¹ , Atsushi Kanno ¹ , Naokatsu Yamamoto ¹ , Tetsuya Kawanishi ^{2,1} ; ¹ National Inst of Information & Comm Tech, Japan; ² Waseda Univ., Japan. We	

Fatemeh Alishahi¹, Moshe Tur³, Alan E, Will-

ner1; 1Univ. of Southern California, USA; 2King

Saud Univ., Saudi Arabia; ³Tel Aviv Univ.,

Israel. We demonstrate an optical second-order

Volterra filter using wave mixing and delays. We

measure the frequency response and perform

the compensation of a nonlinearly distorted

20-Gbaud 4-APSK signal with BER reduction

M1G.4 • 08:45 D

and experiment.

Assisted Adaptively Partitioned Entropy Loading for FBMC/OQAM System, Xi Chen^{1,2}, Shuangyi Yan², Ming Tang¹, Songnian Fu¹, Deming Liu¹, Dimitra Simeonidou²; ¹Huazhong Univ of Science and Technology, China; ²High Performance Networks Group, Department of Electrical and Electronic Engineering, Univ. of Bristol, UK. We adopted K-means clustering to efficiently partition the subcarriers to reduce the complexity of PS-OAM on FBMC/OQAM system using KK receiver. The net data rate of 100 Gb/s is achieved after 125 km transmission.

Alan E. Willner1; 1 Univ. of Southern California,

USA; ²Tel Aviv Univ., Israel. A technique for

probabilistic constellation shaping based

on distribution learning from a training

sequence is investigated. In this approach,

the probability distribution is optimized such

that it can maximize the mutual information.

The effectiveness of this approach is verified

by shaping 10 Gbaud 16QAM in simulation

M1H.3 • 08:45 D

practical symbol rates.

Experimental Demonstration of PAM-4 Transmission through Microring Silicon Photonic Clos Switch Fabric, Liang Yuan Dai¹, Yu-Han Hung¹, Qixiang Cheng¹, Keren Bergman¹; ¹Lightwave Research Laboratory, USA. We present the first experimental demonstration of a 25 Gbps optical PAM4 signal transmission through a microringbased Clos topology under realistic operating conditions. We observe a 1.1-dBm power penalty at the bit error rate of 1.03×10-7.

USA. We study phase-noise spectral properties

of comb lines from a QD-MLL, show that their

large linewidth variability attributes to the low-

frequency phase variations, and has minimal

effect on coherent system performance at

M1I.3 • 08:45

from 8.2×10⁻³ to 3.2×10⁻³.

Gain Ripple and Passband Narrowing due to Residual Chromatic Dispersion in Non-degenerate Phase-Sensitive Amplifiers, Shimpei Shimizu¹, Takushi Kazama², Takayuki Kobayashi¹, Takeshi Umeki^{1,2}, Koji Enbutsu², Ryoichi Kasahara², Yutaka Miyamoto¹; ¹NTT Network Innovation Laboratories, NTT Corporation, Japan; ²NTT Device Technology Laboratories, NTT Corporation, Japan. We theoretically show dispersion dependence of gain spectrum in non-degenerate PSA under phase locking, and experimentally demonstrate WDM amplification of PS-64QAM signal using PPLN-based PSA with gain-flattened spectrum by estimation and compensation of chromatic dispersion.

M1J.3 • 08:45

in DSP

Circumventing LoS Blocking in Beam-Steered Optical-wireless Systems with Real-time Tracking and Handover, Ketemaw Addis Mekonnen¹, Ngoc Quan Pham¹, Frans Huijskens¹, Eduward Tangdiongga¹, Ali Mefleh², Ton Koonen¹; 'Eindhoven Univ. of Technology, Netherlands; ²KPN, Netherlands. This paper demonstrates a real-time user tracking and handover mechanism for indoor ultrahighspeed beam-steered optical-wireless systems implementing a low-cost camera. This allows us to tackle LoS blocking by switching to a secondary beam-steering device automatically.

present a free space optics receiver with

high robustness for optical alignment using

a large active area, high-speed 2D-PDA, and

its demonstration of 40-Gbps (PAM4) signal

detection using a space diversity technique

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M1A • Edge Computing—Continued	M1B • Cognitive Optical Networks—Continued	M1C • Photonic Sensors—Continued	M1D • Novel Active Devices—Continued	M1E • Sympsium: Quantum Information Science and Technology (QIST) in the context of Optical Communications (Session 1)—Continued	M1F • Next Generation TOSA/ROSA Components—Continued
M1A.4 • 09:00 Deep Reinforced Energy Efficient Traffic Grooming in Fog-cloud Elastic Optical Networks, Ruijie Zhu', Shihua Li', Peisen Wang', Lulu Li', Aretor Samuel', Yongli Zhao'; 'Zhengzhou Univ., China; 'Beijing Univ. of Posts and Telecommunications, China. We propose a novel energy efficient traffic grooming algorithm based on deep reinforcement learning in fog-cloud elastic optical networks. Simulation results show that it can achieve much lower energy consumption than the state-of-art algorithm.	M1B.2 • 09:00 Top-Scored Hybrid Learning Assisted Abstrac- tion for Service Performance As- sessment Over Multi-domain Optical Networks, Rui Wang ¹ , Xi Chen ^{1,2} , Zhengguang Gao ^{1,3} , Shuangyi Yan ¹ , Reza Nejabati ¹ , Dimitra Simeoni- dou'; 'Univ. of Bristol, UK; ² School of Electronic and Optical Information, Huazhong Univ. of Science and Tech- nology, China; ³ State Key Laboratory of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunications, Chi- na. This paper demonstrates the field- trial validation for a novel machine learning-assisted lightpath abstraction strategy in multi-domain optical network scenarios. The proposed abstraction framework shows high accuracy for dynamic optical networks with 0.44 dB estimation error.	M1C.4 • 09:00 Single-shot Detection Time- stretched Interferometer with At- tosecond Precision, Tianhao Xian ¹ , Li Zhan ¹ ; <i>1Shanghai Jiao Tong Univ.,</i> <i>China</i> . A single-shot time-stretched interferometer for femtosecond and picosecond time detection is proposed and demonstrated. The time precision is ~40 attosecond. This technique succeeds in charactering the motion of delay-line and in fabricating vibrating sensor.	M1D.2 • 09:00 128 Gbps NRZ and 224 Gbps PAM-4 Signals Reception in Graphene Plas- monic PDM Receiver, Yilun Wang ¹ , Yong Zhang ² , Zhibin Jiang ¹ , Wentao Deng ¹ , Xinyu Huang ² , Qizhi Yan ¹ , Liao Chen ¹ , Xiang Li ³ , Lei Ye ² , Xinliang Zhang ¹ ; 'Wuhan National Labora- tory for Optoelectronics, Huazhong Univ. of Science and Technology, China; ² School of Optical and Elec- tronic Information, Huazhong Univ. of Science and Technology, China; ³ State Key Laboratory of Optical Communi- cation Technologies and Networks, China Information Communication Technologies Group Corporation, Chi- na. We report high-data rate reception of polarization division multiplexing signals using graphene-on-plasmonic slot waveguide photodetectors with bandwidth exceeding 70 GHz. 128 Gbps NRZ and 224 Gbps PAM-4 signals reception are experimentally demonstrated at 1550 nm with high quality.	M1E.3 • 09:00 Invited Quantum Memory for Light – The Second Life of Rare-earth Crys- tals, Wolfgang Tittel'; 'TU Delft, Netherlands. Abstract not available.	M1F.4 • 09:00 (Invited) (O Quasi-coherent Technology for Cos Efficient High Loss Budget Trans mission, Jesper B. Jensen ¹ , Jose A Altabas ¹ , Omar Gallardo ¹ , Michel Squartecchia ¹ , Guillermo Silva Valde casa ¹ ; 'Bifrost Communications, Der mark. In this paper, we present result achieved with real-time quasi-coheren receivers in context with challenges for next generation access networks3 dBm receiver sensitivity at 10 Gbp for NG-PON2 applications and 32. km 25 Gbps C-band transmission ove an uncompensated SSMF link for 50 front/mid-haul is presented.
M1A.5 • 09:15 Multi-stage Aggregation and Lightpath Provisioning of Geo- distributed Data over EON Assisted by MEC, Zhen Liu ¹ , Jiawei Zhang ¹ , Zizheng Guo ¹ , Yuefeng Ji ¹ ; 'Beijing Univ. of Posts and Telecomm, China. A	M1B.3 • 09:15 Exploiting Multi-task Learning to Achieve Effective Transfer Deep Reinforcement Learning in Elas- tic Optical Networks, Xiaoliang Chen', Roberto Proietti', Che-Yu Liu', Zuqing Zhu ² , S. J. Ben Yoo'; 'Univ.	M1C.5 • 09:15 Phase-shifted Bragg Grating-based Mach-Zehnder Interferometer Sen- sor using an Intensity Interrogation Scheme, Enxiao Luan ¹ , Han Yun ¹ , Stephen Lin ¹ , Karen Cheung ¹ , Lukas Chrostowski ¹ , Nicolas Jaeger ¹ ; ¹ Uni-	M1D.3 • 09:15 High-speed Plasmonic Modulator for Simultaneous C- and O-band Modulation with Simplified Fab- rication, Andreas Messner ¹ , Pascal A. Jud ¹ , Joel Winiger ¹ , Wolfgang Heni ^{1,2} , Benedikt Baeuerle ^{1,2} , Marco		

Jikheng Guol, Yuefeng Jil; 'Beijing Univ. of Posts and Telecomm, China. A multi-stage aggregation and lightpath provisioning algorithm is proposed for geo-distributed data in EON assisted by MEC. Simulation results show the algorithm can reduce the job completion time and bandwidth consumption. Exploiting Multi-task Learning to Achieve Effective Transfer Deep Reinforcement Learning in Elastic Optical Networks, Xiaoliang Chen¹, Roberto Proietti¹, Che-Yu Liu¹, Zuqing Zhu², S. J. Ben Yoo¹; ¹Univ. of California, Davis, USA; ²Univ. of Science and Technology of China, China. We propose a multi-tasklearning-aided knowledge transferring approach for effective and scalable deep reinforcement learning in EONs. Case studies with RMSA show that this approach can achieve ~4x learning time reduction and ~17.7% lower blocking probability.

Mach-Zehnder Interferometer Sensor using an Intensity Interrogation Scheme, Enxiao Luan¹, Han Yun¹, Stephen Lin¹, Karen Cheung¹, Lukas Chrostowski¹, Nicolas Jaeger¹; ¹Universitiy of British Columbia, Canada. We experimentally demonstrated the suitability of the phase-shifted Mach-Zehnder interferometric device to support real-time sensing monitoring using an intensity interrogation scheme. The proposed sensor presents a sensitivity of ~810 dB/RIU with a broadband light source. High-speed Plasmonic Modulator for Simultaneous C- and O-band Modulation with Simplified Fabrication, Andreas Messner¹, Pascal A. Jud¹, Joel Winiger¹, Wolfgang Heni^{1,2}, Benedikt Baeuerle^{1,2}, Marco Eppenberger¹, Koch Ueli¹, Christian Haffner^{1,4}, Huajun Xu³, Delwin L. Elder³, Larry R. Dalton³, Ping Ma¹, Juerg Leuthold¹; ¹ETH Zurich, Switzerland; ²Polariton Technologies AG, Switzerland; ³Department of Chemistry, Univ. of Washington, USA; ⁴National Inst. of Standards and Technology, USA. A plasmonic modulator spanning both C- and O-band for dual-band data modulation up to 100 Gbit/s in one single device is presented. Fiber-to-fiber insertion loss can be as low as 11 dB.

Room 6E	Room 6F	Room 7	Room 8	Room 9
M1G • Machine Learning and its Applications—Continued	M1H • Chip-to-chip Optical Interconnects—Continued	M1I • Optical Signal Processing—Continued	M1J • Positioning Beam- steering for Advanced Wireless Communications—Continued	M1K • Dis-aggregated Access Networks—Continued
M1G.5 • 09:00 Tutorial Machine Learning and its Applications in Optical Communication Systems , Faisal N. Khan ¹ , Qirui Fan ¹ , Jianing Lu ² , Gai Zhou ¹ , Chao Lu ² , Alan Pak Tao Lau ¹ ; ¹ Photonics Research Center, Department of Electrical Engineering, Hong Kong Polytechnic Univ. China: ² Photone	M1H.4 • 09:00 Tutorial Energy-efficient Multi-wavelength, Chip-to- chip, Switched Optical Interconnects, Ashok V. Krishnamoorthy'; 'Axalume, Inc., USA. We discuss optical chip-to-chip electrical and optical interconnects, reviewing optical component technologies and their application	M11.4 • 09:00 Generation and Coherent Detection of 2-µm-band WDM-QPSK Signals by On-chip Spectral Translation, Deming Kong ¹ , Yong Liu ¹ , Zhengqi Ren ² , Yongmin Jung ² , Minhao Pu ¹ , Kresten Yvind ¹ , Michael Galili ¹ , Leif Oxen- lowe ¹ , David Richardson ² , Hao Hu ¹ , ¹ Technical	M1J.4 • 09:00 Beyond 100-kbit/s Transmission over Roll- ing Shutter Camera-based VLC Enabled by Color and Spatial Multiplexing, Liqiong Liu ¹ , Rui Deng ¹ , Jin Shi ² , Jing He ² , Lian-Kuan Chen ¹ ; ¹ Department of Information Engi- neering, The Chinese Univ. of Hong Kong,	M1K.2 • 09:00 Two-stage Abstraction for Disaggregated Modular OLT Architecture Supporting OpenFlow Control, Keita Nishimoto ¹ , Kota Asaka ¹ , Jun-ichi Kani ¹ , Jun Terada ¹ ; ¹ NTT Access Network Service Systems Laborato- ries, Japan. We implement our abstraction

Univ. of Denmark, Denmark; ²Optoelectron-

ics Research Centre, Univ. of Southampton,

UK. We have proposed and demonstrated the

generation and coherent detection of 2-µm-

band I/Q modulated signals for the first time

using on-chip spectral translation, 6×32 Gbaud

WDM-QPSK signals exhibit BERs below the 7%

Hong Kong Polytechnic Univ., China; ²Photon-

ics Research Center, Department of Electronic

and Information Engineering, The Hong Kong

Polytechnic Univ., China. In this presentation,

we will discuss the fundamentals of basic

Machine Learning(ML) techniques. We will then

provide an overview of current ML applications

in optical communications and networks and

highlight upcoming trends and challenges.

Alan Pak Tao Lau received his B.A.Sc., M.A.Sc. from University of Toronto and his Ph.D. in Electrical Engineering from Stanford University in 2008. He joined The Hong Kong Polytechnic University and is now a Professor. His research interests include DSP and Machine Learning applications for various optical communication systems.

to energy-efficient optically-interconnected

systems with enhanced performance metrics.

Examples will be provided to highlight system-

level successes and to motivate an evolution

of next generation optically-interconnected

platforms from electrically switched, to optical

wavelength-switched and broadband optically-

switched systems.

Ashok Krishnamoorthy is Chairman and CEO of Axalume, an optical interconnect startup. He was formerly an Oracle Architect and its Chief Technologist, Photonics, Previously, he was a Distinguished Engineer and Director at Sun Microsystems, and prior to that President and CTO of AraLight, a Bell Labs VCSEL interconnect spinout.

HD-FEC threshold.

M1I.5 • 09:15

Compensation of SOA Nonlinear Distortions by Mid-stage Optical Phase Conjugation, Aneesh Sobhanan¹, Mark Pelusi², Takashi Inoue², Deepa Venkitesh¹, Shu Namiki²; ¹Indian Inst. of Technology Madras, India; ²National Inst. of Advanced Industrial Science and Technology, Japan. We investigate optical phase conjugation for compensating nonlinear distortions due to carrier dynamics in semiconductor optical amplifiers. Experiments with WDM-3X12Gbaud 16-QAM signals show the ability to outperform a single device by 2dB average Q2-factor improvement.

M1J.5 • 09:15

spatial multiplexing.

Non-orthogonal Matrix Precoding based Faster-than-nyquist Signaling over Optical Wireless Communications, Zhouyi Hu1, Chun-Kit Chan¹: ¹Chinese Univ. of Hong Kong. Hong Kong. We first investigate a novel nonorthogonal matrix precoding based faster-than-Nyquist signaling technology in OWC systems. Compared to the conventional schemes, it shows superior performance including PAPR reduction, improved sensitivity, and improved tolerance to narrow-bandwidth filtering.

Hong Kong; ²College of Computer Science

and Electornic Engineering, Hunan Univ.,

China. The camera-based VLC (CVLC) is a

promising technique for various application

scenarios. For the first time, we demonstrate a

rolling shutter based CVLC system with beyond

100-kbit/s data rate by employing color and

M1K.3 • 09:15

ONOS / VOLTHA.

Capacity Sharing Approaches in Multitenant, Multi-service PONs for Low-latency Fronthaul Applications Based on Cooperative-DBA, Arsalan Ahmad^{1,2}, Sanwal Zeb¹, Abdul Wahab², Rana Azhar Khan², Marco Ruffini1; 1Univ. of Dublin Trinity College, Ireland; ²National Univ. of Sciences and Technology, Pakistan. We propose and compare algorithms to allocate upstream PON capacity, where multiple virtual operators generate independent frame-level allocation over shared infrastructure. Our fragmentation-based approach shows the ability to limit latency increase to a few microseconds

method for provisioning and controlling, via

OpenFlow, the disaggregated PON-OLT that

features separation of hardware module and

softwarized OLT functions, and demonstrate its

operation by utilizing open source controllers

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M1A • Edge Computing—Continued	M1B • Cognitive Optical Networks—Continued	M1C • Photonic Sensors—Continued	M1D • Novel Active Devices—Continued	M1E • Sympsium: Quantum Information Science and Technology (QIST) in the context of Optical Communications (Session 1)—Continued	M1F • Next Generation TOSA/ROSA Components—Continued
M1A.6 • 09:30 Remote Human-to-Machine Dis- tance Emulation through Al-En- hanced Servers for Tactile Internet Applications, Sourav Mondal', Li- hua Ruan', Elaine Wong', 'Univ. of Melbourne, Australia. We alleviate the master-slave distance limitation of human-to-machine applications by forecasting and pre-empting haptic feedback transmission. Results show 99% accuracy in detecting touch events and 96% accuracy in forecasting feedback from different slave materials.	M1B.4 • 09:30 Dynamically Controlled Flexible-Grid Networks Based on Semi-Flexible Spectrum Assignment and Network- state-value Evaluation, Ryuta Shi- raki ¹ , Yojiro Mori ¹ , Hiroshi Hasegawa ¹ , Ken-ichi Sato ² ; ¹ Information and Communication Engineering, Na- goya Univ., Japan; ² The National Inst. of Advanced Industrial Sci- ence and Technology, Japan. We propose a novel RSA algorithm for dynamically-changing flexible-grid networks. The proposed scheme can suppress spectral fragmentation and adapt to traffic-distribution change. Extensive simulations show that the	M1C.6 • 09:30 Real-time Structured-light Depth Sensing Based on Ultra-compact, Non-mechanical VCSEL Beam Scan- ner, Ruixiao Li ¹ , Masashi Takanohashi ¹ , Shanting Hu ¹ , Xiaodong Gu ¹ , Fumio Koyama ¹ ; 'Tokyo Inst. of Technology, Japan. We realized real-time scanning structured-light depth sensing with accuracy of less than 270mm for distance of 35cm using ultra-compact (<0.5mm ²) non-mechanical beam scan- ner. The peak output power can be as low as 1mW.	M1D.4 • 09:30 50 Gbit/s Silicon Modulator Oper- ated at 1950 nm, Wenxiang Li ¹ , Miaofeng Li ^{2,3} , Hongguang Zhang ^{2,3} , Yuguang Zhang ^{2,3} , Hucheng Xie ¹ , Xi Xiao ^{2,3} , Ke Xu ¹ ; ¹ Harbin Inst. of Tech- nology, China; ² National Information Optoelectronics Innovation Center, China; ³ Wuhan Research Inst. of Posts & Telecommunications, China. We have experimentally demonstrated an integrated silicon Mach-Zehnder modulator which operates at 1950 nm wavelength range. 50 Gbit/s intensity modulation is achieved with bit error rate below 3.8×10 ³ .	M1E.4 • 09:30 Invited Title to be Announced, Jungsang Kim ¹ ; ' <i>Duke Univ., USA</i> . Abstract not available.	MIF.5 • 09:30 25.78-Gbit/s Burst-mode Receiver for 50G-EPON OLT, Naruto Tanaka ¹ , Daisuke Umeda ² , Yoshiyuki Sugimoto ¹ , Tomoyuki Funada ² , Keiji Tanaka ¹ , Shoichi Ogita ¹ ; 'Transmission De- vices Laboratory, Sumitomo Electric Industries, LTD, Japan; ² Information Network R&D Center, Sumitomo Electric Industries, LTD, Japan. We report the worlds first receiver optical sub-assembly equipped with 25G burst-mode TIA which is applicable for 50G-EPON OLT transceiver. We demonstrate its 25G/10G dual-rate burst-mode receiver characteristics.
M1A.7 • 09:45 Demonstration of Geo-distributed Data Processing and Aggregation in MEC-empowered Metro Opti- cal Networks, Jiawei Zhang', Lu Cui', Zhen Liu', Yuefeng Ji'; 'Beijing Univ of Posts & Telecom, China. We experimentally demonstrate a geo- distributed data processing and aggregation (GDPA) scheme in the MEC-empowered metro optical networks. The demonstration results show that the proposed scheme can improve resource utilization and reduce average job completion time.	fiber-utilization efficiency is increased by 1% to 57%.	M1C.7 • 09:45 A Novel Frequency-modulation (FM) Demodulator for Microwave Pho- tonic Links based on Polarization- Maintaining Fiber Bragg Grating, Di- penkumar Barot ¹ , Lingze Duan ¹ ; ¹ Univ. of Alabama in Huntsville, USA. A novel scheme for demodulating frequency-modulated optical signals is proposed. It uses polarization- maintaining fiber Bragg grating (PM- FBG) as a frequency discriminator. The basic principle and preliminary results of linearity and demodulation are presented.	M1D.5 • 09:45 Quantum Random Number Gen- erator based on Phase Diffusion in Lasers using an On-chip Tunable SOI Unbalanced Mach-Zehnder Interfer- ometer (uMZI), Imran Muhammad ¹ , Vito Sorianello ² , Francesco Fresi ² , Luca Poti ² , Marco Romagnoli ² ; ¹ Scuola Superiore Sant'Anna, Italy; ² CNIT, Italy. A 12.5Gb/s QRNG based on phase diffusion in gain switched lasers is demonstrated using a packaged on-chip SOI tunable unbalanced MZI achieving minimum entropy/bit of 5.04 for 8 bit sample passing all NIST randomness tests.		M1F.6 • 09:45 PAM-XT [™] : A 25Gb/s-PAM4 Optical Transceiver Chipset for 5G Optical Front-Haul, Lei Zhao ¹ , Xin Wang ² , Rui Bai ² , Juncheng Wang ² , Tao Xia ¹ , Yi Peng ² , Yuanxi Zhang ² , Lei Wang ² , Luija Song ² , Shenglong Zhuo ¹ , Xuefeng Chen ² , Patrick Y. Chiang ^{1,2} , ¹ Fudan University, Shanghai, China, ² PhotonIC Technologies, Shanghai, China. A complete 25Gb/s PAM4 optical trans- ceiver chipset using commercial 10G- lasers for 10km single-mode fiber is presented. Measurement results demonstrate <-12dBm sensitivity across all temperatures and <30pJ/ bit power efficiency.

10:00–10:30 Coffee Break, Upper Level Corridors

Room 6E	Room 6F	Room 7	Room 8	Room 9
M1G • Machine Learning and its Applications—Continued	M1H • Chip-to-chip Optical Interconnects—Continued	M11 • Optical Signal Processing—Continued	M1J • Positioning Beam- steering for Advanced Wireless Communications—Continued	M1K • Dis-aggregated Access Networks—Continued
		M11.6 • 09:30 Invited Phase Reconstruction Scheme Using Dis- persive Media in Direct Detection, Masayuki Matsumoto'i; 'Wakayama Univ., Japan. A non- iterative reconstruction scheme of phase- modulated signals using dispersive media in direct detection is described. The phase retrieval is performed by solving the temporal transport-of-intensity equation. Required carrier-to-signal power ratio and allowable carrier location in frequency are numerically	M1J.6 • 09:30 Ultrahigh-capacity Optical-wireless Com- munication Using 2D Gratings for Steering and Decoding of DPSK Signals, Ketemaw Addis Mekonnen ¹ , Eduward Tangdiongga ¹ , Ton Koonen ¹ ; 'Eindhoven Univ. of Technol- ogy, Netherlands. We demonstrate the use of a 2D-gratings beam-steering device also as a demodulator for multiple differentially- encoded optical-wireless signals. Using this novel concept, ~2Dits/sec/Hz spectral-	M1K.4 • 09:30 Invited Softwarized and Open OLT Architecture for Flexible Optical Access Network, Keita Nishimoto', Takahiro Suzuki', Kota Asaka', Jun- ichi Kani', Jun Terada'; 'NTT Access Network Service Systems Laboratories, Japan. Recently, many telecom carriers are promoting the re- architecture of access networks and COs by utilizing SDN/NFV and OSS. We present our research relevant to the software PON-OLT architecture that we proposed for further

studied.

M1J.7 • 09:45

Multi-user Localization and Upstream Signaling for Indoor OWC System using a Camera Technology, Ngoc Quan Pham¹, Ketema Mekonnen¹, Eduward Tangdiongga¹, Ali Mefleh², Ton Koonen¹; ¹Eindhoven Univ. of Technology, Netherlands; ²KPN, Netherlands. We present upstream signaling and localization for an indoor beam-steered OWC system using vision-based technology. We demonstrate a 1.2kbps upstream signaling and localization system which enables to identify a large number of users with <0.05° error.

efficiency was achieved without any change in

the system compared to on-off-keying.

flexibility.

10:00–10:30 Coffee Break, Upper Level Corridors

Room 1A

10:30–12:30 M2A • Advanced Active Components Presider: Hanxing Shi; Finisar

Presider: Hanxing Corporation, USA

> M2A.1 • 10:30 Top-Scored Broadband 145GHz Photodetector Module Targeting 200GBaud Applications, Patrick Runge¹, Felix Ganzer¹, Jonas Gläsel¹, Sebastian Wünsch¹, Sven Mutschall¹, Martin Schell¹; ¹Fraunhofer Institut, Germa*ny.* We demonstrate a photodetector module with a 0.8mm-RF connector and an estimated 3dB-bandwidth of 145GHz. The bandwidth of the module exceeds all other state of the art photodetector modules. The intended application of the module is for test and measurement equipment of next generation optical networks with 200GBaud.

M2A.2 • 10:45

Superior Temperature Performance of Si-Ge Waveguide Avalanche Photodiodes at 64Gbps PAM4 **Operation,** Yuan Yuan^{1,2}, Zhihong Huang¹, Binhao Wang¹, Wayne Sorin¹, Di Liang¹, Joe C. Campbell², Raymond Beausoleil¹; ¹Hewlett Packard Labs, Hewlett Packard Enterprise, USA; ²Department of Electrical and Computer Engineering, Univ. of Virginia, USA. We demonstrate a low voltage Si-Ge waveguide avalanche photodiode with extremely high temperature performance. It exhibits high temperature stability from 30 °C to 90 °C, and achieves excellent operation with 64 Gb/s PAM4 modulation.

10:30–12:30 M2B • High-speed Integrated Modulators

Room 1B

Presider: Argishti Melikyan; Nokia Bell Labs, USA

M2B.1 • 10:30

O-band Reflective Electroabsorption Modulator for 50 Gb/s NRZ and PAM-4 Colorless Transmission, Kebede Tesema Atra^{2,1}, Giancarlo Cerulo², Jean-Guy Provost², Filipe Jorge², Fabrice Blache², Karim Mekhazni², Alexandre Garreau², Frederic Pommereau², Carmen Gomez², Catherine Fortin², Cedric Ware¹, Didier Erasme¹, Franck Mallecot², Mohand Achouche²: ¹LTCI, Télécom Paris, Institut Polytechnique de Paris, France; ²III-V Lab (a joint laboratory between Nokia Bell Labs, Thales R&T and CEA Leti), France, We present a 50 Gb/s O-band reflective electroabsorption modulator operating in both non-return-to-zero (NRZ) and PAM-4 modulation formats without equalization. We obtained >9 dB NRZ dynamic extinction ratio for a peak-to-peak voltage of 2.4 V.

M2B.2 • 10:45

In-Phase/Quadrature Modulation by Directly Reflectivity Modulated laser, Po Dong¹, Argishti Melikyan¹, Kwangwoong Kim¹, Noriaki Kaneda², Brian Stern¹, Yves Baeyens², ¹Nokia Bell Labs, USA; ²Nokia Bell Labs, USA. We report a directly reflectivity modulated laser that generates a 50-Gbaud QPSK signal with a BER of 2.2x10⁻⁵. We believe this is the first demonstration of a coherent transmitter made from a directly driven laser. Room 2

10:30–12:30 M2C • SDM Imaging and Sensing Presider: Rodrigo Amezcua Correa; Univ. of Central Florida, CREOL, USA

M2C.1 • 10:30 Invited

Ultra-miniaturized Endoscopes with Multicore Fibers, Esben R. Andresen¹, Siddharth Sivankutty², Viktor Tsvirkun², Karen Baudelle¹, Olivier Vanvinca¹, Géraud Bouwmans¹, Hervé Rigneault²; ¹Univ Lille 1 Laboratoire PhLAM, France: ²Aix Marseille Univ., CNRS, Centrale Marseille, Institut Fresnel, France. We take stock of the progress made into developing fiberoptic ultra-thin endoscopes assisted by wave front shaping. We focus on multi-core fiber-based lensless endoscopes intended for multiphoton imaging. We put the work into perspective and outline remaining challenges.

Room 3

10:30–12:30 M2D • Optimizing Network Capacity and Performance Presider: Stephen Grubb; Facebook Inc., USA

M2D.1 • 10:30 Invited Record Ultra-high Full-fill Capacity

Transatlantic Submarine Deployment Ushering in the SDM Era, Pierre Mertz¹, Stephen Grubb², Jeffrev Rahn², Warren Sande³, Marc Stephens³, James O'Connor³, Matthew Mitchell², Stefan Voll³: ¹Infinera Corporation, USA: ²Facebook, USA: ³Infinera Corporation, USA. A record capacity of 24 Tbps on a 6.644 km trans-Atlantic deployment using 16QAM is enabled by synthesized subcarriers, FEC gain sharing, multi-carrier wavelocking, and large-area, high dispersion fiber. Computer assisted optimization and automated protection facilitate full-fill deployments becoming prevalent as submarine cables enter the SDM era.

Room 6C

10:30–12:30 M2E • Symposium: Quantum Information Science and Technology (QIST) in the Context of Optical Communications (Session 2)

M2E.1 • 10:30 Invited

Title to be Announced, Christine Silberhorn¹; ¹Univ. of Paderborn, Germany. Abstract not available.

Room 6D

10:30–12:30 M2F • Digital Signal Processing and Radioover-fiber Systems for 5G

Presider: Anthony Ng'oma; Corning Inc, USA

M2F.1 • 10:30 Invited

Enabling Techniques for Optical Wireless Communication Systems, Chi-Wai Chow¹, Chien-Hung Yeh², Y. Liu³, Yin-Chieh Lai¹, Liang-Yu Wei¹, Chin-Wei Hsu¹, Guan-Hong Chen¹, X. L. Liao⁴, K. H. Lin⁴; ¹National Chiao Tung Univ., Taiwan; ²Feng Chia Univ., Taiwan; ³Philips, Hong Kong; ⁴Industrial Technology Research Inst., Taiwan. We summarized the recent progress of enabling techniques for the optical wireless communication (OWC) and visible light communication (VLC). Besides, we reported two high data-rate laserdiode (LD) based VLC systems. Several application scenarios using VLC were also discussed.

Room 6E	Room 6F	Room 7	Room 8	Room 9	
10:30–12:30 M2G • Multiband and SDN for Capacity Scaling Presider: Mark Filer; Microsoft Corp., USA	10:30–12:30 M2H • Access Networks for Mobile and Multi-access Edge Computing Presider: Marco Ruffini; Univ. of Dublin Trinity College, Ireland	10:30–12:30 M2I • Photonic Integrated Subsystems Presider: Lu Li; SubCom, USA	10:30–12:30 M2J • Data Analytic-based Monitoring Presider: Takahito Tanimura; Fujitsu Limited, Japan	10:30–12:30 M2K • Neuromorphic I: Device-oriented Presider: Ken-ichi Kitayama; Grad Sch Creation of New Photonics Ind, Japan	Monday, 9 March
M2G.1 • 10:30 Invited Spatial Channel Network (SCN): Introducing Spatial Bypass Toward the SDM Era, Ma- sahiko Jinno ¹ , Takahiro Kodama ¹ ; 'Kagawa Univ., Japan. We review the spatial-channel network technology toward the spatial-division- multiplexing era from the viewpoints of network and node architectures, physical performance, network-resource utilization efficiency, and novel optical switches for modular and low-loss spatial cross-connects.	M2H.1 • 10:30 Real-time Assessment of PtP/PtMP Fixed Access Serving RAN with MEC Capa- bilities, Anas El Ankouri ^{1,2} , Santiago Ruano Rincón ² , Gaël Simon ¹ , Luiz Anet Neto ¹ , Annie Gravey ² , Philippe Chanclou ¹ ; ¹ Orange Labs, France; ² IMT Atlantique, France. In this paper we propose the introduction of an intelligent access network equipment capable of hosting Mobile Edge Computing capabilities in a convergence scenario of PtP and PtMP topologies.	M2I.1 • 10:30 Tutorial Silicon Photonic Waveguide Bragg Grat- ings, Lukas Chrostowski ¹ ; ¹ Univ. of British Columbia, Canada. Abstract not available.	M2J.1 • 10:30 Invited DSP-aided Telemetry in Monitoring Lin- ear and Nonlinear Optical Transmission Impairments, Qunbi Zhuge ¹ , Xiaomin Liu ¹ , Huazhi Lun ¹ , Mengfan Fu ¹ , Lilin Yi ¹ , Weisheng Hu ¹ ; ¹ Shanghai Jiao Tong Univ., China. DSP- aided telemetry within coherent receivers provide unprecedented capabilities to monitor linear and nonlinear optical transmission impairments. The recent progress of it is reviewed and discussed in the context of advanced network applications.	M2K.1 • 10:30 Temporal Resolution Enhancement in Quan- tum-dot Laser Neurons due to Ground State Quenching Effects, George Sarantoglou ¹ , Menelaos Skontranis ¹ , Adonis Bogris ² , Charis Mesaritakis ¹ ; 'Univ. of the Aegean, Greece; ² In- formatics and Computer Engineering, Univ. of West Attica, Greece. We present experimental results for an all-optical quantum-dot neuron, biased to a ground-state quenching regime alongside emission from the excited state. This regime, allows reduction of the temporal width of spikes down to 500 ps and enhanced	

Cohesion between 5G Mobile Wireless and Fixed Optical Based Wireline Networks, Mark Watts'; 'Verizon Communications Inc, USA. Interworking between 5G Mobility and Fixed Optical Access Application is rapidly increasing in importance for users and network operators. Use cases are converging, with overlapping network features and functionality and in some cases, duplicative. M2K.2 • 10:45

firing rate.

A DFB-LD-based Photonic Neuromorphic Network for Spatiotemporal Pattern Recognition, Bowen Ma¹, Jianping Chen¹, Weiwen Zou¹; 'Shanghai Jiao Tong Univ., China. We present a photonic neuromorphic network using DFB-LDs for spatiotemporal pattern recognition. Complete input patterns are investigated theoretically and experimentally. The output peak powers decrease with the difference between the target pattern and other patterns.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M2A • Advanced Active Components—Continued	M2B • High-speed Integrated Modulators— Continued	M2C • SDM Imaging and Sensing—Continued	M2D • Optimizing Network Capacity and Performance—Continued	M2E • Symposium: Quantum Information Science and Technology (QIST) in the Context of Optical Communications (Session 2)—Continued	M2F • Digital Signal Processing and Radio- over-fiber Systems for 5G —Continued
M2A.3 • 11:00 Invited Development of VCSELs and VCSEL- based Links for Data Communi- cation beyond 50Gb/s, Nikolay Ledentsov Jr. ^{1,2} , Lukasz Chorchos ^{1,2} , Vitaly A. Shchukin', Vladimir P. Kalo- sha', Jaroslaw P. Turkiewicz ² , Nikolay Ledentsov ¹ ; 'VI Systems GmbH, Germany; ² Inst. of Telecommuni- cations, Warsaw Univ. of Technol- ogy, Poland. Recent advances in VCSELs and VCSEL-based links are reviewed. The impact of the VCSEL bandwidth extension to 28GHz on the performance of energy-efficient link capable of operating above 71Gbit/s in NRZ modulation is studied.	M2B.3 • 11:00 Uncooled Operation of 53-Gbaud PAM4 EA-DFB Lasers in the Wave- length Range of 1510-1570 nm for 800-GbE Applications, Yoshihiro Nakai', Shigenori Hayakawa', Syunya Yamauchi', Yoriyoshi Yamaguchi', Tet- suyoshi Takamure', Hideaki Asakura', Ryosuke Nakajima', Shigetaka Hama- da', Kazuhiko Naoe'; 'Lumentum Japan, Inc., Japan. 53-Gbaud EA- DFB lasers—with four wavelengths in the 1500-nm region—for 800-GbE applications were developed. They demonstrated uncooled 53-Gbaud PAM4 operation with a TDECQ of lower than 2.5 dB over a wide temperature from 20 to 85°C.	M2C.2 • 11:00 Top-Scored Single-pixel Imaging Through Mul- imode Fiber Using Silicon Opti- cal Phased Array Chip, Taichiro Fukui', Yusuke Kohno', Rui Tang', Yoshiaki Nakano', Takuo Tanemu- ra', <i>'School of Engineering, The Univ.</i> of <i>Tokyo, Japan.</i> We experimentally demonstrate single-pixel imaging using a multimode fiber attached with optical phased-array chip. By speckle patterns are generated from the fiber to realize clear imaging with 490 resolvable points.	M2D.2 • 11:00 Probabilistic-Shaping DP-16QAM CFP-DCO transceiver for 200G Upgrade of Legacy Metro/Regional WDM Infrastructure, Erwan Pince- min ¹ , Yann Loussouarn ¹ ; 'Orange Labs, France. We investigate here the capability of a newly developed CFP-DCO interface, operating at both 34 Gbaud with uniform DP-16QAM and 39 Gbaud with probabilistic- shaping DP-16QAM, for 200G upgrade of legacy metro/regional WDM infrastructure already working at 10G or 100G.	M2E.2 • 11:00 Invite Pushing the Count-rate and Ef- ficiency Limits of Single-photon Avalanche Diodes with RF Inter- ferometry, Joshua Bienfang ¹ ; ¹ NIST, USA. Abstract not available.	M2F.2 • 11:00 Joint Optimization of Processing Complexity and Rate Allocation through Entropy Tunability for 64- /256-OAM Based Radio Fronthaul- ing with LDPC and PAS-OFDM, Rui Zhang ¹ , Yon-Wei Chen ¹ , Shuyi Shen ¹ , Qi Zhou ¹ , Shuang Yao ¹ , Shang-Jen Su ¹ , Yahya Alfadhli ¹ , Gee-Kung Chang ¹ ; ' <i>Georgia Inst. of Technology,</i> USA. We experimentally demonstrate LDPC coded PAS-OFDM 64-/256- QAM signals in radio fronthauls. Through entropy allocation by adjusting the complexity and signal bandwidth, tunable power margins gain up to 3 dB and relaxed process latency are achieved.
	M2B.4 • 11:15 25 Gbit/s Silicon Based Modula-	M2C.3 • 11:15 Low Return Loss Multicore Fiber-	M2D.3 • 11:15 Top-Scored		M2F.3 • 11:15

25 Gbit/s Silicon Based Modulators for the 2 µm Wavelength Band, Wei Cao¹, Milos Nedeljkovic¹, Shenghao Liu¹, Callum G. Littlejohns¹, David Thomson¹, Frederic Gardes¹, Zhengqi Ren¹, Ke Li¹, Graham T. Reed¹, Goran Mashanovich^{1,2}; ¹Univ. of Southampton, UK; ²School of Engineering, Univ. of Belgrade, Serbia. We demonstrate high-speed silicon modulators optimized for operating at the wavelength of 2 µm. The Mach-Zehnder interferometer carrier-depletion modulator has a modulation efficiency $V\pi.L\pi$ of 2.89 V.cm at 4 V reverse bias. It operates at a data rate of 25 Gbit/s with an extinction ratio of 6.25 dB.

Low Return Loss Multicore Fiber-Fanout Assembly for SDM and Sensing Applications, Victor I. Kopp¹, Jongchul Park¹, Jon Singer¹, Dan Neugroschl¹, Andy Gillooly²; ¹Chiral Photonics Inc, USA; ²Fibercore House, Fibercore, UK. SDM using uncoupled or coupled core multicore fibers promises to increase the bandwidth density in optical links. In addition, these fibers form a platform for various sensing systems, including 3D shape sensing. Both applications will be advanced by the low return loss fanout-multicore fiber assembly demonstrated here.

Field and Laboratory Demonstration of 48nm Optical Transport with Real-Time 32T (80×400G) over G.652 Fiber Distances up to 640km, Praveen Kumar¹, Deepak Sanghi¹, Sumit Chatterjee¹, Deng Pan², Xuefeng Tang², Zhuhong Zhang², Chuandong Li², Deng Jian², Dejiang Zhang²; ¹Bharti Airtel Ltd, India; ²huawei technologies, China. We report first successful field trial and laboratory demonstration of 48nm extended C band transport. Error-free transmission of 32Tb/s (80×400Gb/s) is achieved over 640km G.652 link in laboratory and 42km

Demonstration of Pattern Divi-

sion Multiple Access with Mes-

sage Passing Algorithm in MMW-

RoF Systems, Shuyi Shen¹, You-

Wei Chen¹, Qi Zhou¹, Gee-Kung

Chang¹; ¹Georgia Inst. of Technology,

USA. Implementing PDMA with MPA,

ambiguous symbol recovery and

4-dB sensitivity improvement was

achieved compared to conventional

PD-NOMA-SIC. Experimental results

show that PDMA enhances application

flexibility by pattern variants tailored

for different scenarios including grant-

free uplinks.

OFC 2020 • 8–12 March 2020

G.652 link in field.

58

Room 6E	Room 6F	Room 7	Room 8	Room 9
M2G • Multiband and SDN for Capacity Scaling—Continued	M2H • Access Networks for Mobile and Multi-access Edge Computing—Continued	M2I • Photonic Integrated Subsystems—Continued	M2J • Data Analytic-based Monitoring—Continued	M2K • Neuromorphic I: Device-oriented—Continued
M2G.2 • 11:00 Evaluation of the Flexibility of Switching Node Architectures for Spaced Division Multiplexed Elastic Optical Network, Si- cong Ding', Shan Yin', Zhan Zhang', Shanguo Huang', 'State Key Laboratory of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunica- tions, China. We present a flexibility model for quantitatively evaluating switching node architectures in terms of switching strategies, function and required components in SDM- EON, revealing designs with the most switching flexibility.			M2J.2 • 11:00 Experimental Comparisons between Ma- chine Learning and Analytical Models for OoT Estimations in WDM Systems, Qirui Fan ¹ , Jianing Lu ¹ , Gai Zhou ¹ , Derek Zeng ¹ , Changjian Guo ^{3,1} , Linyue Lu ¹ , Jianqiang Li ⁴ , Chongjin Xie ² , Chao Lu ¹ , Faisal N. Khan ¹ , Alan Pak Tao Lau ¹ ; 'The Hong Kong Polytechnic Unix, Hong Kong; ² Alibaba Group, USA; ³ South China Normal Unix, China; ⁴ Alibaba Group, USA. We experimentally compare QoT estimations for WDM systems using Machine Learning(ML) and GN-based analytical models. ML estimates the side channels with better accuracy but is temporally less stable and less generalizable to different link configurations.	M2K.3 • 11:00 Invited Scalable Photonic Integration of Neural Networks, Johnny Moughames ² , Javier Porte ² , Maxime Jacquot ² , Laurent Larger ² , Muamer Kadic ² , Daniel Brunner ¹ ; 'CNRS, France; ² FEM- TO-ST, Univ. Franche-Comte, France; Photonic neural networks are promising candidates for next generation computing. Using a novel integration technology we demonstrate photonic neural networks for which the number of neurons scales linear with the substratess footprint. It is the first time such advantageous scaling is reported for large scale photonic neural network integration.
M2G.3 • 11:15 C Cop-Scored Design Strategies Exploiting C+L-band in Networks with Geographically-dependent Fiber Upgrade Expenditures, Daniela A. Moniz ^{2,1} , Victor Lopez ³ , João Pedro ² ; ¹ Instituto de Telecomunicações, Portugal; ² Infinera, Por- tugal; ³ Telefónica, Spain. This paper proposes a framework leveraging next-generation interfaces and C+L-band to design transport networks where fiber-based capacity upgrade is geographically-dependent. Simulation re- sults highlight the effectiveness of the proposal and the possible trade-offs between number of interfaces and fibers.	M2H.3 • 11:15 O PON Virtualisation with EAST-WEST Com- munications for Low-latency Converged Multi-access Edge Computing (MEC), Sandip Das ¹ , Marco Ruffini ¹ ; 'Computer Science, Trin- ity College Dublin , Ireland. We propose a virtual-PON based Mobile Fronthaul (MFH) architecture that allows direct communications between edge points (enabling EAST-WEST communication). Dynamic slicing improves service multiplexing while supporting ultra- low latency under 100µs between cells and MEC nodes.		M2J.3 • 11:15 Fast BER Distribution and Neural Networks for Joint Monitoring of Linear and Nonlinear Noise-to-Signal Ratios, Ali Salehiomran', Zhiping Jiang'; 'Optical Systems Competency Center, Huawei Technologies Canada, Cana- da. Experimentally observed long-tail fast BER (10ns–1µs) histogram (FBH) in presence of NLIN is explained through simulation. Features from FBHs are applied to train an ANN to estimate linear and nonlinear NSRs with <5% error.	

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M2A • Advanced Active Components—Continued	M2B • High-speed Integrated Modulators— Continued	M2C • SDM Imaging and Sensing—Continued	M2D • Optimizing Network Capacity and Performance—Continued	M2E • Symposium: Quantum Information Science and Technology (QIST) in the Context of Optical Communications (Session 2)—Continued	M2F • Digital Signal Processing and Radio- over-fiber Systems for 5G —Continued
M2A.4 • 11:30 4x112 Gbps/fiber CWDM VCSEL Arrays for Co-packaged Intercon- nects, Binhao Wang ¹ , Wayne So- rin ¹ , Paul Rosenberg ¹ , Lennie Ki- yama ¹ , Sagi Mathai ¹ , Michael R. Tan ¹ ; 'Hewlett Packard Enterprise, USA. We demonstrate a 4×112 Gbps/fiber VCSEL link using a co- packaged coarse wavelength division multiplexing (CWDM) optical module. A complete co-packaged CWDM module can achieve a 2.668 Tb/s aggregated bandwidth by assembling four 1×6 VCSEL arrays.	M2B.5 • 11:30 Mach-Zehnder Modulator using Membrane InGaAsP Phase Shifters and SOAs inside Interferometer Arms on Si Photonics Platform, Ta- kuma Aihara', Tatsurou Hiraki', Takuro Fujii', Koji Takeda', Takaaki Kakit- suka', Tai Tsuchizawa', Shinji Mat- suo'; 'NTT, Japan. A Mach-Zehnder modulator having III-V membrane phase shifters and semiconductor optical amplifiers inside interferometer arms is heterogeneously integrated with Si waveguides. The device exhibits 6-dBm fiber output power and 40-Gbit/s NRZ modulations with clear eye-openings.	M2C.4 • 11:30 Invited Digital Holographic Endo-micro- scopes Based on Multimode Fi- bres, Tomas Cizmar ^{1,2} ; ¹ Leibniz-Institut für Photonische Tech, Germany; ² Mi- crophotonics, Inst. of Scientific Instru- ments of the CAS, Czechia. Here I review the recent progress of endo- microscopes based on holographic control of light transport through multimode fibres. I discuss the fun- damental and technological bases as well as recent applications of the new imaging tool.	M2D.4 • 11:30 Invited Metro-haul Project Vertical Service Demo: Video Surveillance Real-time Low-latency Object Tracking, An- nika Dochhan', Johannes Fischer ³ , Bodo Lent ² , Achim Autenrieth', Beh- nam Shariati ³ , Pablo Wilke Beren- guer ³ , Jörg-Peter Elbers'; 'ADVA Optical Networking, Germany; ² Cog- nify GmbH, Germany; ³ Fraunhofer Inst. for Telecommunications Heinrich Hertz Inst., Germany. We report on the EU H2020 project METRO-HAUL use-case demonstration, including flexible allocation of storage and computing resources in different network locations and deployment of a network slice instance through a programmable multi-layer optical network.	M2E.3 • 11:30 Invited Superconducting Nanowire Sin- gle Photon Detectors for Deep Space Optical Communication and Quantum Information Science, Mat- thew Shaw'; 'JPL, USA. Abstract not available.	M2F.4 • 11:30 A MMW Coordinate Multi-Point Transmission System for 5G Mobile Fronthaul Networks based on a Polarization-Tracking-free PDM- Rof Mechanism, Jhih-Heng Yan ¹² , Jian-Kai Huang ¹ , Yu-Yang Lin ² , Jin- Wei Hsu ¹ , Kai-Ming Feng ^{1,2} ; ¹ Inst. of Communications Engineering, National Tsing Hua Univ., Taiwan; ² Inst. of Photonics Technologies, National Tsing Hua Univ., Taiwan. A PDM-RoF mechanism is firstly experimentally demonstrated for MMW coordinate multi-point transmission system with a polarization-track-free RAU design. Without additional latency for PDM demultiplexing, we evaluate various coordinate multi-point joint transmission scenarios.

transmission scenarios.

M2F.5 • 11:45 Top-Scored

Wide FoV Autonomous Beam-

former Supporting Multiple Beams

and Multi-band Operation for 5G

Mobile Fronthaul, Min-Yu Huang¹,

You-Wei Chen¹, Run-Kai Shiu^{1,2}, Hua

Wang¹, Gee-Kung Chang¹; ¹Georgia

Inst. of Technology, USA; ²National

Taipei Univ. of Technology, Taiwan. An

autonomous beamformer covering

24-37 GHz for fiber-wireless network

demonstrates multi-beam and multi-

band signal transmission with wide-

FoV (110°-180°) self-steering beam-

tracking/-forming over a 10-km fiber

and 56-cm wireless link for future dynamic 5G-NR fronthaul applications.

M2A.5 • 11:45

Electrical and Optical Reliability Analysis of GeSi Electro-absorption Modulators, Artemisia Tsiara¹, Srinivasan Ashwyn Srinivasan¹, Sadhishkumar Balakrishnan¹, Marianna Pantouvaki¹, Philippe Absil¹, Joris Van Campenhout¹, Kristof Croes¹; ¹imec, Belgium. Reliability analysis on Electro-Absorption Modulators reveals two degradation parts, trap generation and filling of pre-existing defects on Ge/Si and Ge/Ox interface. After stress, electro-optical extracted parameters indicate no impact of temperature, bias or stress time.

M2B.6 • 11:45 Taper-less III-V/Si Hybrid MOS Opti-

cal Phase Shifter using Ultrathin InP Membrane, Shuhei Ohno¹, Qiang Li¹, Naoki Sekine¹, Junichi Fujikata², Masataka Noguchi², Shigeki Takahashi², Kasidit Toprasertpong¹, Shinichi Takagi¹, Mitsuru Takenaka¹; ¹the Univ. of Tokyo, Japan; ²Photonics Electronics Technology Research Association, Japan. We present proof-of-concept taper-less III-V/Si hybrid MOS optical phase shifter. An ultrathin InP membrane enables low insertion loss despite no taper, with keeping high modulation efficiency owing to strong electron confinement at the MOS interface.

OFC 2020 • 8–12 March 2020

Room 6E	Room 6F	Room 7	Room 8	Room 9
M2G • Multiband and SDN for Capacity Scaling—Continued	M2H • Access Networks for Mobile and Multi-access Edge Computing—Continued	M2I • Photonic Integrated Subsystems—Continued	M2J • Data Analytic-based Monitoring—Continued	M2K • Neuromorphic I: Device-oriented—Continued
M2G.4 • 11:30 Network Performance Assessment of C+L Upgrades vs. Fiber Doubling SDM Solu- tions, Emanuele E. Virgillito ¹ , Rasoul Sadeghi ¹ , Alessio Ferrari ¹ , Giacomo Borraccini ¹ , Antonio Napoli ² , Vittorio Curri ¹ ; ¹ Politecnico di Torino, Italy; ² Infinera, Germany. We investigate on the network capacity enabled by C+L line systems (OLS) vs. fiber doubling showing that at optimal power, C+L OLS doubles the traffic	M2H.4 • 11:30 Asynchronous Multi-service Fiber-Wireless Integrated Network Using UFMC and PS for Flexible 5G Applications, You-Wei Chen ¹ , Rui Zhang ¹ , Shang-Jen Su ¹ , Shuyi Shen ¹ , Oi Zhou ¹ , Shuang Yao ¹ , Gee-Kung Chang ¹ ; 'Georgia Inst. of Technology, USA. A multi-service fiber- wireless integrated network is experimentally demonstrated using both UFMC and PS. Asynchronous transmission with suppressed	M2I.2 • 11:30 A Co-integrated Silicon-based Electronic- Photonic Wideband, High-power Signal Source, Saeed Zeinolabedinzadeh ¹ , Patrick Goley ² , Milad Frounchi ² , Sunil Rao ² , Christian Bottenfield ² , Gareeyasee Saha ² , Stephen E. Ralph ² , Mehmet Kaynak ³ , Lars Zimmer- mann ³ , Stefan Lischke ³ , Christian Mai ³ , John Cressle ² ; ¹ Arizona State Univ., USA; ² Georgia Tech, USA; ² IHP Microelectronics, Germany, A	M2J.4 • 11:30 Low Complexity Soft Failure Detection and Identification in Optical Links using Adaptive Filter Coefficients, Siddharth Varughese ¹ , Daniel Lippiatt ¹ , Thomas Richter ² , Sorin Ti- buleac ² , Stephen E. Ralph ¹ ; 'Georgia Inst. of Technology, USA; ² ADVA Optical Networking, USA. We demonstrate an autoencoder scheme that utilizes readily available adaptive filter coefficients to accurately detect and identify	M2K.4 • 11:30 Real-time Operation of Silicon Photonic Neurons, Thomas Ferreira de Lima ¹ , Chaoran Huang ¹ , Simon Bilodeau ¹ , Alexander Tait ² , Hsuan-Tung Peng ¹ , Philip Ma ¹ , Eric Blow ¹ , Bhavin J. Shastri ³ , Paul Prucnal ¹ ; ¹ Princ- eton Unix, USA; ² NIST, USA; ³ Queen's Unix, Canada. In this paper, we use standard silicon- photonic components in order to implement a neuromorphic circuit with two neurons. The

novel co-integrated electronic-photonic

distributed photo-mixer-amplifier is presented

that improves the bandwidth and gain of the

system. An RF signal with an output power

of 10 dBm across the bandwidth of 50 GHz

M2G.5 • 11:45

to fiber doubling.

Capacity Limits of C+L Metro Transport Networks Exploiting Dual -Band Node Architectures, Robert Emmerich¹, António Eira², Nelson Costa², Pablo Wilke Berenguer¹, Colja Schubert¹, Johannes Fischer¹, João Pedro^{2,3}; ¹Fraunhofer Inst. for Telecommunications Heinrich-Hertz-Inst., Germany; ²Infinera Portugal, Portugal; ³Instituto de Telecomunicações, Instituto Superior Técnico, Portugal. We investigate capacity upgrade of metro networks using differentiated node architectures for C+Lbands. The combination of experimental results and network simulations highlights scenarios where low-cost unamplified L-band extensions can be leveraged for maximum capacity.

of C-only with very-low penalty with respect

M2H.5 • 11:45 Invited

Gigabit/s Optical Wireless Access and Indoor Networks, Ampalavanapilla T. Nirmalathas¹, tingting Song¹, Sampath Edirisinghe¹, Tian Liang¹, Christina Lim¹, Elaine Wong¹, Ke Wang², Chathurika Ranaweera³, Kamal Alameh⁴; ¹Univ. of Melbourne, Australia; ²RMIT Uiversity, Australia; ³Deakin Univ, Australia; ⁴Edith Cowan Univ., Australia. Optical wireless alternative for provision of multi gigabits/second wireless and this paper presents an overview of recent progress and outstanding challenges. and technologies.

inter-service interference and optimized

information rate is verified through a 25-km

fiber and a 5-m 60-GHz wireless link.

M2I.3 • 11:45

was achieved.

Self-adaptive Over-the-air RF Self-interference Cancellation Based on Signal-of-interest Driven Regular Triangle Algorithm, Lizhuo Zhengi, Zhiyang Liu¹, Zhiyi Zhang¹, Shilin Xiao¹, Mable P. Fok², Qidi Liu²; ¹Shanghai Jiao Tong Univ., China; ²The Univ. of Georgia, USA. A signal-of-interest driven self-adaptive RF selfinterference cancellation system has been proposed based on regular-triangle algorithm. A weak 16-QAM OFDM signal-of-interest at 18.3SGHz has been successfully retrieved with small converge steps in an in-band full-duplex transmission.

M2J.5 • 11:45

channel crosstalk

Convolutional Recurrent Machine Learning for OSNR and Launch Power Estimation: A Critical Assessment, Hyung Joon Cho¹, Siddharth Varughese¹, Daniel Lippiatt¹, Stephen E. Ralph¹; 'Georgia Inst. of Technology, USA. Using waveforms from three distinct stages of signal demodulation, we assess performance, computational efficiency and benefits of using convolutional recurrent neural networks to simultaneously and independently estimate OSNR and launch power within a multi-channel system.

soft-failures in optical links with >99% accuracy.

Detected impairments include low OSNR,

nonlinearity, ROADM filtering and adjacent-

M2K.5 • 11:45

Flexible Entanglement Distribution Overlay for Cloud/Edge DC Interconnect as Seed for IT-secure Primitives, Fabian Laudenbach', Bernhard Schrenk', Martin Achleitner', Nemanja Vokic', Dinka Milovancev', Hannes Hübel'; 'AIT Austrian Inst. of Technology, Austria. We leverage spectral assets of entanglement and spatial switching to realize a flexible distribution map for cloud-to-edge and edgeto-edge quantum pipes that seed IT-secure primitives. Dynamic bandwidth allocation and co-existence with classical control are demonstrated.

network exhibits reconfigurable weights and

nonlinear transfer functions, enabling high-

bandwidth analog signal processing tasks.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M2A • Advanced Active Components—Continued	M2B • High-Speed Integrated Modulators— Continued	M2C • SDM Imaging & Sensing—Continued	M2D • Optimizing Network Capacity and Performance—Continued	M2E • Symposium: Quantum Information Science and Technology (QIST) in the context of Optical Communications (Session 2) —Continued	M2F • Digital Signal Processing and Radio- over-fiber Systems for 5G —Continued
M2A.6 • 12:00 Compact Tunable DBR/Ring Laser Module Integrated with Extremely- high-Δ PLC Wavelength Locker, Ma- sayoshi Nishita', Yasutaka Higa', Nori- taka Matsubara', Junichi Hasegawa', Kazuki Yamaoka', Maiko Ariga', Yusuke Inaba', Masayoshi Kimura', Masaki Wakaba', Masahiro Yoshida', Kazuomi Maruyama', Shunsuke Okuyama', Toshihito Suzuki', Hiroyuki Ishii', Vitaly Mikhailov ² , Richard Sefel ³ , Ya- sumasa Kawakita'; 'Furukawa Electric Co Ltd., Japan; ² OFS Laboratories, USA; ³ FETI, Hungary. A compact tunable laser module integrating a	M2B.7 • 12:00 Top-Scored 120 Gb s ⁻¹ Hybrid Silicon and Lithium Niobate Modulators with On-chip Termination Resistor, Shi- hao Sun ¹ , Mingbo He ¹ , Mengyue Xu ¹ , Xian Zhang ² , Ziliang Ruan ² , Liu Liu ² , Xinlun Cai ¹ ; ¹ Sun Yat-Sen Univ, China; ² South China Normal Univ, China: We demonstrated hybrid silicon and lithium niobate Mach- Zehnder modulators with on-chip termination resistor. The device shows high electro-optic bandwidth up to 60 GHz, low V _m of 2.25 V and low insertion loss of 2 dB.	M2C.5 • 12:00 Characterization of Multi-core Fiber Group Delay with Correlation OTDR and Modulation Phase Shift Methods, Florian Azendorf ^{1,2} , Annika Dochhan ¹ , Patryk Urban ³ , Bernhard Schmaus ² , Josep Fabrega ⁴ , Michael Eiselt ¹ , Krzysztof Wilczynski ³ , Lukasz Szostkiewicz ³ , Laia Nadal ⁴ , F. Javier Vilchez ⁴ , Michela S. Moreolo ⁴ , ¹ ADVA Optical Networking, Germany; ² LHFT, Germany; ³ InPhoTech, Poland; ⁴ CTTC, Spain. Using a Correlation-OTDR and a modulation phase shift method we characterized four multi-core fibers. The results show that the differential	M2D.5 • 12:00 Invited Leveraging Photonic Flexibility in Multi-layer Resilient Networks, John K. Oltman ¹ ; ¹ Ciena Corporation, USA. Planning and operation of large-scale deployments of photonic networks and working with a variety of constraints to offer a resilient photonic layer.	M2E.4 • 12:00 Invited Optimized Quantum Photonics, Jelena Vuckovic, Stanford University, USA. Abstract not available.	M2F.6 • 12:00 Top-Scored Low Power All-digital Radio-over- Fiber Transmission for 28-GHZ Band Using Parallel Electro-absorption Modulators, Haolin Li ¹ , Joris Van Kerrebrouck ¹ , Hannes Ramon ¹ , Lau- rens Bogaert ¹ , Joris Lambrecht ¹ , Chia-Yi Wu ¹ , Laurens Breyne ¹ , Jakob Declercq ¹ , Johan Bauwelinck ¹ , Xin Yin ¹ , Peter Ossieur ¹ , Piet Demeester ¹ , guy Torfs ¹ ; ¹ Univ. Ghent-imec, Bel- gium. We present a low-power all- digital radio-over-fiber transmitter for beyond 28-GHz using sigma- delta modulation, a 140mW NRZ driver and parallel electro-absorption

driver and parallel electro-absorption

modulators. 5.25Gb/s (2.625Gb/s) 64-

QAM is transported over 10-km SSMF

<500ns Latency Overhead Ana-

log-to-digital-compression Radio-

over-fiber (ADX-RoF) Transport

of 16-channel MIMO, 1024QAM

Signals with 5G NR Bandwidth, Pai-

kun Zhu¹, Yuki Yoshida², Ken-ichi Kita-

vama^{1,2}: ¹The Graduate School for the

Creation of New Photonics Industries.

Japan; ²National Inst. of Information

and Communications Technology,

Japan. Real-time analog-to-digital-

compression radio-over-fiber (ADX-

RoF) transport with <500ns processing

latency overhead is demonstrated by

using a single-chip programmable

radio platform, 16-channel 61,44MHz

1024QAM-OFDM signals of 5G

NR-class is delivered with ~4-Gb/s

optical OOK interface, maintaining

at 1560nm with 7.6% (5.2%) EVM.

M2F.7 • 12:15

EVM<1.4%.

the full C-band. M2A.7 • 12:15

Monday, 9 March

Bandwidth Enhancement of Directly Modulated Lasers Butt-coupled with Silica-based AWG by External Optical Feedback Effect, Seokjun Yun¹, Young-Tak Han¹, Seok-Tae Kim¹, Jang-Uk Shin¹, Sang-Ho Park¹, Dong-Hoon Lee¹, Seo-Young Lee¹, Yongsoon Baek¹; ¹ETRI, Korea (the Republic of). By external optical feedback effect on DMLs butt-coupled with a silicabased AWG, we present that 3-dB bandwidths of a DML submodule can be extended to ~37.5 GHz (@ 90 mA) using commercial 28-Gbaud DML chips.

newly developed DBR/Ring laser and

an extremely-high-∆ PLC wavelength

locker is demonstrated with narrow

spectral linewidth of <100 kHz across

M2B.8 • 12:15 Top-Scored High-speed-operation of Compact All-Silicon Segmented Mach-Zehnder Modulator Integrated with Passive RC Equalizer for Optical DAC Transmitter, Yohei Sobu¹, Shinsuke Tanaka¹, Yu Tanaka¹, Yuichi Akiyama¹, Takeshi Hoshida¹; ¹Fujitsu Limited, Japan. We experimentally demonstrated 70Gbaud PAM4 and 90Gbaud NRZ operations of all-silicon segmented modulator for optical DAC transmitter. Monolithic integration of MIM capacitor enabled broad EO bandwidth of 43.9GHz and small

footprint of 300×600µm².

temperature.

Grating in 4-LP-mode Fiber with a Ring-cavity Configuration for **Distributed Temperature and Strain** Sensing Application, Yinping Liu^{1,2}, Guangyao Yang^{1,2}, Ning Wang², Lin Ma¹, Juan Carlos Alvarado Zacarias², Jose Enrique Antonio-Lopez², Pierre Sillard³, Adrian Amezcua-Correa³, Rodrigo Amezcua Correa², Xin Yu Fan¹, Zuyuan He¹, Guifang Li²; ¹Shanghai Jiao Tong Univ., China; ²Univ. of Central Florida , USA: ³Parc des Industried Artois Flandres, France, We investigate temperature and strain dependency of Brillouin dynamic grating in 4-LP-mode fiber with a ring-cavity configuration. Sensitivities of 3.20 MHz/°C and -0.0384 MHz/ με are achieved. We demonstrate measurement with 300-m range and 1-m resolution.

delay depends on the position of

the core in the fiber and varies with

M2C.6 • 12:15

Investigation of Brillouin Dynamic

12:30–14:00 Lunch Break (on own)

62

Room 6E	Room 6F	Room 7	Room 8	Room 9
M2G • Multiband and SDN for Capacity Scaling—Continued	M2H • Access Networks for Mobile and Multi-access Edge Computing—Continued	M2I • Photonic Integrated Subsystems—Continued	M2J • Data Analytic-based Monitoring—Continued	M2K • Neuromorphic I: Device-oriented—Continued
M2G.6 • 12:00 Invited TransLambda: A Multi-band Transmis- sion System and its Realization, Practical Applications and Use Cases in Optical Networks, Muhammad S. Sarwar ¹ , Takeshi Sakamoto ² , Takeshi Hoshida ² , Tomoyuki Kato ² , 'Fujitsu Network Communications Inc, USA; ² Fujitsu Ltd., Japan. We focus on the introduction and practical use of TransLambda [™] , a multiband transmission system based on all optical wavelength conver- sion in optical transport network architectures, and detail its system-level considerations, network applications, and use-cases.		M2I.4 • 12:00 Invited Novel Electro-optic Components for Inte- grated Photonic Neural Networks, Pascal Stark', Jacqueline Geler-Kremer ^{1,2} , Felix Eltes ¹ , Daniele Caimi ¹ , Jean Fompeyrine ¹ , Bert J Offrein ¹ , Stefan Abel ¹ ; ¹ IBM Research GmbH, Switzerland; ² Empa, Swiss Federal Labora- tories for Materials Science and Technology, Switzerland. We demonstrate PIC-based non- volatile optical synaptic elements, an essential building block in large non-von Neumann circuits realized in integrated photonics. The impact of non-idealities on the performance of a photonic recurrent neural networks is evaluated.	M2J.6 • 12:00 Machine Learning Based Fiber Nonlinear Noise Monitoring for Subcarrier-multi- plexing Systems, Xiaomin Liu ¹ , Huazhi Lun ¹ , Mengfan Fu ¹ , Lilin Yi ¹ , Weisheng Hu ¹ , Qunbi Zhuge ¹ ; ¹ Shanghai Jiao Tong Univ., China. We propose a set of correlation features for machine learning based fiber nonlinear noise monitoring in subcarrier-multiplexing systems. Improved accuracy is demonstrated by adding correlations between subcarriers and data fusion processing across subcarriers.	M2K.6 • 12:00 Invited Microresonator-enhanced, Waveguide- coupled Emission from Silicon Defect Cen- ters for Superconducting Optoelectronic Networks, Alexander Tait', Sonia Buckley', Adam McCaughan', Jeffrey Chiles', Sae Woo Nam', Richard Mirin', Jeffrey Shain- line'; 'National Inst of Standards & Technol- ogy, USA. Superconducting optoelectronic networks could achieve scales unmatched in hardware-based neuromorphic computing. After summarizing recent progress in this area, we report new results in cryogenic silicon photonic light sources, components central to these architectures.

M2H.6 • 12:15 D

Hybrid W-band/Baseband Transmission for Fixed-mobile Convergence Supported by Heterodyne Detection with Data-Carrying Local Oscillator, Shuyi Shen¹, Qi Zhou¹, You-Wei Chen¹, Shuang Yao¹, Rui Zhang¹, Yahya M. Alfadhli¹, Shang-Jen Su¹, Jeffrey Finkelstein², Gee-Kung Chang¹, 'Georgia Inst. of Technology, USA;²Cox Communications, USA. A novel architecture with data-carrying local oscillator was proposed and demonstrated, supporting co-transmission of 35.39-Gbps W-band OFDM at 85-GHz and 10.9-Gbps OOK signals. Sensitivity penalty induced by interference as low as 0.5 dB was experimentally validated.

M2J.7 • 12:15

The Real Time Implementation of a Simplified 2-section Equalizer with Supernal SOP Tracking Capability, Tao Zeng¹, Zhixue He¹, Lingheng Meng¹, Jie Li¹, Xiang Li¹, Shaohua Yu¹; ¹State Key Laboratory of Optical Communication Technologies and Networks, China information and communication technology Group Corporation, China. We propose a 2-section equalizer architecture, two adaptive multi-tap 1×1 equalizer updated by proposed joint-CMA, followed by a feedforward 1-tap 2×2 MIMO. We implement it in 10G coherent transceiver and achieve 20Mrad/s SOP tracking speed.

12:30–14:00 Lunch Break (on own)

	Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Monday, 9 March	14:00–16:00 M3A • New Photonic Materials Presider: Hideyuki Nasu; Furukawa Electric, Japan	14:00–16:00 M3B • Propagation Effects in SMF and SDM Fibers Presider: Cristian Antonelli; Universita degli Studi dell'Aquila, Italy	14:00–16:00 M3C • Panel: Is it Time to Shift the Research Paradigm in Access Networks from a Focus on More Capacity	14:00–16:00 M3D • VCSELS & Surface Normal Devices Presider: Michael Tan; Hewlett Packard Enterprise, USA	14:00–16:00 M3E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 1) ●	14:00–16:00 M3F • Wavelength Selective Devices Presider: Kenya Suzuki; NTT Device Innovation Center, Japan

M3A.1 • 14:00 Invited

Indium Phosphide Membrane Photonic Integrated Circuits on Silicon, Kevin A. Williams1; 1Technische Universiteit Eindhoven, Netherlands. The intimate integration of photonics and electronics in transceivers facilitates energyefficiency, bandwidth acceleration and a route to radical miniaturization. We present and implement a waferto-wafer integration method which combines electronic and photonic foundry technologies.

M3B.1 • 14:00 Invited

Nonlinear Impairment Scaling in Multi Mode Fibers for Mode Division Multiplexing, Peter M. Krummrich¹, Marius Brehler¹, Georg Rademacher², Klaus Petermann³; ¹Technische Universitaet Dortmund, Germany; ²NICT, Japan; ³Technische Universitaet Berlin, Germany. The scaling of nonlinear effects in multi mode transmission fibers with mode count has been investigated. Results indicate that transmission reaches comparable to standard single mode fibers are achievable for at least 100 modes.

Delivering more bandwidth/capacity has been the top research focus in optical networks, access or otherwise. However, new services like 5G mobile X haul, edge computing, AR/VR, and UHD video distribution, are placing additional requirements on access networks. Characteristics like low latency, flexibility, reliability and scalability will be increasingly important for future access networks.

As we move to the next-generation of access networks, what new features are needed? What are the research priorities beyond more capacity? For instance, ultra-low latency transmission is increasingly gaining importance in access networks for emerging time critical services. More deterministic and reliable access networks architectures, and even new ODNs, are being demanded. Network virtualization. and more intelligent operation and resilience in access networks, also attract more and more interest.

This panel will provide a forum for a wide range of speakers to share their ideas on what is important in nextgeneration access networks. Speakers will discuss what key innovations are needed, beyond additional capacity, and the drivers behind those needs.

M3D.1 • 14:00 Invited

Optical Interconnects Using Singe Mode and Multi Mode VCSEL and Multi Mode Fiber, Nikolay Ledentsov¹; ¹VI Systems GmbH, Germany. Single mode (SM) VCSELs, produced in industrial 4» technology, are suitable for 100Gb/s PAM2 and >160Gb/s PAM4 data transmission. >107Gb/s transmission over 1km of multimode (MM) fiber at 850nm and 910nm is realized.

M3E.1 • 14:00 Invited

Deep Learning for Inverse Design of Optical Device, Keisuke Kojima1; 1Mitsubishi Electric Research Labs, USA. We review the recent progress of the design and optimization of optical devices using machine learning. The emphasis is on the regression and the generative deep learning models for nanophotonic devices.

M3F.1 • 14:00 Invited

Recent Progress on Wavelength Selective Switch, Yiran Ma¹, Ian Clarke¹, Luke Stewart¹; ¹II-VI Incorporated, Australia. WSS application scenarios have been illustrated from network core to edge. WSS in core network is focused on higher port count and outstanding performance, while cost is the key factor for WSS in edge network.

Room 6E	Room 6F	Room 7	Room 8	Room 9
14:00–16:00 M3G • Submarine Transmission Presider: Oleg Sinkin; TE SubCom, USA	14:00–16:00 M3H • Microwave Photonic Filters Presider: Daniel Blumenthal, USA	14:00–16:00 M3I • Optical Wireless: Technology and Applications Presider: Mona Hella; Rensselaer Polytechnic Inst., USA	14:00–16:00 M3J • Short-reach Systems I Presider: Xi Chen; Nokia Bell Labs, USA	14:00–16:00 M3K • Open Network Control & Orchestration Presider: Achim Autenrieth; ADVA Optical Networking SE, Germany

M3G.1 • 14:00 🕑 ★ Top-Scored

Record 300 Gb/s per Channel 99 GBd PDM-OPSK Full C-Band Transmission over 20570 km Using CMOS DACs, Aymeric Arnould¹, Amirhossein Ghazisaeidi¹, Dylan Le Gac¹, Maria Ionescu¹, Patrick Brindel¹, Jeremie Renaudier¹; *Nokia Bell Labs France, France.* We demonstrate a record 300 Gb/s per-channel bitrate over 20570 km across the full C-band. The measured 41 channels are modulated with 99 GBd PDM-QPSK using CMOS DACs and optical pre-emphasis, avoiding nonlinear compensation.

M3G.2 • 14:15

Transmission Performance of Hybrid-shaped 56APSK Modulation Formats from 34.7 to 74.7 GBd Over Transoceanic Distance, Jin-Xing Cai¹, Matt Mazurczyk¹, William Patterson¹, Carl Davidson¹, Yue Hu¹, Oleg V. Sinkin¹, Maxim Bolshtyansky¹, Dmitri G. Foursa¹, Alexei N. Pilipetskii¹; 'SubCom, USA. We experimentally study the impact of symbol rate on transmission performance. From 34.7 to 74.7Gbd SNR decreases by ~1.5dB; hardware and nonlinear transmission effects cause 0.7dB and 0.8dB respectively. NLC benefit decreases at higher rates.

M3H.1 • 14:00 Invited

High-resolution Microwave Photonics Using Strong On-chip Brillouin Scattering, Amol Choudhary'; 'Department of Electrical Engineering, Indian Inst. of Technology (IIT) Delhi, India. Processing of microwave signals with resolution as low as 10 MHz is enabled by integrated Brillouin scattering with gain >50dB. We discuss reconfigurable filters, delay lines and phase shifters and also focus on system performance.

M3I.1 • 14:00 Invited

Li-Fi for Industrial Wireless Applications, Volker Jungnickel¹, Pablo Wilke Berenguer¹, Sreelal Maravanchery Mana¹, Malte Hinrichs¹, Sepideh Mohammadi Kouhini¹, Kai Lennert Bober¹, Christoph Kottke¹; ¹Fraunhofer Inst Nachricht Henrich-Hertz, Germany. We propose a new system concept for LiFi in industrial wireless applications. A distributed MU-MIMO architecture is used, enabling seamless mobility, reliable low-latency communications, and integration with positioning and 5G.

M3J.1 • 14:00

Recovery of DC Component in Kramers-Kronig Receiver Utilizing AC-coupled Photo-Detector, Tianwai Bo¹, Hoon Kim¹; 'Korea Advanced Inst of Science & Tech, Korea (the Republic of). We propose and demonstrate a simple DSP method for recovering the DC component in Kramers-Kronig receiver implemented by using AC-coupled photodetector, without cumbersome DC sweeping nor bit-error-ratio calculation.

M3J.2 • 14:15

Signal-signal Beat Noise Mitigation by Square Root Processing of the Detected Photocurrent, Qiulin Zhang¹, Chester Shu¹; 'Chinese Univ. of Hong Kong, Hong Kong. The signalsignal beat noise mitigation performances of the original received signal, the square root processed signal, and the Kramers-Kronig processed signal are experimentally compared in a 110 Gbit/s probabilistically-shaped 64 QAM direct detection system.

M3K.1 • 14:00 Tutorial

Open Optical Transport, Martin Birk¹; ¹AT&T *Labs*, USA. This tutorial will cover open optical transport for coherent fiber optic transmission systems, starting with the data plane, describing different open projects and efforts. The second section will address the control plane, identifying industry efforts and models used. Following that will be a view of Orchestrator and Controller projects. The last part will describe life cycle efforts (designing, planning, operating) of open optical transport networks.

Martin Birk received his master's and doctorate degrees from Germany's University of Ulm in 1994 and 1999, respectively. Since 1999, he has been with AT&T Labs in New Jersey, working on high-speed optical transmission at data rates of 40Gbit/s, 100Gb/s and above. In 2016, he received the AT&T Fellow award.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M3A • New Photonic Materials—Continued	M3B • Propagation Effects in SMF and SDM Fibers—Continued	M3C • Panel: Is it Time to Shift the Research Paradigm in Access Networks from a Focus on More Capacity— Continued	M3D • VCSELS & Surface Normal Devices— Continued	M3E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 1) —Continued	M3F • Wavelength Selective Devices— Continued
M3A.2 • 14:30 1.6Tbps Coherent 2-channel Trans- ceiver Using a Monolithic Tx/Rx InP PIC and Single SiGe ASIC, Vikrant Lal', Pavel Studenkov', Thomas Frost', Huan-Shang Tsai', Babak Behnia', John Osenbach', Stefan Wolf', Rob- ert Going', Stefano Porto', Robert Maher', Hossein Hodaei', Jiaming Zhang', Carlo Di Giovanni', Koichi Hoshino', Thomas Vallaitis', Bryan Ellis', Jeanne Yan', King Fong', Ehsan Sooudi', Matthias Kuntz', Sanketh Buggaveeti', Don Pavinski', Steve Sanders', Zhenxing Wang', Gloria Höfler', Peter Evans', Scott Corzine', Tim Butrie', Mehrdad Ziari', Fred Kish', David Welch'; 'Infinera Corporation, USA. We present a 1.6Tbps coherent transceiver delivering 800Gbps/wave transmission using integrated Tx/Rx functions with 50GHz bandwidth and SiGe Driver and TIA ASIC.	M3B.2 • 14:30 Experimental Comparison of Fiber Nonlinearity Mitigation: Intra-modal FWM versus Inter-modal FWM, Isaac Sackey ^{2,1} , Carsten Schmidt-Langhorst ¹ , Colja Schubert ¹ , Johannes Fischer ¹ , Ronald Freund ¹ ; ¹ Fraunhofer Inst. for Telecommunication, Heinrinch Hertz Inst., Germany: ² Techische Universität Berlin, Germany. We experimentally compare fiber nonlinearity mitigation by optical phase conjugation based on either intra- or inter-modal four- wave mixing. When adjusted for same conversion efficiency, both realizations achieve similar performance in 800-km dispersion-managed single-mode fiber link.	Topics may include, but will not be limited to: Intelligent Operation and protection Network resilience, or more resilient network in access Ultra-low latency in access network Reducing the power consumption: more "Green" access network New ODN to improve performance, efficiency or service Network Virtualization in Access New Emerging applications that drive the developments of access Speakers: Larry Wolcott; <i>Comcast, USA</i> Jim Zou; <i>ADVA Optical Networking,</i> <i>Germany</i> Jun Terada; <i>NTT Corp., Japan</i>	M3D.2 • 14:30 106 Gb/s Normal-incidence Ge/Si Avalanche Photodiode with High Sensitivity, Bin Shi ¹ , Fan Qi ¹ , Pengfei Cai ¹ , Xueping Chen ¹ , Zengwen He ¹ , Yanhui Duan ¹ , Guanghui Hou ¹ , Tzungi Su ¹ , Su Li ¹ , Wang Chen ¹ , Chingyin Hong ¹ , Rang-Chen Yu ¹ , Dong Pan ¹ ; ¹ Si- Fotonics Technologies, USA. 106 Gb/s (53GBaud PAM4) normal-incidence Ge/Si APDs were demonstrated with sensitivities of -16.8 dBm. To our knowledge, this is the best sensitivity reported for 100G APD.	M3E.2 • 14:30 (Nvite) (Advances in Deep Learning for Digi- tal Signal Processing in Coherent Op- tical Modems, Maxim Kuschnerov ¹ , Maximilian Schaedler ¹ , Christian Bluemm ¹ , Stefano Calabro ¹ ; 'Huawei, Germany. We analyze the advances of deep learning in optical coherent modems on the physical layer with respect to modulation design, equalization and signal detection and give an outlook on a combined control and physical layer optimization using neural networks.	M3F.2 • 14:30 Top-Scored 24 1x12 Wavelength-selective Switches Using a 312-port 3D Wave- guide and a Single 4k LCoS, Peter Wilkinson ² , Brian Robertson ² , Sam Giltrap ² , Oliver Snowdon ² , Harry Prudden ² , Haining Yang ^{2.3} , Dap- ing Chu ^{1.2} , 'Univ. of Cambridge, UK; '2Roadmap Systems Ltd, UK; '2Roadmap Systems Ltd, UK; '2Southeast Univ., China. A switch module with a 4k LCoS is enabled by a 312-port waveguide array to produce 24 independent 1x12 WSSs. The average/best insertion losses were 8.4/7.2 dB, with crosstalk suppression of 26.9/40.5 dB.
M3A.3 • 14:45 Data-mining-assisted Resonance La- beling in Ring-Based DWDM Trans- ceivers, Peng Sun ¹ , Jared Hulme ¹ , Ashkan Seyedi ¹ , Marco Fiorentino ¹ , Raymond Beausolei ¹¹ ; ¹ Hewlett Pack- ard Lab, USA. An algorithm using hierarchical clustering is proposed to label resonances in ring-based DWDM transceivers. By identifying missing resonances and split-peaks due to reflection, the algorithm enables binning of individual ring resonators by passive optical tests.	M3B.3 • 14:45 All-optical Spectral Magnification of WDM Signals after 50 km of Dispersion Un-Compensated Trans- mission, Frederik Klejs ¹ , Mads Lil- lieholm ¹ , Michael Galili ¹ , Leif Oxen- løwe ¹ ; ¹ DTU, Denmark. We successfully demonstrate an optical time lens system operating on data signals that are not dispersion compensated after fiber transmission. We demonstrate 4x spectral magnification after 50 km of dispersion un-compensated transmission, with BER <1E-9.	Glenn Wellbrock; <i>Verizon, USA</i> Peter Vetter, <i>Nokia Bell Labs, USA</i>	M3D.3 • 14:45 Ultra-thin III-V Photodetectors Epi- taxially Integrated on Si with Band- width Exceeding 25 GHz, Svenja Mauthe ¹ , Yannick Baumgartner ¹ , Saurabh Sant ² , Qian Ding ² , Marilyne Sousa ¹ , Lukas Czornomaz ¹ , Andreas Schenk ² , Kirsten Moselund ¹ ; 'IBM Re- search - Zurich, Switzerland; ² Depart- ment of Information Technology and Electrical Engineering, ETH Zurich, Switzerland. We demonstrate the first local monolithic integration of high-speed III-V p-i-n photodetectors on Si by in-plane epitaxy. Ultra-low capacitance permits data reception at 32Gbps. The approach allows close integration to electronics enabling future receiverless communication.		M3F.3 • 14:45 Five-core 1×6 Core Selective Switch and Its Application to Spatial Channel Networking, Masahiko Jinno ¹ , Takahi- ro Kodama ¹ , Tsubasa Ishikawa ¹ ; 'Kaga- wa Univ., Japan. We design and prototype a 5-core 1×6 core selective switch (CSS) with an integrated input and output multi-core-fiber collimator and spatial multiplexer/ demultiplexer array. Spatial bypassing and spectral grooming using a CSS- based hierarchical cross-connect are demonstrated.

Room 6E	Room 6F	Room 7	Room 8	Room 9
M3G • Submarine Transmission—Continued	M3H • Microwave Photonic Filters—Continued	M3I • Optical Wireless: Technology and Applications— Continued	M3J • Short-reach Systems I— Continued	M3K • Open Network Control & Orchestration—Continued
M3G.3 • 14:30 Experimental Demonstration of Widely Tunable Rate/Reach Adaptation From 80 km to 12,000 km Using Probabilistic Constellation Shaping, Joan M. Gené ^{1,2} , Xi Chen ² , Junho Cho ² , Chandrasekhar Sethumadhavan ² , Peter Winzer ² ; ¹ Universitat Politecnica de Catalunya, Spain; ² Nokia Bell Labs, USA. We experimentally demonstrate the rate/reach adaptability of probabilistically constel-lation-shaped quadrature amplitude modulation across from 80 km to 12,000 km using the same 32-GBaud transponder hardware and highlight the roles of template and shaping distribution.	M3H.2 • 14:30 Reconfigurable Radiofrequency Photonic Fil- ters Based on Soliton Microcombs, Jianqi Hu', Jiyun He², Arslan S. Raja², Junqiu Liu², Tobias J. Kippenberg², Camille-Sophie Brès¹; 'STI-IEL, Ecole Polytechnique Federale de Lausanne, Switzerland; ²SB-IPHYS, Ecole Polytechnique Federale de Lausanne, Switzerland. We demonstrate soliton based radiofrequency filters using a 104 GHz Si ₃ N ₄ microresonator. The filter passband frequencies are widely reconfigured via inherent soliton states of perfect soliton crystals and two-soliton microcombs, without any external pulse shaping.	M3I.2 • 14:30 LiFi Experiments in a Hospital, Sreelal Maravanchery Mana ¹ , Peter Hellwig ¹ , Jonas Hilt ¹ , Kai Lennert Bober ¹ , Volker Jungnickel ¹ , Klara Hirmanova ³ , Petr Chvojka ² , Stanislav Zvánovec ² , Radek Janca ² ; ¹ Fraunhofer HHI, Germany; ² 3Faculty of Electrical Engineering, Czech Technical Univ., Czechia; ³ Depart- ment of Medical Technology, Motol Univ. Hospital, Czechia. We present LiFi channel measurements in a neurosurgery room of Motol Univ. Hospital in Prague. Individual channels are combined into a virtual multiuser MIMO link. We report achievable data rates for different LiFi transmission schemes.	M3J.3 • 14:30 Transmission of 36-Gbaud PAM-8 Signal in IM/DD System Using Pairwise-distributed Probabilistic Amplitude Shaping, Daeho Kim ¹ , Zonglong He ² , Tianwai Bo ¹ , Yukui Yu ¹ , Hoon Kim ¹ ; 'Korea Advanced Inst of Science & Tech, Korea (the Republic of); ² Chalmers Univ. of Technology, Sweden. We experimentally demonstrate the transmission of 36-Gbaud probabilistically-shaped PAM-8 signal over 10-km link. The performance measured after FEC decoding and IDM shows that the receiver sensitivity is improved by >1 dB compared to uniform-distributed signal.	

M3G.4 • 14:45

System Performance and Pre-emphasis Strategies for Submarine Links with Imperfect Gain Equalization, Yue Hu¹, Carl Davidson¹, Lee J. Richardson¹, Maxim Bolshtyansky¹, Dmitri G. Foursa¹, Dmitriy Kovsh¹, Alexei N. Pilipetskii¹; ¹Subcom, USA. We studied C-band system performance penalties due to gain tilt. Several transmission pre-emphasis strategies for penalty compensation were considered. The overall penalties were small and minor differences between strategies were observed for investiqated tilt range.

M3H.3 • 14:45 D

A Single-passband Microwave Photonic Filter with kHz Bandwidth, Huashun Wen^{1,2}, Ning Hua Zhu^{1,2}, ¹State Key Laboratory on Integrated Optoelectronics, Inst. of Semiconductors, Chinese Academy of Sciences, China; ²School of Electronic, Electrical and Communication Engineering, Univ. of Chinese Academy of Sciences, China. A single-passband microwave photonic filter with 3 dB bandwidth of 12 ± 2.5 kHz over spectral range of 2-40 GHz is experimentally demonstrated by optical-injection of a singlefrequency Brillouin fiber laser.

M3I.3 • 14:45

Miniature R/G/V-LDs+Y-LED Mixed Whitelighting Module with High-Lux and High-CRI for 20-Gbps Li-Fi, Yi-Chien Wu^{1,2}, Chia-Yu Su^{1,2}, Huai-Yung Wang^{1,2}, Chih-Hsien Cheng^{1,2}, Gong-Ru Lin^{1,2}, 'Graduate Inst. of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan Univ., Taiwan; ²NTU-Tektronix Joint Research Center, National Taiwan Univ., Taiwan. Miniature white-lighting beam mixed by R/G/V-LDs+Y-LED module with high illuminance of 12800 lux, high color-rendering-index of >60 is demonstrated for vehicle light fidelity or distant optical wireless lighting transmission at data rate beyond 20 Gbps.

M3J.4 • 14:45

FTN SSB 16-QAM Signal Transmission and Direct Detection using a THP-MIMO-FFE, Shaohua An', Jingchi Li', Hongxin Pang', Xingfeng Li', Yikai Su'; 'Shanghai Jiao Tong Univ., China. A joint equalization scheme consisting of Tomlinson-Harashima precoding and MIMO-FFE is proposed to effectively mitigate the ISI induced by FTN signaling. We experimentally demonstrate a 28-GBaud 16-QAM signal transmission with a record 16.67% FTN ratio.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M3A • New Photonic Materials—Continued	M3B • Propagation Effects in SMF and SDM Fibers—Continued	M3C • Panel: Is it Time to Shift the Research Paradigm in Access Networks from a Focus on More Capacity— Continued	M3D • VCSELS & Surface Normal Devices— Continued	M3E •Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 1) —Continued	M3F • Wavelength Selective Devices— Continued
M3A.4 • 15:00 On-chip Mode-division Multiplexing with Modal Crosstalk Mitigation, Ye- tian Huang ¹ , Ruihuan Zhang ² , Haoshuo Chen ³ , Hanzi Huang ¹ , Qingming Zhu ² , Yu He ² , Yingxiong Song ¹ , Nicolas K. Fontaine ³ , Roland Ryf ³ , Yong Zhang ² , Yikai Su ² , Min Wang ¹ ; 'Shanghai Univ., China; ² Shanghai Jiao Tong Univ., China; ² Shanghai Jiao Tong Univ., China; ² Nokia Bell Labs, USA. We experimentally demonstrate modal crosstalk mitigation over an on-chip mode-division multiplexing link employing low-coherence matched detection. 20-Gbaud QPSK and 8-PSK mode-multiplexed signals are successfully transmitted with a maximum modal crosstalk of -6.5 dB.	M3B.4 • 15:00 Invited Linear and Nonlinear Features of Few-mode Fibers with Partial Coupling Among Groups of Qua- si-degenerate Modes, Filipe Fer- reir ¹² ; 'Aston Univ., UK; ² Univ. College London, UK. We review different solution methods for the linear coupling operator in the coupled nonlinear Schrödinger equations for few-mode propagation. Models are compared for different differential mode delay and linear coupling regimes.		M3D.4 • 15:00 Large Optical Aperture Top-illumi- nated 50-Gbaud PIN-PD with High 3-dB Bandwidth at a low bias of 1.5 V, Takashi Toyonaka ¹ , Hiroshi Hamada ¹ , Shigehisa Tanaka ¹ , Masa- toshi Arasawa ¹ , Ryu Washino ¹ , Yasushi Sakuma ¹ , Kazuhiko Naoe ¹ ; 'Device De- velopment Center, Lumentum Japan, Inc., Japan. High 3-dB bandwidth of 28 GHz at 1.5 V was demonstrated by introducing a capacitance-control layer into a high-responsivity top- illuminated PIN-PD with large optical- aperture diameter of 20 µm for 50-Gbaud PAM4 operation.	M3E.3 • 15:00 Invited Workshop on Machine Learn- ing for Optical Communication Systems: a summary, Joshua A. Gordon ¹ , Abdella Battou ³ , Daniel C. Kilper ² ; ¹ Communications Tech Lab, NIST, USA; ² Optical Sciences, Univ. of Arizona, USA; ³ Information Tech Lab, NIST, USA. A summary of a public workshop on machine learning for optical Communication systems held on August 2 nd 2019, by the Communications Technology Laboratory in cooperation with the Information Technology Laboratory at NIST in Boulder, CO.	M3F.4 • 15:00 Low-loss Silicon 2 × 4A Multiplex- ers Composed of On-chip Polar- ization-splitter-rotator and 2 × 2 and 2 × 1 Mach-Zehnder Filters for 400GbE, Junya Takano ¹ , Takeshi Fujisawa ¹ , Yusuke Sawada ¹ , Kunimasa Saitoh ¹ ; 'Hokkaido Univ., Japan. 2×4A Si-photonics multiplexers for 400GbE composed of Mach-Zehnder filters and a polarization-splitter-rotator are proposed and experimentally demonstrated for the first time. Relative spectral position of two filters is locked by using 2×2 and 2×1 configurations.
M3A.5 • 15:15 Invited Analysis and Demonstration of Ultra- broadband Mach-Zehnder Hybrid Polymer/Sol-Gel Waveguide Modu- lators, Yasufumi Enami ^{1,2} ; ¹ Head- quarters for Innovative Society-Aca- demia Cooperation, Univ. of Fukui, Japan; ² Lightwave Logic, USA. A bandwidth of the hybrid modulators is calculated numerically and analytically based on experimentally obtained device parameters, which is >130 GHz. The electro-optic response is reduced by < 2 dB at 67 GHz. The electrical transmission S ₂₁ is reduced by 5 dB at 110 GHz (upper limit) of a vector network analyzer which also assured			M3D.5 • 15:15 Invited Development of Next Generation Data Communication VCSELs, Laura Giovane ¹ ; 'Optical Systems Division, Broadcom, Inc., USA. This paper reviews the advancement in VCSEL technology at Broadcom to support the next generation of 850nm multi- mode data communication links at channel bit rates beyond 100Gb/s.		M3F.5 • 15:15 Four-channel, Silicon Photonic, Wavelength Multiplexer-demulti- plexer With High Channel Isola- tions, Mustafa Hammood ¹ , Ajay Mistry ¹ , Han Yun ¹ , Minglei Ma ¹ , Lukas Chrostowski ¹ , Nicolas Jaeger ¹ ; ¹ Univ. of British Columbia, Canada. We present a four-channel, silicon photonic, wavelength multiplexer- demultiplexer made using cascaded contra-directional couplers with adjacent and non-adjacent channel isolations of at least 37 dB and 45 dB, respectively. The devices maximum insertion-loss is 0.72 dB.

transmission S₂₁ is reduced by 5 dB at 110 GHz (upper limit) of a vector network analyzer, which also assured

the bandwidth.

Room 6E	Room 6F	Room 7	Room 8	Room 9
M3G • Submarine Transmission—Continued	M3H • Microwave Photonic Filters—Continued	M3I • Optical Wireless: Technology and Applications— Continued	M3J • Short-reach Systems I— Continued	M3K • Open Network Control & Orchestration—Continued
M3G.5 • 15:00 Tutorial SDM Power-efficient Ultra-high Capac- ity Long-haul Submarine Transmission Systems, Alexei N. Pilipetskii ¹ , Maxim Bolshty- ansky ¹ , Dmitri G. Foursa ¹ , Oleg V. Sinkin ¹ ; ¹ Sub- Com, USA. Submarine long-haul systems have a unique set of challenges to address the capacity demand. The tutorial will examine the need for power efficiency, SDM solutions for capacity and greater economy, and ways to move forward.	M3H.4 • 15:00 Adaptive Microwave Photonic Spectral Shaper for RF Response Tailoring, Qidi Liu', Mable P. Fok'; 'The Univ. of Georgia, USA. A photonic-enabled fully-programmable RF spectral shaper capable of point-by-point precise manipulation of wideband RF spec- trum with 30-MHz resolution is experimentally demonstrated. Over 10 spectral-control points are achieved with the optimized spectral decomposition and reconstruction algorithm.	M3I.4 • 15:00 20.09-Gbit/s Underwater WDM-VLC Trans- mission Based on a Single Si/GaAs-substrate Multichromatic LED Array Chip, Fangchen Hu ¹ , Guoqiang Li ¹ , Peng Zou ¹ , Jian Hu ² , Shouqing Chen ² , Qingquan Liu ³ , Jianli Zhang ² , Fengyi Jiang ² , Shaowei Wang ³ , Nan Chi ¹ ; 'Fudan Univ., China; ² Nanchang Univ., China; ³ Shanghai Inst. of Technical Physics, China. We demonstrated a record-breaking 20.09-Gbit/s WDM-VLC transmission over 1.2 m underwater link with PS-bitloading-DMT	M3J.5 • 15:00 Parallel Implementation of KK Receiver Enabled by Heading-frame Architecture and Bandwidth Compensation, Yuyang Liu ¹ , Yan Li ¹ , Jingwei Song ¹ , Honghang Zhou ¹ , Lei Yue ¹ , Xiang Li ² , Ming Luo ² , Jian Wu ¹ ; ¹ Beijing Univ of Posts & Telecorn, China; ² Wuhan re- search Inst. of post and telecommunications, China. We propose an improved parallel KK receiver based on heading-frame architecture and bandwidth compensation. By adopting the proposed scheme, a 112-Gbit/s 16-OAM signal	M3K.2 • 15:00 An OLS Controller for Hybrid Fixed / Flexi Grid Disaggregated Networks with Open Interfaces, Ramon Casellas ¹ , F. Ja- vier Vilchez ¹ , Laura Rodriguez ¹ , Ricardo Vilalta ¹ , Josep M. Fabrega ¹ , Ricardo Martínez ¹ , Laia Nadal ¹ , Michela Svaluto Moreolo ¹ , Raul Muñoz ¹ ; ¹ CTTC, Spain. We report the design and implementation of an OLS controller in a hierarchical (partial & full) disaggregation, using open standard data models. We detail the constrained path computation in hybrid

modulation. A silicon-substrate multichromatic

LED array chip and a feasible optical-filter scheme are proposed for future LED-based

Alexei Pilipetskii received his PhD in 1990 in nonlinear fiber optics. Later his interests shifted to the fiber optic data transmission. Alexei currently leads Forward Looking Team at SubCom. He is an author and co-author of more than 200 publications and 25 patent applications. He is an IEEE Photonics Society Fellow.

M3I.5 • 15:15

WDM-VLC system.

Photonic-enabled Real-time Frequencyspectrum Tracking of Broadband Microwave Signals at a Nanosecond Scale, Saikrishna R. Konatham^{1,3}, Luis R. Cortés^{1,3}, Junho chang^{2,3}, Leslie Rusch^{2,3}, Sophie LaRochelle^{2,3}, Jose Azana^{1,3}; ¹EMT, INRS, Canada; ²Universite Laval, Canada; ³Centre for Optics, Photonics and Lasers (COPL), Canada. We demonstrate real-time and gap-free continuous frequency-spectrum analysis of broadband (GHz-bandwidth) microwave signals with unprecedented nanosecond resolutions through an analog time-mapped spectrogram approach, enabling detection of frequency interferences and transients with durations down to ~5ns.

M3H.5 • 15:15

2.4-Gbps Ultraviolet-C Solar-blind Communication Based on Probabilistically Shaped DMT Modulation, Omar Alkhazragi¹, Fangchen Hu², Peng Zou², Yinaer Ha², Yuan Mao¹, Tien Khee Ng¹, Nan Chi², Boon S. Ooi¹; ¹King Abdullah Univ. of Sci. & Technology, Saudi Arabia; ²Fudan Univ., China. We present a record-breaking 2.4-Gbps/1-m ultraviolet-C (UVC) line-of-sight (LOS) optical wireless communication link with 2.0 Gbps data rate maintained over 5 m. We also demonstrate a UVC diffuse-LOS link maintained over ± 5.5-degree angle changes.

M3J.6 • 15:15

A Transition Metric in Polar Co-ordinates for MLSE of a Complex Modulated DML, Marti Sales Llopis¹, Seb J. Savory¹; 'Univ. of Cambridge, UK. We propose a metric for MLSE-Viterbi differential decoding of complex modulation of directly modulated lasers (CM-DML) that reports SNR gains of 1.8 dB at BER=\$10^{-3}\$ on a simulated PAM4 signal with a typical linewidth enhancement factor \$\alpha\$=4.

is successfully transmitted over 1440-km SSMF.

M3K.3 • 15:15 Invited

Design and Control of Open Disaggregated Metro Optical Networks for Mobile-centric Services, Takehiro Tsuritani', 'KDDI R&D Laboratories, Japan. We present open design and control of disaggregated multi-vendor metro ROADM network integrated Layer-2/3 switches with 100Gbps WDM CFP2-DCO pluggable optics considering low latency mobile services based on 5G.

fixed/flexi networks and its testbed validation.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M3A • New Photonic Materials—Continued	M3B • Propagation Effects in SMF and SDM Fibers—Continued	M3C • Panel: Is it Time to Shift the Research Paradigm in Access Networks from a Focus on More Capacity— Continued	M3D • VCSELS & Surface Normal Devices— Continued	M3E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 1) —Continued	M3F • Wavelength Selective Devices— Continued M3F.6 • 15:30

M3A.6 • 15:45 🗙 Top-Scored

Chip-scale, Optical-frequency-stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI, Grant M. Brodnik¹, Mark W. Harrington¹, Debapam Bose¹, Andrew M. Netherton¹, Wei Zhang², Liron Stern², Paul A. Morton³, John E. Bowers¹, Scott B. Papp^{2,4}, Daniel J. Blumenthal¹; ¹Univ. of California Santa Barbara, USA; ²Time and Frequency Division 688, National Inst. of Standards and Technology, USA; ³Morton Photonics, USA; ⁴Department of Physics, Univ. of Colorado, USA. We demonstrate a DSP-free 16-QAM/50GBd link based on independent transmit and LO frequency-stabilized ultranarrow-linewidth SBS lasers, with ~40Hz integral linewidths and 7x10⁻¹⁴ fractional frequency stability. The low-BW optical-frequencystabilized-PLL with 3x10⁻⁴ rad² phase error operates within 1% of DSP and self-homodyne.

M3D.6 • 15:45

Scalable Arrays of 107 Gbit/s Surface-normal Electroabsorption Modulators, Stefano Grillanda¹, Ting-Chen Hu¹, David Neilson², Nagesh Basavanhally¹, Yee Low¹, Hugo Safar¹, Mark Cappuzzo¹, Rose Kopf¹, Al Tate¹, Gregory Raybon², Andrew Adamiecki², Nicolas K. Fontaine², Mark Earnshaw¹; ¹Nokia Bell Labs, USA; ²Nokia Bell Labs, USA, We demonstrate arrays of surface-normal electroabsorption modulators with ultrawide bandwidth (>>65 GHz), polarization insensitive response and ultralow total coupling loss to single-mode-fibers (0.7 dB). We show modulation up to 107 Gbit/s and packaging with arrayed-waveguide-gratings.

M3F.7 • 15:45 D

shift of 14.5 pm/°C.

Fabrication-insensitive CWDM (De) multiplexer based on Cascaded Mach-Zehnder Interferometers, Tzu-Hsiang Yen¹, Yung-Jr Hung¹; 'National Sun Yat-Sen Univ., Taiwan. We demonstrate a MZI-based (De)multiplexer that greatly reduces the spectral shift from 15.6±2.5 nm to 0.67±0.715 nm by employing narrow and wide wavequides in different arms of a MZI.

Ultra-low loss and fabrication tolerant silicon nitride (Si3N4) (de-) muxes for 1-µm CWDM optical interconnects, Stanley Cheung', Michael R. Tan¹; 'Hewlett Packard Labs, USA. Low-loss, fabrication-tolerant Si3N4 CWDM lattice filters and AWGs are demonstrated for 990 – 1065nm bottom-emitting VCSELs. Channel separation of 25 nm, XT < -35 dB and -20 dB are reported with temperature

Room 6E	Room 6F	Room 7	Room 8	Room 9
M3G • Submarine Transmission—Continued	M3H • Microwave Photonic Filters—Continued	M3I • Optical Wireless: Technology and Applications— Continued	M3J • Short-reach Systems I— Continued	M3K • Open Network Control & Orchestration—Continued
	M3H.6 • 15:30 Invited P Photonic Integration for RF Beamforming in Phased Array Systems, Paul A. Morton ¹ , Jacob B. Khurgin ² , Chao Xiang ³ , Warren Jin ³ , Christopher Morton ¹ , John E. Bowers ³ ; ¹ Morton Photonics Inc., USA; ² Johns Hopkins Univ., USA; ³ UCSB, USA. A novel photonics based approach to RF Beamforming in a receive-	M31.6 • 15:30 Modulation Classification based on Deep Learning for DMT Subcarriers in VLC Sys- tem, Wu Liu ¹ , Xiang Li ¹ , Chao Yang ¹ , Ming Luo ¹ ; ¹ Wuhan Research Inst. of Post & Tele, China. We propose a deep learning(DL) en- abled modulation classification scheme using only dozens of received symbols. For each DMT subcarrier in VLC system, experiments	M3J.7 • 15:30 Multilevel Coding with Flexible Probabilistic Shaping for Rate-adaptive and Low-power Optical Communications, Tsuyoshi Yoshida ^{1,2} , Magnus Karlsson ³ , Erik Agrell ³ ; ¹ Mitsubishi Electric Corporation, Japan; ² Osaka Univ., Ja- pan; ³ Chalmers Univ. of Technology, Sweden. A novel multilevel coded modulation scheme with probabilistic shaping is presented. It can	

DMT subcarrier in VLC system, experiments

achieve 100% classification accuracy rate using

75 symbols received at BER threshold.

M3I.7 • 15:45

mode electronically scanned array (Rx-ESA)

is described, enabled by heterogeneous

photonic integrated circuits (PICs), with future

applications including 5G RF Beamforming

(a.k.a. Massive MIMO).

High-speed Visible Light Communication System Based on a Packaged Single Layer Quantum Dot Blue Micro-LED with 4-Gbps QAM-OFDM, Zixian Wei¹, Li Zhang^{2,3}, Lei Wang², Chien-Ju Chen⁴, Alberto Pepe¹, Xin Liu¹, Kai-Chia Chen⁴, Yuhan Dong^{2,3}, Meng-Chyi Wu⁴, Lai Wang², Yi Luo², H.Y. Fu¹; ¹Tsinghua-Berkeley Shenzhen Inst., China; ²Department of Electronic Engineering, Tsinghua Univ., China; ³Tsinghua Shenzhen International Graduate School, Tsinghua Univ., China; ⁴Inst. of Electronics Engineering, National Tsing Hua Univ., Taiwan. We demonstrate a 3-meter 4-Gbps QAM-OFDM VLC system with 3.2×10⁻ ³ bit-error-rate (BER) by implementation of our own fabricated and packaged single layer quantum dot (QD) blue micro-LED with a record high 1.06 GHz modulation bandwidth.

M3J.8 • 15:45

80-GBd Probabilistic Shaped 256QAM Transmission over 560-km SSMF Enabled by Dual-virtual-carrier Assisted Kramers-Kronig Detection, An Li¹, Wei-Ren Peng¹, Yan Cui¹, Yusheng Bai¹; ¹FutureWei Technologies, Inc., USA. We demonstrate transmission of 80-GBd probabilistic shaped 256QAM over 560-km SSMF, a record reach at 400-Gb/s line rate using single laser and direct detection, enabled by probabilistic constellation shaping and dual-virtual-carrier assisted Kramers-Kronig detection.

reduce the power consumption up to 9 times

compared with uniform signaling in the regime

of typical hard-decision FEC thresholds.

M3K.4 • 15:45

Collaborative Routing in Partially-trusted Relay based Quantum Key Distribution Optical Networks, Xingyu Zou¹, Xiaosong Yu¹, Yongli Zhao¹, Avishek Nag², Jie Zhang¹; ¹Beijing Univ of Posts & Telecom, China; ²School of Electrical and Electronic Engineering Univ. College, Ireland. This paper proposes a collaborative routing scheme in partially-trusted relay based quantum key distribution optical networks. Simulation results show it achieves good performance in terms of key distribution success rate.

Room 6A

14:00–16:15 M3Z • OFC Demo Zone

M3Z.1

OpenConfig-extension for VLANbased End-to-end Network Slicing Over Optical Networks, Abubakar Siddique Mugaddas¹, Alessio Giorgetti², Rodrigo Stange Tessinari¹, Thierno Diallo¹, Andrea Sgambelluri², Reza Nejabati¹, Dimitra Simeonidou1: 1Univ. of Bristol, UK: 2Scuola Superiore Sant'Anna, Italy. We demonstrate end-to-end VLANbased network slicing over optical networks using ONOS, based on extended OpenConfig model for hybrid packet-optical terminal devices. Validation is performed by end-to-end interconnected VNFs supporting video streaming use case.

M3Z.2

Demonstration of Precise Planning of Broadband Access Network based on Mining Traffic Trends and Demands from Hybrid Data Sources, Hui Li¹, Xianyi Guo¹, Tianshun Zhan¹, Wu Jia², Yudan Su², Guangsheng Yang¹, Jinglei Sun¹, Yan Shao², Yuefeng Ji³, Guangguan Wang²; ¹Beijing Laboratory of Advanced Information Networks, Beijing Univ. of Posts and Telecommunications, China; ²Network Technology Research Inst., China Unicom, China; ³State Key Laboratory of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunications, China. We demonstrate a carrying capability evaluation system, which can evaluate and predict the access network capacity and efficiency by extracting detail network status and trends from hybrid data sources based on machine learning.

M3Z.3

All-optical Cross-connect Switch for Data Center Network Application, Kristif Prifti³, Rui Santos¹, Jang-Uk Shin², HongJu Kim⁴, Netsanet Tessema³, Ripalta Stabile³, Steven Kleiin¹, Luc Augustin¹, HyunDo Jung², Sang-Ho Park², Yongsoon Baek², Sungkyu Hvun⁴, Nicola Calabretta³: ¹SMART Photonics, Netherlands; ²Department of Photonic-Wireless Convergence Component Research, ETRI, Korea (the Republic of); ³IPI Research Insititute, TU/e Eindhoven Univ. of Technology, Netherlands; ⁴R&D Center, Coweaver Co, Korea (the Republic of). We demonstrate a C-band optical cross-connect switch based on InP integrated photonics, butt-coupled to a silica PLC for facile optical alignment. The switch allows the development of low power, low latency and low-cost WDM-switches

M3Z.4

Automatic Resource Mapping Using Functional Block Based Disaggregation Model for ROADM Networks, Kiyo Ishii¹, Sugang Xu², Noboru Yoshikane⁵, Atsuko Takefusa³, Shigeyuki Yanagimachi⁴, Takeshi Hoshida⁶, Kohei Shiomoto⁷, Tomohiro Kudoh⁸, Takehiro Tsuritani⁹, Yoshinari Awaji², Shu Namiki¹; ¹AIST, Japan: ²NICT, Japan: ³NII, Japan: ⁴NEC Corporation, Japan; ⁵KDDI Research, Japan; ⁶Fujitsu Limited, Japan; ⁷Tokvo City Univ., Japan: 8The Univ. of Tokyo, Japan. Automated mapping of real hardware composition onto a ROADM-based model is demonstrated. The functional-blockbased model precisely describing the physical layer structures can act as a hardware abstraction layer for more abstracted models like OpenROADM.

Demonstration of Extensible Threshold-based Streaming Telemetry for Open DWDM Analytics and Verification, Abhinava Sadasivarao¹, Loukas Paraschis¹; 'Infinera Corporation, USA. A novel and practical threshold-based extension of streaming telemetry that advances open WDM analytics and introduces network verification, is demonstrated employing an extensible NOS application agent combined with standard NETCONF/YANG and opensource software technologies.

M3Z.6

M3Z.5

Demonstration of Alarm Correlation in Partially Disaggregated Optical Networks, Quan Pham Van¹, Victor López², Arturo Mayoral Lópezde-Lerma², Konrad Mrówka³, Rafal Mrówka³, Sebastian Auer⁴, Huu-Trung Thieu⁵, Quang-Huy Tran⁵, Dominique G. Verchere⁵, Gary Atkinson¹, Achim Autenrieth³, Stephan Neidlinger³, Lubo Tancevski⁶; ¹ENSA Lab, Nokia Bell Labs, USA; ²Telefónica I+D/Global CTO, Spain; ³ADVA Optical Networking, Germany; ⁴ION BU, NOKIA, Switzerland; ⁵ENSA Lab, Nokia Bell Labs, France; 6ION BU, NOKIA, USA. We present and demonstrate the alarm correlation capability executed as an SDN application in an open, partially disaggregated multi-vendor optical network. This SDN application reconciles device alarms from Open Terminals with service alarms from an Open Line System controller to perform fault isolation, alarm correlation, and optical restoration

M3Z.7 Hands-on Demonstration of Open-Source Filterless-aware Offline Planning and Analysis Tool for WDM Networks, Pablo Pavon Marino^{1,2}, Miquel Garrich Alabarce¹, Francisco Javier Moreno Muro¹, Marco Quagliotti⁴, Emilio Riccardi⁴, Albert Rafel³, Andrew Lord³: ¹Universidad Politécnica de Cartagena, Spain; ²E-lighthouse Networks Solutions, Spain; 3British Telecom, UK: ⁴TIM-Telecom Italia, Italy. We demonstrate an open-source filterless-aware multilayer WDMnetwork planning tool, that allows hands-on creation of mixed filterless/ ed topologies and the application of built-in or user-developed algorithms and analysis tools for line engineering, spectrum and cost planning.

M3Z.8

Packaged Graphene Photodetectors with 50 GHz RF bandwidth operating at 1550 nm and 2 µm wavelength, Galip Hepgüler¹, Abbas Madani¹, Stefan Wagner¹, Daniel Schall^{1,2}; 'AMO GmbH, Germany; ²Black Semiconductor, Germany. In this demonstration we show packaged graphene photodetectors operating at 1550 nm and 2 µm wavelength with a bandwidth of 50 GHz. We are presenting the first graphene photonic device prototypes approaching TRL 5 level.

M3Z.9

Demonstration of Software-defined Packet-optical Network Emulation with Mininet-optical and ONOS, Bob Lantz^{1,2}, Alan A. Díaz Montiel³, Jiakai Yu1, Christian D. Rios1, Marco Ruffini³, Daniel C. Kilper¹; ¹College of Optical Sciences, Univ. of Arizona, USA; ²Mininet Project, USA; ³CON-NECT Centre, Trinity College, Ireland. We demonstrate practical software emulation of a softwaredefined, packet-optical network. Our emulator, Mininet-Optical, models the physical, data plane and control plane behavior, under control of the ONOS SDN controller

M3Z.10

Remote Control of a Robot Rover Combining 5G, AI, and GPU Image Processing at the Edge, Federico Civerchia¹, Francesco Giannone¹, Koteswararao Kondepu¹, Piero Castoldi^{1,3}, Luca Valcarenghi¹, Andrea Bragagnini², Fabrizio Gatti², Antonia Napolitano², Justine Cris Borromeo¹; ¹Scuola Superiore Sant Anna di Pisa, Italy; ²TIM, Italy; ³Department of Excellence in Robotics and A.I., Scuola Superiore Sant'Anna, Italy.The demo shows the effectiveness of a low latency remote control based on 5G and image processing at the edge

exploiting artificial intelligence and

GPUs to make a robot rover slalom

between posts.

M3Z.11 Experimental Demonstration of multiple Disaggregated OLTs running Virtualised Multi-tenant DBA, over a Xeon Processor, Frank Slyne¹, Marco Ruffini¹, Robin Giller², David Coyle², Jasvinder Singh², Rory Sexton², Brendan Ryan², Michael O'Hanlon²; ¹Trinity College Dublin, Ireland; ²Intel Corporation, Ireland. We demonstrate an Optical Line Terminal with fully softwarised data plane and virtual Dynamic Bandwidth Allocation in a sliceable, multi-tenant PON architecture. We evaluate performance results for 6 OLTs sharing the same general purpose processor.

M3Z.12

Demonstration of Open and Disaggregated ROADM Networks Based on Augmented OpenConfig Data Model and Node Controller, Dou Liang¹, Lei Wang¹, Sai Chen³, Cheng Jingchi³, Zhao Sun¹, Ming Xia⁴, Huan Zhang³, Li Xiao², Xu Jian², Kiekui Yu², Chongjin Xie¹; ¹Alibaba Group, China; ²Accelink Technologies Co. Ltd, China: ³Alibaba Group, China: ⁴Alibaba Group, USA. By augmenting OpenConfig data model of opticalwavelength-router, we demonstrate a ROADM network with disaggregated devices. Node level controller is implemented in our network management system with various operations on both degrees and media channels.

M3Z.13

OpenROADM-controlled White Box encompassing Silicon Photonics Integrated Reconfigurable Switch Matrix, Andrea Sgambelluri¹, Philippe Velha¹, Claudio Jose Oton Nieto¹, Alessio Giorgetti¹, Antonio D'Errico², Stefano Stracca², Filippo Cugini³: ¹Scuola Superiore Sant Anna di Pisa, Italy; ²Ericsson, Italy; ³CNIT, Italy. A fully packaged photonic integrated switch matrix including 1398 circuit elements interconnected in a 3-D stack is controlled through OpenROADM NETCONF/YANG Agent and experimentally validated in an ONOS-based SDN testbed encompassing OpenConfig-driven 100G pol-mux transponders.

M3Z.14

Demonstration of Alarm Knowledge Graph Construction for Fault Localization on ONOS-based SDON Platform, Zhuotong Li¹, Yongli Zhao¹, Yajie Li¹, Sabidur Rahman², Ying Wang³, Xiaosong Yu¹, Lizhong Zhang⁴, Guoli Feng⁴, Jie Zhang¹; ¹BUPT, China; ²Univ. of California, USA; 3State Grid Information & Telecommunication Company, China: ⁴State Grid Ningxia Electric Power Co., Ltd. Information and Communication Company, China. We demonstrate construction of alarm knowledge graphs, which is helpful for fault localization in software defined optical networks (SDON). The demonstration shows the method of constructing alarm knowledge graphs on ONOS-based platform using knowledge extraction.

Room 6A

M3Z • OFC Demo Zone—Continued

M3Z.15 Disaggregated, Sliceable and Load-aware Optical Metro Access Network for 5G Applications and Service Distribution in Edge Computing, Bitao Pan¹, Xuwei Xue¹, Fu Wang¹, Eduardo Magalhães¹, Roberto Morro², Emilio Riccardi², Nicola Calabretta¹: ¹Eindhoven Univ. of Technology, Netherlands; ²TIM, Italy. A disaggregated, sliceable metro-access ring with SDN control is demonstrated with the use case of service distribution in the edge computing nodes. Successful SDN controlled dynamic network slicing generation, load-aware bandwidth resources assignment is implemented.

M3Z.16

Withdrawn

Physical-layer Awareness: GNPy and ONOS for End-to-end Circuits in Disaggregated Networks, Jan Kundrát^{1,2}, Andrea Campanella⁴, Esther Lerouzic³, Alessio Ferrari⁵, Ondrej Havliš^{1,8}, Michal Hazlinsky¹, Gert Grammel⁶, Gabriele Galimberti⁷, Vittorio Curri⁵: ¹CESNET, Czechia; ²Telecom Infra Project, USA; ³Orange Labs, France; ⁴Open Networking Foundation, USA: ⁵Politecnico di Torino, Italy; ⁶Juniper Networks, Germany; 7Cisco Photonics, Italy; 8Faculty of Electrical Engineering and Communication, Brno Univ. of Technology, Czechia. This demo

with ONOS.

shows the automatic end-to-end path

provisioning over a multi-vendor fully

disaggregated Open Line System

by Czech Light using the GNPy QoT

estimator and Cassini transceiver by the Telecom Infra Project integrated

M3Z.17

M3Z.18 Flexible Optical Network Enabled Proactive Cross-layer Restructuring for 5G/B5G Backhaul Network with Machine Learning Engine, Rentao Gu¹, Yongyao Qu¹, Meng Lian¹, Hongbiao Li², Zihao Wang¹, Yinan Zhu², Qize Guo¹, Jianjun Yang³, Dajiang Wang², Yuefeng Ji¹; ¹Beijing Univ. of Posts and Telecomm, China; ²ZTE Corporation, China; ³China United Network Communications Co. Ltd., China. It demonstrates a flexible optical network enabled "Network Restructuring as Traffic Changes" for 5G/B5G backhaul network, which realizes proactive cross-layer network generation and mitigation based network recovery, powered by cognitive enhancement and decision deduction.

M3Z.19 Demonstration of Monitoring and Data Analytics-triggered Reconfiguration in Partially Disaggregated Optical Networks, Lluis Gifre Renom¹, Fabien Boitier¹, Camille Delezoide¹, Marc Ruiz², Marta Buffa³, Annalisa Morea³, Ramon Casellas⁴, Luis Velasco², Patricia Lavec¹; ¹Nokia Bell Labs, France; ²Universitat Politecnica de Catalunya, Spain; 3Nokia, Italy: ⁴Centre Tecnològic Telecomunicacions Catalunya (CTTC), Spain. We demonstrate a novel agent for optical disaggregated optical networks. When the Monitoring and Data Analytics detects a degradation, it recommends the SDN controller to trigger a network reconfiguration computed by a novel planning tool.

16:00–16:30 Coffee Break, Upper Level Corridors

NOTES	

Room 1A

M4A • Quantum Security

Presider: Fumio Futami;

Tamagawa Univ., Japan

16:30-18:30

Subsystems

Monday, 9 March

M4A.1 • 16:30 Invited

Technology Trends for Mixed QKD/ WDM Transmission up to 80 km, Romain Alléaume¹, Raphael Avmeric¹, Cedric Ware¹, Yves Jaouen¹; ¹Telecom Paris, France. We give a survey of some of the recent progress made in deploying quantum and classical communications over a shared fiber, focusing in particular on results obtained using continuous-variable QKD.

A revolution in the automotive industry is upon us, the self-driving cars. The autonomous car systems require everincreasing bandwidth for delivering information from the various high resolution sensors to the processing units and have to be extremely reliable. The currently and near future developed automotive sensors include highresolution cameras, Lidars, SWIRs, and radars, each generating Multi-Gigabit/ sec of payload data that should be

delivered to the main processing unit

with very low latency and BER.

Room 1B

M4B • Panel: Automotive

Technologies for 10G and

Communications and

16:30-18:30

Beyond

These autonomous vehicles impose paradigm shift in the car communication systems, essentially turning it to a small "data center on wheels". Consequently, new technologies should be developed and/or adopted for this application, including plastic optical fibers (POF), VCSELs, photonic integrated circuits (PICs), or upgraded "traditional copper". Furthermore, new network architectures should be adopted, including rings, stars, multiple point-to-point, resilient networks, and others.

The autonomous driving also demands for unprecedented coordination among the traffic. This requires efficient inter-vehicle and road-side communications, where microwave photonics and optical wireless communication become important candidate technologies.

16:30-18:30 M4C • MCF Amplifiers and Cable Presider: Hidehisa Tazawa: Sumitomo Electric Industries Ltd, Japan

Room 2

M4C.1 • 16:30 Tutorial

Ultra-low Loss Multicore Fibers, Amplifiers and Components, Takemi Hasegawa1; 1Sumitomo Electric Industries Ltd, Japan. Ultra-low loss multicore fibers will enable to scale the capacity of middle to long-distance transmission by overcoming spatial limitation. This tutorial will cover progresses in fibers, amplifiers and components, and challenges for practical applications.

Takemi Hasegawa is Group Leader in Optical Communications Laboratory, Sumitomo Electric Industries, Ltd. (SEI) in charge of R&D on transmission and specialty fibers. Since joining SEI in 1999, he has been engaged in design and application of fibers. He received his Master of Engineering degree from the University of Tokyo in 1999. He is a member of OSA and IEEE/PS.

Room 3

16:30-18:30 M4D • Network **Design and Switching** Architecture Presider: Takafumi Tanaka: NTT Network Innovation Laboratories, Japan

M4D.1 • 16:30 Invited

Design and Operation Strategies for Optical Transport Networks with Reduced Margins Service-provisioning, Daniela A. Moniz^{1,2}, João Pedro^{1,2}, João Pires²; ¹Infinera Corporation, Portugal; ²Instituto de Telecomunicações, Portugal. This paper overviews the key architectures and network design and operation solutions to efficiently exploit low margin provisioning in optical transport networks

Room 6C

16:30-18:30 M4E • Symposium: The Role of Machine Learning for the Nextgeneration of Optical **Communication Systems** and Networks (Session 2)

M4E.1 • 16:30 Invited

Active vs Transfer Learning Approaches for QoT Estimation with Small Training Datasets, Dario Azzimonti², Cristina Rottondi¹, Alessandro Giusti², Massimo Tornatore³, Andrea Bianco¹: ¹Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy; ²Dalle Molle Inst. for Artificial Intelligence, Switzerland; ³Dept, of Electronics. Information and Bioengineering, Politecnico di Milano, Italy. We compare the level of accuracy achieved by active learning and domain adaptation approaches for quality of transmission estimation of an unestablished lightpath, in presence of small-sized training datasets.

Room 6D

16:30-18:15 M4F • High Order Direct Detect Formats D Presider: Sorin Tibuleac; ADVA Optical Networking, USA

M4F.1 • 16:30

280 Gb/s IM/DD PS-PAM-8 Transmission Over 10 km SSMF at O-band For Optical Interconnects, Jiao Zhang¹, Kaihui Wang¹, Yiran Wei¹, Li Zhao¹, Wen Zhou¹, Jiangnan Xiao¹, Bo Liu², Xiangjun Xin², Feng Zhao³, Ze Dong⁴, Jianjun Yu¹; ¹Fudan Univ., China; ²Beijing Univ. of Posts and Telecommunications, China: ³Xi'an Univ, of Posts and Telecommunications, China; ⁴Huagiao Univ., China, We experimentally demonstrated single-lane 200G+ IM/ DD PAM-N system at O-band using SOA and probabilistic shaping (PS) for high-speed short reach optical interconnects. 280 Gb/s PS-PAM-8 signals can transmit over 10 km SSMF.

M4F.2 • 16:45

30 Gbaud 128 OAM SSB Direct Detection Transmission over 80 km with Clipped Iterative SSBI Cancellation, Son T. Le¹, Vahid Aref¹, Karsten Schuh¹, Hung Nguyen Tan²; ¹Nokia Bell Labs, USA; ²Da Nang Univ., Viet Nam. We demonstrate a novel SSBI cancellation technique operable without digital upsampling for a 30 Gbaud 128 QAM SSB transmission with a record low CSPR of 5 dB, showing 4.6 dB performance improvement compared to the Kramers-Kronig scheme.

Room 6E	Room 6F	Room 7	Room 8	Room 9
16:30–18:30 M4G • Open Networking Summit: Optical Metro/ Aggregation Networks to Support Future Services over 5G	16:30–18:30 M4H • Silicon Photonics and High Density Integration Presider: Erman Timurdogan; Analog Photonics, USA	16:30–18:30 M4I • Advanced Radio Over- fiber Technology Presider: Sangyeup Kim; NTT Access Service Systems Laboratories, Japan	16:30–18:30 M4J • Digital Signal Processing I Presider: Alex Alvarado; Eindhoven Univ. of Technology, Netherlands	16:30–18:15 M4K • High-speed Long-haul Transmission Presider: Hisao Nakashima; Fujitsu Limited, USA

M4H.1 • 16:30 Invited

try by enabling a wide range of services, like enhanced Mobile Broad-Band (eMBB), Ultra-Reliable Low Latency Communications (URLLC) and massive Machine-Type Communications (mMTC), with very different and stringent requirements. 5G Transport will require large amounts of fiber deployments, but while a lot of focus is being given to fiber access networks, the optical metro/aggregation network has not yet received much attention.

5G promises to revolutionize society and indus-

Transport optical networks are traditionally considered a collection of big pipes, seen as an existing commodity, on top of which to add higher layer network resources and intelligence supporting the services. Considerable effort is devoted by both the research community and industry to the design and deployment of more efficient, more cost-effective, greener and more sustainable, and autonomic metro/ aggregation networks, which are expected to complement 5G mobile networks supporting vertical services.

Furthermore, the expected widespread use of Edge Computing and Cell Site Gate-Way Nodes will blur the traditional strong separation between mobile, access, and metro/aggregation networks, which opens the possibility for beneficial technology cooperation. However, how these technological advancements in all network layers of the access/metro/aggregation domains, as well as in the control plane, can be pieced together to give a clear and unified vision of the 5G ecosystem, is still largely a subject of debate. This session will address the issue of whether and how the massive deployment of vertical services over 5G will change the traditional approach to building optical network infrastructures.

Si PIC Based on Photonic Crystal for Lidar Application, Toshihiko Baba¹, Hiroyuki Ito¹,

Hiroshi Abe¹, Takemasa Tamanuki¹, Yosuke Hinakura¹, Ryo Tetsuya¹, Jun Maeda¹, Mikiya Kamata¹, Ryo Kurahashi¹, Ryo Shiratori¹; ¹Yokohama National Univ., Japan. Wide-range nonmechanical beam steering is available by an array of Si photonic crystal slow-light waveguides and their switching without complicated control. FMCW LiDAR action is obtained with this beam steering on a Si photonics chip.

M4I.1 • 16:30 Invited

Radio-over-fiber Technology: Present and Future, Christina Lim¹; ¹Univ. of Melbourne, Australia. This paper reviews the recent research in the area of radio-over-fiber technology focusing on physical layer investigations and demonstrations, and also provides a brief discussion on the future outlook.

OFC 2020 • 8–12 March 2020

M4.J.1 • 16:30 Tutorial

Few-mode Fiber Transmission, Guifang Li1; 1Univ. of Central Florida, USA. This tutorial will describe different types of few-mode fibers and their unique properties, followed by fiber-optic transmission systems that they potentially enable, and the prospects of these transmission systems making realistic impacts in the commercial world.

Guifang Li is currently Professor of Optics & Photonics at the University of Central Florida and Editor-in-Chief of Advances in Optics & Photonics (OSA). His research interests include optical communications and networking, RF photonics, optical signal processing. He is a recipient of the NSF CAREER award, the Office of Naval Research Young Investigator award. He is a fellow of IEEE, SPIE, the Optical Society and the National Academy of Inventors. He previously served as a Deputy Editor for Optics Express, and an associate editor for Chinese Optics Letters, IEEE Photonics Technology Letters, IEEE Photonics Journal and Optica.

M4K.1 • 16:30 Invited

Long-haul WDM Transmission with Over-1-Tb/s Channels Using Electrically-synthesized High-symbol-rate Signals, Takayuki Kobayashi¹, Masanori Nakamura¹, Fukutaro Hamaoka¹, Munehiko Nagatani^{1,2}, Hiroshi Yamazaki^{1,2}, Hideyuki Nosaka^{1,2}, Yutaka Miyamoto¹; ¹NTT Network Innovation Laboratories, Japan; ²NTT Device Technology Laboratories, Japan. Recent technical progress on 1-Tb/s/λ-class transmission systems based-on high-speed electronics are reviewed. And this paper discusses key technologies and issues of the beyond-1-Tb/s/ λ WDM transmission systems with over-100-Gbaud symbol-rate for achieving long-haul transport.

Monday, 9 March

75

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M4A • Quantum Security Subsystems—Continued	M4B • Panel: Automotive Communications and Technologies for 10G and Beyond—Continued	M4C • MCF Amplifiers and Cable—Continued	M4D • Network Design and Switching Architecture—Continued	M4E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 2)—Continued	M4F • High Order Direct Detect Formats— Continued
M4A.2 • 17:00 Two-level Optical Encryption for Secure Optical Communication, Ye- tian Huang ¹ , Haoshuo Chen ² , Hanzi Huang ¹ , Qianwu Zhang ¹ , Zhengxuan Li ¹ , Nicolas K. Fontaine ² , Roland Ryf ² , Min Wang ¹ ; 'Shanghai Univ, China; ² Nokia Bell Labs, USA. We demonstrate 60 Gbit/s transmission over 43-km SMF using low-coherence matched detection combined with spectral phase coding as two- layer optical encryption. Encrypted signal and carrier are multiplexed through polarization diversity and demultiplexed using polarization tracking.	This panel will discuss the evolving needs, the technology candidates, and the main associated debates in this automotive revolution era. Speakers: Kasia Balakier; <i>AIRBUS Satellite and Defense, UK</i> Daniel Adler; <i>Valens, Israel</i> Ton Koonen; <i>Eindhoven University of Technology, Netherlands</i> Shilong Pan; <i>Nanjing University of Aeronautics and Astronautic, China</i>		M4D.2 • 17:00 Colorless, Partially Directional, and Contentionless Architecture for High-degree ROADMs, Yongcheng Li ¹ , Liangjia Zong ² , Mingyi Gao ¹ , Biswanath Mukherjee ¹ , Gangxiang Shen ¹ ; Isoochow Univ, China; ² Trans- mission Technology Research Depart- ment, Huawei, China. We design a Colorless, partially Directional, and Contentionless (CpDC) architecture for high-degree ROADMs, in which a fixed interconnection pattern is developed to connect different nodal degrees and add/drop modules. Simulation results show the advantages of the proposed architecture.	M4E.2 • 17:00 (Nyited) (Neural Network Training for OSNR Estimation - from Prototype to Product, Andrew Shiner ¹ , Moham mad E. Mousa-Pasandi ¹ , Meng Qiu ¹ , Michael A. Reimer ¹ , Eui Young Park ¹ , Michael Hubbard ¹ , Qunbi Zhuge ^{2,1} , Francisco J. Vaquero Caballero ^{3,1} , Maurice O'Sullivan ¹ ; ¹ Ciena, Cana- da; ² Shanghai Jiao Tong Univ., Chi- na; ³ Cambridge Univ., UK. A method for in-service OSNR measurement with a coherent transceiver is presented and experimentally verified. A neural network is employed to identify and remove the nonlinear noise contribution to the estimated OSNR.	M4F.3 • 17:00 Top-Scored Novel Optical Field Reconstruction for IM/DD with Receiver Bandwidth Well Below Full Optical Signal Band- width, Qian Hu', Robert Borkowski', Mathieu Chagnon', Karsten Schuh', Fred Buchali', Henning Bülow'; 'Nokia Bell Labs, Germany. We propose a novel signal reception scheme for IM/DD enabling optical field reconstruction. We experimentally demonstrate 60-GBd PAM-4 transmission over 80-km without active and passive optical managements, with 33-GHz electrical bandwidth at transmitter and receiver.
M4A.3 • 17:15 Photonic Generation of Quantum Noise Assisted Cipher at Microwave Frequencies for Secure Wireless Links, Ken Tanizawa', Fumio Fu- tami'; 'Tamagawa Univ., Japan. We propose novel wireless physical layer encryption utilizing signal masking by truly random quantum noise. 12-Gbit/s cipher with sufficient masking is generated in 30-GHz band by optical heterodyne, and secure microwave wireless transmission is achieved.			M4D.3 • 17:15 Reliable Slicing with Isolation in Optical Metro-aggregation Net- works, Andrea Marotta', Dajana Cas- sioli', Massimo Tornatore ^{2,3} , Yusuke Hirota ⁴ , Yoshinari Awaji ⁴ , Biswanath Mukherjee ³ ; 'Univ. of L'Aquila , Ita- ly; ² Politecnico di Milano, Italy; ³ Univ. of California, USA; ⁴ National Inst. of Information and Communications Technology, Japan. We discuss how different degrees of slice isolation influence resource allocation in protected optical metro-aggregation networks. The case of slice reliability with dedicated protection at lightpath is modelled and numerically evaluated.		M4F.4 • 17:15 Demonstration of 214Gbps per lane IM/DD PAM-4 Transmission using O-band 35GHz-class EML with Advanced MLSE and KP4- FEC, Weiyu Wang', Zhilei Huang', Biwei Pan', Huanlu Li', Guanpeng Li', Jian Tang', Yuchun Lu'; 'Huawei Technologies Co. Ltd., China. A single- wavelength single-polarization 35GHz- class (112Gbps-class) commercial EML-based IM/DD 214Gbps PAM4 signal transmission is experimentally demonstrated. By using advanced MLSE with low complexity and power consumption, the BER is below standard KP4-FEC requirement of 2×10 ⁴ .

Room 6E	Room 6F	Room 7	Room 8	Room 9
M4G • Open Networking Summit: Optical Metro/ Aggregation Networks to Support Future Services over 5G—Continued	M4H • Silicon Photonics and High Density Integration— Continued	M4I • Advanced Radio Over- fiber Technology—Continued	M4J • Digital Signal Processing I—Continued	M4K • High-speed Long-haul Transmission—Continued
In particular, the session will open a discussion on the following questions: What are the network requirements emerging from 5G services? What does a future-proof access/metro/aggre- gation network architecture look like? How can such architecture be implemented? The session will be divided into two parts. In the first part, invited speakers will present their views on network (r)evolution. In the second part, different strategies leading to more efficient, more cost-effective, and more sustainable networks will be debated in a panel discussion.	M4H.2 • 17:00 C Polarization-diverse Silicon Photonics WDM Rodarization-diverse Silicon Photonics WDM and Balanced Group Delays, Jovana Nojic ² , Dominik Schoofs ² , Saeed Sharif Azadeh ^{2,1} , Florian Merget ² , Jeremy Witzens ² ; ¹ Max Planck Inst. of Microstructure Physics, Germany; ² Inst. of Integrated Photonics, RWTH Aachen Univ., Germany. We experimentally validate a 10-channel polarization diverse WDM receiver with only one ring based add-drop multiplexer per channel and on-chip optical delay lines balancing the two polarization paths for speeds up to 28 Gb/s.	M4I.2 • 17:00 100 Gb/s Real-Time Transmission over a THz Wireless Fiber Extender Using a Digital-coherent Optical Modem, Carlos Castro ¹ , Robert Elschner ¹ , Thomas Merkle ² , Colja Schuber ¹ , Ronald Freund ¹ ; ¹ Fraunhofer Inst. for Telecommunications Heinrich Hertz Inst., Germany; ² Fraunhofer-Institut für Ange- wandte Festkörperphysik IAF, Germany. We demonstrate the real-time transmission of a 34-GBd PDM-QPSK signal over two fiber-optic links interconnected by a THz wireless fiber extender at 300 GHz carrier frequency, with joint impairment compensation by a single- carrier DSP.		M4K.2 • 17:00 49.2-Tbit/s WDM Transmission over 2x93- km Field-Deployed Fiber, Karsten Schuh ¹ , Fred Buchali ¹ , Roman Dischler ¹ , Mathieu Cha- gnon ¹ , Vahid Aref ¹ , Henning Bülow ¹ , Qian Hu ¹ , Florian Pulka ² , Massimo Frascolla ³ , Esmaeel Alhammadi ⁴ , Adel Samhan ⁴ , Islam Younis ⁵ , Mohamed El-Zonkoli ⁵ , Peter Winzer ⁶ ; ¹ Nokia Bell Labs, Germany; ² Nokia, France; ³ IP, Nokia, Italy; ⁴ Etisalat, United Arab Emirates; ⁵ Nokia UAE, United Arab Emirates; ⁶ Nokia Bell Labs, USA, USA. We present 40 channel WDM transmission experiments over one and two spans of 93-km field-deployed SSMF achieving net capacities of 51.5-Tbit/s and 49.2-Tbit/s for PCS-256-QAM with 7.5 bits entropy and 45.9-Tbit/s and 45.1-Tbit/s for 64-QAM transmission, respectively.
Speakers:	M4H.3•17:15 D	M4I.3 • 17:15		M4K.3 • 17:15
Glenn Wellbrock; Verizon Transport Networks, USA	A 400 Gb/s O-band WDM (8×50 Gb/s) Silicon Photonic Ring Modulator-based Trans-	A Broadly Tunable Noise Radar Trans- ceiver on a Silicon Photonic Chip, Daniel Onori ¹ , José Azaña ¹ ; ¹ Énergie, Matériaux et		Entropy and Symbol-rate Optimized 120 GBaud PS-36QAM Signal Transmission over 2400 km at Net-rate of 800 Gbps/λ, Masa-
Jun Terada; NTT Access Networks Labs, Japan	ceiver, Stelios Pitris ¹ , Miltiadis Moralis-Pegios ¹ , Theoni Alexoudi ¹ , Konstantinos Fotiadis ¹ , Yoojin Ban ² , Peter De Heyn ² , Joris Van Campen- hout ² , Nikos Pleros ¹ ; ¹ Department of Infor- matics, Center for Interdisciplinary Research & Innovation, Aristotle Univ. of Thessaloniki,	Télécommunications (EMT), Institut National de		nori Nakamura¹, Takayuki Kobayashi¹, Hiroshi
Andrew Lord; BT Labs, UK		la Recherche Scientifique (INRS), Canada. We experimentally demonstrate the first on-chip		Yamazaki ^{1,2} , Fukutaro Hamaoka ¹ , Munehiko Nagatani ^{1,2} , Hitoshi Wakita ² , Hideyuki No-
Jan Söderström; Ericsson, USA		broadly-tunable noise radar transceiver, using silicon photonic technology. By exploiting an		saka ^{1,2} , Yutaka Miyamoto ¹ ; ¹ NTT Network Innovation Laboratories, Japan; ² NTT Device
Attilio Zani; Telecom Infra Project, UK	Greece; ² imec, Belgium. We present a 400 (8×50) Gb/s-capable RM-based Si-photonic WDM O-band TxRx with 1.17nm channel	innovative and simple lasers' noise referencing architecture, the device shows reconfigurable operation in the range 0.5-35GHz, with		Technology Laboratories, Japan. We apply symbol-rate and entropy optimization to over- 100-GBaud PS-36QAM signal generation. It

WDM O-band TxRx with 1.17nm channel spacing for high-speed optical interconnects and demonstrate successful 50Gb/s-NRZ TxRx operation achieving a ~4.5dB Tx extinction ratio under 2.15Vpp drive.

operation in the range 0.5-35GHz, with antennas-remoting capability.

OFC 2020 • 8–12 March 2020

enables 800-Gbps/ λ signal transmission over 2400 km in 125GHz-spaced WDM system by maximization of SNR margin from the required

SNR at FEC limit.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M4A • Quantum Security Subsystems—Continued	M4B • Panel: Automotive Communications and Technologies for 10G and Beyond—Continued	M4C • MCF Amplifiers and Cable—Continued	M4D • Network Design and Switching Architecture—Continued	M4E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 2)—Continued	M4F • High Order Direct Detect Formats— Continued
M4A.4 • 17:30 Compact Differential Phase-shift Quantum Receiver Assisted by a SOI / BiCMOS Micro-ring Resonator, Ne- manja Vokic ¹ , Dinka Milovancev ¹ , Winfried Boxleitner ¹ , Hannes Hü- bel ¹ , Bernhard Schrenk ¹ ; 'AIT Aus- trian Inst. of Technology, Austria. We demonstrate a phase-selective and colorless quantum receiver assisted by a silicon-on-insulator microring, enabling a low 1.3% QBER at 5.3kb/s secure-key rate. No penalty incurs compared to a delay interferometer. BiCMOS 3D-integration is proven feasible.		M4C.2 • 17:30 Power Efficient All-fiberized 12-core Erbium/ytterbium Doped Optical Amplifier, Gilles Melin ¹ , Romain Kerampran ² , Achille Monteville ³ , Syl- vain Bordais ² , Thierry Robin ¹ , David Landais ³ , Aurelien Lebreton ⁴ , Yves Jaouen ⁴ , Thierry Taunay ³ ; ¹ :Xblue, France; ² Lumibird, France; ³ Photonics Bretagne, France; ⁴ TELECOM Paris, France. 20dB gain in C-band with only 5.3W of pump is achieved with an all-fiberized 12-core Er/Yb doped fiber amplifier. This result is a first step towards SDM transmission including power efficient amplifiers and ROADM	M4D.4 • 17:30 Is There a Most Appropriate Chan- nel Spacing in WDM Networks When Individually Routing 67 GBaud Carriers?, Thierry Zami ¹ , Bruno Lavigne ¹ ; ' <i>Nokia Corporation,</i> <i>France.</i> As elastic optical transponders faster than 60 GBaud emerge in meshed terrestrial WDM networks, we investigate whether 75 GHz spectral channel spacing outperforms 87.5 GHz spacing when routing individual optical carriers transparently through optical nodes.	M4E.3 • 17:30 Invited Towards Intelligent Optical Net- works: The Role of Intellectual Prop- erty, Sebastian Gäde ¹ , Céline Borsi- er ¹ , Asa Ribbe ¹ ; ¹ EPO, Germany. An overview of worldwide patenting and artificial intelligence in the field of optical communication is presented. The results emphasize a worldwide growing market offering benefits for both providers and customers.	M4F.5 • 17:30 C 160-Gb/s Nyquist PAM-4 Transmis- sion with GeSi-EAM Using Artificial Neural Network Based Nonlinear Equalization, Lei Zhang ¹ , Fan Yang ¹ , Hao Ming ¹ , Yixiao Zhu ² , Xiaoke Ruan ¹ , Yanping Li ¹ , Fan Zhang ¹ , 'Peking Univ., China; ² ZTE, China. We experimentally demonstrate optical interconnects of PAM-4 signal with a single lane bit rate of 160Gb/s generated by a compact silicon based GeSi electro-absorption modulator using artificial neural net- work based nonlinear equalization.
M4A.5 • 17:45 Inited Progress on Quantum Key Distribu- tion Using Ultralow Loss Fiber, Alber- to Boaron ¹ , Davide Rusca ¹ , Gianluca Boso ¹ , Raphael Houlmann ¹ , Cédric Vulliez ¹ , Misael Caloz ¹ , Matthieu Per- renoud ¹ , Gaetan Gras ¹ , Claire Aute- bert ¹ , Félix Bussières ¹ , Ming-Jun Li ² , Daniel Nolan ² , Anthory Martin ¹ , Hugo Zbinden ¹ ; 'Univ. of Geneva, Switzer- land; ² Corning Incorporated, USA. We use a 2.5 GHz clocked quantum key distribution system to perform long- distance and high-speed quantum key distribution. Taking benefit from superconducting detectors optimized for each operation regime and low- loss fiber, we achieve state-of-the-art performance.		M4C.3 • 17:45 Top-Scored Full C-band and Power Efficient Coupled-multi-core Fiber Ampli- fier, Masaki Wada ¹ , Taiji Sakamoto ¹ , Shinichi Aozasa ¹ , Ryota Imada ¹ , Ta- kashi Yamamoto ¹ , Kazuhide Na- kajima ¹ ; ¹ NTT access network service systems lab., Japan. A coupled 12- core fiber amplifier with the highest optical power conversion efficiency of 10.2% is achieved among the reported C-band cladding-pumped amplifier. Potential as full C-band inline amplifier is confirmed using full coupled-core SDM link.	M4D.5 • 17:45 Experimental Assessment of a Programmable VCSEL-based Pho- tonic System Architecture over a Multi-hop Path with 19-Core MCF for Future Agile Tb/s Metro Net- works, Michela Svaluto Moreolo', Josep M. Fabrega', Laia Nadal', Ricardo Martínez', Ramon Casel- las', F. Javier Vilchez', Raul Muñoz', Ricard Vilalta', Alberto Gatto ² , Paola Parolari ² , Pierpaolo Boffi ² , Chris- tian Neumeyr ³ , David Larrabeiti ⁴ , Gabriel Otero', Juan P. Fernández- Palacios ⁵ ; ¹ Ctr Tecnològic de Telecom de Catalunya, Spain; ² Politecnico di Milano, Italy; ³ Vertilas GmbH, Ger- mariy; ⁴ Universidad Carlos III de Ma- drid, Spain; ⁵ Telefonica Global CTO, Spain. An SDN-enabled photonic system adopting VCSEL technology is experimentally analyzed targeting dynamic 5G-supportive MAN. Direct and coherent detection modules are compared and programmability assessed over up to 6-hop 160km HL4-HL2/1 connection including 25km 19-core MCF.		M4F.6 • 17:45 (NVIEC) (NVIDIA Cor- ing Need Silicon Photonics, Benjamin Klenk', Larry Dennison'; 'NVIDIA Cor- poration, USA. Training deep neural networks demands vast amounts of computation, provided by large distributed systems. The increasing demand for bandwidth will exceed the limits of electrical and non-integrated optical signaling and will require integrated
1		OFC 2020 • 8	3–12 March 2020		

Room 6E	Room 6F	Room 7	Room 8	Room 9
M4G • Open Networking Summit: Optical Metro/ Aggregation Networks to Support Future Services over 5G—Continued	M4H • Silicon Photonics and High Density Integration— Continued	M4I • Advanced Radio Over- fiber Technology—Continued	M4J • Digital Signal Processing I—Continued	M4K • High-speed Long-haul Transmission—Continued
	M4H.4 • 17:30 Invited Uncovering Reflection Insensitive Semi- conductor Lasers for Silicon Photonic Integration, Frederic Grillot ¹² ; 'Institut Poly- technique de Paris, France; ² The Univ. of New Mexico, USA. We report on two recent high performance semiconductor lasers made with the silicon photonic platform. Both	M4I.4 • 17:30 Dual-wavelength Integrated K-band Multi- Beamformer Operating over 1-km 7-core Multicore Fiber, Maria Morant ¹ , Ailee Trinidad ² , Eduward Tangdiongga ² , Ton Koonen ² , Roberto Llorente ¹ ; ¹ Nanophotonics Technology Center, Universitat Politècnica de València, Spain; ² Inst. for Photonic Integration, Eindhoven Univ. of	M4J.2 • 17:30 Multi-channel Equalization for Comb-based Systems, Mikael Mazur ¹ , Jochen Schröder ¹ , Magnus Karlsson ¹ , Peter Andrekson ¹ ; ¹ Chalm- ers Tekniska Hogskola, Sweden. We propose and demonstrate a frequency comb-enabled joint DSP. With joint processing, the required guard-bands decreases and the optimal	M4K.4 • 17:30 Spectrally Efficient DP-1024QAM 640 Gb/s Long Haul Transmission using a Frequency Comb, Frederik Klejs ¹ , Edson Porto da Silva ² , Mads Lillieholm ¹ , Metodi P. Yankov ¹ , Toshio Mo- rioka ¹ , Leif Oxenløwe ¹ , Michael Galili ¹ ; ¹ DTU, Denmark; ² Federal Univ. of Campina Grande, Brazil. We experimentally investigate the long

M4I.5 • 17:45

structures display a quasi complete reflection

insensitivity, resulting in a key attribute for

the development of isolator-free integrated

technologies.

Flexible Data Rate THz-wave Communication Using Nyquist Pulses and Optical-domain Reception Signal Processing, Koichi Takiguchi¹, Nozomu Nishio¹; ¹Department of Electrical and Electronic Engineering, Ritsumeikan Univ, Japan. We report variable capacity THz-wave communication using Nyquist pulses, which is realized by changing the channel number and optical-domain filtering of received signals. We carried out 10 to 40 Gsymbol/s communication in the 300 GHz-band.

Technology, Netherlands. A dual-wavelength

broadband photonic integrated beamformer

over 1-km MCF provides independent angles

with up to 350 ps increment to 3-GHz or 260

ps to 4-GHz BW signals over two different

wavelengths and K-band frequencies.

M4J.3 • 17:45

efficiency.

Cycle-Slip Rate Analysis of Blind Phase Search DSP Circuit Implementations, Erik Börjeson¹, Per Larsson-Edefors¹; 'Department of Computer Science and Engineering, Chalmers Univ. of Technology, Sweden. Using FPGA-accelerated simulations, we study the cycle-slip rate of 16QAM blind phase search implementations. While block averaging suffers from degraded BER when compared to slidingwindow averaging, it results in lower cycle-slip rates and power dissipation.

roll-off factor increases, reducing penalties

from non-ideal transceiver electronics while

simultaneously increasing the spectral

M4K.5 • 17:45

640 Gb/s.

800ZR+ DWDM Demonstration over 600km G.654D Fiber Enabled by Adaptive Nonlinear TripleX Equalization, Fabio Pittalà¹, Maximilian Schaedler¹, Christian Bluemm¹, Gernot Goeger¹, Stefano Calabro¹, Maxim Kuschnerov¹, Changsong Xie¹; ¹Huawei Technologies, Germany. We demonstrate the feasibility of 800ZR+ by transmitting 32×96-GBaud DP-32QAM over 600km of G.654D fiber using a generic interopreability FEC. Superior performance is achieved by advanced nonlinear components compensation.

haul transmission of an 8 GBd DP-1024QAM

over fully Raman amplified fiber spans using an

optical frequency comb. We reach a potential

spectral efficiency of 8.7 bit/s/Hz at 3000

km transmission and a potential data rate of

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
M4A • Quantum Security Subsystems—Continued	M4B • Panel: Automotive Communications and Technologies for 10G and Beyond—Continued	M4C • MCF Amplifiers and Cable—Continued	M4D • Network Design and Switching Architecture—Continued	M4E • Symposium: The Role of Machine Learning for the Next- generation of Optical Communication Systems and Networks (Session 2)—Continued	M4F • High Order Direct Detect Formats— Continued
		M4C.4 • 18:00 Real-time Optical Gain Monitoring for Coupled Core Multi-Core EDFA with Strong Inter-Core Crosstalk, Hi- toshi Takeshita', Keiichi Matsumoto', Hidemi Noguchi', Emmanuel Le Taillandier de Gabory'; 'NEC Corpo- ration, Japan. We have successfully confirmed the feasibility of real-time optical gain spectrum monitoring of CC-MC-EDFA with the standard deviation within 0.65 dB even if the optical power per core fluctuate due to the inter-core crosstalk.	M4D.6 • 18:00 Network Design Framework Exploit- ing Low-margin Provisioning of Optical Shared Restoration Resourc- es, Daniela A. Moniz ^{1,2} , João Pedro ^{1,2} , João Pires ² ; ¹ Infinera Corporation, Portugal; ² Instituto de Telecomunica- ções, Portugal. This paper proposes a network design framework tailored to support optical restoration with low-margins by exploiting real-time performance monitoring. Simula- tion results highlight that it enables resource savings without additional risks of traffic disruption.	M4E.4 • 18:00 Invited Machine Learning for Optical Net- work Security Management, Marija Furdek, Chalmers University of Tech- nology, Sweden. We discuss the role of supervised, unsupervised and semi-supervised learning techniques in identification of optical network security breaches. The applicability, performance and challenges related to practical deployment of these tech- niques are examined.	
		M4C.5 • 18:15 Top-Scored Spatial Mode Dispersion Control in a Coupled MCF using High Density Cabling Parameters, Yusuke Yamada', Taiji Sakamoto', Yuto Sagae', Masaki Wada', Saki Nozoe', Yoko Yamashita', Hisashi Izumita', Kazuhide Nakajima', Hiroaki Tanioka'; 'NTT, Japan. Spatial- mode dispersion (SMD) of a coupled multi-core fiber is controlled with cabling parameters for the first time. An SMD coefficient of 1.5 ps/km is achieved by optimizing the bundle pitch and tension in the cable.			

Room 6E	Room 6F	Room 7	Room 8	Room 9
M4G • Open Networking Summit: Optical Metro/ Aggregation Networks to Support Future Services over 5G—Continued	M4H • Silicon Photonics and High Density Integration— Continued	M4I • Advanced Radio Over- fiber Technology—Continued	M4J • Digital Signal Processing I—Continued	M4K • High-speed Long-haul Transmission—Continued
	M4H.5 • 18:00 C Grating Coupled Laser (GCL) for Si Photon- ics, Shiyun Lin ¹ , Ding Wang ¹ , Ferdous Khan ¹ , Jeannie Chen ¹ , Alexander Nickel ¹ , Brian Kim ¹ , Yasuhiro Matsui ¹ , Bruce Young ¹ , Martin Kwakernaak ¹ , Glen Carey ¹ , Tsurugi Sudo ¹ ; ' <i>II-VI</i> <i>Incorporated</i> , <i>USA</i> . We report a laser with an integrated grating coupler that emits a large ~30 µm mode through its substrate. The GCL	M4I.6 • 18:00 Invited Opto-electronic Terahertz Transceivers for Wireless 5G Backhaul, Sebastian Randel ¹ , Tobias Harter ¹ , Christian Koos ¹ , Wolfgang Freude ¹ ; ¹ Inst. of Photonics and Quantum Electronics, Karlsruhe Inst. of Technology, Germany. Wireless communication links at terahertz frequencies are a promising option	M4J.4 • 18:00 Clock Recovery Limitations in Probabilisti- cally Shaped Transmission, Fabio A. Barbosa ¹ , Sandro M. Rossi ² , Darli A. Mello ¹ ; ¹ School of Electrical and Computer Engineering, Univ. of Campinas, Brazil; ² Division of Optical Technologies, CPqD, Brazil. We assess the performance of the modified Gardner timing error detector under probabilistic shaping. The result indicate severe limitations in servicing	M4K.6 • 18:00 Experimental Study of Closed-Form GN Model Using Real-time m-QAM Transceiv- ers with Symbol Rate up to 69 GBd, Ser- gey Burtsev ¹ , Steven Searcy ¹ , Sorin Tibu- leac ¹ ; <i>IADVA, USA</i> . Real-time transceivers were used to evaluate the accuracy of the closed- form GN model for SSMF and NZDSF C-band terrestrial applications with symbol rates from 34 to 69 GBd and modulation formate from

for high-capacity 5G backhaul. In this work, we

review recent progress in the field and discuss

performance-vs.-complexity trade-offs for

different opto-electronic terahertz transceiver

OFC 2020 • 8–12 March 2020

designs.

M4H.6 • 18:15

without lenses.

InP/Silicon Hybrid External-cavity Lasers (ECL) Using Photonic Wirebonds as Coupling Elements, Yilin Xu^{1,2}, Pascal Maier^{1,2}, Matthias Blaicher¹, Philipp-Immanuel Dietrich^{1,3}, Pablo Marin-Palomo¹, Wladislaw Hartmann¹, Muhammad R. Billah^{1,3}, Ute Troppenz⁴, Martin Moehrle⁴, Sebastian Randel¹, Wolfgang Freude¹, Christian Koos^{1,3}; ¹Inst. of Photonics and Quantum Electronics (IPQ), Karlsruhe Inst. of Technology (KIT), Germany; ²Inst. of Microstructure Technology (IMT), Karlsruhe Inst. of Technology (KIT), Germany; ³Vanguard Automation GmbH, Germany; ⁴Fraunhofer Heinrich-Hertz-Inst. (HHI), Germany. We demonstrate an InP/Silicon integrated ECL using a photonic wirebond as intra-cavity coupling element. In our proof-of-concept experiments, we demonstrate 50 nm tuning range, SMSR above 40 dB, and linewidths of 750 kHz.

allows coupling to a corresponding grating in

the Si PIC and insertion of an optical isolator

M4J.5 • 18:15

experiments.

Baud-rate Timing Phase Detector for Systems with Severe Bandwidth Limitations, Nebojsa Stojanovic¹, Talha Rahman¹, Stefano Calabro¹, Jinlong Wei¹, Changsong Xie1; 1Huawei Technologies Co., Ltd., Germany. A novel timing phase detector using one sample per symbol is developed. The phase detector is especially suitable for systems suffering from serious bandwidth limitations. Its superior performance is demonstrated in simulations and experiments.

results indicate severe limitations in specific

combinations of shaping and roll-off factors.

The results are validated by simulations and

Monday, 9 March

34 to 69 GBd and modulation formats from

QPSK to 64QAM.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D		
07:30–08:00 Plenary Session Coffee Break, Upper Level Corridors, Ballroom 20 Lobby							
08:00–10:00 Plenary Session, Room Ballroom 20BCD							
10:00–14:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee service 10:00–10:30)							
10:00–17:00 Exhibition and Show Floor, Exhibit Hall (concessions available in Exhibit Hall) OFC Career Zone Live, Exhibit Hall B2							

12:00–14:00 OFC and Co-Sponsors Awards and Honors Ceremony and Luncheon, Upper Level, Room Ballroom 20A

14:00–16:00 T3A • Linear and Nonlinear Space Division Multiplexing Presider: Sophie LaRochelle; Universite Laval, Canada

14:00–16:00 T3B • Novel Materials Presider: Yikai Su; Shanghai Jiao Tong Univ., China

T3A.1 • 14:00 Tutorial

SDM Optical Communications, Nicolas K. Fontaine¹; ¹Nokia Bell Labs, USA. Abstract not available.

T3B.1 • 14:00 Invited

On-chip Optical Isolators, Tetsuya Mizumoto¹, Yuya Shoji¹; ¹Tokyo Inst. of Technology, Japan. Magneto-optical phase shift is effective to realize onchip optical isolators. Optical isolators are fabricated on SOI platforms with isolation ratios of 30 and 16 dB for TM and TE mode input, respectively.

T3C.1 • 14:00

14:00-16:00

Sensing

T3C • Lasers for

Communications and

Presider: Yasuhiro Matsui;

Finisar Corporation, USA

50-GHz Gain Switching and Period Doubling Using an Optical Injection Locked Cavity-enhanced DFB Laser, Zhixin Liu¹, Yasuhiro Matsui², Richard Schatz³, Ferdous Khan², Martin Kwakernaak², Tsurugi Sudo²; ¹Univ. College London, UK; ²Finisar Corporation, USA; ³Royal Inst. of Technology, Sweden. We demonstrate gain-switched pulse generation at a record-high repetition rate of 50GHz by injection locking a cavity-enhanced DFB laser. More than 50GHz carrierphoton resonance is achieved by using the detuned-loading and photonphoton resonance effects.

14:00–16:00 T3D • Quantum and Secure Communications Presider: Andrew Shields; Toshiba Research Europe Ltd, UK

T3D.1 • 14:00 Invited

Austria. Abstract not available.

Entanglement-based Fiber Optic

and Satellite QKD Systems, Rupert

Ursin1; 1Austrian Academy of Sciences,

14:00–16:00 T3E • Symposium: Emerging Network Architectures for 5G Edge Cloud (Session 1)

T3E.1 • 14:00 Invited

den. Abstract not available.

Title to be Announced, An-

drew Wilkinson1; 1Ericsson, Swe-

14:00–16:00 T3F • Panel: How Can Machine Learning or, More Broadly, Artificial Intelligence Help Improve Optical Networks?

With the advent of powerful compute infrastructure, machine learning has become hugely popular, including but not limited to the field of optical communication and networking. Machine learning in this context may be applied to enhance network monitoring and troubleshooting as well as optimization and anomaly detection.

In this session we ask network operators as well as network equipment manufacturers about the potential and value of ML in optical networking and beyond.

Speakers:

Yoshiaki Aono; NEC Corp., Japan

Zahra Bakhtiari; Microsoft, USA

Biondo Biondi, Stanford University, USA

Mattia Cantono; Google, USA

Petar Djukic; Ciena, Canada

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
	Ethernet Interoperability				
	and Deployments – New and Legacy Solutions Work Together				
	Ethernet Alliance 10:15–11:15, Theater II				
	10:00–17:00 Exhibition and OFC	Show Floor, Exhibit Hall (conc Career Zone Live, Exhibit Ha		()	Product Showcase - Huawei Technologies Canada Co., Ltd. 10:15–10:45, Theater III
12:00–14:00	OFC and Co-Sponsors Award	ds and Honors Ceremony and	Luncheon, Upper Level, Roon	n Ballroom 20A	■ MW Panel I: State of the Industry
14:00–16:00 T3G • Panel: As we Approach Shannon Limit, How do we Precisely Assess the Performance of Coherent Transponders for Field Deployment? ►	14:00–16:00 T3H • Silicon Photonics Applications Presider: Dominic Goodwill; Huawei Technologies R&D, Canada	14:00–16:00 T3I • Short-reach Systems II Presider: Yi Cai; ZTE TX, Inc., USA	14:00–16:00 T3J • Orchestration and Control Presider: Paolo Monti; Chalmers Tekniska Hogskola, Sweden	14:00–16:00 T3K • Intra Data Center Networks I Presider: Reza Nejabati; Univ. of Bristol, UK	10:30–12:00, Theater I AIM Photonics Member Successes and Updates AIM Photonics 11:00–12:00, Theater III Data Center Summit: Keynote and Panel 11:30–13:45, Theater II
How close will we be able to approach Shannon limit in the field? How do we precisely assess the performance? Field trial vs. lab testing Accuracy of Simulation vs. experi- mental results Offline testing vs. real time testing What is an acceptable error between lab results and field trials? How do we close the gap be- tween technology design and field deployment? Speakers: Colin Meaklim; <i>Ciena, Canada</i> Approaching the Shannon Limit of Subsea Networks Pierre Mertz; <i>Infinera, USA</i> Knocking on Shannons' Door	T3H.1 • 14:00 C Top-Scored 1.6Tbps Silicon Photonics Integrated Gircuit for Co-packaged Optical-IO Switch Applications, Saeed Fatho- loloumi', Kimchau Nguyen', Hari Mahalingam', Meer N. Sakib', Zhi Li', Christopher S. Seibert', Mohammad Montazeri', Jian Chen', Jonathan K. Doylend', Hasitha Jayatilleka', Catherine Jan', John Heck', Ranju Venables', Harel Frish', Reece A. De- frees', Randal S. Appleton', Summer Hollingsworth', Sean P. McCargar', Richard Jones', Daniel Zhu', Yuliya Akulova', Ling Liao'; 'SPPD, Intel Corporation, USA. We demonstrate 1.6Tbps Silicon Photonic Integrated Circuit (SIPIC) meeting co-packaged optics requirements for network switch applications. It has sixteen 106Gbps PAM4 optical channels, including lasers, modulators and V-grooves. Post-FEC error-free operation over temperature is demonstrated.	T3I.1 • 14:00 102 Gbaud PAM-4 Transmission Over 2 km Using a Pulse Shaping Fil- ter with Asymmetric ISI and Thomlin- son Harashima Precoding, Xueyang Li ¹ , Zhenping Xing ¹ , Samiul Alam ¹ , Maxime Jacques ¹ , David Plant ¹ ; ¹ Mc- Gill Univ, Canada. We introduce the asymmetric-ISI pulse shaping filter with Tomlinson-Harashima precoding to increase the receiver RF swing, and demonstrate 102 Gbaud PAM-4 transmission over 2 km with a BER below 3.8×10 ⁻³ using linear equalizer at receiver.	T3J.1 • 14:00 Blockchain-anchored Failure Re- sponsibility Management in Disag- gregated Optical Networks, Sil- via Fichera ¹ , Andrea Sgambelluri ¹ , Alessio Giorgetti ¹ , Filippo Cugin ² , Francesco Paolucci ¹ ; <i>'Scuola Su-</i> <i>periore Sant'Anna, Italy; ²CNIT, It-</i> <i>aly.</i> A novel framework based on blockchain is proposed to provide trusted SLA accounting. Extensions to SDN ONOS controller successfully assess controversial SLA degradations responsibilities upon failure events in a multi-vendor OpenROADM-based white box scenario.	T3K.1 • 14:00 Demonstrating Optically Intercon- nected Remote Serial and Parallel Memory in Disaggregated Data Cen- ters, Vaibhawa Mishra ¹ , Joshua L. Ben- jamin ¹ , Georgios S. Zervas ¹ ; ¹ Univ. Col- lege London, UK. Remote serial and parallel memory using memory-over- network bridge and optical switched interconnect is demonstrated. Remote memory bandwidth of 93% (HMC) and 66% (DDR4) of the local 3.2 and 3.7 GB/s bandwidth is showcased.	5G Architectures and Service Considerations Nokia 12:15–13:15, Theater III ■ MW Panel II: 5G and Re-thinking Access Networks 12:30–14:00, Theater I 400ZR Specification Update OIF 13:30–14:30, Theater III Preparing the Transport Network for 5G Session sponsored by Juniper Networks 13:50–14:50, Theater II

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T3A • Linear and Nonlinear Space Division Multiplexing—Continued	T3B • Novel Materials— Continued	T3C • Lasers for Communications and Sensing—Continued	T3D • Quantum and Secure Communications— Continued	T3E • Emerging Network Architectures for 5G Edge Cloud (Session 1)— Continued	T3F • Panel: How Can Machine Learning or, More Broadly, Artificial Intelligence Help Improve Optical Networks?—Continued
Kicolas Fontaine obtained his PhD in 2010 at the University of California Davis in the Next Generation Network Systems Laboratory in Electrical Engi- neering. In his dissertation he studied how to generate and measure the		T3C.2 • 14:15 Analysis of TDECQ Dependence on Skew and Extinction Ratio with 106-Gb/s PAM-4 modulation of Di- rectly Modulated Submicron Ridge Localized Buried Heterostructure Lasers, Kazuki Suga ¹ , Kouji Naka- hara ¹ , Kaoru Okamoto ¹ , Shigenori Hayakawa ¹ , Masatoshi Arasawa ¹ , Tet- suya Nishida ¹ , Ryu Washino ¹ , Takeshi Kitatani ¹ , Masatoshi Mitaki ¹ , Hironori Sakamoto ¹ , Yasushi Sakuma ¹ , Shige- hisa Tanaka ¹ ; 'Lumentum Japan, Inc., Japan. The importance of high relaxation oscillation frequency to obtain superior 106-Gb/s PAM-4 waveforms was revealed for SR-LBH lasers. In addition, clear 56-Gb/s NRZ			

staff at Bell Laboratories at Crawford Hill, NJ in the advanced photonics division. At Bell Labs, he develops devices for space-division multiplexing in multi-core and few mode fibers, builds wavelength crossconnects and filtering devices, and investigates spectral slice coherent receivers for THz bandwidth waveform measurement. In his free time he enjoys learning jazz piano. T3B.2 • 14:30 Integrable M Waveguide C on Bismuth rial, Vincent Stu Andrea Pollick' *Inc., USA; ²M Univ., USA. A* integrated opt been demon

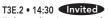
amplitude and phase of broadband

optical waveforms in many narrow-

band spectral slices. Since June 2011, he has been a member of the technical

136.2 • 14:30 Integrable Magnetless Thin Film Waveguide Optical Isolator based on Bismuth Iron Garnet Material, Vincent Stenger¹, Dolendra Karki², Andrea Pollick¹, Miguel Lev²; *ISRICO*, *Inc., USA; ²Michigan Technological Univ., USA.* A passive magnetless integrated optic Faraday isolator has been demonstrated that features ~3 dB total insertion loss and 25 dB isolation. The compact 500 µm long ridge waveguide isolator is integrable with silicon photonic platforms.

T3C.3 • 14:30


10-Gbit/s Sky-blue Distributed Feedback Laser Diode-based Visible Light Communication, Meiwei Kong¹, Jorge A. Holguin Lerma¹, Omar Alkhazragi¹, Xiaobin Sun¹, Tien Khee Ng¹, Boon S. Ooi¹; ¹Photonics Laboratory, King Abdullah Univ. of Science and Technology (KAUST), Saudi Arabia. A novel sky-blue (~480 nm) InGaN-based distributed feedback laser diode is developed for highspeed visible light communication. With a 3-dB system bandwidth of ~1.5 GHz, 10 Gbit/s is achieved by using orthogonal frequency-division multiplexing technology.

eye openings were first demonstrated

up to 85°C using SR-LBH laser.

T3D.2 • 14:30

10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission over 160 km, Masato Yoshida¹, Takashi Kan¹, Keisuke Kasai¹, Toshihiko Hirooka¹, Masataka Nakazawa¹; ¹Tohoku Univ., Japan. We present the first 10 Tbit/s secure physical layer transmission over 160 km with a spectral efficiency of 6 bit/s/Hz by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques.

Title to be Announced, Thomas Pfeiffer¹; ¹Nokia Bell Labs, Germany. Abstract not available.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued	
T3G • Panel: As we Approach Shannon Limit, How do we Precisely Assess the Performance of Coherent Transponders for Field Deployment?— Continued	T3H • Silicon Photonics Applications—Continued	T3I • Short-reach Systems II—Continued	T3J • Orchestration and Control—Continued	T3K • Intra Data Center Networks I—Continued	400ZR Specification Update OIF 13:30–14:30, Theater III Preparing the Transport Network for 5G	
Shaoliang Zhang; Acacia, USA Pushing the Limits of Performance with the Flexibility to Manage Link Margin in the Field Andreas Leven; Nokia, Germany High-performance Transpon- ders: Data Sheets and Real-world Performance Elizabeth Rivera Hartling; Facebook Inc., USA Assessing Capacity: It's in the Noise	T3H.2 • 14:15 Top-Scored 400G Silicon Photonics Integrated Grout Transceiver Chipsets for CPO, OBO, and Pluggable Modules, Er- man Timurdogan ¹ , Zhan Su ¹ , Ren-Jye Shiue ¹ , Matthew Byrd ¹ , Christopher Poulton ¹ , Kenneth Jabon ¹ , Christopher Polton ¹ , Kenneth Jabon ¹ , Christopher DeRose ¹ , Benjamin Moss ¹ , Ehsan Hosseini ¹ , Ivan Duzevik ¹ , Michael Whit- son ¹ , Ronald Millman ¹ , Dogan Atlas ¹ , Michael Watts ¹ ; 'Analog Photonics, USA. 400G-FR4 silicon photonics transmit-receive chipsets, compatible with co-packaged-optics, on-board- optics, and pluggable form factors, were demonstrated with a combined bandwidth density of 94Gb/s/mm, energy efficiency of <10pJ/bit, and -5.4dBm OMA sensitivity at the KP4 pre-FEC-BER=2.4e-4.	T3I.2 • 14:15 84-GBaud/A PAM-4 Transmission over 20-km using 4-A LAN-WDM TOSA and ROSA with MLSE Based on Nonlinear Channel Estimation, Hi- roki Taniguchi ¹ , Shuto Yamamoto ¹ , Yoshikaki Kisaka ¹ , Shigeru Kanazawa ² , toshihide yoshimatsu ² , yozo ishikawa ³ , Kazuyo Mizuno ³ ; ¹ NTT Network In- novation Laboratories, Japan; ² NTT Device Innovation Center, Japan; ³ Fu- rukawa electric Co. Ltd., Japan. We demonstrate 168-Gbps/A PAM-4 transmission over 20-km using 4-A LAN-WDM TOSA and ROSA with BER below the HD-FEC limit under 24-GHz bandwidth limitation and -39.7-ps/ m chromatic dispersion by applying MLSE based on nonlinear channel estimation.	T3J.2 • 14:15 Invited Network Control and Orchestra- tion in SDM and WDM Optical Networks, Raul Muñoz ¹ , Noboru Yoshikane ² , Ricardo Vialta ¹ , Ramon Casellas ¹ , Ricardo Martínez ¹ , Take- hiro Tsuritani ² , Itsuro Morita ² ; <i>ICTTC,</i> <i>Spain; ²KDDI Research, Japan.</i> We present the first SDN-enabled multi- domain multi-layer (WDM/SDM) control architecture for partially disaggregated optical networks with multiple WDM and SDM OLS domains and transponders to provision end- to-end TAPI connectivity services involving spatial and optical channels.	T3K.2 • 14:15 Analysis of Service Blocking Reduction Strategies in Capac- ity-limited Disaggregated Data- centers, Albert Pagès ¹ , Fernando Agraz ¹ , Salvatore Spadaro ¹ ; ¹ Uni- versitat Politècnica de Catalunya (UPC), Spain. Disaggregated DCs offer multiple benefits. However, transmission capacity limitations at blade level can severely degrade their performance. We analyze several strategies to enhance their service acceptance.	Session sponsored by Juniper Networks 13:50–14:50, Theater II MW Panel III: Optical Interconnect and Computing for Scaling Machine Learning (ML) Systems 14:30–16:00, Theater I	10
	T3H.3 • 14:30 45nm CMOS - Silicon Photonics Monolithic Technology (45CLO) for Next-generation, Low Power	T3I.3 • 14:30 Top-Scored O-Band 10-km Transmission of 93-Gbaud PAM4 Signal Using Spec- tral Shaping Technique Based on		T3K.3 • 14:30 Invited Advanced Software Architectures and Technologies in High Per- formance Computing and Data		

Centers, Juan Jose Vegas Olmos¹,

Liran Liss¹, Tzahi Oved¹, Zachi Bin-

shtock¹, Dror Goldenberg¹; ¹Mel-

lanox Technologies, Denmark. This

paper reviews advanced software

architectures and technologies that

support innetworking computing and

improve the overall performance of

data centers and high-performance

computing clusters; the ability to

converge software and hardware

allows for new solutions, such as

artificial intelligence, to be deployed

massively.

and High Speed Optical Interconnects, Michal Rakowski¹, Colleen Meagher², Karen Nummy², Abdelsalam Aboketaf³, Javier Ayala², Yusheng Bian¹, Brendan Harris³, Kate Mclean³, Kevin McStay², Asli Sahin², Louis Medina², Bo Peng¹, Zoey Sowinski², Andy Stricker³, Thomas Houghton², Crystal Hedges³, Ken Giewont², Ajey Jacob¹, Ted Letavic², Dave Riggs², Anthony Yu2, John Pellerin1; 1Photonics Technology Solutions, GlobalFoundries, USA; ²GlobalFoundries, USA; ³GlobalFoundries, USA. GlobalFoundries monolithic 45nm CMOS-Silicon Photonics 300mm high-volume manufacturing platform based on 45nm RF technology node, and optimized for high performance and low power short-reach optical interconnects for on-chip and chipto-chip applications will be discussed.

O-Band 10-km Transmission of 93-Gbaud PAM4 Signal Using Spectral Shaping Technique Based on Nonlinear Differential Coding with 1-Tap Precoding, Shuto Yamamoto', Hiroki Taniguchi', Masanori Nakamura', Yoshikaki Kisaka'; 'NTT Network Innovation Laboratories, NTT Corporation, Japan. We propose a simple and flexible spectral shaping technique based on nonlinear differential coding for short-reach IM-DD transmission. Experimental results show the achievement of 7% HD-FEC threshold in 186-Gb/s 10-km transmission with 14-GHz bandwidth limitation.

OFC 2020 • 8–12 March 2020

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T3A • Linear and Nonlinear Space Division Multiplexing—Continued	T3B • Novel Materials— Continued	T3C • Lasers for Communications and Sensing—Continued	T3D • Quantum and Secure Communications— Continued	T3E • Emerging Network Architectures for 5G Edge Cloud (Session 1)— Continued	T3F • Panel: How Can Machine Learning or, More Broadly, Artificial Intelligence Help Improve Optical Networks?—Continued
	T3B.3 • 14:45	T3C.4 • 14:45	T3D.3 • 14:45		

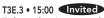
Heterogeneous Co-integration of BTO/Si and III-V technology on a Silicon Photonics Platform, Pascal Stark¹, Felix Eltes¹, Yannick Baumgartner¹, Daniele Caimi¹, Youri Popoff^{1,2}, Norbert Meier¹, Lukas Czornomaz¹, Jean Fompeyrine¹, Bert J Offrein¹, Stefan Abel¹; ¹IBM Research - Zurich, Switzerland; ²Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland. We demonstrate for the first time the heterogeneous co-integration of Si photonics, BTO/Si for high-speed modulation and III-V materials for photodetection and emission. We show light coupling with losses <0.5 dB between the different functional layers.

High Performance BH InAs/InP QD and InGaAsP/InP QW Modelocked Lasers as Comb and Pulse Sources, Marlene Zander¹, Wolfgang Rehbein¹, Martin Moehrle¹, Kevin Kolpatzeck², Jan Balzer², Steffen Breuer¹, Dieter Franke¹, Martin Schell1; 1Fraunhofer Heinrich-Hertz-Inst., Germany; ²Univ. of Duisburg-Essen, Germany. We explore and compare buried heterostructure (BH) quantum dot (QD) and quantum well (QW) lasers with more than 33 channels in the DWDM 50 GHz grid, thus enabling > 1 Tb/s optical transmission. In addition, the mode-locked devices can be applied as pulse sources with < 500 fs pulses by using a simple SMF.

Experimental Demonstration of High Key Rate and Low Complexity CV-QKD System with Local Local Oscillator, Shengjun Ren¹, Shuai Yang¹, Adrian Wonfor¹, Richard Penty¹, Ian White1; 1Univ. of Cambridge, UK. We experimentally demonstrate a 250MHz repetition rate Gaussian-modulated coherent-state CVQKD with local local oscillator implementation which is capable of realizing record 14.2 Mbps key generation in the asymptotic regime over 15km of optical fiber.

receiver bandwidth. Co-existence with 11 adjacent carrier-grade C-band channels spaced by only 20nm is accomplished at >10Mb/s.

T3A.2 • 15:00


Novel Fuseless Optical Fiber Sidecoupler based on Half-taper for Cladding Pumped EDFAs, Charles Matte-Breton¹, Ruohui Wang¹, Younès Messaddeq¹, Sophie LaRochelle¹; ¹Universite Laval, Canada. We present a novel method for optical fiber side-coupler fabrication that does not require to heat the fibers. More than 94% of average coupling efficiency is demonstrated for input pump power ranging from 1.4 W to 20.7 W.

T3B.4 • 15:00 Tutorial Non-volatile Photonic Applications

with Phase Change Materials, Matthias Wuttig¹; ¹Rheinish Westfalische Tech Hoch Aachen, Germany, Abstract not available.

T3D.4 • 15:00 T3C.5 • 15:00 Invited

Spectrally-shaped Continuous-Vari-VCSELs for 3D Sensing Applicaable QKD Operating at 500 MHz tions, Chun Lei1: 1Lumentum, USA, We Over an Optical Pipe Lit by 11 present the high-volume design and DWDM Channels, Dinka Milovancev¹, manufacturing process of 9XXnm high-Nemanja Vokic¹, Fabian Laudenpower vertical-cavity surface-emitting bach¹, Christoph Pacher¹, Hannes laser (VCSEL) arrays for consumer 3D Hübel¹, Bernhard Schrenk¹; ¹AIT sensing applications, such as facial and Austrian Inst. of Technology, Ausgesture recognitions. We will focus on tria. We demonstrate high-rate performance and reliability. CV-QKD supporting a secure-key rate of 22Mb/s through spectral tailoring and optimal use of quantum

Title to be Announced, Eric Heaton1: 1Intel, USA, Abstract not available.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued
T3G • Panel: As we Approach Shannon Limit, How do we Precisely Assess the Performance of Coherent	T3H • Silicon Photonics Applications—Continued	T3I • Short-reach Systems II—Continued	T3J • Orchestration and Control—Continued	T3K • Intra Data Center Networks I—Continued	Preparing the Transport Network for 5G 13:50–14:50, <i>Theater II</i>
Transponders for Field Deployment?— Continued	T3H.4 • 14:45 Invited Silicon Photonics for 100 Gbaud, Ji- anying Zhou', Jian Wang', Qun Zhang ² ; 'NEOPhotonics Corp,	band PAM-4 Transmission over	agement and Experimentation in a Field Deployed Testbed, Jiakai		 MW Panel III: Optical Interconnect and Computing for Scaling Machine Learning (ML) Systems 14:30–16:00, Theater I

Standards Update on 5G Transport (and more) ITU-T SG15 14:45-15:45, Theater III

Embedded Optics and How They Should Be Done to Support the **OEM Eco-system - Panel** Debate 15:00–17:00, Theater II

T3I.5 • 15:00 Computationally Efficient 120 Gb/s/ PWL Equalized 2D-TCM-PAM8 in Dispersion Unmanaged DML-DD System, Yan Fu^{1,2}, Deming Kong², Haiyun Xin^{1,2}, Meihua Bi^{1,3}, Shi Jia², Kuo Zhang¹, Weisheng Hu¹, Hao Hu²; ¹Shanghai Jiao Tong Univ., China; ²Fotonik, Technical Univ. of Denmark, Denmark; ³Hangzhou Dianzi Univ., China. We proposed a PWL equalizer in 120 Gb/s 2D-TCM-PAM8 based DML-DD system to correct eve skew. Computationally efficient 120 Gb/s 8-state 2D-TCM-PAM8 over 2 km C-band transmission is demonstrated below HD-FEC(3.8e-3).

tor, Lei Zhang¹, Fan Yang¹, Xiaoke

Ruan¹, Yanping Li¹, Fan Zhang¹; ¹Pe-

king Univ., China. We experimentally

demonstrate ultra-high speed metro-

scale optical transmission of SSB

PAM-4 signal with a record single

lane bit rate of 176Gb/s over 400km

SSMF based on conventional silicon

photonic dual-drive modulator with

Mach-Zehnder structure.

USA: ²Minnesota State Univ., USA, We

reviewed recent breakthroughs on

silicon photonic for 100Gbaud

operation. We experimentally

demonstrated 120Gbaud QPSK and

100Gbaud 32QAM operations using

a high performance all-silicon IQ

modulator with extinction ratio of

>25dB and 6dB-bandwidth of 50GHz.

T3J.4 • 15:00

uABNO: A Cloud-native Architecture for Optical SDN Controllers, Ricard Vilalta¹, Juan Luis de la Cruz¹, Arturo Mayoral López-de-Lerma², Victor Lopez², Ricardo Martínez¹, Ramon Casellas¹, Raul Muñoz¹; ¹CTTC, Spain; ²Telefónica gCTIO/I+D, Spain. We present a cloud-native architecture for Optical SDN Controllers based on ABNO architecture and gRPC interfaces, which is demonstrated and evaluated. Autoscaling mechanisms for high request loads and auto-healing support are evaluated.

metov³, Michael Sherman⁴, Tingjun

Chen², Shengxiang Zhu¹, Gil Zussman²,

Ivan Seskar⁴, Daniel C. Kilper¹; ¹Col-

lege of Optical Sciences, Univ. of

Arizona, USA; ²Electrical Engineer-

ing, Columbia Univ., USA; 3LTCI,

Télécom Paris, Institut Polytechnique

de Paris, France; ⁴Electrical and Com-

puter Engineering, Rutgers Univ.,

USA. An SDN controller is developed

for both testbed management and

experimentation for the optical x-haul

network in the COSMOS testbed providing a service-on-demand

and reconfigurable platform for 5G

wireless experiments coupled with

edge cloud services.

T3K.4 • 15:00

Real-time Node Local Control for Ultra-dynamic and Deterministic All-optical Intra Data Center Networks, Mijail Szczerban¹, José Estarán Tolosa¹, Nihel D. Benzaoui¹, Haik Mardovan¹, Yvan Pointurier¹; ¹Nokia Bell Labs, France. We enable ultradynamic features in scheduled optical data centers through a novel control mechanism local to each node. We experimentally show sub-us resource allocation, at least halving distributed computing application completion time

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T3A • Linear and Nonlinear Space Division Multiplexing—Continued	T3B • Novel Materials— Continued	T3C • Lasers for Communications and Sensing—Continued	T3D • Quantum and Secure Communications— Continued	T3E • Emerging Network Architectures for 5G Edge Cloud (Session 1)— Continued	T3F • Panel: How Can Machine Learning or, More Broadly, Artificial Intelligence Help Improve Optical Networks?—Continued
T3A.3 • 15:15 Low-loss Low-MDL Core Multiplexer for 3-Core Coupled-core Multi-core Fiber, Sjoerd P. van der Heide ^{2,1} , Juan Carlos Alvarado Zacarias ^{2,3} , Nicolas K. Fontaine ² , Roland Ryf ² , Haoshuo Chen ² , Rodrigo Amezcua Correa ³ , Ton Koonen ¹ , Chigo M. Okonkwo ¹ ; ¹ Eind- hoven Univ. of Technology, Nether- lands; ² Nokia Bell Labs, USA; ³ CREOL, Univ. of Central Florida, USA. A fiber- based core multiplexer is designed, fabricated, and evaluated. Insertion losses vary between 0.74 dB and 0.91 dB. Digital holography reveals mode- dependent loss fluctuates between 0.3 dB and 0.9 dB across C- and L-band.			T3D.5 • 15:15 Digital Self-coherent Continuous Variable Quantum Key Distribution System, Tobias A. Eriksson ^{1,2} , Ruben S. Luis ¹ , Kadir Gumus ³ , Georg Radem- acher ¹ , Benjamin J. Puttnam ¹ , Hideaki Furukawa ¹ , Naoya Wada ¹ , Yoshinari Awaji ¹ , Alex Alvarado ³ , Masahide Sasak ¹ , Masahiro Takeoka ¹ , 'National Inst of Information & Comm Tech (NICT), Japan; ² Royal Inst. of Tech- nology (KTH), Sweden; ³ Eindhoven Univ. of Technology, Netherlands. We investigate a continuous variable quantum key distribution system with digital tracking of both polarization and phase. Stable operation over 25km for 36 hours with secret key rates between 1.9 and 2.8 Mbit/s is demonstrated.		
T3A.4 • 15:30 Invited Optical Thermodynamics of Non- linear Highly Multimoded Sys- tems, Demetrics N. Christodou- lides'; 'Univ. of Central Florida, USA. We present a consistent thermody- namical theory capable of describing in a universal fashion the complex be- havior of nonlinear highly multimoded optical fibers. New equations of state are derived based on the second law of thermodynamics.		T3C.6 • 15:30 850 nm Single-mode Surface-emit- ting DFB Lasers with Surface Grating and Large-area Oxidized-aper- ture, Can Liu', Qiaoyin Lu', Weihua Guo', Pengfei Zhang', MinWen Xiang', Xiang Ma', Chun Jiang', Gonghai Liu', Quanan Chen', Bao Tang'; Huazhong Univ. of Science and Technology, China; ² China Information and Com- munication Technology Group Cor- poration, China. 850 nm single-mode surface-emitting DFB laser based on surface gratings has achieved a threshold current of 1.8 mA and a side-mode suppression-ratio of 47 dB for a large-area oxidized-aperture (2×50 μm ²).	T3D.6 • 15:30 Variational Quantum Demodulation for Coherent Optical Multi-dimen- sional QAM, Toshiaki Koike-Akino ¹ , Toshiki Matsumine ² , Ye Wang ¹ , David S. Millar ¹ , Keisuke Kojima ¹ , Kieran Parsons ¹ ; ¹ Mitsubishi Electric Re- search Labs, USA; ² Yokohama National Univerrsity, Japan. We introduce a hybrid quantum-classical variational algorithms to realize quasi-ML decision of high-dimensional modulation (HDM) in fiber-optic communications, motivated by the recent advancement of quantum processors. Our Ising Hamiltonian model for demodulation is demonstrated on a real quantum processor.	T3E.4 • 15:30 Invited C Evolution to Mesh 5G X-Haul Net- works, Jiakai Yu ¹ , Shengxiang Zhu ¹ , Daniel C. Kilper ¹ ; 'Univ. of Arizona, USA. Development of optical x-haul networks is driven by 5G wireless radio requirements. The potential of a mesh optical x-haul architecture merging WDM-PON and DWDM-ROADM networks is examined with respect to 5G requirements in metropolitan networks.	

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued
T3G • Panel: As we Approach Shannon Limit, How do we Precisely Assess the Performance of Coherent Transponders for Field Deployment?—	T3H • Silicon Photonics Applications—Continued	T3I • Short-reach Systems II—Continued	T3J • Orchestration and Control—Continued	T3K • Intra Data Center Networks I—Continued	■ MW Panel III: Optical Interconnect and Computing for Scaling Machine Learning (ML) Systems 14:30–16:00, Theater I
Continued	T3H.5 • 15:15 Real-time Demonstration of Sil- icon-photonics-based QSFP-DD 400GBASE-DR4 Transceivers for Datacenter Application. Chongin	ing a Data-dependent FFE Switching	Migrations in 5G Transport Net- works, Jun Li ¹ , Jiajia Chen ¹ ; ¹ Chalm-	and -Interconnect with Analogue EML Transceivers Operated in	Standards Update on 5G Transport (and more) <i>ITU-T SG15</i> 14:45–15:45, Theater III

paper concentrates on low-latency

service migration in transport

networks, where edge computing

is employed for ultra-low end-to-

end latency communications in 5G,

and demonstrates that rapid service

migration significantly reduces end-

to-end packet delay.

Vokic¹, Dinka Milovancev¹, Paraskevas Bakopoulos², Fotini Karinou³; ¹AIT Aus-**Embedded Optics and** trian Inst. of Technology, Austria; ²Mel-How They Should Be lanox Technologies Ltd, Israel; ³Microsoft Research Ltd., UK. We exploit an Done to Support the IM/DD transmitter as coherent receiver OEM Eco-system - Panel for filterless micro-datacenter pods and their interconnect. A transistor-Debate outline EML performs coherent ho-15:00–17:00, Theater II modyne reception under a 240kHz

T3K.6 • 15:30

Data Analytics Practice for Reliability Management of Optical Transceivers in Hyperscale Data Centers, Jiangiang Li¹, Zhicheng Wang², Chunxiao Wang^{2,3}, Qin Chen², Peng Wang², Rui Lu², Songnian Fu³, Chongjin Xie⁴; ¹Alibaba Group, USA; ²Alibaba Group, China; ³Huazhong Univ. of Science and Technology, China; ⁴Alibaba Group, USA. There are limitations when directly interpreting reliability information of optical transceivers from manufacturers to end users. Data analytics in a large optical transceivers' population is studied for data center operators with a case study.

TDMA frame with 139ns guard interval

between free-running transmitters.

Jung Park¹, Catherine Jan¹, Robert selle,¹, Michael Bresnehan¹, Adam Siamak Amiralizadeh Asl.¹, Qing Zhu¹,

Datacenter Application, Chongjin Xie¹, Peter Magill², David Li³, Yinxing Zhang¹, Long Zheng³, Anbin Wang¹, Yun Bao¹, Chunchun Sui¹, Matthew Streshinsky², Jianwei Mu³, Sigeng Yang³, Wanju Sun³; ¹Alibaba Group, USA; ²Elenion Technologies, USA; ³Hisense Broadband, China. We demonstrate a real-time siliconphotonics-based 400GBASE-DR4 transceiver packaged in a QSFP-DD form factor. The performance of the transmitter including TDECQ, extinction ratio and OMA and receiver sensitivity are measured, all satisfying IEEE 400GBASE-DR4 specifications.

T3H.6 • 15:30 D

400Gbps Fully Integrated DR4 Silicon Photonics Transmitter for Data Center Applications, Haijiang Yu¹, Pierre Doussiere¹, David Patel¹, Wenhua Lin¹, Kadhair Al-hemvari¹, Herrick¹, Isako Hoshino¹, Lincoln Bus-Bowles¹, George Ghiurcan¹, Harel Frish¹, Shane Yerkes¹, Raniu Venables¹, Pegah Seddighian¹, Xavier Serey¹, Kimchau Nguyen¹, Animesh Banerjee¹, Sushant Gupta¹, Avi Fuerst¹, Avsar Dahal¹, Jian Chen¹, Yann Malinge¹, Hari Mahalingam¹, Mike Kwon¹, Gupta Sanieev¹, Agrawal Ankur¹, Raghuram Narayan¹, Daniel Zhu¹, Yuliya Akulova1; 1Intel Corporation, USA. A 400Gbps PAM-4 fully integrated DR4 silicon photonics transmitter with four heterogeneously integrated DFB lasers has been demonstrated for data center applications over a temperature range of 0~70°C and a reach of up to 2km.

T3I.7 • 15:30

Dual-SSB Modified Duobinary PAM4 Signal Transmission in a Direct Detection System without using Guard Band, Jingchi Li¹, Shaohua An¹, Xingfeng Li¹, Yikai Su¹; ¹Shanghai Jiao Tong Univ., China. We experimentally demonstrate a single-carrier dual-SSB signal generation without guard band based on a low-cost DDMZM. A 112-Gb/s dual-SSB modified duobinary PAM4 signal is transmitted over 80-km SMF by using a MIMO linear equalizer.

Ledentsov Jr.², Lukasz Chorchos², Pat-

rick Kurth¹, Nikolay Ledentsov², Friedel

Gerfers1; 1TU Berlin, Germany; 2VI

Systems, Germany. In this paper, a

dynamic non-linear data-dependent

FFE coefficient switching technique,

achieving an up to 30-fold decrease

in BER in comparison to the linear

FFE, is presented. Using the structure

56Gbaud PAM-4 is demonstrated.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T3A • Linear and Nonlinear Space Division Multiplexing—Continued	T3B • Novel Materials— Continued	T3C • Lasers for Communications and Sensing—Continued	T3D • Quantum and Secure Communications— Continued	T3E • Emerging Network Architectures for 5G Edge Cloud (Session 1)— Continued	T3F • Panel: How Can Machine Learning or, More Broadly, Artificial Intelligence Help Improve Optical Networks?—Continued
		T3C.7 • 15:45 Micro-transfer-printed III-V-on-silicon Distributed Feedback Lasers, Ba- hawal Haq ^{1,2} , Agnieszka Gocalinska ³ , Emanuele Pelucchi ³ , Brian Corbett ³ , Gunther Roelkens ^{1,2} ; ¹ INTEC, Ghent Univ-imec, Belgium; ² Center of Nano- and Biophotonics, Belgium; ³ Tyndall National Inst., Ireland. We report on III-V-on-silicon DFB lasers realized by micro-transfer-printing pre-fabricated III-V semiconductor optical amplifiers on a silicon waveguide circuit comprising a first-order quarter wave shifted grating. Single mode operation at 1530 nm is demonstrated.	T3D.7 • 15:45 Simple and Robust QKD System with Qubit4Sync Temporal Syn- chronization and the POGNAC Polarization Encoder, Costantino Agnesi ¹ , Luca Calderaro ¹ , Marco Aves- ani ¹ , Andrea Stanco ¹ , Giulio Foletto ¹ , Mujtaba Zahidy ¹ , Alessia Scriminich ¹ , Francesco Vedovato ¹ , Giuseppe Val- lone ¹ , Paolo Villoresi ¹ ; ¹ Dip. Ingeg- neria dell'Informazione, Università degli Studi di Padova, Italy. Here we present a simple and robust polarization encoded QKD system that performs synchronization, polarization compensation and QKD with the same optical setup without requiring any changes or any additional hardware.		

16:00-16:30 Coffee Break, Upper Level Corridors and Exhibit Hall

Tuesday, 10 March

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued
3G • Panel: As we approach Shannon imit, How do we recisely Assess he Performance f Coherent ransponders for ield Deployment?— continued	T3H • Silicon Photonics Applications—Continued	T3I • Short-reach Systems II—Continued	T3J • Orchestration and Control—Continued	T3K • Intra Data Center Networks I—Continued	MW Panel III: Optical Interconnect and Computing for Scaling Machine Learning (ML) Systems 14:30–16:00, Theater I
ontinuea	T3H.7 • 15:45 C A Fully Integrated 25 Gb/s Si Ring Modulator Transmitter with a Tem- perature Controller, Minkyu Kim ¹ , Min-Hyeong Kim ¹ , Youngkwan Jo ¹ , Hyun-Kyu Kim ¹ , Stefan Lischke ² , Chris- tian Mai ² , Lars Zimmermann ^{2,3} , Woo- Young Cho ¹ ; 'Department of Electrical and Electronics Engineering, Yonsei Univ., Korea (the Republic of); ² IHP, Germany; ³ Technische Universitaet Berlin, Germany. We realized a fully integrated 25Gb/s Si ring modulator transmitter containing a tempera- ture controller that guarantees the optimal ring modulator temperature against any temperature perturba- tion. The transmitter is implemented with a 0.25-µm photonic BiCMOS		T3J.6 • 15:45 Intent Defined Optical Network: Toward Artificial Intelligence-based Optical Network Automation, Kai- xuan Zhan', Hui Yang', Qiuyan Yao', Xudong Zhao', Ao Yu', Jie Zhang', Young Lee ² ; 'State Key Laboratory of Information Photonics and Opti- cal Communications, Beijing Unix. of Posts and Telecommunications, China; ² Huawei Technologies Co., Ltd, China. Toward Al-based optical network automated operation, we propose an intent defined optical network (IDON) architecture with self- adapted generation and optimization (SAGO) policy. The feasibility and efficiency are verified on the enhanced SDN testbed.	T3K.7 • 15:45 Scaling HPC Networks with Co- packaged Optics, Pavlos Maniotis ¹ , Laurent Schares ¹ , Benjamin Lee ¹ , Marc Taubenblatt ¹ , Daniel Kuchta ¹ , 'IBM TJ Watson Research Center, USA. We propose an HPC network architecture with co-packaged optics enabling 128- port 51.2-Tb/s switches. Simulations for a >34,000-accelerator system show up to 11.2x throughput improvement over the Summit supercomputer, opening the way to direct-network- attached GPUs.	Standards Update on 5G Transport (and more) ITU-T SG15 14:45–15:45, Theater III Embedded Optics and How They Should Be Done to Support the OEM Eco-system – Panel Debate 15:00–17:00, Theater II Accelerating ROI on the Road to SDN SDN 16:00–17:00, Theater III
	16:00–16:30 Cof	fee Break, Upper Level Corri	dors and Exhibit Hall		OIDA Roadmap on Quantum Photonics

Room 1A

16:30-18:00 T4A • Radio-over-fiber Technologies for 5G Presider: HyunDo Jung

T4A.1 • 16:30 Invited

5G mmWave Commercial Trial for Vertical Applications, Jongsik Lee¹; ¹KT, Korea (the Republic of). This presentation gives you the brief introduction of 28GHz mmWave 5G trial in South Korea. Especially, the trial network configuration and the test result of 5G use cases such as autonomous vehicle and smart factory/ office is presented.

16:30-18:00 T4B • Machine Learning for Fiber Amplifier and Sensors Presider: Chigo Okonkwo; Technische Universiteit

Room 1B

Eindhoven, Netherlands

T4B.1 • 16:30 Intelligent Gain Flattening of FMF Raman Amplification by Machine Learning Based Inverse Design, Yufeng Chen¹, Jiangbing Du¹, Yuting Huang¹, Ke Xu², Zuyuan He¹; ¹Shanghai Jiao Tong Univ., China; ²Harbin Inst. of Technology (Shenzhen), China. We report an intelligent gain flattering method for rapid, precise and objective driven FMF Raman amplifier design, by using machine learning based inverse design method to optimize the pump wavelengths, powers and mode contents.

T4C.2 • 16:45

T4B.2 • 16:45 Top-Scored Experimental Demonstration of Arbitrary Raman Gain-profile Designs Using Machine Learning, Uiara C. de Moura¹, Francesco Da Ros¹, Ann Margareth Rosa Brusin², Andrea Carena², Darko Zibar¹; ¹DTU Fotonik, Technical Univ. of Denmark, Denmark; ²DET, Politecnico di Torino, Italy. A machine learning framework for Raman amplifier design is experimentally tested. Performance in terms of maximum error over the gain profile is investigated for various fiber types and lengths, demonstrating highly-accurate designs.

Micro-ring-resonator Based Passive Photonic Spike-time-dependent-Plasticity Scheme for Unsupervised Learning in Optical Neural Networks. Charis Mesaritakis¹, Menelaos Skontranis¹, George Sarantoglou¹, Adonis Bogris²; ¹Univ. of the Aegean, Greece; ²Informatics and Computer Engineering, Univ. of West Attica, Greece. In this work, a photonic spiketime-dependent-plasticity scheme based on high-order passive ring resonators is demonstrated. Numerical simulations confirmed the validity of the approach assuming post and presynaptic quantum dot laser neurons.

Room 2

T4C • Neuromorphic II:

Presider: To be Announced

VCSELs for Fast Neuromorphic

Photonic Systems Operating at

GHz Rates, Matěj Hejda¹, Joshua

Robertson¹, Julián Bueno¹, Antonio

Hurtado1: 1Inst. of Photonics, Dept. of

Physics, Univ. of Strathclyde, UK. We

report experimentally on VCSEL-

based artificial optical spiking neurons

with ultrafast spiking refractory period;

hence allowing operation at GHz rates.

This feature is used to demonstrate all-

format conversion at 1.0 Gbps.

16:30-18:00

Entire Aspect

T4C.1 • 16:30

optical digital-to-spiking information

16:30-18:30 T4D • Al Assisted Access Networks Presider: Elaine Wong; Univ. of Melbourne, Australia

Room 3

T4D.1 • 16:30

Combining Efficient Probabilistic Shaping and Deep Neural Network to Mitigate Capacity Crunch in 5G Fronthaul, Qi Zhou¹, Rui Zhang¹, You-Wei Chen¹, Shuyi Shen¹, Shang-Jen Su¹, Jeffrey Finkelstein², Gee-Kung Chang1; 1Georgia Inst. of Technology, USA; ²Cox Communications, Georgia. We experimentally demonstrate a capacity-approaching transmission in 5G fronthaul utilizing PS-PAM8 and DNN. An 80-Gb/s over 20-km SSMF transmission performance is realized with a beyond 7.3-dB gross gain over uniform PAM modulations with linear post-equalization.

T4D.2 • 16:45

FPGA Implementation of Deep Neural Network Based Equalizers for High-Speed PON, Noriaki Kaneda¹, Zivi Zhu², Chun-Yen Chuang¹, Amitkumar Mahadevan¹, Bob Farah¹, Keren Bergman², Dora van Veen¹, Vincent Houtsma¹: ¹Nokia Bell Labs, USA; ²Columbia Univ., USA. A fixedpoint deep neural network-based equalizer is implemented in FPGA and is shown to outperform MLSE in receiver sensitivity for 50 Gb/s PON downstream link. Embedded parallelization is proposed and verified to reduce hardware resources.

Room 6C

16:30-18:30 T4E • Symposium: Emerging Network Architectures for 5G Edge Cloud (Session 2) O

T4E.1 • 16:30 Invited

Multi-Access Edge Computing Architecture for Application-specific New Radio Access Networks, Gee-Kung Chang, Georgia Institute of Technology, USA. Perspective and challenge of the MEC implementation, merging with the RAN architecture for beyond-5G mobile networks are discussed from futuristic use-cases point-ofview, including mobile operators and application developers. Featuring demonstrations with AI/ML are also highlighted.

Room 6D

16:30-18:00 T4F • Quantum Networking and Artifiicial Intelligence D Presider: Bruce Cortez; AT&T Labs, USA

T4F.1 • 16:30 Tutorial

Toward a Scalable Hybrid Quantum Cloud, Maria Spiropulu1; 1California Inst. of Technology, USA. Abstract not available.

Room 6E

T4G • Optical Transmitter

16:30-18:00

Sub-systems D

Tech (NICT), Japan

T4G.1 • 16:30

Presider: Ben Puttnam:

National Inst Info & Comm

Room 6F

16:30-18:00 T4H • Quantum Dots and Novel III-V Devices D Presider: Geert Morthier; Ghent Univ., INTEC, Belgium

Transmitter Bandwidth Extension Using Optical Time-interleaving Modulator and Digital Spectral Weaver, Hiroshi Yamazaki², Masanori Nakamura², Takashi Goh³, Toshikazu Hashimoto¹, Yutaka Miyamoto²; ¹NTT Device Technology Laboratories, Japan; ²NTT Network Innovation Laboratories, Japan; ³NTT Device Innovation Center, Japan. We generate 150-Gbaud QAM signals by using an optical time-interleaving modulator driven with 38.1-GHz-bandwidth sub-signals. A digital spectral weaver enables generation of arbitrary bandwidth-extended signals with a simple filter-less optical configuration.

T4G.2 • 16:45 D

Fixed-rate-breaking All-optical OFDM System Using Time-domain Hybrid PAM with Sparse Subcarrier Multiplexing and Power-loading for Optical Short-reach Transmission, Takahiro Kodama^{1,2}, Akihiro Maruta², Naoya Wada³, Gabriella Cincotti⁴; ¹Kagawa Univ., Japan; ²Department of Electrical, Electronics and Information Engineering, Osaka Univ., Japan; ³National Inst. of Information and Communications Technology (NICT), Japan; ⁴Engineering Department, Univ. Roma Tre, Italy. All-optical TDHP-OFDM system with four-sparsesubcarrier-multiplexing and powerloading has been proposed for datarate-adaptive transmission. 40-Gbit/s, 60-Gbit/s, and 80-Gbit/s can be selected by changing the ratio of PAM2 and PAM4, and all BERs achieve the FEC limit.

T4H.1 • 16:30 D

Thermal Impedance and Gain Switching of 1550 nm Room Temperature Continuous-wave Electrically Pumped Laser Diode Monolithically Grown on Silicon, Bei Shi¹, Sergio Pinna¹, Hongwei Zhao¹, Bowen Song¹, Jonathan Klamkin¹: ¹Univ. of California Santa Barbara, USA. A room-temperature continuous-wave electrically pumped quantum well laser was realized on on-axis (001) silicon. Measurements demonstrated lasing up to 65°C, a thermal impedance of 8.1°C/W, and a narrow gain-switched optical pulse width of 1.5 ns.

T4H.2 • 16:45 D High Performance 1.3 µm Aluminum-

Free Quantum Dot Lasers Grown by MOCVD, Lei Wang¹, Hongwei Zhao¹, Bei Shi¹, Sergio Pinna¹, Simone S. Brunelli¹, Fenggiao Sang¹, Bowen Song¹, Jonathan Klamkin¹; ¹Electrical and Computer Engineering, Univ. of California, Santa Barbara, USA. MOCVD grown aluminumfree quantum dot lasers have been demonstrated with a maximum wallplug efficiency of 30%, a lowest threshold current of 8 mA, and a maximum single-facet output power of 200 mW.

16:30-18:00 T4I • Long-haul Systems and Non-linear Mitigation Presider: Rene-Jean Essiambre; Nokia Corporation, USA

Room 7

T4I.1 • 16:30 Invited

Advanced Nonlinear Perturbation Theory in Coherent WDM Systems, Amirhossein Ghazisaeidi¹: ¹Nokia Bell Labs France. France. We review the theoretical efforts to develop models to analyze fiber-optic coherent systems using perturbation analysis. We start with models for the nonlinear signal-signal distortions and continue to address nonlinear signal-noise interactions and SOA-induced distortions.

Room 8

16:30-18:30 T4J • Multi-core Fibers

Presider: Taiji Sakamoto; NTT Access Service Systems Laboratories, Japan

T4J.1 • 16:30

Asymmetrically Arranged 8-core Fibers with Center Core Suitable for Side-view Alignment in Datacenter Networks, Yusuke Sasaki¹, Masaki Ozeki¹, Katsuhiro Takenaga¹, Kazuhiko Aikawa¹; ¹Optical Technologies R&D Center, Fujikura Ltd., Japan. Eightcore multicore fiber with the center core and a cladding diameter of 125 µm is designed and fabricated. Sideview alignment with core identification is realized owing to asymmetrically core arrangement for the first time.

T4J.2 • 16:45

Distributed Supermode Coupling Measurements in Multi-core Optical Fibers, Riccardo Veronese¹, Juan Carlos Alvarado Zacarias², Sioerd van der Heide², Rodrigo Amezcua Correa³, Haoshuo Chen², Roland Ryf², Nicolas K. Fontaine², Marco Santagiustina¹, Andrea Galtarossa¹, Luca Palmieri¹: ¹Universita degli Studi di Padova, Italy; ²Nokia Bell Labs, USA; ³CREOL, The Univ. of Central Florida, USA, Coupling of supermodes in multicore fibers is investigated exploiting an OFDR to measure each core when injecting light into another one. Distributed analysis of cross-core coupling is reported for the first time in multicore fibers.

Room 9

Show Floor Programming Continued

Embedded Optics and How They Should Be Done to Support the **OEM Eco-system - Panel** Debate 15:00-17:00, Theater II

Accelerating ROI on the Road to SDN SDN 16:00–17:00, Theater III

OIDA Roadmap 16:15-17:00, Theater I

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T4A • Radio-over-fiber Technologies for 5G— Continued	T4B • Machine Learning for Fiber Amplifier and Sensors—Continued	T4C • Neuromorphic II: Entire Aspect— Continued	T4D • AI Assisted Access Networks—Continued	T4E • Symposium: Emerging Network Architectures for 5G Edge Cloud (Session 2) —Continued	T4F • Quantum Networking and Artifiicial Intelligence— Continued
T4A.2 • 17:00 Silicon Photonics to Add 5G RoF Services to PONs Employing Carrier Reuse, Leslie Rusch ¹ , Mingyang Lyu ¹ , Wei Shi ¹ ; ¹ ECE Dept. / COPL, Univ. Laval, Canada. We experimentally validate silicon photonics for passive optical networks enabling radio over fiber on wavelength slots. We detect an 8~GHz OFDM signal and five 125-MHz RF signals, and remodulate RoF onto a clean carrier.	T4B.3 • 17:00 Load Aware Raman Gain Profile Prediction in Dynamic Multi-band Optical Networks, Ann Margareth Rosa Brusin ¹ , Uiara C. de Moura ² , An- drea D'Amico ¹ , Vittorio Curri ¹ , Darko Zibar ² , Andrea Carena ¹ ; 'Politecnico di Torino, Italy; ² Technical Univ. of Denmark, Denmark. We introduce a load aware machine learning method for prediction of Raman gain profiles. It enables future network controllers to manage seamless upgrades toward multi-band optical line systems with dynamic loads.	T4C.3 • 17:00 Tutorial Neuromorphic Photonics, Paul R. Prucnal'; 'Princeton Univ., USA. Abstract not available.	T4D.3 • 17:00 Invited Neural Network-based Equaliza- tion in high-speed PONs, Lilin Yi ¹ , Tao Liao ¹ , Lei Xue ¹ , Weisheng Hu ¹ ; ¹ Shanghai Jiao Tong Univ., Chi- na. We introduce neural network (NN)-based equalization in high- speed passive optical networks. Data feature engineering is proposed to improve performance of NN-based equalization. Besides, an unsupervised learning scheme for NN-based equalizer is proposed to train the model without known symbols of received signal.	T4E.2 • 17:00 Invited Title to be Announced, Rafael Francis ¹ ; ¹ Ciena, USA. Abstract not available.	T4F.2 • 17:30 Invited C Artificial Intelligence in Opti- cal Networks, Shirshendu Bhat- tacharya ¹ ; 'Google Zürich, Switzer- land. Artificial Intelligence may provide solutions to problems previously not solvable using conventional techniques. In this paper, we discuss potential Al applications related to challenges in optical networks.

T4A.3 • 17:15

Tuesday, 10 March

Design of Flexible Fronthaul Featuring Per-UE Granularity and RUlevel Puncturing for URLLC Applications, Yahya M. Alfadhli¹, Shuang Yao¹, Muhammad Shameer Omar¹, Shang-Jen Su¹, Shuyi Shen¹, Rui Zhang¹, You-Wei Chen¹, Peng-Chun Peng², Gee-Kung Chang¹; ¹Georgia Inst. of Technology, USA; ²Department of Electro-Optical Engineering, National Taipei Univ. of Technology, Taiwan. We propose and experimentally verify a fine-grained, Per-UE, flexible fronthaul where different applications are transported over different function splits (i.e., URLLC over A-RoF-based fronthaul, Option-9, and other traffic over Option-7), exploiting two RUlevel puncturing methods.

T4B.4 • 17:15

Hybrid Machine Learning EDFA Model, Shengxiang Zhu¹, Craig Gut-

Model, Shengxiang Zhu', Craig Gutt terman², Alan D. Montiel³, Jiakai Yu', Marco Ruffini³, Gil Zussman², Daniel C. Kilper¹; ¹Univ. of Arizona, USA; ²Columbia Univ., USA; ³Trinity College Dublin, Ireland. A hybrid machine learning (HML) model combining a-priori and a-posteriori knowledge is implemented and tested, which is shown to reduce the prediction error and training complexity, compared to an analytical or neural network learning model. Room 6F

T4J • Multi-core Fibers-

T4G • Optical Transmitter Sub-systems—Continued

Il Transmitter T4H • Quantum Dots —Continued and Novel III-V Devices— Continued

T4G.3 • 17:00 D

32-Channel WDM Transmitter Based on a Single Off-the-shelf Transceiver and a Time Lens, Mads Lillieholm¹, Xiaoyu Xu¹, Peter D. Ekner¹, Michael Galili¹, Leif Oxenløwe¹, Pengyu Guan¹; ¹Technical Univ. of Denmark, Denmark. We demonstrate simultaneous WDM-signal generation using an optical time-lens and off-theshelf components. 32 WDM-channels with 50-GHz spacing are generated from a single SFP+ transceiver source and received using another SFP+ after 50-km unamplified transmission.

T4G.4 • 17:15 Full-duplex Coherent Optical System

Enabled by Comb-Based Injection Locking Optical Process, Haipeng Zhang¹, Mu Xu¹, Junwen Zhang¹, Zhensheng Jia¹, Luis Alberto Campos¹; *iCableLabs, USA.* A full-duplex coherent optical link based on optical frequency comb and injection-locking optical process is demonstrated. Simultaneous bi-directional transmission of 32-GBd DP-16QAM signal over 80-km fiber is achieved with remote LO delivery.

T4H.3 • 17:00 D

High Efficiency, High Gain and High Saturation Output Power Quantum Dot SOAs Grown on Si and Applications, Songtao Liu¹, Yeyu Tong², Justin Norman¹, Mario Dumont¹, Arthur Gossard¹, Hon K. Tsang², John E. Bowers1; 1Univ. of California, Santa Barbara, USA; ²Electronic Engineering, The Chinese Univ. of Hong Kong, China. A high-performance quantum dot semiconductor optical amplifier directly grown on a CMOS compatible Si substrate is demonstrated to improve the receiver sensitivity in a filterless 60-Gbit/s NRZ transmission system over temperatures from 20°C to 60°C.

T4H.4 • 17:15 D

Monolithic Polarization Controller on Regrowth-free InGaAsP/InP Platform with Strained MQW Layer, Maiko Ito¹, Kosuke Okawa¹, Takahiro Suganuma¹, Takuo Tanemura¹, Yoshiaki Nakano¹; ¹School of Engineering, The Univ. of Tokyo, Japan. Carrierinjection-based polarization controller with strained MQW layer is demonstrated. Based on novel design concept, both polarizationrotating and phase-shifting sections are integrated monolithically on regrowth-free InGaAsP/InP platform to achieve efficient conversion over the entire Poincare sphere.

T4I.2 • 17:00

T4I • Long-haul

Fast Adaptive Digital Back-propagation Algorithm for Unrepeatered Optical Systems, José Hélio Cruz Júnior^{1,2}, Tiago Sutili¹, Sandro M. Rossi¹, Rafael Carvalho Figueiredo¹, Darli A. Mello²; ¹CPQD, Brazil; ²School of Electrical and Computer Engineering, Univ. of Campinas, Brazil. We propose a gradient descent method with momentum for the estimation of y in DBP for unrepeatered links. Fast convergence is achieved in the experimental transmission of 17x200-Gb/s DP-16QAM over a 350-km heterogeneous link.

Room 7

Systems and Non-linear

Mitigation—Continued

T4I.3 • 17:15

Analysis of 34 to 101GBaud Submarine Transmissions and Performance Prediction Models, Jean-christophe Antona¹, Alexis C. Carbó Meseguer¹, Vincent Letellier¹, Sébastien Dupont¹, Richard Garuz¹, Philippe Plantady¹, Alain Calsat¹; ¹Alcatel Submarine Networks, France. We analyze more than 100 subsea experiments with various configurations of rates, modulations, powers, reach and show a format and rate agnostic, accurate QoT prediction tool. We particularly show the impact of signal droop and the connection between GAWBS models based on spectral measurements and system impact.

T4J.3 • 17:00

Continued

Experimental and Theoretical Analyses of GAWBS Phase Noise in Multi-core Fiber for Digital Coherent Transmission, Naoya Takefushi', Masato Yoshida', Keisuke Kasai', Toshihiko Hirooka', Masataka Nakazawa'; 'Research Inst. of Electrical Communication, Tohoku Univ., Japan. We present the phase noise caused by guided acoustic-wave Brillouin scattering (GAWBS) in a 125-µm four-core-fiber. Phase noise induced by higher-order TR_{n,m} modes was found to be dominant rather than that of the R_{o,m} mode.

T4J.4 • 17:15

Evaluation of Dynamic Skew on Spooled and Deployed Multicore Fibers Using O-band Signals, Ruben S. Luis¹, Benjamin J. Puttnam¹, Georg Rademacher¹, Andrea Marotta², Cristian Antonelli², Antonio Mecozzi², Tetsuya Hayashi³, Tetsuya Nakanishi³, Satoshi Shinada¹, Yoshinari Awaji¹, Hideaki Furukawa¹, Naoya Wada1; 1National Inst of Information & Comm Tech, Japan; ²Physical and Chemical Sciences, Univ. of L'Aquila, Italy; ³Sumitomo Electric Industries Ltd., Japan. We compare fluctuations of propagation delay and inter-core skew on spooled and field-deployed multicore fibers. Our observations show a reduction of propagation delay fluctuations over deployed fibers but similar inter-core skew behavior.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
T4A • Radio-over-fiberr Technologies for 5G— Continued	T4B • Machine Learning for Fiber Amplifier and Sensors—Continued	T4C • Neuromorphic II: Entire Aspect— Continued	T4D • AI Assisted Access Networks—Continued	T4E • Symposium: Emerging Network Architectures for 5G Edge Cloud (Session 2) —Continued	T4F • Quantum Networking and Artifiicial Intelligence— Continued
T4A.4 • 17:30 Experimental Demonstration of A-RoF SDN for Radio Access Shar- ing Applications, Luiz Anet Neto ¹ , Wang Minqi ¹ , Gaël Simon ¹ , Feizheun Lehanneur ¹ , Anas El Ankouri ¹ , Guil- laume Lopere ¹ , Dylan Chevalier ¹ , Philippe Chanclou ¹ ; 'Orange Labs, France. We experimentally assess a radio access A-RoF mobile interface with carrier-aggregated data-plane and IF-transposed Ethernet control- plane. We also demonstrate software- based management of two classes of services associated to different PHY layer parameters.	T4B.5 • 17:30 Robust Convolutional Neural Network Model for Wavelength Detection in Overlapping Fiber Bragg Grating Sensor Network, Ba- ocheng Li ^{1,2} , Zhi-Wei Tan ¹ , Perry Ping Shum ^{1,2} , Dora Juan Juan Hu ³ , Chenlu Wang ^{1,2} , Yu Zheng ^{1,2} , Shuhui Liu ⁴ ; 'Nanyang Technological Univ., Singapore; ² CINTRA CNRS/NTU/ Thales, Singapore; ³ Inst. for Info- comm Research, Agency for Science, Technology and Research, Singa- pore; ⁴ Hubei Key Laboratory of Optical Information and Pattern Recognition, China. We have designed a CNN model to detect Bragg wavelengths in overlapping spectra. The mean RMS error of 0.123pm and mean testing time of 12.4ms are achieved, which outperforms most of the existing techniques.		T4D.4 • 17:30 Transfer Learning Aided Neural Networks for Nonlinear Equaliza- tion in Short-reach Direct Detection Systems, Zhaopeng Xu ¹ , Chuanbowen Sun ¹ , Tonghui Ji ¹² , Honglin Ji ¹ , William Shieh ¹ , ¹ Univ. of Melbourne, Austra- lia; ² Univ. of Science and Technology Beijing, China. Transfer learning-aided NNs are proposed for nonlinear equalization in a 50-Gb/s 20-km PAM4 link. About 90% reduction in epochs and 56% in training symbols are achieved with NNs transferred from the most similar source system.	T4E.3 • 17:30 Invite Title to be Announced, Thomas Haynes ¹ ; ¹ Verizon Wireless Plan, USA. Abstract not available.	
T4A.5 • 17:45 Top-Scored Flexible 3600 5G mmWave Small Cell Coverage through WDM 4x1 Gb/s Fiber Wireless Fronthaul and a Si3N4 OADM-assisted Massive MIMO Phased Array Antenna, Eu- genio Ruggeri ¹ , Apostolos Tsakyrdis ¹ , Christos Vagionas ¹ , George Kalfas ¹ , Ruud M. Oldenbeuving ² , Paul W. Dijk ² , Chris G. Roeloffzen ² , Yigal Leiba ³ , Nikos Pleros ¹ , Amalia Mil- iou ¹ , 'Aristotle Univ. of Thessaloniki, Greece; ² LIONIX International B.V, Netherlands; ³ Siklu Communication Ltd., Israel. Four Wavelength Division Multiplexed 1Gb/s OAM16 streams are transmitted through 10km fiber, an Optical Add/Drop Multiplexer and a V-band beamsteering antenna with 90° steering, demonstrating the first 5G Fiber-Wireless A-RoF architecture with 240° enueroe		9:00 Celebrating 50 Years o	T4D.5 • 17:45 Service-oriented DU-CU Placement Using Reinforcement Learning in 5G/B5G Converged Wireless-optical Networks, Yuming Xiao ¹ , Jiawei Zhang ¹ , Zhengguang Gao ¹ , Yuefeng Ji ¹ ; 'Beijing Univ of Posts & Telecom, China. We propose a reinforcement learning based DU-CU placement scheme to accommodate diversified services in 5G/B5G networks. It outperforms ILP model and widely used heuristics in terms of the service- scale and resource-saving respectively.	Xeynote Presentation , Ballroon	
with 360° coverage.		-	s of Light-speed Connections,		
	19:30–21:30 I	Rump Session: When Will Co	packaged Optics Replace Plug	gable Modules in the Datace	nter?, Koom 6D

Tuesday, 10 March

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
T4G • Optical Transmitter Sub-systems—Continued	T4H • Quantum Dots and Novel III-V Devices— Continued	T4I • Long-haul Systems and Non-linear Mitigation—Continued	T4J • Multi-core Fibers— Continued		
T4G.5 • 17:30 Overcoming Low-power Limita- tions on Optical Frequency Combs Using a Micro-ring Resonator, Bill P. Corcoran ¹ , Chawaphon Prayoonyong ¹ , Andreas Boes ² , Xingyuan Xu ³ , Mengxi Tan ³ , Sai T. Chu ⁴ , Brent E. Little ⁵ , Ro- berto Morandotti ⁶⁷ , Arnan Mitchell ² , David J. Moss ³ ; ¹ Electical and Com- puter Systems Engineering, Monash Univ, Australia; ³ Cchure for Micro-Photonics, Swinburne Univ, Australia; ⁴ Dept. Physics and Material Science, City Univ. of Hong Kong, China; ⁵ Xi'an Inst. of Optics and Precision Mechanics, Chinese Acad- emy of Sciences, China; ⁴ EMT, INRS, Canada; ⁷ ITMO Univeristy, Russian Federation. We show that filtering of an optical frequency comb with a high quality-factor ring resonator enables the use of amplified low power combs as a multi-wavelength source. This approach improves effective source OSNR by 10 dB.	T4H.5 • 17:30 Invited III-V Micro- and Nano-lasers Grown on Silicon Emitting in the Telecom Band, Kei May Lau', Yu Han', Si Zhu', Wei Luo', Ying Xue'; 'Hong Kong Univ of Science and Technology, Hong Kong. We present our recent effort on the integration of 1.5 µm III-V micro-cavity lasers on (001) Si wafers, and bufferless nano-lasers on (001) silicon-on-insulators (SOI) via direct hetero-epitaxy by metal organic chemical vapor deposition.	T4I.4 • 17:30 Cost-effective Solution for High- Capacity Unrepeatered Transmis- sion, Tiago Sutili ¹ , Pedro F. Neto ² , Fábio D. Simões ¹ , Gabriel Junco Suzigan ² , Rafael Carvalho Figueiredo ¹ ; ¹ CPQD, Brazil; ² Padtec S.A., Brazil. A cost- effective 310-km SSMF unrepeatered optical link employing off-the-shelf EDFAs, 1st-order DRAs, and a ROPA is experimentally demonstrated. An iterative optimization process enabled a 12.8-Tbps net transmission (37.5- GHz spaced 128 channels x 100 Gbps).			

T4G.6 • 17:45 D

Kerr Soliton Microcomb Pumped by an Integrated SBS Laser for Ultra-Low Linewidth WDM Sources, Mark W. Harrington¹, Grant M. Brodnik¹, Travis C. Briles², Jordan R. Stone², Richelle H. Streater², Scott B. Papp^{2,3}, Daniel J. Blumenthal¹; ¹Univ. of California at Santa Barbara, USA; ²Time and Frequency Division 688, National Inst. of Standards and Technology, USA; ³Univ. of Colorado, Boulder, USA. An ultralow linewidth WDM comb is realized using an integrated SiN SBS laser to pump a 128 GHz channel spacing SiN Kerr soliton microring resonator. We measure the frequency noise of each of 25 C-band individual comb lines yielding ultra-low ~10Hz fundamental and ~4.0kHz integral linewidths for high-capacity coherent WDM.

T4I.5 • 17:45

Demonstration of 3,010 km WDM Transmission in 3.83 THz Bandwidth Using SOAs, Matt Mazurczyk¹, Jin-Xing Cai¹, Milen Paskov¹, William Patterson¹, Oleg V. Sinkin¹, Yue Hu¹, Carl Davidson¹, Patrick Corbett¹, Timothy Hammon¹, Maxim Bolshtyansky¹, Dmitri G. Foursa¹, Alexei N. Pilipetskii¹; ¹SubCom, USA. We transmit 5.53Tb/s over 3,010km using SOAs, ultralow-loss fibers (0.145dB/km) and a new coded modulation format with SE=1.5 b/s/Hz. C-band transmission capacity in a ~602km circulating loop testbed with 3.83THz bandwidth is confirmed with FEC

17:15–18:15 Exhibitor Happy Hour, Center Terrace

18:15–19:00 Celebrating 50 Years of Light-speed Connections - Keynote Presentation, Ballroom 20BCD

19:00–20:30 Celebrating 50 Years of Light-speed Connections, Conference Reception, Sails Pavilion

19:30–21:30 Rump Session: When Will Copackaged Optics Replace Pluggable Modules in the Datacenter?, Room 6D Tuesday, 10 March

Room 1B

Room 2

Room 3

Room 6C

07:30–08:00 Morning Coffee, Upper Level Corridors

08:00–10:00 W1A • Optical Input/ Output and Filters Presider: Giampiero Contestabile

08:00–10:00 W1B • Multi-mode Fiber Technology Presider: Xin Chen; Corning Inc, USA

08:00–10:00 W1C • Novel Doped Fiber Amplifier Presider: Efstratios Kehayas; G&H, UK 08:00–10:00 W1D • Short-reach Interconnects Presider: Fred Buchali; Nokia Bell Labs, Germany **08:00–10:00** W1E • Advances in Coherent PON Presider: Derek Nesset; Huawei Technologies, Germany

08:00–10:00 W1F • Intra Data Center Networks II O Presider: Yvan Pointurier; Nokia Bell Labs, France

W1A.1 • 08:00 Invited

Ultrafast Laser-written Sub-components for Space Division Multiplexing, Simon Gross¹, Andrew Ross-Adams¹, Nicolas Riesen², Sergio G. Leon-Saval³, Michael J. Withford¹; ¹Macquarie Univ., Australia; ²Univ. of South Australia, Australia; ³The Univ. of Sydney, Australia. The increase in Internet data demand has resulted in the development of novel optical fibers. Ultrafast laser inscription is a powerful tool to create 3D waveguide circuits that can interface with these new fiber types.

W1B.1 • 08:00 Invited

Deep Learning Imaging through Specialty Multi-mode Fibers, Jian Zhao^{2,1}, Shengli Fan¹, Jose Enrique Antonio-Lopez¹, Axel Schülzgen¹; ¹Unix. of Central Florida, USA; ²Photonics Center, Boston Unix., USA. We demonstrate a cost-effective, highly accurate, and fast-speed cell sensing system enabled by the combination of the disordered optical fiber and the deep-learning classifier. It is compatible with both coherent and incoherent illumination.

W1C.1 • 08:00

Improved Nd Doped Silica Fiber for E-band Amplification, Leily S. Kiani', Paul Pax', Derrek R. Drachenberg', Jay Dawson', Charles Boley', Cody Mart', Victor Khitrov', Charles Yu', Robert Crist', Matthew Cook', Nick Schenkel', Michael Runkel', Michael Messerly'; 'Lawrence Livermore National Lab, USA. Building on previous work, we have designed a Nd doped fiber for E-band amplification. Modeling results indicate a fiber design that is applicable to telecom amplifiers.

W1C.2 • 08:15

An Extended L-band EDFA Using C-band Pump Wavelength, Chengmin Lei¹, Hanlin Feng¹, Lixian Wang², Younès Messaddeq¹, Sophie LaRochelle¹; ¹Center for Optics, Photonics and Lasers, Université Laval, Canada; ²Huawei Technologies Canada, Canada. We investigate an extended L-band EDFA pumped by C-band wavelengths. A two-stage scheme with 1480 nm/1545.5 nm pumping is demonstrated with 20-dB gain over 1570-1620 nm and NF lower than 5.7 dB.

W1D.1 • 08:00 Invited

Low-power Data Center Transponders Enabled by Micrometer-scale Plasmonic Modulators, Benedikt Baeuerle^{2,1}, Wolfgang Heni^{2,1}, Claudia Hoessbacher^{2,1}, Yuriy Fedoryshyn¹, Arne Josten¹, Ueli Koch¹, Christian Haffner^{1,6}, Tatsuhiko Watanabe¹, Christopher Uhl³, Horst Hettrich⁴, Delwin L. Elder⁵, Larry R. Dalton⁵, Michael Möller^{3,4}, Juerg Leuthold¹; ¹ETH Zurich, Switzerland; ²Polariton Technologies Ltd., Switzerland: ³Chair of Electronics and Circuits, Saarland Univ., Germany; ⁴MICRAM Microelectronic GmbH, Germany; 5Department of Chemistry, Univ. of Washington, USA; ⁶Physical Measurement Laboratory, National Inst. of Standards and Technology. USA. Plasmonic modulators allow for high-speed data modulation beyond 200GBd at the micrometer-scale and low driving voltages below 700mV. The compact footprint enables dense integration and makes plasmonic modulators a promising solution for next-generation optical interconnects.

W1E.1 • 08:00 C Top-Scored

High-performance Preamble Design and Upstream Burst-mode Detection in 100 -Gb/s/A TDM Coherent-PON, Junwen Zhang¹, Zhensheng Jia¹, Mu Xu¹, Haipeng Zhang¹, Luis Alberto Campos¹, Curtis Knittle¹; 'CableLabs, USA. We propose robust, high-efficient preamble design and signal processing for upstream burst-mode detection in 100-Gb/s/A TDM Coherent-PON. Using a 71.68-ns preamble, we achieve 36-dB power budget after50-km SMF and 20-dB dynamic range.

W1F.1 • 08:00 D

FOSphere: A Scalable and Modular Low Radix Fast Optical Switch Based Data Center Network, Fulong Yan¹, Elham Kahan¹, Xiaotao Guo¹, Fu Wang¹, Bitao Pan¹, Xuwei Xue¹, Shaojuan Zhang¹, Nicola Calabretta¹; ¹Technology Unix. of Eindhoven, Netherlands. We propose a novel scalable and modular low-radix fast optical switch based DCN with sphere topology (FOSphere). Numerical analyses on 10880-server indicates that FOSphere achieves 4.1 µs serverto-server latency and 2.6E-3 packet loss at load 0.4.

High-throughput Optical Circuit Switch for Intra-datacenter Networks Based on Spatial Super-channels, Eiji Honda¹, Yojiro Mori¹, Hiroshi Hasegawa¹, Ken-ichi Sato², ¹Nagoya Univ., Japan; ²The National Inst. of Advanced Industrial Science and Technology (AIST), Japan. We propose a novel optical circuit switch architecture based on spatial super-channels. We construct part of a 1,536×1,536 optical switch and its performance is experimentally confirmed. The total throughput of the switch reaches 2.1 Pbps.

07:30–08:00 o:00 bymposium: hotonics Devices ptical Networks by Emerging Technologies 1)	0 Morning Coffee, Upper Lev 08:00–10:00 W1I • Panel: Pros and Cons of Low-margin Optical Networks	vel Corridors 08:00–10:00 W1J • Advanced Transmission Path Metrics Presider: Georg Mohs; TE SubCom, USA	08:45–10:00 W1K • Machine Learning for Optical Communication Systems	
ymposium: hotonics Devices ptical Networks by Emerging Technologies	W1I • Panel: Pros and Cons of Low-margin	W1J • Advanced Transmission Path Metrics Presider: Georg Mohs; TE	W1K • Machine Learning for Optical Communication Systems	
			Presider: Antonio Napoli; Infinera Corporation, Germany	
200 Invited and Photonic Co-optimi- J/bit Optical Links, Clint niv. of California Santa A. Abstract not available.	<text><text><text><text><text><text></text></text></text></text></text></text>	 W1J.1 • 08:00 Leveraging Long-term CoT Awareness for Capacity Boost of PanEuropean Network, Juraj Slovak¹, Wolfgang Schairer¹, Donato Sperti², Pedro Capela², Silvestre Martins², Uffe Andersen³, Anders Lindgren⁴, Joakim Tjäder⁴, Stefan Melin⁴; Infinera Germany, Germany; ²Infinera Portugal, Portugal; ³Telia Carrier, Denmark; ⁴Telia Company, Sweden. Online quality of transmission (QoT) monitoring and validation enables conversion of unused margins into higher network capacities. We quantify the benefit of long-term performance awareness in a Pan-European optical network of a Tier-1 operator. W1J.2 • 08:15 Exploring Channel Probing to Determine Coherent Optical Transponding and Network, Kaida Kaeval¹, Danish Rafique¹, Kamil Blawat¹, Klaus Grobe¹, Helmut Griesser¹, Jörg-Peter Elbers¹, Potr Rydlichowski², Artur Binczewski², Marko Tikas³; ¹ADVA Optical, Germany; ²Poznan Supercomputing and Networking Center, Poland; ³Tele2 Estonia, Estonia. We use channel probing to determine the best transponder configurations for spectral services in a long-haul production network. An estimation accuracy better than ±0,7dB in GSNR margin is obtained for lightpaths up to 5738km. 		
		visibility into the optical layer behavior. As we approach the practical limits of spectral efficiency, one avenue to further increase capacity is to more accurately determine the actual per- formance of the optical network and operate it at higher capacity with lower margin. This panel will investigate the new trend for lower margin optical net- works. We will start with Network Operator views and then have ex- perts from Industry and academia discuss their challenges and solution	 visibility into the optical layer behavior. As we approach the practical limits of spectral efficiency, one avenue to further increase capacity is to more accurately determine the actual performance of the optical network and operate it at higher capacity with lower margin. This panel will investigate the new trend for lower margin optical networks. We will start with Network Operator views and then have experts from Industry and academia discuss their challenges and solution proposals. Rafique¹, Kamil Blawat¹, Klaus Grobe¹, Helmut Griesser¹, Jörg-Peter Elbers¹, Piotr Rydlichowski², Artur Binzewski², Marko Tikas³, 'ADVA Optical, Germany; 'Poznan Supercomputing and Networking Center, Poland; 'Tele2 Estonia, Estonia. We use channel probing to determine the best transponder configurations for spectral services in a long-haul production network. An estimation accuracy better than ±0,7dB in GSNR margin is obtained for lightpaths up to 5738km. 	visibility into the optical layer behavior. As we approach the practical limits of spectral efficiency, one avenue to further increase capacity is to more accurately determine the actual per- formance of the optical network and operate it at higher capacity with lower margin. This panel will investigate the new trend for lower margin optical network. This panel will start with Network Operator views and then have ex- perts from Industry and academia discuss their challenges and solution proposals.

Wednesday, 11 March

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
W1A • Optical Input/ Output and Filters— Continued	W1B • Multi-mode Fiber Technology—Continued	W1C • Novel Doped Fiber Amplifier— Continued	W1D • Short-reach Interconnects— Continued	W1E • Advances in Coherent PON— Continued	W1F • Intra Data Center Networks II—Continued
W1A.2 • 08:30 Tapered Self-written Waveguide between Silicon Photonics Chip and Standard Single-mode Fiber, Yohei Saito ¹ , Kota Shikama ¹ , Tai Tsuchizawa ¹ , Hidetaka Nishi ¹ , Atsushi Aratake ¹ , Norio Sato ¹ ; 'NTT Device Technology	W1B.2 • 08:30 Modeling the Breakdown in De- generacy for High-index-contrast Ring Core Fiber, Mai Banawan ¹ , Lixian Wang ² , Sophie LaRochelle ¹ , Leslie Rusch ¹ ; ¹ Department of Elec- trical and Computer Engineering,	W1C.3 • 08:30 Invited Recent Advances on Radiation- hardened Optical Fiber Technolo- gies, Sylvain Girard ¹ , Thierry Robin ² , Adriana Morana ¹ , Gilles Mélin ² , Alex- andre Barnini ² , Aziz Boukenter ¹ , Benoit Cadier ² . Emmanuel Marin ¹ , Laurent	W1D.2 • 08:30 Distortion-aware 2D Soft Decision for VCSEL-MMF Optical PAM In- terconnection, Lin Sun ^{1,2} , Jiangbing Du ¹ , Wenjia Zhang ¹ , Nan Chi ³ , Chao Lu ² , Zuyuan He ¹ ; ¹ Shanghai Jiao Tong Univ., China; ² Hong Kong Polytechnic	W1E.2 • 08:15 Tutorial Transceiver Technologies for Next- generation PON Networks, Dora van Veen ¹ , Vincent Houtsma ¹ ; ¹ Nokia Bell Labs, USA. We will review the specific requirements for upgrading passive optical networks and present	W1F.3 • 08:30 Invited Scaling PULSE Data Center Net- work Architecture and Scheduling Optical Circuits in Sub-microsec- onds, Joshua L. Benjamin ¹ , Georgios S. Zervas ¹ ; ¹ Univ. College London, UK PUISE an ontical circuit switched

Cadier², Emmanuel Marin¹, Laurent

Lablonde¹, Arnaud Laurent², Youcef

Ouerdane¹; ¹Universite Jean Monnet,

France; ²iXblue, France. Optical fibers

possess key advantages for integration

in radiation-rich environments as parts

of communication systems, laser

sources, optical amplifiers, sensors.

We reviewed how the understanding

of the basic mechanisms of radiation effects can be exploited to optimize

their tolerance to the most challenging

environments

COPL, Universite Laval, Canada; ²Hua-

wei Technologies Canada Co., Ltd.,

Canada. Our numerical model of

elliptical deformation of ring cores

uncovers distinctly different behaviors

of lower and higher order OAM

modes. Degeneracy of modes, across

topological charge and polarization

Ultra-low Inter-mode-group Cross-

talk Ring-Core Fiber Optimized

Using Neural Networks and Genetic

Algorithm, Chumin Shi¹, Lei Shen²,

Junwei Zhang¹, Junyi Liu¹, Lei Zhang²,

Jie Luo², Jie Liu¹, Siyuan Yu¹; ¹Sun Yat-

Sen Univ., China; ²YOFC, China. We

design and fabricate a ring-core

fiber whose refractive-index profile is

optimized using neural networks and

genetic algorithm under fabrication

constraints. Experimental results

confirm ultra-low inter-mode-group

crosstalk of <-55 dB/km.

are laid bare in simulations.

W1B.3 • 08:45

Laboratories, Japan. The first selfwritten waveguide applied to silicon photonics with a spot-size converter using a SiON waveguide achieves low coupling loss and high alignment tolerance between a standard singlemode fiber and silicon photonics chip. W1A.3 • 08:45 Vertical Optical Fiber Assembly on Silicon Photonic Chips Using 3D-curved Silicon Waveguide Couplers, Youichi Sakakibara¹, Tomoaki

> Kiriyama², Tomoya Yoshida¹, Yuki Atsumi¹, Emiko Omoda¹, Katsuhiro

> Iwasaki², Takashi Kato²; ¹Natl Inst of

Adv Industrial Sci & Tech, Japan; ²Ko-

hoku Kogyo Co., Ltd., Japan. Using

UV adhesive mixed with glass spacer

beads, vertical surface connection of

optical fibers to silicon photonic chips

via elephant couplers was realized

with wavelength and polarization

insensitiveness at temperatures from

-18.5°C to 90°C.

Univ., China; ²Hong Kong Polytechnic Univ., Hong Kong; ³Fudan Univ., China, A distortion-aware 2D soft decision method of PAM signals have been proposed for VCSEL-MMF interconnection system. Improvements and application potential have been experimentally investigated on a 112-Gbps optical PAM-4/8 system using a multimode VCSEL.

W1D.3 • 08:45

168Gbps PAM-4 Multimode Fiber Transmission through 50m using 28GHz 850nm Multimode VCSELs, Justin Lavrencik¹, Siddharth Varughese¹, Nikolay Ledentsov Jr.^{2,3}, Lukasz Chorchos^{2,3}, Nikolay Ledentsov², Stephen E. Ralph¹; ¹Georgia Inst. of Technology, USA; ²VI Systems GmbH, Germany; ³Warsaw Univ. of Technology, Poland. We experimentally demonstrate PAM-4 data rates beyond 160Gbps over 50m OM5 using unpackaged 850nm VCSELs. Power penalties of PAM-4 are examined demonstrating maximum data rates, with and without FEC, over 50m and 100m of fiber

passive optical networks and present recent research on high speed optical transmission for Next-Generation TDM-, TWDM- and WDM-PONs based on low cost optical and DSP technologies.

UK. PULSE, an optical circuit switched

data center network, employs custom

ASIC schedulers to reconfigure

circuits in 240 ns. The revised PULSE

architecture scales to 10.000s blades.

achieves >95% sustained throughput,

with low median 1.23µs and tail 145µs

latencies, while consuming 115pJ/bit

and costing \$9.04/Gbps.

Dora van Veen received her PhD in electrical engineering from University of Twente, Enschede. She is a Distinguished Member of Technical Staff at Nokia Bell Labs. Dr. van Veen has widely published and holds many patents in the area of optical access, her current research is focused on high-speed PON.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
W1G • Trends in Free Space Optics Communications— Continued	W1H • Symposium: Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 1)—Continued	W1I • Panel: Pros and Cons of Low-margin Optical Networks— Continued	W1J • Advanced Transmission Path Metrics—Continued	W1K • Machine Learning for Optical Communication Systems—Continued	
	W1H.2 • 08:30 Invited Femto-farad Nanophotonic Devices for fJ/bit Signal Conversion, Kengo Nozaki ^{2.1} , Shinji Matsuo ^{2.3} , Takuro Fujii ^{2.3} , Koji Takeda ^{2.3} , Eiichi Kura- mochi ^{2.1} , Akihiko Shinya ^{2.1} , Masaya Notomi ^{2.1} ; ¹ NTT Basic Research Labo-	Speakers: David Boertjes, <i>Ciena Corp., Canada</i> Camille Delezoide, <i>Nokia Bell Labs,</i> <i>France</i> Esther Le Rouzic, <i>Orange Labs, France</i>	W1J.3 • 08:30 Invited Standardizing Performance Met- rics for Submarine Transmission Paths, Priyanth Mehta'; 'Ciena Can- ada, Canada. This paper describes the progress and obstacles towards defining a universal performance		
	ratories, Japan; ² NTT Nanopho- tonics Center, Japan; ³ NTT Device Technology Laboratories, Japan. We use a photonic-crystal platform to demonstrate opto-electronic devices and integrated functions with a femto- farad capacitance. This allows us to	Daniel Kilper, University of Arizona, USA Juraj Slovak, Infinera, Germany Tim Stuch; Facebook Inc., USA	metric for ultralong haul submarine transmission paths. Sources of error and quantitative assessment of capacity prediction is also addressed.		
	realize amplifier-free photo-receiver, electro-optic modulator, and O-E-O signal converter operating in a fJ/bit energy consumption.			W1K.1 • 08:45 Invited Advancing Classical and Quan- tum Communication Systems with Machine Learning, Darko Zibar ¹ , Uiara C. de Moura ¹ , Hou Man Chin ¹ , Ann Margareth Rosa Brusin ² , Nitin Jain ¹ , Francesco Da Ros ¹ , Sebastian	

Kleis³, Christian Schaeffer³, Tobias Gehring¹, Ulrik L. Andersen¹, Andrea Carena²; ¹Technical Univ. of Denmark, Denmark; ²Politecnico Di Torino, Italy; ³Helmut Schmidt Univ., Germany. A perspective on how machine learning can aid the next--generation of classical and quantum optical communication systems is given. We focus on the design of Raman amplifiers and phase tracking at the

quantum limit.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
W1A • Optical Input/ Output and Filters— Continued	W1B • Multi-mode Fiber Technology—Continued	W1C • Novel Doped Fiber Amplifier— Continued	W1D • Short-reach Interconnects— Continued	W1E • Advances in Coherent PON— Continued	W1F • Intra Data Center Networks II—Continued

W1A.4 • 09:00

Ultra-high Q Resonators and Sub-GHz Bandwidth Second Order Filters in an SOI Foundry Platform, Deniz Onural¹, Hayk Gevorgyan¹, Bohan Zhang¹, Anatol Khilo¹, Miloš A. Popovič¹; 'Boston Univ., USA. We demonstrate racetrack resonators with record-high quality factors reaching 6.6 million in a standard 220 nm silicon photonics foundry platform, and first/ second order filters with passbands as narrow as 200 MHz, and 1-5 dB insertion loss.

W1A.5 • 09:15 Design and Characterization of Arbitrary Filters with an Integrated Spiral Si₃N₄/SiO₂ Waveguide, Yi-Wen Hu¹, Shengjie Xie¹, Jiahao Zhan¹, Yang Zhang¹, Sylvain Veilleux¹, Mario Dagenais¹; ¹Univ. of Maryland, USA. We report the optimization of reconstruction algorithm and experiment for an integrated arbitrary filter. A 43-notch filter near 1550 nm is implemented with an ultra-lowloss Si₃N₄/SiO₂ spiral waveguide. All notches have uniform deoths/widths

of about 20 dB/0.2 nm.

W1B.4 • 09:00 Tutorial

Advances in Few-mode Fiber Design and Manufacturing, Pierre Sillard'; 'Prysmian Group, France. This tutorial will show how recent advances in design and manufacturing have improved the performance of few-mode fibers, and what are the challenges to turn them into implementable solutions.

Pierre Sillard received the engineering diploma of Telecom ParisTech, in 1994, and the PhD degree in Optics from the University of Paris VI in 1998. He has been working in the field of optical fibers and optical networks since 1999, and he is now with Prysmian Group in France. He has published more than 250 papers and has been granted more than 100 patents. In 2004, he received the TR35 innovator award from MIT Technology Review. He is a member of the OSA and IEEE societies and he serves as a reviewer and committee member of several journals and conferences.

W1C.4 • 09:00

O-band Bismuth-doped Fiber Amplifier with 67 nm Bandwidth, Aleksandr Khegai¹, Yan Ososkov¹, Sergei Firstov¹, Konstantin Riumkin¹, Sergey Alyshev¹, Alexander Kharakhordin¹, Elena Firstova¹, Fedor Afanasiev², Vladimir Khopin², Alexey Guryanov², Mikhail Melkumov¹; ¹Fiber Optics Research Center of the Russian Academy of Sciences, Russian Federation; ²G.G. Devyatykh Inst. of Chemistry of High-Purity Substances of the Russian Academy of Sciences, Russian Federation. We present 30 dB Bi-P-doped fiber amplifier from 1287 to 1354 nm. The wider bandwidth was achieved using inhomogeneous broadening of bismuth active centers (BAC-P). Blue shifted BAC-P were pumped at 1178 nm and generated laser radiation at 1276 nm which serves as a pump source for red shifted BAC-P

W1C.5 • 09:15

Bismuth-doped Fiber Amplifier Operating in the Spectrally Adjacent to EDFA Range of 1425-1500 nm, Vladislav Dvoyrin^{1,2}, Valery Mashinsky³, Sergei Turitsyn^{1,2}, '14ston Inst. of Photonic Technologies, Aston Univ., UK; ²Aston-NSU Centre for Photonics, Novosibirsk State Univ., Russian Federation; ³Fiber Optics Research Center, Russian Federation. We demonstrate a Bi-doped fiber amplifier operating in the range of 1425-1500 nm with the maximum gain of 27.9 dB, the lowest noise figure of ~5 dB, and the maximum output power of 505 mW.

W1D.4 • 09:00

4×56-GBaud PAM-4 SDM Transmission Over 5.9-km 125-µm-Cladding MCF Using III-V-on-Si DMLs, Nikolaos Panteleimon Diamantopoulos¹, Hidetaka Nishi¹, Takuro Fujii¹, Kota Shikama¹, Takashi Matsui², Koji Takeda¹, Takaaki Kakitsuka^{1,3}, Kazuhide Nakajima², Shinji Matsuo¹; ¹NTT Device Technology Labs, NTT Corporation, Japan; ²NTT Access Networks Service Systems Labs, NTT Corporation, Japan: ³Graduate School of Information, Production and Systems, Waseda Univ., Japan. We demonstrate 4×56-GBaud PAM-4 signals over 125-µm-cladding, 4-core fiber by simultaneous, direct modulation of four 1.3-µm membrane III-V-on-silicon lasers, each requiring <25-mWatts (@12 mA). A reach extension of ~15x is achieved compared to previous works.

W1D.5 • 09:15

1.12 Tbit/s Fiber Vector Eigenmode Multiplexing Transmission Over 5-km FMF with Kramers-Kronig Receiver, Jianbo Zhang¹, Xiong Wu¹, Linvue Lu¹, Jianping Li², Jiajing Tu³, Zhaohui Li⁴, Chao Lu¹; ¹The Hong Kong Polytechnic Univ., Hong Kong; ²Guangdong Univ. of Technology, China; ³Jinan Univ., China; ⁴Sun Yat-sen Univ., China, We demonstrate a 1.12 Tb/s MIMO-free vector eigenmode multiplexed signal transmission over 5-km 4-mode few-mode-fiber using HE11 and EH11 vector modes. 5 wavelengths and 28 GBaud 16-QAM signal with direct-detection Kramers-Kronia receiver.

W1E.3 • 09:15 D

Performance Comparison of Coherent and Direct Detection Schemes for 50G PON, Yixiao Zhu', Bo Yang', Yiming Zhong', Zheng Liu', Yong Guo', Jun Shan Wey², Xingang Huang', Zhuang Ma'; '*ZTE Corporation, China*; ²*ZTE*(*Tx*) *Inc., USA.* We investigate various coherent and direct detection schemes with 50Gb/s/*λ* NRZ signal through simulation. The receiver sensitivity, the influence of frequency offset, LO power, laser linewidth, and fiber dispersion are studied for each structure.

-

W1F.4 • 09:00 A 25.6 Tbps capacity 1024-port Hipoλaos Optical Packet Switch Architecture for Disaggregated Datacenters, Nikolaos Terzenidis^{1,2}, Apostolos Tsakvridis^{1,2}, George Giamougiannis^{1,2}, Miltiadis Moralis-Pegios^{1,2}, Konstantinos Vyrsokinos^{3,2}, Nikos Pleros^{3,2}: ¹Informatics, Aristotle Univ. of Thessaloniki, Greece; ²Center for Interdisciplinary Research & Innovation. Greece: ³Physics, Aristotle Univ. of Thessaloniki, Greece. We demonstrate experimentally the feasibility of a 25.6Tb/s capacity Hipolaos optical packet switch architecture with 1024 in/out ports operating at 25Gb/s, presenting successful contention resolution and error-free operation with a control plane latency of 97.28ns.

W1F.5 • 09:15 D

Experimental Assessments of a Flexible Optical Data Center Network Based on Integrated Wavelength Selective Switch, Xuwei Xue¹, Fumi Nakamura², Kristif Prifti¹, Bitao Pan¹, Fulong Yan¹, Fu Wang¹, Xiaotao Guo¹, Hirovuki Tsuda², Nicola Calabretta¹; ¹Eindhoven Univ. of Technology, Netherlands; ²Keio Univ., Japan. A novel bandwidth-reconfigurable optical DCN exploiting photonicintegrated WSS is experimentally assessed. Results show that optical bandwidth can be automatically reallocated according to the traffic patterns with 1.75µs end-to-end latency and 0.015 packet-loss at 0.6 load.

Room 6E

Room 6F

Room 7

Room 8

Room 9

Show Floor Programming

W1G • Trends in Free Space Optics Communications— Continued

W1G.2 • 09:00 D

Simultaneous Orthogonalizing and Shaping of Multiple LG Beams to Mitigate Crosstalk and Power Loss by Transmitting Each of Four Data Channels on Multiple Modes in a 400-Gbit/s Free-space Link, Kai Pang¹, Haogian Song¹, Xinzhou Su¹, Kaiheng Zou¹, Zhe Zhao¹, Hao Song¹, Ahmed Almaiman¹, Runzhou Zhang¹, Cong Liu¹, Nanzhe Hu¹, Shlomo Zach², Nadav Cohen², Brittany Lynn³, Andreas F. Molisch¹, Robert W. Boyd⁴, Moshe Tur², Alan E. Willner¹; ¹Universit of Southern California, USA; ²Tel Aviv Univ., Israel; ³Space & Naval Warfare Systems Center, Pacific, USA; ⁴Univ. of Rochester, USA. We experimentally utilize orthogonal combinations of multiple Laguerre-Gaussian modes in a 400-Gbit/s free-space link with limited-size aperture or misalignment. Power loss and crosstalk could be reduced by up to ~15 dB and ~40 dB, respectively.

W1G.3 • 09:1 D Top-Scored Simultaneous Turbulence Mitigation and Mode Demultiplexing using one MPLC in a Two-Mode 200-Gbit/s Free-space OAM-multiplexed Link, Hao Song¹, Xinzhou Su¹, Haogian Song¹, Runzhou Zhang¹, Zhe Zhao¹, Kaiheng Zou¹, Cong Liu¹, Kai Pang¹, Nanzhe Hu¹, Ahmed Almaiman^{1,3}, Moshe Tur², Alan E. Willner¹, Shlomo Zach², Nadav Cohen², Andreas F. Molisch¹, Robert W. Boyd^{4,5}; ¹Univ. of Southern California, USA; ²Tel Aviv Univ., Israel; ³King Saudi Univ., Saudi Arabia: ⁴Univ. of Ottawa, Canada: ⁵Univ. of Rochester, USA. We experimentally utilize a multi-plane light convertor (MPLC) for simultaneous orbitalangular-momentum (OAM) mode demultiplexing and turbulenceinduced crosstalk mitigation. Results show up to 15-dB reduction of crosstalk in a two-mode 200-Gbit/s OAM-multiplexed link.

W1H • Symposium: Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 1)—Continued

W1H.3 • 09:00 Invited

Plasmonics - Enabling Highest-speed Communications with fJ/bit Power Consumption, Juerg Leuthold'; 'ETH Zurich, Switzerland. Abstract not available. W11 • Panel: Pros and Cons of Low-margin Optical Networks— Continued

W1J • Advanced Transmission Path Metrics—Continued

W1K • Machine Learning for Optical Communication Systems—Continued

W1J.4 • 09:00 Tutorial

From the Acceptance of Turnkey Systems to Open Networks with G-SNR, Elizabeth Rivera Hartling¹, Stephen Grubb¹, Tim Stuch¹, Herve Fevrier¹; 'Facebook Inc., USA. This tutorial will discuss collaboratively formed industry recommendations for characterizing Open Subsea Cables, with the intent of assessment, maximization and understanding of capacity potential, utilizing methodologies to test key parameters such as G-SNR, among others.

Elizabeth Rivera Hartling is a Subsea Optical Network Architect at Facebook, focused on optimizing Facebook's Subsea Open Cable designs, to build a scalable, high capacity, cost-effective subsea network to meet Facebook's growing bandwidth demands. Hartling has been designing and executing coherent solutions on subsea cables since 2008. W1K.2 • 09:15

Maximizing Fiber Cable Capacity Under A Supply Power Constraint Using Deep Neural Networks, Junho Cho¹, Chandrasekhar Sethumadhavan¹, Erixhen Sula³, Samuel Olsson⁴, Ellsworth C. Burrows¹, Gregory Raybon¹, Roland Ryf¹, Nicolas K. Fontaine¹, Jean-christophe Antona⁵, Stephen Grubb², Peter Winzer¹, Andrew Chraplyvy1; 1Nokia Bell Labs, USA; 2Facebook, USA; ³EPFL, Swaziland; ⁴Nokia, USA; ⁵ASN, France. We experimentally achieve a 19% capacity gain per Watt of electrical supply power in a 12-span link by eliminating gain flattening filters and optimizing launch powers using deep neural networks in a parallel fiber context.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
W1A • Optical Input/ Output and Filters— Continued	W1B • Multi-mode Fiber Technology—Continued	W1C • Novel Doped Fiber Amplifier— Continued	W1D • Short-reach Interconnects— Continued	W1E • Advances in Coherent PON— Continued	W1F • Intra Data Center Networks II—Continued
		W1C.6 • 09:30 Tetrahedral-Cr Enhancement Employing Dielectric Coating for Higher Gain of Broadband Cr-doped Fiber Amplifiers, Chia-Ming Liu ¹ , Jhuo- Wei Li ¹ , Liu Chun-Nien ¹ , Wei-Chih Cheng ¹ , Charles Tu ¹ , Tien-Tsorng Shih ² , Sheng-Lung Huang ³ , Wood-Hi Cheng ¹ ; 'Graduate Inst. of Optoelec- tronic Engineering, National Chung Hsing Univ., Taiwan; ² Department of Electronic Engineering, National Kaohsiung Univ. of Applied Sciences, Taiwan; ³ Graduate Inst. of Photonics and Optoelectronics, National Taiwan Univ., Taiwan. We report gross gain of 8.4-dB for 300-nm broadband single-mode Cr-doped crystalline core fiber (SMCCDF) employing dielectric coating, thermal annealing, and polarization pumping techniques. This gross gain is the highest yet demonstrated of the SMCDCCFs.	W1D.6 • 09:30 Single λ 500-Gbit/s PAM Signal Transmission for Data Center In- terconnect Utilizing Mode Division Multiplexing, Fan Li ¹ , Dongdong Zou ¹ ; ¹ Sun Yat-Sen Univ, China. Single wavelength 502.5-Gbit/s MDM- PAM-6 signal transmission over 20-m OM2 fiber with BER below HD-FEC threshold (3.8×10 ⁻³) is demonstrated for 400-G Data Center Interconnect without DSP for mode de-multiplex- ing. This scheme shows good potential for future 800-G/1.6-T DCI.	WIE.4 • 09:30 Real-Time Demonstration of 20-Gb/s OPSK Burst-mode Digital Coherent Reception for PON Upstream under Clock Frequency Mismatch of 1.0 MHz, Noriko liyama', Masamichi Fujiwara', Takuya Kanai', Hiro Suzuki', Jun-ichi Kani', Jun Terada'; 'NTT Ac- cess Network Service Systems Labo- ratories, NTT Corporation, Japan. We demonstrate real-time burst-mode ocherent reception of 10-Gsymbol/s OPSK signals under 1.0-MHz clock frequency difference between Tx and R. Our sampling recovery proposal at BER of 10E-3. WIE.5 • 09:45 Rtfsfehexible Single-wavelength FIDM 100G Coherent PON based on Digital Subcarrier Multiplexing Technology, Junwen Zhang', My Xu', Jingjie Zhu', Luis Alberto Campos'; 'CableLabs, USA. We propose a novel rate-flexible single- wavelength 100G time-and-frequency- division multiplexing coherent PON architecture based on digital subcarrier multiplexing technology. How architecture based on digital subcarrier si demonstrated, achieving -38-dB sensitivity after 50- kn fiber transmission	WIF.6 • 09:30 (NVIEC) Beyond Edge Cloud: Distributed Edge Computing, Nihel D. Ben- zaoui'; ' <i>Nokia Bell Labs France</i> , <i>France</i> . High bandwidth demands combined with low latency applications lead the move from centralized cloud to distributed Edge Computing. We discuss how this paradigm shift impacts network interconnects design and the key network features to truly enable 5G and beyond.

10:00–13:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee service 10:00–10:30) Lunch Break (on own)

10:00–17:00 Exhibition and Show Floor, Exhibit Hall (concessions available in Exhibit Hall) OFC Career Zone Live, Exhibit Hall B2

OFC 2020 • 8–12 March 2020

Wednesday, 11 March

V1G • Trends in	W1H • Symposium:	W1I • Panel: Pros and			Programmin
ree Space Optics Communications— Continued	Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 1)—Continued	Cons of Low-margin Optical Networks— Continued	W1J • Advanced Transmission Path Metrics—Continued	W1K • Machine Learning for Optical Communication Systems—Continued	
VIG.4 • 09:30 eyond Terabit/s WDM Optical Vireless Transmission using Wave- ength-transparent Beam Tracking nd Steering, Yang Hong ¹ , Feng eng ² , Kyle Bottrill ¹ , Natsupa Taeng- oi ¹ , Ravinder Singh ² , Grahame aulkner ² , Dominic O'Brien ² , Periklis etropoulos ¹ ; 'Univ. of Southamp- on, UK; 'Univ. of Southamp- on, UK; 'Univ. of Oxford, UK. We aport up to 1.165-Tb/s optical vireless WDM transmission using a vavelength-transparent beam tracking nd steering system. Over a 3.5- n perpendicular distance, beyond -Tb/s capacity was achieved across lateral coverage up to 1.8 m.	W1H.4 • 09:30 Unvited Ultra-efficient Optical Switching based on a Large Pockels Effect embedded in Silicon Photonics, Fe- lix Eltes', Jean Fompeyrine', Stefan Abel'; 'IBM Research GmbH, Swit- zerland. We have combined BTO with conventional silicon photonic platforms to enhance the performance of silicon photonics by exploiting the Pockels effect. We have demonstrated modulators, switches, and tuning elements with excellent performance exceeding that of silicon-based devices.			W1K.3 • 09:30 Experimental Prediction and Design of Ultra-wideband Raman Amplifiers Using Neural Networks, Xiaoyan Ye ¹ , Aymeric Arnould ¹ , Amirhossein Ghazisaeidi ¹ , Dylan Le Gac ¹ , Jeremie Renaudier ¹ ; 'Nokia Bell Labs France, France. A machine learning method for Raman gain prediction and multi- pump broadband amplifier design is experimentally demonstrated over a 100 nm-wide optical bandwidth. We show high accuracy and ultra-fast prediction of arbitrary gain profile over a 100 km-long SSMF span.	
VIG.5 • 09:45 C band PS 4096QAM OFDM FSO ransmission with 6.98bit/s/Hz Net E Based on Kramers-Kronig Detec- ion, Yiran Wei', Yingjun Zhou', Cuivei iu', Feng Wang', Kaihui Wang', Junt- ng Shi', Nan Chi', Jianjun Yu'; 'Fudan Iniv., China. We experimentally emonstrate 10Gbaud PS 4096QAM 9FDM with KK detection over 25m SO transmission. As far as we know, his is the highest QAM delivery in a SO communication system.				W1K.4 • 09:45 Anomaly Localization in Optical Transmissions Based on Receiver DSP and Artificial Neural Net- work, Huazhi Lun ¹ , Xiaomin Liu ¹ , Meng Cai ¹ , Mengfan Fu ¹ , Yiwen Wu ¹ , Lilin Yi ¹ , Weisheng Hu ¹ , Qunbi Zhuge ¹ ; ¹ Shang- hai Jiao Tong Univ., China. We propose a receiver DSP based scheme to localize WSS anomaly in an optical link. Through extensive simulations, we show that the accuracy reaches up to 96.4% with a good generalization performance.	

10:00–13:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee service 10:00–10:30) Lunch Break (on own)

10:00–17:00 Exhibition and Show Floor, Exhibit Hall (concessions available in Exhibit Hall) OFC Career Zone Live, Exhibit Hall B2 Wednesday, 11 March

10:30-12:30 W2A • Poster Session I

W2A.10

W2A.1

300 Gb/s Net-Rate Intra-datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator, Deming Kong¹, Haiyun Xin^{1,2}, Kwangwoong Kim³, Yong Liu¹, Leif Oxenløwe¹, Po Dong³, Hao Hu¹; ¹Technical Univ. of Denmark, Denmark; ²State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong Univ., China; ³Nokia Bell Labs, USA. We propose and demonstrate intra-datacenter interconnects based on a silicon optical frequency comb modulator consisting of four cascaded microring modulators. The generated 4×50 Gbaud WDM-PAM4 signals exhibit BERs below 33% HD-FEC threshold after 2-km transmission.

W2A.2

A Passively Mode-locked Quantum Dot Laser with 10.8 Tbit/s Transmission Over 100-km SSMF, Guocheng Liu¹, Zhenguo Lu¹, Jiaren Liu¹, Youxin

Mao¹, Martin Vachon¹, Chunying

Song¹, Philip Poole¹; ¹National Re-

search Council Canada, Canada, We

demonstrate 10.8 Tbit/s (16-QAM

48×28 GBaud PDM) coherent data

transmission over 100-km of standard

single mode fiber using an InAs/InP

quantum dot mode-locked laser with

a channel spacing of 34.2 GHz.

W2A.3

2-dimentional Fiber Array with Reflow Compatibility for High-density Optical Interconnection, Tsutaru Kumagai¹, Hajime Arao¹, Hong Nguyen¹, Tetsuya Nakanishi¹; ¹Sumitomo Electric Industries, Ltd., Japan. We developed a 2-dimensional fiber array (2D-FA) as an optical interconnection device for co-packaged optics. The 2D-FA was capable of maintaining a low connection loss of < 1.0 dB after reflow process at 260°C.

W2A.4

Sub-nanosecond Optical Switching Using Chip-based Soliton Microcombs, Sophie Lange¹, Arslan S. Raja², Kai Shi¹, Maxim Karpov², Raphael Behrendt¹, Daniel Cletheroe¹, Istvan Haller¹, Fotini Karinou¹, Xin Fu², Jungiu Liu², Anton Lukashchuk², Benn C. Thomsen¹, Krzvsztof Jozwik¹, Paolo Costa¹, Tobias J. Kippenberg², Hitesh Ballani¹: ¹Microsoft Research, UK: ²Lab of Photonics& Quantum Measurements, Swiss Federal Inst. of Technology Lausanne (EPFL), Switzerland. We demonstrate subnanosecond wavelength switching, using a chip-based soliton microcomb and a semiconductor optical amplifierbased wavelength selector. 50-Gbps PAM4 transmission is achieved with discrete components and 25-Gbps NRZ with a photonic integrated wavelength selector.

W2A.5

Reliability Failure Modes of an Integrated Ge Photodiode for Si Photonics, Stewart Rauch¹, Dongho Lee¹, Alexey Vert², Lin Jiang¹, Byoung Min¹; ¹GlobalFoundries, USA: ²Cisco, USA, Major failure modes of Germanium photodiodes are proposed with a model. These are: catastrophic breakdown driven by thermal runaway due to localized self-heating and electrical defect generation/activation driven by electric field with photocurrent localization effect.

W2A.6

Vertically-curved Si Surface Optical Coupler for Coupling with Standard Single-mode Optical Fibers, Yuki Atsumi¹, Tomova Yoshida¹, Emiko Omoda¹, Youichi Sakakibara¹: ¹Natl Inst of Adv Industrial Sci & Tech, Japan. A vertically-curved-waveguide surface optical coupler for coupling with a 10-µm-MFD standard singlemode optical fiber was developed. The fabricated coupler showed 1-dB bandwidths of >160 nm and >120 nm and coupling losses of 3.9 dB and 4.0 dB for TE and TM polarization.

W2A.7

Dual-band Optical Filters Using Integrated Multimode Bragg Gratings, Jonathan Cauchon¹, Wei Shi1; ¹Universite Laval, Canada. We demonstrate a multimode integrated Bragg grating allowing dual-band filtering in the 1.5-1.6 µm region. Bandwidths of 4.4 and 7.5 nm and a band separation of 42 nm are achieved

W2A.8

Ultra-Compact Silicon TM-pass Polarizer with a Photonic Crystal Nanobeam Structure, Yu He¹, Yong Zhang¹, Ruihuan Zhang¹, Lu Sun¹, Yikai Su1; 1Shanghai Jiao Tong Univ., China. An ultra-compact TM-pass polarizer is experimentally demonstrated by using PhC nanobeam structure. The TE mode is reflected with an extinction ratio over 20.4 dB, while the TM mode propagates through with a 0.7-dB insertion loss

W2A.9

Metasurface Beam Deflector Array on a 12-inch Glass Wafer, Nanxi Li¹, Yuan Hsing Fu¹, Yuan Dong¹, Ting Hu¹, Zhengji Xu¹, Qize Zhong¹, Dongdong Li¹, Yanyan Zhou¹, Keng Heng Lai¹, Vladimir Bliznetsov¹, Hou-Jang Lee¹, Wei Loong Loh¹, Shiyang Zhu¹, Qunying Lin1, Navab Singh1; 1Inst. of Microelectronics, Agency for Science Technology and Research, Singapore. We have demonstrated a largearea metasurface beam deflector array patterned directly on a 12-inch glass wafer using immersion lithography. The captured random points at 940 nm wavelength show a good match with the design.

Performance Evaluation of a Combbased Transmission System Employing Multi-functional Active Demultiplexers, Prajwal Doddaballapura Lakshmijayasimh¹, Aleksandra Kaszubowska-Anandarajah², Pascal Landais¹, Prince M. Anandarajah1; 1School of Electronics Engineering, Dublin City Univ., Ireland; ²CON-NECT Research Centre, Trinity College Dublin, Ireland. A compact OFCbased transmitter for short-reach applications is demonstrated. A single device is employed to implement OFC demultiplexing, amplification and direct modulation. Using this method. error free data transmission over 3km of fiber is achieved.

W2A.11

A Single-loop PT-symmetric Sub-kHz Fiber Laser Based on an Integrated Microdisk Resonator, Jianping Yao¹, Zhiqiang Fan¹, Zheng Dai¹, Qi Qiu²: ¹Univ. of Ottawa, Canada: ²Univ. of Electronic Science and Technology of China, China. A single physical loop parity-time symmetric sub-kHz laser based on a microdisk resonator is demonstrated. Single-mode lasing with a wavelength-tunable range from 1552,953 to 1554,147 nm and a linewidth of 640 Hz is achieved experimentally.

W2A.12

Lossless Monolithically Integrated Photonic InP Neuron for All-optical Computation, Bin Shi¹, Kristif Prifti¹, Eduardo Magalhães¹, Nicola Calabretta¹, Ripalta Stabile¹; ¹Technische Universiteit Eindhoven, Netherlands. We demonstrate a monolithically integrated SOAbased photonic neuron, including both the weighted addition and a wavelength converter with tunable laser as nonlinear function, allowing for lossless computation of 8 Giga operation/s with an 89% accuracy.

W2A.13

A Simple and Compact Fiber Modal Adapter for Upgrading 850 nm **Multimode Fibers for Fundamental** Mode Transmission at 1310 nm, Xin Chen¹, Kangmei Li¹, Aramais Zakhar-

ian¹, Jason Hurley¹, Jeff Stone¹, Doug Coleman¹, Jie Liu¹, Qi Wu¹, Ming-Jun Li¹; ¹Corning Research & Development Corp, USA. We propose a simple and compact adapter using specially designed modal conditioning singlemode fiber for fundamental mode transmission through multimode fiber and demonstrate error-free transmission over 1-km multimode fiber using a 100G CWDM4 transceiver.

W2A.14

Miniature Optical Connector with Magnetic Physical Contact, Kota Shikama¹, Norio Sato¹, Atsushi Aratake¹, Satoshi Shigematsu¹, Takeshi Sakamoto¹; ¹Nippon telegraph and telephone, Japan. We present a miniature physical-contact optical connector featuring a novel magnetic attraction structure. The magnetic optical connectors we designed and fabricated yield low insertion and high return losses comparable to those of a conventional connector.

W2A.15

Inverse Design of Few-mode Fiber by Neural Network for Weakcoupling Optimization, Zhigin He¹, Jiangbing Du¹, Weihong Shen¹, Yuting Huang¹, Chang Wang¹, Ke Xu¹, Zuyuan He¹; ¹Shanghai Jiao Tong Univ., China. We use a neural network to inversely design a four-ring few-mode fiber for weak-coupling optimization so as to support MIMO-less MDM optical communication. This method provides high-accuracy, high-efficiency and low-complexity for complexed fiber design.

W2A.16

Investigation of Tolerance of OFDR-Based DAS to Vibration-induced Beat Frequency Offset, Tatsuya Okamoto¹, Daisuke Iida¹, Hiroyuki Oshida¹; ¹NTT, Japan. We investigate the statistical property of Rayleigh backscattered light to confirm the tolerance to vibration-induced beat frequency offset, which forces us to interrogate an unintentionallypositioned sensor. A long sensor is capable of measuring vibrations correctly.

W2A.17

Compensating Model of Nonlocal Effects in a Brillouin Optical Timedomain Analysis System, Can Liu¹, Lianshan Yan¹; ¹Southwest Jiaotong Univ., China. A novel model for compensating the nonlocal effects is proposed in BOTDA. A basic experimental configuration is only required. Experimental results show that a hotspot at 39.1 km can be accurately measured under probe power from -14 dBm to +2 dBm, and a 13.5 MHz Brillouin frequency shift error is corrected.

W2A.18

Training-free Feature Extraction of BOTDA Based on Sparse Representation, Hongxiu Tan¹, Yating Xiang¹, Hao Wu¹, Li Shen¹, Kangjie Li¹, Maogi Zhang¹, Can Zhao¹, Lin Gan¹, Songnian Fu¹, Ming Tang¹; ¹Huazhong Univ. of Science and Technology, China. We propose a method based on sparse representation to extract amplitude, linewidth, and Brillouin frequency shift (BFS) in BOTDA using dictionarylearning algorithm without feedback and off-line training, which enables more accurate BFS measurements in real-time.

W2A • Poster Session I—Continued

W2A.19

Rayleigh Speckles Obtained from Single Mode Fiber for Wavelength Measurement, Yangyang Wan¹, Xin Yu Fan¹, Shuai Wang¹, Zhaopeng Zhang¹, Zuyuan He¹; ¹Shanghai Jiao Tong Univ, China. We propose a novel wavemeter using Rayleigh speckle obtained by optical time domain reflectometry. It is experimentally demonstrated that the system can resolve multi-wavelength signal with 6 fm wavelength resolution and 25 nm bandwidth.

W2A.20

Experimental Demonstration of Using Wet-mate Connector in Offshore Long-distance Raman Amplified Optical Links, Steinar Bjørnstad^{2,1}, Rolf Bøe³, Kris Sanapi⁴, W.R.L Clements⁴, Bernard Shum-tim⁴, Luigi Carlomusto⁵, Soren Michaelsen⁵: ¹NTNU, Norway; ²Tampnet, Norway; ⁴MPB communications, Canada; 5Ciena, Canada. Deploying fibre cables to offshore installations may desire a pluggable construction for sub-sea use. Sub-sea connection of fibre cables, carrying high power Raman pump power, using a wet-mate connector is demonstrated for the first time

W2A.21

GOSNR Characterization by Opti-

cal Spectrum Analysis, Gang He¹, Steven Searcy², Daniel Gariepy¹, Sorin Tibuleac²; ¹EXFO Inc, Canada; ²ADVA, USA. We introduce a GOSNR measurement based on optical spectrum analysis and experimentally validate the method using multiple coherent signal types (34 and 69 Gbd, QPSK and 16QAM) over 8 and 12 spans LEAF transmission.

. .

On the Workload Deployment, Resource Utilization and Operational Cost of Fast Optical Switch Based Rack-scale Disaggregated Data Center Network, Xiaotao Guo1, Fulong Yan¹, George Exarchakos¹, Xuwei Xue¹, Bitao Pan¹, Nicola Calabretta¹: ¹Eindhoven Univ. of Technology, Netherlands. We investigate operational performance of a novel rack-scale disaggregated network. Results show that the disaggregated network achieves 30.6% higher workloads acceptance rate, 12.9% higher resource utilization, and 33% more power saving compared with the server-centric

W2A.23

W2A.22

Towards Zero-crosstalk-margin Operation of Spectrally-Spatially Flexible Optical Networks Using Heterogeneous Multicore Fibers, Anuj Agrawal¹, Vimal Bhatia¹, Shashi Prakash²; ¹/// Indore, India: ²Photonics Laboratory, Devi Ahilya Univ., India. In spectrallyspatially flexible optical network (SS-FON), crosstalk (XT)-margin overprovisioning is unavoidable due to transmission reach granularity of modulation schemes. We show that heterogeneous multicore fibers of specific core designs can achieve zero-XT-margin. We also propose a coretype selection method to minimize XT-margin in SS-FONs.

W2A.24

Recurrent Neural Networks for Short-term Forecast of Lightpath Performance, Sandra Aladin', Stéphanie Allogba', Anh Vu Stephan Tran', Christine Tremblay'; 'Ecole de Technologie Supérieure, Canada. We show how the Recurrent Neural Networks can be used for performance prediction of lightpaths using field bit error rate data. Moreover, we illustrate how the forecast horizons and observation windows affect the forecast accuracy.

W2A.25

Optimal Upstream Spectrum Resource Allocation on IP-over-EONs Access Links, Junyi Shao¹, Weiqiang Sun¹, Weisheng Hu¹; 'Shanghai Jiao Tong Univ., China. We propose a resource allocation strategy on IPover-EONs access links. It realizes the dynamic self-adaptive spectrum resource adjustment applying to traffic fluctuations and handles the performance requirements under the circuit/packet hybrid architecture.

W2A.26

SDN Controlled Edge Computing Metro Access Network with Network Slicing and Load-aware end-to-end Service Protection for 5G applications, Bitao Pan¹, Xuwei Xue¹, Fulong Yan¹, Fu Wang¹, Eduardo Magalhães¹, Nicola Calabretta¹; ¹Eindhoven Univ. of Technology, Netherlands. We demonstrate SDN reconfigurable edge-computing metro-access network based on low-cost ROADM nodes with edge-computing and programmable FPGA-based interfaces supporting classification and network slicing. Dynamic network operation and QoS protection is validated with live-streaming use case.

W2A.27

Reconfiguration of VNF Placement in an Optical Metro Network by a Modular Planning Tool, Guido Maier¹, Leila Askari¹, Sebastian Troia¹, Ligia M. Moreira Zorello¹, Francesco Musumeci¹, Massimo Tornatore¹; 'Politecnico di Milano, Italy. We demonstrate the recurrent reconfiguration of virtual network function placement and routing and wavelength assignment in optical metro networks supporting 5G services. Reconfiguration solutions are provided by a dedicated planningtool module.

Low-latency Federated Reinforcement Learning-based Resource Allocation in Converged Access Networks, Lihua Ruan', Sourav Mondal', Imali Dias', Elaine Wong', 'The Univ. of Melbourne, Australia. We propose a federated reinforcement learning (FedRL) solution to innovate resource allocation in converged access networks. FedRL lowers network latency with reinforcement-learnt bandwidth decision and achieves fast learning with federated learning efforts.

W2A.29

W2A.28

Demonstration of Al-assisted Energy-efficient Traffic Aggregation in 5G Optical Access Network, Luyao Guan¹, Min Zhang¹, Danshi Wang¹; ¹Beijing Univ of Posts & Telecom, China. We propose an Al-assisted energy-efficient traffic aggregation scheme, which is demonstrated in software-defined optical network testbed. The experimental results show proposed scheme can efficiently reduce energy consumption by traffic aggregation according to traffic prediction.

W2A.30

Real-Time Demonstration of 2.4Tbps $(200Gbps/\lambda)$ Bidirectional Coherent DWDM-PON Enabled by Coherent Nyquist Subcarriers, Amir Rashidinejad¹, An Nguyen², Magnus Olson³, Steven Hand², David Welch²; ¹Infinera Canada, Canada; ²Infinera Corporation, USA; ³Infinera Sweden, Sweden, We demonstrate realtime 2.4Tbps bidirectional coherent DWDM-PON (12λ×200Gbps/λ) over 100km SMF, enabled by multiplexing Nyquist subcarriers. Further, through proof-of-concept experiments, we show the advantage of coherent subcarrier aggregation in nextgeneration point-to-multipoint bidirectional access networks.

W2A.31

Nonlinear Pre-Distortion Based on Indirect Learning Architecture and Cross-correlation-enabled Behavioral Modeling for 120-Gbps Multimode Optical Interconnects, Chenyu Liang¹, Wenjia Zhang¹, Line Ge¹, Jiangbing Du¹, Zuyuan He¹; ¹Shanghai Jiao Tong Univ., China. In this paper, we present a novel nonlinear pre-distortion scheme enabled by indirect learning architecture and cross-correlation based behavioral modeling. 120-Gbps PAM-4 error free transmission is demonstrated using 30-GHz class VCSEL.

W2A.32

Low-complexity Equalizer based on Volterra Series and Piecewise Linear Function for DML-based IM/DD System, Yukui Yu¹, Tianwai Bo¹, Che Yi¹, Daeho Kim¹, Hoon Kim¹; 'KAIST, Korea, South Korea. We propose and demonstrate a low-complexity equalizer specifically designed for DML-based IM/DD system using Volterra series and piecewise linear function. The proposed equalizer performs similarly to the Volterra equalizer, but reduces the complexity by >90%.

W2A.33

Towards All Optical DCI Networks, Ginni Khanna¹, Shengxiang Zhu¹, Mark M. Filer¹, Christos Gkantsidis¹, Francesca Parmigiani¹, Thomas Karagiannis¹; '*Microsoft*, *UK*. We propose and experimentally demonstrate an all-optical architecture for data center interconnect networks with reconfiguration times of a few seconds. Filtering and amplification transient effects have minimal impact on BER oerformance. Revolutionizing the Economics of Pluggable Optics with Silicon Photonics 10:15–11:15, Theater II

Product Showcase Huawei Tech. Co. 10:15–10:45, Theater III

NOS Keynote 10:30–11:15, Theater I

Product Showcase Xilinx 11:00–11:30, Theater III

NOS Panel I: Next Generation Access Network 11:15–12:45, Theater I

TIP: The Disaggregated Transport Network 11:30–13:00, *Theater II*

Product Showcases 11:30–12:30, *Theater III*

Product Showcase 13:00–13:30, *Theater III*

Cloud Network Evolution Bandwidth Drivers IEEE Future Directions 13:15–14:45, Theater II

Unleashing the Full Potential of Silicon Photonics 13:30–14:30, Theater III

NOS Panel II 13:30–15:00, Theater I

W2A • Poster Session I—Continued

W2A.34

Laser Diode Chirp Requirements in Wideband Analog Photonic Signal Processing, Farzad M. Koushyar¹, McKay B. Bradford², Monireh Moayedi Pour Fard², Thien-An Nguyen², Sriram Vishwanath^{1,2}; ¹Univ. of Texas at Austin, USA; ²GenXComm Inc., USA. Distortions added to a 150 MHz OFDM signal in a photonic link comprised of a 4-tap filter and a directly modulated laser is simulated to study the laser chirp impact on the link dynamic range.

W2A.35

Switchable Down-, Up- and Dualchirp Linearly Frequency Modulated Signal Generation Utilizing a Dual-polarization Dual-parallel Mach-Zehnder Modulator, Peng Li¹, Lianshan Yan¹, Jia Ye¹, Xihua Zou¹, Bin Luo¹, Wei Pan¹; 'Scholl of Information Science and Technology, Southwest Jiaotong Univ., China. A photonic method to generate switchable down-, up- and dual-chirp linearly frequencymodulated (LFM) signals is proposed. Such signals with a carrier frequency of 5 GHz and a chirp rate of 1 GHz/4us are experimentally demonstrated.

Wednesday, 11 March

Scalable and Fast Optical Circuit Switch Created with Silicon-photonic Tunable-filter-based Local Oscillator Bank and Colorless Coherent Detection, Ryosuke Matsumoto¹, Takashi Inoue¹, Ryotaro Konoike¹, Hiroyuki Matsuura¹, Keijiro Suzuki¹, Yojiro Mori², Kazuhiro Ikeda¹, Shu Namiki¹, Ken-ichi Sato¹; ¹AIST, Japan; ²Nagoya Univ. , Japan. We propose a large-scale fast optical circuit switch created with Silicon-photonic tunable-filter-based LO bank and colorless coherent detection. Experiments verify 475.1-Tbps switch bandwidth (1,856 × 1,856

under 3.52 µs.

at 256 Gbps) and switching times

W2A.37

High-speed Radio-on-free-space **Optical Mobile Fronthaul Sys**tem for Ultra-dense Radio Access Network, Pham Tien Dat¹, Atsushi Kanno¹, Keizo Inagaki¹, Francois Rottenberg², Naokatsu Yamamoto¹, Tetsuva Kawanishi³: ¹National Inst. of Information and Communication Technology (NICT), Japan; ²ICTEAM Inst., Universite catholique de Louvain, Belgium: ³Waseda Univ., Japan, We present a transmission of radio signals over a seamless fiber-FSO system for ultra-dense RAN. We successfully transmitted 80-Gb/s and 40-Gb/s 2×2 MIMO FBMC-OQAM signal in the 90-GHz band over DL and UL direction.

W2A.38

81.37-Gbps 2×2 MIMO 60-GHz OFDM-RoF System Employing I/Q Nonlinear Compensation Filtering Algorithm, Zhen-Xiong Xie¹, Bo-Jiun Lin¹, Pin-Xyuan Ding¹, Tsung-Hung Tsai¹, Ping-Yao Huang¹, Chia-Chien Wei², Chun-Ting Lin¹; ¹National Chiao Tung Univ., Taiwan; ²National Sun Yatsen Univ., Taiwan. We demonstrate 2x2 MIMO 60-GHz RoF system with nonlinear compensation. The proposed I/Q Volterra nonlinear compensation not only improves data rate up to 81.37Gbps but also extends wireless distance to 42 meters with data rate of >70Gbps.

W2A.39

52.58-Gbps Fiber-wireless 60-GHz 2x2 MIMO System Integrating Optical Mode Division Multiplexing and Wireless MIMO, Ping-Yao Huang¹, Wei-Ling Li¹, Tsung-Hung Tsai¹, Zhen-Xiong Xie¹, Chun-Ting Lin¹; 'National *Chiao Tung Univ.*, Taiwan. Optical LP₀₁ and LP₁₁ mode are utilized to carry 2x2 MIMO signals for 60-GHz wireless signals. The proposed system can achieve data rate of 52.58-Gbps for fiber-wireless system with 5-km FMF and 3-m air link.

W2A.40

Hybrid Fiber-optical/THz-wireless Link Transmission Using Low-cost IM/DD Optics, Francisco M. Rodriques¹, Ricardo Ferreira¹, Carlos Castro², Robert Elschner², Thomas Merkle³, Colja Schubert², António Teixeira4,1; 1PICadvanced S.A., Portugal: ²Fraunhofer Heinrich Hertz Inst., Germany; ³Fraunhofer-Institut für Angewandte Festkörperphysik, Germany: ⁴Instituto de Telecomunicações, Portugal. Hybrid fiber-optical/ THz wireless transmission of 16 GBd 16-QAM is demonstrated over 20 km of fiber. Transmission of 50 Gb/s net rate is achieved using low-cost IM/DD optics and wireless front-ends operating at 306 GHz.

W2A.41

Quantum Dash Passively Mode Locked Laser for Optical Heterodyne Millimeter-wave Analog Radioover-fiber Fronthaul Systems, Amol Delmade¹, Theo Verolet^{2,3}, Colm Browning¹, Yi Lin¹, Guy Aubin², F Lelarge^{3,4}, Abderrahim Ramdane², Liam Barry1; 1Dublin City Univ., Ireland; ²Centre de Nanosciences et de Nanotechnologies, Université Paris- Sud, Université Paris-Saclay, France; ³III-V Lab, France; ⁴Almae Technologies, France. In mm-wave systems, carrier phase noise limits the performance of analog multicarrier signal transmission. Experimental results show the successful use of a passively mode-locked laser with optical feedback in a 60GHz A-RoF heterodyne 25km system.

W2A.42

Delivery of 138.88Gpbs Signal in a RoF Network with Real-time Processing Based on Heterodyne Detection, Can Wang', Xinying Li', Mingming Zhao', Kaihui Wang', Jiao Zhang', Miao Kong', Wen Zhou', Jiangnan Xiao', Jianjun Yu'; '*Fudan* Univ, China. We experimentally demonstrate 138.88-Gb/s PDM-QPSK signal delivery in a RoF network based on real-time processing based on heterodyne coherent detection, and error-free delivery can be realized if SD-FEC with 27% overhead is enabled

W2A.43

Neural-network-enabled Multivariate Symbol Decision in a 100-Gb/s Complex Direct Modulation System, Di Che'; 'Nokia Bell Labs, USA. We reveal a neural network can be exploited for multivariate symbol decision simply by feeding multiple signal features as its inputs. The concept is verified in a digital coherent receiver which detects dual-polarization 25-GBaud directlymodulated PAM-4 signals.

W2A.44

Artificial Neural Network-Based Compensation for Transceiver Nonlinearity in Probabilistic Shaping Systems, Tu T. Nguyen¹, Tingting Zhang¹, Mahmood Abu-Romoh¹, Andrew Ellis¹; 'Aston Univ., UK. Artificial neural network for transceiver nonlinearity compensation in dual-polarization probabilistically shaped 28 GBaud systems is experimentally investigated with achieved SNR performance gain up to 1 dB.

W2A.45

Cascade Recurrent Neural Network Enabled 100-Gb/s PAM4 Short-reach Optical Link Based on DML, Zhaopeng Xu¹, Chuanbowen Sun¹, Tonghui Ji¹², Honglin Ji¹, William Shieh¹; ¹Univ. of Melbourne, Australia; ²Univ. of Science and Technology Beijing, China. A cascade RNN-based equalizer is proposed which outperforms traditional NNbased equalizers for short-reach optical links. A cascade RNN-enabled 100-Gb/s PAM4 link is experimentally demonstrated over 15-km fiber using a 16-GHz DML in C-band.

W2A.46

Experimental Demonstration of Cband 112-Gb/s PAM4 over 20-km SSMF with Joint Pre- and Postequalization, Xizi Tang^{1,2}, Yaojun Qiao¹, Gee-Kung Chang²; ¹School of Information and Communication Engineering, Beijing Univ. of Posts and Telecommunications, China; ²School of Electrical and Computer Engineering, Georgia Inst. of Technology, USA. We demonstrate C-band 112-Gb/s PAM4 over 20-km transmission with pre- and post-equalization. Pre-filter coarsely pre-compensates system bandwidth at transmitter while FFE-DFE with erasure technology jointly post-compensates residual bandwidth limitation and dispersion-induced power fading at receiver

W2A.47

DSP-based Mode-dependent Loss and Gain Estimation in Coupled SDM Transmission, Ruby S. Bravo Ospina^{1,2}, Chigo M. Okonkwo¹, Darli A. Mello²; ¹Eindhoven Univ. of Technology, Netherlands; ²Univ. of Campinas, Brazil. We model analytically the MDG/ MDL estimation process in coupled SDM transmission using equalizer coefficients of coherent receivers. We show that estimation errors can be partially compensated in moderate regimes of SNR and MDL/MDG.

W2A.48

Efficient Echo-cancellation Algorithms for Full Duplex Coherent Optical Systems, Mu Xu¹, Zhensheng Jia¹, Junwen Zhang¹, Haipeng Zhang¹, Luis Alberto Campos¹; ¹CableLabs, USA. A digital echo-cancellation method to identify and mitigate reflection impairments in full duplex coherent optical links is proposed. More-than 6 dB improvements in echo power tolerance are experimentally verified in a 32-GBd full-duplex DP-QPSK link.

W2A.49

Amplifier Considerations in ROADMfree Space-switched Nonlinear Optical Links, Robert J. Vincent¹, David J. Ives¹, Seb J. Savory¹; ¹Univ. of Cambridge, UK. Power fluctuations accumulate in ROADM-free spaceswitched networks. Thousands of randomized nonlinear transmissions demonstrate that capacity with an inventory of {5,10,15,20}dB gain amplifiers is within 10% of optimal and triple that with {10,20}dB amplifiers over 1,000km.

W2A.50

Real-time Transmission Measurements from 200 Gb/s to 600 Gb/s over Links with Long 122 km Fiber Spans, John D. Downie¹, Jason Hurley¹, Xiaojun Liang¹, James Himmelreich¹, Sergejs Makovejs², Donald Govan³, Giacomo Losio⁴: ¹Corning Research & Development Corp, USA; ²Corning Incorporated, UK; ³Lumentum, UK: ⁴Lumentum, Italy, We present results for real-time coherent transmission with data rates from 200 Gb/s to 600 Gb/s in 50 Gb/s increments over a re-circulating loop with 122 km spans of ultra-low loss, large effective area fiber.

W2A.51

Long-haul and High-speed Key Distribution Based on Oneway Non-dual Arbitrary Basis Transformation in Optical Fiber Link, Chao Lei¹, Jie Zhang¹, Yajie Li¹, Yongli Zhao¹, Bo Wang¹, Hang Gao¹, Junjia Li¹, Mingrui Zhang¹; ¹Beijing Unix. of Posts and Telecommunications, China. We propose a long-haul and high-speed key distribution based on one-way non-dual arbitrary basis transformation in optical fiber link. The key distribution rate of 277 Kbit/s with free key error rate is demonstrated over 300km.

Exhibit Hall B

W2A • Poster Session I—Continued

W2A.52

A Method to Separate the Penalties Caused by Various Nonlinear Signal-pump Impairments in Raman Amplified System, Jingnan Li¹, Yangyang Fan¹, Zhenning Tao¹, Tong Ye¹, Hiroyuki Irie², Hisao Nakashima², Kousuke Komaki², Takeshi Hoshida²; ¹Fujitsu R&D Center, China; ²Fujitsu Ltd., Japan. We separate various nonlinear impairments caused by pump laser RIN in Raman amplified system. Experiment shows that nonlinear polarization scattering has more impact than phase noise does, and the gain fluctuation has the least impact.

.

W2A.53

On-chip Continuous-variable Quantum Key Distribution(CV-QKD) and Homodyne Detection, Yuan Shen¹, Lin Cao^{2,1}, Xuyang Wang¹, Jun Zou¹, Wei Luo¹, Yunxiang Wang¹, Hong Cai³, Bin Dong⁴, Xianshu Luo⁴, Weijun Fan¹, Leong Chuan Kwek¹, Aigun Liu¹: ¹Nanyang Technological Univ., Singapore; ²Peking Univ., China; ³Institude of Microelectronics, Singapore: ⁴Advanced Micro Foundry, Singapore. An on-chip continuousvariable quantum key distribution(CV-QKD) system is integrated using silicon photonics fabrication process and demonstrates the capability of transceiving Gaussian-modulated coherent states and homodyne detection.

W2A.54

Stochastic EXIT Design for Low-latency Short-block LDPC Codes, Toshiaki Koike-Akino¹, David S. Millar¹, Keisuke Kojima¹, Kieran Parsons¹; ¹Mitsubishi Electric Research Labs, USA. We introduce a stochastic version of extrinsic information transfer (EXIT) chart which accounts for dispersion in finite-length LDPC decoding. The proposed approach can design short LDPC codes systematically, achieving about 1.2dB gain over recently

W2A.55 Improved Simulation Accuracy of the Split-step Fourier Method, Shen Li¹, Magnus Karlsson¹, Erik Agrell¹; ¹Chalmers Unix. of Technology, Sweden. We investigate a modified split-step Fourier method (SSFM) by including low-pass filters in the linear steps. This method can simultaneously achieve a higher simulation accuracy

and a slightly reduced complexity.

OKD in the Co-existence Regime of Lit GPON / NG-PON2 Access Networks, Nemanja Vokic¹, Dinka Milovance¹, Bernhard Schrenk¹, Michael Hentschel¹, Hannes Hübel¹; ¹AIT Austrian Inst. of Technology, Austria. We demonstrate cost-effective QKD integration for GPON and NG-PON2. Operation at 5.1×10⁻ ⁷ secure bits/pulse and a OBER of 3.28% is accomplished for a 13.5-km reach, 2:16-split PON, with 0.52% co-existence penalty for 19 classical channels.

Deployment Opportunities for DPS-

W2A.56

Revolutionizing the Economics of Pluggable Optics with Silicon Photonics 10:15–11:15, Theater II

Product Showcase Huawei Tech. Co. 10:15–10:45, Theater III

NOS Keynote 10:30–11:15, Theater I

Product Showcase

Xilinx 11:00–11:30, Theater III

NOS Panel I: Next Generation Access Network 11:15–12:45, Theater I

TIP: The Disaggregated Transport Network 11:30–13:00, Theater II

Product Showcases 11:30–12:30, Theater III

Product Showcase 13:00–13:30, *Theater III*

Cloud Network Evolution Bandwidth Drivers IEEE Future Directions 13:15–14:45, Theater II

Unleashing the Full Potential of Silicon Photonics 13:30–14:30, Theater III

NOS Panel II 13:30–15:00, Theater I

14:00-16:00 W3A • Neuromorphic III: Systemoriented

Presider: Hideaki Furukawa; National Inst of Information & Comm Tech, Japan

W3A.1 • 14:00

Hardware Architecture and Algorithm Co-design for Multi-layer Photonic Neuromorphic Network with Excitable VCSELs-SA, Shuiying Xiang^{1,2}, Zhenxing Ren¹, Yahui Zhang¹, Xingxing Guo¹, Ziwei Song¹, Aijun Wen¹, Yue Hao²; ¹State Key Laboratory of Integrated Service Networks, Xidian Univ., China; ²State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian Univ., China. We design a multi-layer photonic spiking neural network with excitable VCSELs-SA. Numerical results based on the rate-equation models show that the proposed neuromorphic network architecture is capable of solving the classical XOR problem by supervised-learning.

W3A.2 • 14:15

Wavelength-space Domain High-throughput Artificial Neural Networks by Parallel Photoelectric Matrix Multiplier, Mehmet Berkay On¹, Hongbo Lu¹, Humphry Chen¹, Roberto Proietti¹, S. J. Ben Yoo¹; *IECE*, Univercity of California Davis, USA. We propose a massively parallel neural network architecture with photonic matrix-vector multiplication in the wavelength and space domains with balanced photodetectors and nonlinear transfer functions in MZI modulators. An experimental proof-of-principle demonstration is also discussed.

W3A.3 • 14:30 Invited

Accelerating Artificial Intelligence with Silicon Photonics, Nicholas Harris', Ryan Braid', Darius Bunandar', Jim Carr', Brad Dobbie', Carlos Dorta', Jonathan Elmhurst', Martin Forsythe', Michael Gould', Shashank Gupta', Sukesh Kannan', Tyler Kenney', Gary Kong', Tomo Lazovich', Scott McKenzie', Carl Ramey', Chithira Ravi', Michael Scott', John Sweeney', Ozgur Yildirim', Katrina Zhang', 'Lightmatter Inc., USA. As Moore's law and Dennard scaling come to an end, new devices and computing architectures are being explored. The development of computing hardware designed to address the rapidly growing need for computational power to accelerate artificial intelligence applications has prompted investigations into both.

Room 2

14:00–16:00 W3B • Panel: Will SDM Truly Revolutionize the Submarine Communication Industry?

Subsea cable capacity has been growing at a dramatic rate over the past years. Until early 2018, the main effort in meeting the demand for capacity growth is to increase the capacity per fiber pair (FP). The technology has advanced in each element of submarine cable building blocks:

fiber design with large effective area (110, 130 and then 150)

high power repeater (20+ dBm)

more spectral efficiency (5+ b/s/Hz) transponders

broad transmission bandwidth (40nm, 72nm with C+L)

However, the capacity per FP faces the Shannon limit and the power for submarine network is limited by the power feeding equipment (PFE).

Recently, the new paradigm- **Spatial division multiplexing** (**SDM**) cable has been introduced, where the number of FPs within one cable has been increased (12 FPs, 16FPs...). The main effort shifted from maximizing the capacity per FP to maximizing the capacity per cable. During this workshop, experts will discuss the impact on each element of the submarine cable linked to the new SDM cable paradigm and will give their insight on the future of submarine communication.

Topics to cover:

- Definition and drivers for SDM cable in subsea cable
- SDM cable impacts on subsea cable components
- Cable/fiber design: linear vs. non-linear regime
- Repeater design: very high power (20+dBm per Fiber Pair) to pump farming (16-18dBm per FPs)

Branching Unit: ROADM unit equipped with WSS vs. FPs switched $\ensuremath{\mathsf{BU}}$

SLTE: Approaching Shannon limit vs. low cost SLTE

SDM cable impact to subsea network topology: point to point vs. mesh subsea network

Open cable access: managed spectrum vs. managed FP as a granularity

Speakers:

- Tim Stronge; Telegeography, USA Massimiliano Salsi; Google, USA Priyanth Mehta; Ciena, Canda Eduardo Mateo; NEC Corporation, Japan Olivier Courtois; ASN, France Masaaki Hirano; Sumitomo Electric Industries Ltd., Japan
- Stephen Grubb; Facebook Inc., USA

14:00–15:45 W3C • Open Network Architecture Presider: Ramon Casellas; CTTC, Spain

Room 6C

W3C.1 • 14:00

Experimental Demonstration of Service Deployment in Open Packet-optical Networks, Oscar Gonzalez de dios¹, Minoru Yamaguchi², Guillermo Pajares Martin¹, Masatoshi Saito², Samier Barguil Giraldo⁵, Toshihiro Yokoi², Alfredo Gonzalez³, Andrea Campanella⁴, Yoshinori Koike², Victor Lopez¹, Hiroata Yoshioka², ¹Telefonica, Spain; ²NTT, Japan; ³Wipro, Spain; ⁴ONF, Italy; ⁵UAM, Spain. Disaggregation breaks conventional closed systems into components connected by open interfaces. This paper shows the experimental demonstration of service provisioning and partial replacement of network OS in a disaggregated open packet and optical converged network based on open interfaces and open source software.

W3C.2 • 14:15 D

Experimental Validation of an Open Source Quality of Transmission Estimator for Open Optical Networks, Alessio Ferrari¹, Mark M. Filer², Karthikeyan Balasubramanian², Yawei Yin², Esther Lerouzic³, Jan Kundrát⁴, Gert Grammel⁵, Gabriele Galimberti⁶, Vittorio Curri¹; ¹Politecnico di Torino, Italy; ²Microsoft Corp., USA; ³Orange Labs, France; ⁴CESNET, Czechia; ⁵Juniper Networks, Germany; ⁴Cisco Photonics, Italy. We test the QoTE of the GNPy library fed by data from the network corroller against experimental measurements on mixed-fiber, Raman-amplified, multi-vendor scenarios on the full C-band: an excellent accuracy within 1 dB is shown.

W3C.3 • 14:30 Invited

Demonstration of Joint Operation across Open ROADM Metro Network, OpenFlow Packet Domain, and Open-Stack Compute Domain, Andrea Fumagalli¹, Behzad Mirkhanzadeh¹, Shweta Vachhani², Balagangadhar G. Bathula², Gilles Thouenon³, Christophe Betoule³, Ahmed Trikl³, Martin Birk², Olivier Renais³, Tianliang Zhang¹, Miguel Razo¹, Marco Tacca¹; ¹Univ. of Texas at Dallas, USA; ²AT&T Labs, USA; ³Orange Labs, France. Progress on the recent implementation of OpenROADM MSA functionalities is reported along with a description of the related TransportPCE SDN controller and PROnet multidomain resource orchestrator software modules. These functionalities enable the described use cases.

Room 6D

14:00-16:00

W3D • High-speed Transmission *Presider: Timo Pfau; Acacia Communications, Inc., USA*

Demodulation of Eigenvalue Modulated Signal Based on Eigenvalue-domain Neural Network, Ken Mishina¹, Shingo Sato¹, Shohei Yamamoto¹, Yuki Yoshida^{2,1}, Daisuke Hisano¹, Akihiro Maruta¹; 'Graduate School of Engineering, Osaka Univ., Japan; "National Inst. of Information and Communications Technology, Japan. A demodulation scheme for an eigenvalue modulated signal based on an eigenvaluedomain neural network is demonstrated experimentally. Successful demodulation is demonstrated at 2.5 Gb/s over a transmission distance of up to 3,000 km.

W3D.2 • 14:15 **D**

Neural Network-based Soft-demapping for Nonlinear Channels, Maximilian Schaedler^{1,2}, Stefano Calabro¹, Fabio Pittalà¹, Christian Bluemm¹, Maxim Kuschnerov¹, Stephan Pachnicke²; ¹Huawei Munich Research Center, Germany; ²Chair of Communications, Kiel Univ. (CAU), Germany. Conventional soft demappers designed for AWGN channels suffer from performance loss under realistic channels. We propose a neural network soft demapper and show a gain of 0.35dB in an 800Gb/s coherent transmission experiment using DP-32QAM.

W3D.3 • 14:30 Invited D

Model-Based Machine Learning for Joint Digital Backpropagation and PMD Compensation, Christian Häger¹, Henry D. Pfister², Rick M. Bütler³, Gabriele Liga³, Alex Alvarado³, ¹Chalmers Tekniska Hogskola, Sweden; ²Duke Univ., USA; ³Eindhoven Univ. of Technology, Netherlands. We propose a model-based machine-learning approach for polarization-multiplexed systems by parameterizing the split-step method for the Manakov-PMD equation. This approach performs hardware-friendly DBP and distributed PMD compensation with performance close to the PMDfree case.

Room 6E

14:00–16:00 W3E ● Ultra-wideband Transmission ●

Presider: Johannes Fischer; Fraunhofer Heinrich-Hertz-Institut, Germany

W3E.1 • 14:00 Tutorial 🕨

Ultra-wideband Transmission and High-symbol Rate Signal Handling Technologies, Fukutaro Hamaoka¹; '*NTT Network Innovation Laboratories, Japan.* This tutorial reviews the recent progress in ultra-wideband transmission techniques beyond the C and L bands and 100-200 GBaudclass high-symbol rate signal handling technologies with bandwidth multiplexers and ultra-broadband optical frontends.

Fukutaro Hamaoka received his PhD in electrical engineering from Keio University, Japan, in 2009. He is currently with NTT Network Innovation Laboratories where he is engaged in the research and development of high capacity optical transport systems with ultra-wideband wavelength division multiplexing and high-symbol rate techniques. 14:00–16:00 W3F • Special Chairs Session: Vision 2030: Taking Optical Communications through the Next Decade (Session 1)

Room 6F

W3F.1 • 14:00 Invited

W3F.2 • 14:20 Invited

D

Terabit Transmitters Using Heterogeneous III-V/Si Photonic Integrated Circuits, John E. Bowers¹; ¹Unix. of California Santa Barbara, USA. Heterogeneous photonic integrated circuits are being demonstrated with Tbps capacity and higher performance, with laser linewidths below 1 kHz and volumes scaled to multimillion per annum production levels. Room 7

14:00-16:00

W3G • Datacentre Infrastructure and Metrology Presider: Yue-Kai Huang; NEC Laboratories

America Inc, USA

W3G.1 • 14:00 Invited

More Than Communications: Environment Monitoring Using Existing Optical Fiber Network Infrastructure, Yoshiaki Aono¹, Ezra Ip², Philip Ji²; ¹NEC Corporation, Japan; ²Optical Networking and Sensing, NEC Laboratories America, USA. We propose reusing existing optical cables in metropolitan networks for distributed sensing using a bidirectional, dual-band architecture where communications and sensing signals can coexist with weak interaction on the same optical fiber.

Show Floor Programming Continued

Cloud Network Evolution Bandwidth Drivers IEEE Future Directions 13:15–14:45, Theater II

Unleashing the Full Potential of Silicon Photonics

13:30–14:30, Theater III

NOS Panel II 13:30–15:00, Theater I

Product Showcases

14:30-15:30, Theater III

Title to be Announced, Chris Doerr¹; ¹Acacia Communications Inc., USA. Abstract not available.

W3F.3 • 14:40 Invited Physics Side of Silicon/Nanophotonics, Michal Lipson'; 'Columbia Univ., USA. Abstract not available.

W3G.2 • 14:30

Automated Thermal Drift Compensation in WDM-based Silicon Photonic Multi-Socket Interconnect Systems, Miltiadis Moralis-Pegios¹, Francesco Zanetto², Emanuele Guglielmi², Vittorio Grimaldi², Konstantinos Fotiadis¹, Stelios Pitris¹, Theoni Alexoudi¹, Peter De Heyn³, Yoojin Ban³, Joris Van Campenhout³, Douglas Aguiar², Giorgio Ferrari², Marco Sampietro², Andrea Melloni², Nikos Pleros¹; *Hristoteleio* Panepistimio Thessalonikis, Greece; ²Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Italy; ³imec, Belgium. We present an on-chip AWGRbased interconnect system with automated thermal drift compensation along cascaded resonant structures in a dual socket layout. Error-free operation in a 30 Gb/s data-routing scenario within a 12C temperature range is demonstrated. W3A • Neuromorphic III: Systemoriented—Continued W3B • Panel: Will SDM Truly Revolutionize the Submarine Communication Industry?—Continued

Room 2

W3C • Open Network Architecture— Continued W3D • High-speed Transmission— Continued

Room 6D

W3A.4 • 15:00

Intelligent Computing with Photonic Memories, Mario Miscuglio¹, Jiawei Meng¹, Volker Sorger¹, Ludmila J. Prokopeva^{2,4}, Yifei Zhang³, Omer Yesiliurt^{2,4}, Armin Mehrabian¹, Juejun Hu³, Alexander Kildishev^{2,4}; ¹George Washington Univ., USA; ²Birck Nanotechnology Center, USA; ³Department of Materials Science & Engineering, Massachusetts Inst. of Technology, USA; ⁴School of ECE, Purdue Univ., USA. Here we propose and demonstrate photonic neural network whose neuron's non-volatile weighting functionality is realized through an engineered hybrid Ge₂Sb₂Se₄Te₁silicon Mach-Zehnder modulator photonic memory with thermoelectrical programmability. The network can effortlessly perform inference with high accuracy at the speed-of-light.

W3A.5 • 15:15

All-optical Recurrent Neural Network with Sigmoid Activation Function, George Mourgias-Alexandris¹, George Dabos¹, Nikolaos Passalis¹, Anastasios Tefas¹, Angelina Totovic¹, Nikos Pleros¹; 'Aristotle Univ. of Thessaloniki, Greece. We demonstrate experimentally, the first all-optical recurrent-neuron with a sigmoid activation function and four WDM-inputs with 100psec pulses. The proposed neuron geared up a neural-network for financial prediction-tasks exhibiting an accuracy of 42.57% on FI-2010.

W3A.6 • 15:30

Interferometer-based Photonic Circuit Classifier Showing >90% Accuracy for Well-known Iris Dataset without Utilizing Nonlinear Activation Function, Guangwei Cong¹, Noritsugu Yamamoto¹, Takashi Inoue¹, Yuriko Maegami¹, Morifumi Ohno¹, Makoto Okano¹, Shu Namiki¹, Koji Yamada¹; ¹AIST (Natl Inst of Adv Indust Sci&Tech), Japan. We demonstrate that interferometer-based photonic circuits can perform classification by only phase control even without activation functions, which can classify well-known Iris dataset with >90% accuracy in simulation, showing simple photonic implementation for machine learning.

W3C.4 • 15:00 D

Operational Mode and Slicing Adaptation in OpenConfig Disaggregated Optical Networks, Davide Scano¹, Alessio Giorgetti¹, Andrea Sgambelluri¹, Filippo Cugini¹, Silvia Fichera¹; ¹Scuola Superiore Sant Anna di Pisa, Italy. This paper proposes and experimentally validates a workflow to handle network failures implying the change of the operational mode on optical transponders. An SDN control plane is considered with a real packet-optical data plane.

Architecting Cloud-native Optical Network with Whitebox Equipment, Hideki Nishizawa¹; ¹NTT Network Innovation Labs, NTT Corporation, Japan. A flexible and open means of implementing an optical network by using whitebox equipment with the Transponder Abstraction Interface is proposed. Examples of automation and monitoring device/performance information using an open transport platform are described.

W3D.4 • 15:00 D

End-to-end Learning of Geometrical Shaping Maximizing Generalized Mutual Information, Kadir Gumus¹, Alex Alvarado¹, Bin Chen², Christian Häger³, Erik Agrell³, ¹Eindhoven Univ. of Technology, Netherlands; ²School of Computer Science and Information Engineering, Hefei Univ. of Technology, China; ³Department of Electrical Engineering, Chalmers Univ. of Technology, Sweden. GMI-based endto-end learning is shown to be highly nonconvex. We apply gradient descent initialized with Gray-labeled APSK constellations directly to the constellation coordinates. State-of-the-art constellations in 2D and 4D are found providing reach increases up to 26% w.r.t. to QAM.

W3D.5 • 15:15

Compressed Nonlinear Equalizers for Optical Interconnects: Efficiency and Stability, Ling Ge¹, Wenjia Zhang¹, Yanci Zhang¹, Chenyu Liang¹, Jiangbing Du¹, Zuyuan He¹; 'Shanghai Jiao Tong Univ, China. Efficiency and stability of pruned Volterra-Series and Neural-Network Equalizers are compared in the 112-Gbps optical interconnects. The results show NNE outperforms VE at equalization performance and complexity while VE is more stable with channel variation.

W3D.6 • 15:30 D Top-Scored

All Silicon IQ Modulator with 1Tb/s Line Rate, Sasan Zhalehpour^{1,2}, Mengqi Guo³, Jiachuan Lin⁴, Zhuhong Zhang⁴, Yaojun Qiao³, Wei Shi^{1,2}, Leslie Rusch^{1,2}, †*ECE Dept.*, Univ. Laval, Canada; ²COPL, Univ. Laval, Canada; ³School of Information and Communication Engineering, BUPT, China; ⁴Canada Research Center, Huawei Technologies Canada, Canada. By significantly improving the accuracy of our nonlinear pre-compensation digital signal processing, we achieve 1 Tb/s line rate with an all silicon modulator using 32QAM modulation with dual polarization emulation.

Room 6E	Room 6F	Room 7	Show Floor Programming Continued
W3E • Ultra-wideband Transmission— Continued	W3F • Special Chairs Session: Vision 2030: Taking Optical Communications through the Next Decade (Session 1)— Continued	W3G • Datacentre Infrastructure and Metrology—Continued W3G.3 • 14:45 BER and TDECQ Correlation for Different Impairments in 400Gbps PAM4 system, Ying Zhao ¹ , Chris Doerr ¹ , Li Chen ¹ , Ninghui Zhu ¹ , Dinh Ton ¹ , Ricardo Aroca ¹ , Xue Huang ¹ , Michelle Xu ¹ ; 'Acacia Communication Inc., USA. Closed-form bit-error rate (BER) expression as a function of transmitter dispersion eye closure quaternary (TDECQ) is derived. Based on a silicon-photonics 400-Gbps PAM4 transceiver, BER and TDECQ correlation is verified for different impairments.	Cloud Network Evolution Bandwidth Drivers IEEE Future Directions 13:15–14:45, Theater II Unleashing the Full Potential of Silicon Photonics 13:30–14:30, Theater III NOS Panel II 13:30–15:00, Theater I
W3E.2 • 15:00 Invited C Candidate Technologies for Ultra-wideband Nonlinear Optical Fibre Transmission System, Lidia Galdino ¹ , Daniel	W3F.4 • 15:00 Invited Indium Phosphide Photonic Integrated Circuits, Meint Smit ¹ , K. A. Williams; ¹ Technical Univ. Eindhoven, Nether-	W3G.4 • 15:00 Top-Scored A 0.57-mW/Gbps, 2ch x 53-Gbps Low-Power PAM4	Product Showcases 14:30–15:30, Theater III

Optical Fibre Iransmission System, Lidia Galdino', Daniel Semrau', Polina Bayvel'; 'Univ. College London, UK. This paper discusses the limitations, practicalities and possible technologies for accomplishing high-capacity broadband transmission systems beyond C+L EDFA bandwidth. It also provides a theoretical understanding of the contribution of different noise source limiting the overall system throughput. Indium Phosphide Photonic Integrated Circuits, Meint Smit', K. A. Williams; ¹Technical Univ. Eindhoven, Netherlands. Photonic integration is essential for high-performance communications and now becomes directly exploitable in sensing, metrology and imaging. InP PICs provide lasers, amplifiers, modulators and detectors in one platform, and a roadmap for higher density integration.

A 0.57-mW/Gbps, 2ch x 53-Gbps Low-Power PAM4 Transmitter Front-end Flip-chip-bonded 1.3-µm LD-Array-on-Si, Toshiki Kishi', Munehiko Nagatani', Shigeru Kanazawa², Kota Shikama¹, Takuro Fujii¹, Hidetaka Nishi', Hiroshi Yamazaki', Norio Sato¹, Hideyuki Nosaka¹, Shinji Matsuo'; 'NTT Device Technology Laboratories, Japan; 'NTT Device Innovation Center, Japan. A low-power 2-channel PAM4 transmitter front-end consisting of 65-nm CMOS PAM4 shunt LD drivers and flip-chip-bonded 1.3-µm LDarray-on-Si achieves simultaneous 2ch x 53-Gps PAM4 transmission over 2-km-long SSMF with power efficiency of 0.57 mW/Gbps.

W3G.5 • 15:15 Invited

The Role of Optics In Future Al-driven Intra-DC Infrastructure, Brad Booth'; 'Microsoft Corp, USA. The next generation of artificial intelligence and machine learning requires the ability to connect multiple nodes across an ever-increasing scale. This growth is driving an increased role of optics to build these next generation system. New Optical Module Implementations New High-bandwidth, Non-DSP Interface for Data Center and Campus Interconnects

15:00–16:00, Theater II

Open, Multi-vendor Networks - Design, Management and Operations 15:30–17:00, *Theater III*

MW Panel IV: What is Next for Data Center Interconnects (DCIs)? 15:30–17:00, Theater I

W3F.5 • 15:20 Invited Computation with Optical Oscillator Networks, Hiroki

Takesue'; 'NTT Basic Research Labs, Japan. We discuss future perspective of a new type of computing based on networks of optical oscillators, which includes coherent lsing machines for combinatorial optimization and coherent XY machine for continuous optimization.

W3E.3 • 15:30 D

Comparative Investigations between SSMF and Hollowcore NANF for Transmission in the S+C+L-bands, Yang Hong¹, Thomas Bradley¹, Natsupa Taengnoi¹, Kyle Bottrill¹, John Hayes¹, Gregory Jasion¹, Hans Mulvad¹, Francesco Poletti¹, Periklis Petropoulos¹, David Richardson¹; ¹Univ. of Southampton, UK. An experimental study reveals that hollow-core nested anti-resonant-nodeless fibers exhibit a broader bandwidth, lower latency, and offer >20% capacity enhancement in short-reach >100-Gb/s adaptively-loaded DMT transmission, relative to a standard SMF of a similar length.

W3F.6 • 15:40 Invited

Title to be Announced, Peter Winzer¹; ¹Independent Consultant, USA. Abstract not available.

Wednesday, 11 March

Room 1B	Room 2	Room 6C	Room 6D
W3A • Neuromorphic III: System- oriented—Continued	W3B • Panel: Will SDM Truly Revolutionize the Submarine Communication Industry?—Continued	W3C • Open Network Architecture— Continued	W3D • High-speed Transmission— Continued
W3A.7 • 15:45 Demonstration of Multi-channel Feedback Control for On-chip Microring Weight Banks, Chaoran Huang ¹ , Simon Bilodeau ¹ , Thomas Ferreira de Lima ¹ , Alexander Tait ¹ , Philip Ma ¹ , Eric Blow ¹ , Aashu Jha ¹ , Hsuan-Tung Peng ¹ , Bhavin J. Shastri ¹ , Paul Prucnal ¹ ; ¹ Princeton Univ., USA. We demonstrate a multi-channel feedback control for microring weight banks and achieve a record-high accuracy and precision. With the simplified procedures, the feedback control becomes more practical for configuring large-scale photonic networks.			

16:00–16:30 Coffee Beak, Upper Level Corridors and Exhibit Hall

Room 6E	Room 6F	Room 7	Show Floor Programming Continued
W3E • Ultra-wideband Transmission— Continued W3E.4 • 15:45 Sonm SCL-band Transmission through 70km SMF using Ultra-wideband Dual-stage Discrete Raman Amplifier, Md A. Iqbal', Lukasz Krzczanowicz', Ian Phillips', Paul Harper', Wladek Forysiak'; 'Aston Univ., UK. We experimentally demonstrate a dual-stage 150nm discrete Raman amplifier with 15dB gain and maximum ~8dB noise figure enabling SCL-band (1475-1625nm) WDM transmission through a 70km SMF using 30GBaud PM-QPSK signals with low transmission penalties.	W3F • Special Chairs Session: Vision 2030: Taking Optical Communications through the Next Decade (Session 1)— Continued	W3G • Datacentre Infrastructure and Metrology—Continued	New Optical Module Implementations New High-bandwidth, Non-DSP Interface for Data Center and Campus Interconnects 15:00–16:00, Theater II Open, Multi-vendor Networks - Design, Management and Operations 15:30–17:00, Theater III MW Panel IV: What is Next for Data Center Interconnects (DCIs)? 15:30–17:00, Theater I
16:	00–16:30 Upper Level Corridors and Exhibit	: Hall	112 Gbps Electrical Interfaces 16:15–17:00 <i>, Theater II</i>

Room 2

16:30–18:30 W4A • Digital Signal Processing II

Presider: Dan Sadot; Ben Gurion Univ. of the Negev, Israel

W4A.1 • 16:30

Spectrally Slicing Coherent Optical Spectrum Analyzer for Measuring Complex Field Waveforms of Optical QAM Signals, Yasuhiro Kawabata', Naoki Urakawa', Kotaro Kinoshita', Koji Igarashi'; '*Osaka Univ., Japan*. We propose spectrally slicing scheme without any bandwidth limitation for measuring complex field waveforms of optical QAM signals. With our scheme, complex filed waveforms of 12.5-Gbaud 16QAM signals are measured even with 300-MHz bandwidth.

W4A.2 • 16:45

On the Sample Complexity of Phase-retrieval Receiver Based on 2-D Arrayed Photodetectors, Yuki Yoshida¹, Toshimasa Umezawa¹, Atsushi Kanno¹, Keizo Inagaki¹, Naokatsu Yamamoto¹, Tetsuya Kawanishi²; ¹National Inst of Information & Comm Tech, Japan; ²Waseda Univ., Japan. Sample complexity, or equivalently the required number of photodetectors, of a carrier-less phase-retrieving coherent receiver is investigated numerically based on the experimental data; it can achieve comparable complexity to conventional coherent receivers.

W4A.3 • 17:00

Field Recovery at Low CSPR Using Interleaved Carrier Assisted Differential Detection, Tonghui Ji^{1,2}, Chuanbowen Sun¹, Honglin Ji¹, Zhaopeng Xu¹, William Shieh¹; ¹The Univ. of Melbourne, Australia; ²Univ. of Science and Technology Beijing, China. We propose an interleaved subcarrier loading scheme for double-sideband signals to relax the high CSPR requirement for self-coherent detection systems. Experimental result demonstrates a successful 100-Gb/s OFDM signal transmission over 160-km SSMF at 3.5-dB CSPR.

W4A.4 • 17:15

WDM Operation and Multiple Dispersion Elements for a Direct-detection System using Phase Retrieval, Huibin Zhou', Kaiheng Zou', Peicheng Liao', Ahmed Almaiman^{1,2}, Fatemeh Alishahi', Ahmad Falahpour', Amir Minoofar', Moshe Tur³, Alan E. Wilner'; 'Univ. of Southern California, USA; ²King Saud Univ., Saudi Arabia; ³School of Electrical Engineering, Tel Aviv Univ., Israel. We by simulation and experimentally investigate appropriate dispersion values and numbers of the dispersion elements for a phase retrieval based direct-detection system. A 149.5-Gbits/s QPSK transmission using phase retrieval with two dispersion elements is demonstrated in a WDM system.

16:30–18:30 W4B • Nonlinear Devices & Amplifiers 🖸

Presider: Francesca Parmigiani; Microsoft Research Ltd, UK

Room 6C

W4B.1 • 16:30 D

Time-wavelength-mode Equalization by PSO for Random Fiber Laser Based FMF Raman Amplifier, Yufeng Chen¹, Jiangbing Du¹, Jiaxiong Li¹, Lei Shen², Jie Luo², Zuyuan He¹; 'Shanghai Jiao Tong Univ, China; ²Yangtze Optical Fibre and Cable Joint Stock Limited Company, China. We report an FMF Raman amplifier based on random fiber laser with optimized timewavelength-mode equalization by PSO method, achieving 1.3-dB spectral gain flatness, 2.3-dB temporal SPV, and 0.03-dB MDG with 15-dB on-off gain.

Room 6D

16:30–18:30 W4C • Novel Passive Devices **D**

Presider: Yuqing Jiao; Technische Universiteit Eindhoven, Netherlands

W4C.1 • 16:30 Invited D

Topological Photonics in Integrated Waveguide, Xin-Tao He¹, Meng-Yu Li¹, Hao-Yang Qiu¹, Xiao-Dong Chen¹, Jianwen Dong¹; ¹Sun Yat-sen Univ., China. In this talk, we will show our recent works about exploration of valley photonic crystal waveguides towards the discovery of topological integrated photonics, particular for the silicon-on-insulator slab in telecommunication wavelength.

16:30–18:30 W4D • Speciality Fibers **D**

Presider: Eric Numkam Fokoua; University of Southampton, UK

W4D.1 • 16:30 Tutorial

Recent Developments in Photonic Crystal Fibre, Philip S. Russell¹; ¹Max-Planck-Inst Physik des Lichts, Germany. The tutorial will cover a selection of recent developments, including GHz optoacoustic mode-locking, the properties of chiral PCF, and gas-filled hollow core PCF for pulse compression and generation of UV light at multi-MHz repetition rates.

Philip Russell is based at the MPI for the Science of Light and the University of Erlangen-Nuremberg. Among his awards include the 2005 Körber Prize for European Science, the 2013 EPS Light Prize, the 2014 Berthold Leibinger Zukunftspreis, the 2015 IEEE Photonics Award and the 2018 Rank Prize Optoelectronics Prize.

Evaluation of Performance Penalty from Pump-signal Overlap in S+C+L Band Discrete Raman Amplifiers, Md A. lqbal', Lukasz Krzczanowicz', Ian Phillips', Paul Harper¹, Wladek Forysiak'; 'Aston Univ., UK. We experimentally investigate the transmission penalty on 30GBaud PM-QPSK signals due to adjacent Raman pumps in a 15dB gain, 150nm S+C+L-band discrete Raman amplifier. We report Anm guard-band around the Raman pump ensures negligible Q²-penalty.

W4B.3 • 17:00 D

W4B.2 • 16:45 D

Comparison of Erbium, Raman and Parametric Optical Fiber Amplifiers for Burst Traffic in Extended PON, Chandra Bhanu Gau¹, Filipe Ferreira¹, Vladimir Gordenko¹, Md A. Iqbal¹, Wladek Forysiak¹, Nick Doran¹; 'Aston Inst. of Photonic Technologies, UK. Experimental comparison of burst traffic amplification by: a polarization independent fiber optic parametric amplifier, a discrete Raman fiber amplification improves required received power by more than 3dB.

W4B.4 • 17:15 D

Noise Figure Evaluation of Polarization-insensitive Singlepump Fiber Optical Parametric Amplifiers, Vladimir Gordienko¹, Filipe Ferreira¹, Charles Laperle², Maurice O'Sullivan², Chandra Bhanu Gau¹, Kim Roberts², Nick Doran¹; ¹Aston Univ., UK; ²Ciena Corporation, Canada. Several polarizationinsensitive configurations for single-pump phase-insensitive fiber optical parametric amplifier are experimentally evaluated using 35GBaud PDM-QPSK signals. An equivalent noise figure of 9.1±1dB is experimentally derived by comparison with a variable noise figure EDFA.

W4C.2 • 17:00 D

Ultra-compact and Broadband Silicon Two-mode Multiplexer Based on Asymmetric Shallow Etching on a Multi-mode Interferometer, Zhen Wang¹, Chunhui Yao¹, Yong Zhang¹, Yikai Su¹; ¹Shanghai Jiao Tong Univ., China. We present a silicon two-mode multiplexer with a footprint of 1.5×7.24 µm² The operation principle is based on simultaneous multi-mode conversion. In the wavelength range of 1521nm~1571nm, the crosstalk is below –15 dB.

W4C.3 • 17:15 D

A Metalens Array on a 12-inch Glass Wafer for Optical Dot Projection, Ting Hu¹, Qize Zhong¹, Nanxi L¹, Yuan Dong¹, Zhengji Xu¹, Dongdong Li¹, Yuan Hsing Fu¹, Yanyan Zhou¹, Keng Heng Lai¹, Vladimir Bliznetsov¹, Hou-Jang Lee¹, Wei Loong Loh¹, Shiyang Zhu¹, Qunying Lin¹, Navab Singh¹; ¹IME, A*star, Singapore, Singapore. We report the first demonstration of a metalens array fabricated on a 12-inch glass wafer for dot projection. Good uniformity in dot size is achieved, with a maximum deviation of 8% to the simulated value.

16:30–18:30 W4E • Special Chairs Session: Vision 2030: Taking Optical Communications through the Next Decade (Session 2)

W4E.1 • 16:30 Invited

O

Coherent Communication: Cost per Bit, Kim Roberts¹, ¹WaveLogic Science, Ciena, Canada. Digital coherent optical transmission enabled a dramatic lowering of the cost per bit in high capacity links. It is time for the next revolution! The (admittedly meager) set of candidates will be examined to see what might break through the pack of evolutionary cost improvements and launch us in a new direction.

W4E.2 • 16:50 Invited

Technology Evolution and Capacity Growth in Undersea Cables, Alexei N. Pilipetskii¹, Georg Mohs¹; *SubCom, USA*. We examine the technology evolution that fueled exponential cable capacity growth over the last decades. We are at a critical point when transmission technology is mature and approaching fundamental limits. What is the path forward?

W4E.3 • 17:10 Invited 5G Optical Transport Network, Chih-Lin I¹; ¹China Mobile Communications Group, China. Abstract not available.

16:30–18:30 W4F • Reliability and Test Presider: Kenneth Jackson; Sumitomo Elec

Room 7

W4F.1 • 16:30 Tutorial

Device Innov USA, USA

Reliability Qualification and Failure Mechanisms for Semiconductor Lasers and Fiber Optic Transceivers, Robert Herrick'; *'Intel Corporation, USA.* In this tutorial, we will cover 3 topics: reliability qualification of fiber-optic transceivers, reliability testing of semiconductor lasers, and failure analysis and failure mechanisms in optoelectronics.

Robert Herrick is responsible for laser reliability at Intel's Silicon Photonic Product Division, and has worked for Intel since 2013. After obtaining an MSEE at the University of Illinois, his career started at McDonnell Douglas, working on early OEIC and high power laser R&D, where he did device modelling, mask design, and process development. After gaining an interest in reliability physics from the late Dr. Robert G. Waters, Dr. Herrick went to UCSB, and did the first studies of VCSEL degradation for his PhD dissertation with Professors Larry Coldren and Pierre Petroff. In the past 20 years, Dr. Herrick has specialized in semiconductor laser reliability and failure analysis, and has written many of the most cited papers and invited book review chapters on the subject. He has previously worked as a laser and fiber-optics transceiver reliability engineer for many of the large fiberoptics companies in Silicon Valley, including HP / Agilent, Emcore, Finisar, and JDSU / Lumentum.

Room 8

16:30–18:30 W4G • Photodetectors and Receivers Presider: Dong Pan; Sifotonics, USA

W4G.1 • 16:30

Heterogeneous Photodiodes on Silicon Nitride Waveguides with 20 GHz Bandwidth, Qianhuan Yu¹, Junyi Gao¹, Nan Ye¹, Boheng Chen¹, Keye Sun¹, Linli Xie¹, Kartik Srinivasan², Michael Zervas³, Gabriele Navickaite³, Michael Geiselmann³, Andreas Beling¹; ¹Univ. of Virginia, USA; ²Microsystems and Nanotechnology Division, National Inst. of Standards and Technology, USA; ³LIGENTEC, Switzerland. We demonstrate InGaAs/InP modified uni-traveling carrier photodiodes on Si₃N₄ waveguides with 20 GHz bandwidth and record-high external (internal) responsivities of 0.8 A/W (0.94 A/W) and 0.33 A/W (0.83 A/W) at 1550 nm and 1064 nm, respectively. Balanced photodiodes have 10 GHz bandwidth.

W4G.2 • 16:45

Si-waveguide-coupled Membrane InGaAsP-multiplequantum-well Photodetector with Large Bandwidth at High Optical Input Power, Yoshiho Maeda¹, Tatsurou Hiraki¹, Takuma Aihara¹, Takuro Fujii¹, Koji Takeda¹, Tai Tsuchizawa¹, Shinji Matsuo¹; ¹NTT Device Technology Laboratory, Japan. A Si-waveguide coupled membrane photodetector (PD) with an InGaAsP multiple-quantum-well absorption layer shows a fiber-to-PD responsivity of 0.4 A/W and bandwidth over 20 GHz at a fiber input power up to +5 dBm.

W4G.3 • 17:00

Monolithic Germanium PIN Waveguide Photodetector Operating at 2 µm Wavelengths, Ziqiang Zhao', Chongpei Ho', Qiang Li', Kasidit Toprasertpong', Shinichi Takagi', Mitsuru Takenaka'; '*Univ. of Tokyo, Japan.* We demonstrated Ge PIN waveguide photodetector operating at 2 µm wavelengths monolithically integrated on Ge-on-insulator platform. Despite at sub-bandgap wavelength, 500-µm-long photodetector exhibited 0.25 A/W responsivity at -5 V, attributable to the defect-mediated detection mechanism.

W4G.4 • 17:15

Coherent Homodyne TDMA Receiver Based on TO-can EML for 10 Gb/s OOK with <40 ns Guard Interval, Bernhard Schrenk¹, Dinka Milovancev¹, Nemanja Vokic¹, Fotini Karinou²; ¹AIT Austrian Inst. of Technology, Austria; ²Microsoft Research Ltd., UK. Graceful migration of an IM/DD transmitter towards a single-polarization, analogue coherent burst-mode receiver is experimentally demonstrated for 10 Gb/s on-off keying in TDMA mode, with 400 kHz frame rate and <40 ns guard interval.

Show Floor Programming Continued

Open, Multi-vendor Networks - Design, Management and Operations 15:30–17:00, Theater III

MW Panel IV: What is Next for Data Center Interconnects (DCIs)?

15:30–17:00, Theater I

112 Gbps Electrical Interfaces 16:15–17:00, *Theater II*

Room 6C

Room 6D

Demonstration of an Ultra-compact Bend for Four Modes

Based on Pixelated Meta-structure, Hucheng Xie², Yingjie

Liu², Wenxiang Li², Jiangbing Du¹, Yong Yao², Qinghai Song²,

Ke Xu²: ¹State Key Laboratory of Advanced Optical Commu-

nication Systems and Networks, Shanghai Jiao Tong Univ.,

Shanghai, China; ²Harbin Inst. of Technology (Shenzhen),

China. A multimode bend for TE₁, TE₁, TE₂ and TE₃ modes

with a radius of 3.9 µm is demonstrated. The insertion loss is

measured to be < 1.8 dB, and the crosstalk is below -17 dB.

W4C • Novel Passive Devices—

Room 6E

W4A • Digital Signal Processing II— Continued

W4A.5 • 17:30 Top-Scored

Mode-Multiplexed Full-Field Reconstruction Using Direct and Phase Retrieval Detection, Haoshuo Chen', Juan Carlos Alvarado Zacarias'², Hanzi Huang'³, Nicolas K. Fontaine', Roland Ryf', David Neilson', Rodrigo Amezcua Correa²; 'Nokia Bell Labs, USA; ²CREOL, The Univ. of Central Florida, USA; ³Key lab of Specialty Fiber Optics and Optical Access Networks, Shanghai Univ., China. We realize mode-multiplexed full-field reconstruction over sixspatial-and-polarization modes after 30-km multimode fiber transmission using intensity-only measurements without any optical carrier. The receiver's capabilities to cope with modal dispersion and mode-dependent loss are experimentally demonstrated.

W4A.6 • 17:45

Mitigation of Inter-subcarrier Linear Crosstalk with Groupwise Fixed FDE Assisted MIMO, Masaki Sato¹, Hidemi Noguchi¹, Junichiro Matsui², Jun'ichi Abe¹, Naoto Ishii¹, Emmanuel Le Taillandier de Gabory¹; 'System Platform Research Laboratories, NEC Corporation, Japan; ²NEC Corporation, Japan. We experimentally demonstrated inter-subcarrier linear crosstalk mitigation of five-subcarrier 10-GBaud RRC-PM-16QAM using Groupwise fixed FDE assisted MIMO. The proposed method enabled 6.3% tighter subcarrier spacing over 120 km SSMF, compared to conventional 2x2 MIMO.

W4A.7 • 18:00 Invited

Nonlinear Frequency Division Multiplexing: Immune to Nonlinearity but Oversensitive to Noise?, Stella Civell^{1,2}, Enrico Forestier^{1,2}, Marco Secondini^{1,2}; ¹Inst. of Communication, Information and Perception Technologies, Scuola Superiore Sant'Anna, Italy; ²Photonic Networks & Technologies National Laboratory, National, Inter-Univ. Consortium for Telecommunications, Italy. Detection strategies and modulation formats designed for the AWGN channel are not well suited to operate in the nonlinear frequency domain. We study some improved detection strategies and investigate the ultimate performance limitations of NFDM systems that map conventional linear modulations on the nonlinear spectrum.

W4B • Nonlinear Devices & Amplifiers—Continued

W4B.5 • 17:30 D

Weakly-coupled Few-mode Gain-flattening Filter Using Long-period Fiber Grating in Double-cladding FMF, Jinglong Zhu¹, Yu Yang¹, Junci¹, Jin He², Zhangyuan Chen^{1,2}, Yongqi He¹, Juhao Li^{1,2}, '*Peking Univ., China; 'Peking* Univ. Shenzhen Institution, China. A weakly-coupled fewmode gain-flattening filter (FM-GFF) based on long-period fiber gratings (LPFGs) in double-cladding few-mode fiber is proposed. Utilizing the FM-GFF, we demonstrate that the gain spectra of each core mode can be independently flattened.

W4B.6 • 17:45 D

Differential Modal Gain Reduction Using a Void Inscribed in a Two-mode-erbium Doped Fiber, Yoko Yamashita¹, Takashi Matsui¹, Masaki Wada¹, Shinichi Aozasa¹, Taiji Sakamoto¹, Kazuhide Nakajima¹; ¹NTT, Japan. Differential modal gain (DMG) reduction technique that uses laser-inscribed void is proposed. We reveal that DMG can be successfully controlled by introducing one void into two-mode-EDF while keeping the initial gain, NF and flatness.

achieved with layered doping.

W4B.7 • 18:00 Strongly Coupled Few-mode Erbium-doped Fiber Amplifiers with Ultralow Differential Modal Gain, Yaping Liu¹, Xutao Wang¹, Zhiqun Yang¹, Lin Zhang¹, Guifang Li², ¹Tianjin Univ, China; ²CREOL, USA. We propose new few-mode EDFAs based on strong mode coupling, which can be realized by distributed long-period gratings. As a

result, an ultralow differential modal gain of 0.5 dB can be

W4C.5 • 17:45

Continued

W4C.4 • 17:30

Ultrabroadband Polarization Insensitive Hybrid Using Multiplane Light Conversion, Nicolas K. Fontaine², Yuanhang Zhang^{1,2}, Haoshuo Chen², Roland Ryf², David Neilson², Guifang Li¹, Mark Cappuzzo³, Rose Kopf², Al Tate³, Hugo Safar³, Cristian Bolle³, Mark Earnshaw³, Joel Carpenter¹, 'Unix. of Central Florida, CREOL, USA; ²Nokia Bell Labs, USA; ³Nokia Bell Labs, USA; ⁴The Unix. of Queensland, Australia. We designed, fabricated and tested an optical hybrid that supports an octave of bandwidth (900-1800 nm) and below 4-dB insertion loss using multiplane light conversion. Measured phase errors are below 3° across a measurement bandwidth of 390 nm.

W4C.6 • 18:00 Invited

Integrated Quantum Photonics on Silicon Platform, Yunhong Ding^{1,2}, Daniel Llewellyn³, Imad Faruque³, Stefano Paesani³, Davide Bacco^{1,2}, Karsten Rottwitt^{1,2}, Anthony Laing³, Mark Thompson³, Jianwei Wang⁴, Leif Oxenløwe^{1,2}; ¹Department of Photonics Engineering, Danmarks Tekniske Universitet, Denmark; ²Center for Silicon Photonics for Optical Communication (SPOC), Technical Univ. of Denmark, Denmark; ³H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, Univ. of Bristol, UK; ⁴State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking Univ., China. We present our recent study on silicon integrated quantum photonics, from single photon sources to applications of quantum communication, generation and manipulation of highdimensional quantum entanglement states, and sampling of quantum state of light.

W4D • Speciality Fibers—Continued

W4D.2 • 17:30

25 Gb/s Transmission Over 1-km Graded-Index Singlemode Fiber Using 910 nm SM VCSEL, Adrian A. Juarez¹, Xin Chen¹, Kangmei Li¹, James Himmelreich¹, Jason Hurley¹, Snigdharaj Mishra¹, Christian Fiebig⁴, Gunter Larisch³, Dieter Bimberg^{3,2}, Ming-Jun Li¹; 'Corning Inc., USA; ²Institude of Solid State Physics, Technische Universtität Berlin, Germany; ³Bimberg Chinese-German Center for Green Photonics, China; ⁴Advanced Optical Technologies, Corning Optical Communications GmbH and Co. KG, Germany; We investigate experimentally the feasibility of single-mode VCSEL transmission at 910 nm over a graded-index singlemode fiber and achieve a BER < 10⁻¹² for a transmission distance of 1-km at 25 Gb/s.

W4D.3 • 17:45 D

Low Loss, Large Bandwidth Antiresonant Hollow-core Fiber Design for Short-Reach Links, William Shere¹, Gregory Jasion¹, Eric Numkam Fokoua¹, Francesco Poletti¹, ¹Optoelectronics Research Centre, UK. We present antiresonant hollow-core optical fibre designs for VCSELbased short-reach transmission applications in the 850nm band. Our simulations show that lower loss and twice as wide bandwidths than solid, multi-mode, graded index fibres are possible.

W4D.4 • 18:00 Invited

Single-mode VCSEL Transmission Over Graded-index Single-mode Fiber Around 850 nm, Ming-Jun Li¹, Kangmei Li¹, Xin Chen¹, Snigdharaj Mishra¹, Adrian A. Juarez¹, Jason Hurley¹, Jeff Stone¹, ¹Corning Incorporated, USA. We discuss fiber designs of graded-index profile single-mode fiber for both 1310 nm single-mode transmission and 850 nm few-mode transmission and present fiber characterization and system transmission performance results using a single-mode VCSEL.

W4E • Special Chairs Session: Vision 2030: Taking Optical Communications through the Next Decade (Session 2)— Continued

W4E.4 • 17:30

The Future of Access and Edge Cloud Integrated Networks, Peter Vetter, Nokia Bell Labs, USA. The past decade was defined by the emergence of central cloud and ubiquitous wireless broadband (via LTE and WiFi). In future, the cloud will be distributed to the edge and radio access points move closer to the end-devices. The fiber access network will evolve to a high capacity x-haul infrastructure.

W4E.5 • 17:50

Choice of Optical Access Innovations to Meet Today's Needs and Support the Challenges of Tomorrow, Philippe Chanclou¹, Luiz Anet Neto¹, Gaël Simon¹, Fabienne Saliou¹, Nicolas Neyret¹, Erick Thily¹, Daniel Abgrall¹, David Minodier1; Orange Labs, France. The aims of this paper are to illustrate the major trends for optical access innovations capable of meeting present and future requirements. It also highlights what are the main technology enablers for identified use cases.

W4F.3 • 18:00

TDECQ Sensitivity to Algorithmic Implementation and Noise Characterization, Varghese A. Thomas¹, Alirio Melgar¹, Siddharth Varughese¹, Daniel Garon¹, Kan Tan², Shane Hazzard², Maria Agoston², Pavel Zivny², Stephen E. Ralph¹; ¹Georgia Inst. of Technology, USA; ²Tektronix, USA. We demonstrate that TDECQ is sensitive to algorithmic implementation and to receiver noise. It is inherently challenging to quantify transmitter performance when receiver equalization is estimated computationally. Methods to reduce uncertainty are identified.

W4E.6 • 18:10

Title to be Announced, Hong Liu, Google, USA. Abstract not available.

W4F.4 • 18:15

Accelerating TDECQ Assessments using Convolutional Neural Networks, Siddharth Varughese¹, Daniel Garon¹, Alirio Melgar¹, Varghese A. Thomas¹, Pavel Zivny², Shane Hazzard², Stephen E. Ralph¹; ¹Georgia Inst. of Technology, USA; ²Tektronix Incorporated, USA. We experimentally demonstrate the use of convolutional neural networks to accelerate TDECQ assessments for 400G directdetect transmitter qualification. The method estimates TDECQ from static eye-diagrams ~1000 times faster than conventional methods with <0.25dB mean discrepancy.

W4G.7 • 18:00

Highly Sensitive 56 Gbps NRZ O-band BiCMOS-Silicon Photonics Receiver using a Ge/Si Avalanche Photodiode, Srinivasan Ashwyn Srinivasan¹, Joris Lambrecht², Mathias Berciano¹, Sebastien Lardenois¹, Philippe Absil¹ Johan Bauwelinck², Xin Yin², Marianna Pantouvaki¹, Joris Van Campenhout¹; ¹imec, Belgium; ²Ghent Univ., Belgium. A hybrid BiCMOS-Silicon Photonics receiver with a waveguidecoupled Ge/Si avalanche photodiode is demonstrated with OMA sensitivities of -14.4dBm for error-free operation at 50 Gbps and -18.6 dBm under the KP4-FEC limit at 56 Gbps NRZ-OOK.

W4G.8 • 18:15

64Gbps PAM4 Modulation for a Low Energy SiGe Waveguide APD with Distributed Bragg Reflectors, Zhihong Huang¹, Binhao Wang¹, Yuan Yuan^{1,2}, Di Liang¹ Marco Fiorentino¹, Raymond Beausoleil¹; ¹Hewlett Packard laboratories, USA; ²Univ. of Virginia, USA. We demonstrate a low-voltage waveguide Si-Ge APD that integrates a distributed Bragg reflector (DBR). Quantum efficiency has been improved from 60\% to 90\% at 1550nm while still achieving a 25GHz bandwidth. The device under 64Gbps PAM4 modulation showed 30\% increase in OMA, which enables 1.2dB improvement in receiver sensitivity.

W4G • Photodetectors and Receivers— Continued

W4G.5 • 17:30

Uni-Traveling Carrier Photodiodes with Type-II GaAs_{0.5}Sb_{0.5}/In_{0.53}Ga_{0.47}As Hybrid Absorbers Integrated with Substrate Lens in 400 Gbit/sec DR-4 System, None Naseem¹, Hsiang-Szu Chang², Rui-Lin Chao^{1,3}, Jack Jia-Sheng Huang^{2,4}, Yu-Heng Jan^{2,4}, H.-S. Chen², C.-J. Ni², Emin Chou², Jin-Wei Shi¹; ¹National Central Univ., Taiwan; ²Source Photonics, Taiwan; ³Department of Photonics, National Chiao Tung Univ., Taiwan; ⁴Source Photonics, USA. UTC-PD with type-II GaAs_{0.5}Sb_{0.5}/In_{0.53}Ga_{0.47}As hybrid absorber integrated with substrate lens is demonstrated with high responsivity (0.95A/W) and wide O-E bandwidth (33GHz) at 1310 nm wavelength. High-sensitivity (-10dBm OMA) is realized in 400G lens-free DR-4 platform.

W4G.6 • 17:45

Zero-bias High-Speed Evanescently Coupled Waveguide Type-II UTC Photodiode, Fengxin Yu¹, Keye Sun¹ Qianhuan Yu¹, Andreas Beling¹; ¹Univ. of Virginia, USA. We demonstrate GaAs_{0.5}Sb_{0.5}/In_{0.53}Al_vGa_{0.47-v}As uni-traveling carrier (UTC) waveguide photodiodes with high bandwidth of up to 66 GHz at zero bias and over 100 GHz bandwidth under low bias condition.

Room 7

W4F • Reliability and Test—Continued

Effects of Reflow Soldering Process Conditions on the Re-

liability of Specialty Optical Fibers, Mei Wen¹, Ralph Lago¹,

Jie Li¹; ¹OFS, USA. We will review the reliability of specialty

optical fibers for high temperature uses with an emphasis on

fibers through reflow soldering process conditions. Coating

thermal stability, fiber mechanical properties, and induced

W4F.2 • 17:30 Invited

optical loss will be discussed.

Morning Coffee, Upper Level Corridors 07:30-08:00 08:00-10:00 08:00-10:00 08:00-10:00 08:00-10:00 08:00-10:00 08:00-10:00 Th1B • High Speed PON Th1F • AI for Reliable Th1A • Advanced Design Th1C • Microwave Th1D • Pushing the Th1E • Symposium: Presider: Xinying Li; Corning **Bit-rate in Practical** Future Photonics Devices Networking D for Passive Devices Photonics Presider: Nicolas Dupuis; Inc, USA Presider: Maurizio Burla; ETH Networks fJ/bit Optical Networks Presider: António Eira; Enabled by Emerging IBM TJ Watson Research Zurich, Switzerland Presider: Shuto Yamamoto: Infinera Corporation, **Optical Technologies** Center, USA NTT Electronics Corp, Japan Portugal (Session 2) Th1A.1 • 08:00 Th1B.1 • 08:00 Th1C.1 • 08:00 Invited Th1D.1 • 08:00 Invited Th1E.1 • 08:00 Invited Th1F.1 • 08:00 Generative Deep Learning Mod-100 Gbps PON L-band Down-Low-loss LiNbO3 for MWP, Marko Real-time Demonstration of 500-Saving Energy and Increasing Simultaneous Detection of Anomaly el for a Multi-level Nano-optic stream Transmission Using IQ-MZM Gbps/lambda and 600-Gbps/lambda Density in Information Process-Loncar1; 1Harvard Univ., USA. Abstract Points and Fiber Types in Multi-span CD Digital Pre-Compensation and Broadband Power Splitter, Yingheng not available. WDM Transmission on Field-installed ing Using Photonics, David A. B. Transmission Links Only by Receiver-Tang^{1,2}, Keisuke Kojima¹, Toshiaki DD ONU receiver, Pablo Torres-Fibers, Hideki Maeda¹, Hiroki Kawaha-Miller1: 1Stanford Univ., USA, We side Digital Signal Processing, Takeo Koike-Akino¹, Ye Wang¹, Pengxiang Ferrera¹, Valter Ferrero¹, Roberto ra¹, Kohei Saito¹, Takeshi Seki¹, Takeo Sasai¹, Masanori Nakamura¹, Seiji argue energy and interconnect density Wu¹, Mohammad H. Tahersima¹, De-Gaudino¹; ¹Politecnico di Torino, Sasai¹, Fukutaro Hamaoka¹; ¹NTT Corin information processing can be Okamoto¹, Fukutaro Hamaoka¹, Shuvesh Jha¹, Kieran Parsons¹, Minghao Italy. We propose a downstream poration, Japan. This paper describes improved by orders of magnitude to Yamamoto¹, Etsushi Yamazaki¹, Qi²: ¹Mitsubishi Electric Research direct-detection 100G-PON solution recent technical challenges related using parallel free-space optical Asuka Matsushita¹, Yoshikaki Kisa-Laboratories, USA; ²School of Electriaided by chromatic dispersion digital to the real-time demonstration 500channels inside and between racks. ka¹: ¹NTT, Japan, We experimentally pre-compensation using an IQ-MZM, cal and Computer Engineering and Gbps/lambda and 600-Gbps/lambda enabled by integrated waveguide demonstrate simultaneous localization Birck Nanotechnology Center, Purallowing L-band operation and 29 in field experiments conducted photonics, and run synchronously of optical excess loss points and spans due Univ., USA. A novel Conditional dB power budget with low ONU on high-capacity optical transport without time-multiplexing. with different dispersion in multi-span Variational Autoencoder (CVAE) model complexity and without requiring networks. DSP-ASIC integrated realfiber links using a neural-network with the adversarial censoring is single-sideband modulation. time optical transponders are utilized. based digital backpropagation. presented to help to generate the 550nm broad bandwidth (1250nm to 1800nm) power splitter with arbitrary

splitting ratio. Th1A.2 • 08:15

Demonstration of 3+/-0.12dB Power Splitting over 145nm Optical Bandwidth in a 31-um Long 3-dB Rapid Adiabatic Coupler, Josep Fargas Cabanillas¹, Miloš A. Popović¹, Bohan Zhang¹; ¹Boston Univ., USA. We experimentally validate the rapid adiabatic coupling (RAC) concept and demonstrate 50+/-1.4% (3+/-0.12dB) power splitting over a record 145nm bandwidth from either port of a 31um-long, 2x2 coupler, the widest +/-1.4%-bandwidth by a factor of 4.

Th1B.2 • 08:15 Invited

IEEE 50 Gb/s EPON (50G-EPON), Curtis Knittle¹; ¹CableLabs, USA. This paper discusses the next generation of IEEE optical access, the 50 Gb/s Ethernet Passive Optical Network (50G-EPON), capable of symmetric or asymmetric rates up to 50 Gb/s while coexisting with legacy PON technologies on the same optical distribution network.

Th1F.2 • 08:15

Soft-failure Localization and Device Working Parameters Estimation in Disaggregated Scenarios, Sima Barzegar¹, Emanuele E. Virgillito², Marc Ruiz¹, Alessio Ferrari², Antonio Napoli³, Vittorio Curri², Luis Velasco¹: ¹Universitat Politecnica de Catalunya, Spain; ²Politecnico di Torino, Italy; ³Infinera, Germany, A softfailure localization and key working parameters estimation system is proposed for network diagnosis and maintenance. We show that a double analysis of monitoring data and estimated working parameters greatly anticipates degradations.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
	07:30-08:00	0 Morning Coffee, Upper Le	vel Corridors		
08:00–10:00 Th1G • Modulation and Coding ● Presider: Zhensheng Jia; CableLabs, USA	08:00–10:00 Th1H • Characterization of SDM Fibers Presider: Tetsuya Hayashi; Sumitomo Electric Industries Ltd, Japan	08:00–10:00 Th11 • Digital Signal Processing Techniques and Mitigation Presider: Jianjun Yu; Fudan Univ., China	08:00–10:00 Th1J • Panel: Devices and Systems at 130 Gbaud and Above: What is the Outlook?	08:00–10:00 Th1K • Optical Wireless Sensing Systems for 5G Presider: Gee-Kung Chang; Georgia Inst. of Technology, USA	
Th1G.1 • 08:00 Joint Optimization of Coding, Shap- ing and Clipping for Amplifier-less Coherent Optical Systems, Abel Lorences-Riesgo ¹ , Fernando Guio- mar ¹ , Beatriz M. Oliveria ^{1,2} , Maria C. R. Medeiros ^{1,3} , Paulo P. Monteiro ^{1,2} , 'In- stituto De Telecomunicacoes, Portu- gal; ² Univ. of Aveiro, Portugal; ³ Univ. of Coimbra, Portugal. We experimentally demonstrate that performance of amplification-less coherent optical systems can be significantly improved by a joint optimization of FEC coding overhead, modulation order, and signal clipping, enabling power budget gains of >1dB. Th1G.2 • 08:15 Parallel Bisection-based Distribution Matching for Probabilistic Shap- ing, Mengfan Fu ¹ , Qiaoya Liu ¹ , Xiaobo	Th1H.1 • 08:00 Invited O Distributed Measurement of Mode Dispersion of SDM Fibers, Shin- go Ohno', Kunihiro Toge', Daisuke lida', Tetsuya Manabe'; 'NTT Ac- cess Network Service Systems Lab- oratories, Japan. Nondestructive methods for measuring the mode dispersion distribution of SDM fiber that utilize Rayleigh backscattering observed with coherent optical frequency-domain reflectometry are reviewed. Experiments on few-mode and coupled multicore fibers are presented.	Th11.1 • 08:00 Invited Advanced DSP for Monitoring and Mitigation in Optical Transport Networks, Takeshi Hoshida', Takahito Tanimura', Shoichiro Oda', Setsuo Yoshida', Hisao Nakashima', Guoxiu Huang', Zhenning Tao ² ; ' <i>Fujitsu Lim-</i> <i>ited, Japan; ²Fujitsu R&D Center,</i> <i>China.</i> DSP-based transceivers with enhanced monitoring and mitigation capabilities enable highly efficient transport networking with minimized excess margin and open line systems with enhanced availability. Examples for such advanced DSP algorithms are introduced.	Ever increasing demands for network bandwidth are driving the need for optical interconnects with higher data-throughputs. Early on the speed of the optical interconnects were much faster than the capabilities of the electronics feeding them. More recently, limitations in these optical interconnects has forced designers to be more creative, utilizing higher symbol rates, higher order modulation formats, space or wavelength division multiplexing schemes to achieve higher optical interconnect through- puts. Currently, with the availability of high-speed CMOS electronics, a more economical path towards higher interconnect throughputs is to increase the symbol rates. This has driven the need for optical components with wider bandwidths. Today's commercially deployed com- ponents, with speeds of in the range of	Th1K.1 • 08:00 Invited Visible Light Communications for Automotive Intelligence, Takaya Yamazato'; 'Nagoya Univ, Japan. In this talk, the author looks back to the brief history of vehicle automation and related communication technologies. He then introduces visible light communication and its application for automotive intelligence.	
ing, Mengtan Lu', Qiaoya Liu', Xiaobo Zeng', Yiwen Wu', Lilin Yi', Weisheng Hu', Qunbi Zhuge'; 'Shanghai Jiao Tong Univ., China. We propose a parallel bisection-based distribution matching for constant composition probabilistic shaping. The number of serial operations can be significantly reduced without performance loss, making it a suitable architecture for large block lengths.			60GBaud, are adequate for 400Gb/s networks. But what about for 800Gb/s systems and beyond? Can the band- width and the efficiency of optical components be further enhanced to enable such systems? Is the analog electronics capable of supporting such bandwidths? And, what is the impact to the DSP design considering the limitation of bandwidth and ENOB when the symbol rate reaches 130 GBaud and beyond? This panel will explore the tech- nologies available to enable such high bandwidth optical intercon- nects. From transmitters to receiv-		

ers, this panel will examine today's technologies and limitations and consider what options designers have for future 800Gb/s and higher network deployments.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th1A • Advanced Design for Passive Devices— Continued	Th1B • High Speed PON—Continued	Th1C • Microwave Photonics—Continued	Th1D • Pushing the Bit-rate in Practical Networks—Continued	Th1E • Symposium: Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 2)—Continued	Th1F • AI for Reliable Networking—Continued
Th1A.3 • 08:30 Invited Automated Optical Waveguide De- sign Based on Wavefront Matching Method, Toshikazu Hashimoto'; 'NTT Device Technology Labs., NTT Corp., Japan. There are large degrees of freedom (DOF) in the design of micro-fabricated optical circuits. This paper introduces the wavefront matching method as an automated design technique of the DOF, and its applications.		Th1C.2 • 08:30 Dual-chirp Microwave Waveform Generation by a Dual-beam Optically injected Semiconductor Laser, Pei Zhou', Hao Chen ² , Nianqiang Li', Ren- heng Zhang', Shilong Pan ² ; 'Soochow Univ., China; ² Nanjing Univ. of Aero- nautics and Astronautics, China. We propose an approach to generating dual-chirp microwave waveforms based on a dual-beam optically injected semiconductor laser. Tunable dual-chirp microwave waveforms with a large time-bandwidth product are experimentally generated.	Th1D.2 • 08:30 Top-Scored Single-Carrier 500Gb/s Unrepeat- ered Transmission over a Single 431km Span with Single Fiber Configuration, Xu Jian'; 'ACCE- LINK, China. We demonstrate record single-carrier 500Gb/s unrepeatered transmission over a single span of 431km with single fiber configuration, using optimized high-order Raman pump, forward and backward ROPAs, and optimal modulation format while using the same single ultra low loss with large effective area fiber for both signal and pumps.	Th1E.2 • 08:30 (Invited) Integrated Green Photonics For Next-gen High-performance Com- puting, Di Liang ¹ , Geza Kurczveil ¹ , Zhihong Huang ¹ , Binhao Wang ¹ , Antoine Descos ¹ , Sudharsanan Srini- vasan ¹ , Yingtao Hu ¹ , Xiaoge Zeng ¹ , Wayne Sorin ¹ , Stanley Cheung ¹ , Songtao Liu ² , Peng Sun ¹ , Thomas Van Vaerenbergh ¹ , Marco Fiorentino ¹ , John E. Bowers ² , Raymond Beauso- leil ¹ ; ¹ Hewlett Packard Labs, Hewlett Packard Enterprise, USA; ² Department of Electrical and Computer Engineer- ing, Univ. of California, USA. We discuss our strategy to build a dense wavelength division multiplexing optical transceiver to enable high energy efficiency, scalable bandwidth,	Th1F.3 • 08:30 Interpretable Learning Algorithm Based on XGBoost for Fault Predic- tion in Optical Network, Chunyu Zhang', Danshi Wang', Chuang Song', Lingling Wang', Jianan Song', Luyao Guan', Min Zhang'; 'Beijing Unix, of Posts and Telecomm, China. We propose a fault prediction scheme using interpretable XGBoost based on actual datasets, which not only achieves high accuracy (99. 72%) and low positive rate (0. 18%), but also reveals the five most remarkable features that caused the fault.
	Th1B.3 • 08:45 Symmetrical 50-Gb/s/λ PAM-4 TDM- PON at O-band Supporting 26 dB+ Loss Budget Using Low-bandwidth Optics and Semiconductor Optical Amplifier, Jiao Zhang', Kaihui Wang', Yiran Wei', Li Zhao', Wen Zhou', Ji- angnan Xiao', Bo Liu ² , Xiangjun Xin ² , Jianjun Yu'; 'Fudan Univ., China; 'Bei- jing Univ. of Posts and Telecommu- nications, China. We experimentally demonstrated a symmetrical 50-Gb/ s/λ PAM-4 TDM-PON in O-band to support over 26 dB link loss budget, with the using of simple DSP and SOA. The performances of DSP and dispersion tolerance are studied.	Th1C.3 • 08:45 Frequency-tunable Parity-time- symmetric Optoelectronic Oscillator Using a Polarization-dependent Sa- gnac Loop, Jianping Yao', Zheng Dai', Zhiqiang Fan', Cheng Li'; 'Univ. of Ottawa, Canada. A frequency-tunable parity-time-symmetric optoelectronic oscillator with a single physical loop is proposed. Frequency-tunable single- mode oscillation from 2 to 12 GHz and a phase noise of -108 dBc/Hz at an offset frequency of 10 kHz is achieved.	Th1D.3 • 08:45 High Spectral Efficiency Real-time 500-Gb/s/Carrier Transmission Over Field-installed G.654.E Fiber Link Using Forward and Backward Dis- tributed Raman Amplification, Kohei Saito ¹ , Takeo Sasai ¹ , Fukutaro Hama- oka ¹ , Hiroki Kawahara ¹ , Takeshi Seki ¹ , Hideki Maeda ¹ ; 'Nippon Telegraph and Telephone, Japan. Transmission distance of 1234.2 km with high spectral efficiency of 5.71 b/s/Hz over terrestrial G.654.E fiber links is achieved for 500-Gb/s/carrier signals using EDFAs with forward and backward DRAs compliant with laser power safety requirements.	energy enciency, scalable bandwidth, low latency data communication, and low-cost photonic integration simultaneously for high-performance computing applications.	Th1F.4 • 08:45 Localization of Probabilistic Cor- related Failures in Virtual Net- work Infrastructures Using Bayesian Networks, Riti Gour ¹ , Genya Ish- igaki ¹ , Jian Kong ² , Jason P. Jue ¹ ; ¹ The Univ. of Texas at Dallas, USA; ² Ci- ena, USA. We propose an approach to localize probabilistic correlated failures in a multi-layer network where service function graphs (SFGs) are deployed over a physical network infrastructure. The proposed method utilizes logical link monitoring and Bayesian networks.

122

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
Th1G • Modulation and Coding—Continued	Th1H • Characterization of SDM Fibers— Continued	Th11 • Digital Signal Processing Techniques and Mitigation— Continued	Th1J • Panel: Devices and Systems at 130 Gbaud and Above: What is the Outlook?— Continued	Th1K • Optical Wireless Sensing Systems for 5G—Continued	
Th1G.3 • 08:30 Invited C Peformance and Power of Soft-de- cision FEC (SDFEC) for 100G • 800G Applications, Zhiyu Xiao'; 'Huawei Technologies Co., Ltd., USA. The proportion of resources (chip area) required by FEC in DSP chips is higher and higher. At the same time, pre-FEC performance is an explicit indicator of commercial competition. The balanced design of FEC performance, area, and power consumption becomes a key point of the DSP chip of coherent optical communication.	Th1H.2 • 08:30 Theoretical Analysis and Experimental Measurement of Intra-LP-mode MDD in Weakly-coupled FMF, Min- gring Zuo ¹ , Dawei Ge ¹ , Lei Shen ² , Jin, He ³ , Yongqi He ¹ , Zhangyuan Chen ^{1,3} , Juhao L ^{1,3} ; ¹ Peking Univ., China; ² Yang tze Optical Fibre and Cable Joint Stock Imited Company, China; ³ Peking Univ. Shenzhen Institution, China. Based on the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the analysis of intra-LP-mode DMD in weakly-coupled FMF, we propose a modified fixed-analyzer method for the method fixed-analyzer method for the magnet for the top the stock of the fiber recirculating transmission ingle-mode fiber.	Th11.2 • 08:30 Mitigating Fiber Nonlinearities by Short-length Probabilistic Shap- ing, Tobias Fehenberger ¹ , Helmut Griesser ¹ , Jörg-Peter Elbers ¹ ; 'ADVA, Germany. We show that short- length probabilistic shaping reduces nonlinear interference in optical fiber transmission. SNR improvements of up to 0.8 dB are obtained. The shaping gain vanishes when interleaving is employed and not undone before transmission. Th11.3 • 08:45 True Equalization of PDL in Presence of Fast RSOP, Nan Cui ¹ , Xiaoguang Zhang ¹ , Nannan Zhang ¹ , Xianfeng Tang ¹ , Lixia Xi ¹ ; 'State Key Labora- tory of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunications, China. In presence of fast RSOP, a true PDL equalization including both signal power and OSNR balances is proposed and verified. With 1dB OSNR penalty, it can equalize up to 7dB PDL under 1Mrad/s fast RSOP.	Speakers: Chris Doerr; Acacia Communications Inc., USA Yoshihiro Ogiso; NTT Device Innova- tion Center, Japan Challenges and Solutions for DSP Aided Coherent Modem at 138GBaud Zhuhong Zhang; Huawei Technologies Co Ltd, Canada Some Implementation Implications of Coherent Transceivers Operating at >=130Gbd Maurice O'Sullivan; Ciena Corp., Canada High Symbol Rates and Parallelism in Co-integrated Designs Peter Winzer; Independent Consul- tant, USA Jun Cao; Broadcom, USA CMOS Data Converters for Coherent Optical Links beyond 100Gbaud	Th1K.2 • 08:30 Dual-heterodyne Mixing Based Phase Noise Cancellation for Iong Distance Dual-wavelength FMCW Lidar, Minglong Pu', Weilin Xie', Yi Dong', Yuxiang Feng', Wei Wei', Yuanshuo Bai', Yinxia Meng', Ling Zhang', Tao Wang', Songhan Liu'; 'Beijing Inst. of technology, China. A coherent dual-wavelength frequency-modulated continuous- wave (FMCW) lidar utilizing dual- heterodyne mixing which permits efficient phase noise cancellation has been proposed. Consistent ranging resolution about 1.4 × 10–6 over distances beyond tens of intrinsic coherence length is achieved. Th1K.3 • 08:45 Secure Free-space Optical Commu- nication via Amplified Spontaneous Kinssion (ASE), Hanzi Huang'. ² , Jian Chen', Haoshuo Chen ² , Yetian Huang'. ² , Yingchun Li', Yingxiong Sog', Nicolas K. Fontaine ² , Roland Ryf', Min Wang', 'Shanghai Univ., Chi- na; ² Nokia Bell Labs, USA. We propose a secure free-space optical (FSO) communication scheme employing the internal randonness of amplified spontaneous emission. 60-Gbit's FSO transmission is demonstrated with temporal and spectral encryption.	

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th1A • Advanced Design for Passive Devices— Continued	Th1B • High Speed PON—Continued	Th1C • Microwave Photonics—Continued	Th1D • Pushing the Bit-rate in Practical Networks—Continued	Th1E • Symposium: Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 2)—Continued	Th1F • AI for Reliable Networking—Continued
Th1A.4 • 09:00 Ultra-broadband and Low-loss Po- larization Beam Splitter on Sili- con, Chenlei Li ¹ , Daoxin Dai ^{1,2} , John E. Bowers ³ ; 'Zhejiang Univ., Chi- na; ² Ningbo Research Inst., Zhejiang Univ., China; ³ Department of Electrical and Computer Engineering, Univ. of California, Santa Barbara, USA. We realized a polarization beam splitter with low loss of <1 dB and high extinction ratio of >20 dB in an ultra-broad bandwidth from 1400nm to 1700nm using a pair of cascaded dual-core adiabatic tapers.	Th1B.4 • 09:00 Demonstration of 50-Gb/s/λ PAM-4 PON with Single-PD Using Polariza- tion-insensitive and SSBI Suppressed Heterodyne Coherent Detection, Li Haibo ¹ , Ming Luo ¹ , Xiang Li ¹ , Shaohua Yu ¹ ; ¹ China Information Communica- tion Technologies Group Corpora- tion, China. A polarization-insensitive heterodyne coherent detection with single-PD for 50-Gb/s/λ PAM-4 PON is experimentally demonstrated. Over 40- and 39-dBm power budgets are achieved after 20-/50-km SSMF transmission under 7% FEC threshold, respectively.	ThtC.4 • 09:00 Tutorial New Opportunities for Integrated Microwave Photonics, David Marpaung'; 'Universiteit Twente, Netherlands. In this tutorial I will new perspectives in the field of integrated microwave photonics, with the emphasis on optical comb sources, high speed modulators, and photon phonon interactions for advanced signal processing.	Th1D.4 • 09:00 Added Value of 90 GBaud Transpon- ders for WDM Networks, Thierry Zami', Bruno Lavigne', Mathieu Lefran- coi'; 'Nokia Corporation, France. We quantify the benefit of 90 GBaud transponders versus the more mature 67 GBaud ones to possibly improve the maximum total throughput in WDM networks and the associated amount of deployed equipment per transmitted Gb/s.	Th1E.3 • 09:00 Invite Densely Integrated Electronic-pho- tonic Systems for Next-generation Optical I/O, Mark Wade'; 'Ayer Labs, USA. Abstract not available.	Th1F.5 • 09:00 Demonstration of Fault Localiza- tion in Optical Networks Based on Knowledge Graph and Graph Neural Network, Zhuotong Li', Yongli Zhao', Yajie Li', Sabidur Rahman ² , Xiaosong Yu', Jie Zhang'; 'Beijing Univ. of Posts and Telecommunications, Chi- na; ² Univ. of California, Davis,, USA. A fault localization method for optical networks using knowledge graph and graph neural network is proposed. Experimental demonstration shows that the proposed method is effective in automating the localizing of optical network faults.

Th1A.5 • 09:15

Wavefront-matching-method-designed Six-mode-exchanger Based on Grating-like waveguide on Silica-PLC platform, Takeshi Fujisawa¹, Taiji Sakamoto², Masashi Miyata², Takashi Matsui², Toshikazu Hashimoto², Ryoichi Kasahara², Kazuhide Nakajima², Kunimasa Saitoh¹; ¹Hokkaido Univ., Japan; ²NTT, Japan. A first six-mode exchanger based on one sidewall grating-like waveguide is successfully designed with the help of strong optimization algorithm. Fabricated device compensates for mode-dependent-loss caused by fiber-waveguide junctions, showing the proof-of-concept operation.

Parameter on the Power Penalty and Design of 50 Gbit/s TDM-PON, Robert Borkowski1, Harald Schmuck1, Giancarlo Cerulo², Jean-Guy Provost², Vincent Houtsma³, Dora van Veen³, Ed Harstead⁴, Franck Mallecot², Rene Bonk1; 1Nokia Bell Labs, Germany; 2111-V Lab, joint laboratory between Nokia Bell Labs, Thales Research and Technology, and CEA Leti, France; ³Nokia Bell Labs, USA; ⁴Fixed Networks Division, Nokia Corporation, USA. We study the impact of transmitter chirp parameter (effective α -factor) on the chromatic-dispersion-induced power penalty in 50-Gbit/s TDM-PON. We experimentally show interplay of chirp and dispersion using 50G-class integrated EML-SOA driven in distinct operating points.

David Marpaung joined the University of Twente, the Netherlands in 2018 as an associate professor leading the Nonlinear Nanophotonics group. From 2012 to 2017 he was leading the integrated microwave photonics research activities at CUDOS University of Sydney, Australia. His research interests include RF photonics, optomechanics, nonlinear optics, and phononics.

Th1D.5 • 09:15

100-Gbit/s/λ PAM-4 Signal Transmission over 80-km SSMF Based on an 18-GHz EML at O-band, Kaihui Wang¹, Jiao Zhang¹, Yiran Wei¹, Li Zhao¹, Wen Zhou¹, Mingming Zhao¹, Jiangnan Xiao¹, Xiaolong Pan², Bo Liu², Xiangjun Xin², Liwei Zhang³, Yun Zhang³, Jianjun Yu¹; ¹Fudan Univ., China; ²Beijing Univ. of Posts and Telecommunications, China; ³ZTE Corporation, China. For the first time, we experimentally demonstrate 100-Gbit/s PAM-4 signal transmission over 80km at O-band using an 18-GHz EML. After two spans of SOA-based 40-km SSMF transmission, a receiver sensitivity of -17.3dBm is achieved.

Th1F.6 • 09:15 D

Can You Trust Al-assisted Network Automation? A DRL-based Approach to Mislead the Automation in SD-IPoEONs, Min Wang¹, Siqi Liu¹, Zuqing Zhu¹; ¹Univ of Science and Technology of China, China. We study the vulnerability of artificial intelligence assisted network automation (AlaNA), and design a deep reinforcement learning (DRL) model to mislead the AlaNA in software-defined IP over elastic optical networks (SD-IPoEONs) through crafting/injecting adversarial traffic samples.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
Th1G • Modulation and Coding—Continued	Th1H • Characterization of SDM Fibers— Continued	Th1I • Digital Signal Processing Techniques and Mitigation— Continued	Th1J • Panel: Devices and Systems at 130 Gbaud and Above: What is the Outlook?— Continued	Th1K • Optical Wireless Sensing Systems for 5G—Continued	rogramming
Th1G.4 • 09:00 Hierarchical Distribution Matching: a Versatile Tool for Probabilistic Shaping, Stella Civelli ^{1,2} , Marco Secon- dini ^{1,2} , ¹ Scuola Superiore Sant'Anna, Italy; ² Photonic Networks & Tech- nologies National Laboratory, CNIT, Italy. The hierarchical distribution matching (Hi-DM) approach for probabilistic shaping is described. The potential of Hi-DM in terms of trade-off between performance, complexity, and memory is illustrated through three case studies.	Th1H.4 • 09:00 Characterization and Optical Com- pensation of LP ₀₁ and LP ₁₁ Intra- modal Nonlinearity in Few-Mode Fibers, Francesco Da Ros ¹ , Pawel M. Kaminski ¹ , Georg Rademacher ² , Benjamin J. Puttnam ² , Ruben S. Luis ² , Werner Klaus ³ , Hideaki Furukawa ² , Ryo Maruyama ³ , Kazuhiko Aikawa ³ , Toshio Morioka ¹ , Leif Oxenløwe ¹ , Naoya Wada ² , Michael Galili ¹ ; ¹ DTU Fotonik, Denmark; ² Photonic Network System Laboratory, National Inst. of Informa- tion and Communications Technology, Japan; ³ Fujikura Ltd, Japan. Intra- modal four-wave mixing (FWM) and all-optical compensation by optical over 2-spans of 3-mode fiber with the power of the generated FWM products reduced by 5 to 20 dB in different scenarios.	Th11.4 • 09:00 Invite Extreme Values in Optical Fiber Communication Systems, Seb J. Savory'; 'Univ. of Cambridge, UK. Extreme value theory provides a framework to assess rare but extreme events such as network outages or cycle slips. We present the theory of extreme value statistics and its application to optical fiber communication systems.		Th1K.4 • 09:00 Simultaneous Optical Fiber Sensing and Mobile Front-haul Access over a Passive Optical Network, Yue-Kai Huang ¹ , Ezra Ip ¹ ; 'NEC Laboratories America Inc, USA. We demonstrate a passive optical network (PON) that employs reflective semiconductor optical amplifiers (RSOAs) at optical network units (ONUs) to allow simultaneous data transmission with distributed fiber-optic sensing (DFOS) on individual distribution fibers.	
Th1G.5 • 09:15 Multi-dimensional Distribution Matching for Probabilistically Shaped High Order Modulation For- mat, Mengfan Fu', Qiaoya Liu', Xiao- bo Zeng', Yiwen Wu', Lilin Yi', Weish- eng Hu', Qunbi Zhuge'; 'Shanghai Jiao Tong Univ., China. We propose a multi-dimensional distribution matcher for probabilistically shaped high order modulation format. Compared to product distribution matching, 0.3 dB and 0.1 dB gains are obtained with the same complexity and 50% lower complexity, respectively.	Th1H.5 • 09:15 Mode Group Resolved Analysis of Effects Induced by Macro Bending in a 50 µm Graded Index Multi Mode Fiber, Christian M. Spenner ¹ , Peter M. Krummrich ¹ ; ' <i>TU Dortmund, Germany</i> . The influence of macro bending in a 50 µm GIMMF is investigated in terms of losses and mode coupling. The results indicate that lower order mode groups are weakly influenced by macro bends.			Th1K.5 • 09:15 Spectrum Sensing Applications of FWM-based Optical Cyclosta- tionary Processor, Jerrod Langs- ton1 ^{,2} , Richard DeSalvo ² , Stephen E. Ralph'; 'Georgia Inst. of Tech- nology, USA; ² L3Harris, USA. We demonstrate a large instantaneous bandwidth optical cyclostationary processor that computes the spectral correlation function. Post-processing of experimentally measured SCFs is applied for waveform characterization, specifically baud rate and pulse- shaping roll-off estimation of QAM signals.	

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th1A • Advanced Design for Passive Devices— Continued	Th1B • High Speed PON—Continued	Th1C • Microwave Photonics—Continued	Th1D • Pushing the Bit-rate in Practical Networks—Continued	Th1E • Symposium: Future Photonics Devices fJ/bit Optical Networks Enabled by Emerging Optical Technologies (Session 2)—Continued	Th1F • AI for Reliable Networking—Continued
Th1A.6 • 09:30 Invited Deep Neural Networks for Design- ing Integrated Photonics, Keisuke Kojima ^{1,2} , Mohammad H. Tahersima ¹ , Toshiaki Koike-Akino ¹ , Devesh Jha ¹ , Yingheng Tang ^{1,3} , Kieran Parsons ¹ , Fengqiao Sang ² , Jonathan Klam- kin ² ; ¹ Mitsubishi Electric Research Laboratories, USA; ² Electrical and Computer Engineering Dept., Univ. of California, Santa Barbara, USA; ³ Elec- trical and Computer Engineering Dept., Purdue Univ., USA. We present our two inverse design activites for nanophtonic devices. In the first frame- work, a trained deep neural network takes device responses as inputs and device parameters for outputs. In the second framework, we use a novel generative network to generate a series of designs nearly meeting the device responses.	ThB.6 • 09:30 50G PON FEC Evaluation with Error Models for Advanced Equaliza- tion, Amitkumar Mahadevan ¹ , Dora van Veen ¹ , Noriaki Kaneda ¹ , Alex Duque ¹ , Adriaan de Lind van Wijn- gaarden ¹ , Vincent Houtsma ¹ ; 'Nokia Bell Labs, USA. Post-equalization bit-errors from ISI-impaired 50G PON transmission experiments are modeled using Fritchman's Markov chain. LDPC FEC evaluation with this error model reveals a 0.3-0.6 dB optical power penalty for equalizing ISI including 83 ps/nm dispersion.		Th1D.6 • 09:30 Invite Coherent Technologies and Require- ments in Next-generation MSO Networks, Matthew Schmitt'; 'Cable- Labs, USA. Cable MSO networks are undergoing a fundamental shift from centralized to distributed architectures, and from analog to digital optics. Interoperable coherent optics based on CableLabs specifications can serve as a key part of that transition.	Th1E.4 • 09:30 Invited Integrated Photonics for High Per- formance Computing, Yichen Shen'; 'Lightelligence, USA. I will talk about new architectures based on Photonic Integrated Circuits for carrying out machine learning and other statistical processing tasks. I will discuss our recent progress, the opportunity and challenges on how it can enable next generation computing hardware.	
	Th1B.7 • 09:45 Low-bandwidth Sub-nyquist A/D Conversion in Delay-division Mul- tiplexing OFDM PONs Enabled by Optical Shaping, Wei-Lun Chen', Min Yu', Lu-Yi Yang', Chia Chien Wei', Chun-Ting Lin ² ; 'National Sun Yat-Sen Univ., Taiwan; ² National Chiao Tung Univ., Taiwan; ² National Chiao Tung Univ., Taiwan; ² National Chiao analog bandwidth of low-sampling-				

10:00–13:00 Unopposed Exhibit-only Time, Exhibit Hall (coffee services 10:00–10:30) Lunch Break (on own)

rate A/D conversion in a DDM-OFDM-PON. It successfully enabled the detection of 7.5-GHz/28-Gb/s downstream using low-bandwidth (1.7

GHz) and sub-Nyquist-sampling (3.75

GS/s) A/D conversion.

10:00–16:00 Exhibition and Show Floor, Exhibit Hall (concessions available in Exhibit Hall) OFC Career Zone Live, Exhibit Hall B2

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming
h1G • Modulation and oding—Continued	Th1H • Characterization of SDM Fibers— Continued	Th11 • Digital Signal Processing Techniques and Mitigation— Continued	Th1J • Panel: Devices and Systems at 130 Gbaud and Above: What is the Outlook?— Continued	Th1K • Optical Wireless Sensing Systems for 5G—Continued	Design Consideration of Next Generation Etherne Switches with Higher Speed Optics Cisco
In IG.6 • 09:30 taircase Construction with Non- systematic Polar Codes, Carlo ondo', Valerio Bioglio', Ingmar and'; 'Huawei Technologies France ASU, France. We propose staircase odes based on non-systematic polar odes, describing a general framework or encoding and decoding, and resenting simulation results showing the effectiveness of the proposed oproach even with short component odes. 16.7 • 09:45 Top-Scored PGA Implementation of Prefix-free ode Distribution Matching for robabilistic Constellation Shap- rg , Qinyang Yu ^{1,2} , Stave Corte- Bil ² , Junho Cho ² , 'Shanghai Univ., hina; 'Nokia Bell Labs, USA. We pplement rate-adaptable prefix-free ode distribution matching in FPGA, emonstrating its real-time feasibility ith substantially less hardware sources than low-density parity- neck coding.	Th1H.6 • 09:30 Top-Scored Assembly and Characterization of a Multimode EDFA Using Digital Holography, Juan Carlos Alvarado Zacarias ^{2,1} , Nicolas K. Fontaine ² , Roland Ryf ² , Haoshuo Chen ² , Sjoerd van der Heide ³ , Jose Enrique Antonio- Lopez ¹ , Steffen Wittek ¹ , Guifang Li ¹ , Chigo M. Okonkwo ³ , Marianne Bigot- Astruc ⁴ , Adrian Amezcua-Correa ⁴ , Pierre Sillard ⁴ , Rodrigo Amezcua Correa ¹ ; ¹ CREOL, The College of Optics & Photonics, USA; ² Nokia Bell Labs, USA; ³ Inst. for Photonic Integra- tion, Eindhoven Univ. of Technol- ogy, Netherlands; ⁴ Prysmian Group, France. We present the assembly and characterization of a multimode EDFA supporting up to 45 modes using digital holography to measure the transfer matrix of the system at each step and obtain mode dependent loss and crosstalk characteristics of the amplifier.	Th11.5 • 09:30 On the Performance under Hard and Soft Bitwise Mismatched-de- coding, Tsuyoshi Yoshida ^{1,2} , Mikael Mazu ³ , Jochen Schröder ³ , Magnus Karlsson ³ , Erik Agrell ³ ; 'Mitsubishi Electric Corporation, Japan; 'Osaka Univ., Japan; 'Chalmers Univ. of Technology, Sweden. We investigated a suitable auxiliary channel setting and the gap between Q-factors with hard and soft demapping. The system margin definition should be complex coded modulation with soft forward error correction. Th11.6 • 09:45 Rate-adaptive Concatenated Polar- Staircase Codes for Data Center Interconnects, Tayyab Mehmood', Metodi P. Yankov', Anders Fiske ² , Kim Gormsen ² , Søren Forchham- mer'; 'Technical Univ. of Denmark, Denmark; ² Zeuxion, Denmark. A consisting of an outer staircase code and an inner polar code is proposed. Short blocklength inner polar codes offers rate-adaptivity and more ta027 data-center-interconnect error- correcting code.		Th1K.6 • 09:30 Alignment Monitor for Free-space Optical Links in the Presence of Turbulence using the Beating of Opposite-order Orbital-angular Momentum Beams on Two Differ- ent Wavelengths, Runzhou Zhang', Nanzhe Hu', Xinzhou Su', Ahmed Almaiman', Haoqian Song', Zhe Zhao', Hao Song', Kai Pang', Cong Liu', Moshe Tur', Alan E. Willher'; 'Univ. of Southern California, USA; 'School of Electrical Engineering, Tel Aviv Univ. Israel. We experimentally demonstrate an approach for monitoring misalignment between transmitter and receiver for free space optical links under turbulence effects using the beating of two opposite-order orbital-angular-momentum beams on two different wavelengths. Th1K.7 • 09:45 Different Hu', Guoqiang Li', Nan Chi'; 'Fudan Univ., China. We found the optimum QAM order with PS for the nonlinear UVLC channel is not the adjacent integer of entropy. Higher order QAM can outperform adjacent order for 80.57% in net transmission rate.	10:15–11:15, Theater II Product Showcase Huawei Technologies USA 10:15–10:45, Theater III Market Watch Panel V: Inside the Data Center 10:30–12:00, Theater I Market Watch Panel VI Advanced Packaging and Photonic Integration 12:30–14:00, Theater I Transforming Network Operations through Automation 12:45–13:45, Theater II POFTO Symposium POFTO 13:45–14:45, Theater III

10:00–16:00 Exhibition and Show Floor, Exhibit Hall (concessions available in Exhibit Hall) OFC Career Zone Live, Exhibit Hall B2

127

10:30–12:30 Th2A • Poster Session II

Th2A.1

100-Gbps 100-m Hollow-core Fiber Optical Interconnection at 2-micron Waveband by PS-DMT, Weihong Shen¹, Jiangbing Du¹, Lin Sun¹, Chang Wang¹, Ke Xu², Baile Chen³, Zuyuan He¹; ¹Shanghai Jiao Tong Univ., China; ²Harbin Inst. of Technology, China; ³Shanghai Tech Univ., China. 2-micron waveband optical interconnection at recordhigh-speed of 100 Gbps/lane with 100-m hollow-core photonic bandgap fiber transmission is achieved. Modedependent bandwidth restriction is well optimized by probabilistically shaped discrete multi-tone (PS-DMT) modulation.

Th2A.2

High Power Integrated Laser for Microwave Photonics, Jörn P. Epping¹, Ruud M. Oldenbeuving¹, Dimitri Geskus¹, Ilka Visscher¹, Robert Grootjans¹, Chris G. Roeloffzen¹, René Heideman¹; 'LioniX International BV, Germany. We present a hybrid integrated laser with two gain sections coupled to one tunable cavity. The resulting laser has a record on-chip power of up to 20.7 dBm and an intrinsic linewidth of 320 Hz.

Th2A.3

Lifetime Prediction of 1550 nm DFB Laser Using Machine Learning Techniques, Khouloud Abdelli^{1,2}, Danish Rafique¹, Helmut Griesser¹, Stephan Pachnicke²; ¹ADVA Optical Networking SE, Germany; ²Christian-Albrechts-Universität zu Kiel,, Germany. A novel approach based on an artificial neural network (ANN) for lifetime prediction of 1.55 µm InGaAsP MQW-DFB laser diode is presented. It outperforms the conventional lifetime projection using accelerated aging tests

Th2A.4

High Power External Pluggable Laser Bank with Simultaneous Single Mode Optical and Electrical Connection, Benbo Xu¹, Rui Li¹, Yanbo Li¹, Xiaolu Song¹; ¹Huawei Co Ltd., China. We demonstrate a pluggable laser bank module with 8-channel single-mode optical output and a maximum power of 18.5 dBm per channel. The hot pluggable module supports sufficient link-budget for a 1.6 Tb/s silicon photonic chip.

Th2A.5

Characterization of Modal-chromatic Dispersion Compensation in 400GBASE-SR8 Channels, Bulent Kose¹, Jose Castro¹, Rick Pimpinella¹, Yu Huang¹, Fei Jia¹, Brett Lane¹, ¹Panduit, USA. We evaluate impact of OM4 dispersion compensated fiber on 8x50Gbps transmission for reaches up to 500m. Bit error rates, and eye diagrams before and after equalization are evaluated.

Th2A.6

A Tunable Mode Divider Based on Wavelength Insensitive Coupler Using Thermo-optic Effect for Gainequalization in MDM Network, Kodai Nakamura¹, Takeshi Fujisawa¹, Taiji Sakamoto², Takashi Matsui², Kazuhide Nakajima², Kunimasa Saitoh¹; ¹Graduate School of Information Science and Technology, Hokkaido Univ., Japan; ²NTT Access Network Service Systems, NTT corporation, Japan. A tunable TE₀-TE₁ mode divider based on wavelength-insensitive-coupler is experimentally demonstrated for the first time. Arbitrary branching ratios can be realized by using thermooptic heaters. The proposed device is useful for gain-equalization in MDM networks. © 2020 The Authors

Th2A.7

High-performance Microring-assisted Space-and-wavelength Selective Switch, Yishen Huang¹, Qixiang Cheng¹, Anthony Rizzo¹, Keren Bergman¹; ¹Columbia Univ., USA. We introduce a novel design of spaceand-wavelength selective switch using microring-assisted Mach-Zehnder interferometers. A 2×2×2h elementary switch block is demonstrated with full spatial and wavelength switching capabilities, showing 20dB crosstalk suppression and 19dB extinction ratio.

Th2A.8

Large-area Metalens Directly Patterned on a 12-inch Glass Wafer Using Immersion Lithography for Mass Production, Qize Zhong¹, Yuan Dong¹, Dongdong Li¹, Nanxi Li¹, Ting Hu¹, Zhengji Xu¹, Yanyan Zhou¹, Keng Heng Lai¹, Yuan Hsing Fu¹, Vladimir Bliznetsov¹, Hou-Jang Lee¹, Wei Loong Loh¹, Shiyang Zhu¹, Qunying Lin1, Navab Singh1; 1Inst. of Microelectronics, Agency for Science Technology and Research, Singapore. We developed a technology to directly process 12-inch glass wafers using 193 nm immersion lithography for metasurface devices fabrication. An 8-mm-dimeter metalens working at 940 nm wavelength has been demonstrated as a proof-of-concept functional device.

Th2A.9

CWDM Mux/Demux Passive Optical Interconnect, Darrell Childers¹, Dirk Schoellner¹, DJ Hastings¹, Ke Wang¹, Paul Rosenberg², Gregg Combs³, Kent Devenport³, ¹US Conec Ltd, USA; ²HPE Hewlett Packard Labs, USA; ³Hewlett Packard Enterprise, USA: A novel concept for integrating the mux/demux functionality of coarse wavelength division multiplexing (CWDM) into passive fiber optic connectors via expanded beam ferrules is presented, including optical modeling and preliminary empirical results.

Th2A.10

Multilayer Silicon Nitride-based Coupler Integrated into a Silicon Photonics Platform with <1 dB Coupling Loss to a Standard SMF over O, S, C and L optical bands, Ravi Tummidi¹, Mark Webster¹; ¹Cisco Systems, USA. We experimentally demonstrate <1 dB coupling loss over O,S,C and L optical bands for both polarizations between an integrated silicon photonics platform and buttcoupled standard single mode fiber.

Th2A.11

Electro-Optic Frequency Response Shaping in High Speed Mach-Zehnder Modulators, Laurens Breyne^{1,2}, Joris Lambrecht¹, Michiel Verplaetse¹, Xin Yin¹, Gunther Roelkens², Peter Ossieur¹, Johan Bauwelinck1; 1DLab, Ghent Univ. - imec, Belgium; ²Photonics Research Group, Ghent Univ. - imec, Belgium. We demonstrate a simple technique to shape the electro-optic frequency response of high-speed TW-MZMs. C-band transmission of 56Gb/s NRZ over 3km SSMF shows 5dB powerpenalty improvement at KP4-FEC between a standard and shaped MZM design.

Th2A.12

A High Linear Silicon Mach-Zehnder Modulator by the Dual-series Architecture, Qiang Zhang², Hui Yu¹, Zhilei Fu¹, Penghui Xia¹, Xiaofei Wang¹; ²College of Information Science and Electronic Engineering, Zhejiang Univ., China. We experimentally demonstrate a highly linear dual-series silicon modulator by tuning properly the power splitting ratio of the driving RF signal on the its two sub-MZMs, with SFDR of 109.5/100.5 dB×Hz^{2/3} at 1/10 GHz.

Th2A.13

Timing Jitter from Optical Phase Noise in Quantum Dot Coherent Comb Laser at C-Band, Youxin Mao', Zhenguo Lu', Jiaren Liu', Guocheng Liu', Chunying Song', Philip Poole'; 'National Research Council Canada, Canada. Timing jitter obtained from optical phase noise is investigated in InAs/InP quantum dot Fabry-Pérot coherent comb lasers with 11, 25, and 34.5 GHz pulse repetition rates. These lasers exhibit ultra low timing jitter graking thom

repetition rates. These lasers exhibit ultra-low timing jitter making them excellent sources for tens terabit optical networks.

Th2A.14

10 GHz, 6.2 ps Transform-limited Coherent Optical Pulse Generation from a 1.55 µm, Self-injection Gainswitched DFB-LD, Keisuke Kasai', Masataka Nakazawa'; 'Tohoku Univ., Japan. We demonstrate coherent optical pulse generation from a 1.55 µm, self-injection gain-switched DFB-LD. By using external spectral shaping, we generated a transform-limited 10-GHz, 6-ps Gaussian-pulse, which had neatly repetitive longitudinal modes with a 7 kHz-linewidth.

Th2A.15

10-nm-wide Tunable In-series Laser Array with High Single-mode Stability, Zhenxing Sun¹, Rulei Xiao¹, Zhirui Su¹, Gen Lv¹, Zhao Chen², Jilin Zheng¹, Yunshan Zhang¹, Jun Lu¹, Yuechun Shi^{1,4}, Yi-jen Chiu³, Xiangfei Chen1; 1Key Laboratory of Intelligent Optical Sensing and Manipulation of the Ministry of Education & National Laboratory of Solid State Microstructures & College of Engineering and Applied Sciences & Inst. of Optical Communication Engineering, Nanjing Univ., China; ²School of Electronic and Electrical Engineering, Wuhan Textile Univ., China; ³Inst. of Electro-Optical Engineering and Semiconductor Technology Research Development Center, National Sun Yat-Sen Univ., Taiwan; ⁴Nanjing Univ. (Suzhou) High-Tech Inst., China. We report a 10-nmwide tunable in-series DFB laser array with high wavelength-spacing uniformity and high single-mode stability, which is guaranteed by highprecision control of grating phase error through reconstruction-equivalentchirp technique.

Th2A.16

Low Parasitic Capacitance III-V/Si Hybrid MOS Optical Modulator toward High-speed Modulation, Qiang Li¹, Chongpei Ho¹, Junichi Fuiikata², Masataka Noguchi², Shigeki Takahashi², Kasidit Toprasertpong¹, Shinichi Takagi¹, Mitsuru Takenaka¹: ¹Univ. of Tokvo. Japan; ²PETRA, Japan. We present advanced design of III-V/Si hybrid MOS optical modulator to reduce parasitic capacitance and resistance toward high-speed modulation. We successfully achieved 21 times smaller RC constant, improving the trade-off between modulation efficiency and bandwidth.

Exhibit Hall B

Th2A • Poster Session II—Continued

Th2A.17 Multicere Eiber E

Multicore Fiber Fabricated by Modified Cylinder Method, Masanori

Takahashi¹, Koichi Maeda¹, Ryuichi Sugizaki¹, Masayoshi Tsukamoto¹; ¹Furukawa Electric, Japan. MCF made by modified cylinder method (MCM) is demonstrated. Optimized cylinder with single hole show potentials for cost reduction and higher productivity. Attenuation loss of the MCF made by MCM is 0.190dB/km at 1550nm.

Th2A.18

1000-nm IR Supercontinuum Due to Raman Soliton Supported by Four-wave Mixing, Marina Zajnulina'; 'Aston Inst. of Photonic Technologies, Aston Univ, UK. Simple, lowcost, and robust telecom-fiber-based single-pass system is introduced and numerically studied to generate a supercontinuum ranging from 1500 nm to 2500 nm despite the optical loss due to infrared absorption in optical fibers.

Th2A.19

Refractive Index Grading Optimization for Rectangular Core Fiber, Lior Rechtman¹, Dan M. Marom¹; ¹Hebrew Univ. of Jerusalem, Israel. We optimize the refractive index grading for rectangular core fibers in support of mode division multiplexing. Designs maximizing the effective index separations for MIMO-less support and others minimizing the differential group delays are identified.

Th2A.20

Ultra-small Optical Fiber Fabry-Pérot Cavities Fabricated by Laser-Induced

Photothermal Effect, Jiwon Choi¹, Gyeongho Son¹, Yeonghoon Jin¹, Kyoungsik Yu¹; *IKAIST, South Korea*. We proposed the HF etching method using laser-induced photothermal effect and found that curvatures of cavities can affect its Q-factor. We also show the potential for the novel metal coating process for the cavity surface.

. . .

Twining Plant Inspired Pneumatic Soft Robotic Spiral Gripper with High-birefringence Fiber Optic Sensor, Mei Yang', Liam Cooper', Mable P. Fok'; 'Univ. of Georgia, USA. Twining plant-inspired pneumatic soft-robotic spiral gripper embedded with a highbirefringence fiber-optic sensor is designed and emonstrated. The fiberoptic sensor enables the spiral-gripper to sense the twining angle and target cylinder radius as small as 1mm.

Th2A.22

Th2A.21

Wavelength-tunable PT-symmetric Single-longitudinal-mode Fiber Laser with a Single Physical Loop, Jianping Yao¹, Zheng Dai¹, Zhiqiang Fan¹; ¹Univ. of Ottawa, Canada. A wavelength-tunable parity-time (PT)symmetric single-longitudinal-mode fiber laser with a single physical loop is demonstrated. Single-longitudinalmode lasing with a tunable range from 1549.2 to 1550.3 nm and a linewidth of 670 Hz is achieved experimentally.

Th2A.23

A Frequency Digital Pre-distortion Compensation Method for FMCW LiDAR System, Ting-Hui Chen¹, Chien-Ying Huang¹, Tim Kuei Shia⁴, Sin-Jhu Wun¹, Ching-Hsiang Hsu¹, Kai-Ning Ku¹, Chi-Sen Lee¹, Chen-Yu Lin¹, Po-Chih Chang¹, Chung-Chih Wang¹, Shang-Chun Chen¹, Chien-Chung Lin^{1,3}, Chih-I Wu^{1,2}; ¹Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Inst., Taiwan; ²National Taiwan Univ., Taiwan: ³National Chiao Tung Univ., Taiwan; ⁴Information and Communications Research Laboratories, Industrial Technology Research Inst., Taiwan. We propose a digital pre-distortion (DPD) compensation method for FMCW LiDAR system and demonstrate that the proposed method can enhance the ranging accuracy more than three times in our FMCW ranging experiment.

Th2A.24

Enabling the Scalability of Industrial Networks by Independent Scheduling Domains, Konstantinos (Kostas) Christodoulopoulos¹, Wolfram Lautenschlaeger¹, Florian Frick², Nihel D. Benzaoui³, Torben Henke², Ulrich Gebhard¹, Lars Dembeck¹, Armin Lechler², Yvan Pointurier³, Sebastien Bigo³; ¹Nokia Bell Labs Germany, Germany; ²Univ. of Stuttgart, Germany; ³Nokia Bell Labs France, France. We propose to extend the scalability of Time Sensitive industrial Networks, by partitioning them into time/scheduling domains and interconnect domain-devices through an optical backbone acting asynchronously to them. We show drastic scalability improvements and a proof of concept.

Th2A.25

Experiments on Cloud-RAN Wireless Handover Using Optical Switching in a Dense Urban Testbed, Artur Minakhmetov¹, Craig Gutterman², Tingjun Chen², Jiakai Yu³, Cedric Ware¹, Luigi lannone¹, Daniel C. Kilper³, Gil Zussman²; ¹LTCI, Telecom Paris, France; ²Electrical Engineering, Columbia Univ., USA; ³College of Optical Sciences, Univ. of Arizona, USA. We investigate dynamic network resource allocation using softwaredefined networking optical controller with software-defined radios on the COSMOS testbed, 10 Gb/s capacity, deterministic low latency are maintained through user equipment wireless handover via optical switching.

Threshold Plasticity of Hybrid Si-VO, Microring Resonators, Zhi Wang¹, Qiang Li¹, Ziling Fu¹, Andrew Katumba², Florian Denis-le Coarer³, Damien Rontani³, Marc Sciamanna³, Peter Bienstman²; ¹Inst. of Optical Information, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong Univ., China; ²Photonic Research Group, Ghent Univ. - IMEC, Belgium; ³Univ. of Paris-Saclay, and Univ. of Lorraine, France. We theoretically simulate the threshold plasticity of a high-Q-factor silicon-on-insulator microring resonator integrated with VO₂. The proposed structure can perform excitatory and inhibitory learning by tuning the initial working condition.

Th2A.27

Th2A.26

Experimental Demonstration of Optical Multicast Packet Transmissions in Optical Packet/Circuit Integrated Networks, Yusuke Hirota¹, Sugang Xu¹, Masaki Shiraiwa¹, Yoshinari Awaii¹, Massimo Tornatore^{2,3}, Biswanath Mukherjee², Hideaki Furukawa¹, Naoya Wada¹; ¹National Inst. of Information and Communications Technology, Japan: ²Univ. of California, Davis, USA; ³Politecnico di Milano, Italy. We develop an SDN-based control for optical-multicast packet transmission and experimentally demonstrate multicast functionality by validating it using an application-layer network service for efficient content duplication in Optical Packet/Circuit Integrated (OPCI) network.

Th2A.28

Adaptive DNN Model Partition and Deployment in Edge Computingenabled Metro Optical Interconnection Network, Mingzhe Liu¹, Yajie Li¹, Yongli Zhao¹, Hui Yang¹, Jie Zhang¹; 'Beijing Univ. of Posts and Telecommunications, China. A DNN model partition and deployment algorithm is proposed between edge nodes and cloud in metro optical network. Simulation results show that the algorithm can deploy more DNN tasks with the same network resource.

Th2A.29

DeepCoop: Leveraging Cooperative DRL Agents to Achieve Scalable Network Automation for Multi-Domain SD-EONs, Baojia Li¹, Zuqing Zhu¹; ¹Univ of Science and Technology of China, China. We design DeepCoop to realize service provisioning in multi-domain software-defined elastic optical networks (SD-EONs) with cooperative deep reinforcement learning (DRL) agents.

Th2A.30

Disruption-minimized Re-adaptation of Virtual Links in Elastic Optical Networks, Nashid Shahriar¹, Mubeen Zulfigar¹, Shihabur Rahman Chowdhury¹, Sepehr Taeb¹, Massimo Tornatore², Raouf Boutaba¹, Jeebak Mitra³, Mahdi Hemmati³; ¹Univ. of Waterloo, Canada: ²Politecnico di Milano, Italy; ³Huawei Technologies Canada Research Center, Canada. We present a novel re-adaptation approach to accommodate bandwidth increase of virtual links in elastic optical networks. Our approach can incorporate different objectives, as minimizing disruption, by choosing among a comprehensive set of readaptation actions.

Show Floor Programming

Design Consideration of Next Generation Ethernet Switches with Higher Speed Optics Cisco

10:15–11:15, Theater II

Product Showcase

Huawei Technologies USA 10:15–10:45, Theater III

■ Market Watch Panel V: Inside the Data Center 10:30–12:00, Theater I

Beyond 400ZR....What Comes Next? 11:00–12:00, Theater III

System Evaluation of Onboard Optics 11:30–12:30, Theater II

3D-sensing Uses in Consumer and Automotive Markets *Intel* 12:15–13:30, *Theater III*

 Market Watch Panel VI: Advanced Packaging and Photonic Integration 12:30–14:00, Theater I

Transforming Network Operations through Automation 12:45–13:45, Theater II

POFTO Symposium POFTO 13:45–14:45, Theater III

Th2A • Poster Session II—Continued

Th2A.31

What if AI Fails: Protection against Failure of AI-Based QOT Prediction, Ningning Guo¹, Longfei Li¹, Lian Xiang¹, Sanjay K. Bose², Gangxiang Shen¹; ¹Soochow Univ., China; ²IIT, India. We propose a new mechanism to protect against the failure of AI-based QoT prediction. Simulation results shows the efficiency of the mechanism in guaranteeing reliability of lightpath services, while not increasing network spectrum resources used.

Th2A.32

HeCSON: Heuristic for Configuration Selection in Optical Network Planning, Sai Kireet Patri^{1,2}, Achim Autenrieth¹, Danish Rafique¹, Jörg-Peter Elbers¹, Carmen Mas Machuca²; ¹ADVA Optical Networking SE, Germany; ²Technical Univ. of Munich, Germany. We present a transceiver configuration selection heuristic combining Enhanced Gaussian Noise (EGN) models, which shows a 40% increase in throughput and 87% decrease in throughput and Full-Form EGN respectively.

Th2A.33

Hardware-efficient ROADM Design with Fiber-core Bypassing for WDM/SDM Networks, Lida Liu^{1,2}, Shuangvi Yan², Gerald Q. Migure Jr.¹, Yanlong Li³, Dimitra Simeonidou²; ¹KTH, Sweden; ²HPN group, Univ. of Bristol, UK: ³Tsinghua National Laboratory for Information Science and Technology, China. A SDM/WDM ROADM is proposed with low portcount WSSs. Fiber-core bypassing reduces the number of and portcount of WSSs in the implementation. The design requires less hardware without compromising on network performance with the developed routing core and wavelength assignment algorithm.

Th2A.34

Energy-efficient Coherent PON System with Access-span Length Difference Between ONUs Using Marginal IQ Power Loading in Downlink Transmission, Takahiro Kodama¹, Kouki Arai²; ¹Kagawa Univ., Japan; ²Graduate Faculty of Interdisciplinary Research, Univ. of Yamanashi, Japan. 2.7 dB power efficiency improvement consistent with theory was experimentally obtained by marginal IQ distorted QPSK signal with and DD-CPR in the case of the 57 km downlink access span length difference between two ONUs.

Th2A.35

Novel Low Cost PON Protection via Harvested Power, Neil Parkin¹, Albert

Rafel¹; ¹BT, UK. PON protection is costly due to the necessary redundant equipment. We describe a method utilising harvested optical power and show test results using commercial equipment, which prove protection could be provided at very low cost.

Th2A.36

Deterministic Layer-2 Ring Network with Autonomous Dynamic Gate Shaping for Multi-service Convergence in 5G and Beyond, Naotaka Shibata¹, Shin Kaneko¹, Kazuaki Honda¹, Jun Terada¹; ¹NTT, Japan. We propose autonomous dynamic gate shaping and rerouting according to real-time traffic-state for enhancing IoT-traffic throughput on deterministic Layer-2 network that also accommodates latencysensitive mobile front-haul. Systemlevel demonstrations show throughput improvement from 3.9Gbps to 7.9Gbps.

Th2A.37

Comparison of PAM Formats for 200 Gb/s Short Reach Transmission Systems, Tom Wettlin¹, Talha Rahman², Jinlong Wei², Stefano Calabro², Nebojsa Stojanovic², Stephan Pachnicke¹; *1Kiel Univ.*, *Germany*; ²European Research Center, Huawei Technologies, Germany. We compared the performance of PAM4, PAM6 and PAM8 experimentally at 224/225 Gb/s using different DSP schemes including Tomlinson-Harashima precoding (THP). PAM6 shows the best overall performance. For PAM4 THP shows a large qain.

Th2A.38

ASIC Design Exploration for DSP and FEC of 400-Gbit/s Coherent Data-center Interconnect Receivers, Christoffer Fougstedt¹, Oscar Gustafsson², Cheolyong Bae², Erik Börjeson¹, Per Larsson-Edefors¹; ¹Department of Computer Science and Engineering, Chalmers Univ. of Technology, Sweden; ²Department of Electrical Engineering, Linköping Univ., Sweden. We perform exploratory ASIC design of key DSP and FEC units for 400-Gbit/s coherent datacenter interconnect receivers. In 22-nm CMOS, the considered units together dissipate 5 W, suggesting implementation feasibility in powerconstrained form factors.

Th2A.39

Coherent Self-superposition Aided SSB Nyquist 16QAM Synthesis from Twin-SSB Nyquist QPSK with Reduced DAC Resolution Requirement, Guo-Wei Lu¹, Hong-Bo Zhang², Zhe Li³; ¹Tokai Univ., Japan: ²Chenadu Univ. of Info. and Tech., China; 3II-VI Incorporated, USA. An FWM-based coherent selfsuperposition technique is proposed and demonstrated to synthesize 12.5-Gb/s SSB Nyquist 16QAM from Twin-SSB Nyquist QPSK, which effectively relaxes DAC resolution requirement. An equalization algorithm is also proposed for such approach's detection.

Th2A.40

80-GHz Band Electro-optic Modulator Using Antenna-coupled Electrode and LiNbO₃ Film Stacked on Low-k Substrate for Millimeter-Wave Radar System, Hiroshi Murata¹, Hiroto Yokohashi¹; ¹Mie Univ., Japan. Antenna-coupled-electrode LiNbO₃ optical modulators have been designed, fabricated, and demonstrated experimentally for the calibrations of millimeter-wave radars and imagers. A over 50-dB signal-tonoise ratio of the re-converted signal was obtained in the 1-GHz IF band.

Th2A.41

Photonics-enabled 2Tx/2Rx Coherent MIMO Radar System Experiment with Enhanced Cross Range Resolution, Antonella Bogoni^{2,1}, Paolo Ghelfi¹, Salvatore Maresca², Leonardo Lembo^{2,3}, David Ricardo Sanchez Jacome^{4,2}, Filippo Scotti¹, Giovanni Serafino², Antonio Malacarne², Carsten Rockstuhl⁴; ¹CNIT, Italy; ²Sant'Anna School, Italy; ³Naval Experimentation and Support Center, Italy; 4Karlsruhe Inst. of Technology, Germany. Photonics enables a multi-target experiment of coherent MIMO radar. It confirms that coherence introduces almost one order of magnitude improvement in the cross-range resolution. Simulations demonstrates the coherent bi-band operation benefits on the system performance.

Th2A.42 Novel Compressed Digital Radio Fronthaul over Photonically-generated THz Wireless Bridge, Tongyun Li¹, Luis Gonzalez-Guerrero², Haymen Shams², Cyril Renaud², Alwyn J. Seeds², Martyn Fice², lan White¹, Richard Penty¹; ¹Centre for Photonic Systems, Electrical Division, Fundition Physical Division,

Richard Penty'; 'Centre for Photonic Systems, Electrical Division, Engineering Department, Univ. of Cambridge, UK; ²Department of Electronic and Electrical Engineering, Univ. College London, UK. Compressed DRoF-based fronthaul links enable cost-effective last-mile wireless coverage. This paper demonstrates a novel system which carries 12 LTE services over both optical fibre and photonically-generated THz wireless

links with over 40 dB dynamic range.

Th2A.43

RF Fading Circumvention Using a Polarization Modulator for Supporting W-Band RoF Transport from 85 to 95 GHz, Run-Kai Shiu^{1,2}, Shang-Jen Su², Yon-Wei Chen², Qi Zhou², Justin Chiu¹, Guan-Ming Shao¹, Li Zhao², P. C. Peng¹, Gee-Kung Chang²; ¹National Taipei Univ. of Technology, Taiwan; ²Georgia Inst. of Technology, Georgia. RF fading in an RoF system is circumvented by managing the frequency notch through the control of a polarization modulator. W-band signals centralized at 90 GHz with 10GHz operation bandwidth are fully utilized with stable EVM performance.

Th2A.44

500-Gb/s PAM4 FSO-UWLT Integration Utilizing R/G/B Five-wavelength Polarization-multiplexing

Scenario, Shi-Cheng Tu¹, Yong-Cheng Huang¹, Jing-Yan Xie¹, Qi-Ping Huang¹, Song-En Tsai¹, Wen-Shing Tsai², Hai-Han Lu¹; ¹National Taipei Univ. of Technology, Taiwan; ²Department of Electrical Engineering, Ming Chi Univ. of Technology, Taiwan. A 500-Gb/s PAM4 FSO-UWLT integration utilizing red/green/blue polarization-multiplexing scenario is constructed. With five-wavelength polarization-multiplexing scenario. the transmission rate is substantially multiplied. Such demonstrated PAM4 FSO-UWLT integration brings imperative enhancement featured by optical wireless communications.

Th2A.45

Few-subcarrier QPSK-OFDM Wireless Ka-band Delivery with Precoding-assisted Frequency Doubling, Wen Zhou^{1,2}, Jianjun Yu¹, Li Zhao^{1,2}, Kaihui Wang¹, Miao Kong¹, Jiao Zhang¹, You-Wei Chen², Shuyi Shen², Gee-Kung Chang²; ¹Shanghai Inst. for Advanced Communication and Data Science, Fudan Univ., China: ²School of Electrical and Computer Engineering, Georgia Inst. of Technology, USA. We experimentally demonstrated a Ka-band dual/foursubcarrier OPSK-OFDM delivery over 25-km SMF and 1-m wireless link. To our knowledge, this is the first time to achieve few-subcarrier QPSK-OFDM signal generation and wireless transmission using pre-coding technique.

Th2A.46

Centralized Digital Self-interference Cancellation Technique to Enable Full-duplex Operation of Next Generation Millimeter Wave over Fiber Systems, Qi Zhou¹, Shuvi Shen¹, Shang-Jen Su¹, You-Wei Chen¹, Shuang Yao¹, Yahya M. Alfadhli¹, Gee-Kung Chang¹; ¹Georgia Inst. of Technology, USA. We propose and experimentally demonstrate a centralized digital self-interference cancellation scheme in a mm-wave over fiber system for full-duplex next-generation mobile networks. A 24.1-dB self-interference cancellation over 1-GHz bandwidth is realized with successful signal-of-interest recovery.

Th2A.47

Four-dimensional 8-bit Modulation with KP4 Non-binary FEC for Shortreach Coherent Optical Transmissions, Liangjun Zhang¹, Hung-chang Chien¹, Yi Cai¹, Weiming Wang¹, Weiqin Zhou¹, Zihe Hu¹; ¹ZTE Corporation, China. C4-256 four-dimensional 8-bit modulation with non-binary FEC is firstly proposed and demonstrated for coherent optical transmissions, which outperforms its PM-16QAM counterpart by 0.7-dB for required OSNR at 10^a post-FEC BER.

Exhibit Hall B

Th2A • Poster Session II—Continued

Th2A.48

Concept and Experimental Demonstration of Optical IM/DD Endto-end System Optimization using a Generative Model, Boris P. Karanov^{1,2}, Mathieu Chagnon², Vahid Aref², Domanic Lavery¹, Polina Bayvel¹, Laurent Schmalen³; ¹Univ. College London, UK; ²Nokia Bell Labs, Germany; ³Karlsruhe Inst. of Technology, Germany. We perform an experimental end-to-end transceiver optimization via deep learning using a generative adversarial network to approximate the test-bed channel. Previously, optimization was only possible through a prior assumption of an explicit simplified channel model.

Th2A.49

Joint Linear and Nonlinear Noise Estimation of Optical Links by Exploiting Carrier Phase Recovery, Daniel Lippiatt', Siddharth Varughese', Thomas Richter², Sorin Tibuleac², Stephen E. Ralph'; 'Georgia Inst. of Technology, USA, ²ADVA Optical Networking, USA. We demonstrate joint linear and nonlinear noise estimation by extracting the optical signal-tonoise ratio (OSNR) and launch power directly from phase noise metrics readily available within existing digital signal processing algorithms.

Th2A.50

Optical Labelling and Performance Monitoring in Coherent Optical Wavelength Division Multiplexing Networks, Chao Yang¹, Xiang Li¹, Ming Luo¹, Zhixue He¹, Haibo Li¹, Cai Li¹, Shaohua Yu¹; 'Wuhan Research Inst. of Post & Tele, China. We propose and experimentally demonstrate an optical labelling scheme in coherent optical WDM network to simultaneously recognize labels in each wavelength and monitor the OSNR using only one photodetector based on subcarrier index modulation technology.

Th2A.51

Reduction in Complexity of Volterra Filter by Employing I₀-Regularization in 112-Gbps PAM-4 VCSEL Optical Interconnect, Yi-Yu Lin¹, Chun-Jui Chen¹, Hong-Minh Nguyen², Chun-Yen Chuang², Chia Chien Wei¹, Jyehong Chen², Jin-Wei Shi³; ¹National Sun Yat-Sen Univ., Taiwan; ²National Chiao Tung Univ., Taiwan; ³National Central Univ., Taiwan. We employ I₀-regularization to reduce Volterra filter complexity by up to 90% in 112-Gbps PAM-4 VCSEL transmission. Compared to I1-regularization, Inregularization achieves lower complexity and more precise weights without retraining after sparse identification.

Th2A.52

Nonlinear Tolerance Enhancement Based on Perturbation Theory for Optical Phase Conjugation Systems, Tu T. Nguyen¹, Paul Harper¹, Sunish O.S. Kumar², Andrew Ellis¹; ¹Aston Univ., UK; ²Memorial Univ. of Newfoundland, Canada. We show more than 1 dB of additional SNR improvement by deploying perturbation-based nonlinearity DSP at the receiver side for 30 GBaud dualpolarization 16-OAM transmission over a 2560 km link with a mid-link optical phase conjugation.

Th2A.53

The Impact of Nonlinear Phase Noise Induced from Low-speed Optical Supervisory Channel on Soft-decision FEC Performance, Hiroki Kawahara¹, Kohei Saito¹, Takeshi Seki¹, Takeshi Kawasaki¹, Hideki Maeda¹; ¹NTT Network Service System Labolatories, Japan. We numerically analyze the statistics of the nonlinear phase noise induced from a lowspeed optical supervisory channel wavelength-multiplexed outside the EDFA amplification band and how it affects the behavior and performance of soft-decision FEC.

17 GBd Sub-photon Level Heterodyne Detection for CV-QKD Enabled by Machine Learning, Max Rückmann¹, Sebastian Kleis¹, Christian Schaeffer¹; ¹Helmut-Schmidt-Univ., Germany. We experimentally demonstrate heterodyne detection at a SNR of less than -20 dB with machine learning based optimized carrier phase estimation. Successful 17 GBaud BPSK signal demodulation is achieved without the use of pilot signals.

Th2A.55

Th2A.54

Recent Progress in the Characterization of the G-SNR and the OSNR of Future SDM-based Subsea Open Cables, Alexis C. Carbó Meseguer¹, Philippe Plantady¹, Alain Calsat¹, Suwimol Dubost¹, Vincent Letellier¹; 'Alcatel Submarine Networks, France. We characterized the G-SNR and the OSNR of an SDMcompatible submarine optical cable with different modulation formats and symbol rates up to 101 GBd, observing good agreement between all G-SNR measurements.

Th2A.56

Secure Optical Communication Based on Common-injection-induced Synchronization of Wideband Complex Signals, Ning Jiang¹, Anke Zhao¹, Shigin Liu¹, Yigun Zhang¹, Kun Qiu¹; ¹Univ of Electronic Science & Tech China, China. We propose and experimentally demonstrate a novel secure optical communication scheme that supports high encryption efficiency and highspeed transmissions over Gbit/s with satisfactory BER performance, by achieving common-injectioninduced synchronization between two wideband complex entropy sources.

Design Consideration of Next Generation Ethernet Switches with Higher Speed Optics Cisco

10:15–11:15, Theater II

Product Showcase

Huawei Technologies USA 10:15–10:45, Theater III

■ Market Watch Panel V: Inside the Data Center 10:30–12:00, Theater I

Beyond 400ZR....What Comes Next? 11:00–12:00, Theater III

System Evaluation of Onboard Optics 11:30–12:30, Theater II

3D-sensing Uses in Consumer and Automotive Markets *Intel* 12:15–13:30, *Theater III*

Market Watch Panel VI: Advanced Packaging and Photonic Integration 12:30–14:00, Theater I

Transforming Network Operations through Automation

12:45–13:45, Theater II

POFTO Symposium POFTO 13:45–14:45, Theater III

Room 1A

Room 1B

14:00–16:00 Th3A • Disaggregation, Open Platform, SDN, NFV

Presider: David Boertjes; Ciena Corporation, Canada

Th3A.1 • 14:00

Th3B.1 • 14:00 Invited

Disaggregated Packet Transponder Large-scale Photonic Integrated Field Demonstration Exercising Cross-connects for Optical Com-Multi-format Transmission with munication and Computation, Ri-Multi-vendor, Open Packet Optical palta Stabile¹, Nicola Calabretta¹, Network Elements, Geraldine Fran-Bin Shi¹; ¹Technische Universiteit cia², Ryoji Nagase³, Wataru Ishida³, Eindhoven, Netherlands. An 8×8 InP Yoshiaki Sone³, Lalit Kumar⁴, Srikanth cross-connect chip for optical switch-Krishnamohan⁴, Victor López¹; ¹Teleing within ROADMs is employed for fonica R&D, Spain; ²Telefonica Peru, demonstrating optical feed-forward Peru: ³NEL America, USA: ⁴IP Infusion, neural networks for analog data USA. We demonstrate a field trial processing. An all-optical approach of 100G/200Gbps alien wavelength is also explored for deeper optical transmission and management onto neuromorphic computing on chip. a deployed line system (Telefonica del Peru nation-wide field network) with disaggregated packet transponder, adopting multi-vendor CFP2-ACO / CFP2-DCO transceivers[1].

Th3A.2 • 14:15

Demonstration of Low-latency Coherent Optical Connectivity for Consolidated Inter-hub Ring Architecture, Zhensheng Jia¹; 'Cable-Labs, USA. Based on new design of consolidated inter-hub CDC architecture, end-to-end video delivery is demonstrated with 2-us latency from multicast switch and 11us from interoperable coherent muxponder, and full-duplex operation is also presented in such network.

n; and Multi-wavelength nc., Devices Presider: Kouji Nakahara; Lumentum Japan Inc., Japan

14:00-16:00

Th3C • High-speed

Th3C.1 • 14:00 🗙 Top-Scored

Room 2

Direct Modulation of a 54-GHz Distributed Bragg Reflector Laser with 100-GBaud PAM-4 and 80-GBaud PAM-8, Di Che¹, Yasuhiro Matsui², Richard Schatz³, Roberto Rodes⁴, Ferdous Khan², Martin Kwakernaak², Tsurugi Sudo², Chandrasekhar Sethumadhavan¹, Junho Cho¹, Xi Chen¹, Peter Winzer¹; ¹Nokia Bell Labs, USA; ²Finisar Corporation, USA; ³Applied Physics, Photonics, KTH Royal Inst. of Technology, Sweden; ⁴Finisar Corporation, USA. We demonstrate both 100-GBaud PAM-4 and 80-GBaud PAM-8 transmissions over 10-km fiber using a 1315-nm 54-GHz distributed Bragg reflector laser with a transient chirp parameter of 1.0. The 80-GBaud PAM-8 system achieves a net bit rate of 200 Gb/s.

Th3C.2 • 14:15

High Linearity and Uniform Characteristics of InP-based 8-CH Wavequide Avalanche Photodiode Arrav for 400 GbE, Takuya Okimoto^{1,2}, Ken Ashizawa², Koji Ebihara², Satoru Okamoto², Takumi Endo², Kazuhiko Horino², Tatsuya Takeuchi², Toru Uchida², Hideki Yagi^{1,2}, Yoshihiro Yoneda^{2,1}; ¹Sumitomo Electric Industries, Ltd., Japan; ²Sumitomo Electric Device Innovations, Inc., Japan. InP-based 8-channel waveguide APD arrays were demonstrated towards 400GbE for the first time. They exhibited maximum 3dB-bandwidth of 23GHz under highoptical input of -10dBm and uniformity of avalanche breakdown voltage less than 0.1V between channels.

Room 3

14:00–16:00 Th3D • Machine Learning for Optical Network Performance Presider: Maite Brandt-

Pearce; Univ. of Virginia, USA

Th3D.1 • 14:00

Evol-TL: Evolutionary Transfer Learning for QoT Estimation in Multidomain Networks, Che-Yu Liu', Xiaoliang Chen', Roberto Proietti', S. J. Ben Yoo', 'Univ. of California, Davis, USA. We propose an evolutionary transfer learning approach for QoT estimation in multi-domain optical networks. The results demonstrate that our approach can reduce the amounts of required training data by 10x while achieving accuracies of >90%.

Th3D.2 • 14:15 Top-Scored

Assessment of Domain Adaptation

Approaches for QoT Estimation in

Optical Networks, Riccardo di Ma-

rino¹. Cristina Rottondi¹. Alessandro

Giusti², Andrea Bianco¹: ¹Politecnico

di Torino, Italy; ²Dalle Molle Inst. for

Artificial Intelligence, Switzerland. We

evaluate the performance of two

domain adaptation approaches for

machine learning assisted quality of

transmission estimation of an optical

lightpath, for a fixed/variable number

of available training samples from the

source/target domain.

Chris Fludger is head of DSP development at Infinera in Germany, where he specializes in System Design and Digital Signal Processing for flexible communications. Previously, he has worked on the development of several generations of coherent optical transceivers at Cisco and CoreOptics. He has received master's and doctorate degrees in electronic engineering from Cambridge University, UK. At Nortel Networks his focus was electronic signal processing, advanced modulation techniques and Raman amplification.

14:00–16:00 Th3E • Optimizing

Room 6C

Coherent Transponders Presider: Hongbin Zhan

Presider: Hongbin Zhang; Acacia Communications, USA

Th3E.1 • 14:00 Tutorial

Performance Oriented DSP Design for Flexible Coherent Transmission, Chris R. Fludger¹; ¹Infinera *GmbH*, *Germany*. We review the impact of DSP in terms of performance and flexibility in the data network. DSP has addressed the optimization of capacity against reach and power. Future DSP targets cost-reduction through flexible point-to-multi-point architectures.

14:00–16:00 Th3F • Novel Fiber Optic Sensors ●

Room 6D

Presider: Sergio Leon-Saval; Univ. of Sydney, Australia

Th3F.1 • 14:00 Invited

Calibrated Fiber Grating Wavelength Combs Enable High Accuracy Biosensing, Jacques Albert¹; 'Car leton Univ., Canada. Simulation-based calibrations of measured spectra are used to find the exact optical properties of multi-resonant fiber gratings, resulting in elimination of cross-sensitivities, lower noise and orders of magnitude improvements in biochemical sensor limits of detection.

Room 6E

14:00-16:00 Th3G • Panel: Pluggable **Coherent Optics** for Short-haul/Edge Applications and Beyond D

The market for coherent pluggable optics supporting reaches between 10 km and 120 km is emerging for many applications, such as telco metroaccess router-to-router interconnects. point-to-point data center interconnect, mobile and cable aggregation applications. The ongoing 400ZR project at the Optical Internetworking Forum (OIF) defines a digital coherent 400ZR interface primarily for DCI applications. There have also been other standardization activities defining coherent interfaces by other industry organizations addressing various applications. Products compliant to these specifications are coming out and early commercial deployments are expected to be in 2020.

Panelists from network operators. system companies, and module manufacturers will review recent progress in terms of network deployment requirements/schedule, interoperability, DSP/module development status, and share their views of the coherent pluggable optics roadmap in the next decade.

Speakers:

Christian Rasmussen: Acacia Communications Inc., USA

Satoshi Ide; Fujitsu Optical Components, Japan

Xiang Zhou; Google, USA

Matthew Schmitt; Cable Labs, USA

Eric Maniloff: Ciena, Canada

14:00-15:30 Th3H • SDM Transmission D

Room 6F

Presider: Werner Klaus: National Inst of Information & Comm Tech, Japan

Th3H.1 • 14:00 Top-Scored 10.66 Peta-Bit/s Transmission over a 38-core-three-mode Fiber, Georg Rademacher¹, Benjamin J, Puttnam¹, Ruben S. Luis¹, Jun Sakaguchi¹, Werner Klaus¹, Tobias A. Eriksson^{1,2}, Yoshinari Awaii¹, Tetsuva Havashi³, Takuii Nagashima³, Tetsuya Nakanishi³, Toshiki Taru³, Taketoshi Takahata⁴, Tetsuya Kobayashi⁴, Hideaki Furukawa¹, Naoya Wada¹; ¹National Inst of Information & Comm Tech, Japan: ²AlbaNova Univ. Center, Royal Inst. of Technology (KTH), Sweden; ³Sumitomo Electric Industries, Ltd.,, Japan; ⁴Optoquest Co. Ltd., Japan. We demonstrate transmission of 368-WDM-38-core-3-mode x 24.5-GBaud 64- and 256-QAM signals over 13 km. Record data-rate and spectral-efficiency of 1158.7 b/s/Hz were enabled by a low DMD 38-core-3-mode fiber with high uniformity amongst cores.

Th3H.2 • 14:15 D Real-time Strongly-coupled 4-core

Fiber Transmission, Shohei Beppu², Koji Igarashi¹, Hiroshi Mukai³, Masahiro Kikuta³, Masahiro Shiqihara³, Daiki Soma², Takehiro Tsuritani², Itsuro Morita²; ¹Osaka Univ., Japan; ²KDDI Research, Inc., Japan; ³NEC Platforms, Ltd., Japan. We show a real-time optical coherent MIMO receiver for 4-mode division multiplexed transmission. With the receiver, we demonstrate real-time stronglycoupled 4-core fiber transmission of WDM DP-QPSK signals over 60 km.

14:00-16:00 Th3I • Optical and Thermal Connectivity Presider: Alan McCurdy; OFS, Fiber Design & Simulation Group, USA

Room 7

Th3I.1 • 14:00 Invited

Optical Connectivities for Multicore Fiber, Ryo Nagase1; 1Faculty of Engineering, Chiba Inst. of Technology, Japan. Multicore fiber is proposed for use in space-division multiplexing for ultra-wide-band optical transmission systems. This paper introduces recent progress on multicore fiber connection technologies for simplex and multifiber connectors.

Room 8

14:00-15:30 Th3J • Direct Detection Systems and Subsystems Presider: To be Announced

Th3J.1 • 14:00 Invited

Modem Module Development for NASA's Orion Spacecraft: Achieving FSO Communications over Lunar Distances, David J. Geisler¹; ¹Massachusetts Inst of Tech Lincoln Lab, USA. NASA's Orion spacecraft will employ free-space optical communications over 400,000- km from the lunar vicinity to Earth, using an 80-Mb/s downlink and a 20-Mb/s uplink. This paper discusses an overview of the link and optical modem.

14:00-16:00 Th3K • Future and **Emerging Access Network Technologies** Presider: Junwen Zhang; CableLabs, USA

Room 9

Th3K.1 • 14:00

Modeling and Experiments for Reliable Operation of Single-mode Transceivers Over Multimode Fiber, Jose Castro¹, Fei Jia¹, Rick Pimpinella¹, Yu Huang¹, Bulent Kose¹, Brett Lane¹; ¹Panduit, USA. We define metrics to predict the transmission performance of SMF transceivers over MMF links at 40Gbps and 100Gbps based on simulation and experiments.

Show Floor **Programming Continued**

POFTO Symposium POFTO 13:45–14:45, Theater III

Introduction to **OpenROADM MSA**, Latest Update, and Show Floor Demo Overview 14:00-15:00, Theater II

The World's First Intercontinental Connections... Contrasting Early **Terrestrial-subsea** Networks with the Present Telecom Infra Project (TIP) 15:05-16:00, Theater II

Market Watch Panel VII: IP+WDM Architecture Evolution

14:30-16:00, Theater I

Th3K.2 • 14:15 Invited **Overturning the Eight Fallacies** of Distributed Computing with the Octopus Edge Network, Sebastien Bigo¹; ¹Nokia Bell Labs, USA. Named after the mollusk nervous system, the Octopus network is a sequel of low-latency ultra-reliable edge networks. Its dynamic and deterministic characteristics open a new era for computing by breaking the notorious eight fallacies of distributed computing.

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th3A • Disaggregation, Open Platform, SDN, NFV—Continued	Th3B • Optical Switching—Continued	Th3C • High-speed and Multi-wavelength Devices—Continued	Th3D • Machine Learning for Optical Network Performance—Continued	Th3E • Optimizing Coherent Transponders— Continued	Th3F • Novel Fiber Optic Sensors—Continued
Th3A.3 • 14:30 Invited Optical Node Disaggregation Man- agement and Interoperability, Emilio Riccardii', Marco Schiano'; 'Network Research and Innovation, TIM (Tele- com Italia), Italy. This work gives a high-level overview of the maturity and open issues of the disaggregation approach as applied to WDM transport network eco-system.	Th3B.2 • 14:30 Polarization-diversity Microring- based Optical Switch Fabric in a Switch-and-select Architecture, Hao Yang ¹ , Qixiang Cheng ¹ , Rui Chen ¹ , Keren Bergman ¹ ; 'Columbia Univ., USA. We propose a polarization- diversity microring-based optical switch fabric in a switch-and-select architecture with polarization splitter- rotators. The first primitive 2×2 silicon device is demonstrated with polarization-dependent loss of <1.6 dB and inter-channel crosstalk of <-45 dB.	Th3C.3 • 14:30 SOH Mach-Zehnder Modulators for 100 GBd PAM4 Signaling With Sub- 1 dB Phase-shifter Loss, Clemens Kieninger ¹ , Christoph Füllner ¹ , Heiner Zwickel ¹ , Yasar Kutuvantavida ¹ , Juned Nassir Kemal ¹ , Carsten Eschenbaum ¹ , Delwin L. Elder ² , Larry R. Dalton ² , Wolfgang Freude ¹ , Sebastian Ran- del ¹ , Christian Koos ¹ ; 'Karlsruhe Inst. of Technology, Germany; ² Depart- ment of Chemistry, Univ. of Wash- ington, USA. We demonstrate 280 µm-long silicon-organic hybrid (SOH) modulators with optical phase-shifter losses of 0.7dB and π-voltages of 1.5V. We show OOK and PAM4 signaling at 100 GBd with a BER below the 7% HD-FEC limit.	Th3D.3 • 14:30 Fast and High-Precision Optical Performance Evaluation for Cog- nitive Optical Networks, Rui M. Morais ¹ , Bruno Pereira ¹ , João Pe- dro ¹ ; ¹ Infinera, Portugal. We propose a methodology for accurate and fast optical performance estimation exploiting cognitive awareness. It is composed by low and high precision estimators and a calibration engine, allowing to control open vs. proprietary implementations.		Th3F.2 • 14:30 A Novel Demodulation Method of Fiber Bragg Grating Sensor Arra Based on Wavelength-to-time Map ping and Multiloop Optoelectroni Oscillator, Wenxuan Wang', Yi Liu Xinwei Du ² , Yaxi Yan ² , Changyua Yu ² , Xiangfei Chen'; 'Key Labora tory of Intelligent Optical Sensin and Manipulation of the Ministry of Education & National Laboratory of Solid State Microstructures & Colleg of Engineering and Applied Science. Nanjing Univ., China; ² The Departmer of Electronic and Information Eng neering, The Hong Kong Polytechni. Univ., Hong Kong. We propose a now demodulation method of strong FB sensor array based on wavelength-to time mapping and multiloop OEC The oscillating frequency shift cause by the time shift encodes measurably variation and location information.
	Th3B.3 • 14:45 Top-Scored Integrated SiPh Flex-LIONS Module for All-to-all Optical Interconnects with Bandwidth Steering, Xian Xiao', Roberto Proietti', Gengchen Liu', Hon- gbo Lu', Yi-Chun Ling', Yu Zhang', S. J. Ben Yoo'; 'Univ. of California, Davis, USA. We experimentally demonstrate the first all-to-all optical interconnects with bandwidth steering using an integrated 8×8 SiPh Flex-LIONS module. Experimental results show a 5-dB worst-case crosstalk penalty and 25 Gb/s to 100 Gb/s bandwidth steering.	Th3C.4 • 14:45 High-speed and 16A-WDM Op- eration of Ge/Si Electro-absorption Modulator for C-band Spectral Regime, Junichi Fujikata ¹ , Masataka Noguchi ¹ , Seok H. Jeong ¹ , Yosuke Onawa ^{1,2} , Daisuke Shimura ^{1,2} , Kazuki Kawashita ³ , Riku Katamawari ³ , Hideaki Okayama ^{1,2} , Shigeki Takahashi ¹ , Hideki Ono ¹ , Hiroyuki Takahashi ^{1,2} , Hiroki Yae- gashi ^{1,2} , Yasuhiko Ishikawa ³ , Takahiro Nakamura ¹ ; 'PETRA, Japan; ² Oki Elec- tric Industry Co., Ltd., Japan; ³ Toyo- hashi Univ. of Technology, Japan. We present high-speed of 100Gbps for PAM-4 signal and 16A-WDM operations of a Ge/Si EAM in C-band. Operation wavelengths could be controlled by Ge/Si stack width, and 16 Å operation was demonstrated at 50 Gbps.	Th3D.4 • 14:45 Modeling Filtering Penalties in ROADM-based Networks with Ma- chine Learning for QoT Estima- tion, Ankush Mahajan ¹ , Konstantinos (Kostas) Christodoulopoulos ² , Ri- cardo Martínez ¹ , Salvatore Spadaro ³ , Raul Muñoz ¹ ; ¹ CTTC, Spain; ² Nokia Bell Labs, Germany; ³ UPC, Spain. Monitoring 3dB bandwidth and other spectrum related parameters at ROADMs provides information about quality of their filters. We propose a machine-learning model to estimate end-to-end filtering penalty for more accurate QoT estimation of future connections.		Th3F.3 • 14:45 Femtosecond Laser Fabricated Al multicore-fiber Parallel Fabry-Pero Interferometers for Dual-parameter Sensing, Cong Zhang', Songnian Fu Ming Tang', Deming Liu'; 'Schou of Optical and Electronic Informa- tion, Huazhong Univ of Science an Technology, China. We demonstrat all-multicore-fiber parallel Fabry-Pero interferometers (FPIs) with individual variable cavity length of 26-61 µm b femtosecond laser selective micro machining and fiber fusion splicing leading to the successful mitigatio of cross-sensitivity arising in dual parameter sensing.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued
Th3G • Panel: Pluggable Coherent Optics for Short-haul/Edge Applications and Beyond—Continued	Th3H • SDM Transmission—Continued	Th3I • Optical and Thermal Connectivity— Continued	Th3J • Direct Detection Systems and Subsystems—Continued	Th3K • Future and Emerging Access Network Technologies— Continued	POFTO Symposium POFTO 13:45–14:45, Theater III
	Th3H.3 • 14:30 Top-Scored Long-Haul DMD-Unmanaged A-mode-multiplexed Transmission Employing Cyclic Mode-group Permutation, Kohki Shibahara', Takayuki Mizuno', Hirotaka Ono ² , Kazuhide Nakajima ³ , Yutaka Miya- moto'; 'NTT Network Innovation Laboratories, Japan; ² NTT Device Technology Laboratories, Japan; ³ NTT Access Network Service Systems Laboratories, Japan. We demonstrate a long-haul 6-mode-multiplexed WDM transmission with a record rach of 3250 km. Newly-developed mode-group permutation technique mitigated modal-dispersion-impact by >70%. We also show diversity- enhanced MIMO transmission extending the achievable reach over 9000 km.	Th31.2 • 14:30 Simple-structure LC-type Multi-core Fiber Connector with Low Insertion Loss, Tetsu Morishima', Ken Manabe', Shuhei Toyokawa', Tetsuya Nakani- shi', Tomomi Sano', Tetsuya Hayas- hi'; ' <i>Sumitomo Electric Industries, Ltd.,</i> <i>Japan.</i> We demonstrated a single-fiber multi-core fiber (MCF) connector without additional or high-precision parts for rotational alignment. Fabricated MCF connectors achieved low insertion loss of 0.07 dB in average and passed Telcordia GR-326-CORE mechanical reliability test.	Th3J.2 • 14:30 5.2dB Sensitivity Enhancement in 25Gbps APD-based Optical Receiver Using Dynamic Biasing, Payman Zarkesh-Ha ^{1,2} , Robert Efroymson ¹ , Earl Fuller ¹ , Joe Campbell ³ , Majeed Hayat ^{1,4} ; ¹ Dynamic Photonics Inc., USA; ² Center for High Technology Materials and ECE Dept, Univ. of New Mexico, USA; ³ Department of Elec- trical and Computer Engineering, Univ. of Virginia, USA; ⁴ Department of Electrical and Computer Engi- neering, Marquette Univ., USA. First demonstration of dynamically biased 25Gbps avalanche photodiode-based receiver operating at 1.55 mm is reported. A 5.2dB improvement in receiver sensitivity and 10,000-fold reduction in bit-error-rate 25-Gbps are experimentally demonstrated using a commercially available InGaAs-InP APD.		Introduction to OpenROADM MSA, Latest Update, and Show Floor Demo Overview 14:00–15:00, Theater II The World's First Intercontinental Connections Contrasting Early Terrestrial-subsea Networks with the Present Telecom Infra Project (TIP) 15:05–16:00, Theater II
	Th3H.4 • 14:45 First Transmission of a 12D Format of a 3-core Coupled Spatial Modes of a 3-core Coupled-core Fiber at 4 bits/s/Hz, Rene-Jean Essiambre ¹ , Ro- land Ryf ¹ , Sjoerd van der Heide ^{1,2} , Juan I. Bonetti ^{1,4} , Hanzi Huang ^{1,3} , Murali Kodialam ¹ , Francisco Javier Garcia- Gomez ^{1,5} , Ellsworth C. Burrows ¹ , Juan Carlos Alvarado Zacarias ^{1,6} , Rodrigo Amezcua Correa ⁶ , Xi Chen ¹ , Nicolas K. Fontaine ¹ , Haoshuo Chen ¹ ; ¹ Nokia Corporation, USA; ² Electrical Engi- neering, Eindhoven Univ. of Technol- ogy, Netherlands; ³ Specialty Fiber Optics and Optical Access Networks, Shanghai Univ., China; ⁴ Grupo die Balseiro, Argentina; ⁵ Inst. for Commun. Engineering, Technical Univ. of Mu- nich, Germany; ⁴ CREOL, The Univ. of first transmission of a space- division multiplexed 12D modulation format over a three-core coupled-core multicore fiber. The format occupies a single time slot spread across all three linearly-coupled spatial modes and shows improvements in MI and GMI after transmission compared to PDM-QPSK.	Th3I.3 • 14:45 High Durability Molded Lens Con- nector for SMFs, Akihiro Naka- ma'; ' <i>Fujikura Ltd., Japan</i> . We have achieved IL of <0.7dB and RL of >50dB in molded lens connector for single-mode fibers and confirmed its excellent durability, the maximum IL change is 0.06dB without cleaning during mating 250 times.	Th3J.3 • 14:45 Low-cost TI-ADC Timing Calibration Circuit, Hananel Faig ¹ , Shai Co- hen ² , Liron Gantz ² , Dan Sadot ¹ ; 'Ben- Gurion Univ. of the Negev, Isra- el; ² Mellanox Technologies, Israel. An efficient timing skew calibration of time-interleaved ADC (TI-ADC) for high-speed link is proposed and experimentally validated. The method is based on the CDR's existing sub- blocks, and enables flexible tradeoff of complexity versus performance.	Th3K.3 • 14:45 Demonstration of SOA-based IM/DD 1T (280Gbit/s×4) PS-PAM8 Transmis- sion over 40km SSMF at O-band, Kai- hui Wang ¹ , Jiao Zhang ¹ , Mingming Zhao ¹ , Wen Zhou ¹ , Li Zhao ¹ , Jiangnan Xiao ¹ , Feng Zhao ² , Yun Zhang ³ , Bo Liu ⁴ , Xiangjun Xin ⁴ , Ze Dong ⁵ , Jianjun Yu ¹ ; ¹ Fudan Univ., China; ² Xian Univ. of Posts and Telecommunications, China; ³ ZTE Corp, China; ⁴ Beijing Univ. of Posts and Telecommunications, China; ³ Huaqiao Univ., China. We experimentally demonstrate a four- lane O-band IM/DD system. With the aid of semiconductor optical amplifiers and probabilistic shaping, a record bit rate of 1.12Tb/s (280Gbit/s×4) PS-PAM8 signal can be successfully transmitted over 40-km SSMF.	■ Market Watch Panel VII: IP+WDM Architecture Evolution 14:30–16:00, <i>Theater I</i>

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th3A • Disaggregation, Open Platform, SDN, NFV—Continued	Th3B • Optical Switching—Continued	Th3C • High-speed and Multi-wavelength Devices—Continued	Th3D • Machine Learning for Optical Network Performance—Continued	Th3E • Optimizing Coherent Transponders— Continued	Th3F • Novel Fiber Optic Sensors—Continued
Th3A.4 • 15:00 Demonstration of Containerized vDU/vCU Migration in WDM Metro Optical Networks, Jiaxin Feng ¹ , Jiawei Zhang ¹ , Yuefeng Ji ¹ , Yuming Xiao ¹ ; 'Beijing Univ. of Posts and Telecomm, China. We experiment on a containerized vDU/vCU migration for load balancing among processing	Th3B.4 • 15:00 Top-Scored O-band Strictly Non-blocking 8 × 8 Silicon-photonics Switch, Keijiro Suzuki ¹ , Ryotaro Konoike ¹ , Guangwei Cong ¹ , Koji Yamada ¹ , Shu Nami- ki ¹ , Hitoshi Kawashima ¹ , Kazuhiro Ikeda ¹ ; 'National Inst. of Advanced Industrial Science and Technology (AIST), Japan. We report a double	Th3C.5 • 15:00 Tutorial Data Center Links Beyond 100 Gbit/s Per Wavelength, Joseph M. Kahn ¹ , Jose Krause Perin ² , Anujit Shastri ³ ; ¹ Stanford Univ., USA; ² Aeva, Inc., USA; ³ Aayuna, Inc., USA. We review intra- and inter-data center link options, including those based on direct detection, digital or	Th3D.5 • 15:00 Top-Scored How Uncertainty on the Fiber Span Lengths Influences QoT Estimation Using Machine Learning in WDM Networks, Jelena Pesic ¹ , Matteo Lonardi ¹ , Nicola Rossi ² , Thierry Zami ² , Emmanuel Seve ¹ , Yvan Pointuri- er ¹ ; 1Nokia-Bell-Labs, France; ² Nokia, France. We investigate how a machine	Th3E.2 • 15:00 Top-Scored 1.1 Tb/s/l at 9.8 bit/s/Hz DWDM Transmission over DCI Distances Supported by CMOS DACs, Fred Buchali', Vincent Lauinger ² , Mathieu Chagnon ¹ , Karsten Schuh ¹ , Vahid Arefi; 'Nokia Bell Labs, Germany; ² KIT, Germany. We report on a 16-nm CMOS DAC based transmitter optimization	Th3F.4 • 15:00 Sub-mK and Nano-strain Discrimi- nation Using Frequency Stabilized Lasers and Polarization Maintain- ing π-shifted Fibre Bragg Grat- ings, Stefanos Andreou ¹ , Roel van der Zon ¹ , Kevin A. Williams ¹ , Erwin Bente ¹ ; 'Electrical Engineering, Eind- hoven Univ. of Technology, Neth-

Th3A.5 • 15:15

platform.

First Proof That Geographic Location on Deployed Fiber Cable Can Be Determined by Using OTDR Distance Based on Distributed Fiber Optical Sensing Technology, Tiejun J. Xia¹, Glenn Wellbrock¹, Ming-Fang Huang², Milad Salemi², Yuheng Chen², Ting Wang², Yoshiaki Aono³; ¹Verizon Communications Inc, USA; ²NEC Laboratories America, USA; ³NEC Corporation, Japan. We demonstrated for the first time that geographic locations on deployed fiber cables can be determined accurately by using OTDR distances. The method involves vibration stimulation near deployed cables and distributed fiber optical sensing technology.

pools over WDM metro networks.

Two stateful migration strategies to

reduce migration time are verified

on a converged edge access network

Th3B.5 • 15:15

1290-1360 nm.

Fast Switching of 84 µs for Silicabased PLC Switch, Osamu Moriwaki¹, Kenva Suzuki¹: ¹NTT Device Innovation Center, NTT Corporation, Japan. We have reduced the switching time of a silica-based thermo-optic switch to 84 us by utilizing a thin cladding laver and a novel driving techniques. The resultant high-speed switch should be suitable for intra-datacenter networks.

Mach-Zehnder path-independent

insertion-loss 8 × 8 switch operating in

the O-band. The average on-chip loss

was 5.4-dB, and the crosstalk was less

than -30-dB in a wavelength range of

Joseph M. Kahn is Professor of Electrical Engineering at Stanford University. Achievements include: first synchronous (coherent) detection in fiber optics (1989); first probabilistic shaping in optical communications (1999); founding StrataLight Communications, leader in first-generation phasemodulated fiber transmission systems (2000); first electronic compensation of fiber Kerr nonlinearity (2002), leading to digital backpropagation (2008).

analog coherent detection. Stokes

vector detection or Kramers-Kronig

detection, comparing them in terms

of spectral efficiency, optical power

efficiency, complexity and power

consumption.

Th3D.6 • 15:15

network.

A Three-stage Training Framework for Customizing Link Models for Optical Networks, Xiaomin Liu¹, Huazhi Lun¹, Menafan Fu¹, Yunyun Fan¹, Lilin Yi¹, Weisheng Hu¹, Qunbi Zhuge1; 1Shanghai Jiao Tong Univ., China, We propose a link model customization framework to increase modeling accuracy for each specific link in an optical network. In addition, an active acquisition method is employed in this framework to improve tolerance to link parameter uncertainties.

learning-based QoT estimator

performs depending on different

features selections, on homogeneity

of the learned light paths and on

uncertainty of their span lengths using

artificial database for the France43

Th3E.3 • 15:15 Invited Maximizing Throughput via Verti-

cal Optimization of the Coherent MODEM, Robert Maher¹, Mehdi Torbatian², An Nguyen¹, Zhenxing Wang¹, Swen Koenig¹, Mark Missey¹, Alban Le Liepvre¹, Ryan Going¹, Stefan Wolf¹, Parmijit Samra¹, Pat Day¹, Stephanie Tremblay², Mehrdad Ziari¹, Fred Kish¹, Steve Sanders¹, Parthiban Kandappan1; 1Infinera Corporation, USA; 2Infinera, Canada, Vertical optimization of DSP algorithms, analog electronics, optical components and PCB design is critical to maximize the SNR limit of the digital coherent MODEM. We demonstrate a record net ISD of 10.82b/s/Hz for a vertically optimized 256QAM transceiver operating at a symbol rate >50GBd

enabling bitrates up to 1.15 Tb/s.

We successfully demonstrate DWDM

transmission over DCI distances up

to 118 km at 1.1 Tb/s and spectral

efficiencies of 9.8 bit/s/Hz.

Th3F.5 • 15:15

Distortion-suppressed Sampling Rate Enhancement in Phase-OTDR Vibration Sensing with Newly Designed FDM Pulse Sequence for Correctly Monitoring Various Waveforms, Yoshifumi Wakisaka¹, Daisuke lida¹, Hiroyuki Oshida¹; ¹NTT corp., Japan. The FDM-based sampling rate enhancement method proposed herein detects vibration waveforms more accurately than previous methods while reducing phase unwrapping failures; it can measure vibrations with larger amplitude and higher frequency than heretofore.

erlands. We report on a sensing

system which discriminates strain and

temperature with 5.5 nanostrain and

0.39 mK resolutions respectively. The

system deploys frequency stabilized

integrated InP-based lasers and a

heterodyne-based read-out system.

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor
					Programming Continued
Th3G • Panel: Pluggable Coherent Optics for Short-haul/Edge Applications and Beyond—Continued	Th3H • SDM Transmission—Continued	Th3I • Optical and Thermal Connectivity— Continued	Th3J • Direct Detection Systems and Subsystems—Continued	Th3K • Future and Emerging Access Network Technologies— Continued	The World's First Intercontinental Connections
	Th3H.5 • 15:00 Top-Scored 0.596 Pb/S S, C, L-Band Transmission in a 125 µm Diameter 4-core Fiber Using a Single Wideband Comb Source, Benjamin J. Puttnam ¹ , Ruben S. Luis ¹ , Georg Rademacher ¹ , Lidia Galdino ² , Domaniç Lavery ² , Tobias Eriksson ¹ , Yoshinari Awaji ¹ , Hideaki Furukawa ¹ , Polina Bayvel ² , Naoya Wada ¹ , ¹ National Inst Info & Comm Tech (NICT), Japan; ² Optical Net- works Group, Univ. Collage London, UK. We demonstrate 596.4 Tb/s over a standard cladding diameter fiber with 4 single-mode cores, using a single wideband optical comb source to provide 25 GHz spaced carriers over 120 nm range across S, C and L bands.	Th31.4 • 15:00 A CMOS Compatible Monolithic Fiber Attach Solution with Reliable Performance and Self-alignment, Bo Peng ^{1,3} , Tymon Barwicz ² , Asli Sa- hin ³ , Thomas Houghton ³ , Brittany Hedrick ³ , Yusheng Bian ¹ , Michal Ra- kowski ¹ , Shuren Hu ³ , Javier Ayala ³ , Colleen Meagher ³ , Zoey Sowinski ³ , Karen Nummy ³ , Andy Stricker ³ , Jorge Lubguban ³ , Hui Chen ³ , Benjamin Fasano ³ , Ian Melville ³ , Zhuo-jie Wu ³ , Jae K. Cho ³ , Ajey Jacob ¹ , Dave Riggs ³ , Daniel Berger ³ , Ted Letavic ³ , Anthony Yu ³ , John Pellerin ³ , Ken Giewont ³ ; 'Globalfoundries CTO <i>Research Center, USA</i> ; ² IBM T. J. Watson <i>Research Center, USA</i> ; ³ GlobalFound- ries, USA. We report a fiber-attach solution interfacing self-aligned, standard-cleaved fibers to monolithic photonic integrated circuits, fabricated in Globalfoundries 300-mm CMOS production facilities. Statistical yield analysis and reliability assessment were performed to demonstrate the robustness of the proposed solution.	Th3J.4 • 15:00 Top-Scored Beyond 100-Gb/s Direct-detection Transmission Using an Optical Re- ceiver Co-integrated with a 28-nm CMOS Gain-tunable Fully-differential TIA, Yang Hong', Ke Li', Cosimo Lacava', Shenghao Liu', David Thom- son', Fanfan Meng', Xiaoke Ruan', Fan Zhang ² , Graham T. Reed', Periklis Petropoulos'; 'Univ. of Southamp- ton, UK; ² Peking Univ., China. We demonstrate up to 173.22-Gb/s direct-detection transmission using a balanced photodetector wire-bonded to a 28-nm CMOS fully-differential gain-tunable TIA. Both 100-Gb/ s PAM4 and capacity-maximized adaptively-loaded DMT are studied for up to 2-km SSMF transmission.	Th3K.4 • 15:00 112-Gb/s/lambda Downstream Transmission for TDM-PON with 31-dB Power Budget using 25- Gb/s Optics and Simple DSP in ONU, Siyu Luo', Zhengxuan Li', Yuan- zhe Qu', Yingxiong Song', Jian Chen', Yingchun Li', Min Wang'; 'Shanghai Univ., China. We experimentally demonstrate 112-Gb/s/lambda PAM-4 transmission based on 25-Gb/s optics. Over 31-dB power budget is achieved by using OLT-side pre-equalization, amplification and only simple FFE in ONU.	Contrasting Early Terrestrial-subsea Networks with the Present Telecom Infra Project (TIP) 15:05–16:00, Theater II Market Watch Panel VII: IP+WDM Architecture Evolution 14:30–16:00, Theater I Fibre Types and Amplifiers: Choices and Trade-offs Fiberstory 15:00–16:00, Theater III
	Th3H.6 • 15:15 First Experimental Demonstration of Cross-SDM/WDM Q-difference Compensation at Multicore Fiber Transmission, Hidenori Takahashi', Daiki Soma', Takehiro Tsuritani', ' <i>KDDI Research, Inc., Japan.</i> The Q-difference compensation scheme among SDM/WDM signals is evaluated at 192-km 4-core-path MCF transmission line. The Q-difference is mitigated within 0.1 dB and the Q-factor of the worst quality signal is improved as 0.7 dB.	Th31.5 • 15:15 (Invited) Optoelectronic Glass Substrates for Co-packaging Optics and ASICs, Lars Brusberg ¹ , Aramais Zakharian ¹ , Ekin Kocabas ¹ , Jason G. Grenier ¹ , Chad Terwilliger ¹ , Alan F. Evans ¹ ; 'Corn- ing Research & Development Cor- poration, USA. A glass packaging substrate with integrated waveguides and evanescent couplers for silicon photonic chiplets is introduced for fiber to chip interconnects with high-channel counts required for co- packaging of optics and switch ASICs in next-generation datacenters.	Th3J.5 • 15:15 Real-Time 28 Gb/s NRZ over 80 km SSMF in C-band using Analog Electronic Precompensation, Michiel Verplaetse ¹ , Laurens Breyne ¹ , Joris Lambrecht ¹ , Xin Yin ¹ , Peter Ossieur ¹ , guy Torfs ¹ ; 'IDLab, Ghent Univ <i>imec, Belgium.</i> We demonstrate real- time C-band transmission of direct detected 28Gb/s NRZ/OOK over 80km SSMF using a Dual-Drive MZM and custom-designed SiGe BiCMOS 5-tap analog FIR filters to compensate chromatic dispersion without digital signal processing.	Th3K.5 • 15:15 Invited Opportunities and Challenges When Using Low Bandwidth Optics for Higher Capacity PON Systems, Ro- berto Gaudino ¹ , Pablo Torres-Ferrera ¹ , Haoyi Wang ¹ , Maurizio Valvo ² , An- nachiara Pagano ² , Roberto Merci- nelli ² , Valter Ferrero ¹ , 'Politecnico di Torino, Italy; ² TIM, Telecom Italia, Italy. Next generation PON physical layer, targeting 50 Gbit/s/lambda, has to deal with optoelectronics bandwidth limitation. In this invited paper, we review the resulting required bandwidths and discuss the trade-off between receivers with or without equalization	

Room 1A	Room 1B	Room 2	Room 3	Room 6C	Room 6D
Th3A • Disaggregation, Open Platform, SDN, NFV—Continued	Th3B • Optical Switching—Continued	Th3C • High-speed and Multi-wavelength Devices—Continued	Th3D • Machine Learning for Optical Network Performance—Continued	Th3E • Optimizing Coherent Transponders— Continued	Th3F • Novel Fiber Optic Sensors—Continued
Th3A.6 • 15:30 Invited Progress in 100G Lambda MSA Based on 100G PAM4 Technol- ogy, Mark Nowell ¹ , Matt Traverso ¹ , Marco Mazzini ¹ , Kumar Lakshmi- kumar ¹ , Mark Webster ¹ , Peter De Dobbelaere ¹ ; 'Cisco Systems, Inc.,	Th3B.6 • 15:30 Top-Scored 5.7-dB Fiber-to-fiber Loss 8 × 8 Silicon Photonics Switch with Port-alternated Switch-and-select Architecture, Ryotaro Konoike ¹ , Keijiro Suzuki ¹ , Hitoshi Kawashima ¹ , Kazuhiro Ikeda ¹ ; 'National Inst. of		Th3D.7 • 15:30 Efficient Classification of Polariza- tion Events Based on Field Mea- surements, Kyle Guan ¹ , Jesse E. Simsarian ¹ , Fabien Boitier ¹ , Dan- iel C. Kilper ² , Jelena Pesic ¹ , Mi- chael Sherman ³ ; 'Nokia Bell Labs, USA: ² Collage of Octical Sciences		Th3F.6 • 15:30 Top-Scored Vibration Sensing for Deployed Met- ropolitan Fiber Infrastructures, Il- aria Di Luch ¹ , Maddalena Ferrario ¹ , Giuseppe Rizzelli Martella ² , Roberto Gaudino ² , Pierpaolo Boffi ¹ ; 'Politec- nico di Milano, Italy; ² Politecnico di

Canada. This talk will focus on the progress of the 100G Lambda MSA. Topics include: motivation in forming the group; market requirements for the technology; key technologies and results; and insights into next generation work.

Kazuhiro Ikeda'; 'National Inst. o Advanced Industrial Science and Technology (AIST), Japan. We propose and demonstrate a Port-Alternated Switch-and-Select architecture that has both low insertion loss and low path dependency. Using silicon photonics platform, we realized an 8 × 8 switch with 5.7-dB Fiber-to-Fiber insertion loss.

Th3B.7 • 15:45

Low Loss Optical Switch with Precisely Rotationally-aligned Multicore Fiber Array, Osamu Shimakawa¹, Ryouichi Kobayashi¹, Hidehisa Tazawa1; 1Sumitomo Electric Industries, Ltd., Japan. We propose a 1×4 optical switch with coupled-core multi-core fiber (MCF) array. An image processing allows MCF to be precisely rotationally-aligned. It enables the IL less than 0.6 dB with the uniformity of 0.04 dB.

USA; ²College of Optical Sciences, Univ. of Arizona, USA; ³Electrical and Computer Engineering, Rutgers Univ., USA. We present rare-event classification of polarization transients based on field measurements with data augmentation combined with robot-generated fiber-disturbance data. We compare machine learning methods for accuracy and required number of training sample traces.

Th3F.7 • 15:45 D Sensors Based on Dual Supermode Interferometers, Joel Villatoro^{1,3}, Jose Enrique Antonio-Lopez², Axel Schülzgen², Rodrigo Amezcua Correa²; ¹Univ. of the Basque Country UPV/EHU, Spain; ²CREOL, The College of Optics & Photonics, Univ. of Central Florida, USA; ³IKERBASQUE—Basque Foundation for Science, Spain. Compact interferometers composed by two slightly different segments of asymmetric multicore fiber fusion spliced and rotated 180deg with respect to each other are proposed for sensing applications. Examples and advantages of such interferometers are discussed.

Torino, Italy. A counter-propagating

coherent vibration sensing approach

is exploited in a 32km deployed fiber

ring network, proving its feasibility in

early detection of critical events that

may damage and put out of service

the optical infrastructure.

16:00–16:30 Coffee Break, Upper Level Corridors

16:30–18:30 Postdeadline Papers, Room 6C, 6D, 6E, 6F

138

Room 6E	Room 6F	Room 7	Room 8	Room 9	Show Floor Programming Continued
Th3G • Panel: Pluggable Coherent Optics for Short-haul/Edge Applications and Beyond—Continued	Th3H • SDM Transmission—Continued	Th3I • Optical and Thermal Connectivity— Continued	Th3J • Direct Detection Systems and Subsystems—Continued	Th3K • Future and Emerging Access Network Technologies— Continued	The World's First Intercontinental Connections Contrasting Early Terrestrial-subsea Networks with the Present Telecom Infra Project (TIP) 15:05–16:00, Theater II Market Watch Panel VII: IP+WDM Architecture Evolution 14:30–16:00, Theater I
		Th3I.6 • 15:45 High-durability Coating for Improved Thermal Management of Pluggable Optical Modules, Reid Chesterfield ¹ , Pradyumna Goli ¹ , Sar- rah Querelle-Halverson ¹ , Elizabeth Sullivan ¹ , Zachary Hoyt ¹ , Kevin Olson ¹ , Matthew Bren ¹ , Attila Aranyosi ² , S Doan ² , V Le ² ; ' <i>Henkel Corporation</i> , <i>USA</i> ; ² Juniper Networks, USA. We introduce a new high-durability thermal interface coating designed to improve pluggable optical module to heat sink thermal transfer. Performance data and test methods for thermal resistance, durability, and long-term reliability are presented.		Th3K.6 • 15:45 Bus-type Optical Access Using DRA and Asymmetric Power Splitters for Accommodating Rural Users, Ryo Igarashi ¹ , Masamichi Fujiwara ¹ , Takuya Kanai ¹ , Kazutaka Hara ¹ , Atsuko Kawaki- ta ¹ , Hiro Suzuki ¹ , Jun-ichi Kani ¹ , Jun Terada ¹ ; ' <i>NTT Corporation, Japan.</i> We propose a long-reach bus-type optical access system by using distributed Raman amplification and asymmetric power splitters. The feasibility is experimentally verified by using 10G-EPON and its scale is estimated by bit error rate measurements.	Fibre Types and Amplifiers: Choices and Trade-offs Fiberstory 15:00–16:00, Theater III
16:00–16:30 Coffee Break, Upper Level Corridors					
16:30–18:30 Postdeadline Papers, Room 6C, 6D, 6E, 6F					