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Abstract: Climate warming is occurring at an unprecedented rate in the Arctic due to regional
amplification, potentially accelerating land cover change. Measuring and monitoring land cover
change utilizing optical remote sensing in the Arctic has been challenging due to persistent cloud and
snow cover issues and the spectrally similar land cover types. Google Earth Engine (GEE) represents
a powerful tool to efficiently investigate these changes using a large repository of available optical
imagery. This work examines land cover change in the Lower Yenisei River region of arctic central
Siberia and exemplifies the application of GEE using the random forest classification algorithm for
Landsat dense stacks spanning the 32-year period from 1985 to 2017, referencing 1641 images in
total. The semiautomated methodology presented here classifies the study area on a per-pixel basis
utilizing the complete Landsat record available for the region by only drawing from minimally cloud-
and snow-affected pixels. Climatic changes observed within the study area’s natural environments
show a statistically significant steady greening (~21,000 km2 transition from tundra to taiga) and
a slight decrease (~700 km2) in the abundance of large lakes, indicative of substantial permafrost
degradation. The results of this work provide an effective semiautomated classification strategy
for remote sensing in permafrost regions and map products that can be applied to future regional
environmental modeling of the Lower Yenisei River region.

Keywords: Landsat dense stacking; Google Earth Engine; climate change; land cover change;
permafrost change; Siberia

1. Introduction

The high-latitude regions of Eurasia are warming at approximately 0.12 ◦C per year, significantly
faster than the global average (e.g., [1–3]). Environmental changes associated with a warming
climate have significant impacts on arctic and subarctic ecosystems, including surface and subsurface
hydrology. Numerous observational studies indicate that such changes related to the structure,
composition, and functioning of tundra and boreal forest biomes are ongoing. For example, increased
photosynthetic productivity under warming climatic conditions, derived from remotely sensed
normalized difference vegetation index (NDVI) data, frequently referred to as “arctic greening,”
has been reported for several Eurasian arctic regions (e.g., [4–8]). One of the major drivers of the
observed greening trend is the increased abundance of shrub species in tundra ecosystems (e.g., [9–13]).
Lengthening growing season, reduced seasonality, thickening of the active layer (the uppermost
permafrost-affected soil layer that thaws seasonally), and increased annual snow depths are the
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primary factors cited as facilitating the northward advance of shrub species in the Arctic (e.g., [5,13–18]).
Several studies have also detected shifts in treelines both northward and at higher elevations in arctic
and subarctic regions (e.g., [19–23]).

Changes in arctic surface hydrology are also well documented. Regional-scale appearances and
disappearances of lakes in permafrost-affected areas have been observed throughout the circumarctic
region (e.g., [24–28]). Widespread reductions in lake extent and complete drainage have occurred
primarily within the discontinuous permafrost zone, while lake expansion and new lake formation
are occurring within the continuous permafrost zone. This spatial pattern can be attributed to
climate-induced changes in permafrost conditions: permafrost degradation and increased groundwater
storage in the discontinuous permafrost zone (e.g., [29]) and intensification of surface thermokarst
processes and ponding in continuous permafrost (e.g., [24,30,31]).

Satellite-based remote sensing is the primary tool for assessing broad-scale land cover change.
The Landsat suite of sensors (Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational
Land Imager) provides the longest record (1972 to the present) of continuous, consistent, and freely
available imagery for the entire globe (e.g., [32]). However, the use of optical satellite imagery is
complicated for arctic applications due to issues including consistently high cloud cover, data gaps,
and polar night (e.g., [33–35]). Similar challenges for remote sensing–based studies of land cover
and land use changes in lower-latitude regions were successfully addressed by utilizing dense stacks,
or dense time stacks, of Landsat imagery. The dense stacking methodology has been applied to a
variety of spatial change studies, including forestry (e.g., [36]) and urban development (e.g., [37]).
By ignoring the established use of an anniversary date for change detection, dense stacking utilizes all
available scenes, including images normally rejected due to data gaps and/or high amounts of cloud
cover. Stacking all available imagery for a time period of interest allows substitution of areas obscured
by cloud cover and/or data gaps in a particular image by coverage from another image within the
stack. This approach creates “cleaner” coverage within a dataset by compensating for clouds and data
gaps that typically introduce error. Additional spatial information such as digital elevation models
(DEMs), maps of known features, and/or calculated indices (e.g., NDVI) suitable for the development
of a more nuanced classification scheme can be incorporated [37].

The dense stacking methodology is also starting to be applied in arctic environments (e.g., [38–41]).
Applying the dense stacking methodology in Google Earth Engine (GEE) presents an opportunity
to overcome the challenges posed by high-latitude environments and significantly increase the data
capacity of Landsat-based arctic impact studies. In this study, we applied the Landsat dense stacking
technique to the detection and characterization of land cover change across a relatively large area
of the Siberian Arctic. The objectives of this study were: (1) to test the applicability of the dense
stacking methodology for arctic land cover change assessments using GEE, and (2) to analyze more
than 30 years of previously undocumented spatial vegetation and surface hydrology changes in the
Lower Yenisei River Region of central Siberia.

2. Data and Methods

2.1. Study Area

The study area in the central Siberian Arctic was defined by 2 overlapping Landsat scene
extents (path 153, rows 11 and 12) for an approximately 60,750 km2 area representative of the
lower Yenisei River region. This area is of particular interest as it includes several major arctic cities
and is a physiographic, vegetative, and permafrost transition zone undergoing significant climatic
warming [29,40]. This major river system contributes the largest annual discharge into the Arctic
Ocean [42] and separates the West Siberian Plane and the Central Siberian Plateau, starting at the
Putorana Mountains and Plateau included within the study area (Figure 1).
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Figure 1. Study area map. The study area is defined by two Landsat scene extents (black boxes). The 

area observed encompasses a transitional zone between physiographic provinces (West Siberian Plain 

and Central Siberian Plateau) and biomes (taiga and tundra) centered on the Lower Yenisei River just 

before its outlet into the Kara Sea. 

The region has a subarctic climate, classified as Dfc in the Köppen climate classification system. 

Few weather stations with adequate observational records are located within this large and diverse 

study area. Based on weather stations in the cities of Norilsk and Igarka within the study area, 

though, the mean annual temperature of the region is between −8.2 °C and −10.2 °C, based on 30-year 

climatic normals. The region has just 2 months per year when mean monthly air temperature 

(MMAT) is greater than 10 °C and 4 months when MMAT is greater than 0 °C. The hottest month of 

the year (July) has MMAT between 8.5 °C and 20 °C and the coldest month (January) ranges between 

–22.8 °C and −33.5 °C. Annual precipitation totals range from 399 mm to 474 mm, with greater 

amounts typically falling during the warm season. Mean annual air temperatures have been 

increasing since 1985 at an average rate of 0.05 °C/year in Igarka, located in the southern part of the 

study area, and 0.045 °C/year in Norilsk, located in the northern part. The total annual precipitation 

has also been increasing, in Igarka at an average rate of 2.4 mm/year and in Norilsk at an average rate 

of 2.7 mm/year. 

Figure 1. Study area map. The study area is defined by two Landsat scene extents (black boxes).
The area observed encompasses a transitional zone between physiographic provinces (West Siberian
Plain and Central Siberian Plateau) and biomes (taiga and tundra) centered on the Lower Yenisei River
just before its outlet into the Kara Sea.

The region has a subarctic climate, classified as Dfc in the Köppen climate classification system.
Few weather stations with adequate observational records are located within this large and diverse
study area. Based on weather stations in the cities of Norilsk and Igarka within the study area, though,
the mean annual temperature of the region is between −8.2 ◦C and −10.2 ◦C, based on 30-year climatic
normals. The region has just 2 months per year when mean monthly air temperature (MMAT) is
greater than 10 ◦C and 4 months when MMAT is greater than 0 ◦C. The hottest month of the year (July)
has MMAT between 8.5 ◦C and 20 ◦C and the coldest month (January) ranges between –22.8 ◦C and
−33.5 ◦C. Annual precipitation totals range from 399 mm to 474 mm, with greater amounts typically
falling during the warm season. Mean annual air temperatures have been increasing since 1985 at an
average rate of 0.05 ◦C/year in Igarka, located in the southern part of the study area, and 0.045 ◦C/year
in Norilsk, located in the northern part. The total annual precipitation has also been increasing,
in Igarka at an average rate of 2.4 mm/year and in Norilsk at an average rate of 2.7 mm/year.
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The lower Yenisei River basin is occupied by permafrost of variable continuity. Based on the USSR
permafrost map by Yershov et al. [43], discontinuous permafrost occupies 10.3% of the study area,
while the remainder of the area, except for large water bodies, is underlain by continuous permafrost
(Figure 2). Permafrost temperature at the zero annual amplitude depth (~10 m) is highly variable and
ranges from 0 ◦C to −10 ◦C depending on the location and site-specific edaphic conditions within
the region.
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Figure 2. Permafrost distribution within the study area (digitized from Yershov et al. [43]). Discontinuous
permafrost occupies 10.32% of the study area, primarily in the southernmost limits. The remaining area
is underlain by continuous permafrost, with the exception of large lakes. Yershov et al. further defined
continuous permafrost by its temperature at the depth of zero annual amplitude (~10 m), which varies
from 0 ◦C to −10 ◦C.

The study area represents the transition from Siberian taiga, primarily occupying areas in the
southern portion, and tundra biomes, primarily in the north. Field surveys conducted throughout the
area during the summer from 2010 to 2015 indicate that taiga forests are dominated by Siberian larch
(Larex sibirica), Siberian spruce (Pecea ovobata), and silver birch (Betula pendula). Tundra landscapes are
characteristic of elevated peatlands covered by mosses (Sphagnum genus), lichens (Cetraria islandica),
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grasses (Poa spp.), and low shrubs such as blueberries (Vaccinium uliginosum), dwarf birch (Betula nana),
and alder (Alnus fruticosa). Critical within this analysis is the relationship between specific vegetative
covers and permafrost continuity established in the southern portion of the study area by Tyrtikov [44]
and Rodionov et al. [45]. Here, tundra developed on lacustrine clays with thick organic horizons
is underlain by 10–40 m thick near-surface Holocene-age permafrost. Near-surface permafrost is,
however, absent under forests. In forested areas, the table of older Pleistocene-age permafrost is
located at 3–5 m depth. This vegetation-near-surface permafrost relationship allows us to use land
cover change as an indicator of permafrost change.

2.2. Data Acquisition and Processing

2.2.1. Landsat Imagery and Composite Generation

Using GEE, an image collection, or data stack, was produced for 3-year periods comprising all
images intersecting the study area from July 1 to September 30 to produce a cloud-free composite of
scenes with minimal snow cover. The entirety of the Landsat 5, 7, and 8 archives available for this area
was included in this analysis using the tier 1 top of atmosphere (TOA) reflectance product, described
in [46]. The reflectance product is preferred over the TOA radiance because the reflectance algorithm
removes the exoplanetary effects associated with variable solar irradiance as a function of variability
in (1) solar zenith angles, (2) spectral band differences, and (3) Earth-to-Sun distance at different times
of the year. The constants for all Landsat sensors (TM, ETM+, OLI) are tabulated in [46], where an
overview of the calibration procedure is provided.

The use of alternative surface reflectance from the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) product was avoided, since users are cautioned against applying it
in high latitudes (>65◦) [47]. This method includes pixels from overlapping images from adjacent
acquisitions, including the addition of ascending orbits for Landsat 8, with specific paths and rows for
each 3-year period detailed in Table 1 and the processing chain shown in Figure 3. The defined study
size comprises the combined footprint of Landsat path 153, rows 11 and 12 (within the Landsat WRS-2
orbit pattern) (Figure 3, step 2). The total period of scene acquisition dates ranged from 1985 through
2017, resulting in 11 3-year image composites with corresponding dates, provided in Table 1.
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An initial classification test revealed that residual striping caused by the scanline corrector failure
onboard Landsat 7 after May 31, 2003, impacted the classification. However, the inclusion of adjacent
scenes mitigated the number of pixels removed from the analysis (note the scene extents indicated in
Figure 3, step 2). After the cloud and shadow mask were applied, NDVI was calculated for each image
in the collection, producing an additional image collection of NDVI values (Figure 3, step 5).

Two image composites were then created by flattening the image collections, Landsat reflectance,
and NDVI. For the 3-year period, the median reflectance values for all reflected optical bands
was extracted, comprising bands 1–5 and 7 for Landsat 5 and 7, and bands 1–9 for Landsat 8
(for a description of the wavelengths of each band, visit https://landsat.usgs.gov). Simultaneously,
the maximum NDVI value for each pixel was extracted from the NDVI image collection to identify the
“greenest,” or most lush, vegetation observed during the time period to provide further evidence of the
land cover type. The subsequent NDVI image composite was appended to the reflectance composite
as a band. This resulted in an image composite in which each pixel represented the median reflectance
and maximum NDVI value for the 3-year period (Figure 3, step 6). In total, 11 3-year composites
were produced, spanning the years 1985 to 2017, selected based on the availability of images within
each image collection sufficient for data gaps, cloud cover compensation, and satisfactory land cover
classification. Five composites from 1985 to 1999 use acquisitions from Landsat 5, 5 composites from
2000 to 2014 use those from Landsat 7, and a single composite from 2015 to 2017 use Landsat 8
acquisitions (Table 1).

Table 1. Images comprising each three-year composite.

Satellite Years Paths Rows No. of Images

Landsat 5 1985–1987 151–156 10–13 146
Landsat 5 1988–1990 151–156 10–13 148
Landsat 5 1991–1993 151–156 10–13 108
Landsat 5 1994–1996 151–156 10–13 122
Landsat 5 1997–1999 151–156 10–13 107
Landsat 7 2000–2002 150–156, 230 10–13, 231 143
Landsat 7 2003–2005 150–156, 226 10–13, 234 116
Landsat 7 2006–2008 150–156 10–13 126
Landsat 7 2009–2011 150–156 10–13 140
Landsat 7 2012–2014 150–156 10–13 200
Landsat 8 2015–2017 150–156, 222–231 10–13, 231–233 285

2.2.2. Landsat Classification and Accuracy Assessment

The 3-year composites of Landsat imagery were then classified within GEE using the random
forest classification method with the following 5 land cover categories: (1) barren ground, (2) taiga or
closed forest, (3) tundra and open forest, (4) water, and (5) snow.

The random forest classification method is a learning algorithm that builds an ensemble
of classification and regression-tree (CART) classifiers that use bagging (otherwise known as
bootstrapping) of pixels within training polygons representing the spectral signatures of various land
cover classes [48]. The algorithm uses random vectors to search through the input variables to establish
the splits in nodes of trees. Classes are derived through a voting process of the ensemble of trees,
whereby the most popular class at the node is selected. In the random forest algorithm, the trees are not
pruned because of the bagging process (which lowers the potential for overfitting), thereby reducing
the computational requirements and improving temporal efficiency. In this study, 30 trees were trained
with approximately 100,000 randomly sampled points from user-defined training polygons.

An in situ dendrochronology study conducted in the nearby Putorana Mountains located within
the study area [49] demonstrated that the determining factor in distinguishing between “open” and
“closed” forests is the density of individual trees. A closed forest has abundant single-tree growth
in-filled by shrubs, while an open forest has sparse single-stem or clustered multistem trees growing

https://landsat.usgs.gov
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10 to 20 m apart with herbaceous and moss vegetation in between. At the 30 m Landsat resolution,
the open forest land cover class is indistinguishable from tundra and was therefore categorized as a
single class.

The training sites/polygons representing the land cover types of interest were interpreted from
high-resolution imagery available on Google Earth that was consistent across the time range of the
study (1985–2017) and verified by ground validation and primary knowledge of conditions at field
sites visited in July 2010–2015. To avoid accuracy inflation, sample points for ground validation sites
were produced from an additional set of user-defined polygons separate from those used for training
the classification algorithm. The accuracy reports for each classified time period included a confusion
matrix and estimates of overall accuracy, kappa coefficient, user accuracy, and producer accuracy for
each land cover class. These metrics were calculated using equations provided by Foody [50] and
Congalton and Green [51] and are shown in Table 2 for selected classification periods, with the full
time series provided in Appendix A.

The urban land cover class was omitted from the supervised random forest classification due
to the many roads and structures resembling the spectral signature of barren land, resulting in
misclassification. Open source vector data from Open Street Map (OSM) (www.openstreetmap.org)
was incorporated to help distinguish urban footprints, which cover a very small portion of the study
area (approximately 0.1%). Local administrative unit polygons were downloaded from OSM and a
conditional statement was applied postclassification to convert pixels classified as barren ground to
“built-up” when located within the municipalities of Igarka, Dudinka, Norilsk, and smaller settlements
in the study area. The conditional statement was applied using the Raster Calculator tool in ArcMap
10.5. This postclassification conditional statement allowed for the inclusion and tracking of built-up
areas in the final 3-year land cover classifications of the study site (Figure 3, step 8).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 21 
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Table 2. Confusion matrices for the four classified image examples shown in Figure 4.

a. 1985–1987 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1146 0 4 0 9 98.9%
Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 14 1048 0 0 98.6%
Water 91 0 87 8109 137 96.2%
Snow 0 0 0 397 362 47.0%

Producer Accuracy 92.6% 99.6% 92.0% 95.3% 71.3%

Overall accuracy = 95.34%, kappa statistic = 92.6%.

b. 1994–1996 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1159 0 0 0 0 100%

Closed Forest 0 4535 29 0 0 99.4%

Tundra/Open Forest 0 33 1029 0 0 96.9%

Water 76 0 0 8348 0 99.1%

Snow 12 0 0 0 747 98.4%

Producer Accuracy 92.9% 99.3% 97.3% 100.0% 100.0%

Overall accuracy = 99.1%, kappa statistic = 98.5%.

c. 2000–2002 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 846 0 0 0 313 73.0%

Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 5 1039 0 0 99.5%

Water 0 0 0 8424 0 100.0%

Snow 6 0 0 249 442 63.4%

Producer Accuracy 99.3% 99.9% 100.0% 97.1% 58.5%

Overall accuracy = 96.4%, kappa statistic = 94.2%.

d. 2015–2017 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 954 0 0 0 205 82.3%

Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 13 2278 0 0 99.4%

Water 133 0 0 8158 133 96.8%

Snow 0 0 0 7 752 99.1%

Producer Accuracy 87.8% 99.7% 100.0% 99.9% 69.0%

Overall accuracy = 96.8%, kappa statistic = 95.82%.

3. Results

The random forest classification yielded land cover maps representative of 11 three-year periods
spanning the 32 years from 1985 to 2017 for the Lower Yenisei study area. Four selected examples of
these classified composites, one per decade (1985–1987, 1994–1996, 2000–2002, 2015–2017), are shown
in Figure 4. The accuracy assessments for all 11 classified maps yielded kappa statistics ranging
from 90.83% to 98.5%. The confusion matrices (Table 2) indicate that the three categories snow,
barren, and tundra/open forest were more frequently misclassified. The distinction between tundra,
open forest, and barren classes was difficult to identify, especially for areas at higher elevations, such as
on the plateaus in the northeastern portion of the study area. Although the lower producer accuracies
are indicative of errors related to the classification algorithm, the kappa statistic is greater than 90%
for all classification periods, indicating strong agreement between the four classifications and their
corresponding validation datasets [52]. Overall, the accuracies of the period-specific land cover maps
are sufficient for assessing regional land cover pattern and analyzing changes.

While a total of six land covers were classified, this discussion will focus on the barren, closed
forest, tundra/open forest, and water classes. Areas classified as snow are late-lying snowbanks
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persisting late into the summer season in extremely small portions of the study area and can vary
significantly between classified composites. Urban areas are also excluded from the discussion of
results, which will focus on natural drivers of change. Future permafrost change studies in the Lower
Yenisei River could use these additional classes to examine anthropogenic and snow-related processes.

Dense taiga, or closed forest, abundant in the southern portion of the region, gradually transitions
to open forest and tundra moving northward. The majority of the closed forest class is confined to
lower elevations of the Yenisei River Valley and in proximity to large water bodies, while the tundra
and barren landscapes dominate higher latitudes and elevations. However, localized factors greatly
complicate generalized regional vegetation trends. For example, throughout the study area, the closed
forest and tundra landscapes are interwoven in a complex pattern. Such spatial heterogeneity is
controlled by highly variable permafrost conditions, reflective of a complex history of sedimentation
and landscape development [29].

Over the observed 32 years, the total area occupied by closed forests expanded by 38% to occupy
an additional approximately 21,000 km2. Barrens also expanded by 34% to occupy approximately
2000 km2 more of the study area. Expansion of closed forests was accompanied by a 25% decrease in
the total areal extent of the tundra/open forest class (approximately 22,000 km2) and by a slight 4%
reduction (approximately 700 km2) in area occupied by water bodies.

To analyze the spatial pattern of vegetation change between the two-year periods, maps depicting
shifts in land cover classes were compiled. Figure 5 shows the total changes (expansion and reduction)
in barrens, closed forests, tundra/open forests, and water bodies between the earliest and latest
composites classified, 1985–1987 and 2015–2017. The difference maps in Figure 5 indicate that the
tundra/open forest and closed forest land cover classes are closely linked through their spatial
patterns of change. Throughout the study area, the reduction in tundra/open forest landscapes was
accompanied by a corresponding expansion of closed forests. The observed pattern is additionally
corroborated by comparing the change in classes on a pixel-by-pixel basis. Using the Combine ArcMap
tool, an image was produced with an appended attribute table containing unique “from-to” sequences,
which contains the class of pixels in the 1985–1987 image composite classification, and the class that
the pixels transition to in the 2015–2017 image composite. Table 3 provides the total area represented
by the unique class transition sequences, with trends similar to Figure 5, where the greatest difference
is in the transition from open forest to closed forest, totaling 24,857.37 km2 in the 32-year period.
The change from open to closed forest is by far the most common transition, comprising 70.6% of the
total areal extent of change observed between the two classifications, followed by the transition from
closed forest to open forest (9.8%) and open forest to barren (5.3%).

Table 3. Total area change (km2) observed by land cover class in the study site from the 1985–1987 and
2015–2017 Landsat composites.

To (2015–2017)

Area (km2) Barren Closed Forest Tundra/Open Forest Urban Water Snow

From
(1985–1987)

Barren x 57.73 795.10 0 11.93 322.94
Closed Forest 106.19 x 3 459.89 2.80 236.13 46.63

Tundra/Open Forest 1865.28 24,856.37 x 20.92 631.89 235.51
Urban 0 1.84 10.73 x 0.10 25.45
Water 607.12 88.61 721.83 1.82 x 201.79
Snow 591.25 16.08 228.28 10.40 36.73 x
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Figure 5. Maps depicting total change over the observed 32 years on grayscale topography (SRTM 30 m
spatial resolution) between the classified stacks in 1985–1987 and 2015–2017. Only mapped natural land
cover classes were tracked for expansion and/or reduction in extent. Note the spatial correspondence
between closed forest and tundra/open forest.

To further examine these changes across the 32-year time period, the total areas occupied by
different land cover classes were graphed for each of the 11 classified composites (Figure 6). Linear
regressions of these totals, with significance (p) indicated by Spearman’s rank correlation coefficient
(R), show that barren areas and closed forests increased approximately 78 km2 per decade (R = 0.74
and p-value ≤ 0.01) and 5460 km2 per decade (R = 0.55 and p-value = 0.08), respectively. Tundra/open
forests and water bodies decreased by 6,120 km2 per decade (R = 0.62 and p-value = 0.04) and
200 km2 per decade (R = 0.09 and p-value = 0.79), respectively. Trends in barrens, closed forests,
and tundra/open forests displayed moderate to strong significance, with the most pronounced shifts
in these three classes occurring over the first two decades observed (1985–2005) (Figure 6).
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Figure 6. Bar graphs show total areas occupied by the natural land cover classes of interest separated
into continuous (black bars) and discontinuous (gray bars) permafrost zones of the study area. Each
bar represents one of the classified three-year composites. Lines represent linear trends in the total
areas occupied by each land cover class.

Surface hydrology compared to other land cover change remained relatively consistent throughout
the 32 years observed, and the linear trend was not significant (Figure 6). To further analyze
the hydrologic changes detected, only relatively large lakes were considered. The dense stacking
methodology, which utilizes all available imagery to compile a best composite image, can be
problematic for evaluating long-term changes in streams and small lakes subject to seasonal
fluctuations. For example, a given image composite with the majority of its images from spring
and/or early summer might result in artificially inflated areas occupied by water due to snow-melt
flooding [26–28]. To address this potential problem, the following water bodies were eliminated from
the analysis following guidelines provided by Smith et al. [24]: all rivers, streams, and lakes smaller
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than 40 ha, and lakes connected to river systems, as these are either highly sensitive to seasonality or
ephemeral in nature compared to larger closed lakes [53]. The total area occupied by large (>40 ha)
closed lakes and the number classified in each three-year composite period are presented in Figure 7,
broken down into continuous and discontinuous permafrost zones within the study area. Over the
32-year period, there were 100 fewer large lakes in the entire study area, and their total area was
reduced by 6.6%. Within the continuous permafrost zone, a linear regression shows large lakes
increasing by 93.2 ha per decade (R = 0.12 and p-value = 0.73), but decreasing within the discontinuous
zone by 6.7 ha per decade (R = 0.25 and p-value = 0.45). There has been significant variation in both of
these zones, resulting in weak observed relationships. While the majority of these lakes have expanded,
and in some instances new lakes have formed, there are also a number of lakes that have shrunk
and/or disappeared in both permafrost zones (Figure 8). However, the degree of variation over the last
two decades of the observed period makes definitive spatial patterns of lake area reduction difficult
to determine.
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Figure 7. Changes in total area occupied by large (>40 ha) closed lakes (bars) and number of lakes in
each classified map (number on each bar). Linear trend lines on each graph illustrate slight increase in
total lake area within the continuous zone (9.32 ha/yr) and slight decrease within the discontinuous
zone (−0.67 ha/yr).
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Figure 8. Examples of lake expansion and formation (left) and lake reduction and disappearance (right)
within the study area from July 1987 (top) and July 2014 (bottom) in original Landsat scenes displayed
in grayscale.

4. Discussion

A land cover change analysis of the large and diverse region in the Lower Yenisei River basin
indicates significant shifts in vegetation over the last 32 years. The most pronounced change detected
in this study was the infilling of vegetation in tundra/open forest landscapes and their gradual
transition to closed forests. At the 32-year scale, such changes are most likely due to the proliferation
of relatively fast-growing shrubs in tundra and open forests. This finding is indirectly supported by
numerous studies conducted throughout the circumpolar Arctic (e.g., [7,11,17,54–57]). Specifically,
within this study area a comparative analysis was done between high-resolution Gambit imagery
from the 1960s and contemporary GeoEye-1 imagery over a 58 km2 area in the vicinity of Dudinka
(Figure 1). This comparison across a longer time series revealed a 25.9% increase in shrub cover in a
tundra/open forest landscape [8]. Additionally, a transect study in the Putorana Mountains to the
northeast of the study area indicated an ongoing filling-in, or densification, of open forests and an
upslope shift in tree-line position [49]. Increased air temperatures prolonging the growing season,
increased snow accumulation, and a thicker active layer are the primary drivers identified that likely
promote these vegetation shifts (e.g., [11,15–17]).

The study area’s limited and highly dispersed weather stations preclude a detailed analysis
of observed climatic changes at a regional scale. However, World Meteorological Organization
station records from Igarka and Norilsk show significant air temperature increases since 1985 [29,40].
These trends, representative of the northern and southern portions of the study area, suggest that the
detected regional vegetation change can at least partially be associated with regional climatic warming.
However, the complex pattern of land cover change within the study area is likely controlled by highly
heterogeneous snow and permafrost conditions.
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Several studies (e.g., [16,49]) suggest that increasing snow accumulation can be a primary driver
of an altitudinal rise in the occurrence of shrubs and treelines. An analysis of 25 × 50 km spatial
resolution Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis data
indicates a 30-year positive trend in winter precipitation at higher elevations in the northeastern part of
the study area [40]. There, the shifts in land cover from tundra to dense shrubs were detected primarily
in stream valleys, which can be attributed to higher snow accumulation occurring in topographic
depressions. Similar results were obtained in the air photo–based study of shrub expansion on the
North Slope of Alaska [56]. In that study, it was found that in complex topography shrubs grow
preferentially in areas that have a greater potential for snow and moisture accumulation, resulting
in shrub expansion upslope along drainage channels. A similar pattern of change is evident from
the maps in Figure 5. Increasing snow depth can have a profound warming effect on permafrost by
offering more thermal insulation to the ground, preventing permafrost aggradation in cold months.

Warming permafrost and increasing active-layer thickness, which can potentially promote shrub
expansion, were reported for several regions in Russia (e.g., [29,58–60]). There are no long-term direct
permafrost observations on undisturbed natural landscapes within the study area currently available
through international open access sources such as the Global Terrestrial Network on Permafrost.
However, the Igarka weather station has documented soil temperature at 3.2 m depth increasing
from −0.5 ◦C in the late 1970s to +2.5 ◦C in 2014, and a corresponding lowering of the permafrost
table to about 5 m depth was reported for an artificially grass-seeded surface nearby [29]. Similar
observations from the Norilsk weather station revealed a progressive increase in active-layer thickness
at a rate of 0.05–0.06 m/year over the 1999–2013 period [29]. Although these changes are probably
exaggerated due to anthropogenic influences of increased development and activity in the region,
they are indicative of a more general regional permafrost warming trend. The direct active-layer
observations at Circumpolar Active Layer Monitoring (CALM) sites located in the tundra/open
forest landscapes in the vicinity of Norilsk (CALM site R32) and Igarka (CALM site R40) report a
0.87 cm/year increase in active-layer thickness over the 2005–2017 period in Norilsk and 2.63 cm/year
over the 2008–2016 period in Igarka (http://www.gwu.edu/~calm/). This evidence suggests that
climate-induced thawing of near-surface permafrost underlying tundra/closed forest landscapes in
the study area can partially explain the detected shrub expansion and transition to closed forests.
The previously documented relationship between land cover and permafrost within the study suggests
that remote sensing–based assessments of vegetation change can potentially be used as an indicator of
changing permafrost conditions (e.g., [29,44]).

Changes in permafrost conditions can greatly affect surface hydrology (e.g., [24,26–28,30]). Thaw
propagation into ice-rich near-surface permafrost can be accompanied by ground subsidence (e.g., [60])
and/or formation or expansion of thermokarst depressions (e.g., [61]). Lowering of the permafrost
table may result in the formation of taliks, enhancing underground drainage and resulting in dryer
surface conditions (e.g., [24,25]). To investigate whether the change in number and areal extent of large
(>40 ha) closed lakes detected in this study can potentially be attributed to permafrost degradation,
associations between lake changes and permafrost conditions were also examined. The lack of a clear
regional relation between lake change and permafrost-controlled land cover suggests that changes in
climatic factors (e.g., precipitation, evaporation) rather than subsurface drainage might be responsible
for detected lake change. While permafrost conditions can play a significant role in the surface
hydrology of the study area (e.g., [29]), they are more likely to be manifested through changes in
smaller lakes and ponds. More detailed study using high-resolution imagery is required to detect
those changes.

5. Conclusions

The Landsat dense stacking methodology as performed in GEE proved to be a successful means
of quantifying land cover change in an arctic environment by effectively minimizing the effects of
cloud cover and data gaps by utilizing the entirety of the available Landsat record. We tested and

http://www.gwu.edu/~calm/


Remote Sens. 2018, 10, 1226 15 of 20

applied the method to analyze 32 years of spatial changes in vegetation and surface hydrology for an
area of more than 60,000 km2 in the Lower Yenisei River region. The goal of this mapping effort was to
relate land cover changes to underlying permafrost conditions, with the direct connection between
permafrost continuity, depth, and age and overlying vegetation previously established in this region
by Tyrtikov [44], then Rodionov et al. [45], and most recently by Streleskiy et al. [29].

The Lower Yenisei is undergoing significant warming and increasing total annual precipitation.
Increased air temperatures and snow accumulation together thicken the active layer and therefore
are likely the primary drivers of arctic vegetation shifts (e.g., [11,15–17]). Within the study area over
the observed 32 years, closed forests and barren ground expanded by 38% (21,000 km2) and 34%
(2000 km2), respectively, with a corresponding 25% decrease in tundra/open forests (22,000 km2).
Water bodies also slightly decreased by 4% (approximately 700 km2). The significant expansion of
closed forests indicates a thickening of the active layer and, specifically, degradation of large areas
underlain by younger Holocene-age, near-surface permafrost, likely from the infilling of large shrubs
and trees in tundra/open forest landscapes (e.g., [8,49]).

Spatial variation in large lake reduction and expansion have also been linked to permafrost
degradation (e.g., [24,26–28,30]). However, there was no significant statistical relationship detected
between changes in large lake extent and changes in other vegetative cover in the lower Yenisei River
region. The thermokarst processes that affect surface hydrology are likely highly localized in this
area [29] and are occurring at a finer scale than the 30 m resolution from Landsat imagery. Future work
should consider applying the method developed and described here to higher-resolution imagery
to examine and quantify finer-scale land-cover changes in order to detect more of these edaphic
permafrost conditions.
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Appendix A

Table A1. Confusion matrices for image classifications from 1985 to 2017.

a. 1985–1987 Landsat 5 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1146 0 4 0 9 98.9%
Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 14 1048 0 0 98.6%
Water 91 0 87 8109 137 96.2%
Snow 0 0 0 397 362 47.0%

Producer Accuracy 92.6% 99.6% 92.0% 95.3% 71.3%

Overall accuracy = 95.372%, kappa statistic = 92.597%.

b. 1988–1990 Landsat 5 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1159 0 0 0 0 100%
Closed Forest 0 4564 0 0 0 100%

Tundra/Open Forest 0 27 1035 0 0 97.5%
Water 259 0 0 8156 0 96.9%
Snow 119 0 0 0 567 82.7%

Producer Accuracy 75.4% 99.4% 100% 100% 100%

Overall accuracy = 97.452%, kappa statistic = 95.968%.

c. 1991–1993 Landsat 5 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1158 0 1 0 0 99.9%
Closed Forest 0 4564 0 0 0 1

Tundra/Open Forest 0 22 1040 0 0 97.9%
Water 259 0 0 7618 538 90.5%
Snow 0 0 0 45 714 94.1%

Producer Accuracy 81.7% 99.5% 99.9% 99.4% 57.0%

Overall accuracy = 94.58%, kappa statistic = 91.663%.

d. 1994–1996 Landsat 5 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1159 0 0 0 0 100%
Closed Forest 0 4535 29 0 0 99.4%

Tundra/Open Forest 0 33 1029 0 0 96.9%
Water 76 0 0 8348 0 99.1%
Snow 12 0 0 0 747 98.4%

Producer Accuracy 92.9% 99.3% 97.3% 100.0% 100.0%

Overall accuracy = 99.061 %, kappa statistic = 98.509%.

e. 1997–1999 Landsat 5 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1158 0 1 0 0 99.9%
Closed Forest 0 4554 10 0 0 99.8%

Tundra/Open Forest 1 12 1049 0 0 98.8%
Water 354 0 3 8607 0 95.7%
Snow 67 0 0 9 492 86.6%

Producer Accuracy 73.3% 99.7% 98.7% 99.9% 100%

Overall accuracy = 97.103%, kappa statistic = 95.405%.

f. 2000–2002 Landsat 7 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 846 0 0 0 313 73.0%
Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 5 1039 0 0 99.5%
Water 0 0 0 8424 0 100.0%
Snow 6 0 0 249 442 63.4%

Producer Accuracy 99.3% 99.9% 100.0% 97.1% 58.5%

Overall accuracy = 96.394%, kappa statistic = 94.161%.
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Table A1. Cont.

g. 2003–2005 Landsat 7 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1159 0 0 0 0 100%
Closed Forest 0 4564 0 0 0 100%

Tundra/Open Forest 0 11 1033 0 0 98.9%
Water 463 0 0 7959 2 94.5%
Snow 0 0 0 440 311 41.4%

Producer Accuracy 71.4% 99.8% 100% 94.8% 99.4%

Overall accuracy = 94.254%, kappa statistic = 90.834%.

h. 2006–2008 Landsat 7 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1159 0 0 0 0 100%
Closed Forest 0 4564 0 0 0 100%

Tundra/Open Forest 0 8 1036 0 0 99.2%
Water 9 0 0 8415 0 99.9%
Snow 0 0 0 183 567 75.6%

Producer Accuracy 99.2% 99.8% 100% 100% 97.9%

Overall accuracy =
98.745%, kappa statistic =

97.982%.

i. 2009–2011 Landsat 7 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1158 0 1 0 0 99.9%
Closed Forest 0 4564 0 0 0 100%

Tundra/Open Forest 0 26 1018 0 0 97.5%
Water 0 0 0 8022 402 95.2%
Snow 19 0 0 0 703 97.4%

Producer Accuracy 98.4% 99.4% 99.9% 100% 63.6%

Overall accuracy = 97.185%, kappa statistic = 95.585%.

j. 2012–2014 Landsat 7 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 1152 0 0 0 7 99.4%
Closed Forest 0 4564 0 0 0 100%

Tundra/Open Forest 0 16 1028 0 0 98.5%
Water 11 0 0 8192 221 97.3%
Snow 0 0 0 67 689 91.1%

Producer Accuracy 99.1% 99.7% 100% 99.2% 75.1%

Overall accuracy = 97.981%, kappa statistic = 96.805%.

k. 2015–2017 Landsat 8 Validation Data

Classification Data Barren Closed Forest Tundra/Open Forest Water Snow User Accuracy

Barren 954 0 0 0 205 82.3%
Closed Forest 0 4564 0 0 0 100.0%

Tundra/Open Forest 0 13 2278 0 0 99.4%
Water 133 0 0 8158 133 96.8%
Snow 0 0 0 7 752 99.1%

Producer Accuracy 87.8% 99.7% 100.0% 99.9% 69.0%

Overall accuracy = 96.831%, kappa statistic = 95.752%.
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