
Computational Game Theory Spring Semester, 2011/2012

Lecture 1: March 7
Lecturer: Amos Fiat Scribe: Eran Nir and Yael Amsterdamer

1.1 Computational Game Theory

1.1.1 Agenda

The course will cover the following material:

• Introduction to Game Theory

• Examples

• Matrix form Games

• Utility

• Solution concepts

• Dominant Strategies

• Nash Equilibria

• Complexity

• Mechanism Design: reverse game theory

1.1.2 CGT in Computer Science

The study of Game Theory in the context of Computer Science exists only in
the last 15 years. The purpose is to understand problems from the perspective
of computability and algorithm design. Computing involves many different
selfish entities, and therefore involves game theory. An example to this is the
internet:

• Many players (end-users, ISVs, Infrastructure Providers).
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• Players wish to maximize their own benefit and act accordingly.

• The trick is to design a system where its beneficial for the player to
follow the rules.

The interest in game theory is divided into theory studying and industry use:

Theory:

• Algorithm design

• Complexity

• Quality of game states (Equilibrium states in particular)

• Study of dynamics

Industry:

• Sponsored search

• Other auctions

1.1.3 Game Theory

Some explication in a nutshell:

• Rational Player: Prioritizes possible actions according to utility or cost,
and strives to maximize utility or to minimize cost.

• Competitive Environment: More than one player at the same time.

Game Theory analyzes how rational players behave in competitive environ-
ments.



1.2. THE PRISONER’S DILEMMA 3

1.2 The Prisoner’s Dilemma

The prisoner’s dilemma is the most known example of a game in which two
individuals might not cooperate, even if it appears that it is in their best
interest to do so.

The dilemma is as follows: two men are arrested upon committing a
crime, but the police don’t have enough evidence for conviction. The two
are held in separate rooms for interrogation, and offered the same deal by
the police: If one of them confesses and testifies against his partner, the
betrayer receives 2 years in jail, while the one who kept silent receives a 6
years sentence. if both keep silent, both are sentenced to 3 years in jail (for
other charges). if both cooperate with the police, both receive 5 years. The
table representation of the game is as follows, where for each pair (x, y), x is
the utility of the row player, and y is the utility of the column player:

Keep silent Defect
Keep silent (3,3) (6,2)

Defect (2,6) (5,5)

Since the game is played only once (the situation in the police station is
assumed not to return on itself), each player is only concerned with getting
less jail time. Regardless of what the other prisoner chooses to do - keep silent
or betray - one will benefit more by betraying. The symmetry of the game
means both prisoners will betray, therefore receiving the highest possible
total jail time of all options (10 total years), while cooperating and keeping
silent would’ve ended with the lowest possible jail time (6).

In such case, where no matter what the other players in the game do, one
prefers a specific action, we call this action a ”dominant strategy”. In this
game, betraying is the dominant strategy.

1.3 ISP Routing

Another variation of the Prisoner’s Dilemma is the ISP (Internet Service
Providers) Routing Game. ISPs often share their physical networks for free,
and so in some cases an ISP can either choose to route traffic in its own
network or via a partner network. the routing choice made by the originating
ISP also affects the load at the destination ISP.
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Consider two ISPs, as seen in Figure 1.4, each having its own separate
network. The two networks can exchange traffic via two points, A and B. In
each ISP There are origin and destination points (si, ti), but the traffic has
to cross between the domains. The cost of routing along each edge is 1.

Suppose that ISP1 needs to send traffic from point s1 in his own domain
to point ti in ISP2’s domain. ISP1 has two choices for sending its traffic,
either via A or via B. Assume that the ISPs behave selfishly and try to
minimize their own costs, by sending traffic to the closest transit point. The
ISP with the destination node must route the traffic, no matter where it
enters its domain. Using A as a transit point (see 1.5), ISP1 incurs a cost
of 1 unit. ISP2 has to transmit the traffic via 4 edges, causing a cost of 4.
The total cost for both ISPs is 5.

Suppose ISP2 is not as selfish, and it chooses to use point B as a transit
point (see 1.5): In this case the cost for ISP2 is 2, while the cost caused to
ISP1 is 1. The total cost for both ISPs is 3. By not playing selfishly, one
can reduce the total cost of both players.

Figure 1.1: Networks
of two ISPs, with pos-
sible links for traffic

Figure 1.2: Traffic
from s1 to t1 trans-
ferred through ISP2

Figure 1.3: Traffic
from s2 to t2 trans-
ferred through ISP2

If we look at the table representation of the game, we’ll see a familiar
one:

Using A Using B (playing selfishly)
Using A (3,3) (6,2)

Using B (playing selfishly) (2,6) (5,5)

While keeping the traffic in one’s own network as much as possible would’ve
been the best option if both ISPs chose it, the dominant strategy is clearly
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getting rid of the traffic as soon as possible. Therefore the outcome of this
’dilemma’ causes both ISPs pay a cost of 5, instead a cost of 3. The ratio
between the selfish solution, to the globally optimal one, is called ”the price
of anarchy”. Later in the course we’ll look for ways to keep this price as low
as possible.

1.4 Strategic Games

We will now give a formal model to a strategic game under the following
assumptions:

• The game consists of only one ’turn’ - we’ll not refer to games with mul-
tiple turns, where considering future dynamics may influence actions
taken in current time.

• All the players play simultaneously and are unaware of what the other
players do.

• Players are selfish, seek to maximize their own benefit.

1.4.1 Formal Model

The Model is defined as follows:

• There are N = {1, ..., n} players.

• Player i has actions/strategies Ai = {ai1, ai2, . . . , aim}.

• The space of all possible action vectors is A = A1 × A2 × · × An.

• A joint action is the vector a ∈ A.

• Player i has a utility function ui : A→ R. If the utility is negative we
may call it cost.

In total the game is defined by 〈N, 〈Ai〉ni=1, 〈ui〉ni=1〉.
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1.4.2 Dominant Strategies

Definition Action ai of player i is a weakly dominant strategy if

∀b−i ∈ A−i,∀bi ∈ Ai : ui (b−i, bi) ≤ ui (b−i, ai)

Definition Action ai of player i is a strongly dominant strategy if

∀b−i ∈ A−i,∀bi ∈ Ai : ui (b−i, bi) < ui (b−i, ai)

Definition An outcome a of a game is Pareto optimal if for every other
outcome b, some player will lose by changing to b. More formally: ∀b ∈
A∃i ∈ N such that ui(b) < ui(a).

1.5 Rationality Axioms

1.5.1 St. Petersburg Paradox

The St. Petersburg paradox is a paradox which comes to describe a situ-
ation where a decision based only on the expected value of some variable,
supposedly a rational decision, is a decision that no rational person would
be willing to take. The paradox was published by Bernoulli in 1738, and
is named after the magazine it was published in - the Commentaries of the
Imperial Academy of Science of Saint Petersburg.

The paradox goes as follows: A game of chance is offered for a single
player, in which a fair coin is tossed many times. The prize in the game
depends on the number of times n the coin comes up heads, until it first
comes up tails. The prize starts at 1 dollar and is doubled every time a head
appears. The first time a tail appears, the game ends and the player wins
whatever accumulated so far. Thus the player wins 1 dollar if a tail appears
on the first toss, 2 dollars if a head appears on the first toss and a tail on the
second, 4 dollars if a head appears on the first two tosses and a tail on the
third, and so on. In general, the player wins 2n dollars if the coin is tossed n
times until the first tail appears.
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The question arouse is what would be a fair price to pay in order to
play the game? To answer the question we first want to find what will
be the average prize a participant will win. We can see that as the prize
is exponentially growing, the probability to win it is exponentially growing
smaller: With probability 1/2, the player wins 1 dollar. with probability 1/4
he wins 2 dollars; with probability 1/8 he wins 4 dollars and so on. Thus the
expected value of the game is given by:

E[Prize] =
1

2
∗ 1 +

1

4
∗ 2 +

1

8
∗ 4 +

1

16
∗ 8 + ...

=
1

2
+

1

2
+

1

2
+

1

2
+ ...

=
∞∑
i=1

1

2

=∞

The outcome is since the expected value of the prize is infty, any amount
of money would be a fair enough ”entering fee” to the game. The paradox os
that in reality (obviously) very few people will agree paying a high amount
of money to enter such a game. This can be explained by either the low
probability (regardless the high expected value) to actually win a big prize,
or the fact that the utility of the money in reality is not proportional to
the amount. One way to solve the paradox is to define a non-linear utility
function over the prize, which give a finite expected value.

1.5.2 Von NeumannMorgenstern Rationality Axioms
(1944)

In 1944, (John von) Neumann and (Oskar) Morgenstern introduced four ax-
ioms of ”rationality” that refer to preferences over options called ”lotteries”,
such that every person that is satisfying the axioms has a utility function.
This means that a person is ”rational” (by satisfying the axioms) if and only
if there exists a real-valued function u defined on possible outcomes such that
every preference of the person is given by maximizing the expected value of
u. Given lotteries L,M,N , the four rationality axioms are:

• Completeness:
L ≺M, M ≺ L, or, M = L.
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• Transitivity:

if L �M � N, then L � N.

• Continuity:

if L �M � N then there exists p ∈ [0, 1] s.t. pL+ (1− p)N = M .

• Independence:

if L ≺M, then for any N and p ∈ (0, 1] : pL+(1−p)N ≺ pM+(1−p)N.

As written above, Von Neumann and Morgenstern proved that given those
axioms, we have a real-valued utility function over lotteries, and holds: given
two lotteries, u(αL1 + (1− α)L2) = αu(L1) + (1− α)u(L2).

1.5.3 Allais Paradox (1953)

The Allais paradox arises when comparing participants’ choices in two dif-
ferent experiments, where each experiment consists of a choice between two
gambles. The winning probabilities and prizes are as follows:

Chance Winnings
Gamble A 100% 1 Million $
Gamble B 89% 1 Million $

10% 5 Million $
1% Nothing

Figure 1.4: Experiment 1

Chance Winnings
Gamble C 11% 1 Million $

89% Nothing
Gamble D 10% 5 Million $

90% Nothing

Figure 1.5: Experiment 2

Several studies (including one done interactively in class) had shown that
given the choice between A and B, many people would choose A, while given
the choice between C and D, many people would choose D. However, for the
same person to choose both A and D is inconsistent with expected utility
theory. A short proof to this claim goes as follows:
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E(A) = 1M,E(B) = 1.39M

u(A) > u(B)

u(1M) > 0.1 · u(5M) + 0.89u(1M) + 0.01u(0)

0.11 · u(1M) + 0.89 · u(0) > 0.1 · u(5M) + 0.9 · u(0),

→ C � D.

1.5.4 Expected Utility Theory

Later on in this lesson we will learn about different kings of Nash Equilibrium.
Here we’ll just mention that Von NeumannMorgenstern Rationality Axioms
⇒ Expected Utility Maximization ⇒ Mixed Nash Equilibrium exists.

1.6 The Tragedy of the Commons

The following example shows a situation where

• All the players are equivalent, in the sense that the utility functions
are computed in the same manner.

• The domain of user strategies is continuous.

• Like in the prisoner’s dilemma, there is a stable solution which is not
Pareto optimal.

• No dominant strategies exist.

We model a situation where increased use of a common resource reduces
its utility. In such a case, if there is one leadership, it can force all the players
to play according to the strategies that lead to an optimal global solution.
However, when each player decides on a strategy, and wants to maximize his
own utility, the obtained equilibrium may be far from optimal.

1.6.1 Problem Setting

There exists a shared resource (e.g., a pasture field or network bandwidth).
There are N users, and each user i decides how much load xi he wants to
put on the resource.
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In a case when the sum of user loads
∑N

i=1 xi is ≤ 1, the resource is
overloaded and for every user i the utility ui = 0. In any other case, the

utility of a user i is computed by the formula ui = xi

(
1−

∑N
j=1 xj

)
. I.e.,

increasing the user load xi will not always increase the utility ui (because of
the second factor, that decreases as the overall load increases). The optimal
choice of xi thus depends on the choices of the other uses.

1.6.2 The Rational Solution

If the choices of the other users are fixed (as unknown parameters) we can
compute the maximum point of the utility function for a single user, as fol-
lows:
ui = xi

(
1−

∑N
j=1 xj

)
= xi

(
1− xi −

∑
j 6=i xj

)
– developing the utility for-

mula.

dui

dxi
= −2xi +

(
1−

∑
j 6=i xj

)
= 0 – deriving according to xi and

setting the derivative to 0.

⇔ 2xi = 1−
∑

j 6=i xj

⇔ xi = 1− xi −
∑

j 6=i xj = 1−
∑N

j=1 xj – moving one xi to the right-
hand size.

⇒
∑N

j=1 xj = N −N
∑N

j=1 xj – since all the players are
equivalent.

⇔ (N + 1)
∑N

j=1 xj = N

⇔
∑N

j=1 xj = N
N+1

– we got an expression for the
sum of loads.

⇒ xi = 1−
∑N

j=1 xj = 1− N
N+1

= N+1−N
N+1

= 1
N+1

– using the expression in the
formula for xi.

⇒ ui = xi

(
1−

∑N
j=1 xj

)
= 1

N+1
· 1
N+1

= 1
(N+1)2

– the resulting utility.

Assuming that the players are rational, each of them must choose xi =
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1
N+1

and consequently get utility ui = 1
(N+1)2

. Is this state Pareto optimal?

If every user i chose xi = 1
2N

instead, the utility of each user would be

ui = xi

(
1−

N∑
j=1

xj

)
=

1

2N

(
1−N · 1

2N

)
=

1

2N

(
1− 1

2

)
=

1

2N
· 1

2
=

1

4N

. This utility is asymptotically larger than 1
(N+1)2

. Every player would in-

crease his utility by moving from the rational solution ∀i xi = 1
(N+1)2

to the

new solution, ∀i xi = 1
2N

. Thus, the rational solution is not Pareto optimal.
Still, given the new solution, as our previous computation shows, every user
will have the motivation to change his choice, and increase his utility at the
expense of the others.

1.7 Nash Equilibrium

he obtained solution in the “tragedy of the commons” was not globally opti-
mal due to the assumption that players are not collaborating with each other.
Each player tries to maximize his own utility given the choices of the others.
When no player can increase his utility alone (by changing his choice), we get
a Nash equilibrium (named after John Nash, who first defined this situation
in game theory). The formal definition:

Definition If xi, x−i are certain strategies of user i and the other users
respectively, {xi, x−i} is called a Nash equilibrium if

∀1 ≤ i ≤ N,∀yi ∈ Ai : ui (xi, x−i) ≥ ui (yi, x−i)

According to this definition, we actually proved in the tragedy of the
commons that ∀1 ≤ i ≤ N : xi = 1

N+1
is a Nash Equilibrium.

Definition Given the strategies of other players x−i, the best response of a
player i is the set of all strategies that together with x−i maximize the utility
for player i. It is denoted by

BRi(x−i) = arg max
xi

ui (xi, x−i)
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In a Nash equilibrium, every player’s strategy must be a best response,
according to the definition above. We get an equivalent definition for Nash
equilibrium.

Definition (An equivalent definition) For users 1, . . . , N , a set of choices
x1 . . . xN is a Nash equilibrium if

∀1 ≤ i ≤ N : xi ∈ BRi(x−i)

1.7.1 Battle of the Sexes

We next describe some examples for games where Nash equilibria exist. In
the first example, “the battle of the sexes”, the situation is as follows: a
couple tries to decide whether to go to the opera or to a sports game. One
partner favors the sports game, and the other favors the opera, but in any
case they prefer to stay together. The following table expresses their utility,
where the row player is the one who favors the sports game. Recall that if
a cell table contains a pari (x, y), x is the utility of the row player for the
combination of strategies, and y is the utility of the column player.

Sports Opera
Sports (4,3) (2,2)
Opera (1,1) (3,4)

In this situation we have two Nash equilibria. For the strategy combi-
nation {Sports, Sports} ∈ A, each of the players will lose by changing their
strategy: if the row player switches to the Opera strategy, the gain of this
player will be reduced from 4 to 1; and if the column player switches to the
opera, the utility of this player will be reduced to from 3 to 2. The strategy
combination {Opera,Opera} ∈ A is also a Nash equilibrium from similar
reasons.

Unlike the tragedy of the commons, here there is no clear strategy that
a rational player should choose. We do not know how to achieve one of
the possible Nash equilibria; we only know that if we initialize the players’
strategies according to one of the equilibria, and the players are selfish and
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not collaborating with each other, then none of them will have an incentive
to switch to a different strategy.

1.7.2 Routing Game

The second example for a Nash equilibrium is similar, only that here the
players have an incentive to choose different strategies rather than the same
strategy. Consider two common routes that connect the users to the internet.
Route A consists of only 1 link, on which the cost of a single packet is 1, and
the cost of 2 packets together is 3 per packet. Route B consists of 2 links,
where the price of a single packet per link is 1, and the price of 2 packets is 2
per packet per link. This is summarized in the following table (the row and
column players are symmetric).

A B
A (3,3) (1,2)
B (2,1) (4,4)

Here, (1,2) and (2,1) are Nash equilibrium states, since if either the row
player or the column player change their strategy alone, they will only in-
crease their cost.

1.8 Mixed Strategies

1.8.1 Matching Pennies

Consider a situation, where two players have to choose heads or tails each.
The row player wins a point if they make the same choice, and loses one if
they choose differently. The column player, however, wins a point if they
choose differently, and loses a point if they choose the same. We get the
following utility table:

Heads Tails
Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)



14 Lecture 1: March 7

In each of the four states, one player wins and one loses. The loser always
has an incentive to change his strategy, and become a winner. Thus, in this
game, no Nash equilibrium exists.

What can the players do in such a situation? Assume that the players are
allowed not to choose a single strategy, but a distribution over the strategies.
The row player will choose heads with probability p (and tails with probabil-
ity 1− p, and similarly the column player will choose heads with probability
q. We can now compute the expected utility of, e.g., the row player, for each
choice he makes: if he chooses heads, he will win one point with probabil-
ity q (the column player also chooses heads; we assume that the players are
independent). With probability 1 − q, the column player will choose tails
and the row player will lose one point. Thus the expected utility of the row
player for choosing heads is uheads = 1 · q+ (−1) · (1− q) = 2q− 1. Choosing
tails is symmetric, thus the expected utility for the row player for choosing
tails is utails = (−1) · q + 1 · (1− q) = 1− 2q.

The row player will choose a mixed strategy only if one or more strategies
have the maximum utility. In this case, this means that uheads = utails ⇔
2q − 1 = 1− 2q ⇔ q = 1

2
.

1.8.2 Strategy Distributions

If Ai is the domain of possible strategies for the player i, then ∆ (Ai) is the
domain of all possible probabilistic distributions over Ai. It can be viewed
as the simplex of strategies, where each strategy has a probability between 0
and 1, and the sum of probabilities is 1.

Definition For the player i, a mixed strategy is a choice of pi ∈ ∆ (Ai).

A single possible strategy (as opposed to a mixed strategy) is also called
a pure strategy.

Definition For players 1, . . . , N , a joint mixed strategy is a vector of mixed
strategies ~P = {p1, . . . , pN}. The outcome of the game is a joint mixed
strategy.

Definition A mixed Nash equilibrium is a joint mixed strategy where for
every player i, given the (mixed) strategies of the other players p−i, i cannot
increase his expected utility by changing his strategy. More formally,

∀i ∈ 1 . . . N,∀qi ∈ ∆ (Ai) : Exi∼pi,x−i∼p−i
[ui (x1, . . . , xN)] ≥ Exi∼qi,x−i∼p−i

[ui (x1, . . . , xN)]
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(p−i is used to denote the joint distribution of all the players but i).

We will define two useful notations.

Definition The support of a mixed strategy pi is the set of all strategies
with non-zero probability in pi, denoted by

support(pi) = {ai | pi(ai) > 0}

Definition (In the mixed case) Given the mixed strategies of other players
p−i, the best response of a player i is the set of all pure strategies that together
with p−i give the maximal expected utility for player i. The best response
set is denoted by

BRi(p−i) = arg max
ai

Ex−i∼p−i
[ui (ai, x−i)]

For each mixed strategy, there exists a pure strategy with a greater or
equal expected utility. To see that, recall that an expectation is always
smaller than the maximal case. Take a mixed strategy pi ∈ ∆ (Ai), and the
joint mixed strategy of the other players p−i. We can choose a pure strategy
ai ∈ support(pi), such that the expected utility of ai, p−i is maximal. I.e., this
is the “maximal case”, and the expected utility of pi, p−i is the “expectation”.
Thus, the expected utility of ai, p−i has to be greater.

In a Nash equilibrium, we choose a positive probability only for strategies
ai that maximize the utility with respect to the mixed strategies of the others.
This actually means that

∀i : support(pi) ⊆ BRi(p−i)(an important property of mixed Nash equilibrium).

For such a mixed strategy there exist only pure strategies with equal expected
utility, and not strictly higher. We can use this property to formulate an
equivalent definition of mixed Nash equilibrium.

Definition (Equivalent definition) A mixed Nash equilibrium is a joint mixed
strategy where for every player i, given the (mixed) strategies of the other
players p−i, i cannot increase his expected utility by changing his strategy to
a (different) pure strategy. Formally,

∀i ∈ 1 . . . N,∀ai ∈ Ai : Exi∼pi,x−i∼p−i
[ui (x1, . . . , xN)] ≥ Ex−i∼p−i

[ui (ai, x−i)]
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1.8.3 Rock Paper Scissors

The following utility table describes the results of the rock-paper-scissors
game.

Rock Paper Scissors
Rock (0,0) (-1,1) (1,-1)
Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Similarly to the matching Pennies game, here there exists no pure Nash
equilibrium. However, there exists a mixed one: 1

3
probability for each strat-

egy for each of the players. If we fix this strategy for the column player,
than the expected utility for each choice of the row player is 0. This means
that any of the choices is a best response and can be in the support of the
mixed strategy of the row player. To achieve an equilibrium (i.e., to allow
all strategies to be best responses also for the column player), we should give
equal probability to each of the row player choices.

1.8.4 Nash Theorem

Theorem 1.1 (Nash, 1951) Any game with a finite set of players and a
finite set of strategies has a mixed Nash equilibrium.

We will show an algorithm for finding the mixed Nash equilibrium, in a
game with two players. The following is the matrix of utilities: (r11, c11) · · · (r1n, c1n)

...
. . .

...
(rm1, cm1) · · · (rmn, cmn)


We will also define two sets of variables, p(1), . . . , p(m) for the proba-

bilities assigned to each of the strategies of the row player, and similarly
q(1), . . . , q(n), for the column player. We showed that in a mixed Nash
equilibrium, support(p) ⊆ BRrow(q). This means that the expected utility of
every strategy of the row player should be the same, and this works in a sym-
metrical way for the column player. Assume that the support of the mixed
strategies of the players are fixed. If I = {i1, . . . , ik} are the indices of the
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strategies in support(p), and J = {j1, . . . , jl} are the indices for support(q),
we can formulate this as two linear programs:

q(j1) · ri1,j1 + · · ·+ q(jl) · ri1,jl = q(j1) ·
ri2,j1 + · · ·+ q(jl) · ri2,jl

– first equation: the expected
utility of the first row player
strategy is equal to that of the
second strategy

q(j1) · ri2,j1 + · · ·+ q(jl) · ri2,jl = q(j1) ·
ri3,j1 + · · ·+ q(jl) · ri3,jl
...

q(j1) · rik−1,j1 + · · · + q(jl) · rik−1,jl =
q(j1) · rik,j1 + · · ·+ q(jl) · rik,jl
q(j1) + · · · + q(jl) = 1 ∀1 ≤ s ≤ n :
q(s) ≥ 0

– enforce that q is a distribu-
tion with the support J

... and the second system:

p(i1) · ci1,j1 + · · ·+ p(ik) · cik,j1 = p(i1) ·
ci1,j2 + · · ·+ p(ik) · cik,j2

– first equation for the column
player

...

p(i1) · ci1,jl−1
+ · · · + p(ik) · cik,jl−1

=
p(i1) · ci1,jl + · · ·+ p(ik) · cik,jl
p(i1) + · · ·+ p(ik) = 1 – last equations for the row

player, enforcing that p is a
distribution with the support I

∀s ∈ I : p(s) > 0 ∀1 ≤ s ≤ m :
p(s) ≥ 0

The solution to each system, if exists, is unique, since there are more
equations than variables. If there exists a solution to both systems, that is
according to the selected support (i.e., p(s) > 0 for s ∈ I, p(s) = 0 for s 6∈ I,
q(s) > 0 for s ∈ J and q(s) = 0 for s 6∈ J) – then this solution is a mixed
Nash equilibrium. In the worst case, to find an equilibrium we will have to
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try this for every possible support for p and q, a total of (2m − 1) (2n − 1)
combinations (the −1 is there since the supports cannot be empty).

1.9 Location / Lemonade Stand Game

In this example, computing the Nash equilibria is not simple. There are
many veriations to this general problem, where N ice cream/lemonade ven-
dors are choosing a location in a defined space. The utility of each vendor
is determined by the distance between him, the neighbor vendors and the
defined space boundaries.

First variation The vendors are spread on the segment [0, 1]. The utility
of each vendor is half of the distance between him and his neighbors, i.e., if
the location of the vendor i is xi, the utility of the vendor i is ui = xi+1−xi−1

2
.

When N = 2, there is a pure Nash equilibrium with the two vendors as close
as possible to the middle point 1

2
. When N = 3, no pure Nash equilibrium

exists.

Second variation If the vendors are spread on a circle instead of a seg-
ment, there always exists a Nash equilibrium, with the vendors spread at
even distances from each other.

Links for other variations of the game and related competitions:

• http://martin.zinkevich.org/lemonade/

• http://tech.groups.yahoo.com/group/lemonadegame/


