
1
Introduction

1.1 Models and Theories in Science

Cognitive scientists seek to understand how the mind works. That is, we want to
describe and predict people’s behavior, and we ultimately wish to explain it, in
the same way that physicists predict the motion of an apple that is dislodged from
its tree (and can accurately describe its downward path) and explain its trajectory
(by appealing to gravity). For example, if you forget someone’s name when you
are distracted seconds after being introduced to her, we would like to know what
cognitive process is responsible for this failure. Was it lack of attention? Forget-
ting over time? Can we know ahead of time whether or not you will remember
that person’s name?

The central thesis of this book is that to answer questions such as these, cogni-
tive scientists must rely on quantitative mathematical models, just like physicists
who research gravity. We suggest that to expand our knowledge of the human
mind, consideration of the data and verbal theorizing are insufficient on their own.

This thesis is best illustrated by considering something that is (just a little)
simpler and more readily understood than the mind. Have a look at the data shown
in Figure 1.1, which represent the position of planets in the night sky over time.

How might one describe this peculiar pattern of motion? How would you
explain it? The strange loops in the otherwise consistently curvilinear paths des-
cribe the famous “retrograde motion” of the planets—that is, their propensity to
suddenly reverse direction (viewed against the fixed background of stars) for some
time before resuming their initial path. What explains retrograde motion? It took
more than a thousand years for a satisfactory answer to that question to become
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Figure 1.1 An example of data that defy easy description and explanation without a quan-
titative model.

available, when Copernicus replaced the geocentric Ptolemaic system with a heli-
ocentric model: Today, we know that retrograde motion arises from the fact that
the planets travel at different speeds along their orbits; hence, as Earth “overtakes”
Mars, for example, the red planet will appear to reverse direction as it falls behind
the speeding Earth.

This example permits several conclusions that will be relevant throughout
the remainder of this book. First, the pattern of data shown in Figure 1.1 defies
description and explanation unless one has a model of the underlying process.
It is only with the aid of a model that one can describe and explain planetary
motion, even at a verbal level (readers who doubt this conclusion may wish to
invite friends or colleagues to make sense of the data without knowing their
source).

Second, any model that explains the data is itself unobservable. That is,
although the Copernican model is readily communicated and represented (so
readily, in fact, that we decided to omit the standard figure showing a set of con-
centric circles), it cannot be directly observed. Instead, the model is an abstract
explanatory device that “exists” primarily in the minds of the people who use it to
describe, predict, and explain the data.

Third, there nearly always are several possible models that can explain a given
data set. This point is worth exploring in a bit more detail. The overwhelming
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Figure 1.2 The geocentric model of the solar system developed by Ptolemy. It was the
predominant model for some 1,300 years.

success of the heliocentric model often obscures the fact that, at the time of
Copernicus’s discovery, there existed a moderately successful alternative—
namely, the geocentric model of Ptolemy shown in Figure 1.2. The model
explained retrograde motion by postulating that while orbiting around the Earth,
the planets also circle around a point along their orbit. On the additional, arguably
somewhat inelegant, assumption that the Earth is slightly offset from the center of
the planets’ orbit, this model provides a reasonable account of the data, limiting
the positional discrepancies between predicted and actual locations of, say, Mars
to about 1◦ (Hoyle, 1974). Why, then, did the heliocentric model so rapidly and
thoroughly replace the Ptolemaic system?1

The answer to this question is quite fascinating and requires that we move
toward a quantitative level of modeling.

1.2 Why Quantitative Modeling?

Conventional wisdom holds that the Copernican model replaced geocentric
notions of the solar system because it provided a better account of the data.
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But what does “better” mean? Surely it means that the Copernican system pre-
dicted the motion of planets with less quantitative error—that is, less than the 1◦

error for Mars just mentioned—than its Ptolemaic counterpart? Intriguingly, this
conventional wisdom is only partially correct: Yes, the Copernican model pre-
dicted the planets’ motion in latitude better than the Ptolemaic theory, but this
difference was slight compared to the overall success of both models in predict-
ing motion in longitude (Hoyle, 1974). What gave Copernicus the edge, then,
was not “goodness of fit” alone2 but also the intrinsic elegance and simplicity
of his model—compare the Copernican account by a set of concentric circles
with the complexity of Figure 1.2, which only describes the motion of a single
planet.

There is an important lesson to be drawn from this fact: The choice among
competing models—and remember, there are always several to choose from—
inevitably involves an intellectual judgment in addition to quantitative examina-
tion. Of course, the quantitative performance of a model is at least as important as
are its intellectual attributes. Copernicus would not be commemorated today had
the predictions of his model been inferior to those of Ptolemy; it was only because
the two competing models were on an essentially equal quantitative footing that
other intellectual judgments, such as a preference for simplicity over complexity,
came into play.

If the Ptolemaic and Copernican models were quantitatively comparable, why
do we use them to illustrate our central thesis that a purely verbal level of
explanation for natural phenomena is insufficient and that all sciences must seek
explanations at a quantitative level? The answer is contained in the crucial mod-
ification to the heliocentric model offered by Johannes Kepler nearly a century
later. Kepler replaced the circular orbits in the Copernican model by ellipses
with differing eccentricities (or “egg-shapedness”) for the various planets. By this
straightforward mathematical modification, Kepler achieved a virtually perfect fit
of the heliocentric model with near-zero quantitative error. There no longer was
any appreciable quantitative discrepancy between the model’s predictions and
the observed paths of planets. Kepler’s model has remained in force essentially
unchanged for more than four centuries.

The acceptance of Kepler’s model permits two related conclusions, one that
is obvious and one that is equally important but perhaps less obvious. First, if
two models are equally simple and elegant (or nearly so), the one that provides
the better quantitative account will be preferred. Second, the predictions of the
Copernican and Keplerian models cannot be differentiated by verbal interpreta-
tion alone. Both models explain retrograde motion by the fact that Earth “over-
takes” some planets during its orbit, and the differentiating feature of the two
models—whether orbits are presumed to be circular or elliptical—does not entail
any differences in predictions that can be appreciated by purely verbal analysis.
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That is, although one can talk about circles and ellipses (e.g., “one is round, the
other one egg shaped”), those verbalizations cannot be turned into testable pre-
dictions: Remember, Kepler reduced the error for Mars from 1◦ to virtually zero,
and we challenge you to achieve this by verbal means alone.

Let us summarize the points we have made so far:

1. Data never speak for themselves but require a model to be understood and
to be explained.

2. Verbal theorizing alone ultimately cannot substitute for quantitative
analysis.

3. There are always several alternative models that vie for explanation of data,
and we must select among them.

4. Model selection rests on both quantitative evaluation and intellectual and
scholarly judgment.

All of these points will be explored in the remainder of this book. We next
turn our attention from the night sky to the inner workings of our mind, first by
showing that the preceding conclusions apply in full force to cognitive scientists
and then by considering an additional issue that is of particular concern to scholars
of the human mind.

1.3 Quantitative Modeling in Cognition

1.3.1 Models and Data

Let’s try this again: Have a look at the data in Figure 1.3. Does it remind you of
planetary motion? Probably not, but it should be at least equally challenging to
discern a meaningful pattern in this case at it was in the earlier example. Perhaps
the pattern will become recognizable if we tell you about the experiment con-
ducted by Nosofsky (1991) from which these data are taken. In that experiment,
people were trained to classify a small set of cartoon faces into two arbitrary cat-
egories (we might call them the Campbells and the MacDonalds, and members of
the two categories might differ on a set of facial features such as length of nose
and eye separation).

On a subsequent transfer test, people were presented with a larger set of
faces, including those used at training plus a set of new ones. For each face,
people had to make two decisions: which category the face belonged to and the
confidence of that decision (called “classification” in the figure, shown on the
x-axis), and whether or not it had been shown during training (“recognition,” on
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Figure 1.3 Observed recognition scores as a function of observed classification confidence
for the same stimuli (each number identifies a unique stimulus). See text for details. Figure
reprinted from Nosofsky, R. M. (1991). Tests of an exemplar mode for relating perceptual
classification and recognition memory. Journal of Experimental Psychology: Human Per-
ception and Performance, 17, 3–27. Published by the American Psychological Association;
reprinted with permission.

the y-axis). Each data point in the figure, then, represents those two responses,
averaged across participants, for a given face (identified by ID number, which can
be safely ignored). The correlation between those two measures was found to be
r = .36.

Before we move on, see if you can draw some conclusions from the pattern
in Figure 1.3. Do you think that the two tasks have much to do with each other?
Or would you think that classification and recognition are largely unrelated and
that knowledge of one response would tell you very little about what response to
expect on the other task? After all, if r = .36, then knowledge of one response
reduces uncertainty about the other one by only 13%, leaving a full 87% unex-
plained, right?

Wrong. There is at least one quantitative cognitive model (called the GCM
and described a little later), which can relate those two types of responses with
considerable certainty. This is shown in Figure 1.4, which separates classification
and recognition judgments into two separate panels, each showing the
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Figure 1.4 Observed and predicted classification (left panel) and recognition (right panel).
Predictions are provided by the GCM; see text for details. Perfect prediction is represented
by the diagonal lines. Figure reprinted from Nosofsky, R. M. (1991). Tests of an exemplar
mode for relating perceptual classification and recognition memory. Journal of Experimen-
tal Psychology: Human Perception and Performance, 17, 3–27. Published by the American
Psychological Association; reprinted with permission.

relationship between observed responses (on the y-axis) and the predictions of
the GCM (x-axis). To clarify, each point in Figure 1.3 is shown twice in Fig-
ure 1.4—once in each panel and in each instance plotted as a function of the
predicted response obtained from the model.

The precision of predictions in each panel is remarkable: If the model’s pre-
dictions were absolutely 100% perfect, then all points would fall on the diagonal.
They do not, but they come close (accounting for 96% and 91% of the variance in
classification and recognition, respectively). The fact that these accurate predic-
tions were provided by the same model tells us that classification and recognition
can be understood and related to each other within a common psychological the-
ory. Thus, notwithstanding the low correlation between the two measures, there
is an underlying model that explains how both tasks are related and permits accu-
rate prediction of one response from knowledge of the other. This model will
be presented in detail later in this chapter (Section 1.4.4); for now, it suffices to
acknowledge that the model relies on the comparison between each test stimulus
and all previously encountered exemplars in memory.

The two figures enforce a compelling conclusion: “The initial scatterplot . . .

revealed little relation between classification and recognition performance. At that
limited level of analysis, one might have concluded that there was little in com-
mon between the fundamental processes of classification and recognition. Under
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the guidance of the formal model, however, a unified account of these processes is
achieved” (Nosofsky, 1991, p. 9). Exactly paralleling the developments in 16th-
century astronomy, data in contemporary psychology are ultimately only fully
interpretable with the aid of a quantitative model. We can thus reiterate our first
two conclusions from above and confirm that they apply to cognitive psychology
in full force—namely, that data never speak for themselves but require a model to
be understood and to be explained and that verbal theorizing alone cannot sub-
stitute for quantitative analysis. But what about the remaining earlier conclusions
concerning model selection?

Nosofsky’s (1991) modeling included a comparison between his favored exem-
plar model, whose predictions are shown in Figure 1.4, and an alternative “proto-
type” model. The details of the two models are not relevant here; it suffices to note
that the prototype model compares a test stimulus to the average of all previously
encountered exemplars, whereas the exemplar model performs the comparison
one by one between the test stimulus and each exemplar and sums the result.3

Nosofsky found that the prototype model provided a less satisfactory account of
the data, explaining only 92% and 87% of the classification and recognition vari-
ance, respectively, or about 5% less than the exemplar model. Hence, the earlier
conclusions about model selection apply in this instance as well: There were sev-
eral alternative models, and the choice between them was based on clear quanti-
tative criteria.

1.3.2 From Ideas to Models

So far, we initiated our discussions with the data and we then . . . poof! . . . revealed
a quantitative model that spectacularly turned an empirical mystery or mess into
theoretical currency. Let us now invert this process and begin with an idea, that
is, some psychological process that you think might be worthy of exploration and
perhaps even empirical test. Needless to say, we expect you to convert this idea
into a quantitative model. This raises at least two obvious questions: First, how
would one do this? Second, does this process have implications concerning the
role of modeling other than those we have already discussed? These questions are
sufficiently complex to warrant their own chapter (Chapter 2), although we briefly
survey the latter here.

Consider the simple and elegant notion of rehearsal, which is at the heart of
much theorizing in cognition (e.g., A. D. Baddeley, 2003). We have all engaged in
rehearsal, for example, when we try to retain a phone number long enough to enter
it into our SIM cards. Several theorists believe that such subvocal—or sometimes
overt—rehearsal can prevent the “decay” of verbal short-term memory traces,
and introspection suggests that repeated recitation of a phone number is a good
means to avoid forgetting. Perhaps because of the overwhelming intuitive appeal
of the notion and its introspective reality, there have been few if any attempts
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to embody rehearsal in a computational model. It is therefore of some interest
that one recent attempt to explicitly model rehearsal (Oberauer & Lewandowsky,
2008) found it to be detrimental to memory performance under many circum-
stances rather than beneficial. Specifically, because rehearsal necessarily involves
retrieval from memory—how else would an item be articulated if not by retrieving
it from memory?—it is subject to the same vagaries that beset memory retrieval
during regular recall. In consequence, repeated rehearsal is likely to first intro-
duce and then compound retrieval errors, such as ordinal transpositions of list
items, thus likely offsetting any benefit that might be derived from restoring the
strength of rehearsed information. Oberauer and Lewandowsky (2008) found that
the exact consequences of rehearsal depended on circumstances—in a small num-
ber of specific conditions, rehearsal was beneficial—but this only amplifies the
point we are making here: Even intuitively attractive notions may fail to pro-
vide the desired explanation for behavior once subjected to the rigorous analysis
required by a computational model.4 As noted by Fum, Del Missier, and Stocco
(2007), “Verbally expressed statements are sometimes flawed by internal incon-
sistencies, logical contradictions, theoretical weaknesses and gaps. A running
computational model, on the other hand, can be considered as a sufficiency proof
of the internal coherence and completeness of the ideas it is based upon” (p. 136).
In Chapter 2, we further explore this notion and the mechanics of model devel-
opment by developing a computational instantiation of Baddeley’s (e.g., 2003)
rehearsal model.

Examples that underscore the theoretical rigor afforded by quantitative mod-
els abound: Lewandowsky (1993) reviewed one example in detail that involved
construction of a model of word recognition. Shiffrin and Nobel (1997) described
the long and informative behind-the-scenes history of the development of a model
of episodic recognition.

Finally, theoreticians who ignore the rigor of quantitative modeling do so at
their own peril. Hunt (2007) relates the tale of the 17th-century Swedish king and
his desire to add another deck of guns to the Vasa, the stupendous new flagship
of his fleet. What the king wanted, the king got, and the results are history: The
Vasa set sail on her maiden voyage and remained proudly upright for, well, nearly
half an hour before capsizing and sinking in Stockholm harbor. Lest one think
that such follies are the preserve of heads of state, consider the claim in a text-
book on learning: “While adultery rates for men and women may be equalizing,
men still have more partners than women do, and they are more likely to have
one-night stands; the roving male seeks sex, the female is looking for a bet-
ter partner” (Leahey & Harris, 1989, pp. 317–318). Hintzman (1991) issued a
challenge to set up a model consistent with this claim—that is, “there must be
equal numbers of men and women, but men must have more heterosexual
partners than women do” (p. 41). Needless to say, the challenge has not been
met because the claim is mathematically impossible; the obvious lesson here is



10 Computational Modeling in Cognition

that verbal theories may not only be difficult to implement, as shown by Oberauer
and Lewandowsky (2008), but may even turn out to be scientifically untenable.

1.3.3 Summary

We conclude this section by summarizing our main conclusions:

1. Data never speak for themselves but require a model to be understood and
to be explained.

2. Verbal theorizing alone cannot substitute for quantitative analysis.

3. There are always several alternative models that vie for explanation of data,
and we must compare those alternatives.

4. Model comparison rests on both quantitative evaluation and intellectual and
scholarly judgment.

5. Even seemingly intuitive verbal theories can turn out to be incoherent or
ill-specified.

6. Only instantiation in a quantitative model ensures that all assumptions of a
theory have been identified and tested.

If you are interested in expanding on these conclusions and finding out more
about fascinating aspects of modeling, we recommend that you consider the stud-
ies by Estes (1975), Lewandowsky (1993), Lewandowsky and Heit (2006), Norris
(2005), and Ratcliff (1998).

1.4 The Ideas Underlying Modeling
and Its Distinct Applications

We have shown that quantitative modeling is an indispensable component of suc-
cessful research in cognition. To make this point without getting bogged down in
too many details, we have so far sidestepped a number of fundamental issues. For
example, we have yet to define what a model actually is and what common ground
all psychological models may share—and, conversely, how they might differ. We
now take up those foundational issues.5

1.4.1 Elements of Models

What exactly is a model, anyway? At its most basic, a model is an abstract struc-
ture that captures structure in the data (cf. Luce, 1995). For example, a good model



Chapter 1 Introduction 11

for the set of numbers {2, 3, 4} is their mean—namely, 3. A good model for the
relationship between a society’s happiness and its economic wealth is a nega-
tively accelerated function, such that happiness rises steeply as one moves from
poverty to a modest level of economic security, but further increases in happi-
ness with increasing material wealth get smaller and smaller as one moves to
the richest societies (Inglehart, Foa, Peterson, & Welzel, 2008). Those models are
descriptive in nature, and they are sufficiently important to merit their own section
(Section 1.4.2).

Needless to say, scientists want to do more than describe the data. At the
very least, we want to predict new observations; for example, we might want to
predict how much happiness is likely to increase if we manage to expand the
gross national product by another zillion dollars (if you live in a rich country, the
answer is “not much”). In principle, any type of model permits prediction, and
although prediction is an important part of the scientific endeavor (and probably
the only ability of consideration for stockbrokers and investment bankers), it is
not the whole story. For example, imagine that your next-door neighbor, a car
mechanic by trade, were able to predict with uncanny accuracy the outcome of
every conceivable experiment on some aspect of human cognition (a scenario
discussed by K. I. Forster, 1994). Would you be satisfied with this state of affairs?
Would your neighbor be a good model of human cognition? Clearly the answer
is no; in addition to robotic predictions, you also want an explanation for the
phenomena under consideration (Norris, 2005). Why does this particular outcome
obtain in that experiment rather than some other result?

It follows that most cognitive modeling goes beyond mere description and
seeks to permit prediction and explanation of behavior. The latter, explanatory
role is the exclusive domain of models that we refer to as providing a process
characterization and process explanation, respectively.

When models are used as an explanatory device, one other attribute becomes
particularly relevant: Models are intended to be simpler and more abstract ver-
sions of the system—in our case, human cognition—they are trying to explain
(Fum et al., 2007). Models seek to retain the essential features of the system while
discarding unnecessary details. By definition, the complexity of models will thus
never match the complexity of human cognition–and nor should it, because there
is no point in replacing one thing we do not understand with another (Norris,
2005).

1.4.2 Data Description

Knowingly or not, we have all used models to describe or summarize data, and at
first glance, this appears quite straightforward. For example, we probably would
not hesitate to describe the salaries of all 150 members of the Australian House
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of Representatives by their average because in this case, there is little doubt that
the mean is the proper “model” of the data (notwithstanding the extra allowances
bestowed upon ministers). Why would we want to “model” the data in this way?
Because we are replacing the data points (N = 150 in this instance) with a single
estimated “parameter.”6 In this instance, the parameter is the sample mean, and
reducing 150 points into one facilitates understanding and efficient communica-
tion of the data.

However, we must not become complacent in light of the apparent ease with
which we can model data by their average. As a case in point, consider U.S. Pres-
ident Bush’s 2003 statement in promotion of his tax cut, that “under this plan,
92 million Americans receive an average tax cut of $1,083.” Although this num-
ber, strictly speaking, was not incorrect, it arguably did not represent the best
model of the proposed tax cut, given that 80% of taxpayers would receive less
than this cut, and nearly half (i.e., some 45 million people) would receive less
than $100 (Verzani, 2004). The distribution of tax cuts was so skewed (bottom
20% of income earners slated to receive $6 compared to $30,127 for the top 1%)
that the median or a trimmed mean would have been the preferable model of the
proposed legislation in this instance.

Controversies about the proper model with which to describe data also arise
in cognitive science, although fortunately with more transparency and less disin-
genuousness than in the political scene. In fact, data description, by itself, can
have considerable psychological impact. As a case in point, consider the debate on
whether learning of a new skill is best understood as following a “power law” or is
better described by an exponential improvement (Heathcote, Brown, & Mewhort,
2000). There is no doubt that the benefits from practice accrue in a nonlinear
fashion: The first time you try your hands at a new skill (for example, creating
an Ikebana arrangement), things take seemingly forever (and the output may not
be worth writing home about). The second and third time round, you will notice
vast improvements, but eventually, after some dozens of trials, chances are that
all further improvements are small indeed.

What is the exact functional form of this pervasive empirical regularity? For
several decades, the prevailing opinion had been that the effect of practice is best
captured by a power law—that is, by the function (shown here in its simplest
possible form),

RT = N−β, (1.1)

where RT represents the time to perform the task, N represents the number of
learning trials to date, and β is the learning rate. Figure 1.5 shows sample data,
taken from Palmeri’s (1997) Experiment 3, with the appropriate best-fitting power
function superimposed as a dashed line.
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Figure 1.5 Sample power law learning function (dashed line) and alternative exponential
function (solid line) fitted to the same data. Data are represented by dots and are taken
from Palmeri’s (1997) Experiment 3 (Subject 3, Pattern 13). To fit the data, the power and
exponential functions were a bit more complex than described in Equations 1.1 and 1.2
because they also contained an asymptote (A) and a multiplier (B). Hence, the power
function took the form RT = AP + BP × (N + 1)−β , and the exponential function was
RT = AE + BE × e−αN .

Heathcote et al. (2000) argued that the data are better described by an expo-
nential function given by (again in its simplest possible form)

RT = e−αN , (1.2)

where N is as before and α the learning rate. The best-fitting exponential function
is shown by the solid line in Figure 1.5; you will note that the two competing
descriptions or models do not appear to differ much. The power function captures
the data well, but so does the exponential function, and there is not much to tell
between them: The residual mean squared deviation (RMSD), which represents
the average deviation of the data points from the predicted function, was 482.4 for
the power function compared to 526.9 for the exponential. Thus, in this instance,
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the power function fits “better” (by providing some 50 ms less error in its pre-
dictions than the exponential), but given that RT ’s range is from somewhere less
than 1000 ms to 7 seconds, this difference is not particularly striking.

So, why would this issue be of any import? Granted, we wish to describe the
data by the appropriate model, but surely neither of the models in Figure 1.5 mis-
represents essential features of the data anywhere near as much as U.S. President
Bush did by reporting only the average implication of his proposed tax cut. The
answer is that the choice of the correct descriptive model, in this instance, car-
ries important implications about the psychological nature of learning. As shown
in detail by Heathcote et al. (2000), the mathematical form of the exponential
function necessarily implies that the learning rate, relative to what remains to be
learned, is constant throughout practice. That is, no matter how much practice
you have had, learning continues by enhancing your performance by a constant
fraction. By contrast, the mathematics of the power function imply that the rel-
ative learning rate is slowing down as practice increases. That is, although you
continue to show improvements throughout, the rate of learning decreases with
increasing practice. It follows that the proper characterization of skill acquisition
data by a descriptive model, in and of itself, has considerable psychological impli-
cations (we do not explore those implications here; see Heathcote et al., 2000, for
pointers to the background).

Just to wrap up this example, Heathcote et al. (2000) concluded after rean-
alyzing a large body of existing data that the exponential function provided a
better description of skill acquisition than the hitherto presumed power law. For
our purposes, their analysis permits the following conclusions: First, quantitative
description of data, by itself, can have considerable psychological implications
because it prescribes crucial features of the learning process. Second, the exam-
ple underscores the importance of model selection that we alluded to earlier; in
this instance, one model was chosen over another on the basis of strict quanti-
tative criteria. We revisit this issue in Chapter 5. Third, the fact that Heathcote
et al.’s model selection considered the data of individual subjects, rather than the
average across participants, identifies a new issue—namely, the most appropriate
way in which to apply a model to the data from more than one individual—that
we consider in Chapter 3.

The selection among competing functions is not limited to the effects of prac-
tice. Debates about the correct descriptive function have also figured prominently
in the study of forgetting. Does the rate of forgetting differ with the extent of learn-
ing? Is the rate of information loss constant over time? Although the complete
pattern of results is fairly complex, two conclusions appear warranted (Wixted,
2004a): First, the degree of learning does not affect the rate of forgetting. Hence,
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irrespective of how much you cram for an exam, you will lose the information at
the same rate—but of course this is not an argument against dedicated study; if
you learn more, you will also retain more, irrespective of the fact that the rate of
loss per unit of time remains the same. Second, the rate of forgetting decelerates
over time. That is, whereas you might lose some 30% of the information on the
first day, on the second day, the loss may be down to 20%, then 10%, and so on.
Again, as in the case of practice, two conclusions are relevant here: First, quantita-
tive comparison among competing descriptive models was required to choose the
appropriate function (it is a power function, or something very close to it). Second,
although the shape of the “correct” function has considerable theoretical import
because it may imply that memories are “consolidated” over time after study (see
Wixted, 2004a, 2004b, for a detailed consideration, and see G. D. A. Brown &
Lewandowsky, 2010, for a contrary view), the function itself has no psychologi-
cal content.

The mere description of data can also have psychological implications when
the behavior it describes is contrasted to normative expectations (Luce, 1995).
Normative behavior refers to how people would behave if they conformed to
the rules of logic or probability. For example, consider the following syllogism
involving two premises (P) and a conclusion (C). P1: All polar bears are ani-
mals. P2: Some animals are white. C: Therefore, some polar bears are white. Is
this argument valid? There is a 75% to 80% chance that you might endorse this
conclusion (e.g., Helsabeck, 1975), even though it is logically false (to see why,
replace white with brown in P2 and C). This example shows that people tend to
violate normative expectations even in very simple situations. In this instance,
the only descriptive model that is required to capture people’s behavior—and to
notice the normative violation—is a simple proportion (i.e., .75–.80 of people
commit this logical error). In other, more realistic instances, people’s normatively
irrational behavior is best captured by a rather more complex descriptive model
(e.g., Tversky & Kahneman, 1992).

We have presented several descriptive models and have shown how they can
inform psychological theorizing. Before we move on, it is important to identify
the common threads among those diverse examples. One attribute of descriptive
models is that they are explicitly devoid of psychological content; for example,
although the existence of an exponential practice function constrains possible
learning mechanisms, the function itself has no psychological content. It is merely
concerned with describing the data.

For the remainder of this chapter, we will be considering models that have
increasingly more psychological content. In the next section, we consider models
that characterize cognitive processes at a highly abstract level, thus going beyond
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data description, but that do not go so far as to explain those processes in detail.
The final section considers models that go beyond characterization and explain
the cognitive processes.

1.4.3 Process Characterization

What does it mean to characterize a cognitive process? There are two relevant
attributes: First, models that characterize processes peek inside the “black box”
that is the mind and postulate—and then measure—distinct cognitive compo-
nents. Unlike descriptive models, their explanatory power thus rests on hypotheti-
cal constructs within the mind rather than within the data to be explained. Second,
these models do not go beyond identification of those constructs or processes;
that is, they remain neutral with respect to specific instantiations and explanations
underpinning the cognitive processes they characterize. (Providing those expla-
nations is the domain of the last class of models, to be considered in the next
section.)

We illustrate this class of models using the multinomial processing tree (MPT)
approach (Batchelder & Riefer, 1999; see also Riefer & Batchelder, 1988). The
MPT approach makes the uncontroversial assumption that psychological data
often result from multiple cognitive processes and provides a technique to dis-
entangle and measure the relative contributions of these underlying processes. To
do so, an MPT model postulates a sequence of processing stages and connects
them by a variety of paths that can give rise to the observed behavioral outcome.
While this may sound complicated, it is actually quite simple once shown graphi-
cally: Figure 1.6 contains a multinomial processing tree proposed by Schweickert
(1993) to characterize recall from short-term memory.

The model postulates two ways in which recall can be successful: First, if
the information in memory is intact (with probability I ), then the item is recalled
directly. Second, if the memorial representation is not intact (probability 1− I ),
then an item might nonetheless be “redintegrated” (with probability R). The red-
integration stage refers to some reconstruction process that fills in the missing
bits of a partially forgotten item on the basis of, say, information in long-term
memory; for example, knowledge of the word hippopotamus will enable you to
recall a memorized item even if all you can remember is something like
“h_p_ _ _ _tam_ _.” Only if redintegration also fails (with probability 1− R), then
recall will be unsuccessful.

Let us trace these possible outcomes in Figure 1.6: We enter the tree at the
top, and depending on whether the trace is intact, we branch right (with prob-
ability I ) or left (1 − I ). In the former case, the item is recalled, and outcome
“C” (for “correct” recall) is obtained. In the latter case, the second stage kicks in,
and we ask whether the item—not being intact—can nonetheless be successfully
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Figure 1.6 A simple multinomial processing tree model proposed by Schweickert (1993)
for recall from short-term memory.

redintegrated (with probability R; branch right) or not (1 − R; keep going left).
In the former case, we score another correct response; in the latter, we commit an
error (E). The overall predictions of the model—for correct responses and errors,
respectively—are thus given by C = I + (1− I )× R and E = (1− I )× (1− R).

You are likely to ask at least two questions at this point: First, why are those
components multiplied together, and second, how do we know what the values
are of I and R?

The former question is answered by noting that each branch in the tree builds
on the previous one; that is, redintegration (R) only takes place if the item was
not intact (1 − I ) in the first place. Because the two stages are assumed to be
independent, their probabilities of occurrence are multiplied together (for further
discussion, see first part of Chapter 4). It follows that one possible way in which
a response may be correct, via the path left-right, is given by (1 − I ) × R. This
outcome is then added to the other way in which one can be correct, along the
simple path right, which is given by I . Analogously, an error can only occur via
the path left-left, which is thus given by (1− I )× (1− R).

The latter question, concerning the values of I and R, has both a simple
and also a very involved answer. The simple answer is that those quantities are
parameters that are estimated from the data, similar to the way in which we com-
pute a sample mean to estimate the central tendency of the data. In contrast to
the purely descriptive mean, however, the quantities I and R have psychological
meaning and characterize two presumed cognitive processes—namely, memory
storage (intact or not) and redintegration (successful or not). The more involved
answer concerns the technical issues surrounding parameter estimation, and we
will explore that answer in several of the following chapters in great detail.7
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This is a good opportunity for recapitulation. We have presented a simple
MPT model that characterizes the presumed processes operating in recall from
short-term memory. Like the descriptive models in the preceding section, this
model replaces the data by parameters. Unlike descriptive models, however, the
parameters in the present case (I and R) have a psychological interpretation and
characterize postulated cognitive processes.

To illustrate the way in which these types of models can provide a peek inside
our minds, consider an application of Schweickert’s (1993) model to the recall of
lists containing words of different natural-language frequencies by Hulme et al.
(1997). Hulme et al. compared lists composed of high-frequency words (e.g., cat,
dog) and low-frequency words (buttress, kumquat) and examined performance as
a function of each item’s serial position in the list (i.e., whether it was presented
first, second, and so on). What might the MPT model shown in Figure 1.6 predict
for this experiment?

Hulme et al. (1997) reasoned that the redintegration process would operate
more successfully on high-frequency words than low-frequency words because
the former’s representations in long-term memory are more easily accessed by
partial information—and hence are more likely to contribute to reconstruction.
Accordingly, R should be greater for high- than for low-frequency items. Does
it follow that high-frequency items should always be recalled better than their
low-frequency counterparts? No, because redintegration is only required if infor-
mation in memory is no longer intact. It follows that early list items, which are
less subject to degradation during recall, will be largely intact; because they thus
bypass the redintegration stage, their frequency should matter little. Later list
items, by contrast, are degraded more by the time they are recalled, and hence red-
integration becomes more important for them—and with it, the effect of word fre-
quency should emerge. This is precisely what Hulme et al. found: High-frequency
words were recalled better than low-frequency words, but that effect was primar-
ily confined to later list positions. The data, when interpreted within the MPT
model in Figure 1.6, therefore support the notion that word frequency affects the
success of reconstruction of partially degraded memory traces but not their reten-
tion in short-term memory. Given the utmost simplicity of the MPT model, this
is quite an interesting insight—and not one that can be confidently inferred from
inspection of the data. Instead, Hulme et al. buttressed their conclusions by quan-
titatively examining the correspondence between the model’s predictions and the
data.

That said, the limitations of the MPT model are also noteworthy—and they
set the stage for discussion of the next class of model. The MPT model may
have identified and characterized a cognitive process known as redintegration,
but it neither described nor explained that process. Is this even possible? Can we
know more about redintegration? The answer is a clear yes, and providing that
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additional knowledge is the domain of process explanation models that we con-
sider next. To wrap up this example, we briefly note that Lewandowsky (1999)
and Lewandowsky and Farrell (2000) provided a detailed process account of red-
integration that explains exactly how partial traces can be reconstructed. The
Lewandowsky and Farrell model consists of a network of interconnected units
that bounce information back and forth between them, adding bits and pieces from
long-term memory to the degraded memory trace at each step, until the original
item is perfectly reconstructed (instantiating R, in the MPT model’s terminology)
or another item is produced, in which case an error has occurred (1 − R).8 We
now consider this class of models that not only identify processes but also explain
them.

1.4.4 Process Explanation

What does it mean to explain, rather than merely characterize, a cognitive pro-
cess? First, explanatory models provide the most close-up view inside the “black
box” that is possible with current psychological techniques. Like characterization
models, their power rests on hypothetical cognitive constructs, but by providing
a detailed explanation of those constructs, they are no longer neutral. That is,
whereas the MPT model in the previous section identified the redintegration stage
but then remained neutral with respect to how exactly that reconstruction might
occur, an explanatory process model (e.g., Lewandowsky & Farrell, 2000) goes
further and removes any ambiguity about how that stage might operate.

At first glance, one might wonder why not every model belongs to this class:
After all, if one can specify a process, why not do that rather than just identify and
characterize it? The answer is twofold. First, it is not always possible to specify a
presumed process at the level of detail required for an explanatory model, and in
that case, a model such as the earlier MPT model might be a valuable alternative.
Second, there are cases in which a coarse characterization may be preferable to a
detailed specification. For example, it is vastly more important for a weatherman
to know whether it is raining or snowing, rather than being confronted with the
exact details of the water molecules’ Brownian motion. Likewise, in psychology,
modeling at this level has allowed theorists to identify common principles across
seemingly disparate areas (G. D. A. Brown, Neath, & Chater, 2007).

That said, we believe that in most instances, cognitive scientists would ulti-
mately prefer an explanatory process model over mere characterization, and the
remainder of this book is thus largely (though not exclusively) devoted to that
type of model.

There are countless explanatory models of cognitive phenomena ranging from
reasoning through short-term memory to categorization, and we will be touching
on many of those during the remaining chapters.
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We begin our discussion by presenting a close-up of the exemplar model of
categorization first presented in Section 1.3.1. We choose this model, known as
the generalized context model (GCM; see, e.g., Nosofsky, 1986), for three rea-
sons: First, it is undoubtedly one of the most influential and successful existing
models of categorization. Second, its basic architecture is quite straightforward
and readily implemented in something as simple as Microsoft Excel. Third, some
of the GCM architecture also contributes to other important models of cognition,
which we will consider in later chapters (e.g., SIMPLE in Chapter 4).

We already know that GCM is an exemplar model. As implied by that name,
GCM stores every category exemplar encountered during training in memory.
We mentioned an experiment earlier in which people learned to classify cartoon
faces; in GCM, this procedure would be implemented by adding each stimulus to
the pile of faces belonging to the same category. Remember that each response
during training is followed by feedback, so people know whether a face belongs
to a MacDonald or a Campbell at the end of each trial. Following training, GCM
has thus built two sets of exemplars, one for each category, and all subsequent test
stimuli are classified by referring to those memorized ensembles. This is where
things get really interesting (and, refreshingly, a bit more complicated, but nothing
you can’t handle).

First, we need some terminology. Let us call a particular test stimulus i , and
let us refer to the stored exemplars as the set J with members j = 1, 2, . . . , J ,
hence j ∈ J. This notation may seem like a bit of an overkill at first glance,
but in fact it is useful to clarify a few things at the outset that we will use for
the remainder of the book. Note that we use lowercase letters (e.g., i, j, . . . ) to
identify specific elements of a set and that the number of elements in that set
is identified by the same uppercase letters (I, J, . . . ), whereas the set itself is
identified by the “Fraktur” version of the letter (I, J, . . . ). So, we have a single
thing called i (or j or whatever), which is one of I elements of a set I.

We are now ready to consider the effects of presenting stimulus i . In a nutshell,
a test stimulus “activates” all stored exemplars (remember, that’s j ∈ J) to an
extent that is determined by the similarity between i and each j . What exactly is
similarity? GCM assumes that stimuli are represented in a perceptual space and
that proximity within that space translates into similarity. To illustrate, consider
the left panel (A) in Figure 1.7, which shows the perceptual representation of three
hypothetical stimuli that differ along a single dimension—in this case, line length.
The broken line labeled d represents the distance between two of those stimuli. It
is easy to see that the greater this distance is, the less similar the two stimuli are.
Conversely, the closer together two stimuli are, the greater their similarity.

Now consider Panel B. Here again we have three hypothetical stimuli, but
this time they differ along two dimensions simultaneously—namely, distance and
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Figure 1.7 The representational assumptions underlying the generalized context model
(GCM). Panel A shows stimuli that differ along one dimension only (line length), and
Panel B shows stimuli that differ along two dimensions (line length and angle). In both
panels, a representative distance (d) between two stimuli is shown by the broken line.

angle. Panel B again shows the distance (d) between two stimuli, which is for-
mally given by the following equation:

di j =
(

K∑
k=1

|xik − x jk |2
) 1

2

, (1.3)

where xik is the value of dimension k for test item i (let’s say that’s the mid-
dle stimulus in Panel B of Figure 1.7), and x jk is the value of dimension k for
the stored exemplar j (say, the right-most stimulus in the panel). The number of
dimensions that enter into computation of the distance is arbitrary; the cartoon
faces were characterized by four dimensions, but of course we cannot easily show
more than two dimensions at a time. Those dimensions were eye height, eye sep-
aration, nose length, and mouth height. 9

An easy way to understand Equation 1.3 is by realizing that it merely restates
the familiar Pythagorean theorem (i.e., d2 = a2 + b2), where a and b are the thin
solid lines in Panel B of Figure 1.7, which are represented by the more general
notation of dimensional differences (i.e., xik − x jk) in the equation.

How, then, does distance relate to similarity? It is intuitively obvious that
greater distances imply lesser similarity, but GCM explicitly postulates an
exponential relationship of the following form:

si j = exp(−c · di j ), (1.4)

where c is a parameter and di j the distance as just defined. Figure 1.8 (see page 22)
visualizes this function and shows how the activation of an exemplar (i.e., si j )
declines as a function of the distance (di j ) between that exemplar and the test
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Figure 1.8 The effects of distance on activation in the GCM. Activation (i.e., si j ) is shown
as a function of distance (di j ). The parameter c (see Equation 1.4) is set to .5.

stimulus. You may recognize that this function looks much like the famous gen-
eralization gradient that is observed in most situations involving discrimination
(in species ranging from pigeons to humans; Shepard, 1987): This similarity is
no coincidence; rather, it motivates the functional form of the similarity function
in Equation 1.4. This similarity function is central to GCM’s ability to generalize
learned responses (i.e., cartoon faces seen during study) to novel stimuli (never-
before-seen cartoon faces presented at test only).

It turns out that there is little left to do: Having presented a mechanism by
which a test stimulus activates an exemplar according to its proximity in psycho-
logical space, we now compute those activations for all memorized exemplars.
That is, we compute the distance di j between i and each j ∈ J as given by Equa-
tion 1.3 and derive from that the activation si j as given by Equation 1.4. The next
step is to convert the entire set of resulting activations into an explicit decision:
Which category does the stimulus belong to? To accomplish this, the activations
are summed separately across exemplars within each of the two categories. The
relative magnitude of those two sums directly translates into response probabili-
ties as follows:
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P(Ri = A|i) =

(∑
j∈A

si j

)
(∑

j∈A
si j

)
+
(∑

j∈B
si j

) , (1.5)

where A and B refer to the two possible categories, and P(Ri = A|i) means “the
probability of classifying stimulus i into category A.” It follows that application
of Equations 1.3 through 1.5 permits us to derive classification predictions from
the GCM. It is those predictions that were plotted on the abscissa (x-axis) in the
left panel of the earlier Figure 1.4, and it is those predictions that were found to
be in such close accord with the data.

If this is your first exposure to quantitative explanatory models, the GCM
may appear daunting at first glance. We therefore wrap up this section by taking a
second tour through the GCM that connects the model more directly to the cartoon
face experiment.

Figure 1.9 shows the stimuli used during training. Each of those faces cor-
responds to a memorized exemplar j that is represented by a set of dimensional
values {x j1, x j2, . . . }, where each x jk is the numeric value associated with dimen-
sion k. For example, if the nose of exemplar j has length 5, then x j1 = 5 on the
assumption that the first dimension (arbitrarily) represents the length of the nose.

Figure 1.9 Stimuli used in a classification experiment by Nosofsky (1991). Each
row shows training faces from one of the two categories. Figure reprinted from
Nosofsky, R. M. (1991). Tests of an exemplar mode for relating perceptual classification
and recognition memory. Journal of Experimental Psychology: Human Perception and
Performance, 17, 3–27. Published by the American Psychological Association; reprinted
with permission.
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To obtain predictions from the model, we then present test stimuli (those
shown in Figure 1.9 but also new ones to test the model’s ability to generalize).
Those test stimuli are coded in the same way as training stimuli—namely, by a
set of dimensional values. For each test stimulus i , we first compute the distance
between it and exemplar j (Equation 1.3). We next convert that distance to an
activation of the memorized exemplar j (Equation 1.4) before summing across
exemplars within each category (Equation 1.5) to obtain a predicted response
probability. Do this for each stimulus in turn, and bingo, you have the model’s
complete set of predictions shown in Figure 1.4. How exactly are these computa-
tions performed? A whole range of options exists: If the number of exemplars and
dimensions is small, a simple calculator, paper, and a pencil will do. More than
likely, though, you will be using a computer package (such as a suitable worksheet
in Excel) or a computer program (e.g., written in a language such as MATLAB
or R). Regardless of how we perform these computations, we are assuming that
they represent an analog of the processes used by people. That is, we presume that
people remember exemplars and base their judgments on those memories alone,
without access to rules or other abstractions.

At this point, one can usefully ponder two questions. First, why would we
focus on an experiment that involves rather artificial cartoon faces? Do these
stimuli and the associated data and modeling have any bearing on classification
of “real-life” stimuli? Yes, in several ways. Not only can the GCM handle per-
formance with large and ill-defined perceptual categories (McKinley & Nosof-
sky, 1995), but recent extensions of the model have been successfully applied
to the study of natural concepts, such as fruits and vegetables (Verbeemen, Van-
paemel, Pattyn, Storms, & Verguts, 2007). The GCM thus handles a wide vari-
ety of both artificial and naturalistic categorizations. Second, one might wonder
about the motivation underlying the equations that define the GCM. Why is dis-
tance related to similarity via an exponential function (Equation 1.4)? Why are
responses determined in the manner shown in Equation 1.5? It turns out that for
any good model—and the GCM is a good model—the choice of mathematics is
not at all arbitrary but derived from some deeper theoretical principle. For exam-
ple, the distance-similarity relationship in the GCM incorporates our knowledge
about the “universal law of generalization” (Shepard, 1987), and the choice of
response implements a theoretical approach first developed by Luce (1963).

What do you now know and what is left to do? You have managed to study
your (possibly) first explanatory process model, and you should understand how
the model can predict results for specific stimuli in a very specific experiment.
However, a few obstacles remain to be overcome, most of which relate to the
“how” of applying the model to data. Needless to say, those topics will be covered
in subsequent chapters.



Chapter 1 Introduction 25

1.4.5 Classes of Models

We sketched out three broad classes of models. We considered descriptive models
whose sole purpose it is to replace the intricacies of a full data set with a sim-
pler representation in terms of the model’s parameters. Although those models
themselves have no psychological content, they may well have compelling psy-
chological implications.

We then considered two classes of models that both seek to illuminate the
workings of the mind, rather than data, but do so to a greatly varying extent. Mod-
els that characterize processes identify and measure cognitive stages, but they are
neutral with respect to the exact mechanics of those stages. Explanatory mod-
els, by contrast, describe all cognitive processes in great detail and leave nothing
within their scope unspecified.10

Other distinctions between models are possible and have been proposed (e.g.,
Luce, 1995; Marr, 1982; Sun, Coward, & Zenzen, 2005), and we make no claim
that our classification is better than other accounts. Unlike other accounts,
however, our three classes of models map into three distinct tasks that confront
cognitive scientists: Do we want to describe data? Do we want to identify and
characterize broad stages of processing? Do we want to explain how exactly a set
of postulated cognitive processes interact to produce the behavior of interest?

1.5 What Can We Expect From Models?

We have explored some of the powerful insights that are afforded by quantita-
tive modeling. However, all examples so far were demonstrations that one model
or another could provide a good quantitative account of otherwise inexplicable
data—impressive, perhaps, but is that all we can expect from models? Is a “good
fit” between a model’s predictions and the data the one and only goal of model-
ing? The answer is no; there are several other ways in which models can inform
scientific progress.

1.5.1 Classification of Phenomena

It is intuitively obvious that, at least at the current level of understanding in our
science, all models will necessarily be limited in their explanatory power. Every
model will be confronted sooner or later with data that it cannot accommodate.
So, if every model is doomed to fail, why spend considerable time and effort on
its development in the first place? One answer to this conundrum was provided
by Estes (1975), who suggested that even the mere classification of phenomena
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into those that fall within and those that fall outside a model’s scope can be very
informative: “What we hope for primarily from models is that they will bring out
relationships between experiments or sets of data that we would not otherwise
have perceived. The fruit of an interaction between model and data should be a
new categorization of phenomena in which observations are organized in terms
of a rational scheme in contrast to the surface demarcations manifest in data”
(p. 271).

Even if we find that it takes two different models to handle two distinct sub-
classes of phenomena, this need not be at all bad but may in fact crystallize an
interesting question. In physics, for example, for a very long time, light was alter-
nately considered as a wave or a stream of particles. The two models were able to
capture a different subset of phenomena, with no cross-linkage between those sets
of phenomena and the two theories. Although this state was perhaps not entirely
satisfactory, it clearly did not retard progress in physics.

In psychology, we suggest that models have similarly permitted a classifica-
tion of phenomena in categorization. We noted earlier that the GCM is a powerful
model that has had a profound impact on our understanding of how people clas-
sify stimuli. However, there are also clear limits on the applicability of the GCM.
For example, Rouder and Ratcliff (2004) showed that the GCM captures people’s
behavior only when the stimuli are few and highly discriminable. When there is
a large ensemble of confusable stimuli, by contrast, people’s behavior is better
captured by a rule model rather than the GCM’s exemplar representation (more
on this in Chapter 7). Likewise, Little and Lewandowsky (2009) showed that in
a complex probabilistic categorization task, some people will build an exemplar
representation, whereas others will create an ensemble of partial rules; the for-
mer were described well by the GCM, but the latter were best described by a rule
model. Taken together, those studies serve to delineate the applicability of two
competing theoretical approaches—namely, rules versus exemplars—somewhat
akin to the differentiation between wave and particle theories of light.

1.5.2 Emergence of Understanding

The models we consider in this book are, almost by definition, always
implemented as a computer program. Computers, however, only do as they are
programmed to do—does it not follow that our models, unlike behavioral exper-
iments, will never generate anything truly novel or unexpected? Indeed, some
time ago, this opinion appeared to reflect accepted practice (e.g., Reitman, 1965).
Since then, it has become apparent that this opinion is flawed. There have been
innumerable instances in which models have generated novel insights in nontriv-
ial ways, many of which involved artificial neural networks. (Networks contain
many interconnected units that process and transmit information.) For example,
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Seidenberg and McClelland (1989) presented a network that could learn to pro-
nounce both regular (lint) and irregular (pint) words from printed input: It was not
at all clear prior to the modeling being conducted that a uniform architecture could
handle both types of words. Indeed, a “central dogma” (Seidenberg & McClel-
land, 1989, p. 525) of earlier models had been that two processes were required
to accommodate irregular words (via lexical lookup) and regular (non)words (via
pronunciation rules).

As another example, Botvinick and Plaut (2006) recently presented a network
model of short-term memory that was able to learn the highly abstract ability of
“seriation”—namely, the ability to reproduce novel random sequences of stimuli.
Thus, after learning the skill, the model was capable of reproducing short serial
lists. Thus, when presented with “A K P Q B,” the model would reproduce that
sequence after a single presentation with roughly the same accuracy and subject
to the same performance constraints as humans. This might appear like a trivial
feat at first glance, but it is not: It is insufficient to learn pairwise contingencies
such as “A precedes B” because in a random list, A might precede B as frequently
as B precedes A. Likewise, it is insufficient to learn that “A occurs in position
1” because in fact A could occur in any position, and so on for any other specific
arrangements of letters (triplets, quadruplets, etc.). Instead, the model had to learn
the highly abstract ability “whatever I see I will try to reproduce in the same order”
from a small subset of all possible sequences. This abstract ability, once learned,
could then be transferred to novel sequences.

In summary, the point that models can yield unexpected and novel insights
was perhaps best summed up by Fum et al. (2007): “New ways of understanding
may assume several forms. They can derive, for instance, from the discovery of
a single unifying principle that will explain a set of hitherto seemingly unrelated
facts. They can lead to the emergence of complex, holistic forms of behavior from
the specification of simple local rules of interaction. New ways of understanding
can arise from unexpected results that defy the modelers intuition” (p. 136).

1.5.3 Exploration of Implications

Unlike people, models can quite literally be taken apart. For example, we can
“lesion” models to observe the outcome on behavior of certain localized dys-
functions. As a case in point, consider the model by Hinton and Shallice (1991),
which was trained to map a set of orthographic representations into semantic fea-
tures, so that presentation of a spelling pattern would activate the correct “word”
at the semantic output level of their network. After training, Hinton and Shallice
lesioned their model in various ways—for example, by removing units, by con-
taminating the connections between units with random noise, or by eliminating
some connections altogether.
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Hinton and Shallice found that virtually any such lesioning of their network,
irrespective of location, led to a persistent co-occurrence of visual (cat read as
mat) and semantic (peach read as apricot) errors. This generality elegantly expl-
ained why this mix of visual and semantic errors is common across a wide range
of patients whose performance deficits differ considerably in other respects.

We can draw two conclusions from this example: First, it clarifies the
in-principle point that one can do things to models that one cannot do to peo-
ple, and that those lesioning experiments can yield valuable knowledge. Second,
the fact that the results in this instance were surprising lends further support to
the point made in the previous section—namely, that models can show emergent
properties that are not at all apparent by verbal analysis alone.

1.6 Potential Problems

We conclude by discussing two issues that must be considered to ensure a com-
plete understanding of the basic principles of modeling.

1.6.1 Scope and Testability

Suppose you are a venture capitalist and a scientist approaches you for funding
to develop a new theory that will revolutionize gambling. A first version of the
theory exists, and it has been extremely successful because it probabilistically
characterized the outcomes of 20 successive rolls of a die. In quantitative terms,
the theory anticipated each individual outcome with P = 1/6. Would you be
impressed? We trust that you are not, because any theory that predicts any possible
outcome with equal facility is of little scientific interest, even if it happens to be
in complete accord with the data (e.g., Roberts & Pashler, 2000). This is quite
obvious with our fictitious “theory” of gambling, but it is less obvious—though
nonetheless equally applicable—with psychological theories.

Let us reconsider one of the earlier examples: Nosofsky (1991) showed that
an exemplar model (the GCM) can integrate people’s recognition and classifica-
tion responses under a common theoretical umbrella (see Figure 1.4). We consid-
ered this to be impressive, especially because the GCM performed better than a
competing prototype theory, but was our satisfaction justified? What if the exem-
plar model could have equally explained any other possible relationship between
recognition and classification and not just the one shown in Figure 1.3? Indeed, in
that case, one would need to be quite concerned about the exemplar model’s via-
bility as a testable and falsifiable psychological theory.11 Fortunately, however,
these concerns can be allayed by the fact that the exemplar model is at least in
principle subject to falsification, as revealed by some of the results mentioned
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earlier that place limits on the GCM’s applicability (e.g., Little & Lewandowsky,
2009; Rouder & Ratcliff, 2004; Yang & Lewandowsky, 2004).

We are now faced with a conundrum: On the one hand, we want our theo-
ries to explain data. We want powerful theories, such as Kepler’s, that explain
fundamental aspects of our universe. We want powerful theories, such as Dar-
win’s, to explain the diversity of life. On the other hand, we want the theories
to be falsifiable—that is, we want to be assured that there are at least hypotheti-
cal outcomes that, if they are ever observed, would falsify a theory. For example,
Darwin’s theory of evolution predicts a strict sequence in which species evolved;
hence, any observation to the contrary in the fossil record—for example, human
bones co-occurring with dinosaur remains in the same geological strata (e.g.,
Root-Bernstein, 1981)—would seriously challenge the theory. This point is suffi-
ciently important to bear repetition: Even though we are convinced that Darwin’s
theory of evolution, one of the most elegant and powerful achievements of human
thought, is true, we simultaneously also want it to be falsifiable—falsifiable, not
false.12 Likewise, we are committed to the idea that the earth orbits around the
sun, rather than the other way round, but as scientists, we accept that fact only
because it is based on a theory that is falsifiable—again, falsifiable, not false.

Roberts and Pashler (2000) considered the issue of falsifiability and scope
with reference to psychological models and provided an elegant graphical sum-
mary that is reproduced in Figure 1.10. The figure shows four hypothetical out-
come spaces that are formed by two behavioral measures. What those measures
represent is totally arbitrary; they could be trials to a criterion in a memory exper-
iment and a final recognition score or any other pair of measures of interest.

Within each panel, the dotted area represents all possible predictions that are
within the scope of a psychological theory. The top row of panels represents some
hypothetical theory whose predictions are constrained to a narrow range of out-
comes; any outcome outside the dotted sliver would constitute contrary evidence,
and only the narrow range of values within the sliver would constitute support-
ing evidence. Now compare that sliver to the bottom row of panels with its very
generous dotted areas; the theory shown here is compatible with nearly all possi-
ble outcomes. It follows that any observed outcome that falls within a dotted area
would offer greater support for the theory in the top row than the bottom row, sim-
ply because the likelihood of falsification is greater for the former than the latter,
thus rendering the match between data and predictions far less likely—and hence
more informative when it occurs (see Dunn, 2000, for a similar but more formal-
ized view). Ideally, we would want our theories to occupy only a small region of
the outcome space but for all observed outcomes to fall within that region—as
they do for Kepler’s and Darwin’s theories.13

Another important aspect of Figure 1.10 concerns the quality of the data,
which is represented by the columns of panels. The data (shown by the single
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Figure 1.10 Four possible hypothetical relationships between theory and data involving
two measures of behavior (A and B). Each panel describes a hypothetical outcome space
permitted by the two measures. The shaded areas represent the predictions of a theory that
differs in predictive scope (narrow and broad in the top and bottom panels, respectively).
The error bars represent the precision of the observed data (represented by the black dot).
See text for details. Figure reprinted from Roberts, S., & Pashler, H. (2000). How per-
suasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.
Published by the American Psychological Association; reprinted with permission.

black point bracketed by error bars) exhibit less variability in the left column of
panels than in the right. For now, we note briefly that support for the theory is
thus strongest in the top left panel; beyond that, we defer discussion of the impor-
tant role of data to Chapter 6. That chapter will also provide another in-depth and
more formal look at the issue of testability and falsifiability.

Let us now turn from the abstract representation in Figure 1.10 to a specific
recent instance in which two theories were compared by exploration of an out-
come space. Howard, Jing, Rao, Provyn, and Datey (2009) examined the nature
of associations among list items. Their study was quite complex, but their cen-
tral question of interest can be stated quite simply: Are associations between list
items symmetrical or asymmetrical? That is, given a to-be-memorized list such
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Figure 1.11 Outcome space covered by two models examined by Howard, Jing, Rao,
Provyn, and Datey (2009). An index of remote asymmetry is shown as a function of an
index of adjacent asymmetry for a variety of parameter values for two models (referred
to here as “black” and “gray,” corresponding to the color of their plotting symbols). See
text for details. Figure reprinted from Howard, M. W., Jing, B., Rao, V. A., Provyn, J. P.,
& Datey, A. V. (2009). Bridging the gap: Transitive associations between items presented
in similar temporal contexts. Journal of Experimental Psychology: Learning, Memory &
Cognition, 35, 391–407. Published by the American Psychological Association; reprinted
with permission.

as “A B C D,” is the association from A to B as strong as the association from
B to A? Can you recall B when given A as a cue with equal facility as recalling
A when given B? And how does the extent of symmetry vary with list position?
Empirically, it turns out that adjacent associations (such as between A and B)
are asymmetric and stronger in a forward direction, whereas remote associations
(such as between A and D) are symmetrical. Howard et al. (2009) compared the
abilities of two theories (whose identity is irrelevant in this context) to capture
this pattern of symmetries; the pattern of predictions for the two rival theories is
shown in Figure 1.11.
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The figure shows an outcome space involving two measures—namely, indices
of symmetry for adjacent and remote associations. In Howard et al.’s (2009)
experiment, the observed values were .25 and .03, respectively. The dark and gray
point clouds in the figure, respectively, represent the possible predictions of the
two models under consideration. The figure suggests the following conclusions:
First, both models can handle the data (i.e., their prediction regions contain the
point .25, .03). Second, the “gray” model covers a much larger region of the out-
come space than the “black” model, including regions in which remote asymmetry
is greater than adjacent symmetry, something that has never been observed in the
data. Third, it follows that the “black” model is supported more by these data than
the “gray” model. (This conclusion is also supported by other results not shown in
the figure, but for present purposes, we focus only on the trade-off between scope
and falsifiability.) Note how the large area covered by the “gray” model corre-
sponds to the hypothetical situation in the bottom panels of Figure 1.10, whereas
the small area covered by the “black” model corresponds to the situation in the
top panels.

1.6.2 Identification and Truth

Throughout our discussion, we have emphasized the existence of multiple alter-
native models to explain the same data. We considered the Ptolemaic and the
Copernican system, we contrasted Nosofsky’s (1986) GCM exemplar theory with
a prototype model, and we repeatedly underscored the need for model selection.
Our discussion entailed two tacit assumptions: first, that we can identify the “cor-
rect” model and, second, that there is such a thing as a “true” model. It turns out
that both of those assumptions are most likely wrong. So why do we nonethe-
less advocate modeling? What are the implications of the fact that models may be
neither identifiable nor true?

Let us first clarify what exactly the problem concerning model identification
does and does not imply. First, it is important to realize that this problem is not
unique to psychology but applies to all sciences; we noted earlier that in addition
to Kepler’s model, an infinite number of equivalent models can adequately capture
planetary motion. Does this invalidate our view of the solar system? No, it does
not, because as we also noted earlier, criteria other than goodness of fit help differ-
entiate between models. So, the fact that in cognitive science, just like in astron-
omy, “there undoubtedly exists a very diverse set of models, but all equivalent
in that they predict the behavior of humans at cognitive tasks” (J. R. Anderson,
1976, p. 4) is true in principle but not particularly troubling.

Second, the fact that there exist, in principle, many equivalent models does not
imply that all models are equally capable. Indeed, we have shown throughout this
chapter that some models handle the data better than others. It is therefore clearly
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possible to choose one model over another, even if (in principle) the chosen model
is equivalent to many unknown others. Simply put, the fact that there are many
good models out there does not prevent us from rejecting the bad ones.

Third, the mere existence of equivalent models does not imply that they have
been—or indeed will be—discovered. In our experience, it is difficult enough to
select a single suitable model, let alone worry about the existence of an infinite
number of equivalent competitors.

Finally, even supposing that we must select from among a number of com-
peting models of equivalent capability (i.e., equal goodness of fit), some fairly
straightforward considerations have been put forward to achieve this (see, e.g.,
Fum et al., 2007). We revisit this issue in detail in Chapter 5.

Now let us turn to the issue concerning the “truth” of a model. Is there such
a thing as one true model? And if not, what are the implications of that? The
answer to the first question is strongly implied by the preceding discussion, and
it was most clearly stated by MacCallum (2003): “Regardless of their form or
function, or the area in which they are used, it is safe to say that these models all
have one thing in common: They are all wrong” (p. 114). Now what?

To answer this question, we again briefly digress into astronomy by noting that
Kepler’s model, being based on Newtonian physics, is—you guessed it—wrong.
We now know that Newtonian physics is “wrong” because it does not capture the
phenomena associated with relativity. Does this mean that the earth is in fact not
orbiting around the sun? No, it does not, because Kepler’s model is nonetheless
useful because within the realm for which it was designed—planetary motion—
Newtonian physics holds to an acceptable degree. Likewise, in psychology, our
wrong models can nonetheless be useful (MacCallum, 2003). We show exactly
how wrong models can still be useful at the end of the next chapter, after we
introduce a few more essential tools and concepts.

Notes

1. Lest one think that the heliocentric and geocentric models exhaust all possible views
of the solar system, it is worth clarifying that there is an infinite number of equivalent mod-
els that can adequately capture planetary motion because relative motion can be described
with respect to any possible vantage point.

2. Goodness of fit is a term for the degree of quantitative error between a model’s predic-
tions and the data; this important term and many others are discussed in detail in Chapter 2.

3. Astute readers may wonder how the two could possibly differ. The answer lies in
the fact that the similarity rule involved in the comparisons by the exemplar model is non-
linear; hence, the summed individual similarities differ from that involving the average.
This nonlinearity turns out to be crucial to the model’s overall power. The fact that subtle
matters of arithmetic can have such drastic consequences further reinforces the notion that
purely verbal theorizing is of limited value.
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4. Another lesson that can be drawn from this example is a rejoinder to the popular but
largely misplaced criticism that with enough ingenuity and patience, a modeler can always
get a model to work.

5. Several distinctions between models have been proposed (e.g., Luce, 1995); ours
differs from relevant precedents by being explicitly psychological and being driven entirely
by considerations that are relevant to the cognitive researcher.

6. We will provide a detailed definition of what a parameter is in Chapter 2. For now,
it suffices to think of a parameter as a number that carries important information and that
determines the behavior of the model.

7. Some readers may have noticed that in this instance, there are two parameters (I and
R) and two data points (proportion correct and errors; C and R), which renders the model
nonidentifiable. We ignore this issue here for simplicity of exposition; for a solution, see
Hulme et al. (1997).

8. This model is a connectionist model, and these are discussed further in Chapter 8.
9. For simplicity, we omit discussion of how these psychological distances relate to the

physical measurement (e.g., line length in cm) of the stimuli; these issues are covered in,
for example, Nosofsky (1986).

10. Of course, a cognitive model may leave other levels of explanation unspecified, for
example, the underlying neural circuitry. However, at the level of abstraction within which
the model is formulated, nothing can be left unspecified.

11. Throughout this book, we use the terms falsifiable and testable interchangeably to
denote the same idea—namely, that at least in principle, there are some possible outcome(s)
that are incompatible with the theory’s predictions.

12. Despite its falsifiability, Darwin’s theory has a perfect track record of its predictions
being uniformly confirmed; Coyne (2009) provides an insightful account of the impressive
list of successes.

13. It is important to clarify that, in our view, this argument should apply only with
respect to a particular measurement. That is, for any given measurement, we prefer theo-
ries that could have only predicted a subset of all possible observations over theories that
could have predicted pretty much any outcome. However, it does not follow that we prefer
theories that are so narrow in scope that they only apply to a single experiment; on the
contrary, we prefer theories that apply to a range of different situations.




