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1.1 What is Computational Fluid Dynamics? 
 

Computational fluid dynamics (CFD) is the use of computers 

and numerical methods to solve problems involving fluid flow. 

 

CFD has been successfully applied in many areas of fluid mechanics. These include 

aerodynamics of cars and aircraft, hydrodynamics of ships, flow through pumps and turbines, 

combustion and heat transfer, chemical engineering. Applications in civil engineering include 

wind loading, vibration of structures, wind and wave energy, ventilation, fire, explosion 

hazards, dispersion of pollution, wave loading on coastal and offshore structures, hydraulic 

structures such as weirs and spillways, sediment transport. More specialist CFD applications 

include ocean currents, weather forecasting, plasma physics, blood flow, biofluidics, heat 

transfer around electronic circuitry, metal casting. 

 

These applications involve many different fluid phenomena. In particular, the CFD techniques 

used for high-speed aerodynamics (where compressibility is significant, but viscous and 

turbulent effects are often unimportant) are very different from those used to solve the 

incompressible, turbulent flows typical of mechanical and civil engineering. 

 

Although many elements of this course are widely applicable, the focus will be on simulating 

viscous, incompressible flow by the finite-volume method. 



 

 

CFD 1 – 2 David Apsley 

1.2 Basic Principles of CFD 
 

The approximation of a continuously-varying quantity in terms of values at a finite number of 

points is called discretisation. 

 

The following are common to any CFD simulation. 

 

 

 

(1) The flow field is discretised; i.e. field variables 

(𝜌, 𝑢, 𝑣, 𝑤, 𝑝, …) are approximated by their 

values at a finite number of nodes.  

 

 

 

 

(2) The equations of motion are discretised: 

 

 derivatives → algebraic approximations 

 (continuous)  (discrete) 

 

 

 

(3) The resulting system of algebraic equations is solved to give values at the nodes. 

 

 

 

1.3 Stages in a CFD Simulation 
 

The main stages in a CFD simulation are: 

 

Pre-processing:  

 – formulate problem (geometry, equations, boundary conditions); 

 – computational mesh (set of control volumes). 

 

Solving: 

 – discretise the governing equations; 

 – solve the resulting algebraic equations. 

 

Post-processing: 

 – analyse (calculate derived quantities: forces, flow rates, ... ); 

 – visualise (graphs and plots). 
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1.4 Fluid-Flow Equations  
 

The equations of fluid flow are based on fundamental physical conservation principles:  

• mass:  change of mass = 0  

• momentum: change of momentum = force × time 

• energy: change of energy = work + heat  

In fluid flow these are usually expressed as rate equations; i.e. rate of change = … 

 

Additional equations may apply for non-homogeneous fluids (e.g. particle load, dissolved 

chemicals, multiple species, …). 

 

These conservation principles may be expressed mathematically as either: 

• integral (control-volume) equations; 

• differential equations. 

 

 
1.4.1 Integral (Control-Volume) Approach 
 

This describes how the total amount of a physical quantity (mass, 

momentum, energy, …) is changed within a finite region of space 

(control volume). Over an interval of time: 

 CHANGE = (AMOUNT ENTERING – AMOUNT LEAVING) + AMOUNT CREATED 

In fluid mechanics this is usually expressed in rate form by dividing by the time interval (and 

transferring net transfer through the boundary to the LHS): 

 (
TIME DERIVATIVE

of amount in V
)     +    (

NET FLUX

through boundary of V
)     =    (

SOURCE
inside V

) (1) 

 

The flux (rate of transport through a surface) is further subdivided into: 

 advection1 – movement with the flow; 

 diffusion – net transport by random molecular or turbulent motion. 

 

 (
TIME DERIVATIVE

of amount in V
)    +  (

ADVECTION+DIFFUSION
through boundary of V

)   =  (
SOURCE
inside V

) (2) 

 

This is a generic equation, independent of whether the physical quantity is mass, momentum, 

chemical content, etc. Thus, instead of lots of different equations, we can consider the 

numerical solution of a generic scalar-transport equation (Section 4). 

 

The finite-volume method is based on approximating these control-volume equations. 

 
1 Some authors – but not this one – prefer the term convection to advection. 

V
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1.4.2 Differential Equations 
 

In regions without shocks, interfaces or other discontinuities, fluid-flow equations can also be 

written in differential forms (Section 2). These describe what is going on at a point rather than 

over a whole control volume. Mathematically, they can be derived by making the control 

volumes infinitesimally small. There are many ways of writing these differential equations. 

 

Finite-difference methods approximate some differential form of the governing equations. 

 
 
1.5 The Main Discretisation Methods 

 

(i) Finite-Difference Method 

 

Discretise differential equations; e.g. for mass: 

0  =   
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
    ≈     

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2Δ𝑥
+

𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗−1

2Δ𝑦
 

 

 

 

(ii) Finite-Volume Method 

 

Discretise integral (control-volume) equations; e.g.  

0 = net mass outflow = (𝜌𝑢𝐴)𝑒 − (𝜌𝑢𝐴)𝑤 + (𝜌𝑣𝐴)𝑛 − (𝜌𝑣𝐴)𝑠 

 

 

 

(iii) Finite-Element Method 

 

Express the solution as a weighted sum of shape functions 𝑆𝛼(x); e.g. for velocity: 

𝑢(x) = ∑ 𝑢𝛼𝑆𝛼(x) 

Substitute into one of several forms of the governing equations and solve for the coefficients 

(aka degrees of freedom, or weights) 𝑢𝛼. 

 

 

The finite-element method is popular in solid mechanics (geotechnics, structures) because: 

• it has considerable geometric flexibility; 

• general-purpose software can be used for a wide variety of physical problems. 

 

The finite-volume method is popular in fluid mechanics because: 

• it rigorously enforces conservation; 

• it is flexible in terms of both geometry and fluid phenomena; 

• it is directly relatable to physical quantities (mass flux, etc.). 

 

This course will focus on the finite-volume method. 
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In the finite-volume method ... 
 

 

(1) A flow geometry is defined. 

 

 

 

 

(2) The flow domain is decomposed into a set of control 

volumes or cells called a computational mesh or grid. 

 

 

 

 

(3) The control-volume equations are discretised – i.e. 

approximated in terms of values at nodes – to form a set of 

algebraic equations. 

 

 

 

 

(4) The discretised equations are solved numerically.  b
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APPENDICES 
 

A1. Notation 
 

Position/time: 

x ≡ (𝑥, 𝑦, 𝑧) or (𝑥1, 𝑥2, 𝑥3) position; (𝑧 usually vertical when gravity is important) 

𝑡 time 

 

Field variables: 

u ≡ (𝑢, 𝑣, 𝑤) or (𝑢1, 𝑢2, 𝑢3) velocity 

𝑝 pressure 

  (𝑝– 𝑝atm is gauge pressure;    𝑝∗ = 𝑝 + 𝜌𝑔𝑧 is piezometric pressure) 

 𝑇 temperature 

 𝜙 concentration (amount per unit mass or volume) 

 

Fluid properties: 

𝜌 density 

𝜇 dynamic viscosity 

  (𝜈 ≡ 𝜇/𝜌 is the kinematic viscosity) 

 Γ diffusivity 

 

 

A2. Hydrostatics 
 

At rest, pressure forces balance weight. This hydrostatic relation can be written 

 Δ𝑝 = −𝜌𝑔Δ𝑧 or 
d𝑝

d𝑧
= −𝜌𝑔 (3) 

The same equation also holds in a moving fluid if vertical acceleration is much smaller than 𝑔. 

 

If density is constant, (3) can be written as either 

Δ(𝑝 + 𝜌𝑔𝑧) = 0 

 𝑝∗ ≡ 𝑝 + 𝜌𝑔𝑧 = constant (4) 

𝑝∗ is the piezometric pressure. For a constant-density flow without a free surface, gravitational 

forces can be eliminated entirely from the equations by working with the piezometric pressure. 

 
 
A3. Equation of State 
 

In compressible flow, pressure, density and temperature are connected by an equation of state. 

The most common is the ideal gas law: 

 𝑝 = 𝜌𝑅𝑇  ,                𝑅 = 𝑅0/𝑚 (5) 

where 𝑅0 is the universal gas constant, 𝑚 is the molar mass and 𝑇 is the absolute temperature. 

For ideal gases, temperature is related to internal energy 𝑒 or enthalpy ℎ (per unit mass) by 

 𝑒 = 𝑐𝑣𝑇,               ℎ = 𝑐𝑝𝑇 (6) 

𝑐𝑣 and 𝑐𝑝 are specific heat capacities at constant volume and constant pressure respectively. 
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Examples 
 

The following simple examples develop the control-volume notation to be used in the rest of 

the course. 

 

 

Q1. 

Water (density 1000 kg m–3) flows at 2 m s–1 

through a circular pipe of diameter 10 cm. What 

is the mass flux C across the surfaces 𝑆1 and 𝑆2?  

 

 

 

 

 

Q2. 

A water jet strikes normal to a fixed plate as shown. 

Compute the force 𝐹 required to hold the plate fixed. 

 

 

 

 

 

 

 

Q3. 

An explosion releases 2 kg of a toxic gas into a room of dimensions 30 m  8 m  5 m. 

Assuming the room air to be well-mixed and to be vented at a speed of 0.5 m s–1 through an 

aperture of 6 m2, calculate: 

(a) the initial concentration of gas in ppm by mass; 

(b) the time taken to reach a safe concentration of 1 ppm. 

(Take the density of air as 1.2 kg m–3.) 

 

 

 

Q4. 

A burst pipe at a factory causes a chemical to seep into a river at a rate of 2.5 kg hr–1. The river 

is 5 m wide, 2 m deep and flows at 0.3 m s–1. What is the average concentration of the chemical 

(in kg m–3) downstream of the spill? 
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