1.2.1 Adding Whole Numbers and Applications

Learning Objective(s)
1 Add whole numbers without regrouping.
2 Add whole numbers with regrouping.
3 Find the perimeter of a polygon.
4 Solve application problems using addition.

Introduction

Adding is used to find the total number of two or more quantities. The total is called the sum, or the number that results from the addition. You use addition to find the total distance that you travel if the first distance is 1,240 miles and the second distance is 530 miles. The two numbers to be added, 1,240 and 530, are called the addends. The total distance, 1,770 miles, is the sum.

Adding Whole Numbers, without Regrouping

Objective 1
Adding numbers with more than one digit requires an understanding of place value. The place value of a digit is the value based on its position within the number. In the number 492, the 4 is in the hundreds place, the 9 is in the tens place, and the 2 is in the ones place. You can use a number line to add. In the example below, the blue lines represent the two quantities, 15 and 4, that are being added together. The red line represents the resulting quantity.

Example											
Problem $\quad 15+4=$?											
$15+4$											
15											
$\begin{array}{llllllllllllllllllllll} \mid & 1 & \mid & 1 & \mid & \mid & 1 & \mid & 1 & \mid & 1 & 1 & 1 & 1 & \mid & \mid & \mid & \mid & \mid & \mid \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \end{array}$											
On the number line, the blue line segment stretches across 15 units, representing the number 15. The second blue segment shows that if you add 4 more units, the resulting number is 19 .											
Answer $\quad 15+4=19$											

You can solve the same problem without a number line, by adding vertically. When adding numbers with more than 1 digit, it is important to line up your numbers by place
value, as in the example below. You must add ones to ones, tens to tens, hundreds to hundreds, and so on.

Example		
Problem	$15+4=$?	
	$\begin{array}{r} 15 \\ +\quad 4 \\ \hline \end{array}$	Because 5 and 4 have the same place value, make sure they are aligned when you add.
	$\begin{array}{r} 15 \\ +\quad 4 \\ \hline 9 \end{array}$	First, add the ones digits (the numbers on the right). The result goes in the ones place for the answer.
	$\begin{array}{r} 15 \\ +\quad 4 \\ \hline 19 \end{array}$	Then, add the tens digits and put the result in the tens place of the answer. In this case, there is no tens digit in the second number, so the result is the same as the tens digit of the first number (1).
Answer	$15+4=19$	

This strategy of lining up the numbers is effective for adding a series of numbers as well.

Example	
Problem	$1+2+3+2=$?
	$\begin{array}{r} 1 \\ 2 \\ 3 \\ +\quad 2 \\ \hline 8 \end{array}$
Answer	$1+2+3+2=8$

Adding Whole Numbers, with Regrouping

When adding whole numbers, a place-value position can have only one digit in it. If the sum of digits in a place value position is more that 10, you have to regroup the number of tens to the next greater place value position.

When you add, make sure you line up the digits according to their place values, as in the example below. As you regroup, place the regrouped digit above the appropriate digit in the next higher place value position and add it to the numbers below it.

Example		
Problem	$45+15=$?	
	$\begin{array}{r} 1 \\ 45 \\ +15 \\ \hline 0 \\ \hline 1 \\ 45 \\ +15 \\ \hline 60 \end{array}$	Add the ones. Regroup as needed. The sum of 5 and 5 is 10 . This is 1 ten and 0 ones. Write the number of ones (0) in the ones place and the 1 ten in the tens place above the 4 . Add the tens, $1+4+1$ is 6 tens. The final sum is 60 .
Answer $45+15=60$		

You must add digits in the ones place first, the digits in the tens place next, and so on. Go from right to left.

Adding Numbers Using the Partial Sums Method

Another way to add is the partial sums method. In the example below, the sum of $23+$ 46 is found using the partial sums method. In this method, you add together all the numbers with the same place value and record their values (not just a single digit). Once you have done this for each place value, add their sums together.

	Example
Problem $23+46=$?	
Step 1: Add Tens	Let's begin by adding the values in the tens position. Notice that the digits in the tens place are highlighted, and on the right, the values are written as 20 and 40.
23.............. 20	
46............. 40	
60	
Step 2: Add Ones	
23................ 3	Add the values in the ones place.
46. $\frac{6}{9}$	
Step 3: Add Parts	
$\begin{array}{r}60 \\ +\quad 9 \\ \hline 69\end{array}$	Finally, add the two sums together.
Answer $23+46=69$	

The next example adds a series of three numbers. Notice that hundreds is the greatest place value now, so hundreds are added before the tens. (You can add in any order that you prefer.) Also notice that in Step 3, the value in the ones column for 350 is zero, but you still add that in to make sure everything is accounted for.

Example	
Problem $225+169+350=$?	
Step 1: Add Hundreds $225 \ldots \ldots \ldots$. 200 $169 \ldots \ldots \ldots$. 100 $350 \ldots \ldots \ldots$ $\frac{300}{600}$	Add the values represented by the digits in the hundreds place first. This gives a sum of 600 .
Step 2: Add Tens	
$225 \ldots \ldots \ldots$. 20 $169 \ldots \ldots \ldots$. 60 $350 \ldots \ldots \ldots$. $\underline{50}$ 130	Next, add the values from the tens place. The sum is 130 .

Step 3: Add Ones
225.............. 5
169............... 9
350.............. $\underline{0}$

14

Step 4: Add Parts
At this point, you have a sum for each place value. Add together these three sums, which gives a final value of 744 .

Add the values from the ones place. The sum is 14.

600
130 $\begin{array}{r}+14 \\ \hline 744\end{array}$

Answer $225+169+350=744$

The key part of completing a polygon problem is correctly identifying the side lengths. Once you know the side lengths, you add them as you would in any other addition problem.

| ProblemA company is planning to construct a building. Below
 is a diagram illustrating the shape of the building's
 floor plan. The length of each side is given in the
 diagram. Measurements for each side are in feet. Find
 the perimeter of the building. |
| :---: | :---: |

Self Check B

Find the perimeter of the trapezoid in feet.

Solving Application Problems
Addition is useful for many kinds of problems. When you see a problem written in words, look for key words that let you know you need to add numbers.

The following phrases also appear in problem situations that require addition.

Phrase	Example problem
Add to	Jonah was planning a trip from Boston to New York City. The distance is 218 miles. His sister wanted him to visit her in Springfield, Massachusetts, on his way. Jonah knew this would add 17 miles to his trip. How long is his trip if he visits his sister?
Plus	Carrie rented a DVD and returned it one day late. The store charged \$5 for a two-day rental, plus a \$3 late fee. How much did Carrie pay for the rental?
Increased by	One statistic that is important for football players in offensive positions is rushing. After four games, one player had rushed 736 yards. After two more games, the number of yards rushed by this player increased by 352 yards. How many yards had he rushed after the six games?
More than	Lavonda posted 38 photos to her social network profile. Chris posted 27 more photos to his than Lavonda. How many photos did Chris post?

Example

Problem Lena was planning a trip from her home in Amherst to the Museum of Science in Boston. The trip is 91 miles. She had to take a detour on the way, which added 13 miles to her trip. What is the total distance she traveled?

The word "added" suggests that addition is the way to solve this problem.

To find the total distance, you need to add the two distances.

91
+13
+104

Answer The total distance is 104 miles.

It can help to seek out words in a problem that imply what operation to use. See if you can find the key word(s) in the following problem that provide you clues on how to solve it.

Self Check C

A city was struck by an outbreak of a new flu strain in December. To prevent another outbreak, 3,462 people were vaccinated against the new strain in January. In February, 1,298 additional people were vaccinated. How many people in total received vaccinations over these two months?

Drawing a diagram to solve problems is very useful in fields such as engineering, sports, and architecture.

Example

Problem A coach tells her athletes to run one lap around a soccer field. The length of the soccer field is 100 yards, while the width of the field is 60 yards. Find the total distance that each athlete will have run after completing one lap around the perimeter of the field.

Summary

You can add numbers with more than one digit using any method, including the partial sums method. Sometimes when adding, you may need to regroup to the next greater place value position. Regrouping involves grouping ones into groups of tens, grouping tens into groups of hundreds, and so on. The perimeter of a polygon is found by adding the lengths of each of its sides.

1.2.1 Self Check Solutions

Self Check A

A local company built a playground at a park. It took the company 124 hours to plan out the playground, 243 hours to prepare the site, and 575 hours to build the playground. Find the total number of hours the company spent on the project.
$800+130+12=942$ hours

Self Check B

Find the perimeter of the trapezoid in feet.

$300+500+500+900=2,200 \mathrm{ft}$

Self Check C

A city was struck by an outbreak of a new flu strain in December. To prevent another outbreak, 3,462 people were vaccinated against the new strain in January. In February, 1,298 additional people were vaccinated. How many people in total received vaccinations over these two months?
$3462+1298=4,760$

1.2.2 Subtracting Whole Numbers and Applications

```
Learning Objective(s)
1 Subtract whole numbers without regrouping.
2 Subtract whole numbers with regrouping.
3 Solve application problems using subtraction.
```


Introduction

Subtracting involves finding the difference between two or more numbers. It is a method that can be used for a variety of applications, such as balancing a checkbook, planning a schedule, cooking, or travel. Suppose a government official is out of the U.S. on business for 142 days a year, including travel time. The number of days per year she is in the U.S. is the difference of 365 days and 142 days. Subtraction is one way of calculating the number of days she would be in the U.S. during the year.

When subtracting numbers, it is important to line up your numbers, just as with addition. The minuend is the greater number from which the lesser number is subtracted. The subtrahend is the number that is subtracted from the minuend. A good way to keep minuend and subtrahend straight is that since subtrahend has "subtra" in its beginning, it goes next to the subtraction sign and is the number being subtracted. The difference is the quantity that results from subtracting the subtrahend from the minuend. In $86-52=$ 34,86 is the minuend, 52 is the subtrahend, and 34 is the difference.

Subtracting Whole Numbers

Objective 1

When writing a subtraction problem, the minuend is placed above the subtrahend. This can be seen in the example below, where the minuend is 10 and the subtrahend is 7 .

Example	
Problem	10-7 = ?
Answer $10-7=3 \begin{array}{r}10 \\ -\frac{7}{3} \\ \end{array}$	

When both numbers have more than one digit, be sure to work with one place value at a time, as in the example below.

Example	
Problem 689-353 = ?	
$\begin{array}{r} 689 \\ -\quad 353 \\ \hline \end{array}$	First, set up the problem and align the numbers by place value.
$\begin{array}{r} 689 \\ -353 \\ \hline 6 \end{array}$	Then, subtract the ones.
$\begin{array}{r} 689 \\ -\quad 353 \\ \hline 36 \end{array}$	Next, subtract the tens.
$\begin{array}{r} 689 \\ -\quad 353 \\ \hline 336 \end{array}$	Finally, subtract the hundreds.
Answer $689-353=336$	

Lining up numbers by place value becomes especially important when you are working with larger numbers that have more digits, as in the example below.

Example	
Problem	9,864-743 =?
$\begin{array}{r} 9864 \\ -\quad 743 \\ \hline \end{array}$	First, set up the problem and align the numbers by place value.
$\begin{array}{r} 9864 \\ -\quad 743 \\ \hline 1 \end{array}$	Then, subtract the ones.
$\begin{array}{r} 9864 \\ -\quad 743 \\ \hline 21 \end{array}$	Next, subtract the tens.

9864	Now, subtract the hundreds.
-743	
121	
$-\frac{743}{9864}$	There is no digit to subtract in the thousands place, so keep the 9.
Answer $9,864-743=9,121$	

Self Check A

Subtract: 2,489-345.

Subtracting Whole Numbers, with Regrouping

You may need to regroup when you subtract. When you regroup, you rewrite the number so you can subtract a greater digit from a lesser one.
When you're subtracting, just regroup to the next greater place-value position in the minuend and add 10 to the digit you're working with. As you regroup, cross out the regrouped digit in the minuend and place the new digit above it. This method is demonstrated in the example below.

Example	
Problem	3,225-476 = ?
$\begin{array}{r} 3225 \\ -\quad 476 \\ \hline \end{array}$	First, set up the problem and align the digits by place value.
$\begin{array}{r} 115 \\ 3225 \\ -\quad 476 \\ \hline 9 \end{array}$	Since you can't subtract 6 from 5, regroup, so 2 tens and 5 ones become 1 ten and 15 ones. Now you can subtract 6 from 15 to get 9 .
$\begin{array}{r} 11115 \\ 3225 \\ -\quad 476 \\ \hline 49 \end{array}$	Next, you need to subtract 7 tens from 1 ten. Regroup 2 hundreds as 1 hundred, 10 tens and add the 10 tens to 1 ten to get 11 tens. Now you can subtract 7 from 11 to get 4 .
$\begin{aligned} & 2111115 \\ & 3225 \\ & -\quad 476 \\ & \hline 749 \end{aligned}$	To subtract the digits in the hundreds place, regroup 3 thousands as 2 thousands, 10 hundreds and add the 10 hundreds to the 1 hundred that is already in the hundreds place. Now, subtract 4 from 11 to get 7 .

\square
2111115 Since there is no digit in the thousands place of the
3225
$-\quad 476$ subtrahend, bring down the 2 in the thousands place

2749 into the answer.

Answer 3,225-476 = 2,749

Self Check B
Subtract: 1,610-880.

Checking Your Work

You can check subtraction by adding the difference and the subtrahend. The sum should be the same as the minuend.

Example		
Problem	Check to make sure that 7 subtracted from 12 is equal to 5 .	
	$12-7=5$ $\begin{array}{r} 5 \\ +7 \\ \hline 12 \end{array}$	Here, write out the original equation. The minuend is 12 , the subtrahend is 7 , and the difference is 5 . Here, add the difference to the subtrahend, which results in the number 12. This confirms that your answer is correct.
Answer The answer of 5 is correct.		

Checking your work is very important and should always be performed when time permits.

Subtracting Numbers, Using the Expanded Form

An alternative method to subtract involves writing numbers in expanded form, as shown in the examples below. If you have 4 tens and want to subtract 1 ten, you can just think ($4-1$) tens and get 3 tens. Let's see how that works.

Example	
Problem 45-12 = ?	
$\begin{aligned} & 45=40+5 \\ & \underline{12}=10+2 \end{aligned}$	Let's write the numbers in expanded form so you can see what they really mean.
$\begin{aligned} & 45=40+5 \\ & \frac{12=10+2}{30} \end{aligned}$	Look at the tens. The minuend is 40 , or 4 tens. The subtrahend is 10 , or 1 ten. Since $4-1=3,4$ tens -1 ten $=3$ tens, or 30 .
$\begin{array}{r} 45=40+5 \\ -12=10+2 \\ \hline 30+3 \end{array}$	Look at the ones. $5-2=3$. So, 30 $+3=33$.
Answer 45-12=33	

Now let's use this method in the example below, which asks for the difference of 467 and 284. In the tens place of this problem, you need to subtract 8 from 6 . What can you do?

Example	
Problem $\quad \mathbf{4 6 7 - 2 8 4 = ?}$	Problem 467-284 = ?
Step 1: Separate by place value	Write both the minuend and the subtrahend in expanded form.
4 hundreds +6 tens +7 ones 2 hundreds +8 tens +4 ones	
Step 2: Identify impossible differences	Here, we identify differences that are not whole numbers. Since 8 is greater
6-8 = []	than 6 , you won't get a whole number difference.
Step 3: Regroup	Regroup one of the hundreds from the 4 hundreds into 10 tens and add it to the 6 tens. Now you have 16 tens. Subtracting 8 tens from 16 tens yields a difference of 8 tens.
3 hundreds +16 tens +7 ones	
-2 hundreds +8 tens +4 ones	
1 hundred + 8 tens + 3 ones	
Step 4: Combine the parts	Combining the resulting differences for each place value yields a final answer of 183.
1 hundred +8 tens +3 ones $=183$	
Answer 467-284=183	

Self Check C

A woman who owns a music store starts her week with 965 CDs. She sells 452 by the end of the week. How many CDs does she have remaining?

Example	
Problem 45-17 = ?	
$\begin{aligned} & 45=40+5 \\ & 17=10+7 \\ & \hline \end{aligned}$	When you try to subtract 17 from 45 , you would first try to subtract 7 from 5 . But 5 is less than 7. Let's write the numbers in expanded form so you can see what they really mean.
$\begin{aligned} & 45=30+15 \\ & 17=10+7 \\ & \hline \end{aligned}$	Now, regroup 4 tens as 3 tens and 10 ones. Add the 10 ones to 5 ones to get 15 ones, which is greater than 7 ones, so you can subtract.
$\begin{array}{r} 45=30+15 \\ -17=10+7 \\ \hline 20+8 \end{array}$ Answer 45-17=28	Finally, subtract 7 from 15 , and 10 from 30 and add the results: $20+8$ $=28$.

Solve Application Problems Using Subtraction
You are likely to run into subtraction problems in every day life, and it helps to identify key phrases in a problem that indicate that subtraction is either used or required. The following phrases appear in problem situations that require subtraction.

Phrase or word	Example problem
Less than	The cost of gas is 42 cents per gallon less than it was last month. The cost last month was 280 cents per gallon. How much is the cost of gas this month?
Take away	Howard made 84 cupcakes for a neighborhood picnic. People took away 67 cupcakes. How many did Howard have left?
Decreased by	The temperature was $84^{\circ} \mathrm{F}$ in the early evening. It decreased by 15° overnight. What was the temperature in the morning?

Subtracted from	Jeannie works in a specialty store on commission. When she sells something for $\$ 75$, she subtracts $\$ 15$ from the $\$ 75$ and gives the rest to the store. How much of the sale goes to the store?
The difference	What is the difference between this year's rent of $\$ 1,530$ and last year's rent of $\$ 1,450 ?$
Fewer than	The number of pies sold at this year's bake sale was 15 fewer than the number sold at the same event last year. Last year, 32 pies were sold. How many pies were sold this year?

When translating a phrase such as " 5 fewer than 39 " into a mathematical expression, the order in which the numbers appears is critical. Writing $5-39$ would not be the correct translation. The correct way to write the expression is $39-5$. This results in the number 34 , which is 5 fewer than 39. The chart below shows how phrases with the key words above can be written as mathematical expressions.

Phrase	Expression
three subtracted from six	$6-3$
the difference of ten and eight	$10-8$
Nine fewer than 40	$40-9$
Thirty-nine decreased by fourteen	$39-14$
Eighty-five take away twelve	$85-12$
Four less than one hundred eight	$108-4$

Example	
Problem	Each year, John is out of the U.S. on business for 142 days, including travel time. The number of days per year he is in the U.S. is the difference of 365 days and 142 days. How many days during the year is John in the U.S.?
	The words "the difference of" suggest that you need to subtract to answer the problem.
$\begin{array}{r} 365 \\ -142 \\ \hline \end{array}$	First, write out the problem based on the information given and align numbers by place value.

365
-142

1
-142
23

365
-142
223

Then, subtract numbers in the ones place.

Subtract numbers in the tens place.

Finally, subtract numbers in the hundreds place.

Answer John is in the U.S. 223 days during the year.

Self Check D

To make sure he was paid up for the month on his car insurance, Dave had to pay the difference of the amount on his monthly bill, which was $\$ 289$, and what he had paid earlier this month, which was $\$ 132$. Write the difference of $\$ 289$ and $\$ 132$ as a mathematical expression.

Example

Problem An African village is now getting cleaner water than it used to get. The number of cholera cases in the village has declined over the past five years. Using the graph below, determine the difference between the number of cholera cases in 2005 and the number of cases in 2010.

Summary

Subtraction is used in countless areas of life, such as finances, sports, statistics, and travel. You can identify situations that require subtraction by looking for key phrases, such as difference and fewer than. Some subtraction problems require regrouping to the next greater place value, so that the digit in the minuend becomes greater than the corresponding digit in the subtrahend. Subtraction problems can be solved without regrouping, if each digit in the minuend is greater than the corresponding digit in the subtrahend.

In addition to subtracting using the standard algorithm, subtraction can also can be accomplished by writing the numbers in expanded form so that both the minuend and the subtrahend are written as the sums of their place values.

Self Check A

Subtract: 2,489-345.
2,144

Self Check B

Subtract: 1,610-880.
730

Self Check C

A woman who owns a music store starts her week with 965 CDs. She sells 452 by the end of the week. How many CDs does she have remaining?
$965-452=513$

Self Check D

To make sure he was paid up for the month on his car insurance, Dave had to pay the difference of the amount on his monthly bill, which was $\$ 289$, and what he had paid earlier this month, which was $\$ 132$. Write the difference of $\$ 289$ and $\$ 132$ as a mathematical expression.

The difference of 289 and 132 can be written as $289-132$.

1.2.3 Estimation

Learning Objective(s)

1 Use rounding to estimate sums and differences.
2 Use rounding to estimate the solutions for application problems.

Introduction

An estimate is an answer to a problem that is close to the solution, but not necessarily exact. Estimating can come in handy in a variety of situations, such as buying a computer. You may have to purchase numerous devices: a computer tower and keyboard for $\$ 1,295$, a monitor for $\$ 679$, the printer for $\$ 486$, the warranty for $\$ 196$, and software for $\$ 374$. Estimating can help you know about how much you'll spend without actually adding those numbers exactly.

Estimation usually requires rounding. When you round a number, you find a new number that's close to the original one. A rounded number uses zeros for some of the place values. If you round to the nearest ten, you will have a zero in the ones place. If you round to the nearest hundred, you will have zeros in the ones and tens places. Because these place values are zero, adding or subtracting is easier, so you can find an estimate to an exact answer quickly.

It is often helpful to estimate answers before calculating them. Then if your answer is not close to your estimate, you know something in your problem-solving process is wrong.

Using Rounding to Estimate Sums and Differences
Objective 1

Suppose you must add a series of numbers. You can round each addend to the nearest hundred to estimate the sum.

Example	
ProblemEstimate the sum 1,472 + $398+772+$ 164 by rounding each number to the nearest hundred.	
$1,472 \ldots .1,500$	First, round each number to the nearest hundred.
$398 \ldots \ldots 400$	
$772 \ldots \ldots .800$	
$164 \ldots \ldots .200$	

1,500	Then, add the rounded
400	numbers together.
800	
+200 2,900	
Answer	The estimate is $2,900$.

In the example above, the exact sum is 2,806 . Note how close this is to the estimate, which is 94 greater.

In the example below, notice that rounding to the nearest ten produces a far more accurate estimate than rounding to the nearest hundred. In general, rounding to the lesser place value is more accurate, but it takes more steps.

Example	
Problem Estimate the sum 1,472 + 398 + 772 + 164 by first rounding each number to the nearest ten.	
1,472...1,470	First, round each number to the nearest ten.
398....... 400	
772........ 770	
164........ 160	
12	Next, add the ones and then the tens. Here, the sum of 7,7 , and 6
1470	is 20. Regroup.
400	
770	
+ 160	
00	
12	Now, add the hundreds. The sum of the digits in the hundreds place
1470	is 18. Regroup.
400	
770	
+ 160	
800	
12	Finally, add the thousands. The sum in the thousands place is 2 .
1470	
400	
770	
+ 160	
2800	
Answer The estimate is 2,800 .	

Note that the estimate is 2,800 , which is only 6 less than the actual sum of 2,806 .

Self Check A

In three months, a freelance graphic artist earns $\$ 1,290$ for illustrating comic books, $\$ 2,612$ for designing logos, and $\$ 4,175$ for designing web sites. Estimate how much she earned in total by first rounding each number to the nearest hundred.

You can also estimate when you subtract, as in the example below. Because you round, you do not need to subtract in the tens or hundreds places.

ProblemExample Estimate the difference of 5,876 and 4,792 by first rounding each number to the nearest hundred.	
$5,876 \ldots .5,900$	First, round each number to the nearest hundred.
$4,792 \ldots 4,800$	Subtract. No regrouping is needed since each number in the minuend is greater than or equal to the corresponding number in the subtrahend.
$\frac{4,800}{1,100}$ The estimate is $1,100$.	
Answer	

The estimate is 1,100 , which is 16 greater than the actual difference of 1,084 .

Self Check B

Estimate the difference of 474,128 and 262,767 by rounding to the nearest thousand.

Solving Application Problems by Estimating

Estimating is handy when you want to be sure you have enough money to buy several things.

Example	
Problem	When buying a new computer, you find that the computer tower and keyboard cost $\$ 1,295$, the monitor costs $\$ 679$, the printer costs $\$ 486$, the 2-year warranty costs $\$ 196$, and a software package costs $\$ 374$. Estimate the total cost by first rounding each number to the nearest hundred.

1,295...1,300	First, round each number to the nearest hundred.
679....... 700	
486........ 500	
196......... 200	
374........ 400	
2	
1300	Add.
700	
500	
200	After adding all of the rounded
+ 400	values, the estimated answer is
3,100	\$3,100.
Answer Th	The total cost is approximately $\$ 3,100$.

Estimating can also be useful when calculating the total distance one travels over several trips.

11	Adding the numbers in the
3250	thousands place gives 5.
580	
$+\frac{1630}{5,460}$	
Answer The total distance traveled was approximately	
5,460 meters.	

In the example above, the final estimate is 5,460 meters, which is 3 less than the actual sum of 5,463 meters.

Estimating is also effective when you are trying to find the difference between two numbers. Problems dealing with mountains like the example below may be important to a meteorologist, a pilot, or someone who is creating a map of a given region. As in other problems, estimating beforehand can help you find an answer that is close to the exact value, preventing potential errors in your calculations.

Example		
Problem	One mountain is 10,496 feet high and another mountain is 7,421 feet high. Find the difference in height by first rounding each number to the nearest 100.	
10,496.	,500	First, round each number to the nearest hundred.
7,421... ..7,400		
$\begin{array}{r} 10500 \\ -\quad 7400 \\ \hline 3,100 \end{array}$		Then, align the numbers and
		subtract.
		The final estimate is 3,100 , which is 25 greater than the actual value of 3,075 .
Answer The estimated difference in height between the two mountains is 3,100 feet.		

Self Check C

A space shuttle traveling at 17,581 miles per hour decreases its speed by 7,412 miles per hour. Estimate the speed of the space shuttle after it has slowed down by rounding each number to the nearest hundred.

Estimation is very useful when an exact answer is not required. You can use estimation for problems related to travel, finances, and data analysis. Estimating is often done before adding or subtracting by rounding to numbers that are easier to think about. Following the rules of rounding is essential to the practice of accurate estimation.

1.2.3 Self Check Solutions

Self Check A

In three months, a freelance graphic artist earns $\$ 1,290$ for illustrating comic books, $\$ 2,612$ for designing logos, and $\$ 4,175$ for designing web sites. Estimate how much she earned in total by first rounding each number to the nearest hundred.

Round the numbers to $\$ 1,300, \$ 2,600$, and $\$ 4,200$ and added them together to get the estimate: $\$ 8,100$

Self Check B

Estimate the difference of 474,128 and 262,767 by rounding to the nearest thousand.
Round to 474,000 and 263,000 and subtract to get 211,000

Self Check C

A space shuttle traveling at 17,581 miles per hour decreases its speed by 7,412 miles per hour. Estimate the speed of the space shuttle after it has slowed down by rounding each number to the nearest hundred.
$17,600-7,400=10,200 \mathrm{mi} / \mathrm{h}$

