\qquad
\qquad Date \qquad
Pre-AP Geometry Fall 2015 Semester Exam REVIEW
*Chapter 1.1 Points Lines Planes
Use the figure to name each of the following:

1) three non-collinear points
(A, C, B) or (A, C, D) or any two
 points listed with E .
2) one line in three different ways

$$
\overleftrightarrow{B D}, \overleftrightarrow{D B}, \overleftrightarrow{B C}, \overleftrightarrow{C B}, \overleftrightarrow{C D}, \text { or } \overleftrightarrow{D C}
$$

3) the intersection of the two planes

$$
\overleftrightarrow{B D}
$$

4) the intersection of the two lines

$$
C
$$

Draw and label each of the following:
5) a segment with endpoints S and T with midpoint, M

6) three coplanar lines that intersect in a common point

7) ray with endpoint F that passes through G

8) two lines that do not intersect

Use the figure to name each of the following:

$\xrightarrow[C B]{\text { 9) a pair of opposite rays }}$
$\overrightarrow{C B}$ and $\overrightarrow{C A}$
10) the plane in two different ways

Plane M or $D C A$ (3 non-collinear points)
*Chapter 1.2 Line Segments and Distance Find the length of the following:
11) Segment AB
12) Segment BC
3.5
2.5

13) B is a point between points A and C, segment $A C=15.8$, and segment $A B=9.9$. Find the length of segment BC. (Draw a picture).
$B C=5.9$ units by the Segment Addition Postulate

14) Find the length of segment NP.

Find the missing side for each triangle in simplest radical form AND as a decimal rounded to the nearest hundredth.
15)

$2 \sqrt{7} 5.292$
16)

$\sqrt{17} 4.123$

*Chapter 1.3 Locating Points and Midpoints

22) K is the midpoint of segment $\mathrm{JL}, \mathrm{JL}=4 \mathrm{x}-2$, and $\mathrm{JK}=7$. Find x , the length of KL , and JL . $\mathrm{x}=4$

23) Y is the midpoint of $\overline{X Z}$. X has coordinates $(2,4)$, and Y has coordinates $(-1,1)$. Find the coordinates of Z .
$(-4,-2)$
24) $\overline{T U}$ has endpoints $\mathrm{T}(5 \mathrm{a},-1 \mathrm{~b})$ and $\mathrm{U}(1 \mathrm{a},-5 \mathrm{~b})$.

Find the midpoint.

(3a, -3b)

Find the coordinates of the midpoint of each segment:
25) $A B$ with endpoints $A(4,-6)$ and $B(-4,2)$
26) $C D$ with endpoints $C(0,-8)$ and D $(3,0)$
$(1.5,-4)$
*Chapter 1.4 and 1.5 Angle Measure and Angle

Relationships

27) $\angle A$ is an acute angle. $\angle O$ is an obtuse angle. $\angle R$ is a right angle. Put $\angle A, \angle O$, and $\angle R$ in order from least to greatest by measure.
$\angle A, \angle R$, and $\angle O$
28) a. Which point is the vertex of $\angle B C D$?

C
b. Which rays form the sides of $\angle B C D$?
$\overrightarrow{C B}$ and $\overrightarrow{C D}$
29) Correctly name all 3 angles in the diagram.

1. $\angle C O B$
2. $\angle B O A$
3. $\angle C O A$

Use the protractor to find the measure of each angle. Then classify each as acute, right, or obtuse.

30) $\angle \mathrm{VXW}$
31) $\angle \mathrm{TXW}$
32) $\angle \mathrm{RXU}$
15°; acute
105°; obtuse
110°; obtuse
33) L is in the interior of $\angle \mathrm{JKM}, m \angle \mathrm{JKL}=42^{\circ}$, and $m \angle \mathrm{LKM}=28^{\circ}$. Draw and label the diagram and use it to find $m \angle \mathrm{JKM}$.

70° by the Angle Addition Postulate
34) Ray BD bisects $\angle \mathrm{ABC}, \mathrm{m} \angle \mathrm{ABD}=(6 \mathrm{x}+4)^{\circ}$, and $\mathrm{m} \angle \mathrm{DBC}=(8 \mathrm{x}-4)^{\circ}$. Draw and label the diagram and use it to find $\mathrm{m} \angle \mathrm{ABD}$.

28° by the definition of angle bisector

Tell whether the angles are only adjacent, adjacent and form a linear pair, or not adjacent.
35) $\angle 1$ and $\angle 2$
adjacent and Linear
Pair
36) $\angle 2$ and $\angle 4$
not adjacent

37) $\angle 1$ and $\angle 3$
not adjacent
38) $\angle 2$ and $\angle 3$
adjacent only
For Exercises 39-44, use the figure at the right.
Name an angle or angle pair that satisfies each condition.
39) Name two acute vertical angles.
$\angle E K H$ and $\angle F K G$
40) Name two obtuse vertical angles.
$\angle H K G$ and $\angle E K F$

41) Name a linear pair.
$\angle \mathrm{FKG}$ and $\angle \mathrm{GKH}$ (multiple answers here)
42) Name two acute adjacent angles.
$\angle J K G$ and $\angle \mathrm{GKF}$
43) Name an angle complementary to $\angle \mathrm{EKH}$.
$\angle \mathrm{GKJ}$
44) Name an angle supplementary to $\angle \mathrm{FKG}$.
45) Find the measures of an angle and its complement if one angle measures 24 degrees more than the other.
33° and 57°
46) The measure of the supplement of an angle is 36 less than the measure of the angle. Find the measures of the angles..
108° and 72°

For Exercises 47-48, use the figure below.

47) If $\mathrm{m} \angle \mathrm{RTS}=8 \mathrm{x}+18$, find the value of x so that $\overline{T R} \perp \overline{T S}$
$\mathrm{x}=13.5$
48) If $\mathrm{m} \angle \mathrm{PTQ}=3 \mathrm{y}-10$ and $\mathrm{m} \angle \mathrm{QTR}=\mathrm{y}$, find the value of y so that $\angle \mathrm{PTR}$ is a right angle.
$y=25$

*Chapter 2.1 Inductive Reasoning

49) Inductive Reasoning is used to draw a conclusion from specific cases and/or patterns.
50) A statement you believe to be true based on Inductive Reasoning is called a \qquad _.
conjecture.
51) To show that a conjecture is true, you must
prove it using deductive reasoning.
52) To show that a conjecture is false, you can give a counterexample.
53) Complete each conjecture:
a. A pair of complementary angles have a sum of 90 degrees.
b. The square of any negative number is always positive.
54) Show that each conjecture is false by providing a counterexample:
a. Two angles that have the same vertex are adjacent. Counterexample: vertical angles
b. If $x+1>5$, then $\mathrm{x}=8$

Counterexample: $\mathrm{x}=5$
*Chapter 2.4 Deductive Reasoning
55) Deductive Reasoning is used to draw conclusions from given facts, definitions, and theorems/properties/postulates.
*Chapter 2.6 Algebraic Proofs
State which property, postulate, definition, or theorem supports each statement below.
56) If R is in the interior of $\angle \mathrm{PQS}$, then $\mathrm{m} \angle \mathrm{PQR}+\mathrm{m} \angle \mathrm{RQS}=\mathrm{m} \angle \mathrm{PQS}$. Angle Addition Postulate
57) If $\angle 1$ and $\angle 2$ are supplementary, then $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$.
Definition of Supplementary Angles
58) If $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ and $\mathrm{m} \angle 2=\mathrm{m} \angle 3$, then $\mathrm{m} \angle 1=\mathrm{m} \angle 3$. Transitive Property of Equality
59) If M is the midpoint of $\overline{A B}$, then $\overline{A M} \cong \overline{M B}$. Definition of Midpoint
60) If $\mathrm{AB}=\mathrm{CD}$, then $\mathrm{AB}+\mathrm{EF}=\mathrm{CD}+\mathrm{EF}$.

Addition Property of Equality
61) $\angle 1$ and $\angle 2$ form a linear pair, then they are supplementary.
Linear Pair Theorem
62) If $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=90$,
then $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are complementary.
Definition of Complementary Angles
63) If $\overrightarrow{B X}$ bisects $\angle A B C$, then $\mathrm{m} \angle \mathrm{ABX}=\mathrm{m} \angle \mathrm{XBC}$.

Definition of Angle Bisector
64) If $\mathrm{AM}=\mathrm{MB}$, then $\overline{A M} \cong \overline{M B}$.

Definition of Congruence
65) Complete the following Algebraic Proof by listing each step and providing its justification.

1. $-2(x+5)=-6$
2. Given
3. $-2 x-10=-6$
4. Distribution
5. $-2 x=4$
6. Addition P.O.E.
7. $x=-2$
8. Division P.O.E.

*Chapter 2.7 and 2.8 Geometric Proofs
 PRACTICE ANY AND ALL PROOFS!!

Places to find proofs on Wroblewski's Website:
*Writing Algebraic Proofs and Proof Practice 09/29
*Geometric Proof Notes and Practice 10/01
*Test Review for Test 2 10/15
*Test 2

*Chapter 3.1 Parallel Lines and Transversals Identify each of the following using the figure:

66) a pair of perpendicular segments
$\overline{D H}$ and $\overline{E H}$ (answers will vary)
67) a pair of skew segments
$\overline{A B}$ and $\overline{E H}$ (answers will vary)
68) a pair of parallel segments
$\overline{A B}$ and $\overline{D C}$ (answers will vary)
69) a pair of parallel planes
$A B C D$ and EFGH (answers will vary)
Write all possible answers for each of the following:
70) alternate interior angles
$\angle 3$ and $\angle 5 ; \angle 4$ and $\angle 8$
71) alternate exterior angles
$\angle 1$ and $\angle 7 ; \angle 2$ and $\angle 6$

72) corresponding angles
$\angle 1$ and $\angle 5 ; \angle 2$ and $\angle 8$
$\angle 4$ and $\angle 6 ; \angle 3$ and $\angle 7$
73) same-side interior angles
$\angle 4$ and $\angle 5 ; \angle 3$ and $\angle 8$

Identify the type of angle pair given:

(corresponding, alternate interior, alternate exterior, same side interior)
74) $\angle 6$ and $\angle 8$ alternate exterior angles
75) $\angle 2$ and $\angle 3$ same side interior
 angles
76) $\angle 2$ and $\angle 4$
alternate interior angles
77) $\angle 5$ and $\angle 4$
corresponding angles
*Chapter 3.2 Angles and Parallel Lines
78) $\mathrm{x}=$ \qquad 135 degrees____

79) $\mathrm{x}=$ \qquad 116 degrees \qquad

80) Solve for x and find the missing angle:

$\mathrm{x}=2, \mathrm{~m} \angle=122$ by the Alternate Exterior Angles Theorem
81) Solve for x and find the missing angle:

$x=2, m \angle=23$ by the Alternate Interior Angles Theorem

Use the figure to find the value of all the missing angles:
82) $\angle 1=120$
83) $\angle 2=60$
84) $\angle 3=60$
85) $\angle 4=120$

86) $\angle 5=60$
87) $\angle 6=60$
88) $\angle 7=120$
*Chapter 3.3 Slopes of Lines
89) Find the slope of each given line. Say if it is positive, negative, zero or undefined.

$\mathrm{m}=6 / 7$

$m=-5 / 9$

Determine if the lines are parallel, perpendicular or neither by comparing their slopes.

> 90) $H J: H(3,2), J(4,1)$
> $K M: K(-2,-4), M(-1,-5)$

Parallel
91) $L M: L(-2,2), M(2,5)$ $N P: N(0,2), P(3,-2)$ Perpendicular

*Chapter 3.4 Equations of Lines

Sketch and write the equation of the line that: $92)$ passes through $(4,7)$ and $(-2,1)$ in slope-intercept form.

$$
y=x+3
$$

93) passes through ($-4,2$) with slope $3 / 4$ in point-slope form.
$y-2=3 / 4(x+4)$

For problems 94-96, determine whether the lines are parallel, intersect, or coincide.
94) $y=-3 x+4$ and $y=-3 x+1$

Parallel
95) $6 x-12 y=-24$ and $3 y=2 x+18$

Intersect
96) $4 x+2 y=10$ and $y=-2 x+15$

Parallel
*Chapter 4.1 Classifying Triangles

For problems 97-99, classify each triangle based upon its angle measures:
97) $\triangle D F G$

Right
98) $\triangle D E G$

Acute
99) $\triangle E F G$

Obtuse

For problems 101-103, classify each triangle based upon its side lengths:
100) $\triangle E G F$

Isosceles
101) $\triangle D E F$

Scalene
102) $\triangle D F G$

Isosceles

103) Find the side lengths of each triangle:
a.

9,9 , and 9 units
b.

7, 7, and 4 units
*Chapter 4.2 Angle Relationships in Triangles
104) Find $m \angle A B C$

47 by The Triangle Sum Theoren 105) Find $m \angle A C D$ 96 by The Linear Pair Theq rem
106) Find $\mathrm{m} \angle C A D$

38 by The Triangle Sum Theorem C
107) Find $\mathrm{m} \angle L$

65 by The Triangle Sum Theorem and
Linear Pair Theorem

*Chapter 4.3 Congruent Triangles
Identify the congruent corresponding parts:

108) $\angle \mathrm{Z} \cong \angle \mathrm{Q}$
109) $\overline{Y Z} \cong \overline{P Q}$
110) $\angle \mathrm{P} \cong \angle \mathrm{Y}$
111) $\angle \mathrm{X} \cong \angle \mathrm{N}$
112) $\overline{N Q} \cong \overline{X Z}$
113) $\overline{P N} \cong \overline{Y X}$
*Chapter 4.4-4.5 SSS, SAS, ASA, AAS
114) Explain why the two triangles are congruent.

SSS

115) Show that the triangles are congruent when $\mathrm{x}=6$
SSS

116) Use SSS, ASA, or AAS to determine if the triangles are congruent.
ASA

117) Determine if the triangles are congruent based upon the information given. Justify your answer.

NOT congruent

b. cannot be determined, SSA

118) Given: $\overline{A E} \| \overline{C D}$ and $\overline{A E} \cong \overline{D C}$

Prove: $\triangle A E B \cong \triangle D C B$

122) If $\angle E B A \cong \angle E A B$, name two congruent segments. $\overline{E A} \cong \overline{E B}$
123) If $\angle C E D \cong \angle C D E$, name two congruent segments.
$\overline{C E} \cong \overline{C D}$

Find each measure.

$$
\text { 124) } m \angle A B C=60^{\circ}
$$

125) $m \angle E D F=70^{\circ}$

119) Given: $\overline{B D}$ bisects $\angle A B C$ and $\overline{A B} \cong \overline{B C}$

Prove: $\triangle A B D \cong \triangle C B D$

We are given $\overline{B D}$ bisects $\angle A B C$ and $\overline{A B} \cong \overline{B C}$. Since $\overline{B D}$ bisects $\angle A B C$, then we know $\angle A B D \cong \angle C B D$. Finally, the two triangles share side $\overline{B D}$. Therefore, $\triangle A B D \cong \triangle C B D$ by SAS.

Find the value of each variable.

$x=14$
$x=21$

*Chapter 4.6 Isosceles and Equilateral Triangles

For problem 120-123, refer to the figure below.

120) If $\overline{A C} \cong \overline{A D}$, name two congruent angles.
$\angle \mathrm{ACD}$ and $\angle \mathrm{ADC}$
121) If $\overline{B E} \cong \overline{B C}$, name two congruent angles.
$\angle \mathrm{BCE}$ and $\angle \mathrm{BEC}$

