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1.2 Energy sources and fluxes on planets. 
(Recommended reading: Ingersoll (2013), p. 33-53; Pierrehumbert (2010), Chap. 3). 
 
1.2.1 Planetary Energy Sources  
Sources of free energy are fundamental for climate and atmos. chemistry and 
determine the habitability of planets. They include: 
 
(1) radioactive decay,  (2) accretion, (3) core formation,  (4) tides, and  (5) sunlight.  
 
Fluxes in (1)-(4) at planets’ exteriors are often negligible compared to solar radiation. 
Exceptions are Jupiter, Saturn, and Neptune, and the Jovian moon Io.  

1.2.2 Radiation from the Sun and other Stars 
1.2.2.1 Spectral Types 
Table 1.3. Effective temperature (Te) as a function of spectral type  
Spectral 
type 

O5 B0 A0 F0 G0 K0 M0 L0 

Te (K) 40000 25000 11000 7600 6000 5100 3600 2200 
 
From hot, blue-white to relatively cold red, the letters OBAFGKMLT1 designate 
stellar spectral types (ignoring peculiar supergiants).  L stars (very low mass red 
dwarfs and brown dwarfs) and T stars (brown dwarfs) have been added since 1999. 
These stars are comparatively cool (<2500 K) and emit mostly at IR wavelengths.  
 
Types O-M are divided into 10 subcategories, e.g., the hottest B star is a B0, followed 
by B1, B2, and so on; B9 is followed by A0. Our Sun is G2. 
 
For historical reasons, the hotter stars are called early types and the cooler stars late 
types, so that ‘B’ is earlier than ‘F’, for example. Each spectral type is characterized 
by an effective temperature, (Te) which applies to a star’s photosphere – the region of 
the star’s atmosphere from which we see electromagnetic energy emanating, also 
called a star’s “surface”. 

 
                                                
1 Generations of students have remembered stellar spectral types with the mnemonic: ‘Oh Be A Fine 
Girl/Guy Kiss Me’. The addition of LT stars changes the end of the mnemonic to ‘My Lips Tonight’. 
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A plot of stellar luminosity against Te is the Hertzsprung-Russell (H-R) diagram. The 
thing to remember is that temperature is plotted ‘backwards’ from hot to cold on 
the x-axis so that it runs in the same sense as the series of spectral types. Stars lie 
mainly on a diagonal band, the main sequence, from upper left to lower right. For 
these stars, a mass-luminosity relation holds, L ∝ Ms

3.5, where Ms is stellar mass. 
 

1.2.2.2 The Solar Constant: Solar Radiation at the Top of Planetary Atmospheres 
 
The Sun is a gaseous sphere made up of ~73% hydrogen by mass with most of the 
remainder helium, with gross properties as follows: 
 

  (2.1) 

 
The solar constant is the flux at Earth’s mean orbital distance = (3.83 × 1026 W)/(4π × 
(1.49598 × 1011 m)2) = 1.36 × 103 W m-2. More accurately, satellites have measured 
the orbit-mean solar constant to be 1360.8±0.5 W m-2 (Kopp and Lean, 2011, GRL]. 
 
1.2.2.3 The Solar Spectrum 
- a continuum from gamma rays to radio waves with a peak flux ~0.5 µm  
 
- In the visible and IR, there are thousands of Fraunhofer absorption lines, 

characteristic of chemical elements in the photosphere. For UV wavelengths <185 
nm, lines tend to be emission.  

 
- A blackbody flux at Te = 5780 K corrected for the distance of a planet is a good 

approximation to the visible and IR portions of the solar spectrum. At <400 nm, 
the effective temperature tends to be lower, ~5000 K from 210-300 nm. However, 
the Lyman-α  peak in flux at 121 nm, far above the sun’s nominal blackbody flux, 
corresponds to the transition between ground and first excited state of H atoms. 

 
1.2.3 Planetary Energy Balance and the Greenhouse Effect  
 
1.2.3.1 Orbits and Planetary Motion 
 

 
 
We need to recap on orbits because insolation varies according to orbital position. 
The orbital eccentricity e is defined by the ratio of the distance from the center of the 
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ellipse to either focus divided by the semi-major axis (see Fig.). Alternatively, for an 
orbit with a semi-major axis a, and semi-minor axis b, the eccentricity is: 
 

  (2.2) 

 
If the orbit is circular, e = 0. But by Kepler’s first law, planetary orbits are elliptical, 
which means that b/a < 1 so that 0 < e < 1.   
 
The true anomaly f, is the angle between perihelion and planetary position. This sets 
the heliocentric (planet-to-Sun) distance , as 

  (2.3) 

Pluto has a large eccentricity e = 0.25, probably because it is a captured Kuiper Belt 
Object. Pluto’s atmosphere is consequently drastically affected by its orbital position. 
Mars, with e = 0.093, also experiences climatically significant solar flux variation 
between perihelion and aphelion. In contrast, the effect of Earth’s eccentricity of e = 
0.017 on its climate is one of modest high-latitude ice ages in recent geologic time. 
 
1.2.3.2 Time- and Spatial-Averaged Incident Solar Flux 
 

 
 
On a planet of radius R, consider an elemental ring of planetary surface defined by 
angle φ, which goes from 0 to π/2 radians. The elementary surface has area 

, and the component of sunlight normal to the surface is , 
where S0 is the solar flux at the top of the atmosphere. Over a sunlit hemisphere, 
 
  (2.4) 

 
Substitute  to solve the integral (2.4), to get power [Watts]: 
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  (2.5) 

 
A hemisphere has area 2πR2. Hence the area-averaged incident flux (in W m-2) is 
πR2S0/2πR2 = S0/2. But the hemisphere is illuminated only half the day, so  

  (2.6) 

 
Another way to look at eq. (2.6) is to note that the factor of 1/4 represents the ratio of 
disk to sphere areas (πR2/4πR2). The solar flux intercepted by the planet is a projected 
disk of area πR2 compared with a total planetary area of 4πR2. For the Earth the 
globally averaged insolation at the top of the atmosphere given by eq. (2.6) is 
(1360.8±0.5 W m-2 )/4 = 340.2±0.1 W m-2 using the measured value of S0. 
 
1.2.3.3 Albedo 
The albedo is the fraction of incident power that gets reflected. There are 3 kinds: 
 
1) Monochromatic albedo is the fraction of incident power that gets reflected or 
scattered back to space at a given frequency of light: 
 

  (2.7) 

 
2) Bond albedo (synonymous with planetary albedo) is where we integrate this over 
all frequencies: 
 

  (2.8) 

 
For climate calculations, we use the Bond albedo. 
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3) Astronomers also use geometric albedo. For planets viewed from the Earth, there is 
an angle between incident sunlight and radiation received on Earth called the phase 
angle φ, When φ = 0, the sunlight is observed in pure backscatter.  The geometric 
albedo is defined by 

Ag =
F(! = 0)

FLambert-disk

=
(reflected flux at zero phase angle)

(flux reflected from a Lambertian disk of the same cross-section)
  

(2.9) 
 
Here, FLambert-disk is the flux reflected by a disk with a Lambertian surface of the same 
cross-section as the planet at the same distance from the Sun. A Lambertian surface is 
one that reflects all incident radiation isotropically, as illustrated, such that its 
brightness is the same in all directions of view. (For example, a wall painted in mat 
white is very roughly Lambertian). Thus, the geometric albedo is the fraction of 
incident light reflected in the direction of the observer of an outer planet measured at 
opposition, meaning when the Sun, Earth and planet form a line. Geometric albedo is 
related to the Bond albedo by the expression: 
 
  (2.10) 
 
where q is a “phase integral” which reflects the variation of the intensity of radiation 
over the phase angle. (A derivation of the phase function can be found in Kartuttnen, 
(2007, “Fundamental Astronomy”), p.149-151 or in Seager (2010) Exoplanet 
Atmospheres). We merely note that if the Bond albedo Ab is 1, the phase integral q is 
1.5 and the geometric albedo is 2/3. A useful thing to remember is: even if the Bond 
albedo is not unity, the geometric albedo is 2/3 of the Bond albedo if the planet is a 
Lambertian scatterer. Also Bond and geometric albedos are equal when q =1, which 
means that reflection from the planet behaves like a Lambertian disk of the same 
diameter. 

 
1.2.3.4 Planetary equilibrium temperature 
 
Table 1.4 A comparison of equilibrium temperatures calculated using eq. (2.11) and 
the measured mean global surface temperatures for the inner planets. 

Planet Bond albedo 
(dimensionless) 

Equilibrium 
temperature 

(K) 

Mean global 
surface  

temperature 
(K) 

Greenhouse 
effect (K) 

Mercury 0.058 440* 440 0 
Venus 0.77 228 735 507 
Earth 0.3 255 288 33 
Mars 0.25 210* 218 8 
*Caution: for an airless or nearly airless world, the actual mean temperature is not the effective 
temperature. This requires some thought. 
 

Ab = qAg
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If the bond albedo is A = Ab, then, for a planet with negligible internal heat: 
 

  (2.11) 

 
where σ = 5.6697 × 10-8 W m-2 K-4 is Stefan’s constant. For the Earth, Bond albedo is 
0.3, so the LHS of eq. (2.11) is ~238 W m-2 = (1-0.3)×(1361 W m-2 /4). 
 
At equilibrium, this energy flux must be emitted to space by radiation from the Earth. 
Solving eq. (2.11) for the equilibrium temperature gives Teq = 255 K, an effective 
temperature, i.e. blackbody equivalent, which is clearly not equal to Earth’s actual 
surface temperature. 
 
1.2.3.5 The Greenhouse Effect 
The difference of Ts and Teq is a way to express the magnitude of the greenhouse 
effect 
 
  (2.12) 
 
So for the Earth, ΔTg = 288 – 255 = 33 K. 
(Note: the eqm temperature is not really that of an airless Earth because then the 
albedo would be very different and the temperature very spatially variable. So 33 K is 
a convention reflecting the fact that 255 K is characteristic of outgoing flux for an 
isothermal Earth with albedo of 0.3. Thus, the “33 K” really measures a flux 
difference. The global mean upwelling longwave (LW) flux at the surface is ~390 W 
m-2 (for 288 K), and the outgoing LW flux at the top of the atmosphere (TOA) is 
~238 W m-2 (255 K equivalent). The LW flux difference that exists between the 
surface and TOA of 150 W m-2 (Δ 33 K equivalent) measures the greenhouse effect). 
 
Earth’s greenhouse contributions in clear skies are (Kiehl & Trenberth,1997, BAMS): 
- ~2/3 of the warming from H2O  
- most of the remaining 1/3 from CO2 
- 2-3 K from CH4, O3, N2O, and various chlorofluorocarbons (CFCs)  
 
Greenhouse contributions taking into account clouds are (Schmidt et al. 2010, GRL): 
∼50% from water vapor 
∼25% from clouds 
~20% from CO2, and the rest from other gases  
 
Note: clouds enhance the greenhouse by 30 W m-2, but reduce Earth’s absorbed 
radiation by -48 W m-2 by albedo, and so greatly cool the Earth in net by -18 W m-2. 
 
H2O acts in a different manner than CO2 because it’s near its condensation 
temperature. Effectively, H2O is a slave to CO2 or other greenhouse gases: if CO2 
levels increase and warm the Earth, then the vapor pressure of H2O gets bigger, which 
amplifies the greenhouse effect. We call H2O a (positive) feedback. We call CO2 a 
forcing = a persistent disturbance that changes the climate system’s energy balance. 
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Qu.) Look at Eqs (2.11) and (2.12). What 3 factors does the mean surface temperature 
depend upon? 
 
 
 
When we consider the evolution of climates, any changes in Ts (e.g., low-latitude 
glaciation) can only be understood by appealing to changes in one or more of these 
factors. The most difficult factor is the albedo, A. Much of the albedo on Earth, 
Venus, etc., is caused by clouds. Earth’s clouds account for ~0.15 out of the 0.3.  
 
1.2.3.6 Giant Planets, Internal Heat and Equilibrium Temperature 
 
Earth’s geothermal heat flow is ~87 mW m-2 compared to a net solar flux 238 W m-2.   
 
But Jupiter, Saturn and Neptune radiate significantly more energy than they absorb. 
e.g., Jupiter radiates ~13.6 W m-2 while it absorbs only ~8.2 W m-2 solar. 
An internal energy flux of ~5.4 W m-2 makes up the difference. The source of internal 
energy in the gas giants is gravitational P.E. released from contraction and accretion. 
In Saturn’s case, it is believed to have been in state of internal differentiation for 
billions of years, in which immiscible helium “rains out” of a deep interior layer of 
metallic hydrogen towards Saturn’s core, with release of gravitational energy. 
Because Saturn is smaller and cooler in its interior than Jupiter, the phase separation 
of helium has been going for far longer than inside Jupiter, where it began more 
recently. Uranus has little internal heat flow (<42 mW m-2). This puzzle might be due 
to different internal structure or if Uranus is out of equilibrium for some reason. 
 
For giant planets with internal heat fluxes, measured effective temperature Te, exceeds 
predicted equilibrium temperature, Teq with solar flux. The internal heat flux, Fi, 
given by 
 F

i
=! (T

e

4
"Teq

4
)   (2.13) 

The total emitted flux modified to include this internal heat is given by: 
 

  (2.14) 

(Note differing definitions in the literature: sometimes people define equilibrium 
temperature as being with all energy sources, including internal energy fluxes). 
 
1.2.4 Climate Feedbacks in the Earth System 
 
Feedbacks in the Earth system amplify the mean temperature of the planet in positive 
feedback or stabilize it in negative feedback. There are many potential feedbacks for 
climate, of which four important ones are: 
 

(1) positive feedback from atmospheric water vapor 
(2) positive feedback from ice-albedo – critical in advances and retreats of the 

Pleistocene (2.6 Ma-10 ka) ice sheets and modern global warming. 
(3) negative feedback from outgoing radiation on short timescales; and 
(4) negative feedback from the carbonate-silicate cycle on geological timescales 

outgoing radiation flux = absorbed solar flux + internal heat flux
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1.2.4.1 Climate Sensitivity and Energy Balance 
 
Earth’s climate feedback is illustrated by a simple energy balance, following Budyko 
[1969]. Consider the Earth as a blackbody with a surface temperature T = T0 + ΔT. If 
T0 is 273.15 K, then the surface temperature Ts in °C equals ΔT. Thus, the emitted flux 
is 
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Taking only the first two terms, we can linearize the emitted power as 
 
 F

IR
= a + bT

s
;           T

s
 in °C  (2.15) 

 
If the Earth behaved truly like a blackbody, then this linearization would give a = 
σ(273.15)4 = 315.58 W m-2 and b = 4σ(273.15)3 = 4.62 W m-2 °C-1. But for the actual 
climate, the values of a and b are found to be a = 206 W m-2 and b = 2.2 W m-2 °C-1. 
Inserting these numbers in eq. (2.15): 
 
 239 W m-2 = 206 W m-2 + (2.2)(Ts),    from which we calculate Ts = 15°C. 
 
Because B is smaller in the real climate than for a blackbody, the surface temperature 
Ts, is more sensitive to changes in FIR (or the solar constant S0, since FIR is 
proportional to S0), i.e., Ts increases more for a given change in FIR than the 
blackbody case.  Qu.) Why? 
 

 
Above: Graph showing the outgoing IR at the top of the terrestrial atmosphere FIR, as a function of 
surface temperature. The solid line is the blackbody case. A linearization to this curve about 0°C gives 
a surface temperature of -16.6°C for an outgoing flux of 239 W m-2. A more realistic linear model has 
a surface temperature of 15°C and a significantly different slope. 
 
  Climate sensitivity λ, is the ratio of the change in global mean surface 
temperature ΔTs at equilibrium to the change in climate forcing ΔQ (in W m-2): 
 
  (2.16) !T
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The change in forcing could be a change in the solar constant or a change in the 
greenhouse effect. Let us evaluate the climate sensitivity for a blackbody and compare 
our simple but more realistic linearized model (ignoring T-dependence of albedo): 

 
1) Blackbody case  

 

So 

  (2.17) 

 
 Hence,  

  (2.18) 

 
Qu.) What is λ for the Earth in this blackbody case? What temperature change would 
be caused by a 1% change in solar flux? 
 
 
 
2) Linearized model. The purely Stefan-Boltzmann case is unrealistic because it 
neglects climate feedbacks. If we consider our linearized model, we have 
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If we now apply eq. (2.17), we obtain 
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Qu.) What is λ for the Earth in this case? How does it compare with the previous 
case? What temperature change would be caused by a 1% change in solar flux? 
 
 
 
Qu.) Radiative calculations suggest that a doubling of CO2 from 300 ppmv to 600 
ppmv causes an extra 4 W m-2 in Earth’s greenhouse effect and warms the surface. 
What surface temperature increase do we get in our linearized model? How does it 
compare with sophisticated 3D climate models? 
 
 
 
1.2.5 Radiative Time Constants 
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For planetary thermal equilibrium, we can think of some height, ze, where the 
temperature T, equals the effective temperature Te. We call this level the emission 
level. It’s analogous to a star’s photosphere. Given a lapse rate Γ, we have:  
 
 T

surface
= T

e
+ !z

e
 (2.21) 

 
Qu.) What is the emission level, given that the Earth’s troposphere has a typical lapse 
rate Γ ~ 6 K km-1, Tsurface = 288 K, and Te = 255 K.  
 
 
We can think of energy absorbed from the Sun as being balanced by emission at this 
level at temperature Te. The column mass at this level, Mce, is given by Mce = pe/g, 
where pe is the pressure at the emission level. If a temperature change ΔTel is forced 
by the absorption of solar radiation, the heat change is given by 
 

 heat change per m2  = M
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where cp is the specific heat capacity and g is gravitational acceleration. For sunlight, 
 

  

 
Consequently, we can define a time constant as follows: 
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 (2.22) 

 
This equation is also often used in the literature for any pressure level p with 
temperature T, replacing  ΔTe with T. 
If we impose τe = 1 day, we obtain a diurnal variation in temperature at the emission 
level of 
 

  (2.23) 

 
ΔTe are 2 K (Venus), 2 K (Earth), 80 K (Mars), and 0.001 K (Jupiter). Diurnal 
radiative effects are clearly important on Mars. Also from (2.23), the pressure level 
where ΔTe = Te is: 700 mb (Venus), 8 mb (Earth), 2 mb (Mars), 0.05 mb (Jupiter). 
 Note that the radiative time constant is sometimes defined differently. If the 
pressure in eq. (2.22) is taken as surface pressure, with ΔTe = Te and using eq. (2.11) 
to substitute for , we get 
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where Mc is the total columnar mass p/g; this applies only to planets with rocky 
surfaces. 

power absorbed per m2  = 
(1! A)Sp

4

!Te =
(1" A)Spg

4 pecp

!T
e

4
= S(1" A) / 4



ATMS/ASTR 555 David Catling 

Note the radiative time constant is used in simple models of atmospheric dynamics to 
simulate diabatic heating or cooling. So we’ll come back to it later in that context. 
 
 
Example: Qu.) What is the radiative time constant in days for hot Jupiter HD209458b 
at 0.1 bar where T ~ 1300 K? Given that this exoplanet’s orbital period is 3.5 days, do 
you expect to see day-night temperature differences? (Data: assume Bond albedo = 
0.3; g = 18.5 m/s2, cp = 14000 J kg-1 K-1 for H2, the stellar luminosity is 1.6 times the 
Sun; the orbital distance of the planet is 0.045 AU; the solar constant at Earth = 1360 
W m-2). (See Iro et al (2005) Astronomy & Astrophysics for more detailed radiative 
calculations for this exoplanet). 
 
 


