1.3.4 CHARACTERISTICS OF CLASSIFICATIONS

The principal characteristics of each of the six groups of road classifications are described by
the following figure and tables. Figure 1.3.4.1 illustrates the desirable interrelationship of the urban road classification groups. Tables 1.3.4.1 and 1.3.4.2 provide summaries of the typical characteristics of the various groups and subgroups, for rural and urban roads respectively.

Figure 1.3.4.1 Relationship of Urban Road Classifications

Table 1.3.4.1 Characteristics of Rural Roads

	Rural Locals	Rural Collectors	Rural Arterials	Rural Freeways
service function	traffic movement secondary consideration	traffic movement and land access of equal importance	traffic movement primary consideration	optimum mobility
land service	land access primary consideration	traffic movement and land access of equal importance	land access secondary consideration	no access
traffic volume vehicles per day (typically)	<1000 AADT	<5000 AADT	<12000 AADT	>8000 AADT
flow characteristics	interrupted flow	interrupted flow	uninterrupted flow except at	freeflow (grade separated) major intersections
design speed (km/h)	50-110	60-110	80-130	100-130
average running speed (km/h) (free flow conditions)	50-90	50-90	60-100	70-110
vehicle type	predominantly passenger cars, light to medium trucks and occasional heavy trucks	all types, up to 30% trucks in the 3 t to 5 t range	all types, up to 20\% trucks	all types, up to 20\% heavy trucks
normal connections	locals collectors	locals collectors arterials	collectors arterials freeways	arterials freeways

1.4.3 OPERATING SPEED CONSISTENCY

The safety of a road is closely linked to variations in the speed of vehicles travelling on it. These variations are of two kinds:

1. Individual drivers vary their operating speeds to adjust to features encountered along the road, such as intersections, accesses and curves in the alignment. The greater and more frequent are the speed variations, the higher is the probability of collision.
2. Drivers travelling substantially slower or faster than the average traffic speed have a higher risk of being involved in collisions.

A designer can therefore enhance the safety of a road by producing a design which encourages operating speed uniformity.

As noted in the discussion of speed profiles in Chapter 1.2, simple application of the design speed concept does not prevent inconsistencies in geometric design. Traditional North American design methods have merely ensured that all design components meet or exceed a minimum standard, but have not necessarily ensured operating speed consistency between components.

Practices used in Europe and Australia have supplemented the design speed concept with methods of identifying and quantifying geometric inconsistencies in horizontal alignments of rural two-lane highways. This type of road typically has the most problems related to design inconsistency. These methods have not been perfected, particularly in predicting the performance of a newly designed road. Their effectiveness is greater in evaluating existing roads and identifying priority improvements to reduce collision rates.

1.4.3.1 Prediction of Operating Speeds

In order to establish consistency of horizontal alignment design for a proposed new road, it is necessary to predict operating speeds
associated with different geometric elements. Limited information is generally available to assist designers with prediction of operating speeds, but the material presented in this section may help, noting the limited database used. As an alternative, some jurisdictions have local data on which to base speed predictions.

Researchers ${ }^{9}$ collected data from five US states, measuring 85 th percentile operating speeds, under free flowing traffic conditions, on long tangents and horizontal curves on rural two-lane highways. Long tangents (250 m or more) are those lengths of straight road on which a driver has time to accelerate to desired speed before approaching the next curve. The mean 85th percentile speed on long tangents was found to be $99.8 \mathrm{~km} / \mathrm{h}$ on level terrain and $96.6 \mathrm{~km} / \mathrm{h}$ in rolling terrain. It was noted that these speeds were probably constrained by the $90 \mathrm{~km} / \mathrm{h}$ posted speed in force at the time.

On horizontal curves, the research found consistent disparities between 85th percentile speeds and inferred design speeds, with the greater disparity on tighter radius curves. The 85th percentile speed exceeded the design speed on a majority of curves in each $10 \mathrm{~km} / \mathrm{h}$ increment of design speed up to a design speed of $100 \mathrm{~km} / \mathrm{h}$. At higher design speeds, the 85th percentile speed was lower than the design speed.

Using regression techniques, a relationship was found between 85th percentile speeds and the characteristics of a horizontal curve.

$$
\begin{aligned}
& \text { V85 }=\quad \begin{array}{l}
102.45+0.0037 \mathrm{~L}
\end{array} \quad(1.4 .1) \\
& \text { Where } \quad \text { V8995 }= \begin{array}{l}
85 \text { th percentile } \\
\text { speed on curve }(\mathrm{km} / \mathrm{h})
\end{array} \\
& \mathrm{L}= \text { length of curve }(\mathrm{m}) \\
& \mathrm{R}= \text { radius of curvature }(\mathrm{m})
\end{aligned}
$$

1.4.3.2 Speed Profile Model

The findings outlined in Subsection 1.4.3.1 support the conclusion that there is no strong relationship between design speed and operating speed on horizontal curves.

Consistency of horizontal alignment design cannot therefore be assured by using design speed alone. A further check can be carried out by constructing a speed profile model, using predicted 85th percentile operating speeds for new road and measured 85th percentile speeds for existing roads.

For the predictive model, it is necessary to calculate the critical tangent length between curves as follows:

$$
\begin{equation*}
\mathrm{TL}_{\mathrm{c}}=\frac{2 \mathrm{~V}_{\mathrm{f}}^{2}-\mathrm{V} 85_{1}^{2}-\mathrm{V} 85_{2}^{2}}{25.92 \mathrm{a}} \tag{1.4.2}
\end{equation*}
$$

$$
\text { Where: } \begin{aligned}
\mathrm{TL}_{\mathrm{c}}= & \text { critical tangent length }(\mathrm{m}) \\
\mathrm{V}_{\mathrm{f}}= & \begin{array}{l}
\text { 85th percentile desired } \\
\text { speed on long tangents } \\
(\mathrm{km} / \mathrm{h})
\end{array} \\
{\mathrm{V} 85_{\mathrm{n}}}= & \begin{array}{l}
85 \text { th percentile speed on } \\
\text { curve } \mathrm{n}(\mathrm{~km} / \mathrm{h})
\end{array} \\
\mathrm{a}= & \begin{array}{l}
\text { acceleration } / \text { deceleration } \\
\text { rate, assumed to be } \\
0.85 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\end{aligned}
$$

The calculation assumes that deceleration begins where required, even if the beginning of the curve is not yet visible.

Each tangent is then classified as one of three cases, as shown on Figure 1.4.3.1, by comparing the actual tangent length (TL) to the critical tangent length (TL_{c}).

Having found the relationship between each tangent length (TL) and the critical tangent length (TL_{c}), the equations in Table 1.4.3.1 can then be used, as appropriate, to construct the speed profile model.

The speed profile model is used to estimate the reductions in 85th percentile operating speeds from approach tangents to horizontal curves, or between curves. Designers should note that the research ${ }^{6,9}$ on which the model is based dealt only with two-lane rural highways. The same principles, however, can be applied to design of other classes of roads.

1.4.3.3 Safety

As noted in Chapter 1.2, there is evidence that the risk of a collision is lowest near the average speed of traffic and increases for vehicles travelling much faster or slower than average. While this is true in relation to the general distribution of speeds in a stream of traffic, it has also been found to apply when there is a variation in speeds caused by the effects of a reduction in speed from one geometric element to the next.

This particular form of speed variation may be experienced in situations such as the transition from a tangent to a curve, or between curves. In these cases, the previously mentioned research study ${ }^{9}$, found that the mean collision rate increased in direct proportion to the mean speed difference caused by the transition from one geometric element to the other. The results are noted in Figure 1.4.3.2.

The numerical values from Figure 1.4.3.2 should be used with caution, because of the database used. Wherever possible, designers should use local data. However, the principles established show the effect of a lack of horizontal alignment consistency on increasing collision potential. Figure 1.4.3.2 should not be interpreted to mean that collision rate decreases as speed decreases.
Superelevation and Minimum Spiral Parameters, $\mathrm{e}_{\max }=\mathbf{0 . 0 6 ~ m} / \mathrm{m}^{1}$

Superelevation and Minimum Spiral Parameters, $e_{\max }=0.08 \mathrm{~m} / \mathrm{m}^{1}$

Table 2.1.2.7

Figure 2.1.2.12 Lateral Clearance for Range of Lower Values of Stopping Sight Distance ${ }^{2}$

Figure 2.1.2.13 Lateral Clearance for Passing Sight Distance ${ }^{2}$

Figure 2.1.8.3 Performance Curves for Heavy Trucks, 180 g/W, Decelerations \& Accelerations ${ }^{7}$

Figure 2.1.8.4 Performance Curves for Heavy Trucks, 200 g/W, Decelerations \& Accelerations ${ }^{7}$

and limitations. When a design is incompatible with the attributes of a driver, the chances for driver error increases. Inefficient operation and collisions are often a result. ${ }^{3}$

In general, traffic volume is the most significant contributor to intersection collisions. Typically, as traffic volumes increase, conflicts increase, and therefore the number of collisions increase. ${ }^{5}$ Severity of collisions varies only slightly among rural, suburban and urban intersections; the percent of severe collisions is approximately 5% higher for rural intersections. ${ }^{5}$

Other elements related to intersection collision rates include geometric layout and traffic control. ${ }^{3}$ As previously noted, traffic control measures are not addressed in this document. The relationship of specific geometric elements and safety is described below:

Type of Intersection

In rural settings, four-legged intersections typically have higher collision rates than T-intersections (three-legged) for stop and signal controls. ${ }^{7}$

In urban settings, very little difference in collision rates between four-legged and T-intersections was found for low volume intersections (Average Daily Traffic under 20 000); however, for larger volumes, the four-legged intersection was found to have the higher collision rate. ${ }^{8}$

Sight Distance

In both an urban and a rural setting, studies have shown that the collision rate at most intersections will generally decrease when sight obstructions are removed, and sight distance increased. ${ }^{3}$

Channelization

In a rural environment, it was found that leftturn lanes would reduce the potential of passing collisions. ${ }^{9}$

In an urban setting, it was found that multivehicle collisions decrease when lane "dividers" (raised reflectors, painted lines, barriers or
medians) are used; however the use of left-turn lanes was not considered effective as a collision countermeasure but was considered effective as a means of increasing capacity. ${ }^{8}$

Cross Section

Safety considerations for cross section elements, such as lane width, are addressed in Chapter 2.2.

2.3.1.7 Intersection Spacing Considerations

Both rural road and urban road network spacing is often predicated on the location of the original road allowances prior to urban development. The systems of survey employed in the layout of original road allowances vary from region to region across Canada. As rural areas urbanize, the development of major roads generally occurs along these original road allowances, and consequently road networks vary from region to region. As examples, the land survey system in Ontario has created a basic spacing between major roads of 2.0 km , whereas the land survey system in the prairie provinces has resulted in a 1.6 km grid.

As development occurs, this spacing is often reduced. In areas of commercial or mixed use development, the traffic generated by employment and retail shopping may result in a reduced arterial spacing. In downtown areas, this spacing could be reduced further as determined by the traffic needs and the characteristics of the road network.

The spacing of intersections along a road in both an urban and rural setting has a large impact on the operation, level of service, and capacity of the roadway. Ideally, intersection spacing along a road should be selected based on function, traffic volume and other considerations so that roads with the highest function will have the least number (greatest spacing) of intersections (the relationship of road classification and the preferred functional hierarchy of circulation is described in Chapter 1.3 of this Guide). However, it is often not always possible to provide ideal intersection spacing, especially in an urban
setting. As such, the following should be considered:

Arterials

Along signalized arterial roads, it is desirable to provide spacing between signalized intersections consistent with the desired traffic progression speed and signal cycle lengths. By spacing the intersections uniformly based on known or assumed running speeds and appropriate cycle lengths, signal progression in both directions can be achieved. Progression allows platoons of vehicles to travel through successive intersections without stopping. For a progression speed of about $50 \mathrm{~km} / \mathrm{h}$ and a cycle length of 60 s , the corresponding desired spacing between signalized intersections is approximately 400 m . As speeds increase the optimal intersection spacing increases proportionately. Further information on the spacing of signalized intersections is provided in the Subsection 2.3.1.8.

A typical minimum intersection spacing along arterial roadways is 200 m , generally only applicable in areas of intense existing development or restrictive physical controls where feasible alternatives do not exist. The 200 m spacing allows for minimum lengths of back to back storage for left turning vehicles at the adjacent intersections.

The close spacing does not permit signal progression and therefore, it is normally preferable not to signalize the intersection that interferes with progression along a major arterial. Intersection spacing at or near the 200 m minimum is normally only acceptable along minor arterials, where optimizing traffic mobility is not as important as along major arterials.

Where intersection spacing along an arterial does not permit an adequate level of traffic service, a number of alternatives can be considered to improve traffic flow. These include: conversion from two-way to one-way operation, the implementation of culs-de-sac for minor connecting roads, and the introduction of channelization to restrict turning movements at selected intersections to right turns only.

On divided arterial roads, a right-in, right-out intersection without a median opening may be permitted at a minimum distance of 100 m from an adjacent all-directional intersection. The distance is measured between the closest edges of pavement of the adjacent intersecting roads.

In retrofit situations, the desired spacing of intersections along an arterial is sometimes compromised in consideration of other design controls, such as, the nature of existing adjacent development and the associated access needs.

Collectors

The typical minimum spacing between adjacent intersections along a collector road is 60 m .

Locals

Along local roads, the minimum spacing between four-legged intersections is normally 60 m . Where the adjacent intersections are three-legged a minimum spacing of 40 m is acceptable.

Cross Roadway Intersection Spacing Adjacent to Interchanges

The upper half of Figure 2.3.1.6 indicates the intersection spacing along an arterial crossing road approaching a diamond interchange. The suggested minimum distance between a collector road and the nearest ramp, as measured along the arterial cross road, is 200 m (dimension A_{c} on Figure 2.3.1.6). In the case of an arterial/arterial cross road intersection, this minimum offset distance from the ramp is normally increased to 400 m (dimension A_{a} on Figure 2.3.1.6). The same dimensions apply to arterial cross roads approaching parclo-type interchanges as shown on the lower half of Figure 2.3.1.6.

Ramp Intersection Spacing at Interchanges

The upper half of Figure 2.3.1.6, as well as Figure 2.3.1.7, illustrate the suggested and minimum intersection spacing and lane configurations on the cross road at a typical diamond interchange. The two different channelization treatments illustrate the following

Figure 2.3.8.7 Introduced Raised Median

