1-3 Transforming Linear Functions

Warm Up

Lesson Presentation

Lesson Ouiz

1-3 Transforming Linear Functions

Warm Up

Give the coordinates of each transformation of ($2,-3$).

1. horizontal translation of $5 \quad(7,-3)$
2. vertical translation of -1
$(2,-4)$
3. reflection across the x-axis $(2,3)$
4. reflection across the y-axis $(-2,-3)$

Evaluate $\boldsymbol{f}(\mathbf{- 2})$ and $\boldsymbol{f}(1.5)$.
5. $f(x)=3(x+5)-18 ; 18.5$
6. $f(x)=x^{2}+4 x-4 ; 8.25$

Objectives

Transform linear functions.

Solve problems involving linear transformations.

In Lesson 1-8, you learned to transform functions by transforming each point. Transformations can also be expressed by using function notation.

1-3 Transforming Linear Functions

Horizontal Shift of $|h|$ Units

Input value changes.
$f(x) \rightarrow f(x-h)$
$h>0$ moves
right $h<0$
moves left

1-3 Transforming Linear Functions

Vertical Shift of $|\boldsymbol{k}|$ Units

Output value changes.
$f(x) \rightarrow f(x)+k$
$k>0$ moves up
$k<0$ moves
down

1-3 Transforming Linear Functions

Reflection Across y-axis

Input value changes. $f(x) \rightarrow f(-x)$
The lines are symmetric about the y-axis.

1-3 Transforming Linear Functions

Reflection Across x-axis

Output value changes.
$f(x) \rightarrow-f(x)$
The lines are
symmetric about the x-axis.

1-3 Transforming Linear Functions

Helpful Hint

To remember the difference between vertical and horizontal translations, think:
"Add to y, go high."
"Add to x, go left."

1-3 Transforming Linear Functions

Example 1A: Translating and Reflecting Functions

Let $g(x)$ be the indicated transformation of $f(x)$. Write the rule for $g(x)$.
$f(x)=x-2$, horizontal translation right 3 units
Translating $f(x) 3$ units right subtracts 3 from each input value.

$$
\begin{aligned}
& g(x)=f(x-3) \quad \text { Subtract } 3 \text { from the input of } f(x) . \\
& g(x)=(x-3)-2 \text { Evaluate } f \text { at } x-3 . \\
& g(x)=x-5 \quad \text { Simplify. }
\end{aligned}
$$

1-3 Transforming Linear Functions

Example 1B: Translating Reflecting Functions

Let $g(x)$ be the indicated transformation of $\boldsymbol{f}(\boldsymbol{x})$. Write the rule for $\boldsymbol{g}(\boldsymbol{x})$.

x	-2	0	2
$f(x)$	0	1	2

linear function defined in the table; reflection across x-axis

1-3 Transforming Linear Functions

Example 1B Continued

Step 1 Write the rule for $f(x)$ in slope-intercept form.

x	-2	0	2
$f(x)$	0	1	2

The y-intercept is 1 . The table contains $(0,1)$.
Find the slope: $m=\frac{2-1}{2-0}=\frac{1}{2} \quad U s e(0,1)$ and $(2,2)$.

$$
\begin{aligned}
y & =m x+b & & \text { Slope-intercept form. } \\
y & =\frac{1}{2} x+1 & & \text { Substitute } \frac{1}{2} \text { for } m \text { and } 1 \text { for } b . \\
f(x) & =\frac{1}{2} x+1 & & \text { Replace } y \text { with } f(x) .
\end{aligned}
$$

1-3 Transforming Linear Functions

Example 1B Continued

Step 2 Write the rule for $g(x)$. Reflecting $f(x)$ across the x-axis replaces each y with $-y$.

$$
\begin{aligned}
& g(x)=-\left(\frac{1}{2} x+1\right) \quad g(x)=-f(x) \\
& g(x)=-\frac{1}{2} x-1
\end{aligned}
$$

1-3 Transforming Linear Functions

Check It Out! Example 1a

Let $\boldsymbol{g}(x)$ be the indicated transformation of $f(x)$. Write the rule for $g(x)$.

$f(x)=3 x+1 ;$ translation 2 units right

Translating $f(x) 2$ units right subtracts 2 from each input value.

$$
\begin{aligned}
& g(x)=f(x-2) \quad \text { Subtract } 2 \text { from the input of } f(x) . \\
& g(x)=3(x-2)+1 \text { Evaluate } f \text { at } x-2 . \\
& g(x)=3 x-5 \quad \text { Simplify. }
\end{aligned}
$$

1-3 Transforming Linear Functions

Check It Out! Example 1b

Let $g(x)$ be the indicated transformation of $\boldsymbol{f}(\boldsymbol{x})$. Write the rule for $\boldsymbol{g}(\boldsymbol{x})$.

x	-1	0	1
$f(x)$	1	2	3

linear function defined in the table; reflection across the \boldsymbol{x}-axis

1-3 Transforming Linear Functions

Check It Out! Example 1b Continued

Step 1 Write the rule for $f(x)$ in slope-intercept form.

x	-1	0	1
$f(x)$	1	2	3

The y-intercept is 2 . The table contains $(0,2)$.
Find the slope: $m=\frac{3-2}{1-0}=1 \quad$ Use $(0,1)$ and (2, 2).

$$
\begin{aligned}
y & =m x+b & & \text { Slope-intercept form } \\
y & =x+2 & & \text { Substitute } 1 \text { for } m \text { and } 2 \text { for } b . \\
f(x) & =x+2 & & \text { Replace } y \text { with } f(x) .
\end{aligned}
$$

1-3 Transforming Linear Functions

Check It Out! Example 1b Continued

Step 2 Write the rule for $g(x)$. Reflecting $f(x)$ across the x-axis replaces each y with $-y$.

$$
\begin{aligned}
& g(x)=-(x-2) \quad g(x)=-f(x) \\
& g(x)=-x+2
\end{aligned}
$$

Stretches and compressions change the slope of a linear function. If the line becomes steeper, the function has been stretched vertically or compressed horizontally. If the line becomes flatter, the function has been compressed vertically or stretched horizontally.

1-3 Transforming Linear Functions

Stretches and Compressions

Horizontal	Vertical
Horizontal Stretch/Compression by a Factor of b	Vertical Stretch/Compression by a Factor of a
 Input value changes. $f(x) \rightarrow f\left(\frac{1}{b} x\right)$	 Output value changes. $f(x) \rightarrow a \cdot f(x)$
$b>1$ stretches away from the y-axis. $0<\|b\|<1$ compresses toward the y-axis.	$a>1$ stretches away from the x-axis. $0<\|a\|<1$ compresses toward the x-axis.

Helpful Hint

These don't change!

- y-intercepts in a horizontal stretch or compression
- x-intercepts in a vertical stretch or compression

1-3 Transforming Linear Functions

Example 2: Stretching and Compressing Linear Functions

Let $g(x)$ be a horizontal compression of $f(x)=-x+4$ by a factor of $\frac{1}{2}$. Write the rule for $g(x)$, and graph the function.

Horizontally compressing $f(x)$ by a factor of $\frac{1}{2}$ replaces each x with $\frac{1}{b} x$ where $b=\frac{1}{2}$.

1-3 Transforming Linear Functions

Example 2A Continued

$$
\begin{array}{rlrl}
g(x) & =-\left(\frac{1}{b}\right) x+4 & & \text { For horizontal compression, use } \frac{1}{b} \\
& =-\left(\begin{array}{ll}
\left.\frac{1}{\frac{1}{2}}\right) \\
& =-(2 x)+4 \\
& \text { Replace } x \text { with } 2 x \\
g(x) & =-2 x+4
\end{array}\right. & \text { Simplititute } \frac{1}{2} \text { for } b .
\end{array}
$$

1-3 Transforming Linear Functions

Example 2A Continued

Check Graph both functions on the same coordinate plane. The graph of $g(x)$ is steeper than $f(x)$, which indicates that $g(x)$ has been horizontally compressed from $f(x)$, or pushed toward the y-axis.

1-3 Transforming Linear Functions

Check It Out! Example 2

Let $g(x)$ be a vertical compression of $f(x)=3 x+2$ by a factor of $\frac{1}{4}$. Write the rule for $g(x)$ and graph the function.

Vertically compressing $f(x)$ by a factor of $\frac{1}{4}$ replaces each $f(x)$ with $a \cdot f(x)$ where $a=\frac{1}{4}$.

1-3 Transforming Linear Functions

Check It Out! Example 2 Continued

$$
\begin{aligned}
g(x) & =a(3 x+2) & & \text { For vertical compression, use a. } \\
& =\frac{1}{4}(3 x+2) & & \text { Substitute } \frac{1}{4} \text { for } a . \\
g(x) & =\frac{3}{4} x+\frac{1}{2} & & \text { Simplify. }
\end{aligned}
$$

1-3 Transforming Linear Functions

Graph both functions on the same coordinate plane. The graph of $g(x)$ is less steep than $f(x)$, which indicates that $g(x)$ has been vertically compressed from $f(x)$, or compressed towards the x-axis.

Some linear functions involve more than one transformation by applying individual transformations one at a time in the order in which they are given.

For multiple transformations, create a temporary function-such as $h(x)$ in Example 3 below-to represent the first transformation, and then transform it to find the combined transformation.

1-3 Transforming Linear Functions

Example 3: Combining Transformations of Linear

 FunctionsLet $\boldsymbol{g}(x)$ be a horizontal shift of $f(x)=3 x$ left 6 units followed by a horizontal stretch by a factor of 4. Write the rule for $\boldsymbol{g}(x)$.

Step 1 First perform the translation.

$$
\begin{array}{ll}
h(x)=f(x+6) & \text { Add } 6 \text { to the input value. } \\
h(x)=3(x+6) & \text { Evaluate } f \text { at } x+6 . \\
h(x)=3 x+18 & \text { Distribute. }
\end{array}
$$

1-3 Transforming Linear Functions

Example 3 Continued

Step 2 Then perform the stretch.
Stretching $h(x)$ horizontally by a factor of 4 replaces each x with $\frac{1}{b} x$ where $b=4$.
$\begin{array}{ll}g(x)=3\left(\frac{1}{b}\right) x+18 & \text { For horizontal compression, use } \frac{1}{b} . \\ g(x)=3\left(\frac{1}{4}\right) x+18 & \text { Substitute } 4 \text { for } b . \\ g(x)=\frac{3}{4} x+18 & \text { Simplify. }\end{array}$

1-3 Transforming Linear Functions

Check It Out! Example 3

Let $g(x)$ be a vertical compression of $f(x)=x$ by a factor of $\frac{1}{2}$ followed by a horizontal shift 8 left units. Write the rule for $\boldsymbol{g}(\boldsymbol{x})$.

Step 1 First perform the translation.

$$
\begin{array}{ll}
h(x)=f(x+8) & \text { Add } 8 \text { to the input value. } \\
h(x)=x+8 & \text { Evaluate } f \text { at } x+8 \\
h(x)=x+8 & \text { Distribute. }
\end{array}
$$

1-3 Transforming Linear Functions

Check It Out! Example 3

Step 2 Then perform the stretch.
Stretching $h(x)$ vertically by a factor of $\frac{1}{2}$ multiplies the function by $\frac{1}{2}$.

$$
\begin{array}{ll}
g(x)=\left(\frac{1}{2}\right)(x+8) & \text { Multiply the function by } \frac{1}{2} \\
g(x)=\frac{1}{2}(x+8) & \text { Simplify. }
\end{array}
$$

1-3 Transforming Linear Functions

Homework!

Page 28: 1-6, 8-14, 16-20

1-3 Transforming Linear Functions

Example 4A: Fund-raising Application

The golf team is selling T-shirts as a fundraiser. The function $R(n)=7.5 n$ represents the team' s revenue in dollars, and n is the number of t-shirts sold.

The team paid $\mathbf{\$ 6 0}$ for the \mathbf{T}-shirts. Write a new function $P(n)$ for the team's profit.

The initial costs must be subtracted from the revenue.

$$
\begin{array}{ll}
R(n)=7.5 n & \text { Original function } \\
P(n)=7.5 n-60 & \text { Subtract the expenses. }
\end{array}
$$

1-3 Transforming Linear Functions

Example 4B: Fund-raising Application

Graph both $P(n)$ and $R(n)$ on the same coordinate plane.

Graph both functions. The lines have the same slope but different y-intercepts.

Note that the profit can be negative but the number of T-shirts sold cannot be less than 0 .

T-shirts sold

1-3 Transforming Linear Functions

Example 4C: Fund-raising Application

Describe the transformation(s) that have been applied.

The graph indicates that $P(n)$ is a translation of $R(n)$. Because 60 was subtracted, $P(n)=R(n)-60$. This indicates a vertical shift 60 units down.

1-3 Transforming Linear Functions

Check It Out! Example 4a

The Dance Club is selling beaded purses as a fund-raiser. The function $R(n)=12.5 n$ represents the club' s revenue in dollars where n is the number of purses sold.
The club paid $\$ 75$ for the materials needed to make the purses. Write a new function $P(n)$ for the club's profit.

What if ...? The club members decided to double the price of each purse

The initial costs must be subtracted from the revenue.

$$
S(n)=25 n-75 \quad \text { Subtract the expenses. }
$$

1-3 Transforming Linear Functions

Check It Out! Example 4b

Graph both $S(n)$ and $P(n)$ on the same coordinate plane.

Graph both functions.
The lines have the same slope but different y-intercepts.

Note that the profit can be negative but the number of purses sold cannot be less than 0 .

Purses

1-3 Transforming Linear Functions

Check It Out! Example 4c

Describe the transformation(s) that have been applied.

The graph indicates that $P(n)$ is a compression of $S(n)$. Because the price was doubled, $S(n)=2 R(n)-75$. This indicates a horizontal compression by a factor of $\frac{1}{2}$.

1-3 Transforming Linear Functions

Lesson Quiz: Part I

Let $g(x)$ be the indicated transformation of $f(x)=3 x+1$. Write the rule for $g(x)$.

1. horizontal translation 3 units right $g(x)=3 x-8$
2. reflection across the x-axis

$$
g(x)=-3 x-1
$$

3. vertical stretch by a factor of 2 . $g(x)=6 x+2$
4. vertical shift up 4 units followed by a horizontal compression of $\frac{1}{3}$.
$g(x)=9 x+5$

1-3 Transforming Linear Functions

Lesson Quiz: Part II

5. The cost of a classified ad is represented by $C(I)=1.50 I+4.00$ where I is the number of lines in the ad. The cost is increased by $\$ 3.00$ when color is used.

Write a new function $H(I)$ for the cost of a classified ad in color, and describe the transformation(s) that have been applied. $H(I)=1.50 I+7.00$; shift 3 units up

