© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*1-4. A force of 80 N is supported by the bracket as shown. Determine the resultant internal loadings acting on the section through point A.

Equations of Equilibrium:

$$
\begin{gathered}
{ }^{+} \nearrow \Sigma F_{x^{\prime}}=0 ; \quad N_{A}-80 \cos 15^{\circ}=0 \\
\nwarrow^{+} \Sigma F_{y^{\prime}}=0 ; \quad V_{A}-80 \sin 15^{\circ}=0 \\
\\
V_{A}=20.7 \mathrm{~N} \\
\varsigma+\Sigma M_{A}=0 ; \\
M_{A}+80 \cos 45^{\circ}\left(0.3 \cos 30^{\circ}\right) \\
\\
\\
\\
\\
\\
\\
\\
M_{A}=-80 \sin 45^{\circ}\left(0.1+0.3 \sin 30^{\circ}\right)=0
\end{gathered}
$$

Ans.

Ans.
or
$\zeta+\Sigma M_{A}=0 ; \quad M_{A}+80 \sin 15^{\circ}\left(0.3+0.1 \sin 30^{\circ}\right)$

$$
-80 \cos 15^{\circ}\left(0.1 \cos 30^{\circ}\right)=0
$$

$$
M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.

Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.

1-10. The boom $D F$ of the jib crane and the column $D E$ have a uniform weight of $50 \mathrm{lb} / \mathrm{ft}$. If the hoist and load weigh 300 lb , determine the resultant internal loadings in the crane on cross sections through points A, B, and C.

Equations of Equilibrium: For point A

$$
\begin{array}{cc}
+\Sigma F_{x}=0 ; & N_{A}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{A}-150-300=0 \\
& V_{A}=450 \mathrm{lb} \\
\varsigma+\Sigma M_{A}=0 ; & -M_{A}-150(1.5)-300(3)=0 \\
& M_{A}=-1125 \mathrm{lb} \cdot \mathrm{ft}=-1.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point B

$$
\begin{array}{rlr}
\pm \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-550-300 & =0 \\
V_{B} & =850 \mathrm{lb}
\end{array}
$$

Ans.

Ans.

$$
\begin{aligned}
\zeta+\sum M_{B}=0 ; & -M_{B}-550(5.5)-300(11)=0 \\
& M_{B}=-6325 \mathrm{lb} \cdot \mathrm{ft}=-6.325 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Negative sign indicates that M_{B} acts in the opposite direction to that shown on FBD.

Equations of Equilibrium: For point C

$$
\begin{array}{cc}
+\Sigma F_{x}=0 ; & V_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & -N_{C}-250-650-300=0 \\
& N_{C}=-1200 \mathrm{lb}=-1.20 \mathrm{kip} \\
C+\Sigma M_{C}=0 ; & -M_{C}-650(6.5)-300(13)=0 \\
& M_{C}=-8125 \mathrm{lb} \cdot \mathrm{ft}=-8.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.
Negative signs indicate that N_{C} and M_{C} act in the opposite direction to that shown on FBD.
*1-20. Determine the resultant internal loadings acting on the cross section through point D. Assume the reactions at the supports A and B are vertical.

Referring to the FBD of the entire beam, Fig. a,
$C+\sum M_{B}=0 ; \quad \frac{1}{2}(6)(6)(2)+\frac{1}{2}(6)(6)(10)-A_{y}(12)=0 \quad A_{y}=18.0 \mathrm{kip}$
Referring to the FBD of this segment, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{D}=0$
Ans.
$+\uparrow \Sigma F_{y}=0 ; \quad 18.0-\frac{1}{2}(6)(6)-V_{D}=0 \quad V_{D}=0$
$\varsigma+\Sigma M_{A}=0 ; \quad M_{D}-18.0(2)=0 \quad M_{D}=36.0 \mathrm{kip} \cdot \mathrm{ft}$
Ans.

Ans.

-1-21. The forged steel clamp exerts a force of $F=900 \mathrm{~N}$ on the wooden block. Determine the resultant internal loadings acting on section $a-a$ passing through point A.

Internal Loadings: Referring to the free-body diagram of the section of the clamp shown in Fig. a,
$\Sigma F_{y^{\prime}}=0 ;$
$900 \cos 30^{\circ}-N_{a-a}=0$
$N_{a-a}=779 \mathrm{~N}$
$\Sigma F_{x^{\prime}}=0 ;$
$V_{a-a}-900 \sin 30^{\circ}=0$
$V_{a-a}=450 \mathrm{~N}$
$\zeta+\Sigma M_{A}=0 ;$
$900(0.2)-M_{a-a}=0$
$M_{a-a}=180 \mathrm{~N} \cdot \mathrm{~m}$

Ans.
Ans.
Ans.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-27. The pipe has a mass of $12 \mathrm{~kg} / \mathrm{m}$. If it is fixed to the wall at A, determine the resultant internal loadings acting on the cross section at B. Neglect the weight of the wrench $C D$.

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & \left(N_{B}\right)_{x}=0 & \text { Ans. } \\
\Sigma F_{y}=0 ; & \left(V_{B}\right)_{y}=0 & \text { Ans. } \\
\Sigma F_{z}=0 ; & \left(V_{B}\right)_{z}-60+60-(0.2)(12)(9.81)-(0.4)(12)(9.81)=0 & \\
& \left(V_{B}\right)_{z}=70.6 \mathrm{~N} & \text { Ans. } \\
\Sigma M_{x}=0 ; & \left(T_{B}\right)_{x}+60(0.4)-60(0.4)-(0.4)(12)(9.81)(0.2)=0 & \\
& \left(T_{B}\right)_{x}=9.42 \mathrm{~N} \cdot \mathrm{~m} & \text { Ans. } \\
\Sigma M_{y}=0 ; & \left(M_{B}\right)_{y}+(0.2)(12)(9.81)(0.1)+(0.4)(12)(9.81)(0.2)-60(0.3)=0 \\
& \left(M_{B}\right)_{y}=6.23 \mathrm{~N} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

$\Sigma M_{z}=0 ; \quad\left(M_{B}\right)_{z}=0$
Ans.

© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-35. The bars of the truss each have a cross-sectional area of $1.25 \mathrm{in}^{2}$. Determine the average normal stress in each member due to the loading $P=8$ kip. State whether the stress is tensile or compressive.

Ans.

Ans.

Ans.

Ans.

Joint B :

$$
\begin{aligned}
\sigma_{B C} & =\frac{F_{B C}}{A_{B C}}=\frac{29.33}{1.25}=23.5 \mathrm{ksi} \\
\sigma_{B D} & =\frac{F_{B D}}{A_{B D}}=\frac{23.33}{1.25}=18.7 \mathrm{ksi}
\end{aligned}
$$

Ans.

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-55. Rods $A B$ and $B C$ each have a diameter of 5 mm . If the load of $P=2 \mathrm{kN}$ is applied to the ring, determine the average normal stress in each rod if $\theta=60^{\circ}$.

Consider the equilibrium of joint B, Fig. a,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & 2-F_{A B} \sin 60^{\circ}=0 \quad F_{A B}=2.309 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & 2.309 \cos 60^{\circ}-F_{B C}=0 \quad F_{B C}=1.155 \mathrm{kN}
\end{array}
$$

The cross-sectional area of wires $A B$ and $B C$ are $A_{A B}=A_{B C}=\frac{\pi}{4}\left(0.005^{2}\right)$
$=6.25\left(10^{-6}\right) \pi \mathrm{m}^{2}$. Thus,
$\left(\sigma_{\text {avg }}\right)_{A B}=\frac{F_{A B}}{A_{A B}}=\frac{2.309\left(10^{3}\right)}{6.25\left(10^{-6}\right) \pi}=117.62\left(10^{6}\right) \mathrm{Pa}=118 \mathrm{MPa}$
Ans.
$\left(\sigma_{\text {avg }}\right)_{B C}=\frac{F_{B C}}{A_{B C}}=\frac{1.155\left(10^{3}\right)}{6.25\left(10^{-6}\right) \pi}=58.81\left(10^{6}\right) \mathrm{Pa}=58.8 \mathrm{MPa}$
Ans.

1-59. The open square butt joint is used to transmit a force of 50 kip from one plate to the other. Determine the average normal and average shear stress components that this loading creates on the face of the weld, section $A B$.

Equations of Equilibrium:

$\begin{array}{lll}\nwarrow^{+} \Sigma F_{y}=0 ; & N-50 \cos 30^{\circ}=0 & N=43.30 \mathrm{kip} \\ +\nearrow \Sigma F_{x}=0 ; & -V+50 \sin 30^{\circ}=0 & V=25.0 \mathrm{kip}\end{array}$

Average Normal and Shear Stress:

$$
\begin{gathered}
A^{\prime}=\left(\frac{2}{\sin 60^{\circ}}\right)(6)=13.86 \mathrm{in}^{2} \\
\sigma=\frac{N}{A^{\prime}}=\frac{43.30}{13.86}=3.125 \mathrm{ksi} \\
\tau_{\text {avg }}=\frac{V}{A^{\prime}}=\frac{25.0}{13.86}=1.80 \mathrm{ksi}
\end{gathered}
$$

Ans.
*1-60. If $P=20 \mathrm{kN}$, determine the average shear stress developed in the pins at A and C. The pins are subjected to double shear as shown, and each has a diameter of 18 mm .

Referring to the FBD of member $A B$, Fig. a
$\zeta+\Sigma M_{A}=0 ; \quad F_{B C} \sin 30^{\circ}(6)-20(2)-20(4)=0 \quad F_{B C}=40 \mathrm{kN}$
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad A_{x}-40 \cos 30^{\circ}=0 \quad A_{x}=34.64 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ;$
$A_{y}-20-20+40 \sin 30^{\circ}$
$A_{y}=20 \mathrm{kN}$

Thus, the force acting on $\operatorname{pin} A$ is
$F_{A}=2 \overline{A_{x}^{2}+A_{y}{ }^{2}}=2 \overline{34.64^{2}+20^{2}}=40 \mathrm{kN}$
Pins A and C are subjected to double shear. Referring to their FBDs in Figs. b and c,
$V_{A}=\frac{F_{A}}{2}=\frac{40}{2}=20 \mathrm{kN} \quad V_{C}=\frac{F_{B C}}{2}=\frac{40}{2}=20 \mathrm{kN}$
The cross-sectional area of Pins A and C are $A_{A}=A_{C}=\frac{\pi}{4}\left(0.018^{2}\right)$ $=81\left(10^{-6}\right) \pi \mathrm{m}^{2}$. Thus
$\tau_{A}=\frac{V_{A}}{A_{A}}=\frac{20\left(10^{3}\right)}{81\left(10^{-6}\right) \pi}=78.59\left(10^{6}\right) \mathrm{Pa}=78.6 \mathrm{MPa}$
$\tau_{C}=\frac{V_{C}}{A_{C}}=\frac{20\left(10^{3}\right)}{81\left(10^{-6}\right) \pi}=78.59\left(10^{6}\right) \mathrm{Pa}=78.6 \mathrm{MPa}$

(a)

Ans.

Ans.

(b) exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*1-64. The triangular blocks are glued along each side of the joint. A C-clamp placed between two of the blocks is used to draw the joint tight. If the glue can withstand a maximum average shear stress of 800 kPa , determine the maximum allowable clamping force \mathbf{F}.

Internal Loadings: The shear force developed on the glued shear plane can be obtained by writing the force equation of equilibrium along the x axis with reference to the free-body diagram of the triangular block, Fig. a.

$$
\xrightarrow{+} \Sigma F_{x}=0 ; \quad F \cos 45^{\circ}-V=0 \quad V=\frac{2 \overline{2}}{2} F
$$

Average Normal and Shear Stress: The area of the glued shear plane is $A=0.05(0.025)=1.25\left(10^{-3}\right) \mathrm{m}^{2}$. We obtain
$\tau_{\text {avg }}=\frac{V}{A} ;$

$$
\begin{gathered}
800\left(10^{3}\right)=\frac{\frac{2 \overline{2}}{2} F}{1.25\left(10^{-3}\right)} \\
F=1414 \mathrm{~N}=1.41 \mathrm{kN}
\end{gathered}
$$

Ans.

(a)
-1-65. The triangular blocks are glued along each side of the joint. A C-clamp placed between two of the blocks is used to draw the joint tight. If the clamping force is $F=900 \mathrm{~N}$, determine the average shear stress developed in the glued shear plane.

Internal Loadings: The shear force developed on the glued shear plane can be obtained by writing the force equation of equilibrium along the x axis with reference to the free-body diagram of the triangular block, Fig. a.
$\xrightarrow{+} \Sigma F_{x}=0 ;$
$900 \cos 45^{\circ}-V=0$
$V=636.40 \mathrm{~N}$

Average Normal and Shear Stress: The area of the glued shear plane is $A=0.05(0.025)=1.25\left(10^{-3}\right) \mathrm{m}^{2}$. We obtain

$$
\tau_{\text {avg }}=\frac{V}{A}=\frac{636.40}{1.25\left(10^{-3}\right)}=509 \mathrm{kPa}
$$

Ans.

(a)

1-86. The boom is supported by the winch cable that has an allowable normal stress of $\sigma_{\text {allow }}=24 \mathrm{ksi}$. If it is required that it be able to slowly lift 5000 lb , from $\theta=20^{\circ}$ to $\theta=50^{\circ}$, determine the smallest diameter of the cable to the nearest $\frac{1}{16} \mathrm{in}$. The boom $A B$ has a length of 20 ft . Neglect the size of the winch. Set $d=12 \mathrm{ft}$.

Maximum tension in cable occurs when $\theta=20^{\circ}$.

$$
\begin{aligned}
& \frac{\sin 20^{\circ}}{20}=\frac{\sin \psi}{12} \\
& \psi=11.842^{\circ} \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad-T \cos 20^{\circ}+F_{A B} \cos 31.842^{\circ}=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad F_{A B} \sin 31.842^{\circ}-T \sin 20^{\circ}-5000=0 \\
& T=20698.3 \mathrm{lb} \\
& F_{A B}=22896 \mathrm{lb} \\
& \sigma=\frac{P}{A} ; \quad 24\left(10^{3}\right)=\frac{20698.3}{\frac{\pi}{4}(d)^{2}} \\
& d=1.048 \mathrm{in} . \\
& \text { Use } \quad d=1 \frac{1}{16} \mathrm{in} \text {. }
\end{aligned}
$$

Ans.

1-87. The $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ oak post is supported on the pine block. If the allowable bearing stresses for these materials are $\sigma_{\text {oak }}=43 \mathrm{MPa}$ and $\sigma_{\text {pine }}=25 \mathrm{MPa}$, determine the greatest load P that can be supported. If a rigid bearing plate is used between these materials, determine its required area so that the maximum load P can be supported. What is this load?

For failure of pine block:

$$
\begin{aligned}
\sigma=\frac{P}{A} ; \quad 25\left(10^{6}\right) & =\frac{P}{(0.06)(0.06)} \\
P & =90 \mathrm{kN}
\end{aligned}
$$

Ans.

For failure of oak post:

$$
\begin{aligned}
\sigma=\frac{P}{A} ; & 43\left(10^{6}\right)
\end{aligned}=\frac{P}{(0.06)(0.06)}, ~ r e ~ 154.8 \mathrm{kN}
$$

Area of plate based on strength of pine block:

$$
\begin{aligned}
\sigma=\frac{P}{A} ; \quad 25\left(10^{6}\right) & =\frac{154.8(10)^{3}}{A} \\
A & =6.19\left(10^{-3}\right) \mathrm{m}^{2} \\
P_{\max } & =155 \mathrm{kN}
\end{aligned}
$$

Ans.
Ans.

1-91. The soft-ride suspension system of the mountain bike is pinned at C and supported by the shock absorber $B D$. If it is designed to support a load of $P=1500 \mathrm{~N}$, determine the factor of safety of pins B and C against failure if they are made of a material having a shear failure stress of $\tau_{\text {fail }}=150 \mathrm{MPa}$. Pin B has a diameter of 7.5 mm , and pin C has a diameter of 6.5 mm . Both pins are subjected to double shear.

Internal Loadings: The forces acting on pins B and C can be determined by considerning the equilibrium of the free-body diagram of the soft-ride suspension system shown in Fig. a.
$+\Sigma M_{C}=0 ; \quad 1500(0.4)-F_{B D} \sin 60^{\circ}(0.1)-F_{B D} \cos 60^{\circ}(0.03)=0$

$$
F_{B D}=5905.36 \mathrm{~N}
$$

$\xrightarrow{+} \Sigma F_{x}=0 ;$

$$
C_{x}-5905.36 \cos 60^{\circ}=0
$$

$$
C_{x}=2952.68 \mathrm{~N}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad 5905.36 \sin 60^{\circ}-1500-C_{y}=0 C_{y}=3614.20 \mathrm{~N}
$$

Thus,
$F_{B}=F_{B D}=5905.36 \mathrm{~N} \quad F_{C}=2 \overline{C_{x}^{2}+C_{y}^{2}}=2 \overline{2952.68^{2}+3614.20^{2}}$
$=4666.98 \mathrm{~N}$

Since both pins are in double shear,
$V_{B}=\frac{F_{B}}{2}=\frac{5905.36}{2}=2952.68 \mathrm{~N}$

$$
V_{C}=\frac{F_{C}}{2}=\frac{4666.98}{2}=2333.49 \mathrm{~N}
$$

Allowable Shear Stress: The areas of the shear plane for pins B and C are $A_{B}=\frac{\pi}{4}\left(0.0075^{2}\right)=44.179\left(10^{-6}\right) \mathrm{m}^{2} \quad$ and $\quad A_{C}=\frac{\pi}{4}\left(0.0065^{2}\right)=33.183\left(10^{-6}\right) \mathrm{m}^{2}$. We obtain
$\left(\tau_{\text {avg }}\right)_{B}=\frac{V_{B}}{A_{B}}=\frac{2952.68}{44.179\left(10^{-6}\right)}=66.84 \mathrm{MPa}$
$\left(\tau_{\text {avg }}\right)_{C}=\frac{V_{C}}{A_{C}}=\frac{2333.49}{33.183\left(10^{-6}\right)}=70.32 \mathrm{MPa}$
Using these results,
(F.S. $)_{B}=\frac{\tau_{\text {fail }}}{\left(\tau_{\text {avg }}\right)_{B}}=\frac{150}{66.84}=2.24$

Ans.
$(\text { F.S. })_{C}=\frac{\tau_{\text {fail }}}{\left(\tau_{\text {avg }}\right)_{C}}=\frac{150}{70.32}=2.13$
Ans.

