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ABSTRACT 

 

 

  The ability to produce mirrors for large astronomical telescopes is limited by the 

accuracy of the systems used to test the surfaces of such mirrors.  Typically the mirror 

surfaces are measured by comparing their actual shapes to a precision master, which may 

be created using combinations of mirrors, lenses, and holograms.  The work presented 

here develops several optical testing techniques that do not rely on a large or expensive 

precision, master reference surface.  In a sense these techniques provide absolute optical 

testing. 

The Giant Magellan Telescope (GMT) has been designed with a 350 m2 

collecting area provided by a 25 m diameter primary mirror made out from seven circular 

independent mirror segments.  These segments create an equivalent f/0.7 paraboloidal 

primary mirror consisting of a central segment and six outer segments.  Each of the outer 

segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from 

the best-fitting sphere.  Much of the work in this dissertation is motivated by the need to 

measure the surfaces or such large mirrors accurately, without relying on a large or 

expensive precision reference surface.   

One method for absolute testing describing in this dissertation uses multiple 

measurements relative to a reference surface that is located in different positions with 
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respect to the test surface of interest.  The test measurements are performed with an 

algorithm that is based on the maximum likelihood (ML) method.  Some methodologies 

for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT 

primary mirror segments were specifically developed.  For example, the optical figure of 

a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-

aperture measurements.  The optical figure of the reference surface used in the 1-meter 

sub-aperture measurements was also determined to the 2 nm level.  The optical test 

methodology for a 1.7-m off axis parabola was evaluated by moving several times the 

mirror under test in relation to the test system. The result was a separation of errors in the 

optical test system to those errors from the mirror under test.  This method proved to be 

accurate to 12nm rms. 

Another absolute measurement technique discussed in this dissertation utilizes the 

property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal 

point. We have developed a scanning pentaprism technique that exploits this geometry to 

measure off-axis paraboloidal mirrors such as the GMT segments.  This technique was 

demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 

nm rms. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. BACKGROUND  

The demand for an increase in theoretical telescope resolution and light gathering 

power translates into a demand for high quality and large aperture optics that often are 

strongly aspheric in shape.  An example of a telescope with a large aperture is the Giant 

Magellan Telescope (GMT) (Burge et al. 2006; Johns 2006) which is designed with a 

large segmented mirror that is 25 m in diameter. The GMT primary mirror comprises six 

off-axis mirror segments surrounding a central on-axis segment; each segment is 8.4 m in 

diameter. The segments create a mirror equivalent to an f/0.7 paraboloidal primary.  The 

outer segments have an off-axis aspheric shape with a maximum aspheric departure of 

14.5 mm from the best-fitting sphere. The fabricating of the GMT segments posses many 

new challenges to optical testing and optical metrology.  

The main test system to be used to test the off-axis segments of the GMT employs 

two tilted spherical mirrors and a computer generated hologram (CGH) that act together 

as a null corrector. The accuracy of this test system highly depends on the alignment of 

all the system components. However, two other independent and absolute tests have been 

designed for verifying and validating the measurement of the main test. These include a 

so-called shear test and a scanning pentaprism test. Due to the off-axis asphericity of the 



 

 

18

 

GMT segments, many new testing issues have been encountered and they have been 

solved for these two tests. At the time of this writing the first GMT mirror is under 

coasting and generating the shape. We have demonstrated the two tests by measuring the 

New Solar telescope (NST) primary mirror (Martin, et al. 2006), which is a 1.7m off-axis 

parabola or a 1/5 scaled version of the GMT off-axis segment.  

In addition to the contributions made for testing large aspheric mirrors, the testing 

of large flat mirrors is also an important topic addressed in this dissertation.  An 

algorithm that is based on the Maximum Likelihood (ML) method has been developed 

for processing testing data from a 1.6m flat mirror. This algorithm has also been 

successfully applied to reduce the data of the shear test mentioned above. 

In all, the ML algorithm, the absolute testing of large flat mirrors, and the two 

absolute verification tests for the GMT off-axis segments are the technical contributions 

of this dissertation.  
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1.2. WORK IN THIS DISSERTAION  

The technical contributions in this dissertation were made to support several 

optical fabrication projects at the University of Arizona optics shops and Steward 

Observatory Mirror Lab (SOML). These projects are the fabrication of a 1.6 m flat 

mirror, the fabrication of a 1.7 m off-axis parabolic mirror, and the fabrication of the first 

GMT off-axis parabolic segment. The metrologies developed are mainly used to 

determine optical surface shape in low and mid-frequency region, instead of surface 

roughness. 

 

1.2.1. ABSOLUTE TESTING OF LARGE FLAT MIRRORS 

As the size of an optical flat mirror to be fabricated becomes larger, its testing 

with a reference flat surface of equal or larger size becomes expensive. Sub-aperture 

testing has been a practical approach proposed for testing large flats using a smaller 

reference flat surface (Kim and Wyant 1981; Bray 1997).  A 1.6m flat mirror was 

recently fabricated in the large optical shop at the College of Optical Sciences at the 

University of Arizona. A sub-aperture Fizeau interferometric test with a 1 m reference 

flat was setup to measure the 1.6 m flat mirror. The ML method (Su et al. 2006) was used 

to separate the optical figure error in the reference surface from the error in the mirror 

under test. The method also stitched the sub-aperture measurements to give the full 

aperture figure of the 1.6m flat mirror to an accuracy of 2 nm. This test is absolute in that 

optical figure is determined accurately without a precision master surface.  
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1.2.2. VERIFICATION TEST: SHEAR TEST  

Interferometers with additional null test optics are frequently used for measuring 

aspherical optical surfaces.  In optical testing, it is desirable to separate the figure 

measurement errors due to the test surface from figure errors that arise in the test 

equipment.  When the optics under test has axially symmetry, error separation is 

accomplished by rotating the optics being measured with respect to the test system (Parks 

1978; Burge et al. 2006).  The measurement data can then be processed to separate the 

non-axially symmetric errors that are fixed in the test system. The axially symmetric 

figure errors cannot be distinguished with this technique.  

In this dissertation, we present a variation of above technique for testing off-axis 

aspheric optics.  The rotations here are performed by rotating the test surface about the 

optical axis of its parent surface, which may be outside the physical boundary of the test 

surface itself.  As these rotations cannot be large, this motion is better described as a 

rotational shear of the optical surface with respect to the test optics.  By taking multiple 

measurements with different amounts of rotational shear and using the maximum 

likelihood method for data processing, we separated the errors in the test optics from the 

irregularity in the optical surface under test. This rotational shear test was used to verify a 

null test measurement of a 1.7 m off-axis parabola and demonstrated to be accurate to 12 

nm rms. The testing results from the shear test were consistent with the alignment error 

found in the null test. 
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1.2.3. VERIFICATION TEST: SCANNING PENTAPRISM TEST  

The 1.7m NST primary mirror has been tested using an optical reference system 

created by a scanning pentaprism assembly (SPA).  The SPA uses collimated light 

reflected from pentaprisms to project reference beams of light onto the NST primary 

mirror. When these beams are focused by the NST mirror, they provide information on 

low-order optical errors that would come from the mirror shape.  The scanning 

pentaprism test has been successfully used for testing large flat mirrors (Yellowhair et al. 

2007, Mallik et al. 2007) and axis-symmetric optical mirrors (Burge 1993). The work in 

this dissertation addresses some field aberration effects that arise in the SPA when an off-

axis parabolic surface is tested. For example, the in-scan direction in mirror space, which 

is the direction for measuring the surface slope, is no longer maintained in the same 

direction during one scan. Different scans need to be well-combined so that the same 

field of view is measured during testing. This and other issues of the SPA test are 

discussed and solved in this dissertation. 

 

1.3. ORGANIZATION OF THE DISSERTATION   

This dissertation is organized into six chapters. Chapter 1, the introduction, gives 

a brief overview of the work in the dissertation.  Chapter 2 reviews the history of absolute 

and sub-aperture testing, and also explains the basic principle of the ML method. 

Chapters 3-5 discusses in detail the testing methodology used for the measurement of the 

1.6 m flat mirror and the two verification tests. The dissertation concludes with a 

summary and a prospect for future work.    
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CHAPTER 2  

REVIEW OF ABSOLUTE TESTING AND SUB-APERTURE 

TESTING METHODS AND INTRODUCTION OF MAXIMUM 

LIKELIHOOD METHOD  

 
 
 
 

Optical engineers occasionally face the need for fabricating an optical component 

to an accuracy better than the accuracy of the optical reference available. In addition, 

engineers test some optical components using a reference smaller than the test aperture.  

The basic principles of some well-known absolute test methods are reviewed in the first 

Section of this Chapter. Sub-aperture testing is an important approach for measuring 

surfaces with large apertures, fast numerical apertures, or certain aspheric surfaces. Some 

major developments of sub-aperture testing are discussed in Section 2. In Section 3 the 

principles of the Maximum Likelihood (ML) method are introduced. This method 

provides a general way of combining multiple interferometric testing data, and its 

applications are the focus of Chapter 3 and Chapter 4.  
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2.1. ABSOLUTE TESTING 

Some optical components are required to be made more accurately than the 

available reference optics. This necessitates the use of absolute testing techniques (Schulz 

and Schwider 1967) so that the inaccuracies in the reference optics can be separated from 

the inaccuracies in the component being tested.  

 

2.1.1. LIQUID FLAT TEST  

Some of the earliest absolute testing techniques attempted to use a liquid flat 

(Barrell and Marriner 1948).  It was assumed that at equilibrium the surface of the liquid 

has the same radius of curvature as that of the Earth or 6371 km. The deviation from a 

perfect flat can be calculated and removed from the test or can even be ignored for some 

applications. One successful example of a liquid flat test was the testing of a 240 mm 

diameter optical surface to an accuracy better than 1/100λ (Powell and Goulet 1998). 

However, a liquid flat test has some limitations. The liquid needs to satisfy certain 

requirements such as having high viscosity and low vapor pressure. The main drawback 

with the liquid-surface approach is the instability problems associated with the liquid 

itself. Any disturbance of the liquid, resulting from, for example, removal of a dust 

particle or environmental vibration, would take a long time to dissipate. Another issue is 

that electrostatic charges accumulate in the liquid and can be influenced by the proximity 

of the test surface. The static electricity charge can perturb the shape of liquid surface 

(Sprowl 2006).   
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2.1.2. SURFACE COMPARISONS 

The common approach to absolute testing techniques is to compare surfaces.  The 

traditional three-flat method can only obtain one profile of the surface each time. The 

modified versions of the three-flat technique try to recover the complete surfaces by 

either introducing more measurements, or by further making use of the test symmetry.    

 

2.1.2.1. TRADITIONAL THREE-FLAT METHOD  

In the traditional three-flat testing (Schulz and Schwider 1976), each flat is tested 

against another in a Fizeau fashion as shown in Fig. 2.1. The following three equations 

can be used to describe the test configurations: 

A (x, y) + B (-x, y) = D (x, y), 

                                    C (x, y) + B (-x, y) = E (x, y),                           (2.1) 

C (x, y) + A (-x, y) = F (x, y), 

where    A, B, C    = describe the individual optical surface errors,  

             D, E, F     = are the measured test wavefront errors. 

 Since there are three equations and four unknowns—A (x, y), B (-x, y), C (x, y) and A (-x, 

y) —no point-by-point solution can be obtained for the total surfaces. Along the axis of 

inversion(x=0), however, only three unknowns, A (0, y), B (0, y) and C (0, y), remain. So 

this results in surface data only along a diameter determined by a single traditional three-

flat test. 
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                         Figure 2.1 Test configurations of the traditional three-flat test 
 
 

2.1.2.2. FRITZ’S METHOD  

Fritz’s method (Fritz 1984) is a variation of the traditional three-flat method. A 

fourth measurement is added with one of the flats rotating by an additional angleφ . Each 

flat surface is described by Zernike polynomials (Born and Wolf 1999). Polynomial 

coefficients of the surface are obtained by solving equations in a least squares sense. The 

method works well when smooth surfaces are being measured. 

 

2.1.2.3. PARKS’S METHOD  

Parks’s method (Parks 1978) can remove rotationally asymmetric reference optics 

errors from the measurement. Two sets of measurements need to be taken. One is  

A(x,y)

B(-x,y) 

C (x,y) C(x,y) 

B(-x,y) A(-x,y)
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                                                       W(r, θ) = T (r, θ) +R(r, θ),                        (2.2) 

where    W       = is the wavefront from the measurement, 

              T       = is the error contribution due to the component under test, 

             R       = is the error from reference optics.  

The second measurement is taken after first rotating the component with respect to the 

reference by an azimuthal angleφ , then one has 

                                                       W’(r, θ) =T (r, θ +φ ) +R (r, θ).                (2.3) 

Subtracting the two measurements, one finds a shear equation  

                             ∆W= W’(r, θ) - W(r, θ) = T(r, θ +φ ) - T(r, θ).     (2.4) 

By representing the surface figure errors in the component with Zernike polynomials, 

Parks derives that the polynomial coefficients of the component under test can be 

calculated from the following equation: 

                                      ]
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where   k
la±     = are the coefficients of the component under test 

            k
la±Δ   = are the coefficients obtained by fitting the shear data in Equation 2.4  

                           with Zernike polynomials.   

The sensitivity of this method is discussed by Burge (1993). A plot of the sensitivity of 

the computed Zernike coefficients with respect to the rotation angle was given. Rotation 

angles of ±55° are suggested to work well for finding all Zernike terms up to fifth order. 
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2.1.2.4. N-POSITION METHOD 

The N-position method (Evans and Kestner 1996) makes use of multiple 

measurements with different rotation angles. Interferograms are obtained from a 

reference optics R and a test part T, and the test part is rotated n -1 times by an azimuthal 

angle φ  (where nφ =2π) relative to the reference. When the n phase maps are averaged, 

all the non-rotational symmetric errors in T sum to zero, except those with an angular 

order of nk, where k is an integer.  

The average of the n interferograms contains three classes of errors: all the errors 

in R, the rotationally invariant errors in T, and the non-rotationally symmetric errors of 

azimuthal order nk (where k is an integer) in T.  So an absolute measurement of the test 

part T can be obtained by subtracting the averaged data from an individual map. However, 

rotationally invariant errors and those with azimuthal order nk will be lost. 

 

2.1.2.5. METHOD BASED ON FURTHER INVESTIGATING SYMMETRY  

Fritz’s method is not good at testing local irregularities in the surfaces since finite 

polynomials are used to represent surfaces. Ai and Wyant (1993) suggest a solution by 

making use of the four-fold symmetry properties of surfaces. Each point on the flat can 

be obtained without using the least squares method. The following shows their basic 

concept. 

An arbitrary three-dimensional function F(x, y)=z given in a Cartesian coordinate 

system can be expressed as a linear combination of four terms having symmetry 
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properties with respect to the origin of even–even, even–odd, odd–even, and odd–odd 

functions as described in equation 2.6. 

                                                        z=F(x, y) =Fee+Feo+Foe+Foo                  (2.6) 

Odd-even, even-odd, and even-even parts of a flat can be solved easily in traditional 

three-flat configuration. Odd-odd parts are obtained by adding additional measurements. 

Fig.2.2 shows a six-configuration measurement. In the figure, Adegrees means surface A is 

rotated certain degrees, Bx is the reflection of B along x axis, and M is the measurement. 

By algebraic manipulation, odd-even, even-odd, even-even parts and lower order odd-

odd parts of the flats can be solved completely. Higher frequency components of the odd-

odd part can be obtained by adding more measurements.  

 

                    Figure 2.2 Six configurations in Ai and Wyant’s method 
 

Based on the fourfold symmetry concept and the n-position method, Parks gives a 

pixel-based solution (1998) by numerically rotating the data. Geiesmann (2006) recently 

also discusses a pixel-based solution using the two-fold symmetry and the n-position 
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method. Surface information measurement completeness of these two methods is both 

limited by the numbers of configurations being used. 

 

2.1.3. OTHER ABSOLUTE METHODS  

Another important absolute test method is the scanning pentaprism method. Light 

is deflected by a fixed angle (90°) when passing through a pentaprism. The exiting angle 

of the light is insensitive to the alignment and slight rotation of the prism. By scanning 

the pentaprism to different positions, an array of parallel beam can be generated, which 

can act as a large aperture collimated beam. The generated collimated light is useful for 

testing large flats (Yellowhair 2007) or parabolic mirrors where a large aperture reference 

beam is hard to obtain.    

There are several discussions about absolute calibration for spherical surfaces in 

the literature. One popular method was well investigated by Karl-Edmund Elssner et al. 

(1989).  One can achieve a calibration for a sphere by testing it at three positions:  retro-

reflection position, rotating it 180°, and the cat’s eye position. 

Computer generated holograms (CGH) have been widely used for testing aspheric 

surfaces (Burge 1993). Calibrating the aspheric wavefront generated from a CGH is 

receiving attention from researchers recently. One way to do the calibration is by 

simultaneously generating two wavefronts from the CGH by multiplexing (Reichelt et al. 

2003). One may be a spherical wavefront, and it can be well calibrated by testing with 

other methods.  Then the errors (due to fabrication) shown in the spherical wavefront can 

be transferred for calculating the errors in the aspheric wavefront. 
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2.2. SUB-APERTURE TESTING 

Sub-aperture testing (SAT) was primarily proposed to solve the problems arising 

in testing large optical flats (Kim and Wyant 1981). By scanning the test part with a 

smaller flat, a large reference flat is replaced by an array of smaller optical reference flats. 

Interferograms from each smaller reference are “polluted” with misalignment errors from 

the small flat. The problem in SAT is then to convert sub-aperture measurement results to 

full aperture aberrations of the test part. This is hereafter referred to as the sub-aperture 

stitching problem.  

SAT is not limited to testing flats. It also has been developed for measuring 

spherical surfaces and mild-departure aspheric surfaces. It plays an important role in 

solving metrology problems in testing surfaces with large aperture, fast numerical 

aperture, or certain aspheric surfaces. 

 

2.2.1. KWON-THUNEN AND SIMULTANEOUS FIT METHOD 

 In an early version of SAT, there was no overlap between any two sub-apertures. 

Two approaches were presented for data reductions: the Kwon–Thunen method (1982), 

and the simultaneous fit method developed by Chow and Lawrence (1983). Both use 

Zernike polynomials to represent surfaces, and then a least squares fit of the sub-aperture 

data to obtain the coefficients of the test surface. A comparison of them was given by 

Jensen et al. (1984). Both methods suffer from the problem that polynomials are not good 



 

 

31

 

at describing localized irregularities in the surfaces. And because there was no overlap 

between the sub-aperture data, these two methods are sensitive to alignment errors.   

 

2.2.2. DISCRETE PHASE METHOD  

To overcome the shortcomings of polynomial fitting methods, an algorithm, 

called the discrete phase method, was proposed by Stuhlinger (1986). The wavefront is 

represented not by Zernike polynomials but by phase values measured at a large number 

of discrete points across the aperture. The method requires that overlapping regions exist 

among sub-apertures. The relative piston and tilts between the reference and the test part 

are estimated by a least-squares (LS) fit to the differences at overlapping points. Then 

sub-aperture data can be combined together by adjusting the piston and tilt of adjacent 

sub-aperture data. This method has been developed into commercially available software 

(MB, Phase Mosaic). 

 

2.2.3. NON-NULL ASPHERIC TEST 

Besides testing large flats, sub-aperture testing has also been investigated as a 

non-null aspheric test method. By translating the reference surface or test surface, the 

reference sphere of an interferometer is adjusted to best match the local radius curvature 

of the aspheric surface under test. In certain test region, the interferogram fringes can 

then be reduced to within the dynamic range of an interferometer. A measurement can be 

taken without aliasing. The full aspheric surface can then be measured by stitching a 
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number of sub-aperture measurement data. To reduce the requirement for prior 

knowledge of fringe nulling or the alignment of sub-apertures, many iterative algorithms 

have been developed to estimate the positions of each sub-aperture (Chen et al. 2005). 

 

2.2.3.1. ANNULAR STITCHING OF ASPHERES 

One of the directions in developing non-null aspheric sub-aperture test is the 

annular sub-aperture test used to test rotational symmetric aspheric surfaces. By relative 

translation of the aspheric surface longitudinally along the optical axis of the reference 

sphere, different annual zones of the aspheric surface can be tested with best radius 

curvature match condition. A series of interferograms can be taken at different 

longitudinal position of the aspheric surface without fringe aliasing. All the sub-aperture 

data can then be stitched together to get a complete map of the aspheric surface. Issues 

such as sub-aperture arrangements (overlapping or complementary), data reduction 

methods have been widely investigated (Hou et al. May 2006).  

 

2.2.3.2. GENERAL STITCHING OF ASPHERES 

An important development in sub-aperture testing of aspheric surfaces was 

performed by QED Technologies. In 2003, QED Technologies developed a general-

purpose stitching interferometer workstation (Fleig et al. 2003) that can automatically 

carry out high-quality sub-aperture stitching of flat, spherical, and mild-departure 

aspheric surfaces up to 200 mm in diameter. In their publications, they discussed in detail 
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issues encountered during sub-aperture testing including imaging distortion correction, 

alignment error correction, reference surface error correction, and constrained 

optimization in data reduction (Golini et al. 2003). 

Stitching is realized using overlapping data. Error in the reference surface 

inherently creates inconsistency between the overlapping data and is an important error 

source in the stitching process. One way to solve this problem is calibrating the reference 

before using it. For example, one can use the absolute test method mentioned above to 

calibrate a flat, or use the method mentioned by Elssner (1989) to calibrate a spherical 

surface.  Another way to calibrate a reference presented in QED’s reference (Golini et al. 

2003) is to use Zernike polynomials to describe the reference surface. Then data 

consistency in the overlap region is used as criteria to least squares fit the coefficients of 

the reference surface. This idea is a form of the ML method discussed below. However, 

the ML method discussion in the dissertation comes from a general point of view and the 

flexibility of ML method has been further explored, as shown in the shear test application. 

 

2.3. BASIC PRINCIPLES OF MAXIMUM LIKELIHOOD METHOD 

The maximum likelihood (ML) method provides a general way for combining 

multiple interferometric measurements. Given a set of data {y}, a set of physical 

parameters {x} is to be estimated. If the statistics of the data {y} are understood and if the 

problem in reverse (given physical parameters {x}, the values of {y} can be calculated) is 

workable, then a statistical likelihood L(x|y) can be created, which equals the probability 
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density function pr(y|x). The maximum likelihood estimate is defined such that the 

likelihood of parameters {x} is maximized given the data set {y}. 

 

2.3.1. LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD ESTIMATOR  

The probability density function (PDF) pr(y|x) describes the sampling distribution 

of the data {y}, given parameters {x}, and we say that sample y is drawn from pr(y|x). 

Given data {y}, pr (y|x) can be regarded as a function of x, called the likelihood of x for 

the given y and is noted by (Barrett et al. 2007) 

                                              L(x|y) =pr(y|x).                                       (2.7) 

The principle of maximum likelihood states that event occurrences presumably 

have had maximum probability of occurring (Frieden 1990). Given the likelihood law 

L(x|y) and fixed data{y}, {x} must have the property that of maximized the likelihood of 

occurrence of the data {y}.  In the equation 

                                               L(x|y) =maximum,                                  (2.8) 

the set {x} that satisfies this condition is called the “maximum likelihood estimator.” 

 

2.3.2. STOCHASTIC MODEL  

2.3.2.1 STOCHASTIC MODEL OF AN INTERFEROMETRIC MEASUREMENT 

An interferometric measurement gives the optical surface figure difference 

between the reference surface and the surface under test. The data is usually polluted by 

noise such as air turbulence, environment vibration, and errors from the interferometer 
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itself. Normally the stochastic distribution of the interferometric data can be well 

described by a normal distribution based on the “law of large numbers.”  This assumption 

will be followed in the following discussions. 

 

2.3.2.2 STOCHASTIC MODEL OF A SUB-APERTURE TEST 

Multiple sub-aperture measurement data can be combined with the ML method. 

Surface differences (phase data) between a reference surface (A) and a part of a surface 

under test (B) are obtained during a sub-aperture interferometric measurement. The phase 

data Dij, where i represents the ith sub-aperture measurement and j represents the jth 

phase value in a sub-aperture measurement, can be expressed as  
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                                                                                                         (2.9) 

where     a
ijD          = the part of the data that can be described analytically by   

                                    polynomials (basis functions), 

residuals     = the part of data that cannot be described by finite terms of  

                                     polynomials (basis functions), 

                   Z            = polynomials (basis functions) used to represent the surfaces, such   

                                  as Zernike polynomials,  

               m and n       =the indexes of the highest polynomial terms used for representing   

                                    surface A and B, 

      aix , aiy , bix , biy  = the global coordinates of surface A and B in a sub-aperture  
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                                   measurement, 

            alignments   = the terms describing the phase errors introduced by the alignment  

                                    such as piston, x tilt, y tilt and defocus.  

The surface figure errors in A and B can be calculated by knowing the coefficients pA  

and pB .  

When the noise of the data is independent and identically distributed (i.i.d) and 

residuals  are small enough to be ignored, the likelihood function of a sub-aperture test 

can be written as,  
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where         σ          = the standard deviation of the sub-aperture measurement, here   

                                   assumed to be equal in each measurement, 

                    u           = the number of sub-aperture measurements,  

                    v           = the number of phase data in the ith sub-aperture measurement.                            

By maximizing the logarithm of the likelihood )|,( ijpp DBAL , equation 2.11 is obtained 

for finding pA  and qB . 

2

55111

2

1
)),(),(()( alignmentsyxZByxZADDD

n

p
bibipp

m

p
aiaippij

v

j

u

i

v

j
ij

a
ij

u

i
−−+=− ∑∑∑∑∑∑

======

 

                                   = minimum                                                                     (2.11) 

Coefficients pA  and qB  can be obtained from Equation 2.11 with a least squares estimate. 

If the standard deviation of each sub-aperture measurement is different, data from each 
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measurement has a different weight factor. The problem can then be solved as a weighted 

LS problem. 

The above derivations can be written into matrix form. The polynomial 

coefficients of the surfaces and the alignment coefficients form a column vector x: 

x= [coefficients of surface A, coefficients of surface B, alignment coefficients]’. 

                                                                                                          (2.12) 

Phase data of the sub-aperture measurements constitute a column vector y: 

                                           y= [D11, D12, ..., Duv ]’.                            (2.13) 

A matrix M describing the relation in equation 2.9 can be construct to connect vectors x 

and y. So a sub-aperture test can be modeled as 

                                                           y=M·x.                                                  (2.14) 

Chapter 3 explains in detail the structure of the matrix M for the case of combining sub-

aperture data. 

 

2.3.3. NUISANCE PARAMETERS AND NULL FUNCTIONS 

One type of nuisance parameters is the parameters that influence the data but that 

are of no interest for estimation (Barrett et al. 2007). For example, each sub-aperture 

measurement data has different piston, tilt, and defocus due to the alignment. The 

alignment errors affect the phase data; however, their exact values are of no interest in the 

test.  Another type of nuisance parameters is parameters in which we are interested, but 

may not be well handled in the model. An example of that is when finite Zernike 

polynomials are used to represent the surfaces; there exists residuals of the surfaces that 
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cannot be well described by finite Zernike polynomials. The residuals are the intrinsic 

nuisance parameters of our test. 

Null functions are functions that do not influence the data and in principle cannot 

be determined from the data. For example, the rotational symmetric errors in the test 

system cannot be measured with Parks’s method; they fall in the null space of that test. 

We refer to any data that falls into the null space as “ambiguous” because we cannot 

estimate its origin. 

 

2.3.4. VARIANCE PROPAGATION MODEL AND CROSSTALK ISSUE  

Equation 2.14 is solved in a least squares sense. With the independent Gaussian 

distribution of the phase data, the variance associated with the estimate coefficients xq can 

be calculated from equations 2.15 (Press et al. chapter 15.4 1986; Appendix A) 

σ2(xp)=Ckk ·σyq
2 

                                                 C=(MTM)-1                                       (2.15) 

where          Ckk          =  the diagonal elements of the covariance matrix C, 

                 xp and yq  = the elements in the column vectors x and y.  

The off-axis elements of matrix C describe the effect of crosstalk between 

different parameters to be estimated.  The smaller the off-axis values are, the more 

linearly independent the parameters are, and the less coupling between different 

parameters occurs in the data. 

Considering the estimation ability and crosstalk issue, several design strategies 

are worth paying attention to when designing a test system, which is represented by 
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matrix M. 

1. Choose basis function to efficiently represent the measurement data 

The choice of basis functions is important. Ideally an orthogonal basis set that 

fully describes the physical range of data {y}, but poorly depicts the noise is preferred. 

Usually a prior knowledge of the surface is used to choose basis functions. Zernike 

polynomials are an example of the basis functions used to describe a reference surface 

and test surface. Based on surface shape or specific errors in the surface, another type of 

basis functions may work better to represent the data, giving a better estimate and less 

crosstalk. For example, for square shape surfaces, Legendre polynomials are orthogonal 

in the data region and can give less crosstalk. Also, in Chapter 3, when the 1.6m flat was 

measured, more rotational symmetric terms of the Zernike polynomials were chosen to 

represent the test surface, instead of using all the Zernike polynomial terms in order, 

because there are more rotational symmetric errors in the surface due to the fabrication 

method. 

2. Choose the test geometry to minimize crosstalk and make parameter estimates more 

reliable 

  For a sub-aperture test, this guides one to design the sub-aperture test geometry, 

addressing the number of sub-aperture measurements and how they should be distributed. 

The test geometry of the 1.6m flat measurement (described in Chapter 3) is an example of 

this approach. Both the test flat and the reference flat were rotated during sub-aperture 

measurements. With this test geometry, parameters of the test flat and reference flat can 

be estimated independently; the crosstalk between them was minimized.  
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3. Investigate the higher order residual coupling  

With finite numbers of polynomials representing the data, there will be higher 

order surface residuals. The residuals will alias and affect the estimate of the lower order 

terms. They can be checked by computing the Ckk’, the off-diagonal elements of the 

covariance matrix C, where k is related to the lower order terms to be estimated and k’ 

corresponds to the higher order terms, which are not included in the basis functions 

during the test. If the Ckk’ is large enough, the corresponding higher order terms need be 

included to the basis functions.    

  

2.4. SUMMARY  

Developments in the absolute flat testing are first reviewed. These include liquid 

flat test, the traditional three-flat test and its modified versions. Sub-aperture testing, an 

important approach for measuring surfaces with large apertures, fast numerical apertures, 

or with certain asphericity, is discussed in following and its progress is reviewed. After 

that, the ML method, which offers a general way to combine multiple measurements, is 

introduced. The applications of the ML method, absolute sub-aperture testing of a 1.6m 

flat and verify an off-axis surface with a rotational symmetric parent (shear test), are the 

topics of the Chapters 3 and 4.     
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CHAPTER 3 

ABSOLUTE MEASUREMENT OF A 1.6 METER FLAT WITH THE 

MAXIMUM LIKELIHOOD METHOD 

 

 

3.1. INTRODUCTION 

A 1.6m flat mirror was fabricated in the large optics shop at the College of 

Optical Sciences. A Fizeau interferometer with a 1m transmission reference flat was set 

up for the test. Multiple sub-aperture measurements were taken to get full aperture 

surface information for the test flat mirror, and the maximum likelihood (ML) method 

was used to combine the sub-aperture data and to remove errors introduced by the 

reference surface from the flat test data. The test setup and data collection are described 

in Section 3.2. Data reduction using the ML method is described in Section 3.3. The 

measurement results and the error analysis are given in Section 3.4 and 3.5. The 

comparison between the ML method and other data reduction methods is discussed in 

Section 3.6.   
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3.2. BASIC PRINCIPLES OF THE SUB-APERTURE FIZEAU TEST  

3.2.1. SUB-APERTURE FIZEAU INTERFEROMETER SETUP  

 

                           Figure 3.1 Sub-aperture Fizeau interferometric test setup  
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A Fizeau interferometer was set up to test the 1.6m flat as shown in Fig. 

3.1(Yellowhair 2007; Sprowl 2006). Light from the instantaneous Fizeau interferometer 

was focused by an F/1.5 reference sphere to generate a point source for a 1m F/3.1 off-

axis parabola (OAP). Collimated light from the OAP was partially reflected by a 1m 

fused silica transmission reference flat.  Part of the light was transmitted through the 

reference surface and was reflected by the test mirror. These two beams of the light pass 

back to the interferometer and interfere with each other. The interferograms were 

processed using the Intelliwave™ interferogram analysis software, which determined the 

optical path difference between the reference and test surface. 

The test flat was set up on a rotary air bearing table, which could rotate via 

computer control to an accuracy of 0.001 degree. The reference flat, 5/8 of the size of the 

test flat, was mounted to a frame with three feet. The reference flat and frame sit on top 

of another frame with six mounting pads spaced 60 degree apart. By mounting the 

reference flat at different pad locations, the reference can be rotated relative to the test 

flat. As shown in Fig 3.1, in the setup, the reference flat was placed so that it could 

overlap the edge of the test flat.  By rotating the test flat using the air bearing table and 

taking multiple sub-aperture measurements, a full map of the test surface was obtained by 

stitching the sub-aperture measurements together. Further rotating the reference flat 

relative to the test flat allowed the figure errors in the reference to be removed. In fact all 

irregularities in both surfaces can be determined to the noise limit with the exception of 

power. Power, which is equivalent with curvature, cannot be determined from the data, 

and it falls into the null space of this test. The effect of power from either surface would 
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be constant for all data sets. However the difference in power between the two surfaces 

can be determined. In practice, a second measurement, the scanning pentaprism test 

(Yellowhair 2007), was used to determine power in the 1.6m flat.    

 

3.2.2. INTERFEROMETER ABERRATION  

One special part of the instantaneous interferometer (Intellium H1000) used here 

is that two orthogonally polarized beams (A and B) with a small angular shear between 

them, are employed for realizing instantaneous phase shifting. Light reflected back from 

the reference surface needs to have a different polarization state from the light coming 

back from the test surface. Since an OAP was included as part of the interferometer in 

our setup, the two polarized beams in fact followed a slightly different path through the 

OAP. This path difference between the reference and test beam generated ~ 82nm 

aberrations, which was mostly astigmatism, showed up in the interferogram. To eliminate 

this system error, two measurements were taken for each sub-aperture measurement. One 

with the polarized beam A reflected from the reference surface and the polarized beam B 

reflected from the test surface. The second measurement was done reversing the order of 

the beams. The aberration from the OAP was then cancelled out by averaging these two 

measurements. 
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3.2.3. INTERFEROMETER DISTORTION CORRECTION 

Optics in the interferometer combined the light from reference and test surfaces to 

generate interference fringes. They also functioned as imaging optics to image the 

interferogram to the detector. As the interferometer imaging system was composed of an 

OAP, there was significant imaging distortion present. A simulation of the imaging effect 

in optical design software agreed with the imaging result from the real system with a 

fiducial mask placed on top of the reference surface shown in Fig. 3.2. The regularly 

distributed holes at the reference surface plane were imaged to an irregular distribution at 

the detector plane due to the distortion. The mapping relation was obtained by measuring 

the coordinates of the holes and the corresponding coordinates of the holes images at the 

detector. A least squares fit was used to find the coefficients of the polynomials for the 

mapping, and the inverse mapping was then applied to the phase map obtained from the 

interferometric measurement for correcting distortion effects (Zhao et al. 2006). 

 

 

                                                           
 

 

 

 

 

                                         Figure 3.2  Distorted fiducial image 
 



 

 

46

 

3.2.4. GEOMETRY OF THE 1.6M FLAT SUB-APERTURE TEST  

 

                                    Figure 3.3 Geometry of 1.6m flat sub-aperture test  
 

The position of the mirror under test relative to the reference surface is shown in 

Fig. 3.3. In the figure, the reference flat is represented by the small circle, while the test 

mirror is represented by the large circle. The combination of the rotation of the reference 

surface and the rotation of the test surface gave information to separate the errors in the 

reference surface from the errors in the test surface. In the final measurement of the 1.6m 

flat, 24 sub-aperture measurements were taken to reduce the noise effects.  Both 

reference and test flats were rotated following an arrangement as shown in Table 3.1 to 

well sample both surfaces.  

 

Table 3.1 Sub-aperture measurement arrangement  
 

Reference flat 
rotation (degree) 

0 
 

60 
 

120 

Test flat rotation 
(degree) 

0 90 180 270 15 105 195 285 30 120 210 300 

Reference flat 
rotation (degree) 

180 
 

240 
 

300 

Test flat rotation 
(degree) 

45 135 225 315 60 150 240 330 75 165 255 345 
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3.2.5. COORDINATES OF THE SUB-APERTURE MEASUREMENTS 

To stitch the sub-aperture measurements together, the position of each sub-

aperture relative to the test surface needed to be well known. They were determined by 

knowing the rotation angles and the centers of the reference and test surfaces. The 

rotation angles of the 1.6m flat were well controlled by the accuracy of the air bearing. 

The rotation angle of the reference flat was determined by its kinematic mount. Fiducial 

marks were drawn on the centers of each surface and imaged by the interferometer along 

with the phase map. From the fiducial images, the positions of the centers were known to 

less than 1.6mm accuracy (half pixel of the detector).  

Since there was data overlap between each sub-aperture measurement in current 

measurement arrangement, the geometry information, rotation angles and coordinates of 

centers, were further determined by optimizing them to maintain the data consistency 

within the overlapping region. Monte Carlo simulations were performed to check the 

results of the optimization. A standard deviation (std) (1.6 mm/semi-diameter) of the 

mirror rotational angular errors and a std of 1.6 mm random lateral shifts or uncertainties 

in determining the center of each surface were introduced to the sub-aperture 

measurement data. By optimizing the structures of the influence matrix M explained in 

later Section, the geometric errors were well reduced and the estimation error of the 

surfaces was able to be controlled to less than 0.5 nm (Su et al. 2006).  
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3.2.6. DATA COLLECTION PROCEDURE  

The measurement data was collected by Robert Sprowl (2006). The data collection 

procedure was as follows: 

1. Tip and tilt the reference and test surface to get two sets of phase measurements 

with different polarization combination, 

2. Correct the distortion of the phase maps, 

3. Average two polarizations to remove aberration of the interferometer, 

4. Gather fiducial coordinate information, 

5. Supply the phase data to ML data reduction program. 

 

3.3. ML DATA REDUCTION  

In the 1.6m flat test setup, the available data were multiple sub-aperture 

measurements that included the errors from both reference and test surfaces. The goals 

were to estimate the full aperture surface figure of the test flat and to separate the errors 

introduced by the reference surface. With the ML method, polynomials were used to 

describe figure errors of the reference and test surface. By solving for the polynomial 

coefficients, estimates of the surfaces were obtained. From a mathematical point of view, 

by relatively translating and rotating the two surfaces, simultaneous equations can be 

generated. Then the coefficients of each surface can be solved from these over-

determined equations.  
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3.3.1. BASIC PRINCIPLE OF THE ML DATA REDUCTION 

Figure differences (Phase data) between the reference and the test surface are 

measured in each sub-aperture measurement. The phase data Dij, where i represents the 

ith sub-aperture measurement and j represents the jth phase value in this sub-aperture 

measurement, can be described by  
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where   a
ijD                 = data can be represented analytically, 

               m                = the number of the highest Zernike terms for surface A (reference  

                                     surface), 

               n                  = the number of the highest Zernike terms for surface B (test  

                                      surface), 

               Z                  = Zernike polynomials, 

          aiφ  and biφ         = rotation angles of surface A and B respectively, 

iP , iTx , iTy , and iDe  = the amount of piston, x tilt, y tilt and defocus of the ith sub- 

                                       aperture measurement, 

                pA  and pB        = aberration coefficients of the reference and test surface. 

As in the analysis in Chapter 2, the problem is to find the Zernike polynomial coefficients 

such that  
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where   u       = the number of the sub-aperture measurements,  

            v        = the number of the phase data (sampling point) in ith sub-aperture 

measurement.                  

       

3.3.2. MATRIX FORM 

The problem above can be expressed in matrix form. A column vector x can be 

composed by the coefficients of the surfaces and the alignments as in equation 3.3.  

x= [coefficients of surface A, coefficients of surface B, alignment coefficients]'                                  

                                                                                                            (3.3) 

The phase data from each sub-aperture measurement can form a phase data vector φi, 

where  

                                              φi=[Di1, Di2,…, Div]’.                              (3.4) 

In the experiment, each of the 24 sub-aperture measurements had 1024×768 pixels. To 

reduce the storage and computation requirement in data reduction process, the sub-

aperture phase data vector φi was compacted by fitting the phase data with sub-aperture 

basis functions Ui as in equation 3.5. 

                                             yi=(Ui)-1φi.                                             (3.5) 

where       yi       = compacted phase data vector. 

The basis functions Ui are orthogonal in the sub-aperture region, numerically generated 

by the singular value decomposition (SVD) method. To generate basis functions Ui, first 
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a matrix T is created. The kth column of T is obtained by evaluating the kth Zernike 

polynomial at the coordinates of the phase data in the ith measurement. With matrix T, 

SVD is then used to decompose T to get basis functions Ui : 

                                                             T = UiSiVi' ,                                        (3.6) 

where     Ui    = is a unitary matrix with orthogonal columns in the sub-aperture region.   

Phase data in the sub-aperture region can be expressed as the linear combination of each 

column of matrix Ui as the number of Zernike polynomials used to create T goes to 

infinity or large enough. Ui is the set of basis functions of the ith sub-aperture 

measurement.  

With all the yi, a data vector y can be built as in equation 3.7:  

                                           y= [y1, y2, …, yu]’ ,                                 (3.7) 

where    u       = the number of the sub-aperture measurements. 

To satisfy Equation 3.1, terms on the right side of the equation also need to be fitted by 

the basis functions Ui. In ith sub-aperture measurement, each polynomial (both surface 

and alignment polynomials) is first evaluated at the coordinates of the phase data. The 

values obtained forms a column vector Zit (t=1-4, 5-m evaluated at surface A coordinates, 

5-n evaluated at surface B coordinates). Then as in Equation 3.8, Zit is fitted by Ui to get a 

compacted vector ZC it.  

                                                             ZC it = (Ui)-1Zit                                                (3.8)    

All the ZC it can then form a sub-matrix Mi as in Equation 3.9. 

                          Mi=[ ZC i1, ZC i2, … ZC i4, ZC i5A,… ZC imA, ZC i5B,… ZC inB] (3.9)   

where     ZC i1, ZC i2 , …, ZC i4    =  correspond to alignment polynomials, 
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                  ZC i5A,…, ZC imA            = Zit evaluated at surface A coordinates (t=5-m), 

                  ZC i5B,…, ZC inB          = Zit evaluated at surface B coordinates(t=5-n), 

For all the sub-aperture measurements, Mi forms the system matrix M.   

                                    M=[M1,M2,…,M u] '                                      (3.10) 

where   u       = the number of the sub-aperture measurements. 

The relationship in Equation 3.1 can then be expressed in its matrix form as in Equation 

3.11. 

                                                   y=M·x                                              (3.11) 

 

3.3.3. ML DATA REDUCTION PROCESS 

Fig. 3.4 shows the flow diagram of the ML data reduction process. Distortion 

corrected sub-aperture measurement data and the test geometry are used as input 

information. Numerical orthogonal basis functions are created to describe the data within 

the sub-aperture region. From the test geometry, the system matrix M is assembled, 

which describes the influences produced by the reference and test surface to each sub-

aperture measurement. With taking a matrix inverse of the system matrix, Equation 3.11 

is solved and both the reference and test surface shapes are obtained. By checking the 

fitting residuals, the test accuracy can be estimated. Setting up a merit function with 

fitting errors allows sub-aperture measurement geometry uncertainties to be controlled by 

optimizing the structures of the system matrix. 
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                            Figure 3.4 Flow diagram of ML data reduction process 
 

3.3.4. NUISANCE PARAMETERS AND NULL SPACE OF THE TEST  

Parameters associated with the alignment terms, including piston, tilts, and 

defocus, are parts of the nuisance parameters in the ML data reduction process. Also, as 

in Equation 3.1, each surface is described by Zernike polynomials:   

                                               residualsZAW
p

pp += ∑ ),( θρ                    (3.12) 

where       W         = represents surface errors 

          residuals    =are the errors that can not be represented by the Zernike polynomials  

Take interferometric measurement  

Correct distortion 

Represent data using orthogonal basis 

Apply ML method to estimate surfaces 
and alignment terms 

Use fiducial measurement 
to determine mapping  

Using SVD to determine 
orthogonal basis for the data 

Use geometry information 
to generate matrix M 

Estimate correction to 
geometry 

Optimize 

Optimal estimates, 
Residuals from estimate 
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                                used.  

Here the residuals are the information of interest; however, it cannot be obtained from the 

estimate. They also belong to nuisance parameters. Singular value decomposition of the 

system matrix M gives the null space of the matrix, which corresponds to the null space 

of the test. For instance, the power of each surface cannot be estimated from the sub-

aperture test. The power of the test flat was measured separately by a scanning 

pentaprism test (Yellowhair et al. 2007). 

 

3.4. MEASUREMENT RESULTS 

3.4.1. MEASUREMENT RESULTS OF THE 1.6M FLAT  

The first 22 terms and all rotational symmetric terms up to power 30 of the 

Zernike standard polynomials were used to represent the 1.6m flat. These polynomial 

terms were selected based on the knowledge of the mirror fabrication method. Also more 

polynomial terms were included to check the convergence of the data reduction results. 

The measurement result of the surface error of the 1.6m flat before it was put into a 

mounting cell was 6nm rms (power was not included), as shown in Fig.3.5 left. After it 

was put into the cell, the surface error increased to 21nm rms (Fig.3.5 middle). Most of 

errors were in forms of astigmatism caused by the changing of the supports.  Removing 

the astigmatism terms numerically, the error of the surface went back to 6nm rms (Fig.3.5 

right).    
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Figure 3.5  (a) measurement results of the 1.6m flat rms=6nm, before it was put 
 into cell. (b) rms=21nm, after it was put into cell. (c) rms = 6nm,  after it was put 
 into cell and astigmatisms were removed. 

 
 

Fig. 3.6 shows the final measurement result of the 1.6m flat, including 11nm 

power that was obtained from a pentaprism test (Yellowhair et al. 2007). The rms error 

was 24nm. 

 

 

 

 

 

 

 

 
 

Figure 3.6 Final surface measurement result of the 1.6m flat including power, rms= 
24nm 

(nm) 

(nm)

(a) (b) (c) 
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3.4.2. MEASUREMENT RESULTS OF THE REFERENCE FLAT   

As the ML method realized an absolute test, it also gave the measurement result 

of the reference flat. The first 79 terms of Zernike standard polynomials were used to 

describe the surface errors of the reference flat. The rms error of the reference 

transmission flat was 42nm, as shown in Fig. 3.7. Trefoil was the dominant error in the 

reference flat as can be expected from the mounting structure used.   

 

 

  

 

 

 

 
 
 
 

          Figure 3.7 Surface measurement result of the reference flat rms= 42nm 
 

Fig. 3.8 shows the two independent measurements of reference flat taken before 

and after the 1.6m flat was put into the cell. Their difference was 1.8nm rms. The 1.6m 

flat shape has been changed, while the reference flat measurement result stayed the same 

as expected. This proves that our measurement has very good repeatability and reliability.  

 

 
 
 
 
 
 

 (nm) 
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Figure 3.8 Zernike coefficients from two independent measurements of the reference flat 

(The difference was 1.8nm rms) 
 

 Measuring the reference flat has also been tried by using several different ways 

(Sprowl May 2006). These included the liquid flat test, Parks’s method, and the n-

rotation test. The liquid flat test was not very successful; the stability of the liquid flat in 

particular was a problem. Parks’ method and the n-rotation test (six rotations), with their 

limitation of measuring only non-symmetric aberrations, gave quite similar results as 

shown in Fig. 3.9.  

           

Figure 3.9 Measurement result of the Parks’ method (left) was 37nm rms, measurement 
result of the 6 rotation method (right) was 39nm (Sprowl 2006). 

   Waves 
(632.8nm) 
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3.5. ERROR ANALYSIS  

A key advantage of ML method over other method is that it provides an estimate 

of the measurement uncertainty in addition to the estimate itself. The following will 

discuss the measurement errors contributed from various sources. 

 

3.5.1. SURFACE DEFORMATION DURING THE MEASUREMENT   

Changing the relative position of the reference and test surfaces can deform the 

surface figure to a different shape, if there is apparent change in the support or mounting. 

This will cause inconsistency between each sub-aperture measurement. For the 1.6m flat 

test, this effect was minimized due to the symmetry of the mounting and excellent 

mechanics.  

 

3.5.2. ERROR DUE TO RANDOM NOISE 

Errors contributed from random noise are estimated by the variance propagation 

model (Press et al. 2006). Equation 3.8 is solved in a least square sense. With the 

assumption of an identical independent Gaussian distribution of phase errors, the variance 

associated with the estimate coefficients xi can be found from Equation 3.13 (William 

Press et al. 2006; Appendix A): 

σ2(xi)=Ckk σy
2

 , 

                                              C=(MTM)-1 ,                                      (3.13) 

where Ckk is the diagonal elements of covariance matrix C. Given the phase standard 
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deviation σp from experiment data (from Equation 3.4, with the same arguments in 

Equation 3.10), the standard deviation of σy can be calculated as following: 

σ2(yi)=CYjj *σp
2 , 

CY=(Ui
TUi)-1 ,                                      (3.14) 

σy
2=Σ(σ2(yi))/N , 

where N is the number of phase data. From Equations 3.13 and 3.14, the measurement 

uncertainties due to random noise in the phase measurements can be obtain. In Equation 

3.14, Ui is the orthogonal numerical basis generated by the SVD. Ui is a unitary matrix, 

such that  

                             CYjj =1; σ2(yi)=σp
2=σy

2                             (3.15) 

Fig. 3.10 shows the numerically generated covariance matrix C of the 1.6m flat 

test, including the alignment terms, which show in red color in the figure. Red means that 

the estimates of the alignment terms have relatively large uncertainties compared to the 

estimates of the surface coefficients. Along the main diagonal line of the matrix C, the 

first 30 terms of Ckk correspond to the coefficients of the 1.6m flat, and the rest of the 75 

terms correspond to the coefficients of the reference flat. The sum of the first 30 terms is 

0.0034. So the phase error of the 1.6m flat σa introduced by random noise is  

                                                     σa = sqrt(0.0034)* σp =0.3nm,                    (3.16) 

where σp, which is the repeatability of the interferometer we used, equals 5 nm from 

experiment measurement. The sum of the 75 reference terms is 0.0078, so the phase error 

of the reference surface σb introduced by random noise is  

                                                   σb = sqrt(0.0078)* σp =0.4nm.                      (3.17) 
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The C matrix is also a function of the number of data. More sampling points and 

measurements will provide a smaller Ckk and a better signal to noise ratio. 

 

Figure 3.10 Numerically generated covariance matrix C 
 
 

3.5.3. GEOMETRY MODEL ERRORS 

Geometric model errors are the uncertainty in the rotation angles and the relative 

lateral position of the surfaces. Because these are essentially shearing errors, phase errors 

introduced are related to the derivatives of the surface error.  

The angular derivatives of the Zernike polynomials show that with a rotation 

angle errors ∆θ, the introduced rms surface error of each Zernike polynomial terms is 

                                                       rms=∆θ*m*coefficient                             (3.18) 

where    m         = is the angular frequency number of the Zernike polynomial. 

 For example, if the original surface has 40 nm astigmatism (Z5) with 0.1° angular errors, 

then the rms error of 0.0017*2*40=0.14 nm will be introduced to that sub-aperture 

measurement. Similarly, from the x and y derivative of the Zernike polynomials, the 

lateral displacement sensitivities can be obtained. Table 3.2 gives the x displacement 
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scale factors corresponding to several low order Zernike standard polynomial terms. In 

the 1.6m flat test, the centers of both surfaces were known better than 1.6mm. With 42nm 

surface error and 1m diameter of the reference flat, a scale factor 6 being used will give a 

rms error of 0.76 nm as shown in Equation 3.19. 

                                        rms =1.6/500 *6*42=0.8nm                                   (3.19) 

With 6 nm surface error and 1.6m diameter of the test flat, a scale factor 6 being used will 

give a rms error of 0.07 nm as shown in Equation 3.20.  

                                         rms =1.6/800 *6*6=0.07nm                                   (3.20) 

 
Table 3.2  x displacement scale factors of Zernike standard polynomial Z5-Z14 
 

Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 

0 0 3.5 3.4 3.5 3.4 6.3 6.3 6.3 4.5 

 

With the optimization routine introduced in the ML method (Su et al. 2006) and 

considering the magnitude of the rms error in the 1.6m flat, contributions from geometric 

errors in the 1.6m flat estimate can be ignored.   

 

3.5.4. HIGH FRENQUNCY SURFACE RESIDUALS  

In the ML method, because finite polynomial terms are used to describe the 

surfaces, the high frequency parts of the surface information σr are left as fitting residuals. 

Since the higher order polynomials terms are not included in final surface estimate result, 

σr will contribute a certain systematic error to the estimate. Moreover, there will be 
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crosstalk between the estimates of the lower order aberration terms and the high 

frequency residual, because these residuals that are buried in the phase data also join the 

estimation process. The crosstalk mechanism was checked by adding some higher order 

Zernike terms in the test surface or reference surface, while using fewer terms to describe 

the test and reference surfaces and the basis functions. For example, one wave of 

spherical aberration (Z11) was put in the test surface, but only the first ten Zernike 

polynomials were used to describe each surface and the basis functions. After data 

processing, reference surface showed 0.04 waves surface errors, while the test surface 

showed 1.0004 waves surface errors. Comparing the estimate results and the input data, 

0.04 waves reference surface estimate error was obtained, while the estimate error of the 

test surface was 0.03 waves. Looking into the data reduction process, one can find that 

the crosstalk was due to the non-circular shape of the overlap region in the sub-aperture 

test. The surface error Z11 term shown in the overlap region was no longer orthogonal to 

the basis created from low order terms with the SVD method. Certain values were then 

coupled to the column vector y. When minimizing Equation 3.2, those values coupled 

into the estimate coefficients of the surfaces.  

Crosstalk also increases as the number of terms used to describe each surface 

increased. A simulation result is shown in Fig 3.11. One wave of the Zernike standard 

polynomial term 80 was introduced to the test surface, the magnitude of the crosstalk 

error was plotted with respect to the number of terms used for representing the test 

surface. 
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Figure 3.11 Crosstalk errors increase as more terms are involved 
 

Fig. 3.12 shows the result of an investigation looking into how the crosstalk errors 

vary with the order of the residuals when the same numbers of basis terms, 79 terms, are 

used. For the 1.6m flat test, the crosstalk errors are less than 20%.  

 

 

 

 

 

 

Figure 3.12 Crosstalk errors vary with the order of the residuals 
 

Based on the analysis above, as discussed in Chapter 2, to reduce crosstalk errors, 
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basis functions need to be well selected so that they can efficiently represent the 

measurement data. More measurements and better sub-aperture geometry can also reduce 

the magnitudes of the off-diagonal elements of the C matrix, giving smaller crosstalk 

effects.  

 

 

  

 

 

 
Figure 3.13 One of the sub-aperture L-S fitting residual maps 

 

Fig. 3.13 shows one of the sub-aperture residual maps (system residuals) after the 

errors from the mirror and reference surface were removed, in which the rms error is 

~5.5nm. System residuals can be decomposed as shown in Equation 3.21. 

  (System residuals)2=(random noise)2+ (fitting residual in A)2+ (fitting residual in B)2        

                                                                                                                        (3.21) 

In Equation 3.21, system residuals are ~5.5nm, and random noise is ~5nm. Assuming 

fitting residuals from surface A and B are at same level, we get that σr is 1.6nm. So the 

magnitude of the system error σsr induced by the high frequency residuals to each surface 

is 1.6nm.  Using the 20% rule from the high frequency residual coupling analysis above, 

the crosstalk error to the 1.6m flat σrra is: 

                                                   σrra =0.2*σr =0.32nm                                   (3.22) 

(waves) 
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The crosstalk error to the reference flat σrrb is  

σrrb = 0.2* σr =0.32nm                                (3.23) 

 

3.5.5. TOTAL MEASUREMENT ERRORS  

Taking each error contribution as independent, the total measurement error of the 

flats can be calculated from the root sum square of the random noise error, residual 

induced systematic error and residual induced random error. The total measurement error 

of the 1.6m flat from the ML method is 

                                         rms =sqrt(σa
2

+σrra
2

+σsr
2)=1.6nm                             (3.24) 

And the total measurement error of the reference flat is 

                                        rms =sqrt(σb
2

+σrrb
2

+σsr
2)=1.6nm                              (3.25) 

 

3.6. COMPARISON BETWEEN ML METHOD AND COMMON STITCHING 

METHOD 

The ML method estimates both the reference and the test surfaces, gives a global 

optimal for consistency. Common stitching method such as discrete phase method does 

not estimate the reference surface and is designed to optimize the consistency in the data 

overlap region. We compared the 1.6m flat measurement results between the ML method 

and MBSI (Zhao et al. 2006), which is a commercial stitching software.  

Processing data from sub-aperture measurements with ML method gave the 

estimate result of the 1.6m flat in Zernike coefficients. The estimation also provided the 
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estimate of the reference surface. With the common stitching method, data from sub-

aperture measurements were first reduced by removing the errors contributed from the 

reference surface which were obtained from ML estimate. Then the sub-aperture data 

were stitched together to give a full phase map of the 1.6m flat. Least squares fitting the 

stitched data gave the Zernike coefficients of the 1.6m flat. Fig. 3.14 shows the measured 

Zernike coefficients of the 1.6m flat from both the ML method and MBSI. The rms 

difference is 1.38nm.  Fig. 3.15 shows the difference between the phase map from MBSI 

and the phase map generated from Zernike coefficients obtained from ML method. The 

rms error is 5nm. Compared with the coefficients difference above, 5nm here also 

included the errors from high order frequency residuals and random errors. 

 

 

 

 

 

 
Figure 3.14 Estimated Zernike coefficients of 1.6m flat from ML method and MBSI 

 

 

  

 

 
 
 

Figure 3.15 Difference map between MLE and MBSI 

(waves) 

(waves) 
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Numerical simulations were also performed to check the measuring ability of the 

ML method and the common stitching method. Given 20 waves random tilt and 0.1 

waves Gaussian random noise, the estimate results from both methods turns out to be the 

same as shown in Fig. 3.16 and 3.17. Since both methods base on least squares fit during 

the calculations, the estimate results of them are equivalent given same level of noise. 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 3.16 Estimate from sub-aperture stitching (mean= 1.0003; standard deviation= 

0.0018) 
 

 

 

 

 

 

 

Figure 3.17 Estimate from ML method (mean= 1.0003; standard deviation= 0.0018) 
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3.7. SUMMARY 

In Chapter 3, the work performed for the absolute measurement of a 1.6m flat 

mirror with the ML method was summarized. The basic principle of the ML method for 

the large flat test, the experiment setup, the measurement results and the error analysis are 

described. The flat mirror was measured with an accuracy up to 2nm. The accuracy is 

limited by the residual errors of the surfaces.    
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CHAPTER 4 

SHEAR TEST OF AN OFF-AXIS PARABOLIC MIRROR 
 
 
 
 
 
4.1. INTRODUCTION  

The symmetry of a mirror segment with respect to rotation about its parent optical 

axis can be exploited to verify the accuracy when the mirror is under optical testing. A 

perfect off-axis segment can be rotated about its parent axis, and the apparent shape of 

the mirror will not change. This geometry is shown in Fig 4.1. The interferometer views 

the mirror in fixed coordinates that do not rotate with the segment, so any changes in an 

imperfect mirror shape would be due to figure errors that are not symmetric about the 

parent axis of symmetry. This change is independent of errors in the test system. This 

technique is a variation of a common method that is used for axially symmetric surfaces 

(Parks 1978). 

 

 

 

 

 

Figure 4.1 The concept of the shear-test for an off-axis segment 

Parent axis 

Null test optics 

Off axis segment 
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A shear-test to verify for verifying the main test for the New Solar Telescope 

(NST) primary mirror, which is an off-axis parabola, is discussed here. The shear in this 

test is realized by rotating the mirror around its parent axis while the null test optics is 

unchanged. The data of the test are the interferograms taken at different shearing 

positions. This shear-test allows the errors that move with the mirror to be separated from 

the errors that stay in the null test optics. The maximum likelihood (ML) method and 

singular value decomposition (SVD) (Press et al. 1986) are used to perform a least-

squares-estimate of both the mirror and the null optics. The setting of the estimate 

threshold is based on the Wiener filter concept (Press et al. 1986), and the null space of 

this test is systematically determined from numerical analysis. The outputs of the 

shearing test are separated into four parts: errors in the test surface, errors in the null test 

optics, terms in the null space (that could come from either the mirror or the null test), 

and noise in the measurements.  

 

4.2. THE NST MIRROR AND ITS MAIN TEST  

4.2.1. NST PRIMARY MIRROR AND ITS FABRICATION  

The NST primary mirror (Martin et al. 2004 and 2006) is a 1.7m diameter off-axis 

parabola. It has a radius curvature of 7.7m, an off-axis distance 1.84m and a maximum p-

v aspheric departure 2.7mm. This mirror is a 1/5 scale for the GMT segments. The NST 

mirror will be supported actively by 36 actuators in the telescope. For polishing and 

measurement in the lab, the actuators are replaced by passive hydraulic cylinders whose 
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forces match the operational support forces for zenith-pointing. The aspheric surface of 

the NST mirror was generated to an accuracy of about 15µm rms by ITT Industries. 

Loose-abrasive grinding and polishing were performed by the Steward Observatory 

Mirror Lab (SOML). A stressed lap was used for loose-abrasive grinding of the mirror to 

remove subsurface damage and improve the figure accuracy to about 1μm rms. During 

this phase, the surface was measured with a laser tracker. After that, the surface was 

polished and figured with the stressed lap and small passive tools. An interferometric 

principal test was used for measuring the surface. 

 

 

 

 

 

 

 

 

Figure 4.2 NST mirror in polishing by 30cm stress lap 
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4.2.2. THE MAIN OPTICAL TEST FOR THE NST MIRRROR 

 

Figure 4.3 The main optical  test system for the NST mirror 

 

The main test for the NST mirror is a full-aperture interferometric test that uses a 

hybrid reflective-diffractive null corrector to compensate for the mirror’s aspheric 

departure. The test system is shown in Fig. 4.3. Most of the compensation is 

accomplished by an oblique reflection off a 0.5m diameter spherical mirror, and the rest 

is done by a computer-generated hologram (CGH). This test is a prototype for the main 

optical test of the GMT segment; although the GMT test requires two spherical mirrors 

(3.8m and 0.75m diameter) to compensate for the 14 mm aspheric departure. The 

alignment of the NST null test system is very challenging. From the tolerance analysis, 

many parameters need alignment to 10um levels (Zehnder et al. 2006). 

 

Interferometer 

1.7 m off-axis mirror 

10 cm hologram 

15 cm lens 

0.5m spherical mirror 
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4.2.2. ASPHERIC WAVEFRONT CERTIFIERS 

A spherical wavefront can easily be generated by its nature, so the spherical 

surface is easily fabricated and has been widely used in optical systems. The beauty of 

aspheric surfaces is that they can dramatically reduce system element numbers as well as 

reduce system size and complexity. However, an aspheric wavefront is hard to generate 

and verify which leads to the difficulty in fabricating aspheric surfaces.  Null tests, CGH, 

and the combination of them have been the main metrology methods for testing aspheric 

optics (Burge 1993; Zhao et al. 2005). To generate a correct aspheric wavefront, a null 

optical system usually sets a tight tolerance for the alignment of the system and the 

element quality. To verify the aspheric wavefront, a certifier, such as another CGH 

(Burge et al. 1993) or a diamond turned mirror (Palusinski et al. 2004), may be used.  

The role of a certifier is to simulate the optical property of the surface under test. 

When an aspheric wavefront generated from a null system meets the certifier and is 

reflected back, the rays follow the same path as if it were to reflect from the surface under 

test. So the certifier can be used to verify the null system. The advantage of the certifier is 

that it has a much smaller size and can been fabricated quite accurately with other 

techniques. However, as the surface under test becomes larger, the certifier also needs to 

become large to avoid a caustic region, in which rays overlay each other, creating 

ambiguity (Su et al. 2005). This sometimes makes the certifier solution impossible. The 

GMT off-axis segment is an example where a practical certifier solution is not available. 

So to verify a null test system, other types of verification tests need to be considered 
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(Burge et al. 2006). The shear test discussed in this chapter is one of the verification tests 

planned for the GMT main test. 

 

4.3. THE PRINCIPLE FOR THE NST SHEAR-TEST  

 

 

 
Figure 4.4 The principle of the shear-test 

 

The principle of the NST shear-test is shown in Fig. 4.4. The mirror is rotated 

clockwise and counter-clockwise about its parent axis by approximately 3º, and three sets 

of interferograms were taken at each position. The maximum likelihood (ML) method is 

then used to reduce the interferometric data.  

 

Parent axis

Null test wavefront NST segment 

Normal positionClockwise position Counter-clockwise position
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4.3.1. BASIC PRINCIPLE  

The null optics wavefront (A) and the NST mirror (B) are represented by Zernike 

polynomials. Data from the three set of measurements can then be expanded as:  

          

                  residualsDD a
ijij +=   

                        ++++= ),(),(),(),( 4321 bibiibibiibibiibibii yxZDeyxZTyyxZTxyxZP    

                         residualsyxZByxZAsaberrationalignment
n

p
bibipp

m

p
aapp ++− ∑∑

== 55
),(),(                          

                                                                                                                          (4.1) 

Where     i                    =index of the measurement 

             ijD                   = the jth phase data in ith measurement 

             a
ijD               = the phase data which can be described using polynomials 

           aa yx ,                 = coordinates of the null optics wavefront 

          bibi yx ,                  =Global coordinates of the mirror in ith measurement 

              pZ                    =Zernike polynomials 

 

        ),(1 bibii yxZP           = piston 

       ),(2 bibii yxZTx          = tilt x 

        ),(3 bibii yxZTy          = tilt y 

        ),(4 bibii yxZDe         =defocus  
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alignment aberrations     =combination of coma and astigmatism induced by mirror  

                                            misalignment  

            

4.3.1.1. ALIGNMENT ABERRATION 

 

Figure 4.5 Tangential and radial direction of the misalignment 
 

Alignment aberrations arise from mirror misalignment, which is the special 

property of an off-axis parabola. When the parabolic mirror is misaligned relative to the 

null optics wavefront by shifting along the tangential direction as shown in Fig.4.5, sine 

astigmatism and cosine coma as described in equation 4.2 will be generated in the 

interferogram. 

))cos()23(*8*2.2)2sin(*6*3.17(* 32
1 θρρθρ −+−= Saberrationalignment   

                                                                                                        (4.2) 

where      S1                    =  a scale factor related to the magnitude of the tangential shift 

             θρ,              = polar coordinates of the mirror 

Tangential direction 

Parent axis

Radial direction
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        )2sin(2 θρ         =Zernike sine astigmatism 

 )cos()23( 3 θρρ −     =Zernike cosine coma 

 

Similarly, when there is a radial misalignment, cosine astigmatism and sine coma will be 

generated as follows:             

    ))sin()23(*8*43)2cos(*6*477(* 32
2 θρρθρ −−−= Saberrationalignment   

                                                                                                                         (4.3) 

where       S2                = a scale coefficient related to the magnitude of the radial shift 

          )2cos(2 θρ         = Zernike cosine astigmatism 

      θρρ sin()23( 3 − )   = Zernike sine coma 

                

With Equation 4.1, simultaneous equations can be obtained from the three set of 

interferometric measurement. However, alignment aberrations are not linearly 

independent from astigmatism and coma in the surfaces. To be able to measure the 

astigmatism and coma in the mirror or the null optics, during the data reduction process, 

the alignment aberrations in the measurement from the normal position are numerically 

removed in a least squares sense to minimize the rms wavefront error. It has the same 

effect as when we align the mirror to the null optics to minimize the wavefront error. The 

astigmatism and coma left in the measurement after minimizing are assumed to be in the 

mirror or in the null optics (Caution is needed here. The shifts for minimizing the rms 

wavefront error must be within the tolerances of the off-axis distance and the clocking 
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angle of the mirror.). After that, when solving the simultaneous equations in a least 

squares sense, the astigmatism and coma in the surfaces are solved to maintain  

consistency in the three measurements, and the coefficients of the alignment aberrations 

in the other two measurements are automatically determined to minimize the total 

residuals. 

 

4.3.1.2. COORDINATE RELATIONSHIPS 

Data from the interferometric measurements are the phase differences at certain 

positions of the mirror and the null optics wavefront. For phase data in a single 

measurement, the coordinates aa yx , (coordinates of the null optics wavefront which 

stayed unchanged in the three measurements) can be found from the measurement in the 

normal position by knowing the pixel corresponding to the center of the wavefront and 

pixels representing the edge of the wavefront. Normalized coordinates can then be 

determined, with the edge of the wavefront normalized to one.  

Similarly a normalized coordinate for the mirror at its normal position can be 

defined. When the mirror is rotated, bibi yx ,  can be obtained by finding which position on 

the mirror in its normal position is associated with each pixel in a rotated phase map. 

Knowing the rotation angle of the shear, this relationship can be described by x, y 

translation and a pure rotation around the mirror center.  

With phase data and coordinate information, simultaneous equations created from 

equation 4.1 are then ready to be solved.  
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4.3.1.3. MATRIX FORM 

As in Chapter 3, the shear test can be described by the matrix Equation 4.4 

                                                                     y=M·x,                                        (4.4) 

where        x          = the solution vector, including the coefficients of the mirror and null   

                                 optics wavefront and the alignments 

                  y          = the data vector, phase data from the three measurements, have been   

                                  compressed by basis functions 

                M          = the system matrix, determined by test geometry 

The solution vector x is solved with the SVD method to get a good estimate of the result 

under the presence of noise. 

 

4.3.2. NULL SPACE OF THE SHEAR TEST 

By intuition, we know that certain kinds of errors cannot be separated between the 

test surface and the null optics from the shear motion performed.  For instance, these 

errors include errors with rotational symmetry around the parent axis, errors with 

periodicity that repeat with shear angle, and shape error terms related to the alignment 

errors (piston, tilts, power, and alignment aberrations). These errors constitute the null 

space of the shear test. As they are the inherent properties of the test, they can be 

numerically derived from the system matrix M. 

To determine the null space, the SVD method is used to decompose the system 

matrix M.  SVD can be thought to be a generalized spectrum analysis of the rectangular 

matrix (Press et al. 1986). M can be uniquely decomposed as 
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                                                'USVM = ,                                  (4.5)                                           

where       U     = a unit matrix describing the range of the shear test, 

                S      = singular value matrix; its diagonal components are the singular,  

                            values of the matrix M, which reflect the noise sensitivity of the surface  

                           error modes, 

               V     = a unitary  matrix describing the domain or the solution space of the test.               

                          The columns in V which correspond to zero singular values are the null  

                          space of the matrix M.  

 

4.3.2.1. DETERMINING NULL SPACE  

Errors in the null space cannot be separated between the null optics (A) and the 

NST mirror (B), so the solution vectors formed by their combinations satisfy the 

requirement for the null space of the system matrix (M·x=0). In the same way, the null 

space vectors calculated from SVD (M·x=0) imply that certain errors in A will cancel 

certain errors in B, and no signal will be generated. So these vectors are the null space of 

the test. In all, the null space of the matrix is the null space of the test.  

Based on the above argument, the null space of the test can be obtained directly 

from the matrix M. It is the null space of the matrix M, which can be calculated with the  

SVD method.  Fig. 4.6 shows an example of the calculated null space. Thirty-seven 

Zernike terms are used to represent surface A and B. The alignment error is not 

considered here. Errors in the null space are rotationally symmetric errors as shown in 
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Fig. 4.6. Fig. 4.7 shows the null space of the test in which 231 Zernike polynomials are 

used to describe surfaces and alignment terms are included during the calculation.   

 

 

 

 

 

 

 

Figure 4.6  Null space without considering alignment terms 
 

 

 

 

 

  

 

 

 

Figure 4.7 Null space generated with 231 terms Zernike polynomials. Measurement 
ambiguities from alignment are included.   
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4.3.2.2. REMOVE ERRORS IN THE NULL SPACE FROM SURFACE ESTIMATES 

Errors in the null space are not separable between test surface and null optics. 

When the ML is performed to estimate the surfaces, these errors fall into the estimates of 

the two surfaces based on the minimal norm criteria. So the estimated results need to be 

further processed to remove the null space errors out of the surface estimates. This can be 

realized by least squares fitting the surface estimate results with null space vectors 

generated from the SVD and then removing the fitting result from the surface estimates. 

The following is an example of removing the null space. A 100nm rms coma, as 

shown in Fig. 4.8 (a), was used as an input of surface A, and no error was put into surface 

B. Then three simulated measurement data were generated, and simultaneous equations 

were solved by SVD to give least squares estimates of A and B.  After removing the null 

space, 71nm of the surface information was left as shown in Fig. 4.8 (b), which can be 

estimated accurately without noise.  This would have been the measurement if we would 

have had 100nm rms of coma in surface A. In Fig. 4.8 (c), the blue line represents the 

input Zernike coefficients in surface A and B, while the red lines are the estimated results 

before the null space is removed. As we can see, the estimated results are polluted by the 

null space errors. Fig. 4.8 (d) shows that after removing the null space errors, there is no 

error left in surface B, and in surface A, the estimated results (the red curve, on top of the 

blue curve) has the exact same values as the expected data (the blue curve) calculated by 

removing the null space from the original input. Fig. 4.8 shows that the surfaces can be 

estimated accurately after the null space is removed. 
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Figure 4.8 Removing null space errors from surface estimates. (a) 100nm rms coma in 
surface A, (b) estimate of the surface A, rms= 71nm when null space is removed, (c) 
Blues are the input Zernike coefficients of the surface A and B, total 37 Zernike terms are 
used; Red are the estimated results before null space is removed, (d) After null space is 
removed, input Zernike coefficients (blue) match the estimated coefficients (red).  
 

4.3.3. SOLUTION SPACE AND NOISE SENSITIVITY 

Using SVD, the estimate of the solution vector x can be expressed as (Press et al. 
1986): 
 

                                                        ∑
=

=
n
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 ,                                       (4.6) 

 
where        y        =  the data vector 

               iU        = the ith column of matrix U 
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              iω         = the ith singular value in matrix S 

              iV         = the ith column of matrix V . 

 iV  can be thought of as a certain combination of errors in surfaces A and B. This 

combination is a certain mode to be estimated. Errors in A and B can be decomposed as 

the combinations of columns in V. The singular value iω  tells how many units of 

signal iU  will be generated with one unit of a mode in V. The larger the singular value of 

a certain mode, the bigger the signal generated during the shear test, and the better the 

insensitivity to noise. Thus, the above equation means that the phase data is first 

projected to the range vectors U, and then divided by the singular value. The result will 

be the magnitude of a certain mode in the surfaces. The estimate is a combination of 

different modes. Robustness of the modes is determined by the signal magnitude 

generated by one unit of the mode, which is the corresponding singular value of that 

mode. Rather than stating that a certain term in A or B is insensitive to the noise, it 

should be stated that a certain combination of the errors can be well estimated. 

 

4.3.4. ESTIMATE THRESHOLD 

A mode Vi with a small singular value will amplify the noise greatly because the 

mode is being divided by a small value as shown in equation 4.6. This makes the 

estimates of the surface coefficients become extreme large. A simple way to reduce this 

noise amplifying effect is by discarding the modes with singular values less than a certain 

threshold during the summation calculation in equation 4.6. To further make use of the 
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property of the noise in the test (normally Gaussian noise), a set of factors iφ  used to 

multiply each mode Vi to give a best least squares estimate of the surfaces under the 

existence of noise was derived based on the concept of Wiener filter (Press et al. 1986).   

                                                                          i
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where       N       = an estimate of the phase noise vector 

iφ  can be calculated from equation 4.8. For extreme situations, equation 4.8 shows that 

when signals are dominant, the factor iφ  tends toward one, and when the noise is 

dominant, iφ  approaches zero. 

4.3.5. SURFACE ERROR ESTIMATEABILITY AND NOISE SENSITIVITY 

To simplify the procedure without losing the significance, zero and one are used 

as the values for the above factors iφ . A threshold is selected to discard the modes when 

singular values are smaller than the threshold. Table 4.1 gives the Monte Carlo 

simulation results of the ability to estimate surface errors in the forms of Zernike 

polynomial 5-16. For example, as shown in the table, surface A and B each have 10nm 

surface errors of Zernike polynomial term 11. When the threshold is zero, after removal 

of null space errors, there is 9.1nm surface information remaining in both surfaces. When 

the threshold is set to 10, based on the noise level, part of the surface information is lost 

and only 8.9nm information is left. There are also 0.9nm estimate errors fall into the 
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surface estimates. From the data in Table 4.1, it can be concluded that lower order 

aberrations such as astigmatism, coma, and trefoil could not be fully estimated. However, 

the shear test is very good at detecting higher order aberrations. 

Table 4.1 Ability to estimate Zernike terms 5-16 
Zernike terms 

(A=10 nm 

B=10 nm) 

Z5 (Sine 

astigmatism) 

(nm) 

Z6 (Cosine 

astigmatism) 

(nm) 

Z7 (Sine coma) 

(nm) 

Z8 (Cosine 

coma) 

(nm) 

Estimate with 

threshold =0 

rmsa =10 

rmsb= 10 

rmserrora =0 

rmserrorb=0 

rmsa = 1.8 

rmsb= 1.8 

rmserrora =0 

rmserrorb=0 

rmsa = 7.1 

rmsb= 7.1 

rmserrora =0 

rmserrorb=0 

rmsa =10 

rmsb =10 

rmserrora=0 

rmserrorb=0 

Estimate with 

threshold =10 

rmsa =  0.9 

rmsb =    0.9 

rmserrora =   9.1 

rmserrorb =    9.1 

rmsa =  1.8 

rmsb =  1.8 

rmserrora = 1 

rmserrorb= 1 

rmsa =  7.1 

rmsb =    7.1 

rmserrora=   0.3 

rmserrorb=   0.3 

rmsa =  6.9 

rmsb =  6.9 

rmserrora=3.2 

rmserrorb=3.2 

Zernike terms 

(A=10 nm 

B=10 nm) 

Z9 (Sine trefoil ) 

(nm) 

Z10 (Cosine 

trefoil) 

(nm) 

Z11 (Spherical 

aberration ) 

(nm) 

Z12 

(nm) 

Estimate with 

threshold =0 

rmsa =7 

rmsb= 7 

rmserrora =0 

rmserrorb=0 

rmsa =10 

rmsb= 10 

rmserrora =0 

rmserrorb=0 

rmsa =9.1 

rmsb= 9.1 

rmserrora=0 

rmserrorb=0 

rmsa =8 

rmsb= 8 

rmserrora =0 

rmserrorb=0 

Estimate with 

threshold =10 

rmsa = 7 

rmsb= 7 

rmserrora =0.2 

rmserrorb=0.2 

rmsa = 5.7 

rmsb = 5.7 

rmserrora=4.5 

rmserrorb=4.5 

rmsa = 8.9 

rmsb = 8.9 

rmserrora=0.9 

rmserrorb=0.9 

rmsa = 7.8 

rmsb = 7.8 

rmserrora=1 

rmserrorb=1 

Zernike terms 

(A=10 nm 

B=10 nm) 

Z13 

(nm) 

Z14 

(nm) 

Z15 

(nm) 

Z16 

(nm) 

Estimate with 

threshold =0 

rmsa = 10 

rmsb= 10 

rmserrora =0 

rmserrorb=0 

rmsa = 7.7 

rmsb= 7.7 

rmserrora =0 

rmserrorb=0 

rmsa = 10 

rmsb= 10 

rmserrora =0 

rmserrorb=0 

rmsa = 10 

rmsb= 10 

rmserrora =0 

rmserrorb=0 
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Estimate with 

threshold =10 

rmsa =9.9 

rmsb = 9.9 

rmserrora = 0.6 

rmserrorb =   0.6 

rmsa =7.7 

rmsb = 7.7 

rmserrora =0.5 

rmserrorb =0.5 

rmsa =9.7 

rmsb=9.7 

rmserrora= 1.2 

rmserrorb=1.2 

rmsa =10 

rmsb =10 

rmserrora = 0 

rmserrorb =0 

 

In table 4.1, rmsa and rmsb are the rms values of the surface A and B, rmserrora and 

rmserrorb are the estimated errors of rmsa and rmsb.  

 

4.4. EXPERIMENTAL RESULTS 

A shear test was performed to measure the NST mirror. The mirror was rotated 

clockwise and counter-clockwise by approximately 3 degrees around its parent axis. 

Three sets of interferograms were taken. Because there was relatively large uncertainty in 

measuring low order aberrations, the data was first reduced to investigate higher-order 

aberrations only. After that, the data was analyzed again, considering the lower-order 

aberrations.  

 

4.4.1. SURFACE ESTIMATES WITH LOWER-ORDER ABERRATIONS REMOVED 

Lower order aberrations of piston, tilt, power, coma and astigmatism were 

removed from the input data. The data is shown in Fig.4.9. After removing lower order 

aberrations, the repeatability of the interferometric measurement was ~10nm. By 

mechanical control and geometric measurement, we knew the mirror position to ~1mm. 
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Figure 4.9 Interferograms of the NST shear test  

 

A total of 231 terms of Zernike polynomials were used to represent each surface 

(A and B) in the ML method. Estimated results are shown in Fig. 4.10. The estimate of 

the mirror was 21nm rms (left), while the estimate of the null optics was 15nm (middle), 

and there are also 13nm rms errors in the null space (right). 

 

 
 

 
 
 
 
 
 
 

 
 

Figure 4.10 Estimate results of the NST shear test (lower order aberrations removed) 
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Subtracting the estimated errors of the null optics from the phase data of the normal 

position, we estimated that the mirror errors rose from 24nm to 28 nm. Here Zernike 

terms 1-13 were removed from the data due to the noise issue. 

 

 

 

 

 

 

Figure 4.11 Single measurement rms=24nm and result after correcting null optics error 
rms= 28nm 

 

With 231 terms of Zernike polynomials, we could not fully describe the input data.  

When the input data was fitted by basis functions, there were ~11nm of higher order 

residuals left in each interferogram as shown in Fig. 4.12. 

 

 
 
 
 
 
 
 
 

 
 

Figure 4.12 Basis error of the NST shear test, rms=~11nm 
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There were also ~6 nm analysis residuals as shown in Fig. 4.13, which were the 

residuals from least squares fit when the simultaneous equations were solved. They 

reflected the consistency between the ML model and the measurement data, and also the 

consistency between the three sets of the data. 

 
 
 

 
 
 
 
 
 

Figure 4.13 Analysis error of the NST shear test, rms=~6nm 
 
 

4.4.2. SURFACE ESTIMATES CONSIDERING LOWER-ORDER ABERRATIONS 

 
 
 

Figure 4.14 Interferograms of the NST test with lower-order aberration included 
 

The three sets of data containing lower-order aberrations shown in Fig.4.14 were 

used as input to the ML method.  Fig. 4.15 shows the estimated results. Comparing this 

with the coma shown to be zero in normal position after removing the alignment errors, 

(nm)

Normal positionClockwise position Counter-clockwise position

nm

Normal positionClockwise position Counter-clockwise position
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the shear test result suggests that there is a quite large amount of coma in the null optics 

and the mirror. This is consistent with the penta-prism test measurement result (Chapter 

5). It also means there is a misalignment in the principal test. However, because we had 

relatively large measurement uncertainties in the lower order aberrations, there were 

about 20-30 nm analysis residuals left, which reflected the inconsistency between the 

measurement data, as shown in Fig. 4.16. This could be the real surface shape changing 

due to the change of the support between the measurements. 

    

 

 
 
 
 

Figure 4.15 Estimate results (low aberration orders included) 
 
 

 
 
 
 
 
 
 
 

 
Figure 4.16 Analysis residuals rms=33, 20, 18 nm  

 
 
 

nm 
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4.5. DISCUSSION  

4.5.1. MEASUREMENT ACCURACY 

From the result of the Monte-Carlo analysis of the shear test in Table 4.1 and 

considering the basis error and analysis error, we estimate the measurement error in 

higher-order aberration to be less than 12nm.   The estimate of the low-order aberration is 

limited by uncertainty in the measurement and surface deformations from the support 

change.  

 

4.5.2. OTHER DATA REDUCTION METHODS 

Parks’s method (1978) has been used in the situation of measuring axially 

symmetric surfaces. Based on his method, some calculations were done for the shear test. 

The parent of the off-axis parabola was represented by Zernike polynomials in the 

calculation. However, the data reduction process was very sensitive to the noise.  

Another way to solve the problem is by integration. The measurement data from 

the normal position is  

                               )()(1 00 θθ nullopticsmirrorM −= ,                 (4.9) 

where    0θ      = the original angle of the mirror and the null optics wavefront. 

The measurements after the shear can be described as:    

            )()(2 010 θθθ nullopticsmirrorM −+= ,            

                               )()(3 020 θθθ nullopticsmirrorM −−= ,         (4.10) 
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where   1θ  and 2θ   = clockwise and counter clockwise shearing angle. 

Subtracting Equation 4.10 from 4.9, one can get data with only the information of the 

mirror:                                     

)()(12 010 θθθ mirrormirrorMM −+=− , 

                                               )()(13 020 θθθ mirrormirrorMM −−=− , 

                                              )()(23 1020 θθθθ +−−=− mirrormirrorMM .  

                                                                                                                       (4.11) 

Similarly, by numerically rotating measurement 2 or 3 back to nominal position, one can 

get  

                                              )()()(2 1001 θθθθ −−=− nullopticsmirrorM  

                                              )()()(3 2002 θθθθ +−= nullopticsmirrorM       

                                                                                                                        (4.12) 

Subtracting Equation 4.12 from 4.9, one can get data with only the information of the null 

optics: 

                                         )()(1)(2 1001 θθθθ −−=−− nullopticsnullopticsMM  

                                         )()(1)(3 2002 θθθθ +−=− nullopticsnullopticsMM  

                                         )()()(2)(3 201012 θθθθθθ +−−=−− nullopticsnullopticsMM   

                                                                                                                       (4.13) 

With Equations 4.11 or 4.13, one can numerically integrate the surface along the 

shear line. Here the shear line refers to the line rotationally symmetric about the parent 
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axis. So data reduction becomes a 1-dimension integration problem. With this method, 

one cannot get the 2-D surface shape, however. 

Equations 4.11 and 4.13 provide very useful data as these manipulations will only 

contain the information of one of the surfaces. Fig. 4.17 shows one of the shear maps 

from Equation 4.11. From this shear data figure, higher-order errors in the mirror can be 

examined. Local irregularities in the surface, which cannot be well described by finite 

polynomials, can be investigated using this kind of shear data. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.17 Shear data with mirror information only 
 

 

4.5.3. BASIS FUNCTIONS 

Fig. 4.18 shows the estimate of the mirror (higher-order) in which 1023 terms of 

Zernike polynomials were used. Comparing with Fig. 4.10 (left), more surface details are 

shown in this estimate. However, as the polynomial terms increase, data storage and 

computing force requirements also increase dramatically. So better basis functions, which 

can more completely describe the data with fewer terms, may be worth investigating for a 

certain type of surface errors.   
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Figure 4.18 Estimate of the mirror with 1023 terms of Zernike polynomials 
 
 
 

4.6. SUMMARY 

A shear test for an off-axis surface with axi-symmetric parent was investigated. 

The test allows error separation in the test optics from errors in the surface under test. 

The accuracy can be further improved by correcting for surface distortion resulting from 

the support change. Also, a better set of basis functions is worth investigation to improve 

the description of higher-order surface errors.  

  In all, this shear test has the advantages of ease of implementation and low cost. It 

is especially good at detecting high frequency information, low-order errors with large 

magnitude and local edge effects of the mirror. Consequently, the ML data reduction 

method is a general tool for reducing the data from the shear test of an off-axis surface 

with an axi-symmetric parent.  
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CHAPTER 5 

 MEASUREMENT OF AN OFF-AXIS PARABOLIC MIRROR WITH 

A SCANNING PENTAPRISM TEST 

 
 
 
 
 
5.1. INTRODUCTION 

The scanning pentaprism test has been an important absolute test method for flat 

mirrors, for parabolic mirrors and also for collimation systems (Burge 1993; Yellowhair 

2007; Mallik 2007).  

During a measurement, a pentaprism is used to relay a collimated beam from an 

autocollimator or a beam projector to the surface under test. The angle of the reflected 

beam from the surface is a measure of the surface slope of the mirror. The pentaprism 

scans in a line along the surface to obtain a series of slope measurements. Integrating the 

slope data gives the surface profile along the scan. Multiple scans can be combined 

together to get aberration information of the surface under test. The unique advantage of 

using a pentaprism is that it deviates light by a fixed angle (nominally 90 degrees) 

regardless of the orientation of the pentaprism to the incident beam. Thus, the resulting 
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measurements are relatively insensitive to the prism movement errors or alignment errors.   

The off-axis segments of Giant Magellan Telescope (GMT) have a conic constant of         

-0.998286. To verify that the surface being fabricated has the right shape, the scanning 

pentaprism test has been proposed as another verification test. As GMT mirrors are not 

ready for the test yet, the 1.7 meter New Solar Telescope (NST) primary mirror was 

tested recently with the scanning pentaprism method. Since rotational symmetry is 

broken for an off-axis surface, the test had many differences from measuring flat mirrors 

or rotationally symmetric surfaces.  

In this chapter, the principles and the implementation of the scanning pentaprism 

test are described, as developed for testing an off-axis parabolic mirror.  The sources of 

error are explained and these are related to the system and component requirements. 

 

5.2. PRINCIPLES OF THE NST SCANNING PENTAPRISM TEST  

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 5.1 Basic principle of the NST scanning pentaprism test (Burge 2006) 
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5.2.1. BASIC PRINCIPLE 

An ideal parabolic mirror will focus on-axis parallel rays to a point at the focus.  

One can measure errors in the surface by sending parallel rays into the mirror and 

measuring where they intercept the focal plane.  The NST scanning pentaprism assembly 

(SPA) was developed to create a set of rays that perform the same function. The NST 

primary is a 1.7m diameter off-axis parabola, with a 1.84 m off -axis distance. The vertex 

radius of curvature of its parent is 7700 mm. Four pentaprism scans were used to test the 

mirror as shown in Fig.5.1 (right). The mapping between image space spot location and 

pupil position gives a complete measurement of the low order surface errors.  

The NST SPA uses two pentaprisms on a rail.  A collimated light source projects 

light along the rail.  One pentaprism is located at one end of the rail. The other 

pentaprism can be positioned at any point along the rail using the motor control.  The 

pentaprisms deviate light by 90 degrees, independent of small tilts in the prism itself.  

The NST mirror focuses these beams to two spots in the focal plane of the mirror.  A 

detector is located there to capture spot images. A correlation method (Jain 2002) is then 

used to calculate the centers of the spots. With two pentaprisms, errors introduced from 

rail tilting in slope measurement direction can be removed by measuring the motion of 

the spot from the scanning prism, relative to the spot motion from the fixed prism. 

The correlation method utilizes the concept of the matched filter. It finds the 

center of the spot by first cross correlating the test spot with a filter image and then using 

a second degree polynomial fit to find the center of the correlated image data. The filter is 

a pre-stored spot image file.  
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The pentaprism provides complete isolation of measurement errors from errors in 

the motion control system for one direction only.  Fig. 5.2 defines the degrees of freedom 

for the prism as roll, pitch, and yaw.  Even though the prism will suffer finite pitch 

rotation as it is scanned, the deviated beam will have no motion in the pitch direction. Its 

corresponding direction in the focal plane of the mirror is defined as the in-scan direction, 

which is the direction for measuring the mirror slope. The direction perpendicular to it is 

the cross-scan direction. The test spot motion in the focal plane can be divided into the 

in-scan and cross-scan motion. In-scan motion is insensitive to the tilts of the prism. 

There are second-order effects, however, that must be considered.  The yaws of prisms 

and the beam projector will introduce quadratic motions in the in-scan direction. Table 

5.1 lists sources of line of sight error, to second order.  As shown in the table, beam 

projector pitch also contributes to the in-scan motion. This effect is removed by 

measuring the differential motion between the spots from the scanning prism and the 

fixed prism. There is one more important factor that must be considered. The in-scan 

direction, as defined by the pentaprism, must be determined in the focal plane. An error 

of θΔ in determining the orientation of the in-scan direction in the focal plane will cause 

a coupling of roll and yaw into the measurement. This can be expressed as (in-scan error) 

= (roll and yaw) × θΔ .  

Table 5.1 Contributions to line of sight error from prism or beam projector  
 
 Contributions to in-scan motion  Contributions to cross-scan motion 

Beam projector pitch Beam projector yaw 

(Prism yaw)2 Prism yaw 

(Prism yaw) x (beam projector yaw)  Prism roll 
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Figure 5.2 Definition of degrees of freedom for scanning pentaprism 
 
 

5.2.2. SCANNING CONFIGURATION 

 
 

 
 
 
 
 
 
 
 

 
Figure 5.3 Scan configurations 
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The advantage of the configuration on the right is that the scans pass toward the 

center of the parent. Rotational symmetry is maintained so that testing an off-axis 

component is the same as testing a rotational symmetric surface.  It will not have the 

issue of in-scan directions changing at different pupil positions of the mirror as discussed 

in Section 5.2.5. However, from a Monte Carlo analysis of the test noise sensitivity, 

where 1urad rms Gaussian random noise is added to the slope data, the configuration on 

the right is about four times more sensitive to the noise than the configuration used 

during the NST test, as shown on the left.  Because the configuration on the right is not 

good at measuring mirror slopes in x direction. 

 

5.2.3. FIELD ABERRATIONS 

If the parabolic mirror is illuminated with collimated light that is parallel to its 

axis, all reflected rays go through the focal point of the parabola. If these rays are not 

parallel to the axis, the rays will shift away from the focal point and they no longer 

intersect at a point. For a full axially symmetric mirror, this effect is described as Seidel 

coma. The off axis portion simply samples this, which appears as a linear combination of 

astigmatism and coma in the wavefront. The magnitude of this aberration is linear with 

the misalignment. Fig. 5.4 shows simulated wavefront maps of the field aberrations given 

±0.001° incident beam angles in two orthogonal directions, y and x, which are the 

directions in the plane symmetry of the mirror and the perpendicular direction. There are 
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rms 0.149 waves of astigmatism, -0.019 waves of coma and -0.003 waves of trefoil 

generated in the wavefront due to the field misalignment. 

When the fabricated mirror is mounted to the telescope, mirror position (changing 

field) is also used as a degree of freedom to compensate for the errors in the mirror 

surface, because field aberration can cancel astigmatism and coma in the mirror surface 

itself. So an error budget for the mirror segment which is a combination of the surface 

error and mirror movement (field) was defined for fabrication. During the alignment of 

scanning pentaprism test, field aberrations need to be aligned to within a certain tolerance.  

Since there are field aberrations in the test, measurements from the same field of 

the mirror are needed during the four scans, otherwise random field aberrations will be 

introduced to the different scans. This was done by aligning the SPA to focus the light to 

the same pixel in the detector plane during the four scans.  

 +y 

 
                    -x  +x 
 
 

 
 

-y 
 
 
 

 
 
 
 
 

Figure 5.4 Wave aberrations due to 0.001° field of views in waves unit 
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5.2.4. SPOT DIAGRAMS IN IN-SCAN DIRECTION 

Four scans were used to test the NST mirror as shown in the left of Fig. 5.3. The 

primary purpose of the scanning pentaprism system is to measure lower order aberrations 

in the system.  Figures 5.5-5.12 show how the data appear for each of the four scans (at 

0°, 45°, 90°, and 135°) and the wavefront error for the case of the surface error described 

by a single term of Zernike standard polynomial. In general, all of these aberration terms 

will be present in the data to some degree, and the amount of each will be determined 

using a least squares fit. The slope error of the system wavefront can be determined by 

dividing the ray aberration by the surface focal length 4069.8mm.  So one micron in the 

image plane corresponds to 0.246urad (0.05arcsec) system slope error.  

 

 

 

 
 
 
 
 
 
 

 
 

Figure 5.5 Wavefront and spot diagram with 0.18 waves of power 
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Figure 5.6 Spot diagram with 0.18 waves of sine astigmatism 

 
 
 
 
 
 
 
 
 
 
 
 
 

          
Figure 5.7 Spot diagram with 0.18 waves of cosine astigmatism 

 
 
 
 
 
  
 
 
 
 

 
 
 

Figure 5.8 Spot diagram with 0.18 waves of sine coma 
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 Figure 5.9 Spot diagram with 0.18 waves of cosine coma 

 
 
 
 
 
 
 
 
 
  
 
 

 
Figure 5.10 Spot diagram with 0.18 waves of sine trefoil 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
                      Figure 5.11 Spot diagram with 0.18 waves of cosine trefoil 
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             Figure 5.12 Spot diagram with 0.18 waves of spherical aberration 
 

Another set of important plots are the spot diagrams for the four scans where field 

aberration exists. They are very useful for diagnosing the alignment. With the 

information of the field aberrations, one can find the right direction to make the field 

error smaller by focusing the light to another field position.  Fig. 5.13-5.16 show the field 

spot diagrams. 

 

  

 

 

 

 

 

Figure 5.13 Spot diagram of 0.0104° y field 
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           Figure 5.14 Spot diagram of -0.0104° y field 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.15 Spot diagram of 0.0104° x field 

 
   

 
 
 
 
 

 
 
 
 
 
 

 
Figure 5.16 Spot diagram of -0.0104° x field 
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5.2.5. IN-SCAN DIRECTIONS IN THE DETECTOR PLANE  

The pentaprism test for an off-axis parabola has some special characteristics when 

compared with the test for a flat mirror or rotationally symmetric surface. 

As shown in the left of Fig 5.3, the four scans no longer pass toward the center of 

the parent axis of the mirror. Plane symmetry is not available for the scans 2, 3 and 4. 

Moreover, as an off-axis part of a parabolic surface, the mirror suffers field aberrations. 

Fig 5.17 shows the field coma in the parent parabola and corresponding field aberration 

(red) in the off-axis parabola (OAP). For the case of the NST, there is a 2.3:1 ratio 

between the image location (chief ray) shift and the coma blur in the tangential direction. 

Field aberration induced spot shift is not small relative to the chief ray shift. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5.17 Field aberration in the parent parabola and OAP 

 
Because of the two features mentioned above, the in-scan and cross-scan 

directions of the test in the detector plane are no longer perpendicular to each other but 

instead change orientation on different pupil locations of the mirror during a single scan. 
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An intuitive way to understand this is shown in Fig 5.18. A cross-scan motion would 

introduce a field to the mirror. In the figure, the red spots correspond to the scan 3 in 

Fig.5.3. The figure shows that as the field changes linearly, which represents pentaprism 

roll and yaw, the pattern of the field error would be linearly shifted and scaled. 

Connecting the spots from the same position on the mirror surface with lines, one can see 

that the scan directions in the focal plane are changing at different positions of the mirror 

due to the field aberration.  

 

 
 
 
 
 
 
 
 
 

 
Figure 5.18 Field (scanning) will linearly shift and scale the spot diagram. The cross- 

scan direction is changed in different pupil positions.  
 

Mathematically, this field effect can be understood by checking the spot 

trajectories due to the field coma in the parent surface. The spot position at the detector 

plane can be described by xε  and yε , which are a function of field angles xα  and yα and 

aberration W. 

                              )(/
x

W
Cyff pxx ∂

∂
⋅⋅+⋅= αε                        (5.1) 

                             )(/
y
WCyff pyy ∂

∂
⋅⋅+⋅= αε                          (5.2) 

Zero field
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where       f         =  the focal length 

              C           =  a constant,    

                               2

3

4 f
y

C p=                                                                           (5.3) 

             py          =  the radius of curvature of the parent surface 

             W           = field coma in the parent         

                                       ))(( 22 yxyxW yx +⋅+⋅= αα                                   (5.4) 

         x and y      = normalized pupil coordinates in the parent surface 

From equation 5.4, the derivatives of the wavefront errors with respect to the pupil 

coordinates can be calculated as:                                                                                                                    

               xyyx
x

W
yx 2)3( 22 ⋅++⋅=

∂
∂ αα ,                             (5.5) 

                         )3(2 2yxyxy
y
W

yx +⋅+⋅=
∂
∂ αα .                              (5.6) 

Substituting equations 5.5 and 5.6 to 5.1 and 5.2, spot trajectories can be written as: 

                   )2)3((/ 22 xyyxCyff yxpxx ⋅++⋅⋅⋅+⋅= αααε ,    (5.7) 

                   ))3(2(/ 2yxyxyCyff yxpyy +⋅+⋅⋅⋅+⋅= αααε .    (5.8) 

Scanning along line 1 (0°), we have: 

                                                           x=0,     

                                                       y =0.368 to 1.                                               (5.9) 

The derivatives of the spot trajectories relative to the field angle can be calculated as in 

equations 5.10-5.12. 
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                              0)2(/ 0 =⋅⋅=
∂
∂

=xp
x

y xyCyf
α
ε                               (5.10) 

                          2
0

2 6.14093850)3(/ yyxyCyff xp
y

y +=+⋅⋅+=
∂

∂
=α

ε                                      

                                                                                                 (5.11) 

                                     0=
∂
∂

y

x

α
ε                                                (5.12) 

x

y

α
ε

∂
∂

 and 
y

x

α
ε

∂
∂  are equal to zero. It means there is no coupling between the two 

directions, the in-scan and cross-scan direction are perpendicular to each other. 

Scanning along line 3, we get: 

                                                   x= –0.316 to 0.316, 

                                                      y=0.684,                                                      (5.13) 

and  

                     642.7912x)2(/ 684.0 =⋅⋅=
∂
∂

=yp
y

x xyCyf
α
ε                    (5.14) 

22
684.0

22 6.14098.40698346.2196.14098503)3(/ xxyxCyff yp
x

x +=++=+⋅⋅+=
∂
∂

=α
ε  

                                                                                                (5.15) 

y

x

α
ε

∂
∂  is not equal to zero, so there is coupling between the two directions. The angle 

between the two directions can be calculated from Equation 5.16. Fig. 5.19 shows that the 
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angle changes at different scanning positions, which is also verified by a numerical 

simulation in ZEMAX. 
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Figure 5.19 The angle between in-scan and cross-scan in detector plane 
 

Similar results can be derived for scanning along lines 2 and 4. 

 

Pupil position 
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5.2.6. DETECTOR ORIENTATION  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.20 Ray tracing plot of the NST mirror at its focal plane  

 
As shown in the ray-tracing result above, when the detector is facing the axis of 

the parent parabola, the field alignment error will introduce defocus to the spot 

distribution.  When the detector is facing the axis of the OAP, the field will shift the 

image along the detector; power is automatically compensated for by the tilt of the 

detector. The angle between these two situations is 26.7°. In the experiment, the detector 

was mounted to face the center of the OAP to minimize the defocus effects. 

 

 5.2.7. CALIBRATION OF DETECTOR COORDINATES  

During the pentaprism test, a detector was mounted at the focal plane of the 

mirror. Light after reflecting off the mirror focused at certain pixels of the detector. From 

the spot locations on the detector, the focal point of the mirror was determined in the 



 

 

114

 

detector pixel coordinate system.   Knowing the coordinate relation between the mirror 

and the detector, coordinates of the focal point relative to the mirror can be determined. 

This information can be used to determine focal length and other geometry parameters of 

the mirror as discussed in Section 5.3.5.2. To get the coordinate relation between the 

mirror and the detector, a laser tracker (an optical coordinate measuring machine) was 

used for coordinate measurements. Mirror coordinates were obtained by directly touching 

the mirror with the tracker ball and reading out the tracker ball coordinates. For detector 

coordinates, three laser tracker balls were attached to the mount of the detector. Detector 

coordinates were determined by calibrating the tracker ball locations relative to the 

detector pixels.     

The calibration was done with a laser tracker and an interferometer. After light 

from the interferometer focused at a certain pixel of the detector, the laser tracker was 

used to read out the coordinates of the three tracker balls. Then the detector was moved 

away and another tracker ball was aligned to the interferometer so that the light was 

retro-reflected back to the interferometer. The coordinates of this tracker ball were also 

read by the tracker. Repeating the process above for different pixels in the detector, a 

mapping relationship between the pixel location of the focusing spot, its coordinate from 

the tracker measurement and the coordinates of the three balls were obtained. 

Coordinates of other pixel positions could be linearly interpolated from this mapping. So 

during a scanning pentaprism test, knowing the coordinates of the three tracker balls and 

which pixel the light focuses on, the coordinates of that pixel (focus of the light) in the 

tracker coordinate system can be calculated. With the mirror coordinates obtained by 
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touching the mirror with tracker balls, the position of the focal point relative to the mirror 

can also be determined. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 5.21 Detector calibration setup and procedure 
 
 

5.3. SCANNING PENTAPRISM EXPERIMENT  

5.3.1. SPA COMPONENTS 

5.3.1.1. BEAM PROJECTOR: LIGHT SOURCE 

The beam projector uses a single mode fiber coupled laser with a 635 nm 

wavelength as its light source. The numerical aperture (NA) of the light is 0.12. Assuming 
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a Gaussian distribution of the light irradiance with respect to NA as shown in Fig.5.22, 

light beam with NA less than 0.06 corresponds to an irradiance variation less than 80%. 

 

 

 

 

 

 

 

 
 

Figure 5.22 Light source irradiance distribution with respect to its NA 
 

5.3.1.2. BEAM PROJECTOR: COLLIMATING SYSTEM 

A 50mm diameter doublet with focal length 500mm is used to collimate the light. 

Fig.5.23-5.24 shows the design layout and its design on-axis performance in which the 

wavefront rms value is 0.006 waves. The image space NA is designed to be 0.05, which 

corresponds to less than 14% light intensity variation from the fiber coupled laser source. 

When the system is misaligned, the light source is off axis, and field aberrations will be 

introduced to the beam projector.  Coma is well corrected by the doublet; astigmatism 

changes quadratically with the misalignment as shown in Fig. 5.25.  
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Figure 5.23 Design layout of the collimating lens 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5.24 On-axis performance of the collimating lens based on nominal design, 
rms=0.0062 waves 
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Figure 5.25 The relation between wavefront astigmatism in the 50mm collimated beam 
and misalignment of the light source 

 

Because there is unexpected spherical aberration in the doublet we bought, only a 

20mm aperture of the collimating lens was used in the experiment. The beam projector 

design has considered phase errors, amplitude variations and diffraction effects coupling 

with respect to the prism shift. These effects will be explained in the error analysis 

section.  

 

5.3.1.3. SCANNING SYSTEM 

The scanning prism was mounted to the rail on an actively controlled platform 

which was used to control the roll and yaw of the prism with Pico-motors. In addition, an 

autocollimator was mounted to the rail to monitor the yaw of the prism.  The prism can 

be stabilized in roll and yaw using measurements of the prism yaw from the 

autocollimator and the cross-scan information measured in the detector plane.   
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5. 3.1.4.  DETECTOR 

The operation of the test used a single 1.6k x 1.2k x 7.4 micron pixel CCD at the 

focal plane of the NST mirror. The read-out rate of the detector is 18MHz. The signal to 

noise ratio is 58dB. Exposure time was controlled to 0.5ms during the experiment so that 

the light source would not saturate the CCD. There is a 850µm thick protecting silica 

glass plate on top of the CCD pixels. The glass plate contributes a small amount of 

spherical aberration to the test result and this effect was removed numerically using the 

parameters of the glass plate. 

 

5.3.2. DEMONSTRATION SETUP 
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Figure 5.26 Scanning pentaprism demonstration layout and schematic plot of the 
scanning system 

 

 

 

 

 

 

 

 

Figure 5.27 Jude and Rod are rotating the rail using a fork lift 
 

The demonstration setup is shown in Fig. 5.26. A coordinate system was first built 

with the laser tracker. The mirror center was adopted as the origin; the North-South 

Beam projector
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Yaw mirror
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direction was on the y-axis, and East-West was on the x-axis. Then the mirror, rail 

supporting frame and the mounting cups were set up to the design positions with the help 

of the laser tracker. The rail had the beam projector and pentaprisms on top of it. It had 

three balls on its back side, which sat in the mounting cups of the supporting frame 

during the scan. By adjusting the screws of the cups, the tilt angles of the rail could be 

changed. Scanning of the pentaprism was driven by a stepper motor. The position of the 

pentaprism was found by counting the steps of the motor. The yaw and roll of the 

pentaprisms could be adjusted with Pico-motors. A computer program written by Grant 

Williams was used to control the Pico-motors, step motor, and detector. Four scans were 

taken in a measurement. The rotation of the rail between the scans was realized by using 

a fork lift as shown in Fig.5.27. 

 

5.3.3. SYSTEM ALIGNMENT  

5.3.3.1. BEAM PROJECTOR ALIGNMENT 

The beam projector was collimated with a shear plate interferometer. Because 

there was spherical aberration in the collimating lens, the size of the beam was stopped 

down to 20mm. When aligning the beam projector with the rail, an iris was used to shrink 

the beam to less than 1mm; the tip and tilt of the beam projector were adjusted so that the 

light spot falling on the scanning pentaprism stayed unchanged as the prism was moved 

to different positions along the rail. The beam projector was aligned to have less than 

1mm spot movement throughout the 2m long rail. 
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5.3.3.2. PRISM YAW ALIGNMENT  

Prism yaw has a second-order effect on the in-scan direction slope measurement, 

so the yaw angle of the prisms needed to be adjusted to within tolerance. 

By looking at the spot reflected from the front surface of the pentaprism, the 

pentaprism yaw angle was primarily aligned to retro-reflect back the collimating beam. 

The prism yaw was further adjusted by perturbing the yaw with the Pico-motor and 

evaluating the projected value in the in-scan direction. The in-scan direction can be 

obtained by perturbing the roll of the pentaprism. The cross-scan direction due to the yaw 

can also be found by perturbing the yaw of the pentaprism. The cross-scan direction due 

to the yaw should finally match the cross-scan direction due to the roll. So by monitoring 

the yaw cross-scan direction, one can quickly adjust the yaw close to the preferred region. 

Finally, the prism yaw was adjusted so that the in-scan projection value stayed at its 

quadratic minimum.  In the experiment, the yaws of both prisms were adjusted to better 

than 10urad. The scanning pentaprism yaw was changing due to the errors in the rail. It 

was monitored by the UDT, an electronic autocollimator. The variation of it was              

~ 0.1mrad in the experiment. 

 

5.3.3.3. PRISM ROLL CONTROL 

Using the image spot location on the camera as feedback, the roll of the scanning 

pentaprism was maintained to its nominal position by adjusting it with the Pico-motor. In 

the experiment, the roll-induced cross-scan motions in the detector plane were controlled 

to less than 0.02mrad. 
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5.3.3.4. CALIBRATION OF THE IN-SCAN AND CROSS-SCAN DIRECTIONS  

Due to the field coma effect, the projection of the cross-scan direction to the focal 

plane repeatedly changed at different locations of the mirror. The cross-scan directions 

were measured by changing the roll of the pentaprism to two extreme roll values. The 

direction was determined to better than 0.5mrad in the experiment. The cross-scan 

direction of the static pentaprism was different from that of the scanning pentaprism, so it 

also needed to be calibrated. After obtaining the cross-scan directions at 10 positions per 

scan, the cross-scan values at other positions were linearly interpolated. The linearity was 

verified by both a numerical simulation and experiments.  

The in-scan direction is the direction perpendicular to the cross-scan direction. So 

the determination of the in-scan direction was accurate to 0.5mrad in the test. This 

coupled with the 0.02mrad cross-scan error to cause in-scan errors of 10nrad. 

 

5.3.3.5. COMBINING SCANS 

For each scan, the scanning pentaprism was first moved to the center of the mirror. 

Then the rail and the roll of the pentaprism were simultaneously adjusted so that the spot 

on the camera fell at a certain pixel position. Adjusting the spot to fall at the same pixel 

of the camera during the four scans ensured that the same field of view of the mirror was 

measured, if the positions of the mirror and the camera stayed unchanged during the 

scans. 
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5.3.4. DATA COLLECTION AND REDUCTION PROCESS 

5.3.4.1. DATA COLLECTION AND REDUCTION  

The scanning pentaprism was driven by the motor to sample different positions on 

the mirror. Images were recorded after the spot roll correction was performed. The 

correlation method was used to find the centers of the static and scanning spots. The 

centers were then projected to the in-scan directions. After that, the static-spot 

movements were subtracted out from the scanning-spot movements. After getting the in-

scan spot displacements of the four scans, the spot displacements were divided by the 

focal length to get the slope values of the mirror. The slopes were then fitted to the 

Zernike slope polynomials to obtain the wavefront coefficients of the system. By further 

fitting the coefficients with field aberrations, which are certain combinations of coma and 

astigmatism, the field alignment requirement could be obtained for further adjusting the 

field of the pentaprism scanning system.  

During data collection, a laser tracker was used to monitor the position changes of 

the mirror and the detector.  This information was then used to add correcting values to 

each scan. In the experiment, the position changes were less than 25µm.  

During data reduction, the surface high frequency data obtained from 

interferometric measurement were used to subtract out the high frequency surface data 

from the scanning pentaprism test. This reduced the high-frequency coupling effect as 

discussed in error analysis section.  From the interferometric measurement results, the 

spot variation due to the high frequency errors in the mirror was 3~ 4µm rms.  

Fig. 5.28 gives the data collecting and processing flow diagram. 
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Figure 5.28 Pentaprism test data collecting and processing flow diagram 

Scan to different positions, 
correct roll of the pentaprism and 
record images 

Find centroids, project to in-scan 
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spot movement  
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effect from the spot data 
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Fit slope data to get wavefront 
coefficients 

Further fit to get alignment 
information  

Report measurement results 

Move the scanning pentaprism to 
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5.3.4.2. A DATA PROCESSING EXAMPLE 

5.3.4.2.1. IN-SCAN DATA COLLECTION 

 

Figure 5.29 A scanning picture of a 90 ° scan 
 

Fig. 5.29 shows an example of the spot images obtained in a 90° scan. The spot in 

the lower left is from the fixed prism, while the spot in the upper right is from the 

scanning prism. After collecting the spot images at different positions of the mirror in a 

scan, centers of the spots were calculated by the correlation method. Fig. 5.30 (a) shows 

the centers of the scanning spot in the 90° scan. Fig. 5.30 (b) shows the centers of the 

reference spot in the 90° scan. 

 

 

 

 

 

 

                                         (a)                                                              (b) 

       Figure 5.30 Center distributions of the scanning and reference spots from a 90° scan 
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Data were further reduced by projecting the spot centers to their corresponding in-

scan directions. Fig.5.31 shows the in-scan data. 

 

 

 

 

 

Figure 5.31 In-scan data of scanning and reference spots 
 

Finally, an in-scan spot diagram related to surface slopes was calculated by 

removing the reference spot motions. Fig. 5.32 shows the finial in-scan data of the 90° 

scan. 

 

 

 

 

 

 

 
Figure 5.32 In-scan data of a 90° scan 
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5.3.4.2.2. Compensating field effect from beam projector pitch 

The magnitude of the field aberrations is a function of position in the pupil. This 

caused the static spot and the scanning spot to have different amount of motions when the 

beam projector changed in pitch, since the two beams from the pentaprisms sampled 

different pupil positions. This effect was simulated with a ray tracing program. The 

motion scale factors between the static spot and the scanning spot were calculated and 

checked with experiments. Figure 5.33 shows the scale factors for the zero degree scan. 

Data were normalized to the value of the reference spot (point 38).  As shown in the 

figure, the movement of the sampling point 1 due to the pitch of the beam projector can 

be obtained by multiplying the in-scan motion of the static spot by 0.978.  Then this in-

scan motion from beam projector pitch can be removed from the prism data. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.33 Field effect correction factors of the 0° scan 
 

5.3.4.2.3. Mirror and detector motion compensation 
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The laser tracker was used to monitor the motions of the mirror and the detector 

during the four scans. Three tracker balls were mounted to the mirror, and another three 

balls were mounted to the camera. A coordinate system with the mirror center as the 

origin, the North-South direction as the y-axis, and the East-West direction as the x-axis, 

was used as the tracker coordinate frame. Table 5.2 shows the coordinate changes of the 

mirror and the detector during other scans relative to the 90° scan in a measure.  

Table 5.2 Mirror and camera coordinates variation 
 

45°-90° 135°-90° 0°-90°  
x y z x y Z x y z 

-11.9 -0.7 2.3 -11 -0.8 1.7 -14.4 -2 2.3 
-10.2 -2 0.4 -7.6 -0.9 0.4 -12.2 -0.2 2.5 

Mirror 
coordinate 
variation 

(µm)  
-10.9 1.5 4.9 -6.5 -0.4 2.2 -11.6 4.5 7.8 

-3.6 23.2 -21.4 -3.6 -13.3 11.5 -0.2 19.7 -17.8 
-4.2 31.4 -28.2 4.3 1.7 -0.4 -4.4 16.1 -15.1 

Camera 
coordinate 
variation 

(µm) 
-11.8 30.9 -33.2 5.3 7.4 -5.8 -10.6 29.9 -31.9 

 
From the 45°-90° data, the detector moved 28µm in y and -27 µm in z.  The shift 

in y is equivalent to a field angle of 0.00039419. The field coma shown in Fig.5.34 (a) 

and the 27µm power shown in Fig.5.34 (b) were generated from the simulation program 

and added to the 45° scan data for compensation. 
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                                  (a)                                                                (b) 
Figure 5.34 Generated mirror and detector compensation data for 45° scan 

 
 
Similarly, from the 0°-90° data, the camera moved 22µm in y and -21µm in z. The 

resulting aberrations were also compensated in the data reduction process. 

 

5.3.4.2.4. HIGH FREQUNCY DATA REMOVAL  

Data from the scanning pentaprism test were used to estimate lower-order surface 

errors only. Higher-frequency errors in the mirror, as they join the estimate, will perturb 

the estimates of the lower-order aberrations. To reduce this coupling effect, high 

frequency data from the interferometric measurement were used to subtract the data from 

the pentaprism test.  

Fig. 5.35 shows the data from the scanning pentaprism in red, which includes the 

wavefront low-order aberrations, and a small amount of residual field aberration. The 

data in blue were generated from interferometric measurement, in which low-order 

aberrations up to spherical aberration were removed from the data. The two sets of data 

matched very well as shown in the figure. This means that the higher-order aberrations in 
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the mirror had been well measured and could be well corrected. The only exception is the 

45° scan, in which the data did not match well. Further experiments are needed to 

understand this discrepancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.35 Interferometric data and scanning pentaprism data  

 

5.3.5. DEMONSTRATION RESULTS 

5.3.5.1. SURFACE MEASUREMENT RESULT 

Four scans were taken to get a measurement of the surface figure. After several 

iterations of measuring and adjusting the alignment, the SPA was finally well-aligned to 

the mirror. Then two sets of measurements were taken on two different days. The 

um 

umum 

 um
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difference of the results was 13nm rms.  Thirty-seven points were sampled during each 

scan. At each scanning position, the spot images were averaged five times. Fig.5.36 

shows the spot diagrams obtained from the different scans without any compensation. 

The spot diagrams, only corrected with high-frequency data from interferometric 

measurement, are shown in Fig. 5.37. Since the 45° scan data did not match well with the 

interferometric data as mentioned above, it was not compensated with the interferometric 

data during the data process. Fig. 5.38 gives the spot diagrams only corrected for motion 

of the mirror and detector. Fig. 5.39 shows the spot diagrams used for the finial data 

reduction, which have been corrected with high-frequency data and tracker data. Fig.5.40 

shows the polynomial fitting result, and Fig.5.41 shows the residuals after the fitting 

coefficients were removed. Fig. 5.42 shows the surface measurement. The coefficients of 

the surface errors are shown in Table 5.3. 

 

 

 

 

 

 

Figure 5.36 Spot diagram of the scanning data without compensations  
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Figure 5.37 Spot diagram with compensation of high frequency errors 
 

 

 

 

 

 

Figure 5.38 Spot diagram with compensation for motion of mirror and detector 
 
 

 

 

 

 

 

 

Figure 5.39 Spot diagram of the scanning data with both compensations 
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Figure 5.40 The fitting of the scanning data 
 

 

 

 
 
 
 
 
 
 

 
Figure 5.41 Residuals after removing polynomial fits and field aberrations 

 
Figure 5.42 Surface estimate from the pentaprism test, rms=113nm   
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Table 5.3 Coefficients of the surface  
 

 

 

 

 

 

 

 

 

5.3.5.2. MEASURING GEOMETRIC PARAMETERS  

A complete measurement of the NST mirror also needs to give the mirror 

geometry, including radius curvature, off-distance, and clocking angle. This was 

investigated with equal optical path method. 
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Figure 5.43 Equal optical path method 

 

During the scanning pentaprism test, the rail was adjusted to focus the light to the 

same pixel in the detector, which corresponded to a certain field of view of the mirror. 

During data reduction, the field and focus alignment requirements can be obtained from 

the fitting. The focus of the mirror in the detector pixel plane can then be determined with 

the pixel position and alignment information. There were three tracker balls on the 

detector mount, and the coordinate relationship between the tracker balls and the detector 

pixel plane has been calibrated as discussed in Section 5.2.7. With the laser tracker, the 

coordinates of the balls on the detector and different positions on the mirror can be 

measured in the same coordinate system. Then the geometry between the focus of the 

mirror and the mirror can be determined. 
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Fig.5.43 shows the coordinate relations between the points on the mirror and the 

focus of the mirror.  For on-axis light, the incident light is parallel to the parent axis of 

the mirror. A virtual plane passing through the focus of the mirror and perpendicular to 

its parent axis can be drawn as the dashed line shown in Fig. 5.43. This plane also 

intercepts the incident light at different points. The incident light is perpendicular to the 

virtual plane too. For a parabolic surface, different incident light should have same 

optical path from the point intercepted the virtual plane to the focus of the mirror.  So the 

direction of the parent axis can be optimized to satisfy this requirement. With the 

direction of the parent axis and the coordinates of the symmetry marks known, the 

clocking angle of the mirror can then be calculated. With the laser tracker, the 

coordinates of the center of the mirror can be measured. The distance between the center 

and the focus gives the radius curvature of the mirror. And the distance between the 

center and the parent axis gives the off-axis distance of the mirror. A Monte Carlo 

simulation was done with a 0.1mm uncertainty of the focus and 5µm uncertainties of the 

coordinates on the mirror. A focal length uncertainty of less than 0.1mm and an off-axis 

distance uncertainty of less than 0.25mm were obtained. Experimental data was not 

collected yet when this dissertation was written. 

 

5.4. ERROR ANALYSIS 

The accuracy of the scanning pentaprism measurement is limited by random and 

systematic errors.  The sources of these errors are described below. 
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5.4.1. CENTERING ERROR  

The spot image motion was measured using a correlation method. There were 

1.5µm rms errors in this determination.  Since the spot center difference between the 

static and scanning pentaprism was measured, an uncertainty of 2.12µm rms ( 2 ×1.5) 

for the spot location was expected. This was equivalent to 0.52urad rms slope error. 

The effect of 1urad Gaussian random error was checked with a Monte Carlo 

analysis as shown in Table 5.4. In the experiments, some mirror edge points could not be 

sampled due to the configuration of the pentaprism test. This causes the estimate 

uncertainty in the experiment is relative larger than the situation where full aperture of 

the mirror is sampled as shown in the table. 

 

Table 5.4 Monte Carlo analysis of 1urad random error 
 

aberration rms surface error (nm) 

Sample as in the experiment  

rms surface error (nm) 

Sample uniformly 

Focus 15 9 

Sine Astigmatism 23 17 

Cosine Astigmatism  23 17 

Sine Coma 12 6 

Cosine Coma 12 6 

Sine Trefoil 35 20 

Cosine Trefoil 30 17 

Spherical aberration 8 4 

RSS 58 36 
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5.4.2. ERROR INDUCED BY HIGH-FREQUNCY ERRORS IN THE MIRROR  

As discussed in Section 5.3.4.2.4, high-frequency surface error was estimated 

from the interferometric measurement and then removed from the pentaprsim test data. 

Figure 5.44 shows the data from the interferometric measurement. Lower-order 

aberrations up to spherical aberration have been removed. Differential data was 

calculated along pentaprism scan lines in the interferometric phase map. The data was 

then divided by the separation to get the surface slopes. The slopes timing the focal 

length of the mirror give the spot displacements along a scan. These spot displacements 

as shown in Fig. 5.35 (blue curve) were subtracted from the pentaprism data.  In the 

experiment, after removing the high-frequency data, surface fitting data and alignment 

data, the residuals in the 90° and 135° scans were 2.8µm or 0.69urad slope errors as 

shown in Fig.5.41. These included the 2.12 µm errors from the Centroid calculations, so 

the high-frequency residuals contributed ~1.7µm or 0.4urad slope errors in the 90° and 

135° scans. For the 0° scan, after removing the point with biggest deviation,  the residual 

shown in  Fig.5.40 went down to ~ 4µm rms. Considering some data around the mirror 

center were lost due to blocking from the scanning pentaprism, higher residuals in the 0° 

scan are believed to be due to less data involved in the least squares estimate. High- 

frequency data was not well removed in the 45° scan; this was not well understood yet 

and more experiments are needed.  

Treating the high-frequency data from interferometric measurement as random 

errors, a conservative estimate of their contribution to the measurement is 2.6µm or 

0.64urad slope errors.    
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Figure 5.44 Interferometric test data (lower order aberrations up to spherical aberration 
were removed), rms=75nm 

 

5.4.3. REMOVAL OF DETECTOR WINDOW ABERRATION  

There is a protecting window with 850µm thickness in front of the detector pixels. 

The window introduces 2.5nm rms spherical aberration as simulated in ZEMAX.  This 

spherical aberration was directly subtracted from the surface estimate result. 

5.4.4. THERMAL ERRORS 

Noah Siegel and Brian Cuerden (2003) have shown that a linear gradient of 0.01K 

/meter in the pentaprisms would cause the line of sight to deviate by 17nrad.  Based on 

this, the temperature gradients in the prisms need to be limited to an acceptable level.   
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For the scanning pentaprism test, a single scan takes ~10 minutes.  In the 

experiment, an allowable change of 0.2 K/m in the gradient was budgeted within the time 

of a scan. This gave 226nrad rms errors to the slope measurement. Here the prism saw 

different surfaces as it was driven along the rail, but the timescale was short compared to 

the prism’s thermal time constant.  

 

5.4.5. ERRORS FROM COUPLING LATERAL MOTION OF PRISMS 

Phase or amplitude variations in the collimated beam from the beam projector do 

not affect the system performance to the first order because these effects are common to 

both prisms.  However, these variations are coupled with lateral motion of the prism 

assembly relative to the collimated beam. In the experiment, the stop was set at the 

scanning prism so that the beam saw the same portion of the prism. This was done 

because the prism has more errors (index of refraction inhomogeneity, surface aberrations) 

than the beam.  

Three basic couplings with lateral motion of the prism have been identified and 

analyzed (Mallik 2007): 

1. Coupling of phase errors in the collimated beam with transverse motion of the 

prism. 

2. Coupling of diffraction effects in the collimated beam with transverse motion of 

the prism . 

3. Coupling of amplitude variations in the collimated beam with transverse motion 

of the prism. 
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These three effects give a change of slope that will be proportional to the lateral 

motion of the scanning pentaprism.  The lateral motion of the prisms is likely to be 

systematic, with low-order dependence on scan position. The most troublesome error 

terms come from lateral motion that varies linearly and quadratically with scan position. 

A linear variation is interpreted as focus or astigmatism, while a quadratic variation is 

interpreted as coma and a cubic variation as spherical aberration.   

We had a requirement for the straightness of the rail and aligned the pentaprism 

system to a tolerance as follows: 

 1 mm P-V linear variation from alignment with beam projector, 

 1 mm P-V quadratic variation from linearity across the full scan, 

 1 mm P-V cubic variation from linearity across the full scan, 

 0.25 mm rms variation from linearity after removing above terms. 

The effect of the 0.25 mm rms residual is treated as a random error as in Section 5.4.1.  

 

5.4.5.1. COUPLING OF PHASE ERRORS IN BEAM PROJECTOR 

Phase errors in the wavefront are coupled to the prism motion according to the 

phase slope at the edge of the beam.  Analysis shows this effect to be 

 

                                                2 x W
D r

α Δ ∂
Δ =

∂
 .                                (5.17) 

 

where 
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 Δα = effective change in beam angle 

 Δx = pupil shear 

 D = pupil diameter 

 W
r

∂
∂

= wavefront slope at the edge 

5.4.5.2. COUPLING OF DIFFRACTION EFFECTS WITH LATERAL MOTION  

A similar effect occurs due to diffraction as the collimated beam propagates. It 

cannot be eliminated by adjusting the beam projector’s collimator because the slope at 

the edge of the beam varies with scan position. This may require using a smaller stop at 

the output face of the pentaprism. Prateek Jain (2003) shows that a 40mm stop on the 

output face reduces the error to 10nrad tilt in the deflected beam, for 1mm lateral 

displacement.  The diffraction effects can thus be ignored compared with the effect of 

beam projector wavefront errors.   

 

5.4.5.3. COUPLING FROM BEAM NON-UNIFORMITY 

Using a stop on the pentaprism rather than at the beam projector makes the system 

nearly insensitive to wavefront errors in transmission through the pentaprism. A non-

uniform intensity profile from the beam projector, however, acts like a soft stop fixed on 

the beam projector and creates a sensitivity to transmission through the pentaprism. Noah 

Siegel (2003) shows that a combination of 10% intensity variations, 1 mm lateral motion, 

and 122 nm quadratic error in the wavefront cause a 20nrad tilt error in the deflected 

beam.  
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5.4.5.4. LATERAL MOTION COUPLING ERRORS IN BEAM PROJECTOR DESIGN 

The three coupling effects listed above have been considered in the design of the 

beam projector and the setting of the mechanical adjustment requirement. 

From Equation 5.17 and simulations (Burge 2002) of the phase error coupling, the 

sensitivity to power and lateral displacement is 11µrad/mm/µm rms. With a 1mm lateral 

shift and 0.018 micron rms power (which corresponds to 50micron longitudinal defocus), 

a 0.2µrad error will be introduced. The sensitivity to Astigmatism is 7.8µrad/mm/µm rms. 

With 1mm lateral shift and 0.025micron rms astigmatism, a 0.2µrad error will be 

introduced, which corresponds to a 0.4° tilt of the lens. This analysis set the tolerance for 

aligning the beam projector. 

Using a 20mm aperture at the pentaprisms, the diffraction effects can be ignored 

compared with the phase coupling effect.  

By designing the beam projector with 0.05 NA and using only 20mm aperture, we 

control the light variation to less than 10%. Again the light irradiance variation effect can 

be ignored. 

In the experiment, we slightly shifted the stop 1-2mm at the scanning pentaprism 

and checked the scan data variation before and after the changing. It showed around 2µm 

rms difference. Considering the 2µm rms variation already included the centering 

uncertainty discussed in Section 5.4.1, the beam projector error contribution can be 

ignored in the experiment.  

 

 



 

 

145

 

5.4.6. FIELD AND FOCUS VARIATIONS BETWEEN THE SCANS  

5.4.6.1. ERROR DUE TO FIELD VARIATION BETWEEN SCANS 

During the test, the SPA was aligned to measure the same field of view of the 

mirror for all scans. This was done by focusing the light to the same pixel of the detector. 

In addition, the relative position changes between the mirror and the detector were 

monitored by the laser tracker and compensated numerically in the data reduction process.  

The field variation effect has also been checked with a Monte Carlo simulation. 

Given a 25 micron measurement uncertainty in the laser tracker’s absolute distance mode, 

a ±15.8urad field difference between each scan was randomly added to the simulation 

data. Tt produces an average wavefront error of 0.045micron rms, with 0.012micron rms 

power, 0.037micron rms astigmatism, 0.007 micron rms coma and 0.02micron rms 

trefoils. 

Table 5.5 Effects of ±15.8 urad field variation between scans 
 

aberration rms system wavefront error (nm) 

Focus 12 

Astigmatism 37 

Coma 7 

Trefoil 20 

Spherical aberration 0 

RSS 45 

 
 

5.4.6.2. ERROR DUE TO FOCUS VARIATION BETWEEN SCANS 

System instability can also introduce defocus between the mirror and the detector. 

The effect of  ±25microns defocus between each scan was checked with a Monte Carlo 
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analysis. It produces an average 0.12micron rms wavefront error, with 0.047micron rms 

power and 0.12micron astigmatism. 

 

Table 5.6 Effects of ±25microns focus variation between scans 
 

aberration rms system wavefront error (nm) 

Focus 47 

Astigmatism 120 

Coma 0 

Trefoil 0 

Spherical aberration 0 

RSS 120 

 
 

 

5.4.6.3. FIELD AND FOCUS VARIATION IN THE EXPERIMENT 

From the tracker data, there is no apparent mirror tilt introduced. There was a ± 

5µm uncertainty of the position change of the detector. It gave ± 1.2urad field variation 

between the scan. When aligning different scans to the same pixel (same field), a 0.5 

pixel uncertainty was assumed, which corresponded to ±1urad field uncertainty. So in 

total, ±1.6urad field uncertainty was introduced in the test. From the Monte-Carlo 

analysis, it was known that ±15.8urad field variation will introduce a 45nm wavefront 

error, so a 2.25nm surface error due to field variation was introduced during the test. 

From the tracker data, a ±3µm focus uncertainty may exist, which corresponded to a 7.1 

nm surface error. 
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5.4.7. ERROR DUE TO BEAM PROJECTOR PITCH  

Due to the field aberration effect, when there was a beam projector pitch, the 

static spot and the scanning spot did not have the same amount of motion.  Correction 

factors were calculated from the simulation, and these factors were verified by changing 

the pitch of the rail and checking the motion difference between the two spots. The 

factors matched to ~ 0.005. There were ~30urad (p-v) pitch motions in the test. With 

30urad pitch motions and a 0.005 factor of uncertainty, pitch-induced slope errors were 

0.15urad (p-v) or ~0.03urad rms. 

 

5.4.8. ERRORS FROM MOTIONS AND MISALIGNMENT  

There are only second order effects to the slope measurement due to angular 

motions and misalignment for the system. Table 5.7 lists the degrees of freedom of the 

sources of errors. Table 5.8 gives a summary of the error terms that couple to the 

measurement. 

 

Table 5.7 Sources of errors due to angular motions and misalignment 
 

 Pitch 

(x-shift for focal plane) 

Yaw 

(y-shift for focal plane) 

Roll 

Beam projector Yes Yes No 

Prism No Yes Yes 

Focal plane No No Yes 
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Table 5.8 Definition of alignment errors for prism system 
 

Parameter Description Errors in the test 

Beam projector pitch  It directly coupled into the slope measurement. 

It was fixed by using differential motion 

between the static and scanning pentaprisms. Its 

effect  was further reduced by the numerical 

compensation discussed in Section 5.5.7 

~0.03mrad rms  

Δ(beam projector yaw) Variation in beam projector line of sight in yaw 

direction 

<0.4mrad rms 

Prism yaw Misalignment of prism in yaw direction due to 

initial alignment 

<0.02mrad rms 

Δ(Prism yaw) Variation of yaw orientation for prism <0.1mrad rms 

Prism roll  Roll changes were removed with the feedback 

from the spot position variation in the camera  

~0.4mrad 

Focal plane roll Determination of the in-scan direction ~0.5mrad 

 
 

From Table 5.8, the slope measurement error is calculated as the sum in quadrature of the 

following terms: 

    (prism yaw) 2 

(Δ (prism yaw)+prism yaw) ×Δ (beam projector yaw) 

prism roll×Δ (beam projector yaw) 

prism roll×focal plane roll                                           (5.18)         

The net slope error is 0.26 µrad rms.                                                                               
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5.4.9. ERROR CHECKING IN THE EXPERIMENTS  

Several experiments were done to check the measurement errors in the NST 

pentaprism test. 

  One way was by making a scan of the surface and then flipping the rail and 

scanning the surface again. If the measurement errors were small, the results should be 

same for the two measurements, although some of the errors change sign as the rail was 

flipped. Fig. 5.45 shows the spot diagrams of the two scans and the difference between 

them. The rms difference before and after flipping the rail was 5µm. So the error in a 

single scan was ~3.5µm. This result was obtained before we stiffened the pitch of the rail 

and did not utilize measurement averaging. With those two improvements, the results 

should improve.  

 

 

 

 

 

 

 

 
Figure 5.45 Error checking by flipping the rail 

 
 

Measurement error was also checking by perturbing the alignment. In Fig. 5.46, 

the red curve was the measurement before perturbing the alignment. The green curve was 

Normalized pupil position

Spot displacem
ent (um

) 
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the measurement after the alignment was perturbed, where field aberration was 

introduced due to the misalignment. The blue curve was generated from the numerical 

simulation given the known misalignment. The difference between the measurement and 

the prediction was less than 4µm rms. So the error in a single scan was ~2.8µm. Again 

this result was obtained without measurement averaging. 

 

 

 

 

 

 

 

 

 

                   Figure 5.46 Error checking by perturbing the alignment 
 

 

5.4.10. SUMMARY OF THE ERRORS  

Table 5.9 and 5.10 summarize the different error sources. The total rms surface 

uncertainty of the test is estimated to be 53nm. 

 

 

 

(um) 
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Table 5.9 Error described by surface rms 
 

 Rms surface error (nm) Explanation 

Error due to field variation 2.25 

±1.6 urad  field difference 

between each scan 

Error due to focus variation 7.1 

±3 µm focus difference between 

each scan 

RSS 7.4 nm  

 
Table 5.10 Error described by slope changes 
 

 

Scanning prisms 

(nrad rms) Explanation 

Centering error 523 

1.5µm rms for each spot  in focal 

plane 

High frequency surface residuals 639 average 2.6 µm 

Thermal effects 226 0.2 K/m 

Coupling of phase errors in beam projector 

Coupling diffraction effect with lateral motion 

Coupling of beam non-uniformity 

neglectable  

Motion and misalignment  260 Roll and yaw effect 

RSS 

894 (52 nm rms  

surface error) 
 

 
 
 
5.5. SUMMARY 

The scanning pentaprism test has been successfully applied to measure flat and 

rotationally symmetric curved mirrors. Our work applied it to measure an off-axis surface 

which had significant amounts of field aberrations. Field aberrations introduce many new 

issues, as shown in Section 5.2 and Section on error analysis. They are now understood 

and solved experimentally and mathematically in our experiment. The scanning 
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pentaprism test is one of the verification tests for the GMT mirror. In that case, the 

surface is not a parabola, so the test will be a non-null test; however, the basic principle 

has been demonstrated in the NST test.  

Finally, I would like to thank Jude, Rod and other people in Mirror Lab for 

helping in rotating the rail of the pentaprism test. During the early stage of the test, we 

rotated the rail many times each day in our efforts to more fully understand the system. I 

really appreciate their help and patience.  
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CHAPTER 6     

SUMMARY 

 

 
This dissertation describes some techniques developed at the University of 

Arizona for the absolute testing of large mirrors. These include a large flat mirror test, 

and two verification tests, a shear test and a scanning pentaprism test for aspheric mirrors. 

The principles, implementation, experimental results and error analysis of each test were 

described in detail. The maximum likelihood (ML) method, an important method used for 

data modeling and reduction, was explored from its principles to practical applications.  It 

is useful as a general method to combine multiple interferometric measurements. 

The ML method was used in the absolute test of a 1.6m flat. Errors in the 

reference surface were successfully separated from the flat under test. We measured the 

1.6m flat mirror to 2nm rms accuracy. There is no limitation in extending the method to 

measure an even larger flat mirror (Yellowhair 2007). In the dissertation, finite terms of 

polynomials are used to represent surfaces in the ML method. This limits the description 

of local irregularities in the ML method. However, in principle, one can also use pixels as 

basis functions to describe surfaces. The disadvantage of a pixel basis is that it 

dramatically increases computing power and memory requirements. So an efficient basis 

is worth pursuing as future work.  
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The shear test described in Chapter 4 is an extension of the test for a rotationally 

symmetric surface. The data reduction method we developed can be used as a general 

tool for the shear test of an off-axis surface with an axis-symmetric parent. The shear test 

of a 1.7m off-axis parabolic mirror has obtained an accuracy of 12nm rms. In spite of the 

issue of basis functions for the ML method, the accuracy of the test was limited by the 

uncertainties in the single interferometric measurement of the lower order aberrations in 

the system. Deformations of the surfaces due to the change of the support need to be 

investigated and further addressed in data reduction.  

We have successfully understood and controlled the field aberration issues in the 

scanning pentaprism test of the NST off-axis parabolic surface. The test error was well 

controlled to realize a 10nm measurement repeatability. The experience gained in testing 

the NST mirror will be very valuable for testing of GMT mirror segments in the future.  

Techniques developed in this dissertation provide a framework for testing even 

larger flats and the GMT segments. New issues will surely arise, but the techniques 

developed here have laid the ground work for new analysis methods. New challenges in 

the fabrication will keep pushing metrology to new levels.  
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APPENDIX A 
 

GENERAL LINEAR LEAST SQUARES AND VARIANCES OF THE 

ESTIMATE  

(Press et al. chapter 15.4 1986) 

 
 

A simple example of linear least squares fit is fitting data to a line (a+bx). The 

generalization of it is to fit a set of data points (xi, yi) to a linear combination of any 

specified functions of x. Here x is the coordinates of the data y, and x can be 

multidimensional, for instance, x is two dimensional when a wavefront map is to be fitted.  

Functions could be any forms, sines and cosines, Zernike polynomials or others. The 

general form of the linear least squares model is 

                              ∑
=

=
M

k
kk xXaxy

1
)()(                                    (A.1) 

where  )(xX k   = any arbitrary fixed functions of x, called the basis functions.  

The functions )(xX k  can be nonlinear; the ‘linear’ of the least squares refers to that the 

model linearly depends on parameters ka . 

Solving Equation A.1 in a least squares sense, a merit function can be defined as  

                                      ∑
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where   iσ   =is the measurement error (standard deviation) of the ith data point,  

                       presumed to be known. If the error levels are same for all the  

                     measurements,  iσ  can be set to a constant value iσ =1. 

The parameters ka  can be estimated by minimizing 2χ .  One way to find minimum is by 

solving Normal equations as following derivations. 

Let A be a matrix whose N×M components are constructed from the M basis 

functions evaluated at the N coordinates xi, and from the N measurements errors iσ . Its 

component can be written as  

                                
i

ij
ij

xX
A

σ
)(

=   .                                       (A.3) 

In general A has more rows than columns, N>M, since there must be more data points 

than model parameters to be solved for.  

A data vector b of length N can be defined as  

                                                      
i

i
i

yb
σ

=  .                                            (A.4) 

And a solution vector a with length M can be composed from a1, …, aM. 

The minimum of 2χ  occurs where the derivative of it with respect to all M 

parameters ak vanishes. This condition yields the M equations 

                       MkxXxXay
N

i
ik

M

j
ijji

i

,...,1)(])([10
1 1

2 =−= ∑ ∑
= =σ

          (A.5) 

Interchanging the order of the summations, Equation A.5 can be written as the matrix 

equation  
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                                                           ∑
=
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M
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kjkja

1
βα                                      (A.6) 

where             ∑
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N
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α    or equivalently  AAT ⋅=][α  an M×M matrix , 

                      ∑
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=
N

i i

iki
k

xXy
1

2
)(

σ
β             or equivalently bAT ⋅=][β  a vector of length M. 

Equation A.5 or A.6 are called the normal equations of the least squares problem. They 

can be solved by LU decomposition, backsubstitution or other standard matrix methods. 

In matrix form, the normal equations can be written as  

                          bAaAAora TT ⋅=⋅⋅=⋅ )(][][ βα                   (A.7) 

The inverse matrix 1][ −= jkjkC α  is closely related to the estimate uncertainty of the 

parameters a. parameters aj can be solved as 

                           ∑ ∑ ∑
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− ==
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The variance associated with the estimate aj can be found from  

                                                         2
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Note that jkα is independent of yi, so that from Equation A.8 we obtain  
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This leads to 

                             ∑∑ ∑
= = =

=
M

k

M

l

N

i i

ilik
jljkj

xXxXCCa
1 1 1

2
2 ])()([)(

σ
σ                 (A.11) 



 

 

158

 

The final term in brackets is just the matrix ][α . Since this is the matrix inverse of [C], so 

Equation A.11 reduces to  

                                                   jjj Ca =)(2σ                                      (A.12) 

So the diagonal elements of [C] are the variances of the fitted parameters a.  
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