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Unit-1 

Logic, Semigroups  & Monoids   
and Lattices 
 
 

PART - A  :  LOGIC 
1.1.  Logic is a science of the necessary laws of thought, without which no 
employment of the understanding and the reason takes place. 
 
Consider the following argument: 

All mathematicians wear sandals  

Anyone who wears sandals is an algebraist 

Therefore, all mathematicians are algebraist. 
 
Technically, logic is of no use in determining whether any of these statements 
is true. However, if the first two statements are true, logic assures us that the 
statement. 
 
All mathematicians are algebraists is also true. 
 
Example:- which of sentences are true or false (but not both)? 

(a) The only positive integers that divide 7 are 1 and 7 itself. 
(b) For every positive integer n, there is a prime number larger than n. 
(c) Earth is the only planet in the universe that has life. 
 
Solution:- (a) We call an integer n prime if n>1 and the only positive integers 
that divide n are 1 and n itself. Sentence (a) is another way say that 7 is a 
prime. Hence sentence (a) is true. 
(b) Sentence (b) is another way to say that there are an infinite number of 
prime. Hence (b) is true.      
(d) Sentence (c) is either true or false (but not both) but no one knows which at 

this time. 
 
Definition:- A declarative sentence that is either true or false, but not both is 
called a Proposition (or statement). 
 
For example, sentences (a) to (c) in the above example are propositions. 

But the sentence 
x + y > 0 
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is not a statement because for some values of x and y the sentence is true 
whereas for other values of x and y it is false. For example, if x = 1, y = 3, the 
sentence is true, but for x = -2, y = 0, it is false. 
Similarly, the sentence 
Take two crocins is not a statement.  It is a command. 
 
The propositions are represented by lower case letters such as p, q and r. We 
use the notation p: 1+1=3 to define p to be the proposition 1+1=3. 
 
Many propositions are composite, that is, composed of subpropositions and 
various connectives. The “Composite propositions are called compound 
propositions.”A proposition which is not compound is said to be primitive. 
Thus, a primitive proposition cannot be broken into simpler propositions. 
 
Example:- The sun is shining and it is cold. This is a compound proposition 
composed of two propositions 
The sun is shining 
and  
It is cold. 
Connected by the connective “and”. 
On the other hand, the proposition 
London is in Denmark 
is primitive statement. 
 
Definition:- The truth values of a compound statement in terms of its 
component parts, is called a truth table. 
 
1.2. Basic Logical Operations  
The three basic logical operations are 

1. Conjunction 
2. Disjunction 
3. Negation 

which correspond, respectively, to “and”, “or” and “not”. 
 
Definition:-  The conjunction of two propositions p and q is the proposition 

     p and q. 
It is denoted by p ∧ q. 
 
Example:- Let 

p : This child is a boy 
q : This child is intelligent 

Then  
p ∧ q : This child is a boy and intelligent. 
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Thus p ∧ q is true, if the child is a boy and intelligent both. 
Even if one of the component is false, p ∧ q is false. Thus  

“the proposition p ∧ q is true if and only if the proposition p and q are both 
true”. 
 
The truth value of the compound proposition p ∧ q is defined by the truth table: 
 

     P         q          p∧q 
    T 
    T 
    F 
    F 

        T 
        F 
        T 
        F 

         T 
         F 
         F 
         F 

 
Example:- If  

p : 1 +1 = 3 

q : A decade is 10 years, 

then p is false, q is true and the conjunction  

p ∧ q : 1 +1 = 3 and a decade is 10 years  
is false. 
 
Definition:-  The disjunction of two proposition p and q is the proposition 

p or q 
It is denoted by p ∨ q. 
 
The compound statement p ∨ q is true if at least one of p or q is true. It is false 
when both p and q are false. 
 
The truth values of the compound proposition p ∨ q is defined by the truth 
table: 
 

    P         q          p∨q 
    T 
    T 
    F 
    F 

        T 
        F 
        T 
        F 

         T 
         T 
         T 
         F 

 
For example, if  

p : 1 + 1 = 3 

q : A decade is 10 years, 

then p is false, q is true. The disjunction  

p ∨ q : 1 + 1 = 3 or a decade is 10 years  
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is true. 
 
Definition:- If p is a statement, the negation of p is the statement not p, 
denoted by ~p. 
Thus ~p is the statement “it is not the case that p”. 
Hence if p is true than ~p is false and if p is false, then ~p is true. 
 
The truth table for negation is  

       p       ~p 
      T 
      F 

       F 
       T 

 
Example:- Give the negation of the following statements : 

(a) p : 2 + 3 > 1 (b) q : It is cold 
 
Solution:- 
(a) ~p : 2 + 3 is not greater than 1. That is, ~p : 2 + 3 ≤ 1. 
Since p is true in this case, ~p is false. 

(b) ~q : It is not the case that it is cold. More simply, ~q : It is not cold. 
 
Translating from English to Symbols :- We  consider 
 
Example:- Write each of the following sentences symbolically, letting p : “It is 
hot” and q : “ It is sunny”: 
 
(a) It is not hot but it is sunny 

(b) It is neither hot nor sunny. 

Solution:- (a) The convention in logic is that the words “but” and “and” mean 
the same thing. Generally, but is used in place of and when the part of the 
sentence that follows is in some way unexpected. 
The given sentence is equivalent to “ It is not hot and it is sunny” which can be 
written symbolically as ~p ∧ q. 
 
(c) The phrase neither A nor B means the same as not A and not B. Thus to say 

“ IT is neither hot nor sunny” means that it is not hot and it is not sunny. 
Therefore the given sentence can be written symbolically as ~p ∧ ~q. 

 

Definition:- A “Statement form” or “Propositional form” is an expression 
made up of statement variables (such as ~, ∧, ∨) that becomes a statement 
when actual statements are substituted for the component statement variable. 
The truth table for a given statement form displays the truth values that 
correspond to the different combinations of truth values for the variables. 
Example:- Construct a truth table for the statement form: 
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(p ∧ q) ∨ ~r. 

solution:-The truth table for the given statement form is  

 

p         q            r P∧q             ~r       (p∧q) ∨ ~r 
T         T           T 
T         T           F  
T         F           T 
T         F           F 
F         T           T 
F         T           F 
F         F           T 
F         F           F 

  T                F  
  T                T  
  F                F 
  F                T 
  F                F  
  F                T 
  F                F  
  F                T 

        T 
        T 
        F 
        T 
        F 
        T 
        F 
        T 

 
Definition:-  Two different compound propositions(or statement forms) are 
said to logically equivalent  if they have the same truth value no matter what 
truth values their constituent propositions have. 
We use the symbol ≡ for logical equivalent. 
 
Example:- Consider the statements forms 

(a) Dogs bark and cats meow 
(b) Cats meow and dogs bark 

If we take  

p : Dogs bark 
q : Cats meow, 

then (a) and (b) are in logical expression 

(a)     p ∧ q 
(b)   q ∧ p 

If we construct the truth tables for p ∧ q and q ∧ p , we observe that p ∧q and q 
∧ p have same truth values. 
 

  p          q            p ∧ q 
  T          T 
  T          F  
  F          T  
  F          F 

         T 
         F 
         F  
         F 

        
p          q q ∧ p 
T          T 
T          F 
F          T 
F          F 

T 
F 
F 
F 

Thus p ∧ q and q ∧ p are logically equivalent. That is  

p ∧ q ≡ q ∧ p 
Example:- Negation of the negation of a statement is equal to the statement. 
Thus 
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~(~p) ≡ p. 
 
Solution:- The truth table of ~(~p) is  
 

     p ~p ~(~p) 
     T 
     F 

  F 
  T 

   T 
   F 

 
Thus truth values for p and ~(~p) are same and hence p and ~(~p) are logically 
equivalent. The logical equivalence ~(~p) ≡ p is called Involution Law. 
 
Example:- Show that the statement forms ~(p ∧ q) and ~p ∧ ~q are not 
logically equivalent. 
 
Solution:- Construct the truth table for both statement forms: 
 

 p             q ~p           ~q             p∧q ~(p∧q)              ~p ∧ ~q 
 T             T       
 T             F   
 F             T      
 F             F  

 F              F               T 
 F              T               F 
 T              F               F   
 T              T               F 

     F                        F          
     T           ≠           F 
     T           ≠           F 
     T                        T 

 
 Thus we have different truth values in rows 2 and 3 and so ~(p ∧ q) and                 
~p ∧ ~q are not topologically equivalent. 
 
Remark:- If we consider ~p ∨ ~q, then its truth values shall be  

F 
T 
T 
T 

and hence ~(p ∧ q) and ~p ∧ ~q are logically equivalent. Symbolically  

~(p ∧ q) ≡ ~p ∨ ~q     (1) 
 
Analogously, 

~(p ∨ q) ≡ ~p ∧ ~q     (2) 

The above two logical equivalence are known as De Morgan’s Laws of Logic. 

Example:- Use De Morgan’s Laws to write the negation of  

p : Jim is tall and Jim is thin.  
Solution:-The negation of p is  

~p : Jim is not tall or Jim is not thin. 
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Definition:- A compound proposition which is always true regardless of truth 
values assigned to its component propositions is called a Tautology. 
 
Definition:- A compound proposition which is always false regardless of truth 
values assigned to its component propositions is called a Contradiction. 
 
Definition:- A  compound proposition which can be either true or false 
depending on the truth values of its component propositions is called a 
Contingency. 
 
Example:- Consider the statement form 

p ∨ ~p. 

The truth table for this statement form is  
 
 

   P   ~p p ∨ ~p 
  T 
  F 

   F 
   T 

    T 
    T 

                                                                               ↑ 
                                                                            all T’s 
Hence p ∨ ~p is a tautology.     
 
Exercise :- Show that p ∧ ~p is a contradiction.  

Remark:- If τ and c denote tautology and contradictions respectively, then we 

notice that  

~τ ≡ c     (1) 
and 

~c ≡ τ     (2) 

Also from the above two examples 

p ∨ ~p ≡ τ    (3) 

and  
p  ∧ ~p ≡ c    (4) 

the logical equivalence (1), (2), (3) and (4) are known as Complement Laws. 
Logical Equivalence involving Tautologies and Contradictions 
If t is a tautology and c is a contradiction, then the truth tables for p ∧ τ and p ∧ 
c are : 
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      p        τ    p   ∧ τ          p         c    p ∧ c 
     T 

     F     
 

      T 

      T 

       T 

       F 

       T 

      F    

      F 

      F 

      F 

      F 

     ↑                                ↑                             ↑                              ↑                              
  Same truth values and so p ∧ τ ≡ p   Same truth values and so p ∧ c ≡ c    
 
Similarly, the truth tables for p ∨ τ and p ∨ c are 

  p    τ p ∨ τ 
  T 
  F 

   T 
   T 

    T 
    T 

               ↑              
↑                              
                 
Same truth 
values 
                      So 
p ∨ τ ≡ τ 
 

  p    c p ∨ c 
  T 
  F 

   F 
   F 

    F 
    F 

              ↑               ↑ 
Same truth value and so  
 p ∨ c ≡ p    
 

Thus we have the following logical equivalence: 
p ∧ τ ≡ p  p ∧ c ≡ c 
p ∨ τ ≡ τ  p ∨ c ≡ p (universal bound laws) 

These four logical equivalence are known as Identity Law. 
 
Example:- (Idempotent Laws): Consider the truth tables for p ∧ p and p ∨ p 
given below: 
 

  p    p p ∧ p 
  T 
  F 

   T 
   F 

    T 
    F 

 

  p    p p ∨ p 
  T 
  F 

   T 
   F 

    T 
    F 

We note that 

(i) p ∧ p and p have same truth values  
(ii) p ∨ p and p have same truth values 

Hence 
p ∧ p ≡ p and p ∨ p ≡ p 

These two logical equivalence are known as Idempotent Laws. 
 
Exercise :- Show that p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p (these logical 
equivalences are known as Commutative Laws). 

Exercise :- Prove that  
p ∧ (p ∨ q) ≡ p  

and  
p ∨ (p ∧ q) ≡ p . 
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(These logical equivalence are known as Absorption Laws). 

Exercise :- Show that  

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r),  (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)   (Associative Laws) 
and  

  p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r), p∨(q ∧ r) = (p∨q)∧(p∨r) (Distributive Laws) 
 

1.3. Conditional Propositions 
Definition:- If p and q are propositions, the compound proposition 

if p then q         or  p implies q  

is called a conditional proposition or implication and is denoted by 

p → q . 

The proposition p is called the hypothesis or antecedent whereas the 
proposition q is called the conclusion or consequent. 

The connective if…then is denoted by the symbol → . 

It is false when p is true and q is false, otherwise it is true. In particular, if 
p is false, then  p →→→→ q is true for any q. 
 
Definition:- A conditional statement that is true by virtue of the fact that its 
hypothesis is false is called true by default or vacuously true. 
For example, the conditional statement 
“ If 3 + 3 = 7, then I am the king of Japan” is true simply because p : 3 + 3 = 7 
is false. So it is not the case that p is true and q is false simultaneously. 
Thus the truth values of the conditional proposition p → q are defined by the 
truth table: 
 

p          q       p → q  
T           T 
T           F 
F           T 
F           F 

          T 
          F 
          T 
          T 

 
Each of the following expressions is an equivalent form of the conditional 

statement p → q: 

p implies q 
q if p 
p only if q  
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p is sufficient condition for q 
q is necessary condition for p. 

 
Example:- Restate each proposition in the form of a conditional proposition: 

(a) I will eat if I and hungry 

(b) 3 + 5 = 8 if it is snowing 

(c) when you sing, my ears hurt 

(d) Ram will be a good teacher if he teaches well. 

(e) A necessary condition for English to win the world series is that they sign a 
right handed relief pitcher. 

(f) A sufficient condition for Sohan to visit Calcutta is that he goes to Disney 
land. 

 
Solution:-  

(a) If I am hungry, then I will eat 

(b) If it is snowing, then 3 + 5 = 8 

(c) If you sing, then my ears hurt 

(d) If Ram teaches well, then he will be a good teacher 

(e) If English win the world series , then they sign a right handed relief pitcher 

(f) If Sohan visit Calcutta, then he goes to Disney land. 
 

Representation of “If …..then” as OR. 

Lemma:- Show that for proposition p and q, 

p → q ≡ ~p ∨ q 
 
Proof:- The truth values for p → q and ~p ∨ q are given below: 
 
P q      p→q      ~p    ~p∨q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 

F 
F 
T 
T 

T 
F 
T 
T 

                                       ↑                                        ↑ 
                                              Same truth values  
Hence 

p → q ≡ ~p ∨ q 
 
Example:- Rewrite the statement in “If….then” form: 
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  Either you get to work on time or you are fired. 

Solution:- Let 

                         ~p : you get to work on time  

and  

                           q : you are fired 

then the given statement is ~p ∨q. But  

                           p : you do not get to work on time. 

Hence according to above lemma, the equivalent “If….then” version of the 

given statement is  

                           If you do not get to work on time, then you are fired. 

Negation of a conditional statement:-  We know that p → q is false if and 
only if p is true and its conclusion q is false. Also, we have shown above that  

                                               p → q ≡ ~p ∨ q 

Taking negation of both sides, we have 

   ~(p → q) ≡ ~(~p ∨ q) 
                    ≡ ~(~p) ∧ (~q)                (De-Morgan’s Law) 
  ≡ p ∧ ~q     (Double negative Law or 

Involution Law) 

(This can also be obtained by constructing the truth tables for ~(p → q) and p ∧ 
~q; the truth tables would have the same truth values proving the logical 
equivalence) 
Thus  

                        The negation of “If p then q” is logically equivalent to “p and 
not q”. 
 
Example:- Write negations for each of the following statements: 

(a)   If I am ill, then I cannot go to university 

(b)   If my car is in the repair shop, then I cannot attend the 
class. 

 
Solution:- We know that negation of “ If p then q” is logically equivalent to “p 
and not q”. Using this fact, the negations of (a) and (b) are respectively 
 

(1) I am ill and I can go to university 
(2) My car is in the repair shop and I can attend the class. 
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Remark:- The negation of a “if…..then” proposition does not start with 
the word if. 
 
Definition:- If p → q is an implication, then the converse of p → q is the 
implication q → p. 
 
Definition:- The contrapositive of a conditional statement “If p  then q” is “If 
~q then ~pf”. 
In symbols, 
                                     The contrapositive of p → q is ~q → ~p. 
 
Lemma:- A conditional statement is logically equivalent to its contrapositive. 
 
Solution:- The truth tables of p → q and ~q → ~p are: 
         p → q 
P      q     p→q 
T      T 
T      F 
F      T 
F      F 

      T 
      F 
      T 
      T 

                     ↑  
                                   
Hence 

         ~q → ~p 
p        q ~p      ~q   ~q → ~p 
T        T 
T        F 
F        T 
F        F 

 F         F 
 F         T 
 T         F 
 T         T 

       T 
       F 
       T 
       T 

                                               ↑

                                    p → q ≡ ~q → ~p 

Example:- Give the converse and contrapositive of the implications 

(a) If it is raining, then I use my umbrella. 

(b) If today is Monday, then tomorrow is Tuesday. 

Solution:- (a) we have 

           p: It is raining 

                      q : I use my umbrella 

The converse is q → p: If I use my umbrella, then it is raining. 
The contrapositive is ~q → ~p: If I do not use my umbrella, then it is not 

raining. 

(b) we have 
 p : Today is Monday 

 q : Tomorrow is Tuesday 

The converse is q → p : If Tomorrow is Tuesday, then today is Monday. 
The contrapositive is ~q → ~p: If tomorrow is not Tuesday, then today is not 
Monday. 
 

Same truth values 
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Definition:- The inverse of the conditional statement p → q is ~p → ~q. 
For example, the inverse of “If today is Easter, then tomorrow is Monday” is  
“If today is not Easter, then tomorrow is not Monday”. 
Remark:- If a conditional statement is true, then its converse and inverse may 
or may not be true. For example, on any Sunday except Ester, the conditional 
statement is true in the above example yet its inverse is false. 
 
Only if:- “ p only if q “ means that p can take place only if q takes place also. 
That is, if q does not take place, then p cannot take place, i.e. ~q → ~p. 
Therefore equivalence between a statement and its contrapositive imply that “ 
if p occurs, then q must also occur”.    Hence 

    If p and q are statements, “p only if” means “if not q, then not p” or 

equivalently “if p then q”. 

Remark:- “p only if q” does not mean “p if q”. 
 
Example:- Use contrapositive to rewrite the following statement I n” if 

….then” form: 

   “Ram will stand first in the class only if he works twelve hours a day.” 
 
Solution:- Version 1: We have 

                         p : Ram will stand first in the class 

                         q: he works twelve hours a day 

The contrapositive is ~q → ~p : If Ram does not works twelve hours a day, 
then he will not stand first in the class. 
 
Version 2 : If Ram stands first in the class, then he will work twelve hours a 
day. 
 
Definition:- If p and q are statements, the compound statement “p if and only 
if q” is called a Biconditional statement or an equivalence. It is denoted by p 
↔ q. Observe that p ↔ q is true only when both p and q are true or when both 
p and q are false.(i.e. if both p and q have same truth values) and is false if p 
and q have opposite truth values. 

The biconditional statement has the following truth table: 
                                                p ↔ q 

     P     q   p↔q 
             
    T 
    T 
    F 
    F 

    T 
    F 
    T 
    F 

     T 
     F 
     F 
     T 
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Lemma:- Show that  

                                                p ↔ q ≡ (p → q) ∧ (q → p) 
 
Solution:- We know that “ p if and only if q” means that both “ p if q” and “ p 
only if q” hold. This means p ↔ q should be logically equivalent to (p → q) ∧ 
(q → p). We verify it using the truth table: 
 
P         q     p→q     q→p      p↔q (p→q)∧(q→p) 
T         T 
T         F 
F         T 
F         F 

       T 
       F 
       T 
       T 

      T 
      T 
      F 
      T 

       T 
       F 
       F 
       T 

           T 
           F 
           F 
           T 

                                                                     ↑                          ↑ 
                                                                     Same truth values     
Hence 

                                            p↔q ≡ (p→q) ∧ (q→p)      

Remark:- It follows there for that biconditional statement can be written as the 
conjunction of two “if……then” statement namely p → q and q → p. Also we 
know that 
 
                                             p → q ≡ ~p ∨ q 
and so 
    q → p ≡ ~q ∨ p 
Hence 

            p ↔ q ≡ (p → q) ∧ (q → p) 

                       ≡ (~p ∨ q) ∧ (~q ∨ p) 

Thus the statements having → or ↔ symbol are logically equivalent to 
statement having ~, ∧ and ∨. 
 
Definition:- Let p and q be statements. Then p is a sufficient condition for q 
means “if p then q” p is a necessary condition for q means “ if not p then not 
q”. 
 
The hierarchy of operations of logical connectives :  The order of operations 

of connectives are  

                                     ~,  ∧,  ∨,  → ,  ↔ 
 
1.4. Arguments and Their Validity  
Definition:- An argument is a sequence of statements. All statements but the 
final one are called premises (or assumptions or hypothesis). The final 
statement is called the conclusion. 
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The symbol ∴,  read “therefore”, is generally placed just before the 
conclusion. 
 
Logical form of an argument : The logical form of an argument can be 

obtained from the contents of the given argument. For example, consider the 

argument: 

If a man is a bachelor, he is unhappy 

If a man is unhappy, he dies young 

      ∴  Bachelors die young. 

This argument has the abstract form 
If p then q 

If q then r 

        ∴ p → r  , 
where 

p : He is bachelor 

q : He is unhappy 

r : He dies young 

Consider another example: 

If Socrates is a human being, then Socrates is mortal 

Socrates is a human being 

       ∴ Socrates is mortal. 

The abstract form of this argument is  

If p then q 

       p 

       ∴ q, 

where 

p : Socrates is human being 

q : he is mortal 
 
Definition:- An argument is said to be valid if the conclusion is true whenever 
all the premises are true. 
 
Definition:- An argument which is not true is called a fallacy. 
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Method to Test Validity of an Argument 

1. Identify the premises and conclusion of the argument 

2. Construct a truth table showing the truth values of all the premises and 
conclusion 

3. Find the rows (called critical rows) in which all the premises are true. 

4. In each critical row, determine whether the conclusion of the argument is 
also true. 

(a) If in each critical row the conclusion is also true, then the argument form 
is valid. 

(b) If there is at least one critical row in which conclusion is false, the 
argument form is fallacy (invalid). 

 
Example:- Show that the argument 

p 

p → q  

                   ∴ q 

is valid. 
 
Solution:- The premises are p and p → q. The conclusion is q. The truth table 
is  
 
                  Premises       Conclusion        
 p        q  p      p→q        q 
T        T 
T        F 
F        T 
F        F 

 T        T 
 T        F 
 F        T 
 F        T 

       T 
       F 
       T 
       F 

   
In the first row, all the premises are true. Therefore the first row is critical row.  
The conclusion in this critical row is also true. Hence the argument is valid.  

The argument (discussed above) 
p 
p → q 

       ∴ q 

is known as Law of Detachment. 
 
Example:- Consider the following argument form 
 

p → q 

→Critical row 
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p 

       ∴ q 
An argument of this type is  

p → q: If the last digit of this number is a 0, then this is divisible by 10 

                     p : The last digit of this number is a 0 

       ∴ This number is divisible by 10. 
The truth table for the premises and conclusion is  
 
                                   Premises     Conclusion        
 P        q   p→q      p              Q 
T        T 
T        F 
F        T 
F        F 

     T 
     F 
     T 
     T 

     T       
     T       
     F  
     F                             

       T 
       F 
       T 
       F 

                                                         
The first row is critical row and the conclusion I the critical row is true. Hence 
the given argument form is Valid. 

The fact that this argument form is valid is called Modus ponens. This Latin 
term means “Method of affirming” (since the conclusion is an affirmation). 
 
Example:- Consider the argument form 

p → q 

   ~q 

∴~p 

An example of this type of argument form is 

     If Zeus is human, then Zeus is mortal  

     Zeus is not mortal  

∴ Zeus is not human. 
The truth table for the premises and conclusion is  
 
                                                           Premises          Conclusion        

 p        q  p→q    ~q      ~p 
T        T 
T        F 
F        T 
F        F 

 T           F 
 F           T 
 T           F 
 T           T 

       F 
       F 
       T 
       T                        

                                                                                                        
The last row is critical row and conclusion in this row is also true. Hence the 
argument form is valid. 

→Critical row 

→Critical row 
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The fact that this argument is valid is called Modus Tollens which means 
(Method of denying) since the conclusion is denial. 
The above example can be solved by “Method of contradiction” also in the 
following way :  Suppose that the conclusion is false, i.e, Zeus is human. Then 
by the given statement (If…..then) Zeus is mortal. But this contradicts the 
premises “Zeus is not mortal”. Hence the argument is valid and so Zeus is not 
human. 
 
Exercise :- Using truth table or critical row method, show that the argument  

p → q 

q → r 

        ∴ p → r 
is universally valid.  This argument is known as Rule of Inference  or Law of 
Syllogism. 
 
Example:- Consider the argument 

Smoking is healthy 

   If smoking is healthy, then cigarettes are prescribed by physicians 

        ∴ Cigarettes are prescribed by physicians. 
 
Solution:- In symbols, the argument is  

p  

p → q 

       ∴ q 
The argument is of the form Modus Ponens (or Law of Detachment) and so is 
valid.   However, the conclusion is false. Observe that the first premises, p : “ 
Smoking is healthy”, is false. The second premises, p → q is then true and 
conjunction of the two premises (p ∧ (p →q)) is false. 
 
Example:- Fill in the blanks of the following arguments so that they become 

valid inferences : 

(a) If there are more pigeons than there are pigeonholes, then two pigeons 
roost in the same hole. 

There are more pigeons than there are pigeonholes 
 ∴---------------------------------------------------------- 
(b) If this number is divisible by 6, then it is divisible by 2  
This number is not divisible by 2 
∴ ----------------------------------- 
 
Solution:- (a) In logical symbols, the argument is  
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p → q 

p 

∴ -----------. 

Hence, by Modus ponens, the answer is q, that is, 

Two pigeons roost in the same hole. 

(b) In logical symbols, the given premises and conclusion are  

p → q 

~q 

∴------------. 

Hence, by Modus tollen, the answer is ~p, that is, 

This number is not divisible by 6. 
 
Example:- Using rules of valid inference solve the problem: 

(a) If my glasses are on the kitchen table, then I saw them at breakfast 
(b) I was reading the newspaper in the living room or I was reading in the 

kitchen 
(c) If I was reading the newspaper in the living room. Then my glasses are on 

the coffee table. 
(d) I did not see my glasses at breakfast 
(e) If I was reading my book in bed, then my glasses are on the bed table. 
(f) If I was reading the newspaper in the kitchen, then my glasses are on the 

kitchen table. 

Where are the glasses? 
 
Solution:-Let 

p : my glasses are on the kitchen table  

q : I saw them at breakfast 

r : I was reading the newspaper in the living room 

s : I was reading the newspaper in the kitchen 

t : my glasses are on the coffee table 

u : I was reading my book in bed 

v : my glasses are on the bed table. 

Then the given statements are 

(a) p → q (b) r ∨ s (c) r → t 
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(d) ~q  (e) u → v (f) s → p 

The following deductions can be made:(1) 
 p → q by (a) 

 ~q by (d) 

       ∴ ~p by Modus Tollen (2) 

 s → p by (f) 

 ~p by the conclusion of (1) 

          ∴ ~ s by Modus Tollen   (3) 

 r  ∨ s by (b) 

 ~s by the conclusion of (2) 

          ∴r by disjunctive syllogism(4) 

 r → t by (c) 

 r by the conclusion of (3) 

        ∴ t by Modus Ponens     

Hence t is true and the glasses are on the coffee table.  

Contradiction Rule:- If the supposition that the statement p is false leads 
logically to a contradiction, then you can conclude that p is true. 
In symbols, 
~p → c, where c is a contradiction 
∴ p 
The truth table for the premise and the conclusion of this argument is given 
below: 
 

   p    ~p    c ~p → c      p 
  T 
  F 

     F 
     T 

   F 
   F 

      T 
      F 

     T 
     F 

 
The premises and conclusion are both true in the critical row and hence the 
argument is valid. 
 
Example:- Knights and Knaves (Raymond Smullyan’s Description of an 
island containing two types of people): 
 
This island contains two types of people: knights who always tell the truth and 
Knaves who always lie. A visitor visits the island and approached two natives 
who spoke to the visitor as follows: 
 

A says : B is a knight 
B says : A and I are of opposite type. 

→Critical row  
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What are A and B? 
 
Solution:- Suppose A is a knight. Because A always tells the truth, it follows 

that B is a knight.  

Therefore what B says is true (by the definition  of Knight). Therefore A and B 
are of opposite type. Thus we arrive at a contradiction: A and B are both 
Knights and A and B are of opposite type. Therefore supposition is wrong. 
Hence A is not a Knight. So A is a Knave. Therefore what A says is false. 
Hence B is not a Knight and so is a Knave. Hence A and B are both Knaves.    
 
1.5. Quantifiers 
So far we have studied the compound statements which were made of simple 
statements joined by the connectives ~, ∧, ∨, → and ↔. That study cannot be 
used to determine validity in the majority of everyday and mathematical 
situations. For example, the argument 
All human being are mortal  
Socrates is a human being 
∴ Socrates is mortal 
is intuitively correct. Yet its validity cannot be derived using the methods 
studied so far. To check the validity of such argument it is necessary to 
separate the statements into parts-subjects and predicates. Also we must 
analyse and understand the special role played by words denoting quantities 
such as All or Some. 
 
Definition:- The symbolic analysis of predicates and quantified statements is 
called the predicate calculus whereas the symbolic analysis of ordinary 
compound statements is called the Statement Calculus (or prepositional 
calculus). 
 
In English grammar, the predicate is the part of a sentence that gives 
information about the subject. For example, in the sentence “Ram is a resident 
of Karnal”, the word Ram is the subject and the phrase “is a resident of 
Karnal” is the predicate. Thus, predicate is the part of the sentence from 
which the subject has been removed. 
 
In logic, predicates can be obtained by removing any nouns from a statement. 
For example, if P stands for “is a resident of Karnal” and Q stands for “is a 
resident of”, then both P and Q are predicate symbols. The sentences “x is a 
resident of Karnal” and “x is a resident of y” are denoted as P(x) and Q(x, y) 
respectively, where x and y are predicate variables that take values in 
appropriate sets. 
 
Definition:- A predicate is a sentence that contains a finite number of 
variables and becomes a statement when specific values are substituted for the 
variables. 
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The domain of a predicate variable is the set of all values that may be 
substituted in place of the variables. The predicates are also known as 
“propositional functions or open sentences”. 
 
Definition:- Let P(x) be a predicate and x has domain D. Then the set 

{ x ∈ D : P(x) is true} 

is called the truth set of P(x). 
 
For example, let P(x) be “ x is an integer less than 8” and suppose the domain 
os x is the set of all positive integers. Then the truth set of P(x) is {1, 2, 3, 4, 5, 
6, 7} 
 
Let P(x) and Q(x) be predicates with common domain D of x. The notation 
P(x) � Q(x) means that every element in the truth set of P(x) is in the truth set 
of Q(x). 
 
Similarly P(x) ⇔ Q(x) means that P(x) and Q(x) have Identical truth sets. 
 
For example, let  

P(x) be “x is a factor of 8” 

Q(x) be “x is a factor of 4” 

R(x) be “ x < 5 and x ≠ 3” 

and let the domain of x be set of positive integers (Zahlen). 
Then 

Truth set of P(x) is {1, 2, 4, 8} 

Truth set of Q(x) is {1, 2, 4}  

Since every element in the truth set of Q(x) is in the truth set of P(x), Q(x) � 
P(x). 
 
Further, truth set of R(x) is {1, 2, 4}, which is identical to the truth set of Q(x). 
Hence R(x) ⇔ Q(x). 
 
Definition:- The words that refer to quantities such as “All”, or “some” and 
tell for how many elements a given predicate is true are called quantifiers. 
By adding quantifier, we can obtain statements from a predicate. 
 
1.6. Universal Quantifiers and Existence Of Quantifiers 

Definition:- The symbol ∀ denotes “ for all” and is called the Universal 
quantifier. 
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Thus the sentence 
All human beings are mortal 

Can he written as 

∀ x ∈ S, x is mortal, 

where S denotes the set of all human being. 
 
Definition:- Let P(x) be a predicate and D the domain of x. A statement of the 
form “∀ x ∈ D, P(x)” is called a universal statement. 
A universal statement P(x) is true if and only if P(x) is true for every x in D 
and a universal statement P(x) is false if and only if P(x) is false for at least 
one x ∈ D. 
A value for x for which P(x) is false is called a Counterexample to the 
universal statement.] 
 
Example:- Let D = {1, 2, 3, 4} and consider the universal statement 

P(x) : ∀ x ∈ D, x3 ≥ x 

This is true for all values of x ∈ D since 13 ≥ 1, 23 ≥ 2 and so on. 
But the universal statement 

Q(x) : ∀ n ∈N, n + 2 > 8 

is not true because if we take n = 6, then 8 > 8 which is absurd. 
 
Definition:- The symbol ∃ denotes “there exists” and is called the existential 
quantifier. 
For example, the sentence “ There is a University in Kurukshetra” can be 
expressed as  

∃ a university u such that u is in Kurukshetra. 

or, we can write 

∃ u ∈ U such that u is in Kurukshetra, where U is the set of universities. 

The words such that are inserted just before the predicate.   
 
Definition:- Let P(x) be a predicate and D is the domain of x. a statement of 
the form “∃ x ∈ D such that P(x)” is called an Existential Statement. It is 
defined to be true if and only if P(x) is true for at least one x in D. 
It is false if and only if P(x) is false for all x in D. 
For example the existential statement 

∃ n ∈ N : n + 3 < 9 

is true since the set 

{n : n + 3 < 9} = {1, 2, 3, 4, 5} 
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is not empty.  
 
Example:- Let A = {2, 3, 4, 5}, then the existence statement 

∃ n ∈ A : n2 = n 

is false because there is no element in A whose square is equal to itself. 
 
Definition:- A statement of the form 

∀ x, if P(x) then Q(x) 

is called universal conditional statement. 
Consider the statement 

∀ x ∈ R, if x > 2 then x2
 > 4 

can be written in any of the form 

(i) If a real number is greater than 2, then its square is greater than 4 
(ii) Whenever a real number is greater than 2, its square is greater than 4   
(iii) The square of any real number that is greater than 2 is greater than 4. 
(iv) The squares of all real numbers greater than 2 are greater than 4. 

On the other hand, consider the statements 

(i) All bytes have eight bits 

(ii) No fire trucks are green. 
These can be written as  

(i) ∀ x, if x is a byte, then x has eight bits 

(ii) ∀ x, if x is a fire truck , then x is not green. 
 
Example:- Consider the statement 

(i) ∀ Polygons p, if p is a square, then p is a rectangle. 

This is equivalent to the universal statement 

“ ∀ squares p, p is a rectangle”. 

(ii) ∃ a number n such that n is prime and n is even.  

This is equivalent to  

“∃ a prime number n such that n is even”. 

Remark:- Existential quantification can also be implicit. For example, the 

statement 

“The number 24 can be written as a sum of two even integers” 

can be expressed as  

“∃ even integers m and n such that 24 = m + n”. 
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1. Universal quantification can also be implicit. For example the statement 

“If a number is an integer, then it is rational number”  

is equivalent to 

“∀ real number x, if x is an integer, then it is a rational 
number.” 

 
1.7. Negation of University Statement  
Definition:- The negation of a universal statement 

∀ x in D, P(x) 

is logically equivalent to a statement of the form 

∃ x in D such that ~P(x) 
Thus 

~(∀ x ∈ D, P(x)) ≡ ∃ x ∈ D, ~P(x) 
Hence 

The negation of a universal statement “all are” is logically equivalent to an 
existential statement “some are not”. 
For example, the negation of 

(i) “ For all positive integer n, we have n + 2 > 9”  
is  

“ There exists a positive integer n such that n + 2 >/  0”. 

(ii) The negation of  

“ All students are intelligent” 

 is  
“Some students are not intelligent” 

or  

“∃ a student who is not intelligent”. 

(iii) the negation of  

“ No politicians are honest” 
is  

“∃ a politician x such that x is honest.” 

or  
“Some politicians are honest”. 

 
Definition:- The negation of a universal conditional statement is defined by 

~(∀x, P(x) → Q(x)) ≡ ∃ x such that ~( P(x) → Q(x)).  

Also we know that the negation of if-then statement is  
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~ ( P(x) → Q(x) ) ≡ P(x) ∧ ~Q(x). 

Hence 

~(∀x, P(x) → Q(x)) ≡ ∃ x such that  P(x) ∧ ~Q(x) , 
that is, 

~(∀x, P(x) → Q(x)) ≡ ∃ x such that P(x)  and ~Q(x). 
 
Example:- The negation of  

∀ people p, if p is blond then p has blue eyes 
is  

∃ a person p such that p is blond and p does not have blue eyes. 
 
Example:- Suppose there is a bowl and we have no ball in the bowl. Then the 

statement 

“All the balls in the bowl are blue” 

is true “by default” or “ Vacuously true” because there is no ball in the bowl 

which is not blue. 

If P(x) is a predicate and the domain of x is D = {x1, x2,….,xn), then the 

statement 

∀ x ∈ D, P(x) 
and 

P(x1) ∧ P(x2) ∧…∧ P(xn) 

Are logically equivalent. 
For example, let P(x) be  

“x . x = x” 

and let D = {0, 1}. Then 

∀ x ∈ D, P(x) 
can be written as 

∀ binary digits x ,         x . x = x. 

This is equivalent to  

0 . 0 = 0 and 1 . 1 = 1 

which can be written as  
P(0) ∧ P(1) 

Similarly, if P(x) is a predicate and D = (x1, x2, …,xn} then the statements 

∃ x ∈ D, P(x) 
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and  

P(x1) ∨ P(x2) ∨….∨ P(xn) 

are logically equivalent. 
 
Definition:- Let 

∀ x ∈ D, if P(x) then Q(x) 

be a statement. Then 

(i) Contrapositive of this statement is  

∀ x ∈ D, if ~Q(x) then ~P(x) 

(ii) Converse of this statement is  

∀ x ∈ D, if Q(x) then P(x) 

(iii) Inverse of this statement is  

∀ x ∈ D, if ~P(x) then ~Q(x) 
 
1.8. Universal Modus Ponens 
The following argument form is valid 

Formal Version   Informal Version 

∀ x if P(x) then Q(x)  If x makes P(x) true, then x makes Q(x) true 
P(a) for a particular a   a makes P(x) true 
∴ Q(a)    ∴ a makes Q(x) true. 

An argument of this form is called a Syllogism. The first and second premises 
are called its major premises and minor premises respectively. 
 
Example:- Consider the argument: 

If a number is even, then its square is even 

K is a particular number that is even 

∴ K2 is even 
The major premises of this argument can be written as 

 ∀ x, if x is even then x2 is even 
Let  

P(x) : “x is even” 

Q(x) : “x2 is even” 

and let k be an even number. Then the argument is  

∀ x, if P(x) then Q(x) 
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P(k) for k 

∴ Q(k) 

This form of argument is valid by universal Modus Ponens. 
 
1.9. Universal Modus Tollens 
The following argument form is valid 

Formal Version   Informal Version 

∀ x if P(x) then Q(x)   If x makes P(x) true, then x makes Q(x) 
true 
~Q(a) for a particular a    a does not makes Q(x) true 
∴ ~P(a)     ∴ a does not makes P(x) true. 
 
Example:- 

All human being are mortal  

Zeus is not mortal 

∴ Zeus is not human 

The major premise of this argument can be rewritten as  

∀ x, if x is human, then x is mortal 
Let 

P(x) : x is human 

Q(x) : x is mortal 

let Z = Zeus 

 Then we have 

∀ x, if P(x) then Q(x) 

~Q(Z) 

∴ ~P(Z) 

which is valid by Universal Modus Tollens. 
 
Example:- The argument  

All professors are absent minded 

Tom is not absent minded 

∴ Tom is not a professor. 

The major premise can be written as 

∀ x, if x is professor, then x is absent minded. 
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Let 

P(x) : x is professor. 

Q(x) : x is absent minded. 

Z = Tom 
Then we have 

∀ x, if P(x) then Q(x) 

~Q(Z) 

∴~P(Z). 

Hence, by Universal Modus Tollens, Tom is not a professor. 

1.10. Use of Diagrams For Validity of Arguments 
Consider the argument: 

All human beings are mortal 

Zeus is not mortal 

∴ Zeus is not a human being. 
 
          
          
          
          
          
          
          
          
          
          
          
        
 
The two diagrams fit together in only  one way as shown below:  
     
          
          
          
          
          
          
          
         

mortal 

human
being .Zeus  

Minor premise Major premise 

mortal 

.Zeus 

Human 
being 

mortal 
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Since Zeus is outside the mortal disc it is necessarily outside the human beings 
disk. Hence the Conclusion is true. 
 
Example:- Use a diagram to show the invalidity of the arguments 

All human being are mortal 

Felix is mortal 

∴ Felix is a human being. 
 
Solution:-  The major premise and a minor premise of the arguments are 
shown in the diagrams below :   
 
          
          
          
          
          
          
          
          
          
          
      
There are two possibilities to fit these two diagrams into a single one. 
 
          
          
          
          
          
          
          
          
           

(1) (2) 

The conclusion “Felix is a human being” is true in the first case but not in the 
second. Hence the argument is invalid. 
 
 

Mortals 

Human 
being 

     Mortal 
. Felix 
 

Human 
being 

.Felix 

Mortal 

     Mortal 
 

Human 
being 
. Felix 
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PART B : SEMIGROUPS AND MONOIDS 

1.11. Binary Operation and its Properties  

Definition.  Let A be a non-empty set.  Then a mapping f : A × A → A is 
called a binary operation.  Thus, a binary operation is a rule that assigns to 
each ordered pair (a, b) ∈ A×A an element of A.   

For the sake of simplicity, we write a * b in place of f(a,b).  

Examples. 1.  Let Z be the set of integers.  Then f : Z × Z → Z defined by 
f(a,b) = a * b = a+b, a, b ∈ Z is a binary operation on Z because the sum of two 
integers a and b is again an integer.   

Thus, addition of integers is a binary operation.   

2. Let N be the set of positive integers.  Then f : N × N → N defined by f(a,b) 
= a * b = a−b is not a binary operation because difference of two positive 
integers need not be positive integer.  For example 2-5 is not a positive 
integer.  

3. For the set N of positive integers, let f : N × N → N be defined by f(a,b) = 

b
a

.  Then f is not a binary operation.  For example, if a = 2, b = 7, then 
b
a

 = 

7
2

is not a positive integer.  

4. Let Z be the set of all integers.  Then f : Z × Z → Z defined by  

f(a,b) = max (a, b)  

is a binary operation.  For example,  

  f(2, 4) = 2 * 4 =  max(2,4) = 4 ∈ Z .  

5. Let A = {a, b, c}.  Define * by  

x * y = x,  x, y ∈ A .  

Then the table given below defines the operation *  

* a b c 

a a a a 
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b b b b 

c c c c 

Further, if we define  .  by  

  x.y = y,  x,    y ∈ A,  

then the table given below defines the operation . 

. a b c 

a a b c 

b a b c 

c a b c 

6. If A = {0, 1}.   Then the binary operations ∧ and ∨ are defined by the 
following tables : 

^ 0 1 

0 0 0 

1 0 0 

 

and  

∨∨∨∨ 0 1 

0 0 1 

1 1 1 

 

Properties of Binary Operation 

1. Commutative Law :-  A binary operation * on a set A is said to be 
commutative if  

    a * b = b * a  

for any elements a and b in A.  

For example, consider the set Z of integers.  Since  
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  a+b = b+a   and a.b  =  b.a,  

for a, b ∈ Z, the addition and multiplication operations on Z are commutative.  

But, on the other hand, subtraction in Z is not commutative since, for example,  

  2 −3 ≠ 3 − 2 

Example.  Fill in the following table so that the binary operation * is 
commutative. 

* a b c 

a b − − 

b c b a 

c a − c 

We note that b * a = c, therefore, for commutativity we must have a * b = c.  

Further, c * a = a, hence a * c should also be a. 

Further, for commutativity we should have  

  c * b  = b * c  

     =  a  

Thus c * b should be  a .   

Note that for commutativity of *, the entries in the table are symmetric with 
respect to the main diagonal.  

Definition.  A binary operation * on a set A is said to be associative if for any 
elements a, b, c in A, we have  

  a * (b * c) =  (a * b) * c 

For example, addition and multiplication of integers are associative.  But 
subtraction of integers is not associative.  For example,  

    (2−4) −5  = −7 ,  

but 

    2−(4−5) = 3 

Theorem.  Let * be a binary operation on a set A.  Then any product a1 * a2 * … 
* an requires no parenthesis, that is, all possible products are equal.  
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Proof.  We shall prove this result by induction on n.  Since * is associative, the 
theorem holds for n = 1, 2 and 3.   Suppose [a1 a2 … an] denote any product 
and  

(a1 a2 … an)  = (… (a1 a2)a3…)an 

It is sufficient then to show that  

      [a1a2…an] = (a1a2 … an) 

Since [a1 a2 … an] denote arbitrary product, there is an m < n such that 
induction yields  

 [a1 a2 … an]  = [a1 a2 … am] [am+1 … an]  
           = [a1 a2 … am] (am+1 … an)  

           = [a1 a2 … am] ((am+1 … an−1)an)  

           = ( [a1 a2 … am] (am+1 .. an−1))an  

   = [ a1 … an−1] an  

   = (a1 … an−1)an  

   = (a1 a2 … an) ,  

which proves the result.  

Definition.  Let * be a binary operation on a set A.  An element e in A is called 
an identity element for * if for any element a ∈ A,  

    a * e = e * a  = a.  

Further e is called right identity if a * e = a and left identity if e * a = a for any a 
∈ A.  

Let e1 the left identity and e2 be the right identity for a binary operation *.  
Then  

  e1e2 = e2        since  e1 is left identity 
and  
    e1 e2 = e1      since e2 is right identity 

Hence e1 = e2 and so identity element for a binary operation is unique. 

Definition.  Let * be a binary operation on a set A and let A has identity 
element e.   Then inverse of  an element a in A is an element b such that  

    a * b =  b * a = e.  

We shall see later on that if * is associative, then the inverse of an element, if it 
exits, is unique.  
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Definition.   A binary operation * on a set A is said to satisfy the left 
cancellation law if  

a * b = a * c � b = c  

A binary operation * on a set A is said to obey right cancellation law if  

  b * a = c * a � b = c  

Let Z be the set of integers.  Since  

    a + b =  a + c � b = c  
and  
    b + a = c + a � b = c  for a, b, c ∈ Z,  

it follows that addition of integers in Z obeys both cancellation laws.  

Similarly multiplication of integers also obey cancellation laws.  

On the other hand, matrix multiplication does not obey 
cancellation laws.  To see it, let  

   A =   �
�

�

�
�

�

00
11

 ,  B = �
�

�

�
�

�

10
11

 ,  C =  �
�

�

�
�

� −
51
30

 .  

Then  

   AB = AC = �
�

�

�
�

�

00
21

 

but B ≠ C .  

1.12. Algebraic Systems  

Definition.  A non-empty set together with a number of binary operations on it 
is called an algebraic system.  

In what follows, we shall define some algebraic systems :  

Definition.  A non-empty set S is said to be a semigroup if in S there is 
defined a binary operation * satisfying the following property :  

If a, b, c ∈ S, then  

 a * (b * c) = (a * b) * c        (Associative Law)  

Thus  
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 A non-empty set S together with an associative binary operation * 
defined on S is called a Semi-group.   

We denote the semigroup by (S, *).  

Definition.  A semigroup (S, *) is called commutative if the binary operation * 
is a commutative operation, i.e., if  

    a * b =  b * a   for a, b ∈ S.  

Examples.  1.  Let Z be the set of all integers. Then (Z, +) is a commutative 
semigroup.   In fact, if a, b, c ∈ Z, then  

(i) a * b = a+b is an integer.  Therefore, the operation + on Z is a binary 
operation.  

(ii) a + (b+c) = (a+b) + c, because associative law holds in the set of 
integers.  

(iii) a + b =  b + a, because addition in Z is commutative.  

2. The set Z of integers with the binary operation of subtraction is not a semi-
group since subtraction is not associative in Z.  

3. Let S be a finite set and let F(S) be the collection of all functions f : S → S 
under the operation of composition of functions.  We know that 
composition of functions is associative, i.e.  

fo(goh) =  (fog)oh ,  f , g , h ∈ F(S) .  

Hence F(s) is a semigroup.  

4. The set P(S), where S is a set, together with the operation of union is a 
commutative semigroup.  

5. The integers modulo m, denoted by Zm, refer to the set  

       Zm = {0, 1, 2,…, m−1} .  

The addition in Zm is defined as  

                a + b = r,  

where r is the remainder when a+b is divided by m.  The multiplication in Zm 
is defined by  

            a.b = r,  

where r is the remainder when a+b is divided by m .  
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For example, consider 

       Z4 = {0, 1, 2,3}  

The addition table is  

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

 We note  

  (1+2) + 3  =  3+3 =  2       and     1+(2+3) =  1+1 = 2      

Hence  

    (1+2)+3 =  1 + (2+3)  

In general,  

             (a+b) + c = a + (b+c),  a, b, c ∈ Z4  

Hence Z4 is a semi-group.   

Definition.  A non-empty set S is said to be a monoid if in S there is defined a 
binary operation * satisfying the following properties :  

(i) If a, b, c ∈ S, then  

a * (b * c) = (a * b) * c       (Associative Law)  

(ii) There exists an element e ∈ S such that  

          e * a = a * e = a   for all a ∈ S (Existence of identity element) 

Thus :  

An algebraic system (S, *) is said to be a monoid if  

(i) * is a binary operation on non-empty set S  

(ii) * is an associative binary operation on S 

(iii) There exists an identity element e in S.  

It, therefore, follows that  
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A monoid is a semi-group (S, *) that has an identity element. 

Example.   1.  In example 3 above, identity function is an identity element for 
F(S).  Hence F(S) is a monoid.   

2. Let M be the set of all n × n matrices and let the binary operation * of M be 
taken as addition of matrices.  Then (M, *) is a monoid.  In fact,  

(i) The sum of two n × n matrices is again a matrix of order n × n .  
Thus the operation of matrix addition is a binary operation.  

(ii) If A, B, C ∈ M, then  

A + (B+C) = (A+B) + C    (Associative Law)  

       (iii)      The zero matrix acts as additive identity of this monoid because  

   A + 0 = 0 + A =   A   for A ∈ M .  

Definition.   Let A be a non-empty set.  A word w on A is a finite sequence of 
its elements.  

For example,   

  w = ab ab bb = ab ab3  

is a word on A = {a, b} . 

Definition.  The number of elements in a word w is called its length and is 
denoted by l(w).  

For example, length of w in the above example is  

  l(w) = 6   

Definition.  Let u and v be two words on a set A.  Then the word obtained by 
writing down the elements of u followed by the elements of v is called the 
concatenation of the words u and v on A.  

For example, if A = {a, b, c}  and  

                  u = ab a bbb      and v = a c b a b 

then  

       w = ab abbb ac bab = abab3acbab 

is the concatenation of u and v.  
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Let F(A) denote the collection of all words on A under the operation of 
concatenation.  We note that  

  (u v)w = u(v w)  

for u, v, w ∈ F(A).  Hence F(A) is a semigroup known as Free semigroup on 
A.  The elements of A are called the generator of F(A).  

Also, we note that if u, v are two words, then  

    l(uv)  = l(u) + l(v). 

Further, the empty sequence, denoted by λ, is also considered as a word on A.  
However, we do not assume that λ belongs to the free semigroup F = F(A).   
The set of all words on A including λ is usually denoted by A*.  Thus A* is a 
monoid under concatenation.  It is called the free monoid on A.  

Definition.  Let (S, *) be a semigroup and T be a subset of S.  If T is closed 
under the operation * that is, a * b ∈ + whenever a, b ∈ T, then (T, *) is called a 
subsemigroup of (S, *).  

Definition.  Let (S, *) be a monoid with identity e, and let T be a non-empty 
subset of S.  If T is closed under the operation * and e ∈ T, then (T, *) is called 
a submonoid of  (S, *).  

Clearly, the associative property holds in any subset of a semigroup and so a 
subsemigroup (T, *)  of a semigroup (S, *) is itself a semigroup.  

Similarly, a submonoid of a monoid is itself a monoid.  

Example.   1.  Let A be the set of even positive integers.  Then (A, .), where . 
denotes ordinary multiplication is a subsemigroup of (N, X) since A is closed 
under multiplication.  

Similarly, the set B of odd positive integers form a subsemigroup (B, X) of (N, 
X).  

Also (A, + ) is a subsemigroup of (N, . ).  But (B, +) is not a subsemigroup of 
(N, +) because B is not closed under addition.  For example, 1+3 = 4 which is 
not odd.  

2. Let (S, *) be a semigroup and a ∈ S.   If T = {ai : i ∈ N} ,  then (T, *) is a 
subsemigroup of  (S, *).  

3. Let F(A) be a free semigroup on the set A = {a, b}.  Let G consists of all 
even words, that is, words with even length.  The concatenation of two 
such words is also even.  Thus G is a subsemigroup of F(A).  
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Theorem.  The inverse of every element in a semigroup with identity e is 
unique.  

Proof.   We shall use associativity of the binary operation * to prove the 
uniqueness of the inverse element.  

So, suppose that b and c are two inverses of an element a in a monoid (S, *).  
Therefore, we have  

  a * b = b * a = e      (i) 
     
  a * c = c * a = e      (ii)  

We note that  

  b * (a * c) =  b * e,     by (ii)  

        = b,  because e is identity     (iii)  

and  

  (b * a) * c = e * c ,  by (i)  
                     = c,  because e is identity    (iv)  

But associativity of binary operation * implies  

  b * (a * c) = (b * a) * c  

Hence, from (iii) and (iv) it follows that  

      b = c ,  

proving that inverse, if exist, of every element in a monoid is unique.  

1.13 Homomorphism of Semigroups 

We discuss now a method for comparing the algebraic structures of the two 
semigroups.  

Definition.   Let (S, *) and (T, *′) be two semigroups.  A function f : S → T is 
called a semigroup homomorphism if  

      f(a * b) = f(a) *′ f(b)  

for all a, b ∈ S.  

If, in addition, f is also onto, we say that T is a homomorphic image of S.  
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Definition.  Let (S, *) and (T, *′) be two semigroups.  If f : S→ T is both one-
to-one and onto in addition to being a homomorphism, then f is called an 
isomorphism from (S, *) to (T, *′).  

Definition.   A homomorphism f from (S, *) to (T, *′) is called a 
monomorphism if f as a map is injective (one-to-one).   

Definition.   A homomorphism f from (S, *) to (T, *′) is called an 
Epimorphism if f as a map is surjective (onto).  

Thus we may define isomorophism between two semigroups (S, *) and (T, *′) 
as  

Definition.   Let (S, *) and (T, *′) be two semigroups.  Then a homomorphism f 
: (S, *) → (T, *′) is called an isomorphism if it is both monomorphism and 
epimorphism.  

OR 

Definition.  Let (S, *) and (T, *′) be two semigroups.  Then a mapping f : S → 
T is called an isomorphism if  

(i) f (a * b) = f(a) *′ f(b)  for all a, b ∈ S   (semigroup homomorphism) 

(ii) f as a map is bijective.  

Definition.   Let (S, *) and (T, *′) be two semigroups.  If f : S → T is an 
isomorphism, then the semigroups (S, *) and (T, *) are called isomorphic.  In 
such a case (T, * ′) is called isomorphic image of (S, *).  

Examples.  1. Let F(A) be the free semigroup of a set A, and let Z be the 
semigroup of integers under addition.  Let  

  f : F(A) → Z  

be defined by  

    f(w) = l(w),  w ∈ F(A)  

We note that, if u, v ∈ F(A), then  

  f(uv) = l(uv)  

                     = l(u) + l(v)  

             = f(u) + f(v)  

Hence f is a homomorphism.   Here, the operation in F(A) is written 
multiplicatively, whereas the operation in Z is addition.   
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2. Let Z be the set of integers and T be the set of all even integers.  Then               
(Z, + ) and (T, +) are semigroups.  Let  

       f : Z → T 

be defined by  

    f(a) = 2a,  a ∈ Z  

We note that  

(i) f(a+b)= 2(a+b)  

          = 2a + 2b  

                      = f(a) + f(b)  

Thus f is a homomorphism.  

(ii)     f(a) = f(b) �  2a = 2b  

                                 �    a = b 

Hence f is one-to-one, that is, f is monomorphism.  

(iii) Let b be an even integer.  Then a = 
2
b

 ∈ Z and  

                    f(a) = f �

	



�

�



2
b

 =  2 �

	



�

�



2
b

  = b 

Thus to every b ∈ T, there is an a ∈ Z such that f(a) = b.  

Hence f is onto, i.e., f is epimorphism.  

Hence f is an isomorphism.  

Theorem.   Let (S, *) and (T, *′) be monoids with identities e and e′ 
respectively.  Let F : S → T be a homomorphism from (S *) onto (T, *′).  Then 
f(e) =  e′.   

Proof.   Let b be any element of T.  Since f is surjective, there is an element a 
∈ S such that f(a) = b.  Since e is identity of S, we have  

  a * e = a = e * a    (i) 

and so  

           b = f(a)= f(a * e) , by (i)  

                        = f(a) *′ f(e) ,  because f is homomorphism  
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                        = b *′ f(e)  

Also,  

  b = f(a) = f(e * a)  

   = f(e) *′ f(a)  

   = f(e) *′b  

Hence  

  b *′ f(e) = f(e) *′ b = b  

and so f(e) is identity for T.  Thus, f(e) = e′ .  

Theorem.  If f is a homomorphism from a commutative semigroup (S, *) onto 
a semigroup (T, *′), then (T, *′) is also commutative, that is, homomorphic 
image of an abelian (commutative) semigroup is abelian. 

Proof.  Let t1, t2 ∈ T.  Since f is onto, there exist s1, s2 ∈ S such that  

  f(s1) = t1 and f(s2) = t2  

Then  

    t1 *′ t2  = f(s1) *′ f(s2)  

   =  f(s1 * s2) ,  since f is homomorphism 

     = f(s2 * s1), since S is abelian  

     = f(s2) *′ f(s1), since f is homomorphism 

     = t2 *′ t1 . 

Hence (T, *′) is abelian.  

Remark.   The converse of the above theorem is not true.  

Theorem.  Let f : (S, *) → (T, *′) be semigroup homomorphism.  If S′ is a 
subsemigroup of (S, *), then the image of S′ under f is a subsemigroup of (T, 
*′).   

Proof.  Let f (S′) be the image of S′ under f and let t1, t2 be in f (S′).   Then 
there are s1 and s2 in S′ such that  

          t1 = f(s1) and t2 = f(s2)  

We claim that f(S′) is closed under the binary operation *′.   It is sufficient to 
show that t1 *′ t2 ∈ f(S′).   We have, in this direction,  

  t1 *′ t2 =  f(s1) *′ f(s2)  
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               = f(s1 * s2),  because f is homomorphism.  

Now since S′ is a semigroup and s1, s2 ∈ S′, we have s1 * s2 ∈ S′(due to 
closeness of the peration *).  Hence  f(s1 * s2) ∈ f(S′).  It follows, therefore, that 
t1 *′ t2 ∈ f(S′).   
Further, since the associativity hold in T, it also holds in f(S′).  Hence f(S′) is a 
subsemigroup of   (T, *′).   

Theorem.  The intersection of two subsemigroups of a semigroup (S, *) is 
subsemigroup of (S, *).  

Proof.  Let (S1, *) and (S2, *) be two subsemigroups of the semigroup (S, *).  
Let a ∈ S1 ∩ S2 and  b ∈ S1 ∩ S2 .   Then  

  a ∈ S1 ∩ S2 � a ∈ S1 and  a ∈ S2  

    b ∈ S1 ∩ S2 �  b ∈ S1 and b ∈ S2  

Since S1 is a subsemigroup, therefore, a, b ∈ S1 implies a * b ∈ S1.  Similarly, 
since S2 is a subsemigroup, a, b ∈ S2 implies a * b ∈ S2.  Hence  

  a * b ∈ S1 ∩ S2  

Hence S1 ∩ S2 is closed under the operation *.  Further associativity in S1 and 
S2 implies the associativity of S1 ∩ S2 since S1 ∩ S2 ⊆ S1 and S1 ∩ S2 ⊆ S2.   
Hence S1 ∩ S2 is a subsemigroup of (S, *).  

Corollary.   Intersection of two submonoids of a monoid (S, *) is a 
semimonoid of (S, *).  

Proof follows the same line as that in the above Theorem. 

Remark.  Union of two subsemigroups of a semigroup (S, *) need not be a 
subsemigroup of (S, *).  

For example,  

  (S1 , *)  =  {0, ± 2,  ± 4,  ± 6,  + ….}  

and  

   (S2, *) = {0, ± 3,  ± 6,  ± 9, ±, …}  

are subsemigroups of the semigroup (Z, +) of integers.  But  

             S1 ∪ S2 = {0, ± 2,  ± 3,  ± 4,  ± 6, ± ….}  

is not a subsemigroup of (Z, +), because  

    2 ∈ S1 ∪ S2 ,  3 ∈ S1 ∪ S2  , 
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but  2+3 = 5  ∉ S1 ∪ S2 showing that S1 ∪ S2 is not closed under addition.  

1.14. Quotient Structure 

Definition.  An equivalence relation R on a semigroup (S, *) is called a 
congruence relation if a R a′ and b R b′ imply (a * b) R (a′ * b′).   

Examples.  1.    Let (Z, +) be the semigroup of integers. Consider the  relation 
R defined on Z by  

  A R b if and only if a ≡  b (mod m).  

We know that a  ≡ b (mod m) if m divides a−b.  We note that  

(i) For any integer a, we have a ≡ a (mod m), i.e., a R a  

(ii) If a R b, then a ≡ b (mod m) � m | (a−b) � m|(b−a)  and so b ≡ a (mod 
m) which means            b R a.  

(iii) If a R b and b R c, then  

a ≡ b(mod m) and b ≡ c(mod m) 

              � m|(a−b)   and m|(b−c)  

                          � m [(a−b) + (b−c)] 

                          � m|(a−c) 

                          � a ≡ c (mod m), which means that a R c.  

Thus R is reflexive, symmetric and transitive and so is an equivalence 
relation.  Further, if  

    a  ≡ c (mod m) and b ≡ d (mod m),  

then  

    m | (a−c)  and m | (b−d)  
 

�        m | [(a−c) + (b−d)] 

�        m|[(a+b) − (c+d)]  

� (a+b) ≡ (c+d) (mod m)  

�  (a+b) R (c+d)  

Hence R is a congruence relation.  

2.   Consider the semigroup (Z, .), where . denotes ordinary multiplication.   
Let us again consider the relation R on Z defined by  
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              a R b  if and only if a ≡ b (mod m).  

This relation is an equivalence relation.  Further if a ≡ c (mod m) and b ≡ d 
(mod m), then  

 m|(a−c)  and   m|(b−d) 

 � m|b(a−c)  and  m|c(b−d) 

� n|(ab−bc) and m|(bc−cd) 

� m|[(ab−bc + bc−cd)]  

� m|(ab−cd) 

� ab ≡ cd (mod m)  

Hence the relation is a congruence relation on (Z, . ) .  

3.   Let F(A) be the free semigroup on a set A.  Define u R v if u and v have 
the same length.  We note that  

(i) u R u  because u has same length as u 

(ii) If u R v, then u and v have same length � v and u have same length � 
v R u  

(iii) If u R v and v R w, then u and v have same length and also v and w 
have same length and so u and w have same length, that is, u R w :  

Hence R is an equivalence relation.   Further, let u R v and u′ R v′.   Then  

      l(u) = l(v) and l(u′) = l(v′) .  

Then  

    l(uu) =  l(vv′) = m + n ,  

that is  
    l(uu′) = l(vv′)  

�   uv′  R vv′  

Hence R is a congruence relation on F = F(A).  

4.   Let (Z, +) be the semigroup of integers and let f(x) =  x2−x−2.   Let R be a 
relation defined on Z by  

  a R b  if and only if f(a) =  f(b).  

It can be shown that R is an equivalence relation.  Further we note that  
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   f(−1) = f(2) = 0   and so −−−−1 R 2  

   f(−2) = f(3) = 4  and so −−−−2 R 3. 
But  

   f(−3) = 10  and f(5) = 18 , 

and so     

  −−−−3  R/  5 .  

Hence R is not a congruence relation.  

1.15 Equivalence Classes 

If R is an equivalence relation on the semi-group (S, *) , it will partition S into 
equivalence classes.  Let [a] be the equivalence class containing a in S and let 
S/R denote the set of all equivalence classes, where R is congruence relation.  

We define an operation  � on the equivalence classes S/R by 

     [a] �   [b] = [a * b] ,        a , b ∈ S 

that is  �  : S/R × S/R → S/R  is defined by  

                     � ( [a], [b] )  = [ a] �    [b] = [a * b] 

Then we have  

Theorem.  Let R be a congruence relation on the semigroup (S, *).  Then � : 
S/R × S/R → S/R defined by  

                       �  ( [a], [b] ) = [a] � [b] = [a * b] , a, b ∈ S  

is a binary operation on S/R and (S/R, �) is a semigroup. 

Proof.  Suppose that ([a], [b] ) = [a′],  [b′] ).  Then a R a′ and b R b′.  Since R 
is congruence relation, this implies a * b R a′ * b′.  Thus [a * b] = [a′ * b′], that 
is,  � is a well defined function. Hence �  is a binary operation  S/R.  

Further we note that  

[a] �  ( [b] �   [c] )  =  [a] �   [ b * c]    (by definition of  � )  

        =  [ a * (b * c)]      (by  definition of   � ) 
        =  [ (a * b) * c] (Associativity of * in S)  
        =  [a * b] � [c] (by definition of  �)  
        =  ( [a] �  [b] ) �  [c]  (by definition of  � )  
 
Hence  �  is an associative operation.    This implies that (S/R, �) is a 
semigroup.  
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The operation  � is called quotient binary relation on S/R constructed from 
the given binary relation  * on S by the congruence relation R.  

The semigroup (S/R, �) is called Quotient Semigroup or Factor 
Semigroup or the Quotient of S by R. 

Theorem.  Let R be the congruence relation on the monoid (S, *), then (S/R, 
�) is a monoid.  

Proof.  We have shown above that (S/R, �) is a semigroup.  Further if e is 
identity element in(S, * ), then [e] is the identity in (S/R, � ).  Thus (S/R, � ) 
is semigroup having identity element [e] and so is a monoid.  

Theorem.  Let R be a congruence relation on a semigroup (S,*) and let (S/R, 
�) be the corresponding quotient semigroup.  Then the mapping φ : S → S/R 
(called the natural mapping) defined by  

    φ(a) = [a] 

is an onto homomorphism, known as Natural homomorphism.  

Proof.  According to definition of φ, to each [a] in S/R, there is a ∈ S such that 
φ[a] = [a].  Hence φ is subjective.   Now let a, b ∈ S.  Then  

    φ(a * b) = [a * b] 

                          =  [a] �  [b]  
      = φ(a) �  φ(b)  

Hence φ is homomorphism onto.  

Theorem (Fundamental Theorem of Semi-group Homomorphism).  Let f : 
S → T be a homomorphism of the semigroup (S, *) onto the semigroup (T, *′).  
Let R be the relation on S defined by  

    a R b   if f(a) = f(b) for a, b ∈ S  

Then  

(i) R is a congruence relation on S  

(ii) (S/R, �) is isomorphic to (T, *′).   

(If f is not onto, them (ii) shall be “S/R is isomorphic to f(S)”.  

Proof.  First we show that R is an equivalence relation. We note that  

(i) Since f (a) = f (a), we have a R a.   

(ii) If  a R b, then f(a) = f (b) or f (b) =  f(a) and hence b R a.  
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(iii) If a R b and b R c , then  

f (a) = f (b) and f (b) = f (c)  

and hence  

    f (a) = f (c) 

and so a R c.  

Thus the relation R is reflexive, symmetric and transitive and so an equivalence 
relation.  

Suppose now that  

    a R a′   and   b R b′ .  

Then  

    f (a) = f (a′) and f (b) = f (b′)  

Since f is homomorphism,  

    f(a * b) = f(a) *′ f(b)  

    = f(a′) *′ f(b′)  

     = f(a′ * b′)  
Hence  

  (a * b) R(a′ * b′)  

and so R is a congruence relation.  

Define  

  ψ : S/R   → T  

by    

    ψ ( [a] ) = f(a) .  

We claim that ψ is well defined.  Suppose  [a] = [b].  ψ will be well defined if 
f(a) = f(b).  Now [a] = [b] implies a R b, that is, f(a) = f(b).  Hence ψ is a 
function (well defined).  

Further, if [a], [b] ∈ S/R, then  

  ψ ( [a] �  [b] ) =  ψ ( [a * b] ),  a, b ∈ S  

    = f(a * b)  

    = f(a) *′ f(b),  because f is homomorphism 
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    = ψ [a] *′ ψ[b] 

So ψ is semigroup homomorphism.  

Also   

   ψ ( [a] =  ψ ( [b] )  �  f(a) = f(b)  

      � a R b  

      � [a] = [b],  

and so ψ is one – to – one .  

Thus ψ,  as a map,  is bijective and homomorphism.  Hence ψ is an 
isomorphism and  

   S/R  ≅  T  

Remark.  We have proved that the mapping φ : S → S/R is natural 
homomorphism.  Also, we proved that the mapping ψ : S/R → T is an 
isomorphism.  Thus diagram of the situation becomes  

                                                               f 

                                          S                                       T 

                                                 φ                        ψ 

                                                                   S/R 

Also, we note that  

  (ψ o φ) (a)  =  ψ (φ (a)) 

     = ψ ( [a] )  

     = f(a) for all a ∈ S .  

Hence  

       ψ o φ = f  

1.16. Direct Product of Semigroups 

Let (S, *) and (T, *′) be two semigroups.  Consider the cartesian product 
S × T .  Define a binary operation *′′ on S × T by  

  (s1, t1) *′′ (s2, t2) =  (s1 * s2, t1 *′ t2)  
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In what follows, we prove that (S × T, *′′) is a semigroup.  

Theorem.  Let (S, *) and (T, *′) be semigroups.  Then (S × T, *′′) is a 
semigroup under the binary operation *′′ defined by  

  (s1, t1) *′′ (s2, t2) =  (s1 * s2,  t1 *′ t2) . 

Proof.  If (s1, t1) , (s2, t2)  and (s3, t3) ∈ S × T , then  

[ (s1, t1) *′′ (s2, t2) ] *′′ (s3, t3)  =  (s1 * s2, t1 *′ t2) *′′ (s3, t3)  

    = ((s1 * (s2 * s3), t1 *′ (t2) *′ t3))  

    = (s1 * (s2 * s3), t1 *′ (t2 *′ t3))  

    = (s1, t1) *′′ (s2 * s3, t2 *′ t3)  

    = (s1, t1) *′′ [(s2, t2) *′′ (s3, t3) ] 

Hence *′′ is associative and so (S × T, *′′) is a semigroup.  

Corollary.  If (S, *) and (T, *′′′′) are monoids, then (S ×××× T, *′′′′′′′′) is also a 
monoid.  

Proof.  We have proved above that (S × T, *′′) is a semigroup.  We further note 
that if eS is identity of (S, *) and eT is identity of (T, *′), then for (s1, t1) ∈ S × T, 
we have  

  (eS, eT)*′′ (s1, t1) = (eS * s1, eT *′ t1)  

       = (s1, t1) 

and  

  (s1, t1) *′′ (eS, eT) = (s1 * eS, t1 *′ eT)  

        = (s1, t1) 

Thus  

  (s1, t1) *′′ (eS, eT) = (eS, eT) *′′(s1, t1) = (s1, t1)  

showing that (eS, eT) is identity element of (S × T, *′′), that is, (S × T, *′′) is a 
semigroup with identity (eS, eT) and hence is a monoid.  
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PART C : LATTICES 
 

1.17  Definitions and Examples 

Definition: A lattice is a partially ordered set (L, ≤) in which every subset         
{a, b} consisting of two element has a least upper bound and a greatest 
lower bound.  

We denote lub({a, b}) by a ∨ b and call it join or sum of a and b. Similarly, 
we denote GLB({a, b}) by a ∧ b and call it meet or product of a and b. 

Other symbol used are:  

    LUB : ⊕ , +, ∪ 

       GLB : *,  .  , ∩ 

Thus Lattice is a mathematical structure with two binary operations, join 
and meet. Lattice structures often appear in computing and mathematical 
applications.  

A totally ordered set is obviously a lattice but not all partially ordered sets are 
lattices. 

Example 1. Let A be any set and  P(A) be its power set. The partially ordered 
set (P(A), ⊆) is a lattice in which the meet and join are the same as the 
operations ∩ and ∪ respectively. If A has single element, say a, then P(A) = 
{ϕ, {a}} and  

LUB({ ϕ, {a}) = {a} 
GLB({ϕ, {a}) = ϕ 

The Hasse diagram of (P(A), ⊆) is a chain containing two elements ϕ and {a} 
as shown below: 
 
              {a}   
    
      

            ϕ 
 
If A has two elements, say a and b. Then P(A) = {ϕ, {a}, {b}, {a, b}}.   The 
Hasse diagram of {P(A), ⊆ ) is then as shown below :   
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                                                                      {a,b} 
 
           
 
                              {a}                   {b}   
 
 
                       ϕ 
We note that 

1. LUB exists for every two subsets and is  L ∪ M 
2. GLB exists for every two subsets and is in L ∩ M  

for L, M ∈ P(A).  Hence  P(A) in a lattice. 

Example 2. Consider the poset (N, ≤), where ≤ is relation of divisibility. Then 
N is a lattice in which 
  join of a and b = a ∨  b = L C M(a, b) 
  meet of a and b = a ∧  b = G C D (a, b) for a, b ∈ N. 

Example 3. Let n  be a positive integer and let Dn be the set of all positive 
divisors of n. Then Dn is a lattice under the relation of divisibility. The Hasse 
diagram of the lattices D8, D20  and  D30  are respectively  
                                                 
                         
 
                                                       
                                    

                                                 D8 = {1, 2, 4, 8} 
 
       20 
          
    
 
                                             4        10 
      
  
 
       2        5 
 
      
       1 

   D20 = {1, 2, 4, 5, 10, 20} 
and 
 
 
 
 

4 

   1 

8 

2 
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                                30 
 
                                6    15  
                            10 
 
                            3 
                                 2    5 
 
                                         1  
 

 D30 = {1, 2, 3, 5, 6, 10, 15, 30}. 

1.18. The Transitive Closure of a Relation 

Definition: The Transitive closure of a relation R is the smallest transitive 
relation containing R.  It is denoted by R∞ . 

Example: Let A = {1, 2, 3, 4} and R = [(1, 2), (2, 3), (3, 4), (2, 1)]   Find the 
transitive closure of R. 

Solution:  The digraph of R is      

        

                                                1             3 

                                                      

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note 
that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered 
pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R∞.  Starting from vertex 2, we have 
paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2, 4) 
are in R∞. The only other path is from vertex 3 to 4, so we have 

R∞ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3,4)} 

Example: Let R be the set of all equivalence relations on a set A. As such R 
consists of subsets of        A × A and so R is a partially ordered set under the 
partial order of set inclusion. If R and S are equivalence relations on A, the 
same property may be expressed in relational notations as follows: 

  R ⊆ S if and only if x R y � x S y for all x y ∈ A. 

Then (R,  ⊆) is a poset. R is a lattice, where the meet of the equivalence 
relations R and S is their intersection R ∩ S and their join is (R ∪ S)∞,  the 
transitive closure of their union. 

2 

4 
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Definition: Let (L, ≤) be a poset and let (L, ≥) be the dual poset. If (L, ≤) is a 
lattice, we can show that (L, ≥) is also a lattice. In fact, for any a and b in L, the 
L U B of a and b in (L, ≤) is equal to the GLB of a and b in (L, ≥). Similarly, 
the GLB of a and b in (L, ≤) is equal to L U B in (L, ≥).  

The operation ∨ and ∧  are called dual of each other. 

Example: Let S be a set and L = P(S). Then (L, ⊆) is a lattice and its dual 
lattice is (L, ⊇), where ⊇ represents “contains”. We note that in the poset                
(L, ⊇), the join A ∨  B is the set A ∩ B and the meet A ∧  B is the set A ∪ B. 

1.19. Cartesian Product of Lattices 

Theorem: If (L1, ≤) and (L2, ≤) are lattices, then (L, ≤) is a lattice, where              
L = L1 × L2 and the partial order ≤ of L is the product partial order. 

Proof: We denote the join and meet in L1 by ∨1, and ∧1 and the join and meet 
in L2 by ∨2 and ∧2 respectively.  We know that Cartesian product of two posets 
is a poset.   Therefore L = L1 × L2 is a poset. Thus all we need to show is that if 
(a1, b1) and (a2, b2) ∈ L, then (a1, b1) ∨  (a2, b2)and (a1, b1) ∧  (a2, b2) exist in L.  

Further, we know that 

  (a1, b1) ∨  (a2, b2) = (a1 ∨ 1 a2 ,   b1  ∨ 2 b2) 
and  

 (a1, b1) ∧  (a2, b2) = (a1 ∧ 1 a2 ,  b1  ∧ 2 b2) 

Since L1 is lattice, a1  ∨ 1 a2 and a1 ∧ 1 a2 exist.   Similarly, since L2 is a lattice, 
b1 ∨ 2 b2 and   b1 ∧ 2 b2 exist.  Hence (a1, b1) ∨  (a2, b2) and (a1, b1) ∧  (a2, b2) 
both exist and therefore (L, ≤) is a lattice,  called the direct product of (L1, ≤≤≤≤) 
and (L2, ≤≤≤≤). 

Example: Let L1 and L2 be the lattices whose Hasse diagram are given below :  

        I1               I2  
 
        
                                         a                 b    
             
  01       
                                            02 

         L1 L2    
  
Then L = L1 × L2 is the lattice shown in the diagram below: 
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                                                (I1, I2)  
 
                                            (I1, a)                (I1, b)  
    
 
    
                                            (01, a)           (01, b) 
 
                                         (01, 02) 

                                                        L = L1 × L2    

  1.20. Properties of Lattices 
Let (L, ≤) be a lattice and let a, b , c ∈ L. Then, from the definition of ∨ (join) 
and ∧ (meet) we have  
(i) a ≤ a ∨  b and b ≤ a ∨  b;   a ∨  b is an upper bound of a and b. 
(ii) if a ≤ c and b ≤ c, then a ∨  b ≤ c;   a ∨  b is the least bound of a and b. 
(iii) a ∧  b ≤ a and a ∧  b ≤ b;   a ∧  b is a lower bound of a and b. 

(iv) if c ≤ a and c ≤ b, then c ≤  a ∧  b;   a ∧  b is the greatest lower bound of a 
and b 

Theorem: Let L be a lattice. Then for every a and b in L,  

(i) a ∨  b = b if and only if a ≤ b 

(ii) a ∧  b = a if and only if a ≤ b 

(iii) a ∧  b = a if and only if a ∨  b = b 

Proof: (i) Let a ∨  b = b. Since a ≤  a ∨  b, we have a ≤ b. 

Conversely, if a ≤ b, then since b ≤ b, it follows that b is an upper bound of a 
and b. Therefore, by the definition of least upper bound, a ∨  b ≤ b. Also a ∨  b 
being an upper bound, b ≤ a ∨  b. Hence   a ∨  b = b. 

(ii)  Let a ∧  b = a. Since a ∧  b ≤ b, we have a ≤ b.   Conversely, if a ≤ b and 
since a ≤ a, a is a lower bound of a and b and so, by the definition of greatest 
lower bound, we have 

   a ≤ a ∧  b 

Since a ∧  b is lower bound, 
   a ∧  b ≤ a 
Hence 

  a ∧  b = a. 

(iii)       From (ii) 

(01,I2) 

(I1,02) 
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  a ∧  b = a ⇔ a ≤ b…….(iv) 

             From (i) 

  a ≤ b ⇔ a ∨  b = b……….(v) 

Hence, combining (iv) and (v), we have 

   a ∧  b = a ⇔ a ∨  b = b. 

Example: Let L be a linearly (total) ordered set. Therefore a, b ∈ L imply 
either a ≤ b or b ≤ a. Therefore, the above theorem implies that 

  a ∨  b = a 

  a ∧  b = a 

Thus for every pair of elements a, b in L, a ∨  b and a ∧  b exist. Hence a 
linearly ordered set is a lattice. 

Theorem : Let (L, ≤) be a lattice and let a, b, c ∈ L. Then we have 

L1 : Idempotent property 

 (i) a ∨  a = a 
 (ii) a ∧ a = a 

L2 : Commutative property 

 (i) a ∨  b =b ∨  a 
 (ii) a ∧  b = b ∧  a 

L3 :  Associative property 

 (i) a ∨ (b ∨  c) = (a ∨  b) ∨  c 
 (ii) a ∧ (b ∧  c) = (a ∧  b) ∧  c 

L4 : Absorption property 

 (i) a ∨ ( a ∧  b) = a  

 (ii) a ∧ (a ∨  b) = a 

Proof: L1 : The idempotent property follows from the definition of LUB and 
GLB. 

L2 : Commutativity follows from the symmetry of a and b in the definition of 
LUB and GLB. 

L3 : (i) From the definition of LUB, we have  

  a ≤ a ∨ (b ∨  c)     (1) 

  b ∨  c ≤ a ∨  (b ∨  c)     (2) 

Also b ≤ b ∨  c and c ≤ b ∨  c and so transitivity implies 
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  b ≤ a ∨ (b ∨  c)     (3) 
and  
  c ≤ a ∨ (b ∨  c)      (4) 

Now, (1) and (3) imply that a ∨ (b ∨  c) is an upper bound of a and b and hence 
by the definition of least upper bound, we have 

  a ∨  b ≤ a ∨ (b ∨  c)     (5) 

Also by (4) and (5), a ∨ (b ∨  c) is an upper bound of c and a ∨  b .   Therefore 

  (a ∨  b) ∨  c ≤ a ∨ (b ∨  c)    (6) 

Similarly 

  a ∨ (b ∨  c) ≤ ( a ∨  b) ∨  c    (7) 

Hence, by antisymmetry of the relation ≤, (6) and (7) yield 

  a ∨ (b ∨  c) = (a ∨  b) ∨  c 

The proof of (ii) is analogous to the proof of part (i). 

L4 : (i) Since a ∧  b ≤ a and a ≤ a, it follows that a is an upper bound of a ∧  b 
and a. Therefore, by the definition of least upper bound 

  a ∨  (a ∧  b) ≤ a     (8) 

On the other hand, by the definition of LUB, we have 

  a ≤ a ∨  (a ∧  b)      (9) 

The expression (8) and (9) yields 

  a ∨  (a ∧  b) = a. 

(ii) Since a ≤ a ∨  b and a ≤ a, it follows that a is a lower bound of a ∨  b and a. 
Therefore, by the definition of GLB, 

  a ≤ a ∧ (a ∨  b)     (10) 

Also, by the definition of GLB, we have 

  a ∧ (a ∨  b) ≤ a     (11) 

Then (10) and (11) imply 

  a ∧ (a ∨  b) = a 

and the proof is completed. 
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In view of L3, we can write a ∨  (b ∨  c) and  (a ∨  b) ∨  c as a ∨  b ∨  c. 
Thus, we can express 

  LUB ({a1, a2,….an) as a1 ∨  a2 ∨ …… ∨ an 

  GLB ({a1, a2,….an) as a1 ∧  a2 ∧ …… ∧ an 

Remark:   Using commutativity and absorption property, part (ii) of previous 
Theorem can be proved as  follows :   
 
Let a ∧  b = a. We note that 

  b  ∨  (a ∧  b ) = b ∨  a 
                                    = a ∨  b (Commutativity) 
But  
                     b ∨  ( a ∧  b) = b     (Absorption property) 
Hence 
                                   a ∨  b = b 

and so by part (i), a ≤ b.   Hence a ∧  b = a if and only if a ≤ b. 
 
Theorem: Let (L, ≤) be a lattice. Then for any a, b, c ∈ L, the following 

properties hold : 

 

1. (Isotonicity) :  If a ≤ b, then 

  (i) a ∨  c ≤ b ∨  c 

  (ii) a ∧  c ≤ b ∧  c 

This property is called “Isotonicity”. 

2. a ≤ c and b ≤ c if and only if a ∨  b ≤ c 

3. c ≤ a and c ≤ b if and only if c ≤ a ∧  b 

4. If a ≤ b and c ≤ d, then 

 (i) a ∨  c ≤ b ∨  d 

 (ii) a ∧  c ≤ b ∧  d. 

Proof : 1 (i).    We know that 

 a ∨  b = b if and only if a ≤ b. 

Therefore, to show that a ∨  c ≤ b ∨  c, we shall show that  

 (a ∨  c) ∨  (b ∨  c) = b ∨  c. 

We note that 

 (a ∨  c) ∨  (b ∨  c) = [(a ∨  c) ∨  b] ∨  c 
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          = a ∨  (c ∨  b) ∨  c 

          = a ∨  (b ∨  c) ∨  c 

          = (a ∨  b) ∨  (b ∨  c) 

          = b ∨  c (Θ a ∨  b = b and c ∨  c = c) 

The part 1 (ii) can be proved similarly. 

2. If a ≤ c, then 1(i) implies 

 a ∨  b ≤ c ∨  b 
But  

 b ≤ c ⇔ b ∨  c = c 

           ⇔ c ∨  b = c (commutativity) 

Hence a ≤ c and b ≤ c if and only if a ∨  b ≤ c 
3. If c ≤ a, then 1(ii) implies 

  c ∧  b ≤ a ∧  b 

But  
c ≤ b ⇔ c ∧  b = c 

Hence c ≤ a and c ≤ b if and only if c ≤ a ∧  b. 

4 (i) We note that 1(i) implies that      

 if a ≤ b, then a ∨  c ≤ b ∨  c = c ∨  b 

 if c ≤ d, then c ∨  b ≤ d ∨  b = b ∨  d 

Hence, by transitivity 

a ∨  c ≤ b ∨  d   

(ii) We note that 1(ii) implies that 

 if a ≤ b, then a ∧  c ≤ b ∧  c = c ∧  b 

  if c ≤ d, then c ∧  b ≤ d ∧  b = b ∧  d. 

Therefore transitivity implies 

           a ∧  c ≤ b ∧  d. 

Theorem:  Let (L, ≤) be a lattice. If a, b, c ∈ L, then 

 (1) a ∨ (b ∧  c) ≤ (a ∨  b) ∧  (a ∨  c) 

  (2) a ∧ (b ∨  c) ≥ (a ∧  b) ∨  (a ∧ c) 

These inequalities are called “Distributive Inequalities”. 
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Proof:  We have 

 a ≤ a ∨  b   and    a ≤ a ∨  c   (i) 

Also, by the above theorem, if x ≤ y and x ≤ z in a lattice, then x ≤ y ∧  z. 

Therefore (i) yields 

 a ≤ (a ∨  b ) ∧  (a ∨  c)  (ii) 
Also  

 b ∧  c ≤ b ≤ a ∨  b 
and  

 b ∧  c ≤ c ≤ a ∨  c  , 

that is, b ∧  c ≤ a ∨  b and b ∧  c ≤ a ∨  c and so, by the above argument, we 

have 

 b ∧  c ≤ (a ∨  b) ∧  (a ∨  c) (iii) 

Also, again by the above theorem  if x ≤ z and y ≤ z in a lattice, then 

     x ∨  y ≤ z 

Hence, (ii) and (iii) yield 

      a c (b ∧  c) ≤ ( a ∨  b) ∧  (a ∨  c) 

This proves (1). 

The second distributive inequality follows by using the principle of duality. 

Theorem: (Modular Inequality) : Let (L, ≤) be a lattice. If a, b, c ∈ L, then 

 a ≤ c if and only if a ∨ (b ∧  c) ≤ (a ∨  b) ∧  c 

Proof: We know that 

 a ≤ c ⇔ a ∨  c = c    (1) 

Also, by distributive inequality, 

 a ∨ (b ∧  c) ≤ (a ∨  b) ∧  (a ∨  c) 

Therefore using (1) a ≤ c if and only if  

  a  ∨  (b ∧  c) ≤ (a ∨  c) ∧  c, 

which proves the result. 
The modular inequalities can be expressed in the following way also: 

 (a ∧  b) ∨  (a ∧  c) ≤ a ∧  [b ∨  (a ∧  c)] 

 (a ∨  b) ∧  (a ∨  c) ≥ a ∨  [b ∧  (a ∨  c)] 

Example: Let (L, ≤) be a lattice and a, b, c ∈ L. If a ≤ b ≤ c, then 

     (i) a ∨  b = b ∧  c, (ii) (a ∧  b ) ∨  (b ∧  c) = (a ∨  b) ∧  ( a ∨  c). 
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Solution:  (i)  We know that     

a ≤ b ⇔ a ∨  b = b 

and  

b ≤ c ⇔ b ∧  c = b 

Hence a ≤ b ≤ c implies 

a ∨  b = b ∧  c.  

(ii) Since a ≤ b and b ≤ c, we have 

 a ∧  b = a and b ∧  c = b 
Thus 

   (a ∧  b) ∨  (b ∧  c) = a ∨  b 

            = b, since a ≤ b ⇔ a ∨  b = b. 

Also, a ≤ b ≤ c �  a ≤ c by transitivity.  Then  
  a ≤ b and a ≤ c  � a ∨ b = b ,  a ∨  c = c    

and so  

          (a ∨  b ) ∧  (a ∨  c) = b ∧  c   

                               = b since b ≤ c ⇔ b ∧  c = b. 
Hence  

     (a ∧  b) ∨  (b ∧  c) = b = (a ∨  b) ∧  (a ∨  c), 

which proves (ii). 

1.21. Lattices as Algebraic System 
Definition.    A Lattice is an algebraic system (L, ∨ , ∧ ) with two binary 

operations ∨ and ∧ , called join and meet respectively, on a non-empty set L 

which satisfy the following axioms for a, b, c ∈ L : 

1. Commutative Law :    

   a ∨ b  =  b ∨ a        and    a ∧  b  =  b ∧  a .  

2. Associative Law :  

   (a ∨ b) ∨ c =  a ∨ (b ∨  c)  

and  

   (a ∧  b) ∧  c  =  a ∧ (b ∧  c)  
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3. Absorption Law : 

(i) a ∨  (a ∧  b) =  a  

(ii) a ∧  (a ∨ b) = a  

We note that Idempotent Law follows from axiom 3 above.   In fact,  

   a ∨  a =  a ∨  [a ∧  (a ∨ b)]    using 3(ii)  

             = a    using 3(i)  

The proof of a ∧  a = a  follows by principle of duality.  

1.22 Partial Order Relations on a Lattice 

A partial order relation on a lattice (L) follows as a consequence of the axioms 
for the binary operations ∨  and ∧ . 

We define a relation ≤ on L such that for a, b ∈ L , 

 a ≤ b ⇔ a ∨  b = b  

or analogously, 

 a ≤ b ⇔ a ∧  b = a . 

We note that 

(i) For any a ∈ L 
 a ∨  a = a  (idempotent law), 

therefore a ≤ a showing that ≤ is reflexive. 

(ii) Let a ≤ b and b ≤ a. Therefore  

 a ∨  b = b  

 b ∨  a = a 
But 

             a ∨  b = b ∨  a (Commutative Law in lattice) 
Hence 

        a = b  , 

showing that ≤ is antisymmetric. 

(iii) Suppose that a ≤ b and b ≤ c.  Therefore  a ∨  b = b and b ∨  c = c . Then  

 a ∨  c = a ∨  (b ∨  c) 

           = (a ∨  b) ∨  c (Associativity in lattice) 
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           = b ∨  c 

           = c  , 

showing that a ≤ c and hence ≤ is transitive.  

This shows that a lattice is a partially ordered set  

1.23 Least Upper Bounds and Latest Lower Bounds in a Lattice 
 
Let (L, ∨ , ∧ ) be a lattice and let a, b ∈ L. We now show that LUB of {a, b} ⊆ 
L with respect to the partial order introduced above is a ∨  b and GLB of {a, b} 
is a ∧  b. 
From absorption law 

 a ∧  (a ∨  b) = a 

 b ∧  (a ∨  b) = b 

Therefore a ≤ a ∨  b and b ≤ a ∨  b, showing that a ∨  b is upper bound for {a, 
b}. Suppose that there exists c ∈ L such that a ≤ c, b ≤ c. Thus we have  
     a ∨  c = c and b ∨  c = c 
and then  

 (a ∨  b) ∨  c = a ∨  (b ∨  c) = a ∨  c = c  ,  

implying that a ∨  b ≤ c. Hence a ∨  b is the least upper bound of a and b.  

Similarly, we can show that a  ∧  b is GLB of a and b. 

The above discussion shows that the two definitions of lattice given 

so far are equivalent. 

Example: Let � be collection of sets with binary operations Union and 
Intersection of sets. Then   (�, ∪, ∩) is a lattice. In this lattice, the partial order 
relation is set inclusion.   In fact, for A, B ∈��, 

 A ⊆ B iff A ∪ B = B 
Or 

 A ⊆ B iff A ∩ B = A. 

For example, the diagram of lattice of subsets of {a, b} is 

                            {a, b} 
 
 
                                         {a}        {b} 
 
 
 
                                  ϕ 



LOGIC, SEMIGROUPS  & MONOIDS AND LATTICES 
 

69 

1.24. Sublattices 

Definition: Let (L, ≤) be a lattice. A non-empty subset S of L is called a 
sublattice of L if a ∨  b ∈ S and a ∧  b ∈ S whenever a ∈ S,  b ∈ S. 

Or 

Let (L, ∨ , ∧ ) be a lattice and let S ⊆ L be a subset of L. Then (S, ∨ , ∧ ) is 
called a sublattice of           (L, ∨ , ∧ ) if and only if S is closed under both 
operations of  join( ∨ ) and meet( ∧ ). 

From the definition it is clear that sublattice itself is a lattice. 

However, any subset of L which is a lattice need not be a sublattice. 

For example, consider the lattice shown in the diagram: 

               I  

           e                      f    

            c   

            a       b     

   0 

   L 

We note that  

(i)    the subset S shown by the diagram below is not a sublattice of L, since 
a ∧  b ∉ S and                 a ∨  b ∉ S. 

      I 

          e           f   

 

        a            b 

            S 

(ii)  the set T shown below is not a sublattice of L since a ∨  b ∉ T. 
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   I 

     

         a        b  

 

           T 

However, T is a lattice when considered as a poset by itself. 

(iii) the subset ∪ of L shown below is a sublattice of L: 

     c 
 
 
         a     b 
 
 
 
      0 
              U 
Example: Let A be any set and P(A) its power set. Then (P(A), ∨ , ∧ ) is a 
lattice in which join and meet are union of sets and intersection of sets 
respectively.  

A family �  of subsets of A such that S ∪ T and S ∩ T are in �  for S, 
T ∈ �  is a sublattice of (P(A), ∨ , ∧ ).   Such a family �  is called a ring of 
subsets of A and is denoted by            (R(A), ∨ , ∧ )   (This is not a ring in the 
sense of algebra).   Some author call it lattice of subsets. 

Example:   The lattice (Dn, ≤ ) is a sublattice of (N, ≤), where ≤  is the relation 
of divisibility.  

1.25  Lattice Isomorphism 
Definition: Let (L1, ∨ 1, ∧ 1) and (L2, ∨ 2, ∧ 2) be two lattices. A mapping f : 
L1 → L2 is called a lattice homomorphism from the lattice the lattice (L1, ∨ 1, 
∧ 1) to  (L2, ∨ 2, ∧ 2) if for any a, b ∈ L1, 
 

f(a ∨ 1 b) = f(a) ∨ 2 f(b) and f(a ∧ 1 b) = f(a) ∧ 2 f(b) 

Thus, here both the binary operations of join and meet are preserved. There 
may be mapping which preserve only one of the two operations. Such 
mapping are not lattice homomorphism. 
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Let ≤1 and ≤2 be partial order relations on (L1, ∨ 1, ∧ 1) and                    
(L2, ∨ 2, ∧ 2) respectively. Let f : L1 → L2 be lattice homomorphism. If                 
a, b ∈ L1, then 

 a ≤1 b ⇔ a ∨ 1 b = b 

and so 

            f(b) = f(a ∨ 1 b)  

    = f(a) ∨ 2 f(b) 

                ⇔ f(a) ≤2 f(b) 

Thus 
                 a ≤1 b ⇔ f(a) ≤2 f(b) 

Thus order relations are also preserved under lattice homomorphism. 

If a lattice homomorphism f: L1 → L2 is one-to-one and onto, then it is called 
lattice isomorphism. 
If there exists an isomorphism between two lattices, then the lattices are called 
isomorphic. 

Since lattice isomorphism preserves order relation, therefore isomorphic 
lattices can be represented by the same diagram in which nodes are 
replaced by images. 

Theorem: Let A = {a1, a2,….,an} and B = {b1, b2,……bn} be any two finite 
sets with n elements. Then the lattices (P(A), ⊆) and (P(B), ⊆) are isomorphic 
and so have identical Hasse-diagram. 

Proof: Consider the mapping 

f : P(A) → P(B) 

defined by  

 f({an} = {bn}, f({a1, a2,….,am}) = {b1, b2,……bn} for m ≤ n . 

Then f is bijective mapping and L ⊆ M ⇔ f(L) ⊆ f(M) for subsets L and M of 
P(A). Hence P(A) and P(B) are isomorphic. 

For example, let A = {a, b, c}, B = {2, 3, 5}. The Hasse-diagram of 
P(A) and P(B) are then given below: 
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               {a,b,c}     {2,3,5} 
 
          {a,b}        {b,c}            {2,3}   {3,5} 
   {a,c}     (2,5) 
 
   {b}     {3} 
           {a}   {c}     {2}   {5} 
 

ϕ ϕ 
 
Define a mapping f : P(A) → P(B) by 

         f(φ) = ϕ, f({a}) = {2}, f({b}) = {3}, f({c}) = {5} 

 f({a, b}) = {2, 3}, f({b, c}) = {3, 5}, f({a, c}) = {2, 5} 

 and  

f({a, b, c}) = {2, 3, 5}. 

This is a bijective mapping satisfying the condition that if S and T are subsets 
of A, then S ⊆ T if and only if f(S) ⊆ f(T). Hence f is isomorphism and (P(A), 
⊆) and (P(B), ⊆) are isomorphic. 

Thus, for each n = 0, 1, 2,…., there is only one type of lattice and this lattice 
depends only on n, the number of elements in the set A, and not on A. It has 2n 
elements. Also, we know that if A has n elements, then all subsets of A can be 
represented by sequences of 0’s and 1’s of length n. We can therefore label the 
Hasse diagram of a lattice (P(A), ⊆) by such sequence of 0’s and 1’s.  

For example, lattices of P(A) and P(B) of the last example can be 
labeled as below:  

   
               111  
 
              110       011  
   101 
 
   010 
          100   001 
 
        000 
 
The lattice so obtained is named Bn. The properties of the partial order in Bn 
can be described directly as follows:  
 
Let x = a1 a2…..an and y = b1 b2…..bn be any two elements of Bn. Then 

(1) x ≤ y if and only if ak < bk, k = 1, 2,…..,n, where ak and bk are 0 or 1. 
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(2) x ∧  y = c1 c2….cn, where ck = min(ak, bk). 
(3) x ∨  y = d1 d2 ….dn, where dk = max(ak, hk). 

(4) x has a complement x′ = z1 z2……zn where zk = 1 if xk = 0 and zk = 0 if xk 
= 1. 

Remark: (Bn, ≤) under the partial order ≤ defined above is isomorphic to 
(P(A), ⊆), when A has n elements. In such a case x ≤ y corresponds to S ⊆ T, x 
∨  y corresponds to S ∪ T and x′ corresponds to Ac. 

Example : Let D6 = {1, 2, 3, 6}, set of divisors of 6. Then D6 is isomorphic to 
B2. In fact f : D6 → B2 defined by  
 f(1) = 00, f(2) = 10, f(3) = 01, f(6) = 11 

is an isomorphism. 

                                   6                                           11 
                                                                                    

                       2                       3                10                       01 

 

                                     1                                        00 

                                    D6                                      B2 

Example: Let A = {a, b} and P(A) = {ϕ, {a}, {a, b}} then the lattice (P(A), ⊆) 
is isomorphic to the lattice (D6, 1) with divisibility as the partial order relation. 
In fact, we define a mapping f : D6 → P(A) by 

 f(1) = ϕ, f(2) = {a}, f(3) = {b}, f(6) = {a, b} , 

then f is bijective and we note that 

1|2 ⇔ {ϕ} ⊆ {a} ⇔ f(1) ⊆ f(2) 

 2|6 ⇔ {a} ⊆ {a, b} ⇔ f(2) ⊆ f(6) 

and so on. 

Hence f is isomorphism. 
      6    {a,b} 
 
 2    3 {a}           {b}  
 
      1             ϕ 
 D6    P ({a, b}) 

Definition: Let (L, ∨ , ∧ ) be a lattice. Then lattice homomorphism f : L → L 
is called an endomorphism. 
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Definition: Let (L, ∨ , ∧ ) be lattice. Then the lattice isomorphism f: L→L is 
called an automorphism. 

If f : L →→→→ L is an endomorphism, then the image set of f is sublattice of L. 

Definition: Let (A, ≤) and (B, ≤′) be two partially ordered sets. A mapping f : 
A → B is called order preserving relative to the ordering ≤ in A and ≤′ in B iff 
for a, b  ∈ A,  

   a ≤ b � f (a) ≤′ f (b)  

If A and B are lattices and f : A → B is a lattice homomorphism, then f is order 
preserving. 

Definition: Two partially ordered sets (A, ≤) and (B, ≤′) are said to be order 
isomorphic if there exists a mapping f : A → B which is bijective and both f 
and f-1 are order preserving. 

For lattices (A, ≤≤≤≤) and (B, ≤≤≤≤′′′′), an order isomorphism is equivalent 
to lattice isomorphism. Hence lattices which are order-isomorphic as 
partially ordered sets are isomorphic. 

Let (L, ∨ , ∧ ) be a lattice and let S = {a1, a2….,an} be a finite subset of 
L. Then 

  LUB of S is represented by a1 ∨  a2 ∨ ….. ∨  an 

GLB of S is represented by a1 ∧  a2 ∧ …… ∧  an 

Definition: A lattice is called complete if each of its non-empty subsets has a 
least upper bound and a greatest lower bound. 

Obviously, every finite lattice is complete. 

Also every complete lattice must have a least element, denoted by 0 and a 
greatest element, denoted by I. The least and greatest elements if exist are 
called bound (units, universal bounds) of the lattice. 

1.26 Bounded, Complemented  and Distributive Lattices  
Definition: A lattice L is said to be bounded if it has a greatest element I and a 
least element 0. 

For the lattice (L, ∨ , ∧ ) with L = {a1, a2,….,an}, 

            a1 ∨  a2 ∨ ….. ∨  an = I and a1 ∧  a2 ∧ ……. ∧  an =  0  .            
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Example :  The lattice Z+
 of all  positive integers under partial order of 

divisibility is not a bounded lattice since it has a least element (the integer 1) 
but no greatest element. 

Example: The lattice Z of integers under partial order ≤ (less than or equal to) 
is not bounded since it has neither a greatest element nor a least element. 

Example:  Let A be a non-empty set. Then the lattice (P(A), ⊆) is bounded. 
Its greatest element is A and the least element is empty set φ. 

If (L, ≤) is a bounded Lattice, then for all a ∈ L 

          0 ≤ a ≤ I  

   a ∨  0 = a, a ∧  0 = 0 

    a ∨  I = I, a ∧  I = a 

Thus 0 acts as identity of the operation ∨  and I acts as identity of the operation 
∧ . 

Definition: Let (L ∨ , ∧ , 0, I) be a bounded lattice with greatest element I and 
the least element 0. Let a ∈ L. Then an element b ∈ L is called a complement 
of a if 

 a  ∨ b = I and a ∧  b = 0 

It follows from this definition that 

      0 and I are complement of each other. 

Further, I is the only complement of 0. For suppose that c ≠ I is a complement 
of 0 and c ∈ L, then 

0 ∨  c = I and 0 ∧  c = 0 

But 0 ∨  c = c. Therefore c = I which contradicts c ≠ I. 

Similarly, 0 is the only complement of I. 

Definition: A lattice (L, ∨ , ∧ , 1, 0) is called complemented if it is bounded 
and if every element of L has at least one complement. 

Example: The lattice (P(A), ⊆) of the power set of any set A is a bounded 
lattice, where meet and join operations on e(A) are ∩ and ∪ respectively. Its 
bounds are ϕ and A. The lattice (P(A), ⊆) is complemented in which the 
complement of any subset B of A is A − b. 
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Example: Let Ln be the lattice of n tuples of 0 and 1, where partial ordering is 
defined for                 a = (a1, a2,…,an) , b = (b1, b2, ….., bn) ∈ Ln by 

 a ≤n b ⇔ ai ≤ bi            for all i = 1, 2, …,n , 

where ≤ means less than or equal to. Then (Ln, ≤n) is lattice which is bounded. 
For example, the bounds are (0, 0, 0) and (1, 1, 1) for L3. 

 

   (1,1,1) 
 
         (1,1,0)       (0,1,1)  
            (1,0,1) 
 
            (0,1,0) 
        (1,0,0)   (0,0,1) 
 
        (0,0,0) 

The complement of an element of Ln can be obtained by interchanging 1 by 0 
and 0 by 1 in the         n-tuple representing the element. For example, 
complement of (1, 0, 1) in L3 is (0, 1, 0). 

Definition: A lattice (L, ∨ , ∧ ) is called a distributive lattice if for any 
elements a, b and c in L,  

(1) a ∧ (b ∨  c) = (a ∧  b) ∨ (a ∧  c) 
(2) a ∨ (b ∧  c) = (a ∨  b) ∧ ( a ∨  c) 

Properties (1) and (2) are called distributive properties. 

Thus, in a distributive lattice, the operations ∧  and ∨  are distributive over 
each other. 

We further note that, by the principle of duality, the condition (1) holds if and 
only if (2) holds. Therefore it is sufficient to verify any one of these two 
equalities for all possible combinations of the elements of a lattice. 

If a lattice L is not distributive, we say that L is non-distributive. 

Example: For a set S, the lattice (P(S), ⊆) is distributive. The meet and join 
operation in P(S) are            ∩ and ∪ respectively. Also we know, by set 
theory, that for A, B, C ∈ P(S), 

 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

Example:  The five elements lattices given in the following diagrams are non 
distributive. 
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    I       I 
 
        a             a   c    
                                                                                      b 
                                                                                      
        b       c 
         o 
       (ii) 
   
  o (i)   
 
In fact for the lattice (i),  we note that 

   a ∧ (b ∨  c) = a ∧  I = a , 
while 
   (a ∧  b) ∨  (a ∧  c) = b ∨  0 = b  
Hence 

   a ∧ (b ∨  c) ≠ (a ∧  b) ∨  (a ∧  c)  ,  

showing that (i) is non-distributive. 

For the lattice (ii) , we have  
 

 a ∧ (b ∨  c) = a ∧  I = a , 

while 
 (a ∧  b) ∨  (a ∧  c) = 0 ∨  0 = 0  . 

Hence 
 a ∧ (b ∨  c) ≠ (a ∧  b) ∨  (a ∧  c)  , 

showing that (ii) is also non-distributive 

Example: The lattice shown in the diagram below is distributive: 

               I 
                
          
                                                                                                                                                                                                                                                                      
  b        d         
               
  
 
        a           c                    
 
     
          0                        
The distributive properties are satisfied for any ordered triplet chosen from the 
given elements. 
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Theorem: A lattice L is non distributive if and only if it contains a sublattice 
isomorphic to any one of the following two five-element lattices:  
    I       I 
 
        a             a   c    
                                                                                      b 
                      
        b       c 
         o 
        
   
  o   

(The Proof of this theorem is out of the scope of this book) 

Example: Is the following lattice a distributive lattice ? 
 
                                I 

               

           d                              e 

            c   

            a       b     

   o 

 
Solution: The given lattice is not distributive since {0, a, d, e, I} is a 
sublattice which is isomorphic to the five-element lattice shown below : 
 
       I        
 
                         
 
 
                
        
   
     

                       0 

Theorem: Every chain is a distributive lattice. 

Proof: Let (L, ≤) be a chain and a, b, c ∈ L.  We shall show that  distributive 
law holds for any a, b, c ∈ L.   Two cases arise : 
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Case 1. Let a ≤ b or a ≤ c. In this case 

            a ∧ (b ∨  c) = a 
and  

 (a ∧ b) ∨ (a ∧  c) = a 
and hence 

             a ∧ (b ∨  c) = (a ∧  b) ∨  ( a ∧  c) 

Also, by Principle of Duality 

          a ∧ (b ∨  c) = (a ∨  b) ∧  (a ∨  c) 

Case II. Let b ≤ a    or    c ≤ a .  Then we have  

         a ∧ (b ∨  c) = (b ∨  c) 
and 
            (a ∧  b) ∨  ( a ∧  c) = (b ∨  c) 
Hence 

          a ∧ (b ∨  c) = (b ∨  c) 

Hence distributive law holds for any a, b, c ∈ L. 

Theorem: The direct product of any two distributive lattices is a distributive 
lattice. 

Proof: Let (L1, ≤1) and (L2, ≤2) be two lattices in which meet and join are ∧ 1, 
∨ 1 and  ∧ 2, ∨ 2 respectively. Then meet and join in L1 × L2 are defined by  

        (a1, b1) ∧  (a2, b2) = (a1 ∧ 1 a2, b1 ∧ 2 b2)  (1) 

and 

         (a1, b1) ∨  (a2, b2) = (a1 ∨ 1 a2, b1 ∨ 2 b2)  (2) 

Since L1 is distributive, 

         a1 ∧ 1(a2 ∨ 1  a3) = (a1  ∧ 1 a2) ∨ 1 (a1 ∧ 1 a3) (3) 

Since L2 is distributive, 

b1 ∧ 2(b2 ∨ 2  b3) = (b1  ∧ 2 b2) ∨ 2 (b1 ∧ 2 b3)  (4) 

Therefore 

(a1, b1) ∧ [(a2, b2) ∨  (a3, b3)]   

= (a1, b1) ∧ [(a2 ∨ 1 a3, b2 ∨ 2 b3)] 

= [(a1 ∧ 1 (a2 ∨ 1 a3), b1 ∧ 2 (b2 ∨ 2 b3)] 

= [(a1 ∧ 1 a2) ∨ 1 (a1 ∧ 1 a3), (b1 ∧ 2 b2) ∨ 2 (b1 ∧ 2 b3)]   
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       (using (3) and (4)) 

and using (1) and (2), we have 

        [(a1, b1) ∧  (a2 , b2) ] ∨  [((a1, b1) ∧  (a3 , b3)] 

  = (a1 ∧ 1 a2, b1 ∧ 2 b2)  ∨  (a1 ∧ 1 a3, b1 ∧ 2 b3) 

   = [(a1 ∧ 1 a2) ∨ 1 (a1 ∧ 1 a3), (b1 ∧ 2 b2) ∨ 2 (b1 ∧ 2 b3)] 

Hence  

(a1, b1) ∧ [(a2, b2) ∨ (a3, b3)] = [(a1, b1) ∧ (a2 , b2) ] ∨ [((a1, b1) ∧ (a3 , b3)], 

proving that L1 × L2 is distributive. 

Theorem: Let L be a bounded distributive lattice. If a complement of any 
element exists, it is unique. 

Proof: Suppose on the contrary that b and c are complements of the element a 

∈ L. Then  

 a ∨  b = I  a ∨  c = I 

 a  ∧  b = 0  a ∧  c = 0 

Using distributive law, we have 

 b = b ∨  0 

    = b ∨ (a ∧  c) 

    = (b ∨  a) ∧  (b ∨  c) 

    = (a ∨  b) ∧  (b ∨  c) 

    =  I ∧  (b ∨  c) 

    = b ∨  c 
Similarly, 

 c = c ∨  0 

    = c ∨ (a ∧  b) 

    = (c ∨  a) ∧  (c ∨  b) 

    = (a ∨  c) ∧  (c ∨  b) 

    = I ∧  (c ∨  b) 

    = I ∧  (b ∨  c) 

    = b ∨  c 

Hence b = c. 
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Definition: Let (L, ∧ , ∨ ) be a lattice. An element a ∈ L is said to be join-
irreducible if it cannot be expressed as the join of two distinct elements of L. 

In other words, a ∈ L is join-irreducible if for any b, c ∈ L 

 a = b ∨  c � a = b or a = c. 

For example, prime number under multiplication have this property. In fact if p 
is a prime number, then p = a b � p a or p = b. 

Clearly 0 is join – irreducible. 

Further, if a has at least two immediate predecessors, say b and c as in the 
diagram below: 

       a  

       b     c 

Then a = b ∨  c and so a is not join – irreducible. 

On the other hand if a has a unique immediate predecessor c, then 

 a ≠ sup(b1, b2) = b1 ∨  b2 for any other elements b1 and b2 because c 
would lie between b1, b2 and a. 
     a  
 
      c 
 
   
  b1           b2 

In other words, a ≠≠≠≠ 0 is join irreducible if and only if a has a unique 
predecessor.   

Definition: Those elements, which immediately succeed 0, are called atoms. 

From the above discussion, it follows that the atoms are join-irreducible. 

    a   b 

    

   c 

However, lattices can have other join-irreducible elements. For example, the 
element c in five-element lattice is not an atom, even then it is join irreducible 
because it has only one immediate predecessor, namely a. 
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                            I 

         
    c 
 
            b  

    a 

   o 

Let a be an element of a finite lattice which is not join irreducible, then we can 
write 

   a = b ∨  c 

If b and c are not join irreducible, then we can write them as the join of other 
elements. Since L is finite we shall finally have 

   a = d1 ∨  d2 ∨  d3 ∨ …… ∨  dn  ,  (1) 

where di, i = 1, 2, …,n  are join-irreducible. If di precedes dj, then di ∨  dj = dj, 
so we delete di from the expression. Thus d’s are irredundant, i.e., no d 
precedes any other d. 

The expression (1) need not be unique. For example, in lattice shown above 

 I = a ∨  b and I = b ∨  c . 

Theorem: Let (L, ∧ , ∨ ) be a finite distributive lattice. Then every a in L can 
written uniquely (except for order) as the join of irredundant join irreducible 
elements. 

Proof: Let a ∈ L. Since L is finite, we can express a as the join of irredundant 
join irreducible elements (as discussed above). To prove uniqueness let 

  a = b1 ∨  b2 ∨ ….. ∨  bn = c1 ∨  c2 ∨ ….. ∨  cm  , 

where bi are irredundant join-irrducible and ci are irrdundant and join-
irreducible. For any given i, we have 

  bi ≤ (b1 ∨  b2 ∨ ….. ∨  bn) = c1 ∨  c2 ∨ ….. ∨  cm , 

Hence 

 bi = bi ∧  (c1 ∨  c2 ∨ ….. ∨  cm) 

     = (bi ∧  c1) ∨  (bi ∧  c2) ∨ ……… ∨  (bi ∧  cm) 
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Since bi is join-irreducible, there exists j such that bi = bi ∧  cj and so bi ≤ cj. 

Similarly, for ci there exists a bk such that cj ≤ bk . Hence 

 bi ≤ cj ≤ bk  ,  

which gives bi = cj = bk since bi are irredundant. Hence bi and ci may be paired 
off. Hence the representation for a is unique except for order. 

Theorem: Let L be a complemented lattice with unique complements. Then 
the join irreducible elements of L, other than 0, are its atoms. 

Proof: Suppose a is join irreducible and is not an atom. Then a has a unique 
immediate predecessor b ≠ 0. Let b′ be the complement of b (complement 
exists since L is complemented). Since b ≠ 0,  b′ ≠ I. If a precedes b′, then             
b ≤ a ≤ b′, and so b ∨  b′ = b′ which is impossible since b ∨  b′ = I. Thus a does 
not precede b′ and so a ∧  b′ must strictly precede a. Since b is the unique 
immediate predecessor of a, we also have that a ∧  b′ precedes b. But a ∧  b′ 
precedes b′. 
 
 a  
 
   b     b′  
 
 
    a ∧  b′ 
Hence  
  a ∧  b′ ≤ inf (b, b′) = b ∧  b′ = 0 

Thus a ∧  b′ = 0. Since a ∨  b = a, we also have 

 a ∨  b′ = (a ∨  b) ∨  b′ = a ∨  (b ∨  b′) 

                 = a ∨  I = I 

Therefore b′ is a complement of a.  Since complements are unique, a = b. This 
contradicts the assumption that b is an immediate predecessor of a. Thus the 
only join irreducible elements of L are its atoms. 

Combining this result with the above-proved theorems, we have 

Theorem:  Let L be a finite complemented distributive lattice. Then every 
element a in L is the join of a unique set of atoms. 
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Unit-2  
Boolean Algebra 
 

2.1. Definitions and Examples 

Definition: A non-empty set B with two binary operations ∨  and ∧ , a unary 
operation ′, and two distinct elements 0 and I is called a Boolean Algebra if 
the following axioms holds for any elements a, b, c ∈ B: 
[B1]: Commutative Laws: 

  a ∨  b = b ∨  a  and           a ∧  b = b ∧  a 
[B2]: Distributive Law:  

  a ∧ (b ∨  c) = (a ∧ b) ∨  (a ∧  c) and a ∨  (b ∧  c) = (a ∨  b) ∧  (a ∨  c) 

[B3]: Identity Laws: 

 a ∨  0 = a and  a  ∧  I = a 

[B4]: Complement Laws: 

 a ∨  a′ = I  and a ∧  a′ = 0 

We shall call 0 as zero element, 1 as unit element and a′ the complement of a. 

We denote a Boolean Algebra by (B, ∨ , ∧ , ~, 0, I ). 

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set 
algebra (P(A), ∪, ∩, −, φ, A) is a Boolean algebra.    
      
 
Example 2 :  Let B = {0, 1} be the set of bits (binary digits) with the binary 
operations ∨  and ∧  and the unary operation  ′  defined by the following 
tables:    
         ∨    1      0                              ∧    1     0        ′    1     0         
          1    1      1                  ,            1    1     0                        0    1 
          0    1      0                 0    0     0            

Here the operations ∨  and  ∧  are logical operations and  complement of 1 is 0 
whereas complement of 0 is 1.  Then (B, ∨ , ∧ ,  ′  , 0, 1) is a Boolean Algebra. 
It is the simplest example of a two-element algebra.  

Further,  a two element Boolean algebra is the only Boolean algebra whose 
diagram is a chain. 



BOOLEAN ALGEBRA 

 

85 

Example 3 : Let Bn be the set of n tuples whose members are either 0 or 1. Let 
a = (a1, a2,….,an) and  b = (b1, b2,….,bn) be any two members of Bn.  Then we 
define  

a ∨ 1 b = (a1 ∨  b1, a2 ∨  b2,…..,an ∨  bn) 

a ∧ 1 b = (a1 ∧  b1, a2 ∧  b2,…..,an ∧  bn)  , 

where ∨  and ∧  are logical operations on {0, 1}, and  

         a′ = (~ a1, ~ a2,…, ~ an)  , 

where ~ 0 = 1 and ~1 = 0 . 

If 0n represents (0, 0,…..,0) and 1n = (1, 1,……,1), then (Bn, ∨ 1, ∧ 1, ′, 0n, 1n) 
is a Boolean algebra. 

This algebra is known as Switching Algebra and represents a switching 
network with n inputs and one output. 

Example 4. The poset D30 = {1, 2, 3, 5, 6, 10, 15, 30} has eight element. 
Define ∨ , ∧  and ′ on D30 by 

         a ∨  b = lcm(a, b)  ,   a ∧  b = gcd(a, b)         and        a′ = 
a

30
. 

Then D30 is a Boolean Algebra with 1 as the zero element and 30 as the unit 
element. 

Example 5: Let S be the set of statement formulas involving n statement 
variables. The algebraic system (S, ∧ , ∨ , ~, F, T) is a Boolean algebra in 
which ∧ , ∨ , ~ denotes the operations of conjunction, disjunction and negation 
respectively. The element F and T denotes the formulas which are 
contradictions and Tautologies respectively. The partial ordering 
corresponding to ∧ , ∨  is implication � .   

We have seen that Bn is a Boolean algebra. Using this fact, we can also define 
Boolean algebra as follows: 

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with 
Bn for some non-negative integer n. 

For example, D30 is isomorphic to B3. In fact, the mapping f: D30 → B3 defined 
by  

f(1) = 000,   f(2) = 100,   f(3) = 010,   f(5) = 001,  

f(6) = 110,   f(10) = 101,   f(15) = 011,  f(30) = 111  
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is an isomorphism.   Hence D30 is a Boolean algebra. 

If a finite L does not contain 2n elements for some non-negative integer n, 
then L cannot be a Boolean Algebra. 

For example, consider D20 = {1, 2, 4, 5, 10, 20} that has 6 elements and 6 ≠ 2n 
for any integer n ≥ 0.   Therefore, D20 is not a Boolean algebra. 

If | L | = 2n, then L may or not be a Boolean Algebra. If L is 
isomorphic to Bn, then it is Boolean algebra, otherwise it is not. 

For large value of n, we use the following theorem for determining 
whether Dn is a Boolean Algebra or not. 

Theorem: Let 

        n = p1 p2…….pk, 

where pi are distinct primes,  known as set of atoms. Then Dn is a Boolean 
algebra. 

Proof: Let A = {p1, p2,….,pk}. If B ⊆ A and aB is the product of primes in B, 
then aB|n. Also any divisor of n must be of the form aB for some subset B of A, 
where we assume that aϕ = 1. Further, if C and B are subsets of A, then C ⊆ B 
if and only if aC|aB. Also 
 

a
C∩B = aC  ∧  aB

 = gcd(a
C   , aB )  

  
and 

  a
C∪B = a

C ∨  aB = lcm (a
C , aB) 

Thus the function f : P(A) → Dn defined by  

             f(B) = aB 

is an isomorphism. Since P(A) is a Boolean algebra, it follows that Dn is also a 
Boolean algebra.  

For example, consider D20, D30, D210, D66, D646. We notice that 

(i) 20 cannot be represented as product of distinct primes and so D20 is not a 
Boolean algebra. 

(ii) 30 = 2.3.5, where 2, 3, 5 are distinct primes.  Hence D30 is a Boolean 
Algebra. 

(iii) 210 = 2.3.5.7 (all distinct primes) and so D210 is a Boolean algebra. 

(iv) 66 = 2.3.11 (product of distinct primes) and so D66 is a Boolean algebra. 
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(v) 646 = 2.17.19 (product of distinct primes) and so D646 is a Boolean 
Algebra. 

Duality: The dual of any statement in a Boolean algebra B is obtained 
by interchanging  ∨  and ∧  and interchanging the zero element and unit 
element in the original statement. 

For example, the dual of   a ∧  0 = 0   is   a ∧  I = I  

Principle of duality: The dual of any theorem in a Boolean Algebra is 
also a theorem. 
(Thus, dual theorem is proved by using the dual of each step of the proof of 
the original statement). 
 
2.2  Properties of a Boolean Algebra 

Theorem: Let a, b and c be any elements in a Boolean algebra (B, ∨ , ∧ ,′,          

0, I). Then 

1. Idempotent Laws: 

(i) a ∨  a = a   (ii) a ∧  a = a 

2. Boundedness Laws: 

(i) a ∨  I = I   (ii) a ∧ 0 = 0 

3. Absorption Laws: 

(i) a ∨ (a ∧  b) = a  (ii) a ∧ (a ∨ b) = a 

4. Associative Laws: 

(i) (a ∨  b) ∨  c = a ∨ (b ∨  c) (ii) (a ∧  b) ∧  c = a ∧ (b ∧  c) 

Proof: It is sufficient to prove first part of each law since second part follows 
from the first by principle of duality. 

1. (i). We have 
a = a ∨  0 (by identity law in a Boolean algebra) 

   = a ∨ (a ∧ a′) (by complement law) 

   = (a ∨ a) ∧ (a ∨  a′) (by distributive law) 

   = (a ∨ a) ∧ I (complement law) 

   =  a ∨ a (identity law) , 

which proves 1(i). 

2(i) : We have 

a ∨  I = (a ∨  I) ∧ I (identity law) 
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          = (a ∨  I) ∧  (a ∨  a′) (complement law) 

          = a ∨  ( I ∧  a′) (Distributive law) 

          = a ∨  a′ (identity law)  

          = I (complement law). 

3(i) : we note that 
                    a ∨ (a ∧  b) = (a ∧  I) ∨  (a ∧  b) (identity law) 

    = a ∧  (I ∨  b) (distributive law) 

    = a ∧  (b ∨  I) (commutativity) 

   = a ∧  I (Identity law) 

    = a (identity law) 
4(i) Let 

 L = (a ∨  b) ∨  c,  R = a ∨ (b ∨  c) 
Then  

    a ∧  L = a ∧ [(a ∨  b) ∨  c] 

   = [a ∧ (a ∨  b)] ∨  (a ∧ c) (distributive Law) 

     = a ∨  (a ∧  c) ( absorption law) 

   = a (absorption law) 

and 
    a ∧  R = a ∧ [a ∨ (b ∨  c)] 

    = (a ∧  a) ∨  (a ∧ (b ∨ c)] (distributive law) 

       = a ∨  (a ∧  (b ∨  c)] (idempotent law) 

    = a (absorption Law) 

Thus a ∧  L = a ∧  R and so, by duality, a ∨ L = a ∨ R . 

Further, 
  a′ ∧  L = a′ ∧  [(a ∨  b) ∨  c] 

   = [a′ ∧  (a ∨  b)] ∨  (a′ ∧  c) (distributive law) 

   = [(a′ ∧  a) ∨ (a′  ∧  b)] ∨  (a′ ∧  c) (distributive law) 

    = [0, ∨ (a′ ∧  b)] ∨  (a′ ∧  c) (complement Law) 

    = (a′ ∧  b)] ∨  (a′ ∧  c) (Identity law)  

    = a′ ∧ (b ∨  c) (distributive law) 
On the other hand,  
   a′ ∧  R = a′ ∧  [a ∨  (b ∨  c)] 

   = (a′ ∧  a) ∨ [a′ ∧  (b ∨  c)] (distributive law) 

 = 0 ∨  [a′ ∧  (b ∨  c)] (complement law) 
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   = a′ ∧  (b ∨  c)] (identity law) 
Hence  

 a′ ∧  L = a′ ∧  R  and so by duality a′ ∨ L = a′ ∨ R  

Therefore 
          L  = (a ∨  b) ∨  c 

            = 0 ∨  [(a ∨  b) ∨  c] = 0 ∨  L (identity law) 

= (a ∧  a′) ∨  [(a ∨  b) ∨  c] = (a ∧  a′) ∨  L (complement law) 

             = (a ∨  L) ∧  (a′ ∨  L) (distributive law) 

            = (a  ∨ R) ∧  (a′ ∨  R) (using A  ∨ L = a  ∨  R and a′ ∨  L = a′ ∨  R] 

= (a ∧  a′) ∨  R (distributive law) 

= 0 ∨  R (complement law) 

= R (identity law) 

Hence   

(a ∨  b) ∨  c = a ∨ (b ∨  c) , 

which completes the proof of the theorem. 

Theorem: Let a be any element of a Boolean algebra B. Then  

(i) Complement of a is unique (uniqueness of complement) 

(ii) (a′)′ = a (Involution law) 

(iii) 0′ = 1 and 1′ = 0 

Proof:  (i) Let a′ and x be two complements of a ε B. Then 

 a ∨  a′ = I  and a ∧  a′ = 0  (i) 

 a ∨  x = I  and  a ∧  x = 0   (ii) 

and we have 

 a′ = a′ ∨  0      (Identity law) 

     = a′ ∨  (a ∧  x)   by (ii) 

    = (a′ ∨  a) ∧  (a′ ∨  x)        (Distributive law) 

     = I ∧  (a′ ∨  x)  by (i) 

    = a′ ∨  x [Identity law] 
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Also  

  x = x ∨  0 (Identity law) 

    = x ∨  (a ∧  a′)  ,  by (i) 

     = (x ∨  a) ∧  (x ∨  a′)     [Distributive law] 

    = I ∧  (x ∨  a′)   ,  ( by (ii)) 

    = x ∨  a′ = a′ ∨  x          (Identity and commutative law) 

Hence a′ = x and so complement of any element in B is unique. 

(ii) Let a′ be a complement of a. Then  

  a ∨  a′ = I  and  a ∧  a′ = 0 

or ,  by commutativity , 

 a′ ∨  a = I  and    a′ ∧  a = 0 

This implies that a is complement of a′, that is, 

           a = (a′)′. 

(iii) By boundedness law, 

        0 ∨  1 = 1 

and by identity law 

          0 ∧  1 = 0 

These two relations imply that 1 is the complement of  0, that is 1 = 0′. 

By principle of duality, we have then 

                  0 = 1′. 

Theorem: Let a, b be elements of a Boolean Algebra. Then (a ∨ b)′ = a′ ∧  b′  
and (a ∧  b)′ = a′ ∨ b′. 

Proof: we have 
(a ∨  b) ∨  (a′ ∧  b′) = (b ∨  a) ∨  (a′ ∧  b′) (commutative) 

            = b ∨  (a ∨  (a′ ∧  b′)) (associative) 

            = b ∨ [(a ∨  a′ ∧  (a ∨  b′)]  (distributive) 

                     = b ∨ [I ∧  (a ∨  b′) (complement) 
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           = b ∨  (a ∨  b′)         (identity) 

           = b ∨  (b′ ∨  a)  (commutative) 

            = (b ∨  b′) ∨  a    (associative law) 

            = I ∨ a      (complement law)  

            = I                (Identity law) 

Also  
 (a ∨  b) ∧  (a′ ∧  b′) = [(a ∨  b) ∧  a′] ∧  b′ (associativity) 

 

            = [a ∧  a′) ∨  (b ∧  a′)] ∧  b′ = [0 ∨  (b ∧ a′)] ∧ b′
  

  (complement) (distributive) 

            = (b ∧  a′) ∧  b′  (identity) 

            = b ∧  b′ ∧  a′ = 0 ∧  a′ = 0 

Hence a′ ∧  b′ is complement of a ∨  b, i.e. (a ∨  b)′ = a′ ∧  b′. 

The second part follows by principle of duality. 

We have proved already that Boolean algebra (B, ∨ , ∧ , ′, 0, I) satisfies 
associative laws, commutative law and absorption law. Hence every Boolean 
algebra is a lattice with join as ∨  and meet as ∧ .  Also boundedness law hold 
in a Boolean algebra.  Thus Boolean algebra becomes a bounded lattice. Also 
Boolean algebra obeys distributive law and is complemented. Conversely, 
every bounded, distributive and complemented lattice satisfied all the axiom of 
a Boolean algebra. Hence we can define a Boolean algebra as  

Definition: A Boolean Algebra is a bounded distributive and complemented 
lattice. 

Now, being a lattice, a Boolean algebra must have a partial ordering. Recall 
that in case of lattice we had defined partial ordering ≤ by a ≤ b if a ∨  b = b or 
a ∧  b = a. 

The following result yields much more than these required conditions: 

Theorem: If a, b are in a Boolean algebra, then the following are equivalent: 

(1) a ∨  b = b 

(2) a ∧  b = a  

(3) a′ ∨  b = I 

(4) a ∧  b′ = 0 
Proof: (1) ⇔ (2) already proved. 
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(1) � (3) :  Suppose a ∨  b = b, then   

a′ ∨  b = a′ ∨ (a ∨  b) 

 = (a′ ∨  a) ∨  b  (associativity) 

 = I ∨  b = I   (complement & boundedness) 
Conversely, suppose a′ ∨  b = I, then 
a ∨  b = 1 ∧  (a ∨  b) = (a′ ∨  b) ∧  (a ∨  b)  (by assumption of (3)) 
            = (a′ ∧  a) ∨  b  (distributivity) 
   = 0 ∨  b = b   (complement & identity) 
Thus (1) ⇔ (3). 
Now we show that (3) ⇔ (4). 

Suppose first that (3) holds. Then, using De-Morgan Law and involution, we 

have 

 0 = I′ = (a′ ∨  b′)′ = a″ ∧  b′ 

        = a ∧  b′ (Involution) 

Conversely, if (4) holds, then 

                   1 = 0′ = (a ∧  b′)′ = a′ ∨  b″ = a′ ∨  b 

Thus (3) ⇔ (4) 

Hence all the four condition are equivalent. 

Example: Show that the lattice whose diagram is 

     I 

                                           

                          a                       f                  
  e               d       
          
    b                      c      
                             
          
     0       
    

is not a Boolean algebra. 

Solution: Elements a and e are both complements of c since c ∨  a = I, c ∧  a = 
0 and c ∨  e = I, c ∧  e = 0 

But in a Boolean algebra complement of an element is unique. Hence the given 
lattice is not a Boolean algebra. 
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Definition: Let (B, ∨ , ∧ , ′, 0, 1) be a Boolean algebra and S ⊆ B. If S 
contains the elements 0 and 1 and is closed under the operation ∨ , ∧  and 1, 
then (S, ∧ , ∨ , ′, 0, 1) is called Sub-Boolean Algebra. 

In practice, it is sufficient to check closure with respect to the set of operations 
( ∧ , ′ ) or ( ∨ , ′ ) for proving a subset S of B as the sub-Boolean algebra. 

The definition of sub-Boolean implies that it is a Boolean algebra. 

But a subset of Boolean algebra can be a Boolean algebra, but not necessarily a 
Boolean subalgebra because it is not closed with respect to the operations in B. 
For any Boolean algebra (B, ∧ , ∨ , ′, 0, 1), the subsets {0, 1} and the set B are 
both sub-Boolean algebras. 
In addition to these sub-Boolean algebras, consider now any element a ∈ B 
such that a ≠ 0 and a ≠ 1 and consider the set {a, a′, 0, 1}. Obviously this set is 
a sub-Boolean algebra of the given Boolean algebra.  

For example D70 = {1, 2, 5, 7, 10, 14, 35, 70} is a Boolean algebra and 
{1, 2, 35, 70} is a subalgebra of D70. 

 Every element of a Boolean algebra generates a sub-Boolean algebra, 
More generally, any subset of B generates a sub-Boolean algebra. 

Example: Consider the Boolean algebra given in the diagram below: 
                                        I   
                                           
          a         b′        
       a′ ∨ b           
          
           a ∧ b′         
        b              a′      
    
                                       0 
Verify whether the following subsets are Boolean algebras or not :  

 S1 = {a, a′, 0, 1} 

  S2 = { a′ ∨ b , a ∧  b′, 0, 1} 

  S3 = {a ∧  b′, b′, a, 1} 

 S4 = {b′, a ∧  b′, a′, 0} 

S5 = {a, b′, 0, 1} 

Solution:  The subset S1 and S2 are sub-Boolean algebras. The subsets S3 and 
S4 are Boolean algebras but not sub-Boolean algebras of the given Boolean 
algebra. The subset S5 is not even a Boolean algebra.  
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Definition: Let (B1, ∧ 1, ∨ 1, ′, 01, 11) and (B1, ∧ 2, ∨ 2, ″, 02, 12) be two 
Boolean algebras. The Direct Product of the two Boolean algebras is defined 
to be a Boolean algebra, denoted by,               (B1 × B2, ∧ 3, ∨ 3, ′″, 03, 11) in 
which the operations are defined for any (a1, b1) and (a2, b2) ∈ B1 × B2 as  

 (a1, b1) ∧ 3 (a2 , b2) = (a1  ∧ 1 a2, b1  ∧ 2 b2) 

 (a1, b1) ∨ 3 (a2 , b2) = (a1  ∨ 1 a2, b1  ∨ 2 b2) 

     (a1, b1)′′′ = (a1′, b1″) 

                     03 = (01, 02) and I3 = (I1, I2) 

Thus, from a Boolean algebra B, we can generate B2 = B × B,  B3 = B × B × B 
etc. 

2.3 Boolean Homomorphism  
Definition: Let (B, ∧ , ∨ , ′, 0, 1) and (P, ∩, ∪, , α, β) be two Boolean 
Algebras. A mapping f : B → P is called a Boolean Homomorphism if all the 
operations of the Boolean Algebra are preserved , that is , for any a, b ∈ B 
 

 f(a ∧  b) = f(a) ∩ f(b) 

 f(a ∨  b) = f(a) ∪ f(b) 

      f(a′) = )a(f  

      f(0) = α 

      f(1) = β 

The above definition of homomorphism can be simplified by asserting 
that f : B → P preserves either the operations ∧  and ′ or the operations ∨           
and ′. 

We now consider a mapping g : B → P in which the operations ∧  and 
∨  are preserved. Thus g is a lattice homomorphism. Naturally g preserves the 
order and hence it maps the bounds 0 and I into the least and the greatest 
element respectively of the image set g(B) ⊆ P. It is however, not necessary 
that g(0) = α and g(1) = β.   The complements, if defined in terms of g(0) and 
g(1) in g(B), are preserved, and (g(B), ∩, ∪, , g(0), g(1)) is a Boolean 
algebra. Note that g : B → P is not a a Boolean homomorphism, although g : B 
→ g (B) is a Boolean homomorphism. 
In any case, for any mapping from a Boolean Algebra which preserves the 
operations ∧  and ∨ , the image set is a Boolean algebra. 

A Boolean homomorphism is called Boolean isomorphism if it is bijective. 
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2.4. Representation Theorem 
Let B be a finite Boolean algebra. We know that an element a in B is called an 
atom (or min term) if a immediately succeed the least element 0 .   Let A be 
the set of atoms of B and let P(A) be the Boolean algebra of all subsets of the 
set A of atoms. Then (as proved in chapter on lattices) each x ≠ 0 in B can be 
expressed uniquely (except for order) as the join of atoms (i.e. elements of A).  
So, let  

  x = a1 ∨  a2 ∨  …… ∨  an 

Consider the function 

   f : B → P(A) 

defined by  

   f(x) = {a1, a2,……,an} 

for each x = a1 ∨  a2 ∨ …. ∨  an . 

Stone’s Representation Theorem: Any Boolean Algebra is isomorphic to a 
power set algebra (P(S), ∩, ∪, ~, φ, S) for some set S. 

Restricting our discussion to finite Boolean Algebra B, the 
representation theorem can be stated as :  

Theorem:  Let B be a finite Boolean Algebra and let A be the set of atoms of 
B. If P(A) is the Boolean Algebra of all subsets of the set A of atoms, then the 
mapping f : B → P(A) is an isomorphism. 

Proof: Suppose B is finite Boolean algebra and P(A) is the Boolean algebra of 
all subsets of the set A of atoms of B. Consider the mapping 

   f : B → P(A) 

defined by  

  f(x) = {a1, a2,….,an}  , 

where x = a1 ∨  a2 ∨ …. ∨ an is the unique representation of x ε B as the join of 
atoms                            a1, a2,….,an ∈ A.   If ai are atoms, then we know that ai 
∧  ai = ai but ai ∧  aj = 0 for ai ≠ aj. 

Let x and y are in the Boolean algebra B and suppose  

  x = a1 ∨ ….. ∨  ar ∨  b1 ∨ ……. ∨ bs 
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y = b1 ∨ ….. ∨ bs ∨  c1 ∨ ……. ∨  ct, 

where  

A = { a1, a2,…, ar, b1, b2,…,bs, c1,…,ct, d1…,dk} 

is the set of atoms of B. Then 

x ∨  y = a1 ∨ …. ∨  ar ∨  b1 ∨ …. ∨ bs ∨  c1… ∨ ct 

x ∧  y = b1 ∨ ….. ∨ bs 

Hence 

        f(x ∨ y) = { a1, a2,…., ar, b1, b2,…..,bs, c1, c2….,ct} 

           = { a1,…., ar, b1,…..,bs} ∪ {b1, b2,…..,bs, c1, c2….,ct} 

         = f(x) ∪ f(y) 

and  

      f(x ∧  y) = {b1,……,bs} 

          = { a1, a2…., ar, b1,…..,bs} ∩ {b1,…..,bs, c1,….,ct} 

          = f(x) ∩ f(y) 

Let 

       y = c1 ∨ …… ∨  ct ∨  d1 ∨ …… ∨ dk 

Then 

 x ∨  y = I and x ∧  y = 0 

and so y = x′.  Thus 

 f(x′) = f(y) = {c1 ……ct,d1……dk } 

         = { a1, a2…., ar, b1, b2…..,bs}c  

         = (f(x))c .  

Since the representation is unique, f is one-to-one and onto. Hence f is a 
Boolean algebra isomorphism. Thus, every finite Boolean algebra is 
structurally the same as a Boolean algebra of sets. 
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If a set A has n elements, then its power set P(A) has 2n elements. Thus we 
have 

Corollary: A finite Boolean algebra has 2n elements for some positive integer 
n. 

Example: Consider the Boolean algebra 

  D70 = {1, 2, 5, 7, 10, 14, 35, 70}  

                   70 
                                           
          10        35        
       14                
          
             5          
         2                                  7      
          
                  1            
   D70 

 
Then the set of atoms of D70 is  

  A = {2, 5, 7} 

The unique representation of each non-atom by atoms is 

  10 = 2 ∨  5 

  14 = 2 ∨  7 

  35 = 5 ∨  7  

  70 = 2 ∨  5 ∨  7 

The diagram of the Boolean algebra of the power set e(A) of the set A of atoms 
is given below : 
  
        A={2,5,7}  
                                           
   {2,5}                  {5,7}        
       (2,7}               
          
              {5}         
      {2}                               {7}      
                              
             ϕ   
 

P(A) 

We note that the diagram for D70 and P(A) are structurally the same. 
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2.5. Boolean Expressions 
Definition: Let x1, x2,…,xn be a set of n variables (or letters or symbols). A 
Boolean Polynomial (Boolean expression, Boolean form or Boolean 
formula) p(x1, x2, …., xn) in the variables x1, x2, …., xn is defined recursively 
as follows: 
 
1. The symbols 0 to 1 are Boolean polynomials 

2. x1, x2, …., xn are all Boolean polynomials 

3. if p(x1, x2, …., xn) and q(x1, x2, …., xn) are two Boolean polynomials, then 

so are 

  p(x1, x2, …., xn) ∨  q(x1, x2, …., xn) 

and 
 p(x1, x2, …., xn) ∧  q(x1, x2, …., xn) 

4. If p(x1, x2, …., xn) is a Boolean polynomial, then so is 

(p(x1, x2, …., xn))′ 

5. There are no Boolean polynomials in the variables x1, x2, …., xn other than 
those obtained in accordance with rules 1 to 4. 

Thus, Boolean expression is an expression built from the variables given 
using Boolean operations ∨ , ∧  and ′′′′. 

For example, for variables x, y, z , the expressions 

  p1(x, y, z) = (x ∨  y) ∧  z 

  p2 (x, y, z) = (x ∨  y′) ∨ (y ∧  1) 

  p3(x, y, z) = (x ∨ (y′ ∧  z)) ∨ (x ∧  (y ∧  1)) 

are Boolean expressions. 

Notice that a Boolean expression is n variables may or may not contain 
all the b variables. Obviously, an infinite number of Boolean expressions may 
be constructed in n variables. 

Definition: A literal is a variable or complemented variable such as x, x′, y, y′, 
and so on. 

Definition:  A fundamental product is a literal or a product of two or more 
literal in which no two literals involve the same variable. 

For example, 
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x ∧  z′, x ∧  y′ ∧  z, x, y′, x′ ∧  y ∧  z 

are fundamental products whereas 

  x ∧  y ∧  x′ ∧  z and x ∧  y ∧  z ∧  y 

are not fundamental products. 

Remark: Fundamental product is also called a minterm or complete product.  
In what follows we shall denote x ∧  y by xy. 

Any product of literals can be reduced to either 0 or a fundamental 
product. 

For example, consider x y x′ z. Since x ∧  x′ = 0 by complement law, 
we have xyx′z = 0. 

Similarly, if we consider x y z y, then since y ∧  y = y (idempotent 
law), we have xyzy = xyz, which is a fundamental product. 

Definition:  A fundamental product P1 is said to be contained in (or included 
in) another fundamental Product P2 if the literals of P1 are also literals of P2. 

For example, x′ z is contained in x′ yz but x′ z is not contained in x y′ z since x′ 
is not a literal of xy′z. 

Observe that if P1 is contained in P2, say P2 = P1 ∧  Q, then, by the 
absorption law,    

  P1 ∨  P2 = P1 ∨ (P1 ∧  Q) = P1 

For example, 

  x′ z ∨  x′ y z = x′ z 

Definition: A Boolean expression E is called a sum-of-products 
expression(disjunctive Normal Form or D NF) if E is a fundamental product 
or the sum (join) of two or more fundamental products none of which is 
contained in another. 

Definition: Two Boolean expression P(x1, x2,…..,xn) and Q(x1, x2,…..,xn) are 
called equivalent (or equal) if one can be obtained from the other by a finite 
number of applications of the identities of a Boolean algebra. 

Definition: Let E be any Boolean expression. A sum of product form of E is 
an equivalent Boolean sum of products expression. 

Example: Consider the expression 
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  E1(x, y, z) = x z′ + y′ z + x y z′ 

Although the expression E1 is a sum of products, it is not a sum-of-products 
expression because, the product x z′ is contained in the product x y z′. But, by 
absorption law, E1 can be expressed as 

E1(x, y, z) = x z′ + y′ z + x y z′ = x z′′′′ + x y z′′′′ + y′ z = x z′ + y′ z , 

which is a sum-of-product form for E1. 

2.6. Algorithm for Finding Sum-of-Products Forms 

The input is a Boolean expression E. The output is a sum-of-products 
expression equivalent to E. 

Step 1. Use De Morgan’s Law and involution to move the complement 
operation into any parenthesis untill finally the complement operation only 
applies to variables. Then E will consists only sums and products of literals. 

Step 2. Use the distributive operation to next transform E into a sum of 
products. 

Step 3. Use the commutative, idempotent, and complement laws to transform 
each product in E into 0 or a fundamental product. 

Step 4. Use the absorption law and identity law to finally transform E into a 
sum of products expression. 

For example, we apply the above Algorithm to the Boolean expression. 

  E = ((x y)′ z)′ ((x′ + z) (y′ + z′))′ 

Step 1. Using De Morgan’s laws and involution, we obtain  

  E = ((x y)′′ ∨  z′) ((x′ ∨  z)′ ∨  (y′ ∨  z′))′ 

     = (x y ∨  z′) ∧  [(x ∧  z′) ∨  (y ∧  z)] 

Thus E consists only of sum and products of literals.  

Step 2. Using the distributive laws, we obtain  

  E = (x y + z′) x z′ + (x y + z’) yz 

     = x y x z′ + x z′ z′ + x y y z + y z z′ 

Thus E is now a sum of products. 

Step 3.  Using commutative, idempotent and complement law, we obtain 
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  E = x y z′ + x z′ + x y z + 0 

Thus each term in E is a fundamental product or 0. 

Step 4. Using absorption law  

  x z′ + x y z′ = x z′ + (x z′ ∧  y) 

           = x z′ 
Hence 
        E = x z′ + x y z + 0 

Step 5.  Now using identity law 

       E = x z′ + x y z  , 

which is the required sum-of-products expression. 

2.7  Complete Sum-of-Product Expression  

Definition: A Boolean expression E (x1, x2,…., xn) is said to be a complete 
sum-of-product expression (or full disjunctive normal form or disjunctive 
canonical form, or the minterm canonical form) if E is a sum-of-products 
expression where each product involves all the n variables. 

 A fundamental product which involves all the variables is called a 
minterm and there is a maximum of 2n such products for n variables. 

It can be seen that “every non-zero Boolean expression E(x1, x2,…,xn) 
is equivalent to a complete sum-of-product expression and such a 
representation is unique.” 

ALGORITHM FOR OBTAINING COMPLETE SUM OF 
PRODUCT EXPRESSION 

The input is a Boolean sum-of-products expression E(x1, x2,….,xn). The 
output is a complete sum-of-products expression equivalent to E. 

Step 1. Find a product P in E which does not involve the variable xi and then 
multiply P by (xi + xi′) deleting any repeated products (This is possible since x 
+ x′ = 1 and P + P = P). 

Step 2. Repeat step 1 until every product in E is a minterm, i.e. every product P 
involve all the variables. 

Example: Express x1 ∨  x2 in its complete sum-of-products form in three 
variables x1, x2, x3. 

Solution: We have, using the above stated algorithm, 

x1 + x2 = [x1(x2 + x2′)] + [x2 (x1 + x1′)] 
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         = x1 x2 + x1 x2′ + x2 x1 + x1′ x2 

         = x1 x2 + x1 x2′ + x1′ x2 

         = x1 x2( x3 + x3′) + x1 x2′( x3 + x3′) + x1′ x2(x3 + x′3) 

         = x1 x2 x3 + x1 x2 x3′ + x1 x2′ x3 + x1 x2′ x3′ + x1′ x2 x3 + x1′ x2 x3′  , 

which is the complete sum-of-products form in x1, x2, x3. 

2.8 Minimal Sum-of-Products 

Consider a Boolean sum-of-products expression E. Let EL denote the 
number of literals in E (counted according to multiplicity) and let ES denote the 
number of summands in E. For example, let 

   E = x y z′ + x′ y′ z + x y′ z′ t + x′ y z t. 

Then   

 EL = 3 + 3 + 4 + 4 = 14 and ES = 3. 

Let E and F be equivalent Boolean sum-of-products expressions. Then 
E is called simpler than F if  

(i) EL < FL and ES ≤ FL 

or  

(ii) EL ≤ FL and ES < FL 

Definition :  A Boolean sum-of-product expression is called minimal if there 
is no equivalent sum-of-product expression which is simpler than E.  
There can be more than one equivalent minimal sum-of-products expressions. 

Definition : A fundamental product P is called prime implicants of a Boolean 
expression E if P + E = E but no other fundamental product contained in P has 
this property. 

For example, suppose 

  E = x y′ + x y z′ + x′ y z′ 

Then, we find first the complete-sum-of-products form of x z′. Towards this 
end, we have 

  x z′ = x z′(y + y′) 

         = x z′ y + x z′ y′     (1) 
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Also we know that the complete sum-of-products form is unique, A + E = E, 
where A ≠ 0 if and only if the summands in the complete sum-of-products 
form for A are among the summands in the complete sum-of-products form for 
E. We observe that summands x y z′ and x y′ z′ in (1) are in the complete form 
of E given below: 

    E = x y′(z + z′) + x y z′ + x′ y z′ 

       = x y′ z + x y′ z′ + x y z′ + x′ y z′ 

Therefore, by the above argument, 

   x z′ + E = E 

Also, the complete sum-of-products form of x is  

  x = x(y + y′) (z + z′) 

     = (x y + x y′) (z + z′) 

     = x y z + x y z′ + x y′ z + x y′ z′ 

The summand x y z of x is not a summand of E. Hence 

                x + E ≠ E 

Similarly, the complete sum-of-product form of z′ is 

  z′ = z′(x + x′) (y + y′) 

     = (z′ x + z′ x′) (y + y′) 

     = z′ x y + z′ x y′ + z′ x′ y + z′ x′ y′ 

The summand x′ y′ z′ of z′ is not a summand of E. Hence 

  z′ + E ≠ E. 

Thus the fundamental products x and z′ contained in x z′ do not have the 
property P + E = E where as x z′ has this property. Hence x z′ is a prime 
implicant of E. 

It can be seen “a minimal sum-of-products form for a Boolean 
expression E is a sum of prime implicants of E” 

2.9. Consensus of Fundamental Products 

Let P1 and P2 be fundamental products such that exactly one variable say xk 

appears uncomplemented in one of P1 and P2 and complemented in the other. 
Then the consensus of P1 and P2 is the product (without repetitions) of the 
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literals of P1 and P2 after xk and xk′ are deleted. (we do not define the 
consensus of P1 = x and P2 = x′′′′) 

Lemma: Suppose Q is the consensus of P1 and P2. Then P1 + P2 + Q = P1 + P2. 

Proof: Since the literals commute, we can assume without loss of generally 

that 

  P1 = a1 a2…….ar t,  P2 = b1 b2……bs t′ 

  Q = a1 a2…….ar b1 b2…….bs 

Now Q = Q(t + t′) = Q t + Q t′. Because Q t contains P1, P1 + Q t = P1; and 

because Q t′ contain P2, 

  P2 + Qt′ = P2. 
Hence 
       P1 + P2 + Q = P1 + P2 + Q t + Q t′ 

                = (P1 + Q t) + (P2 + Q t′) 

     = P1 + P2. 

Example : Find the consensus Q of P1 and P2, where 
(i) P1 = x y z′ s, P2 = x y′ t 

(ii) P1 = x y′, P2 = y  

(iii) P1 = x′ y z, P2 = x′ y t 

(iv) P1 = x′ y z, P2 = x y z′. 

Solution: (i) P1 = x y z′ s, P2 = x y′ t 

Delete y and y′ and then multiply the literals of P1 and P2 (without repetition) 

to obtain 

         Q = x z′ s t 

 (ii) P1 = x y′, P2 = y  

Delete y and y′ then multiply the literal of P1 and P2 (without repetition) to 

obtain 

         Q = x 

(iii) P1 = x′ y z, P2 = x′ y t 

In this case, no variable appears uncomplemented in one of the products and 
complemented in the other. Hence P1 and P2 have no consensus. 
(iv) P1 = x′ y z, P2 = x y z′. 
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Each x and z appear complemented in one of the products and 
uncomplemented in the other. Hence P1 and P2 have no consensus. 
 

CONSENSUS METHOD FOR FINDING PRIME IMPLICANTS 

The following algorithm, known as consensus Method is used to find the 
prime implicants of a Boolean expression. 

ALGORITHM (CONSENSUS METHOD) 

The input is a Boolean expression E = P1 + P2 +…..+ Pm, where Pm are 
fundamental products. The output expresses E as a sum of its prime implicants.  

Step 1. Delete any fundamental product Pi which includes any other 
fundamental product Pj (this is permissible by the absorption law) 

Step 2. Add the consensus of any Pi and Pj providing Q does not include any of 
the Pi (this is permissible by the lemma P1 + P2 + …..+ Pn + Q = P1 + …        + 
Pn.) 

Step 3. Repeat Step 1/or Step 2 untill neither can be applied. 

Example : Let 

E(x, y, z) = x y z + x′ z′ + x y z′ + x′ y′ z + x′ y z′ 

Then  

E = x y z + x′ z′ + x y z′ + x′ y′ z  (Θ x′ y z′ include x′ z′) 

   = x y z + x′ z′ + x y z′+x′ y′ z + x y (consensus xy of xyz , xyz′ added) 

   = x′ z′ + x′ y′ z + x y  (Θx y z and x y z′ include x y) 

   = x′ z′ + x′ y′ z + x y + x′ y′ (consensus x′ y′ of x′ z′ and x′ y′ z added) 

   = x′ z′ + x y + x′ y′ (Θ x′ y′ z include x′ y′) 

   = x′ z′+ x y + x′ y′+y z′ (consensus of x′z′ and xy, which is yz′, added) 

After this none of the step in the consensus method will change E. Thus E is 
the sum of its prime implicants x′ z′, x y, x′ y′ and y z′. 

Use of Consensus method for finding Minimal Sum-of-Products Form 

We have seen that consensus method can be used to express a Boolean 
expression E as a sum of all its prime implicants. Using such a sum, we can 
find a minimal sum-of-products form for E as follows: 
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Algorithm: The input is a Boolean expression E = P1 + P2 +……+ Pm, where 
Pi are all prime implicants of E. The output expresses E as a minimal sum-of-
products. 

Step 1. Express each prime implicant P as a complete sum-of-products. 

Step 2. Delete one by one those prime implicants whose summands appear 
among the summands of the remaining prime implicants. 

Example: Consider Boolean expression E expressed as the sum of prime 
implicants in the above example. We have 

  E = x′ z′ + x y + x′ y′ + y z′ 

We first convert each prime implicant into complete sum-of-products form. We 
have 

  x′ z′ = x′ z′(y + y′) = x′ z′ y + x′ z′ y′ 

  x y = x y(z + z′) = x y z + x y z′ 

  x′ y′ = x′ y′(z + z′) = x′ y′ z + x′ y′ z′ 

  y z′ = y z′(x + x′) = y z′ x + y z′ x′ 

The summands of x′ z′ appear in the summands of x′ y′ and y z′. So we delete 
x′ z′ and get 

  E = x y + x′ y′ + y z′     (1) 

The summands of no other prime implicant appear among the summands of the 
remaining prime implicants. Hence expression (1) is a minimal sum-of-product 
form for E. In other words, none of the remaining prime implicants is 
superfluous, that is, none can be deleted without changing E. 

2.10 Logic Gates And Circuits 

Definition: Logic circuit (or logic networks) are structures which are built up 
from certain elementary circuit called logical gates. 

LOGIC GATES 

There are three basic logic gates. The lines (wires) entering the gate 
symbol from the left are input lines and the single line on the right is the output 
line. 

1. OR Gate:  An OR gate has input x and y and output z = x ∨  y or z = x + y, 
where addition (or Join) is defined by the truth table. In this case the output z = 
0 only when inputs x = 0 and y = 0. 
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The symbol and the truth table for OR gate are shown in the diagram below: 
  
          x   
                     y         z = x + y     
 
        x      y     x + y 
                   1      1        1 
                   1      0        1    
        0      1        1    

                       0      0        0          

 (Truth Table for OR gate) 

2. AND Gate: In this gate the inputs are x and y and output is x ∧  y or x.y or 
xy, where multiplication is defined by the truth table. 

   
          x   
                     y                   z = x ∧  y     
 
        x      y  z = x  ∧ y 
                   1      1       1 
                   1      0       0    
        0      1       0    
                       0      0       0           

(Truth Table for AND gate) 

Thus output is 1 only when x = 1 ,  y = 1, otherwise it is zero. 

The AND gate may have more than two inputs. The output in such a case will 
be 1 if all the inputs are 1. 

3. NOT Gate (inverter):  The diagram below shows NOT gate with input x 
and output y = x′, where inversion, denoted by the prime, is defined by the 
truth table: 

 
           x                        
                                                    y = x′  

   (NOT gate) 

  x y = x′ 

  1 0 

  0 1 

OR 

   AND 

NOT 
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Truth Table for NOT gate 

For example, if x = 10101, then output x′ in NOT gate shall be  

    x′ = 01010 

Exercise : Draw logic circuit for a b′ + ab  

Logic circuits as a Boolean Algebra: The truth tables for OR, AND and NOT 
gates are respectively identical to the truth tables for the propositions            p 
∨  q (disjunction, “p or q”),  p ∧  q(Conjunction, “p and q”) and ~ p (negation, 
“not p”). The only difference is that 0 and 1 are used instead of F 
(contradiction) and T (tautology). Thus the logic circuits satisfy the same laws 
as do propositions and hence they form a Boolean Algebra.   Hence, we have 
established the following: 

Theorem: Logic circuits form a Boolean Algebra. 

Example: Express the output of the logic circuit below as a Boolean 
expression. (Here small circle represents complement (NOT)) 

 

                      ••••                       •••• 
          ••••                       ••••                 

          
  

           
  
          
  
       
 
      
       
Solution: We note that 

  t1 = xy′  

  t2 = (x+y)′ 

  t3 = (x′y)′ 

and so we have  

 t = t1 + t2 + t3  

   = x y′ + (x + y)′ + (x′ y)′ 

   AND 

OR OR 

   AND 

  x 

  y 

t1 

t2 

t3 

t 
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NAND and NOR Gates 

NAND and NOR gates are frequently used in computers. 

NAND gate: It is equivalent to AND gate followed by a NOT gate.   Its 
symbol is 

     
          x   
                     y                      z      

                          NAND gate 

Its truth table is  

        x      y      x y      z = (x y)′ 
                   1      1             1               0 
                   1      0             0               1 
        0      1             0               1 

                       0      0             0               1           

Thus, the output of a NAND gate is  0 if and only if all the inputs are 1. 

NOR gate: This gate is equivalent to OR gate followed by a NOT gate. Its 
symbol is  

          x   
                     y                      z      

                       NOR Gate 

Its truth table is as shown as: 

        x      y   x + y      (x + y)′  
                   1      1             1          0 
                   1      0             1             0  
        0      1             1             0 

                       0      0             0             1 

Thus, the output of NOR gate is 1 if and only if all inputs are 0. 

2.11 Boolean Function 

We know that ordinary polynomials could produce functions by 
substitution. For example, the polynomial x y + y z3 produces a function             
f : R3 → R by letting f(x,y,z) = xy +yz3. Thus f (3, 4, 2) = 3. 4 + 4. 23 = 44.  In 
a similar way, Boolean polynomials involving n variables produce functions 
from Bn to B. 

OR 
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Definition: Let (B, . , +, ′, 0, 1) be a Boolean algebra. A function f : Bn → B 
which is associated with a Boolean expression (polynomial) is n variables is 
called a Boolean function. 

Thus a Boolean function is completely determined by the Boolean expression 
α (x1, x2,….,xn) because it is nothing but the evaluation function of the 
expression. It may be mentioned here that every function g : Bn → B needs not 
be a Boolean function. 

If we assume that the Boolean algebra B is of order 2m for m ≥ 1, then the 
number of function from Bn to B is greater than 22n showing that there are 
functions from Bn to B which are not Boolean functions.   On the other hand, 
for m = 1, that is, for a two element Boolean algebra, the number of function 
from Bn to B is 22n which is same as the number of distinct Boolean 
expressions in n variable. Hence every function from Bn to B in this case is a 
Boolean function. 

Example: Show that the following Boolean expression are equivalent to one-
another. Obtain their sum-of-product canonical form. 

(a) (x + y)(x′ + z)(y + z) 

(b) (x.z) + (x′y) + (yz)  

(c) (x + y)(x′ + z) 

(d) x z + x′y 

Solution: The binary valuation of the expression are 

x      y      z      x+y    x′+z   y+z   (a)     (c)      xz      x′y      yz      (b)    (d)       

0      0      0        0       1        0      0        0        0        0         0        0       0 

0      0      1        0       1       1       0        0        0        0         0        0        0 

0      1      0        1       1       1       1        1        0        1         0        1        1 

0      1      1        1       1       1       1        1        0        1         1        1        1 

 

1      0      0        1       0       0       0        0        0        0         0        0        0 

1      0      1        1       1       1       1        1        1        0         0        1        1 

1      1      0        1       0       1       0        0        0        0         0        0        0 

1      1      1        1       1       1       1        1        1        0         1        1        1 
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Since the values of the given Boolean expression are equal over every triple of 
the two element Boolean algebra, they are equal. 

To find the sum-of-product canonical (complete) form, we note that (d) is in 
sum-of-product form. Therefore to find complete sum-of-product form, we 
have 

  (d) = (x z) + (x′ y) 

        = x z(y + y′) + (x′ y) (z + z′) 

        = x z y + x z y′ + x′ y z + x′ y z′  

METHOD TO FIND TRUTH TABLE OF A BOOLEAN 
FUNCTION 

Consider a logic circuit consisting of 3 input devices x, y, z. Each assignment 
of a set of three bits to the input x, y, z yield an output bit for z. There are              
2n = 23 = 8 possible ways to assign bits to the input as follows:  

   000, 001, 010, 011, 100, 101, 110, 111. 

The assumption is that the sequence of first bits is assigned to x, the sequence 
of second bits to y, and the sequence of third bits to z. Thus the above set of 
inputs may be rewritten in the form 

  x = 00001111, y = 00110011,    z = 01010101 

These three sequences (of 8 bits) contain the eight possible combination of the 
input bits. 
The truth table T = T(L) of the circuit L consists of the output t that 
corresponds to the input sequences x, y, z. 
The truth table is same as we generally have written in vertical columns. The 
difference is that here we write x, y, z and t horizontally. 

Consider a logic circuit L with n input devices. There are many ways to 
form n input sequences x1, x2,….,xn so that they contain 2n different possible 
combinations of the input bits (Each sequence must contain 2n bits). 

The assignment scheme is:  

x1 : Assign 2n-1 bits which are 0 followed by 2n-1 bits which are 1. 

x2 : Assign 2n-2 bits which are 0 followed by 2n-2 bits which are 1. 

x3 : Assign 2n-3 bits which are 0 followed by 2n-3 bits which are 1. 

and so on. 
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The sequence obtained in this way is called “Special Sequence”.  Replacing 0 
by 1 and 1 by 0 in the special sequences yield the complements of the special 
sequences. 

Example: Suppose a logic circuit L has n = 4 input devices x, y, z, t. Then 2n = 
24 = 16 bit special sequences for x, y, z, t are 

x = 0000000011111111 (23 = 8 zeros followed by 8 ones) 

y = 0000111100001111 (2n-2 = 24-2 = 4 zeros followed by 4 ones) 

z = 0011001100110011 (2n-3 = 24-3 = 2 zeros followed by 2 ones) 

t = 0101010101010101 (2n-4 = 24-4 = 20 = 1 zeros followed by 1 one) 

ALGORITHM FOR FINDING TRUTH TABLE FOR A LOGIC 
CIRCUIT LWHERE OUTPUT T IS GIVEN BY A BOOLEAN 
SUM-OF-PRODUCT EXPRESSION IN THE INPUTS. 

The input is a Boolean sum-of-products expression t(x1, x2,….,..). 

Step 1. Write down the special sequences for the inputs x1, x2,….and their 
complements 

Step 2. Find each product appearing in t(x1, x2,….) keeping in mind that x1, 
x2,….=1 is a position if and only if all x1, x2…..have 1 in the position. 

Step 3. Find the sum t of the products keeping in mind that x1 + x2 + …..= 0 in 
a position if and only if all x1, x2,…..have 0 in the position. 

2.12 Representation of Boolean Functions using Karnaugh 
Map 

Karnaugh Map is a graphical procedure to represent Boolean function as an 
“or” combination of minterms where minterms are represented by squares.  
This procedure is easy to use with functions f: Bn → B, if n is not greater than 
6. We shall discuss this procedure for n = 2, 3, and 4. 

A Karnaugh map structure is an area which is subdivided into 2n cells, one for 
each possible input combination for a Boolean function of n variables. Half of 
the cells are associated with an input value of 1 for one of the variables and the 
other half are associated with an input value of 0 for the same variable.  This 
association of cell is done for each variable, with the splitting of the 2n cells 
yielding a different pair of halves for each distinct variable. 

Case of 1 variable: In this case,  the Karnaugh map consists of 21 = 2 squares. 
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                                                0          1 

                          x′        x 

The variable x is represented by the right square and its complement x′ by the 
left square. 

Case of 2 variables: For n = 2, the Boolean function is of two variable, say x 
and y. We have 22 = 4 squares, that is, a 2 × 2 matrix of squares. Each squares 
contains one possible input from B2. 

The variable x appears in the first row of the matrix as x′ whereas x appears in 
the second row as x. Similarly y appears in the first column as y′ and as y in 
the second column. 
 
  0      1               y′       y 
             0                                     x′ 
 
  1           
           x  
          
    

                             (2 variable Karnaugh Map) 

In this case, x is represented by  the points in lower half of the map and y is 
represented by the points in the right half of the map. 

Definition: Two fundamental products are said to be adjacent if they have the 
same variables and if they differ in exactly one literal. Thus there must be an 
uncomplemented variable in one product which is complemented in the other. 

For example, if P1 = x y z′ and P2 = x y′ z′, then they are adjacent. 

The sum of two such adjacent products will be a fundamental product 
with one less literal. 

For example, in the case of above mentioned adjacent products, 

  P1 + P2 = x y z′ + x y′ z′ = x z′(y + y′) = x z′ (1) = x z′. 

We note that two squares in Karnaugh map above are adjacent if and 
only if squares are geometrically adjacent, that is, have a side in common. 

We know that a complete sum-of-products Boolean expression E(x, y) 
is a sum of minterms and hence can be represented in the Karnaugh map by 
placing checks in the appropriate square. A prime implicant of E(x, y) will be 

00 01 

10 11 

  
     x′y′ 

  
     x′y 

        
        xy′ 

     
      xy 
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either a pair of adjacent squares in E or an isolated square (a square which is 
not adjacent to other square of E(x, y)).  A minimal sum of products for E(x, y) 
will consists of a minimal number of prime implicants which cover all the 
square of E(x, y). 

Example : Find the prime implicants and a minimal sum-of-products form 
from each of the following complete sum-of-products Boolean expression: 

(a) E1 = x y + x y′ (b) E2 = x y + x′ y + x′ y′ 

(c) E3 = x y + x′ y′. 

Solution: (a) The Karnaugh map for E1 is 
        y′  y 
          x′ 
 

                    x  

Check the squares corresponding to x y and x y′. We note that E1 consists of 
one prime implicant, the two adjacent square designated by the loop. The pair 
of adjacent square represents the variable x. So x is the only prime implicant of 
E1. Consequently E1 = x is its minimal sum. 

(b) The Karnaugh map for E2 is 
 
                    y′           y   
          
             x′     
          
          
          
            x 
 
 
Check the squares corresponding to x y, x′ y, x′ y′. The expression E2 contains 
two pairs of adjacent squares (designated by two loops) which include all the 
squares of E2. The vertical pair represents y and the horizontal pair x′. Hence y 
and x′ are the prime implicants of E2. Thus 
   

E2 (x, y) = x′ + y  

is minimal sum. 

(c) The Karnaugh map for E3 is  
 
 
 
  

 

 
         
 
 
� 

    �     �  

�   � 
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                    y′          y  
 
  x′ 
 
  x 
 
Check (tick) the squares corresponding to x y and x′ y′. The expression E3 
consists of two isolated squares which represent x y and x′ y′. Hence and x y 
and x′ y′ are the prime implicants of E3 and so E3 = x y + x′ y′ is its minimal 
sum.  
 
Case of 3 variables: We now turn to the case of a function f: B3 → B  which is 
function of x, y and z. The Karnaugh map corresponding to Boolean 
expression E(x, y, z) is shown in the diagram below:    
       y′  y 
 
          00     01     11    10      y′z′   y′z     yz       yz′ 
      0         x′  
 
     1         x  
 
           z 
               z′   
Here x, y, z are respectively represented by lower half, right half and middle 
two quarters of the map.  

Similarly, x′, y′, z′ are respectively represented by upper half, left half and left 
and right quarter of the map. 

Definition: By a Basic Rectangle in the Karnaugh map with three variables, 
we mean a square, two adjacent squares or four squares which form a one-by 
four, or a two by-two rectangle. These basic rectangles corresponds to 
fundamental products of three, two and one literal respectively. 

Further, the fundamental product represented by a basic rectangle is the 
product of just those literals that appear in every square of the rectangle.  

Let a complete sum of products Boolean expression E(x, y, z) is 
represented in the Karnaugh map by placing checks in the appropriate squares. 
A prime implicant of E will be a maximal basic rectangle of E, i.e., a basic 
rectangle contained in E which is not contained in any larger basic rectangle in 
E. 

A minimal sum-of-products form for E will consist of a minimal cover 
of E, i.e., a minimal number of maximal basic rectangles of E which together 
include all the squares of E. 

x′y′ 
 � 

 
 

xy 
� 

000    001  011   010 
 
100    101   111  110    
  

x′y′z′   x′y′z    x′yz    x′yz′   
 
xy′z′     xy′z     xyz     xyz′  
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Example: Find the prime implicants and a minimal sum-of-products form for 
each of the following complete sum of products Boolean expressions : 

(a)   E1 = x y z + x y z′ + x′ y z′ + x′ y′ z 

(b)   E2 = x y z + x y z′ + x y′ z + x′ y z + x′ y′ z 

(c)   E3 = x y z + x y z′ + x′ y z + x′ y′ z 

Solution: (a) The Karnaugh map for E1 is  

 

   

      

         

 

We check the four squares corresponding to four summands in E1. Here E1 has 
three prime implicants (maximal basic rectangles) which are encircled. These 
are x y, y z′ and x′ y′ z. All three are needed to cover E1. Hence minimal sum 
for E1 is  

E1 = x y + y z′ + x′ y′ z. 

(b) The Karnaugh map for E2 is    

 

 

  

 

 

 

Check the squares corresponding to the five summands. E2 has two prime 
implicants which are circled. One is the two adjacent squares which represent x 
y, and the other is the two-by-two square which represents z. Both are needed 
to cover E2 so the minimal sum for E2 is 

E2 = x y + z 

(c) The Karnaugh map for E3 is  
 

 
 y′z′            y′z             yz            yz′ 

 
 y′z′               y′z              yz             yz′ 

 � 
�      
 
 
    �     �  

     x′ 
 
 
     x 

     x′ 
 
 
     x 

� � 
 
 
 �     �        � 
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Check the squares corresponding to the five summands.  Here E3 has three 
prime implicants x y, yz′, x′ y′. All these are needed in a minimal cover of E3. 
Hence E3 has minimal sum as  

  E3 = x y + y z′ + x′ y′ 

Remark :  To find the fundamental product represented by a basic rectangle, 
find literals which appear in all the squares of the rectangle.  

Case of 4 Variables: We consider a Boolean function f : B4 → B, considered 
as a function of x, y, z and t. Each of the 16 squares (24) corresponds to one of 
the minterms with four variables. 

  x y z t,  x y z t′,……………..,x′ y z′ t 

We consider first and last columns to be adjacent, and first and last 
rows to be adjacent, both by Wrap around, and we look for rectangles with 
sides of length some power of 2, so the length is 1, 2 or  4.   The expression for 
such rectangles is given by intersecting the large labelled rectangles.  

                         00      01       11       10     
 
                           00       

                           01      ,    
    

                           11          

                           10        
    
   
 
 
 
 
 
    

     y′z′         y′z             yz            yz′ 

0000    0001    0011    0010 
 
0100    0101    0111    0110 
 
1100    1101    1111    1110 
 
1000    1001    1011    1010 

�      
 
 
    �     �  

   �     �  
     x′ 
 
 
     x 
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   z′                        z 
 
 
                   x′                                                                  
                                                                                  y 
 
                   x                                                               y′ 
 
                                                  
                                                   
                                                   t′ 
 

A basic rectangle in a four variable Karnaugh map is a square, two 
adjacent squares, four squares which form a one-by-four or two by two 
rectangle or eight square squares which form a two by four rectangle. These 
rectangle correspond to fundamental product with four, three, two and one 
literal respectively. Maximal basic rectangles are prime implicants. 

Example: Find the fundamental product P represented by the basic rectangle in 
the Karnaugh map given below : 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: We find the literals which appear in all the squares of the basic 
rectangle. Then P will be the product of such literals.  
Here x, y′, z′ appear in both squares. Hence 

  P = x y′ z′ 

is the fundamental product represented by the basic rectangle in question. 

    y′t′          z′t              zt               zt′ 

   �     �  

  x′y′ 
 
 
   x′y 
 
 
   xy 
 
 
   xy′ 
 

x′y′z′t′      x′y′z′t      x′y′zt     x′y′zt′ 
 
x′yz′t′       x′yz′t       x′y z t    x′yz t′ 
 
xyz′t′        xyz′t           xyzt      xyzt′ 
 
xy′z′t′       xy′z′t          xy′zt    xy′zt′ 

t 
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Unit-3 

Graph Theory  
 

3.1. Definitions and Examples 
 
Definition: A graph G = (V,E) is a mathematical structure consisting of two 
finite sets V and E. The elements of V are called Vertices (or nodes) and the 
elements of E are called Edges. Each edge 
is associated with a set consisting of either one or two vertices called its 
endpoints. 

The correspondence from edges to endpoints is called edge-endpoint 
function. This function is generally denoted by γ.   Due to this function, some 
author denote graph by G = (V, E, γ). 

Definition: A graph consisting of one vertex and no edges is called a trivial 
graph. 

Definition: A graph whose vertex and edge sets are empty is called a null 
graph. 

Definition: An edge with just one end point is called a loop or a self loop. 
 Thus, a loop is an edge that joins a single endpoint to itself. 

Definition: An edge that is not a self-loop is called a proper edge. 

Definition: If two or more edges of a graph G have the same vertices, then 
these edges are said to be 
parallel or multi-edges. 

Definition: Two vertices that are connected by an edge are called adjacent. 

Definition: An endpoint of a loop is said to be adjacent to itself. 

Definition: An edge is said to be incident on each of its endpoints. 

Definition: Two edges incident on the same endpoint are called adjacent 
edges. 

Definition: The number of edges in a graph G which are incident on a vertex is 
called the degree of  
that vertex. 

Definition: A vertex of degree zero is called an isolated vertex. 
Thus, a vertex on which no edges are incident is called isolated. 
Definition: A graph without multiple edges (parallel edges) and loops is 
called Simple graph. 
Notation: In pictorial representations of a graph, the vertices will be denoted 
by dots and edges by line segments. 
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Example: 1. Let 
                                    V = {1, 2, 3, 4} and E = {e1, e2, e3, e4, e5}. 
Let γ be defined by 
  γ (e1) =  γ (e5) = {1, 2} 
                                     γ (e2) = {4, 3} 
  γ (e3) = {1, 3} 
                                     γ (e4) = {2, 4} 
 
We note that both edges e1 and e5 have same endpoints {1, 2}. The endpoints 
of e2 are {4, 3}, the endpoints of e3 are {1, 3} and endpoints of e4 are {2, 4}. 
Thus the graph is  
                                                                            
          1•      •2  

                                  1   •                      • 2  
                                                   or           e3                            e4   
                                                                   
                                                                   3 •                      • 4   
                               • 3                                          
       4 •       e2                                                                             
 

The edges e2 and e3 are adjacent edges because they are incident on the same 

vertex B. 

2. Consider the graph with the vertices A, B , C, D and E pictured in the figure 
below. 
 
 
 
  A  •                        • B 
 
 
 
                •C 

 
 
 
          
   D    •                            •E 
 

In this graph, we note that  

No. of edges = 5 

Degree of vertex A = 4 

e1 

e5 

e4 

e3 

e1 

e5 

e2 



GRAPH THEORY 121

Degree of vertex B = 2 

Degree of vertex C = 3 

Degree of vertex D = 1 

Degree of vertex E = 0 

Sum of the degree of vertices = 4 + 2 + 3 + 1 + 0 =10 
Thus, we observe that  

     �
=

5

1i
deg(vi) = 2e  , 

where deg(vi) denotes the degree of vertex vi and e denotes the number of 
edges. 
 
Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the 
degrees of the vertices of    a graph G is equal to twice the number of edges            
in G. 
   (Thus, total degree of a graph is even) 

Proof: Each edge in a graph contributes a count of 1 to the degree of two 
vertices (end points of  
the edge), That is, each edge contributes 2 to the degree sum. Therefore the 
sum of degrees of the  
vertices is equal to twice the number of edges. 

Corollary: There must be an even number of vertices of odd degree in a given 
graph G. 
Proof: We know, by the Fundamental Theorem, that 

     �
=

n

i 1

deg(vi) = 2 × no. of edges 

Thus the right hand side is an even number. Hence to make the left-hand side 
an even number there  
can be only even number of vertices of odd degree. 

Remarks: (i) A vertex of degree d is also called a d-valent vertex. 
(ii) The degree (or valence) of a vertex v in a graph G is the number of proper 
edges incident on v  
plus twice the number of self- loops. 

Theorem: A non-trivial simple graph G must have at least one pair of vertices 
whose degrees are  
equal. 

Proof: Let the graph G has n vertices. Then there appear to be n possible 
degree values, namely 0, 1, ….,n − 1. But there cannot be both a vertex of 
degree 0 and a vertex of degree n − 1 because if there is a vertex of degree 0 
then each of the remaining n − 1 vertices is adjacent to atmost n−2 other 
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vertices. Hence the n vertices of G can realize atmost n−1 possible values for 
their degrees. Hence the pigeonhole principle implies that at least two of the 
vertices have equal degree. 
 
Definition: A graph G is said to simple if it has no parallel edges or loops. In a 
simple graph, an edge with endpoints v and w is denoted by {v, w}. 
Definition: For each integer n ≥ 1, let Dn denote the graph with n vertices and 
no edges. Then Dn is called the discrete graph on n vertices. 
For example, we have 
•   •          •       and       •         •         •          •          • 
              D3                                                                  D5 

Definition: Let n ≥ 1 be an integer. Then a simple graph with n vertices in 
which there is an edge between  each pair of distinct vertices is called the 
complete Graph on n vertices. It is denoted  by Kn.  
 
 For example, the complete graphs K2, K3 and K4 are shown in the 
figures below: 
 
                                       v3  •                     v4 •                  •v3 
                                                    
 
•            •              •            •           •                         •                           
v1            v2                 v1              v2                 v1                        v2 

        K2                                K3                                                 K4              

Definition: If each vertex of a graph G has the same degree as every other 
vertex, then G is called a regular graph.    
A k-regular graph is a regular graph whose common degree is k. 

 For example, consider K3. The degree of each vertex in K3 is 2. Hence 
K3 is regular. Similarly K4 is regular. Also the graph shown below is regular 
because degree of each vertex here is 2 .  
 
            v4  •                   •v3           
 
                                                        2- regular graph 
 
                    v1 •                      •v2     
 
But this graph is not complete because v2 and v4 have not been connected 
through an edge. Similarly, v1 and v3  are not connected by any edge. 
Thus 
 A Complete graph is always regular but a regular graph need not 

be complete. 
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Example: The oxygen molecule O2, made up of two oxygen atoms linked by a 
double bond can be represented by the regular graph shown below: 
 
              
 
Definition: Let n ≥ 1be an integer. Then a graph Ln with n vertices              {v1, 
v2,….,vn} and with edges  
{vi, vi+1} for 1 ≤ i < n is called a Linear Graph on n vertices. 

 For example, the linear graphs L2 and L4 are shown in the figure below. 

            •                    •             ,            •            •           •         •      
           v1                  v2                                  v1               v2             v3          v4  

  L2(or P2)                                                L4(or P4)   

It is also called Path Graph denoted by Pn.      

Definition: A bipartite graph G is a graph whose vertex set V can be 
partitioned into two subsets U and W, such that each edge of G has one 
endpoint in U and one endpoint in W. 

 The pair (U, W) is called a Vertex bipartition of G and U and W are 
called the bipartition subsets. Obviously, a bipartite graph cannot have any self 
loop. 

Example: 1. If Vertices in U are solid vertices and vertices in W are hollow 
vertices, then the following graphs are bipartite graphs: 
          
                                  •                             •             • 
 
 
                                             ,  
           • 
 
             
2. The smallest possible simple graph that is not bipartite is the complete 
graph K3 shown below :                                                                                            
                               
 
 
                           •            • 
             K3    
Definition: A complete bipartite graph G is a simple graph whose vertex set 
V can be partitioned into two subsets U = {v1, v2,…,vm) and W =                       
{w1, w2,…,wn}such that for all i, k in    {1, 2,….,m}and j, l in {1, 2,…n} 

(i) there is an edge from each vertex vi to each vertex wj. 
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(ii) there is not an edge from any vertex vi to any other vertex vk. 

(iii) there is not an edge from any vertex wj to any other vertex wl. 

 A complete bipartite graph on (m, n) vertices is denoted by Km,n. 

Example: The complete bipartite graphs K32 and K34 are shown in the figure  
below: 
             v1 •                                                                       •w1 

                                       • w1                                   v1 • 

              v2 •                                                                      • w2 

                                       • w2                                      v2 • 
             v3 •                                                                        • w3 

                             K32                                     v3 • 
                                                                                            • w4 

                                                                                                                       K34 

 

3.2. Subgraphs 
Definition: A graph H is said to be a subgraph of a graph G if and only if 
every vertex in H is also a vertex in  G, every edge in H is also an edge in G 
and every edge in H has the same endpoints as in G. 
 
We may also say that G is a supergraph of H. 

 For example, 
 
  v1 •           •v2                     v1•          • v2             
   e2        e3              and                               e5           e4 
 
  v3 •          •v4                      v3•         •  v4         
 
are subgraphs of the graph given below: 
 
   
   v1 •      •v2 
    e2                                  e4 

          e5               e6 

    v3•      •v4 
 
 Similarly, the graph 
 
 A •                             •B 
            •             • 
  
            •             •  
  D•                       •C 
 

e1 e1 

e1 

e5 

E F 

H G 

E F 

H G 
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is a subgraph of the graph given below: 
         
 A •                             •B 
            •             • 
  
            •             •  
  D•                       •C 
 
Definition: A subgraph H is said to be a proper subgraph of a graph G if 
vertex set VH of H is a proper subset of the vertex set VG of G or edge set EH is 
a proper subset of the edge set EG. 
 For example, the subgraphs in the above examples are proper subgraphs 

of the given graphs. 

Definition: A subgraph H is said to span a graph G if VH = VG. 
 Thus H is a spanning sub graph of graph G if it contains all the vertices 
of G. 
 For example the subgraph 
                                  v1 ••••                   ••••v2     
  
                                                •••• v5 
 
                                      ••••v3                       ••••v4     

spans the graph 
                                             v1••••                   ••••v2     
                                                    
                                                           •••• v5 

 
                                            v3  ••••                   ••••v4 

 
Definition: Let G = (V, E) be a graph. Then the complement of a subgraph 
G´ = (V´, E´) with respect to the graph G is another subgraph G´´ = (V´´, E´´) 
such that E´´ = E − E´ and V´´ contains only the vertices with which the edges 
in E´´ are incident. 

 For example, the subgraph 

                     v1•                                        •v2 

 

is the complement of the subgraph 
 
 v1 •                             •v2 
         v7•             • v8 

  
        v5 •             •v6  
  v3•                       •v4 
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with respect to the graph G shown in the figure below: 
 
v1  •                             •v2 
         v7•             • v8 

  
        v5 •             • v6  
  v3•                       •v4 

 
Definition: If G is a simple graph, the complement of G, (Edge 
complement), denoted by G′ or Gc is a graph such that 

(i) The vertex set of G′ is identical to the vertex set of G, that is VG′ = VG 

(ii) Two distinct vertices v and w of G′ are connected by an edge if and only if 
v and w are not connected by an edge in G. 
 For example, consider the graph G 
               
   • 

        v1•        •v3 

 
 
     •v4 

    G 
 
Then complement G′ of G is the graph 
    •v2 

 
        v1•                       •v3 
 
 
    • v4 

             G′ 
  
Example: Find the complement of the graphs: 
   
                           •v2 

 
(a)    v1 •                          •v3 

 
                           •v4 
(b) 
        v1•             •v2  
 
 
        v3•             •v4 

v2 
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( c) Complete graph K4 : 
   
        v1 •                      •v2 

 
 
        v3 •                      •v4 

 
Solution: (a) 
 
   •v2 
 
        v1•                       •v3 

 
                        •v4 

(b)  
         v1•                   •v2 

 
        v3 •                   •v4 

 
(c) Null graph. 

Example: Find the edge complement of the graph G shown below: 
                                  •v1 
 
                   v2 •                     •v3 

 
                   v4 •                     •v5 

 
                                  •v6         G 
Solution: The edge complement of G is the following graph Gc  
                              •v1 
 
                  v2•                  •v3 

 
                  v4•                  •v5 

 
                              •v6          

           Gc 

Definition: If a new vertex v is joined to each of the pre-existing vertices of a 
graph G, then the resulting graph is called the Join of G and v or the 
suspension of G from v. It is denoted by G + v. 

Thus, A graph obtained by joining a new vertex to each of the vertices of a 
given graph G is called the Join of G and v or the suspension of G from v. It 
is denoted by G + v. 
 For example, let G be a graph 
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          v1  •                      •v2 

 
       v3•                               •v4 

 

and let v be a vertex.   Then  
 
                            •v 
 
            v1•                         •v2 

 
         v3 •                             •v4 

                          G + v 
is the join of G to v. 

3.3. Isomorphisms of Graphs  

We know that shape or length of an edge and its position in space are not part 
of specification of a graph. For example, the figures 

                              v3        e2      v1    e1      v2  
        v1•                     •v2         and      •                  •              • 

                    e2                                                               e3  

           e3             
                       •v3 

represent the same graph. 

Definition: Let G and H be graphs with vertex sets V(G) and v(H) and Edge 
sets E(G) and E(H) respectively. Then G is said to isomorphic to H iff there 
exist one-to-one correspondences g : V(G) → v(H) and h : E(G) → E(H) such 
that for all v ∈ V(G) and e ∈ E(G), 

    v is an endpoint of e ⇔ g(v) is an endpoint of h(e). 

Definition: The property of mapping endpoints to endpoints is called 
preserving incidence or the  
continuity rule for graph mappings. 
As a consequence of this property, a self-loop must map to a self-loop. 
Thus, two isomorphic graphs are same except for the labeling of their vertices 
and edges. 
 
Example: Show that the graphs 
 
                              e1                 v3 

                    •v2 

      v1•          e6                 e2          e3 

                    •v5 
                                e4            •v4 

           G 

e5 
e4 
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and 
   •  w1 

        f3         f4     •w3 

       f1     f2             • w2             f5 

      f7       f6     •w4 

 •w5   
    H 
are isomorphic. 

Solution: To solve this problem, we have to find g: V(G) → V(H) and h : E(G) 
→ E(H) such that for all v ∈ V(G) and e ∈ E(G), 

  v is an endpoint of e ⇔ g(v) is an endpoint of h(e).  

Since e2 and e3 are parallel (have the same endpoints), h(e2) and h(e3) must also 
be parallel. Thus we have 
 h(e2) = f1 and h(e3) = f2 or h(e2) = f2 and h(e3) = f1. 

Also the endpoints of e2 and e3   must correspond to the endpoints of f1 and f2 

and so  

 g(v3) = w1 and g(v4) = w5 or g(v3) = w5 and g(v4) = w1. 

 Further, we note that v1 is the endpoint of four distinct edges e1, e7, e5 
and e4 -and so g(v1) should be the endpoint of form distinct edges. We observe 
that w2 is the vertex having four edges and so g(v1) = w2. If g(v3) = w1, then 
since v1 and v3 are endpoints of e1 in G, g(v1) = w2 and g(v3) = w1 must be 
endpoints of h(e1) in H. This implies that h(e1) = f3. 

 Continuing in this way we can find g and h to define the isomorphism 
between G and H. 
 One such pair of functions (of course there exist several) is shown 

below: 

 V(G)                                     V(H)       
          g  
         v1•                                                     • w1 

        v2•                                                     • w2 

       v3•                                     • w3 

        v4•                                                     • w4 

        v5•                                                     • w5 
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 E(G)                                     E(H)       
          h  
         e1•                                                     • f1 

        e2•                                                     • f2 

       e3•                                                      • f3 

        e4•                                                     • f4 

        e5•                                                     • f5 

                                                                  • f6       
       e6 •    
         e7 •                                                       • f7  
 
 
 
Remark: Each of the following properties is invariant under graph 
isomorphism, where n, m and h are all non-negative integers: 
1. has n vertices 
2. has m edges 
3. has a vertex of degree k 
4. has m vertices of degree k 
 
Example: Examine for isomorphism       
(a)  
         •            •                                 •  
 •             •                  and                              •  
         •            •                    • 
                         G                                                                  • 
                                                    •            • 
                                                             H 
(b) 
                     •                          •               • 
                 • 
        •                  and                  •   
                   •             •                                
                           G                                   •                   • 
                                                                             H 
 
Solution: (a) G has nine edges whereas H has only eight edges. Hence G is not 
isomorphic to H. 
(b) G has a vertex v of degree 4, whereas H has no vertex of degree 4. Hence G  
      is not isomorphic to H 
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3.4 Walks, Paths and Circuits 
Definition: In a graph G, a walk from vertex v0 to vertex vn is a finite alternating 

sequence: 

   {v0, e1, v1, e2,…..,vn−1, en, vn} 

of vertices and edges such that vi-1 and vi are the endpoints of ei. 

The trivial walk from a vertex v to v consists of the single vertex v. 

Definition: In a graph G, a path from the vertex v0 to the vertex vn is a walk 
from v0 to vn that does not contain a repeated edge. 

 Thus a path from v0 to vn is a walk of the form  

  {v0, e1, v1, e2, v2,…..,vn-1, en, vn}, 

where all the edges eI are distinct.  

Definition: In a graph, a simple path from v0 to vn is a path that does not contain a 

repeated vertex. 

 Thus a simple path is a walk of the form 

  {v0, e1,v1, e2, v2,……,vi-1, en, vn}, 

where all the ei are distinct and all the vi are distinct. 

Definition: A walk in a graph G that starts and ends at the same vertex is 

called a closed walk. 

Definition: A closed walk that does not contain a repeated edge is called a 

circuit. 

Thus,  closed a closed path is called a circuit (or a cycle) and so a  circuit is a 

walk of the form 

  {v0, e1, v1, e2, v2,……,vn-1, en, vn}  , 

where v0 = vn and all the ei are distinct. 

Definition: A simple circuit is a circuit that does not have any other repeated 
vertex except the first and the last. 

 Thus, a simple circuit is a walk of the form 

  {v0, e1, v1, e2,….,vn-1, en, vn}, 

where all the eI are distinct and all the vj are distinct except that v0 = vn. 

Example:  Consider the graph shown below 
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               e1         
         v1•                       •v2 

                  e4       e3    
                       
                     •v3 

               e5    
 
            •v4 

 

We note that e3, e5 is a path.   The walk e1, e2, e3, e5 is a path but it is not a 
simple path because the vertex v1 is repeated (e1 being a self-loop).  The walk 
e2, e3, e4 is a circuit.   The walk e2, e3, e4, e1 is a circuit but it is not simple 
circuit because vertex v, repeats twice (or we may write that v1 met twice). 

Definition:  In a graph the number of edges in the path  {v0, e1, v1, e2,……, en, 
vn} from v0 to vn is called the length of the path. 

Definition: A cycle with k-edges is called a k-cycle or cycle of length k.  
For example, loop is a cycle of length 1. On the other hand, a pair of parallel 
edges e1 and e2, shown below, is a cycle of length 2 
 
                                                                                             e1 

                                                 v1  •                             • v2 

                                                                                         e2 
Definition: A graph is said to be acyclic if it contains no cycle. 

 For example, the graphs 

            •             •                                           • 
 
                                    and 
                   •                                                   • 
 
 
                                                              •                  • 
are acyclic. 

Theorem: If there is a path from vertex v1 to v2 in a graph with n vertices, then 
there does not exist a path of more than n-1 edges from vertex v1 to v2. 

Proof: Suppose there is a path from v1 to v2. Let 

    v1,……..,vi,………,v2 

be the sequence of vertices which the path meets between the vertices v1 and 
v2. Let there be m edges in the path. Then there will be m + 1 vertices in the 
sequence. Therefore if m > n−1, then there will be more than n vertices in the 
sequence. But the graph is with n vertices. Therefore some vertex, say vk, 
appears more than once in the sequence. So the sequence of vertices shall be 

e2 
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   v1,…….,vi,…….,vk,…..,vk,……..,v2. 

Deleting the edges in the path that lead vk back to vk we have a path from v1 to 
v2 that has less edges than the original one. This argument is repeated untill we 
get a path that has n-1 or less edges. 

Definition: Two vertices v1 and v2 of a graph G are said to be connected if and 
only if there is a walk from v1 to v2. 

Definition: A graph G is said to be connected if and only if given any two 
vertices v1 and v2 in G, there is a walk from v1 to v2. 

 Thus, a graph G is connected if there exists a walk between every two 

vertices in the graph. 

Definition: A graph which is not connected is called Disconnected Graph. 

Example: Which of the graph below are connected? 
 
 
(a)                             
            v1 •                  • v2 
                 
                          •v3 

 
               •v4                     •v5 

(b) 
 
           v1•                   •v2 

 
 
               v3 •        •v4 

 
Solution: Graph (a) is not connected as there is no walk from any of v1, v2, v3, 

v4 to the vertex v5. 

The graph (b) is clearly connected. 

Definition: If a graph G is disconnected, then the various connected pieces of 
G are called the connected components of the graph. 

Example: Consider the graph given below: 

  
             v1 •                    •v2                                    •v5 

                                                                 e4   
                   e2          e3                     v4 •                    e5  
                         •v3                                           e6    
                                                                                •v6 
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This graph is disconnected and have two connected components: 
 
                          e1 
H1 :      v1 •                •v2 
                  with vertex set {v1, v2, v3} and edge set {e1, e2, e3} 
                 e2          e3 

                       •v3 

 
H2 :                      e4      •v5 

               v4 •                  e5     with vertex set {v4, v5, v6} and edge set {e4, e5, e6}.   
                            e6      •v6 

 

Example: Find the number of connected components in the graph 
 
                                   • 
 
                       •                    • 
 
                       •                    • 
 
                                 • 
Solution: The connected components are : 
 
                                   •                      •                      • 
 
                                               and                   
 
                       •                    •                        • 
 
Remark: If a connected component has n vertices, then degree of any vertex 
cannot exceed n-1. 
 

3.5. Eulerian Paths And Circuits 

Definition: A path in a graph G is called an Euler Path if it includes every 
edge exactly once. 

Definition: A circuit in a graph G is called an Euler Circuit if it includes 
every edge exactly once.  Thus, an Euler circuit (Eulerian trail) for a graph G is 
a sequence of adjacent vertices and edges in G that starts and ends at the same 
vertex, uses every vertex of G at least once, and uses every edge of G exactly 
once. 

Definition: A graph is called Eulerian graph if there exists a Euler circuit for 

that graph. 
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Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has 

even degree. 

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We 
shall show that degree of v is even. By definition, Euler circuit contains every 
edge of graph G. Therefore the Euler circuit contains all edges incident on v. 
We start a journey beginning in the middle of one of the edges adjacent to the 
start of Euler circuit and continue around the Euler circuit to end in the middle 
of the starting edge. Since Euler circuit uses every edge exactly once, the edges 
incident on  v  occur  
 
                                       •                                                           • 
                                                                           
                                                                                      • 
                                                                      
                                    •                                                            • 
 

in entry / exist pair and hence the degree  of v is a multiple of 2. Therefore the 
degree of v is even. This completes the proof of the theorem. 

We know that contrapositive of a conditional statement is logically equivalent 
to statement. Thus the above theorem is equivalent to: 

Theorem:2. If a vertex of a graph is not of even degree, then it does not have 
an Euler circuit. 
 
                                           or 
“If some vertex of a graph has odd degree, then that graph does not have an 

Euler circuit”. 

Example: Show that the graphs below do not have Euler circuits. 
(a)  
                                         v1 •                    •v2 

 
 
                                         v3 •                    •v4 

(b) 
                                        
                                 v1 •                    • 

 
 
                                          v4•                     •v3 

 
 
Solution: In graph (a), degree of each vertex is 3. Hence this does not have a 

Euler circuit. 

v 

Starting point 

v2 
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In graph (b), we have 

             deg(v2) = 3 

              deg(v4) = 3 

Since there are vertices of odd degree in the given graph, therefore it does not 

have an Euler circuit. 

Remark: The converse of Theorem 1 is not true. There exist graphs in which 
every vertex has even degree but the Euler circuits do not exist. 
 
For example, 
           •                                                      • 

                           •                        • 
 
          •                                                      • 
and 
 
            •                   •   
 
 
                •                                • 
 
are graphs in which each vertex has degree 2 but these graphs do not have 
Euler circuits since there is no path which uses each vertex at least once. 
Theorem 3.  If G is a connected graph and every vertex of G has even degree, 
then G has an Euler circuit. 
Proof: Let every vertex of a connected graph G has even degree. If G consists 
of a single vertex, the trivial walk from v to v is an Euler circuit. So suppose G 
consists of more than one vertices. We start from any verted v of G. Since the 
degree of each vertex of G is even, if we reach each vertex other than v by 
travelling on one edge, the same vertex can be reached by travelling on another 
previously unused edge. Thus a sequence of distinct adjacent edges can be 
produced indefinitely as long as v is not reached. Since number of edges of the 
graph is finite (by definition of graph), the sequence of distinct edges will 
terminate. Thus the sequence must return to the starting vertex.  We thus obtain 
a sequence of adjacent vertices and edges starting and ending at v without 
repeating any edge. Thus we get a circuit C. 

If C contains every edge and vertex of G, then C is an Eular circuit. 

If C does not contain every edge and vertex of G, remove all edges of C from 
G and also any vertices that become isolated when the edges of C are removed. 
Let the resulting subgraph be G′. We note that when we removed edges of C, 
an even number of edges from each vertex have been removed. Thus degree of 
each remaining vertex remains even. 
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Further since G is connected, there must be at least one vertex common to both 
C and G′. Let it be w(in fact there are two such vertices). Pick any sequence of 
adjacent vertices and edges of G′ starting and ending at w without repeating an 
edge. Let the resulting circuit be C′. 

Join C and C′ together to create a new circuit C″. Now, we observe that if we 
start from v and follow C all the way to reach w and then follow C′ all the way 
to reach back to w. Then continuing travelling along the untravelled edges of 
C, we reach v. 

If C″ contains every edge an vertex of C, then C″ is an Euler circuit. If not, 
then we again repeat our process. Since the graph is finite, the process must 
terminate. 
The process followed has been described in the graph G shown below:  
    G′ 
                 •                                                   C′         • 
                           u           •                 • 
       •                  •                       •               •            • 
                                                                                             • 
       •                  •           •                 •                 • 
                                    C                                                  • 
                                                       G 
                                                                       • 
                                        • v              • 
                           •                       •               •            • 
                                                                                            
                                        •                 •                 
                                                     C″ 
 Theorems 1 and 3 taken together imply : 
Theorem 4. (Euler Theorem) A finite connected graph G has an Euler circuit 
if and only if every vertex of G has even degree.  
Thus finite connected graph is Eulerian if and only if each vertex has even 

degree. 

Theorem 5. If a graph G has more than two vertices of odd degree, then there 
can be no Euler path in G.  
Proof : Let v1, v2 and v3 be vertices of odd degree. Since each of these vertices 
had odd degree, any possible Euler path must leave (arrive at) each of v1, v2, v3 
with no way to return (or leave). One vertex of these three vertices may be the 
beginning of Euler path and another the end but this leaves the third vertex at 
one end of an untravelled edge. Thus there is no Euler path. 
                   •v1                                •v1 

                   •v2                                                •v2 

 
                          •v3        or          •                 •v3 

                               

v 
w 

w 
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 (Graphs having more than two vertices of odd degree). 

Theorem 6. If G is a connected graph and has exactly two vertices of odd 
degree, then there is an Euler path in G. Further, any Euler path in G must 
begin at one vertex of odd degree and end at the other. 

Proof: Let u and v be two vertices of odd degree in the given connected graph 
G. 

                                     u                                       u 

                                                                       e 
                                     v                                      v 
                                     
 
 
 
 
 
 
                                   G                                     G′ 
If we add the edge e to G, we get a connected graph G′ all of whose vertices 
have even degree. Hence there will be an Euler circuit in G′. If we omit e from 
Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u). 

Examples.     Has the graph given below an Eulerian path? 
 
       A•                   •                     •C 
                                                                 • D 
 
 
Solution: In the given graph, 

    deg(A) = 1 

    deg(B) = 2 

    deg(C) = 2 

    deg(D) = 3 

Thus the given connected graph has exactly two vertices of odd degree. Hence, 
it has an Eulerian path. 
If it starts from A(vertex of odd degree), then it ends at D(vertex of odd 
degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of 
odd degree). 
But on the other hand if we have the graph as given below :   
                                                                
       A•                     •                   •C    , 
                                             • D 
                                                e3 

B 

B e4 e1 

e2 
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then deg(A) = 1, deg(B) = 3 deg(C) = 1, degree of D = 3 and so we have four 
vertices of odd degree. Hence it does not have Euler path.      
 
Example:     Does the graph given below possess an Euler circuit? 
 
                                                   e7     

         v4  •                            •v3 

          e4                                      
                e5 

       v1 •                           • v2 

 

Solution: The given graph is connected. Further 

    deg(v1) = 3 

    deg(v2) = 4 

    deg(v3) = 3 

    deg(v4) = 4 

Since this connected graph has vertices with odd degree, it cannot have Euler 
circuit. But this graph has Euler path, since it has exactly two vertices of odd 
degree. For example, v3 e2 v2 e7 v4 e6 v2 e1 v1 e4 v4 e3 v3 e5 v1 

 
Example:      Consider the graph 
 
               • v2                             •v3 

 
 
 
               • v1                         

                                                             •v4 

Here, deg(v1) = 4, deg(v2) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each 
vertex is even. But the graph is not Eulerian since it is not connected. 

Example 4:. The bridges of Konigsberg: The graph Theory began in 1736 
when Leonhard Euler solved the problem of seven bridges on Pregel river in 
the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two 
islands and seven bridges are shown below: 

 

 

 

 

 

e3 

e6 
e2 

e1 



ADVANCED DISCRETE MATHEMATICS 140

                    
                     --        --    
 
    Bridge      -           -      Bridge         
                     -          -                             Bridge 
              D    ----------    C     
                     -          -  
  Bridge                                Bridge  
 
 
Bridge          -           -            Bridge 
                     --        --       
                     ---------- 
                     ----------                            River      
 
The people of Konigsgerg posed the following question to famous Swiss 
Mathematician Leonhard Euler: 
“Beginning anywhere and ending any where, can a person walk through the 
town of Konigsberg crossing all the seven bridges exactly once? 

Euler showed that such a walk is impossible. He replaced the islands A, B and 
the two sides (banks) C and D of the river by vertices and the bridges as edges 
of a graph. We note then that 
 
   deg(A) = 3 

   deg(B) = 5 

   deg(C) = 3 

   deg(D) = 3 

Thus the graph of the problem is 
 
                                                • A(island) 
 
 
(side of the river) D•                              •C(side of the river) 
                                                • 
                                               B(Island) 
 (Euler’s graphical representation of seven bridge problem) 

The problem then reduces to  

 “Is there any Euler’s path in the above diagram?”. 

To find the answer, we note that there are more than two vertices having odd 
degree. Hence there exist no Euler path for this graph. 

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if 
deleting that edge creates a disconnected graph. 

 
Island 

  A 

 
Island 
    B 

------------------------------------
------------------------------------
------------------------------------

------------
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For example, consider the graph shown below: 
 
                                             
                    v1 •                          •v2 

                                        e3                e2   

                                                    •v3 
                       v4  •        e4       
                                               •v5 

In this graph, if we remove the edge e3, then the graph breaks into two 
Connected Component given below: 
 
                  
                    v1 •                          •v2 

                                                           e2   

                                                    •v3 

 
                       v4  •        e4       
                                               •v5 

Hence the edge e3 is a bridge in the given graph. 

METHOD FOR FINDING EULER CIRCUIT 
We know that if every vertex of a non empty connected graph has even degree, 
then the graph has an Euler circuit. We shall make use of this result to find an 
Euler path in a given graph. 

 Consider the graph 
                        •v2                                          •v6 

                  e1       e2                                  e9          e8   

                                       
            v1 •             •                               •             •v7 

                     e4         e5                                          e10       e11     

 

                       •v4                                      v8 •   
                                          
                                              
                                               e12 
 
We note that 

 deg(v2) = deg(v4) = deg(v6) = deg(v8) = 2 

 deg(v1) = deg(v3) = deg(v5) = deg(v7) = 4 

Hence all vertices have even degree. Also the given graph is connected. Hence 
the given has an Euler  circuit. We start from the vertex v1 and let  C be  
 
                                  C : v1 v2 v3 v1 

e1 

e5 

e1 

e5 

v5 e6 v3 e3 
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Then C is not an Euler circuit for the given graph but C intersect the rest of the 
graph at v1 and v3.  Let C′ be  
                                  C′ : v1v4 v3 v5 v7 v6 v5 v8 v7 v1 

 
(In case we start from v3, then C′ will be v3 v4 v1 v7 v6 v5 v7 v8 v5) 
Path  C′ into C and obtain 

    C″ : v1v2 v3 v1 v4 v3 v5 v7 v6 v5 v8 v7 v1 
Or we can write 

    C″ : e1e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 

(If we had started from v2, then  C″ : v1v2 v3 v4 v1 v7 v6 v5 v7 v8 v5 v3 v1   or 

e1e2 e5 e4 e12 e8 e9 e7 e11 e10 e6 e3 ) 

In C″ all edges are covered exactly once. Also every vertex has been covered at 
least once. Hence C″ is a Euler circuit. 
 
3.6. Hamiltonian Circuits 
Definition:  A Hamiltonian Path for a graph G is a sequence of adjacent 
vertices and distinct edges in which every vertex of G appears exactly once. 

Definition:  A Hamiltonian Circuit for a graph G is a sequence of adjacent 
vertices and distinct edges in which every vertex of G appears exactly once, 
except for the first and the last which are the same. 

 Definition: A graph is called Hamiltonian if it admits a Hamiltonian circuit. 

Example 1 : A complete graph Kn has a Hamiltonian Circuit.   In particular the 

graphs  

 
                    •                               •                    • 
      •                         and  
       K3         • 
                                                     •                    • 
                                                              K4 

are Hamiltonian. 

Example 2:       The graph shown below does not have a Hamiltonian circuit. 
 
                     v1 •                                •v4 

                                         v3 

                                          • 
 
                     v2 •                                •v5 
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Example 3 : The graph 
                               • 
 
                               • 
 
                     •                  • 
 
                               • 
does not have a Hamiltonian circuit. 

Remark: It is clear that only connected graphs can have Hamiltonian 
circuit. However, there is no simple criterion to tell us whether or not a given 
graph has Hamiltonian circuit.   The following results give us some sufficient 
conditions for the existence of Hamiltonian Circuit/path. 

Theorem: Let G be a linear graph of n vertices. If the sum of the degrees for 
each pair of vertices in G is greater than or equal to n −1, then there exists a 
Hamiltonian path in G. 

Theorem: Let G be a connected graph with n vertices. If n ≥ 3 and deg(v) ≥ n 
for each vertex v in G, then G had a Hamiltonian Circuit. 

Theorem: Let G be a connected graph with n vertices and let u and v be two 
vertices of G that are not adjacent. If  
 
                                      deg(u) + deg(v) ≥ n,   

then G has a Hamiltonian circuit. 

Corollary : Let G be a connected graph with n vertices. If each vertex has 
degree greater than or equal to n/2, then G has a Hamiltonian circuit. 

Proof: It is given that degree of each vertex is greater than or equal to n/2. 
Hence the sum of the degree of any two vertices is greater than or equal to n/2 
+ n/2 = n. So, by the above theorem, the graph G has a Hamiltonian circuit. 

Theorem: Let n be the number of vertices and m be the number of edges in a 

connected graph G. If 

                                       m ≥ 
2
1

(n2 – 3n + 6) , 

then G has a Hamiltonian circuit. 

 The following example shows that the above conditions are not 
necessary for the existence of Hamiltonian path. 

Example :       Let G be the connected graph shown in the figure below: 
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                          v8                v7                        v6 

                          •                                       
 
  
    v1 •                                                                      •v5 

        
 
                         •  
                       v2                   v3              v4       
We note that 

   No. of Vertices in G (n) = 8 

   No. of Edges in G (m) = 8 

   Degree of each vertex = 2 

Thus, if u and v are non-adjacent vertices, then 

  deg u + deg v = 2 + 2  = 4 ≥/  8 

Also 

  
2
1

(n2 – 3n + 6) = 1/2 (64 – 24 + 6) = 23 

Clearly 

   m ≥/
2
1

 (n2 – 3n + 6) 

Therefore the above two theorems fail. But the given graph has Hamiltonian 

circuit. For example,  

   v1 v2 v3 v4, v5, v6, v7, v8, v1 

is an Hamiltonian circuit for the graph. 

Proposition: Let G be a graph with at least two vertices. If G has a 
Hamiltonian circuit, then G has a subgraph H with the following properties: 
 
(1) H contains every vertex of G 

(2) H is connected 

(3) H has the same number of edges as vertices 

(4) Every vertex of H has degree 2. 

 The contrapositive of this proposition is 

“If a graph G with at least two vertices does not have a subgraph H satisfying 
(1) – (4), then G does not have a Hamiltonian circuit”. 

• • 

• • 
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Also we know that contrapositive of a statement is logically equivalent to the 
statement. Therefore the above result can be used to show non-existence of a 
Hamiltonian Circuit. 

Example 1:  Does the graph G given below have Hamiltonian circuit? 
 
                     a  •                                •b 

 
                                          •e 

 
                     c  •                                •d 
 
Solution: The given graph has 

    No. of vertices (n) = 5 

    No. of edges (m) = 8 

    deg(a) = deg(b) = deg(c) = deg(d) = 3 

    deg(e) = 4 

We observe that 

(i)   degree of each vertex is greater than n/2 

(ii)   The sum of any non-adjacent pair of vertices is greater than n 

(iii)   
2
1

(n2 – 3n + 6) = 
2
1

 (25 – 15 + 6) = 8 

Thus the condition 

                       m ≥ 
2
1

 (n2 - 3n + 6) 

is satisfied. 
(iv) The sum of degrees of each pair of vertices in the given graph is greater 
than n−1 = 5−1 = 4. 
Thus four sufficiency condition are satisfied (whereas one condition out of 
these four conditions is sufficient for the existence of Hamiltonian path/graph). 
Hence the graph has a Hamiltonian Circuit. 
For example, the following circuits in G are Hamiltonian: 
 
            a •                                •b                   a •                                •b 

 
                               •e                     and                                 •e  
 
            c •                                •d                   c •                                •d 
 

Example 2 : Does the graph shown below has Hamiltonian circuit?  
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   a  •                                •b 

 
                                  • e 

 
               c•                                •d 
 
Solution: Here  

 No. of vertices (n) = 5 

 No. of edge (m) = 4 

 deg(a) = deg(b) = deg(c) = deg(d) = 1 

 deg(e) = 4 

We note that 

(i)  deg(a) = deg(b) = deg(c) = deg(d) ≥/
2
5

 

(ii)  deg(a) + deg(b) = 2 ≥/  5, that is sum of any non-adjacent pair of 
vertices is not greater than 5 

(iii) 
2
1

 (n2 – 3n + 6) = 
2
1

 (25 – 15 + 6) = 8. Therefore the condition   

     m ≥ 1/2 (n2 – 3n + 6) 
is not satisfied. 

(iv) deg(a) + deg(b) = 2 ≥/  4, i.e., the condition that sum of degrees of each pair 
of vertices in the graph is not greater than or equal to n−1. 

 Hence no sufficiency condition is satisfied. So we try the proposition 

stated above. 

 Suppose that G has a Hamiltonian circuit, then G should a subgraph 
which contains every vertex of G, and number of vertices and no. of edges in H 
should be same. Thus H should have 5 vertices a, b, c, d, e and 5 edges. Since 
G has only 4 edges,  H cannot have more than 4 edges. Hence no such 
subgraph is possible. Hence, the given graph does not have Hamiltonian 
circuit. 
 
3.7. Weighted Graphs 

Definition:  A weighted graph  is a graph for which each edge or each vertex 
or both is (are) labeled with a numerical value, called its weight. 

 For example, if vertices in a graph denote recreational sites of a town 
and weights of edges denote the distances in kilometers between the sites, then 
the graph shown below is a weighted graph. 
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                  D  •                     • C 
                   7                              5  
                      11                    14   
            A •                                   •B 
 
Definition: The weight of an edge (vi, vj) is called distance between the 

vertices vi and vj. 

Definition:  A vertex u is a nearest neighbour of vertex v in a graph if u and v 
are adjacent and no other vertex is joined to v by an edge of lesser weight than 
(u, v). 

For example, in the above example, B is the nearest neighbour of C, whereas A 
and C are both nearest neighbour of the vertex D. Thus nearest neighbour of 
a set of vertices is not unique. 

Definition:  A vertex u is a nearest neighbour of a set of vertices {v1, v2, 
….,vn} in a graph if u is adjacent to some member vi of the set and no other 
vertex adjacent to member of the set is joined by an edge of lesser weight then 
(u, vi). 
 In the above example if we have set of vertices as {B, D}, C is the 
neatest neighbour of               {B, D} because the edge (C, B) has weight 5 and 
no other vertex adjacent to {B, D} is linked by an edge of lesser weight than 
(C, B). 

Definition: The length of a path in a graph is the sum of lengths of edges in 

the path. 

Definition: Let G (V, E) be a graph and let lij denote the length of edge (vi, vj) 
in G. Then a shortest path from vi to vk is a path such that the sum of lengths 
of its edges  
 
    l12 + l23 +………+ lk−1,k  

is minimum, that is, total edge weight is minimum. 
 

TRAVELLING SALESPERSON PROBLEM 

This problem requires the determination of a shortest Hamiltonian circuit  in 
a given graph of cities and lines of transportation to minimize the total fare for 
a travelling person who wants to made a tour of n cities visiting each city 
exactly once before returning home. 
The weighted graph model for this problem consists of vertices representing 
cities and edges with weight as distances (fares) between the cities. The 
salesman starts and end his journey at the same city and visits each of n −1 
cities once and only once. We want to find minimum total distance. 
 

9 

7 
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We discuss the case of five cities and so consider the following weighted 
graph. 
                                a 
                              
                14                        12 
 7        b                                c         10 
                  5          6       
           13                          8   
 
               d                      e 
We shall use  Nearest Neighbour algorithm to solve the problem: 

 Algorithm: Nearest Neighbour (closest insertion) 

Input: a weighted complete graph G 
Output: a sequence of labeled vertices that forms a Hamiltonian cycle. 

   Start at any vertex v. 

   Initialize l(v) = 0 

   Initialize i = 0 

 While there are unlabeled vertices 

   i : = i + 1 

 Traverse the cheapest edge that join v to an unlabeled vertex, say w 

  Set l(w) = i 

           v : = w. 

 For the present example,  
(i) Let us choose a as the starting vertex. Then d is the nearest vertex and then 
(a, d) is the corresponding edge. Thus we have the figure 
           
                             •a 
                    
      7   b •                        •c         
                                     
                                        
               •                    • 
               d                   e 
(ii) From d, the nearest vertex is c, so we have a path shown below: 
   
                             •a 
                    
      7   b •                           • c         
                              6       
                                      
          d    •                     •  e 

9 

11 
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 (iii) From c, the nearest vertex is e. So we have the path as show below: 
  
                             •a 
                  
       7   b •                          •c         
                              6       
                                           8   
                •                     • 
               d                    e 

(iv) From e, the nearest vertex is b and so we have the path 
 
                             •a 
                  
     7   b •                           •c         
                 5           6       
                                         8   
               •                     • 
               d                    e 
 
(v)  Now, from b, the only vertex to be covered is a to form Hamiltonian 
circuit. Thus we have a Hamiltonian circuit as given below. The length of this 
Hamiltonian circuit is  
  
  7 + 6 + 8 + 5 + 14 = 40. 
 
                             •a 
                 14               
     7    b•                           •c         
                  5           6       
                                         8   
               •                     • 
               d                     e 
 
However, this is not Hamiltonian circuit of minimal length. 
The  total distance of a minimum Hamiltonian  circuit (shown below) is 37. 
 
                             a 
                             • 
                   
     7   b •             9            •c    10 
                 5           6       
              
               •                      • 
                                    
 

10 

d e 
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 Total length = 7 + 6 + 9 + 5 + 10 = 37 

Remark: Unless otherwise stated, try to start from a vertex of largest weight. 

Example 2: Find a Hamiltonian circuit of minimal weight for the graph shown 
below: 
 
                  b   •                     •c 
                                                   8  
                                              9   
            a  •                                   •d 
 
Solution: Starting from the point a and using nearest neighbour method, we 
have the required Hamiltonian circuit as 
 
                                     a b c d a 
with total length as 

                                                           10 + 10 + 8 + 12 = 40 

Definition: A k-factor of a graph is a spanning subgraph of the graph with 
the degree of its  
vertices being k.     
 
 Consider the graph 
  
                          •a 
 
            b •                   •c 
 
            d •                   •e 
                        •  
 
Then  
 •                   • 
 
 
               •                                              • 
 
                         •                        •  
 
shows a 1-factor of the given graph. 
Also then, 
             • 
 
                    
 
                    •                      • 

12 

f 

10 

15 10 
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                                           • 
 
                     • 
 
                                    • 
is a 2-factor of the given graph. 
 
3.8. Matrix Representation of Graphs 
 
A graph can be represented inside a computer by using the adjacency matrix or 
the incidence matrix of the graph. 

Definition: Let G be a graph with n ordered vertices v1, v2,…….,vn. Then the 
adjacency matrix of G is the n × n matrix A(G) = (aij) over the set of non-
negative integers such that 
 aij = the number of edges connecting vi and vj for all i, j = 1, 2,…,n. 

 We note that if G has no loop, then there is no edge joining vi to vi ,               
i = 1, 2,…,n. Therefore, in this case, all the entries on the main diagonal will be 
0. 

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1. 
It may be noted that adjacent matrix of a graph is symmetric. 

Conversely, given a n × n symmetric matrix A(G) = (aij) over the set of non-
negative integers, we can associate with it a graph G, whose adjacency matrix 
is A(G), by letting G have n vertices and joining vi to vertex  vj by aij edges. 

Example 1: Find the adjacency matrix of the graph shown below: 

                          v1                        v2    
                         •                          • 
 
 
              v3 •                   • v4              • v5 

 

Solution: The adjacency matrix A(G) = (aij) is the matrix such that 

 aiJ = No. of edges connecting vi and vj. 

So we have for the given graph 

  

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

00011
00011
00011
11101
11110

)G(A  
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Example 2 : Find the graph that have the following adjacency matrix 

 
Solution: We note that there is a loop at v1 and a loop at v3. There are parallel 
edges between v1, v2; v1, v4; v2, v1; v2 , v3, v3, v2 ; v4, v1. Thus the graph is  
 
 
             
                v1   •                               •v2 
 
 
 
                 v3  •                               •  v4 

 
 
 
The following theorem is stated without proof. 

3.9. Planar Graphs 
Definition: A graph which can be drawn in the plane so that its edges do not 
cross is said to be planar. 
 
For example, the graph shown below is planar : 
 
                              •A 
              
 
               B •                     •C 
 
 
              D  •                     •E 
 

 Also the complete graph K4 shown below is planar.   
  
               A •                            •B 
 
 
              C  •                            •D 

In fact, it can be redrawn as  

�
�
�
�

�

�

�
�
�
�

�

�

0012
0121
1202
2121
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 A •                            •B 
 
                          ,   
           C  •                            •D    
 
 
so that no edges cross. 

 But the complete map K5 is not planar because in this case, the edges 
cross each others. 
 
      A •                                    •B 
 
                                        •  E 
 
                 D •                                    •C 
                      K5 

 
Definition: An area of the plane that is bounded by edges of the planar graph is 
not further subdivided into subareas is called a region or face of a planar 
graph.  
A face is characterised by the cycle that forms its boundary. 

Definition: A region is said to be finite if its area is finite and infinite if its 
area is infinite. Clearly a planar graph has exactly one infinite region. 
 
For example, consider the graph : 
 
                     1 •                   •2 
 
           5 •                   •6 
 
                     4 •                   •3 
    G2 

 
 In graph G2, there are four region A, B, C, D 
 
                               2                                                    1 
                                          1                    2                                       
 
                                                        6               5                            6  
                                            finite region          
      4                       3                                                     
              finite region                                                        4 
                                                      finite region 
 

 A 

 B 
 C 
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and                                                                             
 
  1 •                   •2 
 
           5 •                                 D     
 
                     4 •                   •3           
   
                              infinite region  
 
Definition: Let f be a face (region) in a planar graph. The length of the cycle 
(or closed walk) which borders f is called the degree of the region f. It is 
denoted by deg(f). 

In a planar graph we note that each edge either borders two regions or is 
contained in a region and will occur twice in any walk along the border of 
the region.  Thus we have 

Theorem: The sum of the degrees of the regions of a map is equal to twice the 
number of edges. 
For example, in the graph G2, discussed above, we have 
 
   deg(A) = 4, deg(B) = 3, deg(C) = 4, deg (d) = 5  

The sum of degrees of all regions = 4 + 3 + 4 + 5 = 16 

   No. of edges in G2 = 8 

Hence 

  “sum of degrees of region is twice the number of edges”. 

Theorem (Euler’s formula for connected planar graphs):  If G is a 
connected planar graph with e edges, v vertices and r regions, then 
 
                                    v – e + r = 2 
 
Proof: We shall use induction on the number of edges. Suppose that e = 0. 
Then the graph G consists of a single vertex, say P. Thus G is as shown below: 
 
                                                        •P 
and we have 

                       e = 0, v = 1, r = 1  

Thus  
                                1 – 0 + 1 = 2 
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and the formula holds in this case. 

 

 

 Suppose that e = 1. Then the graph G is one of the two graphs shown 
below: 
 
                             • 
                                         ,                               • 
                        •                                           e = 1, v = 1, r = 2 
                   e = 1, v = 2, r = 1        
We see that, in either case, the formula holds. 
 Suppose that the formula holds for connected planar graph with n 
edges. We shall prove that this holds for graph with n + 1 edges. So, let G be 
the graph with n + 1 edges. Suppose first that G contains no cycles. Choose “a” 
vertex v1 and trace a path starting at v1. Ultimately, we will reach a vertex a 
with degree 1, that we cannot leave. 
 
                                                          •    x   • a 
                  •                                           • 
 
        •------•        •         •          • 
 
                            •         • 
           G 

We delete “a” and the edge x incident on “a” from the graph G. The resulting 
graph G′ has n edges and so by induction hypothesis, the formula holds for G′. 
Since G has one more edge than G′,one more vertex than G′ and the same 
number of faces as G′, it follows that the formula  v – e + r = 2     holds also for 
G. 
                                                        •          
                  •                                           • 
 
        •------•        •         •          • 
 
                            •         • 
                                  G′ 
 
 Now suppose that G contains a cycle. Let x be an edge in a cycle. 
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                                               x          
                                                                                                                                                                                                                                                                                                                         
                                                G 
                                  
Now the edge x is part of a boundary for two faces. We delete the edge x but 
no vertices to obtain the graph G′ 
 
.   
 
                                       
                                                                                                                                                                                 
 
                                            G′ 
 
Thus G′ has n edges and so by induction hypothesis the formula holds. Since G 
has one more face (region) than G′, one more edge than G′ and the same 
number of vertices as G′, it follows that the formula v – e + r = 2 also holds for 
G.   Hence, by Mathematical Induction, the theorem is true. 
 
Remark: Planarity of a graph is not affected if  

(i) an edge is divided into two edges by the insertion of new vertex of degree 2. 
               •                       • 
                                         
               •                       • 
 (ii) two edges that are incident with a vertex of degree 2 are combined as a 
single edge by the removal of that vertex.  
                         •                      • 
                                    •  
                                    •                      • 
 
Definition: Two graphs G1 and G2 are said to be isomorphic to within 
vertices of degree 2                 (or homeomorphic) if they are isomorphic or if 
they can be transformed into isomorphic graphs by repeated insertion and / or 
removal of vertices of degree 2. 
Definition : The repeated insertion/removal of vertices of degree 2 is called 

sequence of series reduction. 

 For example, the graphs 
 
               •                                          • 

• 



GRAPH THEORY 157

            •                                           • 
         •          •                               •          • 
                                       and         •                 
         •          •                               •          • 
are isomorphic to within vertices of degree 2.  

 If we define a relation R on the set of graphs by G1 R G2 if G1 and G2 
are homeomorphic, then R is an equivalence relation. Each equivalence class 
consists of a set of mutually homeomorphic graphs. 
 
Example: Show that the graph K33, given below, is not planar. 
 
  
                •                       •                       • 
 
 
 
                •                       •                       • 
 

          K3,3 

 
 A problem based on this example can be stated as “Three cities c1, c2 
and c3 are to be directly connected by express ways to each of three cities c4, c5 
and c6. Can this road system be designed so that the express ways do not cross? 
This example shows that it cannot be done. 

Solution:  Suppose that K3,3 is planar. Since every cycle has at least four 
edges, each face (region) is bounded by at least four edges. Thus the number of 
edges that bound regions is at least 4r. Also, in a planar graph each edge 
belongs to atmost two bounding cycles. Therefore, 
 
 2e ≥ 4r (sums of degrees of region is equal to twice the number of 

edges) 

But, by Euler’s formula for planar graph, 

                             r = e – v + 2 
Hence 
                                                  2e ≥ 4(e – v + 2) (1) 
In case of K3,3 we have 
                               e = 9, v = 6 
and so (1) yields 
                         18 ≥ 4 (9 – 6 + 2) = 20  , 

which is a contradiction. Therefore K3,3 is not planar. 

Remark: By a argument similar to the above example, we can show that the 
graph K5 (given below)  is not planar. 

 c1                     c2                      c3                      

c4                     c5                      c6                      
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                        •                • 
 
 
                             •                           • 
                                           • 
   (non-planar graph K5) 

 We observe that if a graph contains K3,3 or K5 as a subgraph, then it 

cannot be planar. 

 The following theorem, which we state without proof, gives necessary 
and sufficient condition for a graph to be planar. 

Kuratowski’s Theorem: A graph G is planar if and only if G does not contain 
a subgraph homeomorphic to K3,3 or K5. 
 The complete graph K5 and the complete bipartite graph K3,3 are called 
the Kuratowski graphs. 

Example: Using Kuratowski’s Theorem, show that the graph G, shown below, 
is not planar 
 
                                       a  
 
                           f                   b 
                                        •g 
                                        h• 
                                e 
                                                            c    
                                            d 
                                                G 
Solution: Let us try to find K3,3 in the graph G. We know that in K3,3, each 
vertex has degree 3. But we note that in G, the degree of a, b, f and e each is 4. 
So we eliminate the edges (a,b) and (f, e) so that all vertices have degree 3. If 
we eliminate one more edge, we will obtain two vertices of degree 2 and we 
can then carry out series reduction. The resulting graph will have nine edges 
Also we know that K3,3 has nine edges. So this approach seems promising. 
Using trial and error, we find that the edge (g, h) should be removed. Then g 
and h have degree 2. 
 
 
 
 
 
 
 
 
                         • a                                                                                                   

• 

• • 

• 
• 

• 
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            f •                                     • b                                                                                     
                                      • g                 eliminating the edge (g, h)                           
 
                                               •h                                                                                         
                      e •                                                                                                   
                                                                      •c                                                                              
                                                  • d                               
 (Graph obtained by deleting edges (a, b) and (f, e)). 
 
                                            a 
                                           
 
                                    f                             b 
                                                   g 
                
                                                       h 
                                           e                  
                                                                       c 
                                                   d 
             
      (Graph obtained by eliminating the edge (g,h). 

Performing series reduction now, we obtain an isomorphic copy of K3,3. 
 
                         • a                                                                                                   
 
            f •                                     • b                                                                                      
                                                                              
 
                                                                                                                                          
                      e • 
                                                                      •c                                                                              
                                                   • d 
                         K3,3(obtained by series reduction) 

Hence, by Kurtowski’s Theorem, the given graph G is not planar. 

3.10. Colouring of Graph 
Definition: Let G be a graph. The assignment of colours to the vertices of G, 
one colour to each vertex, so that the adjacent vertices are assigned different 
colours is called vertex colouring  or  colouring of the graph G. 
Definition:  A graph G is n-colourable if there exists a colouring of G which 

uses n colours.  
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Definition:  The minimum number of colours required to paint (colour) a 
graph G is called the  chromatic number of G and is denoted by χ (G). 

Example: Find the chromatic number for the graph shown in the figure below: 
 
                               •  
 
               a •                        •c 
                              d 
                              • 
                              • e     
        G 
  
Solution: The triangle a b c needs three colours. Suppose that we assign 
colours c1, c2, c3 to a, b and c respectively. Since d is adjacent to a and c, d will 
have different colour than c1 and c3. So we paint d by c2. Then e must be 
painted with a colour different from those of a, d and c, that is, we cannot 
colour e with c1, c2 or c3. Hence, we have to give e a fourth colour c4. Hence 
 
                                     χ (G) = 4. 

 
3.11  Directed Graphs 

Definition: A directed graph or digraph consists of two finite sets: 

(i) A set V of vertices (or nodes or points) 

(ii) A set E of directed edges (or arcs), where each edge is associated with an 
ordered pair (v, w) of vertices called its endpoints. If edge e is associated with 
the ordered pair (v, w), then e is said to be directed edge from v to w. 
The directed edges are indicated by arrows. 

We say that edge e = (v, w) is incident from v and is incident into w. 
The vertex v is called initial vertex and the vertex w is called the terminal 
vertex of the  
directed edge (v, w). 

Definition: Let G be a directed graph. The outdegree of a vertex v of G  is the 
number of edges beginning at v. It is denoted by outdeg(v). 

Definition:  Let G be a directed graph. The indegree of a vertex v of G  is the 
number of edges ending at v. It is denoted by indey(v). 

Example: Consider the directed graph  shown below: 

 

 

 

 

b 
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                      • v1 

                 e1        e3            
             v2 •                     • v3 

                             e4 

                                            
             v4  •                     •  v5  
                                             e6  
 
Here edge e1 is (v2, v1) whereas e6 is denoted by (v5, v5) and is called a loop. 
The indegree of v2 is 1, outdegree of v2 is 3. 

Definition: A vertex with 0 indegree is called a source, whereas a vertex with 
0 outdegree is called a sink. 
For instance, in the above example, v1 is a sink. 

Definition: If the edges and/or vertices of a directed graph G are labeled with 
some type of data, then G is called a Labeled Directed Graph. 

Definition: Let G be a directed graph with ordered vertices v1, v2, ….., vn. 
The adjacency matrix of G is the matrix A = (aij) over the set of non-
negative integers such that 
 aij = the number of arrows from vi to vj,   i, j = 1, 2, ….,n. 

Example 1: Find the adjacency matrices for the graphs given below: 
 
 
(i)              •  b                              (ii)  
      a  •                             •  c                                  •  v1 

                 
 
                                                                         
                        • d 
 
 
Solution: (i) The edges in the directed graph are  (a, a), (b, b), (c, c), (d, d), (c, 
a), (c, b) and (d, b). Therefore the adjacency matrix A = (aij) is 
 

 

�
�
�
�

�

�

�
�
�
�

�

�

1010
0111
0010
0001

 

 
(ii) The edges in the graph in (ii) are (v2, v3), (v1, v1), (v1, v3), (v3, v1), (v3, v4), 
(v4, v3). Hence the adjacency matrix is  
 

e2 e5 

v4 
v3 

v2 
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�
�
�
�

�

�

�
�
�
�

�

�

0100
1001
0100
0101

 

Example 2:  Find the directed graph represented by the adjacency matrix: 
 

 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

00000
00011
11000

00100
00010

 

 
Solution:  we observe that a12 = 1, a23 = 1, a34 = 1, a35 =1, a41 =1, a42 =1. Hence 
the digraph is as shown below: 
                v1                       v2                              v3 

                •                        •                       •  
 
 
          v4  •                                                  • v5 

 
Definition: In a directed graph, if there is no more than one directed edge in a 
particular direction between a pair of vertices, then it is called simple directed 
graph. 
 
 For example 
 
            •                    • 
 
 
                               •                    • 
 
is a simple directed graph. 
A directed graph which is not simple is called directed multigraph. 

3.12. Trees 

Definition: A graph is said to be a Tree if it is a connected acyclic graph. 

A trivial tree is a graph that consists of a single vertex.   An empty tree is a 
tree that does not have any vertices or edges. 

For example, the graphs shown below are all trees. 
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       •                         •          •          •                       •            • 

       (i)                                 (ii)                                     
    trivial tree                Tree of 3 vertices                         • 
                                                                                        

     • (iii) 
       Tree of 4 vertices 
 
                            
     •                                          • 
                  •                •                         
                      •       •        •                  •            •                  •         • 
          •      •       •       •        • 
     •        •                                            •                                            • 
 (iv)      (v) 

 Tree of 13 vertices    Tree of 8 vertices 

But the graphs shown below are not trees: 

 

 
                                           • 
             • 

 (i)                        •                    •               •        •        • 

Has a cycle    (ii)                              •     
and so is not a tree            has a cycle                             (iii)  
so is not a tree               and so is not a tree      Disconnected graph  
                              and so is not a tree 

Definition:  A collection of disjoint trees is called a forest. 

Thus a graph is a forest if and only if it is circuit free. 

Definition: A vertex of degree 1 in a tree is called a leaf or a terminal node or 
a terminal vertex. 

Definition: A vertex of degree greater than 1 in a tree is called a Branch node 
or Internal node or Internal vertex. 

Consider the tree shown below: 

                 b  •                                            • f 
                                      a                          e 
                     c •            •                     •         • g 
 
                 d •                                         h  •            • i 

• 
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In this tree the vertices b, c, d, f, g, and i are leaves whereas the vertices a, e, h 
are branch nodes. 

CHARACTERIZATION OF TREES 

 We have the following interesting characterization of trees: 

Lemma 1: A tree that has more than one vertex has at least one vertex of 
degree 1. 

Proof: Let T be a particular but arbitrary chosen tree having more than one 
vertex. 

                 •                                                              •  
       •                         
                 •            •                                • 
 
                 •                    T                                         • v″            
 
1. Choose a vertex v of T. Since T is connected and has at least two vertices, v 
is not isolated and there is an edge e incident on v. 

2. If deg (v) > 1, there is an edge e′ ≠ e because there are, in such a case, at 
least two edges incident on v. Let v′ be the vertex at the other end of e′. This is 
possible because e′ is not a loop by the definition of a tree. 

3. If deg(v′) > 1, then there are at least two edges incident on v′. Let e″ be the 
other edge different from  e′ and v″ be the vertex at other end of e″. This is 
again possible because T is acyclic. 

4. If deg(v″) > 1, repeat the above process. Since the number of vertices of a 
tree is finite and T is circuit free, the process must terminate and we shall 
arrive at a vertex of degree 1. 

Remark: In the proof of the above lemma, after finding a vertex of degree 1, if 
we return to v and move along a path outward from v starting with e, we shall 
reach to a vertex of degree 1 again. Thus it follows that  “Any tree that has 
more than one vertex has at least two vertices of degree 1”. 
 
Lemma 2: There is a unique path between every two vertices in a tree. 

Proof: Suppose on the contrary that there are more than one path between any 
two vertices in a given tree T. Then T has a cycle which contradicts the 
definition of a tree because T is acyclic. Hence the lemma is proved. 

Lemma 3: The number of vertices is one more than the number of edges in a 

tree. 

v      e′ e v′ 
e′′ 
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Or 

For any positive integer n, a tree with n vertices has n-1 edges. 

Proof: We shall prove the lemma by mathematical induction. 

Let T be a tree with one vertex. Then T has no edges, that is, T has 0 edge. But 
0 = 1 – 1. Hence the lemma is true for n = 1. 
Suppose that the lemma is true for k > 1. We shall show that it is then true for k 
+ 1 also. Since the lemma is true for k, the tree has k vertices and k-1 edges. 
Let T be a tree with k +1 vertices. Since k is +ve, k+1 ≥ 2 and so T has more 
than one vertex. Hence, by Lemma 1, T has a vertex v of degree 1. Also there 
is another vertex w and so there is an edge e connecting v and w. Define a 
subgraph T′ of T so that 

  V(T′) = V(T) – {v} 

  E(T′) = E(T) – {e} 

Then number of vertices in T′ = (k+1) – 1 = k and since T is circuit free and T′ 
has been obtained on removing one edge and one vertex, it follows that T′ is 
acyclic. Also T′ is connected. Hence T′ is a tree having k vertices and therefore 
by induction hypothesis, the number of edges in T′ is k-1. But then 

No. of edges in T = number of edges in T′ + 1  

      = k – 1 + 1 = k 

Thus the Lemma is true for tree having k + 1 vertices. Hence the lemma is true 
by mathematical induction. 

Corollary 1. Let C(G) denote the number of components of a graph. Then a 
forest G on n vertices has n − C(G) edges. 

Proof: Apply Lemma 3 to each component of the forest G. 

Corollary 2. Any graph G on n vertices has at least n – C(G) edges.  

Proof: If G has cycle-edges, remove them one at a time until the resulting 
graph G* is acyclic. Then G* has n – C(G*) edges by corollary 1. Since we 
have removed only circuit, C(G*) = C(G). Thus G* has n – C(G) edges. Hence 
G has at least n – C(G) edges. 

Lemma 4: A graph in which there is a unique path between every pair of 
vertices is a tree   

(This lemma is converse of Lemma 2). 

Proof: Since there is a path between every pair of points, therefore the graph is 
connected. Since a path between every pair of points is unique, there does not 
exist any circuit because existence of circuit implies existence of distinct paths 
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between pair of vertices. Thus the graph is connected and acyclic and so is a 
tree. 

Lemma 5. (converse of Lemma 3) A connected graph G with e = v – 1 is a tree  

Proof:  The given graph is connected and  

   e = v – 1. 

To prove that G is a tree, it is sufficient to show that G is acyclic. Suppose on 
the contrary that G has a cycle. Let m be the number of vertices in this cycle. 
Also, we know that number of edges in a cycle is equal to number of 
vertices in that cycle. Therefore number of edges in the present case is m. 
Since the graph is connected, every vertex of the graph which is not in cycle 
must be connected to the vertices in the cycle. 
                                     • 
                                • 
                                    • 
                                • 
                         •            • 
                                • 
Now each edge of the graph that is not in the cycle can connect only one vertex 
to the vertices in the cycle. There are v-m vertices that are not in the cycle. So 
the graph must contain at least v − m edges that are not in the cycle. Thus we 
have 

e  ≥  v – m + m = v, 

which is a contradiction to our hypothesis. Hence there is no cycle and so the 
graph in a tree.  

Second proof of Lemma 5: We shall show that a connected graph with v 
vertices and v – 1 edges is a tree. It is sufficient to show that G is acyclic. 
Suppose on the contrary that G is not circuit free and has a non trivial circuit C. 
If we remove one edge of C from the graph G, we obtain a graph G′ which is 
connected. 

                                     •                                        •   
                                •                                        • 
                                    •                                         • 
                                •                                       • 
                         •    C     •                          •            • 
                                •                                       • 

   G         G′ 

If G′ still has a nontrivial circuit, we repeat the above process and remove one 
edge of that circuit obtaining a new connected graph. Continuing this process, 
we obtain a connected graph G* which is circuit free. Hence G* is a tree. Since 
no vertex has been removed, the tree G* has v vertices. Therefore, by Lemma 
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3, G* has v-1 edges.  But at least one edge of G has been removed to form G*. 
This means that G* has not more than v – 1 – 1 = v – 2 edges. Thus we arrive 
at a contradiction. Hence our supposition  is wrong and G has no cycle. 
Therefore G is connected and cycle free and so is a tree. 

Lemma 6: A graph G with e = v – 1, that has no circuit is a tree. 

Proof: It is sufficient to show that G is connected. Suppose G is not connected 
and let G′, G″….. be connected component of G. Since each of G′, G″,…. is 
connected and has no cycle, they all are tree. Therefore, by Lemma 3, 

  e′ = v′ − 1 

  e″ = v″ − 1 
  ------------ 

  --------------        , 

where e′, e″, … are the number of edges and v′, v″,… are the number of 
vertices in G′, G″, …respectively. We have, on adding 

  e′ + e″ + ……= (v′ - 1) + (v″ -1) +…… 
Since 
  e = e′ + e″ +….. 
  v = v′ + v″ +…. , 
we have 
  e < v – 1 , 

which contradicts our hypotheses. Hence G is connected. So G is connected 
and acyclic and is therefore a tree. 

Example: Construct a graph that has 6 vertices and 5 edges but is not a tree. 

Solution: We have, No. of vertices = 6, No. of edges = 5 .   So the condition e 
= v – 1 is satisfied. Therefore, to construct graph with six vertices and 5 edges 
that is not a tree, we should keep in mind that the graph should not be 
connected.   The graph shown below has 6 vertices and 5 edges but is not 
connected. 
 
             •••• v1                                           •••• v4 

             v2 ••••            •••• v3                        v5 ••••              •••• v6        
. 
Definition: A directed graph is said to be a directed tree if it becomes a tree 
when the direction of edges are ignored. 
For example,  the graph shown below is a directed tree.  

•••• 
                •••• 
                            ••••                               ••••             •••• 
                 •••• 
                                                                         ••••          •••• 
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Definition: A directed tree is called a rooted tree if there is exactly one vertex 
whose incoming degree is 0 and the incoming degrees of all other vertices are 
1. 
The vertex with incoming degree 0 is called the root of the rooted tree. 
A tree T with root v0 will be denoted by (T, v0). 

Definition: In a rooted tree, a vertex, whose outgoing degree is 0 is called a 
leaf or terminal node, whereas a vertex whose outgoing degree is non - zero is 
called a branch node or an internal node. 
Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to 
be child (son or offspring) of u if there is an edge from u to v. In this case u is 
called parent (father) of  v. 

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if 
they are both children of same parent. 

Definition:  A vertex v is said to be a descendent of a vertex u if there is a 
unique directed path from u to v. 
In this case u is called the ancestor of v. 

Definition: The level (or path length) of a vertex u in a rooted tree is the 
number of edges along the unique path between u and the root. 

Definition: The height of a rooted tree is the maximum level to any vertex of 
the tree. 

As an example of these terms consider the rooted tree shown below: 
 
                             •••• root………………level 0 
 
                        
 
                 x ••••………….••••u…………………..level 1 
 
           
 
      y ••••…….…••••z..••••v………   ••••w…………………level 2 
 
 
 
                                     t••••……… …••••s………………level 3 
 
Here y is a child of x; x is the parent of y and z. Thus y and z are siblings. The 
descendents of u are v, w, t and s. Levels of vertices are shown in the figure. 
The height of this rooted tree is 3. 

Definition: Let u be a branch node in the tree T = (V, E). Then the subgraph T′ 
= (V′, E′) of T such that the vertices set V′ contains u and all of its descendents 
and E′ contains all the edges in all directed paths emerging from u is called a 
subtree with u as the root. 
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Definition: Let u be a branch node. By a subtree of u, we mean a subtree that 
has child of u as root. 
In the above example, we note that the figure shown below is a subtree of T,  
 
                                              

                           

                                      

 
where as the figure shown below is a subtree of the branch node u .   
 
                            •••• w 
 
 
 
                             •••• s               •••• t 
 
is a subtree of the branch node u. 

Example.  Let 

 V = {v1, v2, v3, v4, v5, v6, v7, v8} 

and let 

 E = ({v2, v1), (v2, v3), (v4, v2), (v4, v5), (v4, v6), (v6, v7), (v5, v8)}. 

Show that (V, E) is rooted tree. Identify the root of this tree. 

Solution: We note that  

Incoming degree of v1 = 1 

Incoming degree of v2 = 1   

Incoming degree of v3 = 1 

Incoming degree of v4 = 0 

Incoming degree of v5 = 1 

Incoming degree of v6 = 1 

Incoming degree of v7 = 1 

Incoming degree of v8 = 1 

Since incoming degree of the vertex v4 is 0, it follows that v4 is root. 

Further,  
Outgoing degree of v1 = 0 

Outgoing degree of v3 = 0 

Outgoing degree of v7 = 0 

u 

w 

v 

  s t 
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Outgoing degree of v8 = 0 

Therefore v1, v2, v7, v8 are leaves.   Also , 

Outgoing degree of v2 = 2 

Outgoing degree of v4 = 3 

Outgoing degree of v5 = 1 

Outgoing degree of v6 = 1 

Now the root v4 is connected to v2, v5 and v6. So, we have 

                                 v4 (root) 
 
 
 
         v5 •               • v2                  • v6 

 
Now v2 is connected to v1 and v3, v5 is connected to v8, v6 is connected to v7. 
Thus, we have 
                               
         
         
 
 
 
 
 
 
 
We thus have a connected acyclic graph and so (V, E) is a rooted tree with root 

v4. 

Definition: A rooted tree in which the edges incident from each branch node 
are labeled with integers 1, 2, 3,…. is called an ordered tree. 

Definition: Two ordered trees are said to be isomorphic if (i) there exists a 
one-to-one correspondence between their vertices and edges and that preserves 
the incident relation (ii) labels of the corresponding edges match. 
In view of this definition, the ordered trees 
 
                              
                              
 
 
 

are not isomorphic. 

v4 (root) 

v6 
v2    v5 

   v8    v1    v3    v7 

3 2 

     1  2 

 1 
 2 

     1 

     1 3 

2 
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Example: Show that the tree T1 and T2 shown in the diagram below are 
isomorphic. 
 
             • c                                   1 •             • 2 
 
          a •               •        • d                                           • 3 
                            b              
                                     • e                                    4 •            • 5 
           T1                                                                                T2 

 

Solution: We observe that in the tree T1, 

    deg(b) = 4 

In the tree T2,  

    deg(3) = 4 

Further deg(a) = deg(1) = 1, deg c = deg(2), deg(d) = deg(4) = deg(e) = 1 = 
deg(5). Thus we may define a function f from the vertices of T1 to the vertices 
of T2 by 
 
              f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 4, f(e) = 5 

This is a one-to-one and onto function. Also adjacency relation is preserved 
because if vi and vj are adjacent vertices in T1, then f(vi) and f(vj) are adjacent 
vertices in T2. Hence T1 is isomorphic to T2. 
 
Example: Show that the tree T1 and T2, shown in the figure below are 
isomorphic 
 
                                   z        s                       u            v          w   

                 
            x           y                              
                                 t                                                l                m 
 
                           T1                                                       T2 

Solution: Let f be a function defined by 

    f(z) = v 

    f(b) = w 

    f(x) = m 

    f(s) = u 

    f(t) = l . 
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Then f is an one to one onto mapping which preserves adjacency. HenceT1 and 

T2 are isomorphic. 

Definition: Let T1 and T2 be rooted tree with roots r1 and r2 respectively. Then 
T1 and T2 are isomorphic if there exists a one-to-one, onto function f from the 
vertex set of T1 to the vertex set of T2 such that 
(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) 
are adjacent in T2. 
(ii) f(r1) = r2 
The function is then called an isomorphism. 
Example: Show that the tree T1 and T2 are isomorphic. 
 
 
   
 
 
 
 
 
 
Solution: We observe that T1 and T2 are rooted tree.  
Define f: (Vertex set of T1) → (Vertex set of T2) by 
   f(v1) = w1 

   f(v2) = w3 

   f(v3) = w4 

   f(v4) = w2 

   f(v5) = w6 

   f(v6) = w7 

   f(v7) = w5 

   f(v8) = w8 

Then f is one-to- one and adjacency relation is preserved. Hence f is an 
isomorphism and so the rooted tree T1 and T2 are isomorphic 
Example: Show that the rooted tree shown below are not isomorphic:  
 
 
 
 
 
 
 
 

T1                                                                       T2 

w1  

w4  w3  w2  

w5  w6  w7 

w8 

v1  

v2  v3  v4  

v6  v7  
v8  

v5  

1  

4  3  2 

6 
7 

a  

b  c d 

g  h  f  e 

5  
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Solution: We observe that the degree of root in T1 is 3, whereas the degree of 
root in T2 is 4. Hence T1 is not isomorphic to T2. 
 
Definition: An ordered tree in which every branch node has atmost n 
offspring’s is called a n-ary tree (or n-tree). 

Definition: An n-ary tree is said to be fully n-ary tree (complete n-ary tree 
or regular n ary tree) if every branch node has exactly n offspring.   

Definition: An ordered tree in which every branch node has almost 2 
offsprings is called a binary tree (or 2 -  tree). 

Definition: A binary tree in which every branch node (internal vertex) has 
exactly two offspring’s is called a fully binary tree. 
 
For example, the tree given below is a binary tree,  
                                • 
 

            •              • 
 
                     •             • 
•               •                    • 
 
                       •         • 

 
whereas the tree shown below is a fully binary tree. 
 

• 
 

•                     • 
 
                                      •                  •      •             • 
 

     •                •                     •                   • 
 

Definition: Let T1 and T2 be binary trees roots r1 and r2 respectively. Then T1 

and T2 are isomorphic if there is a one to one, onto function f from the vertex 
set of T1 to the vertex set of T2 satisfying 
(i) Vertices vi and vj are adjacent in T1 if and only if the vertices f(vi) and f(vj) 
are adjacent in T2. 
(ii) f(r1) = r2 
(iii) v is a left child of w in T1 if and only if f(v) is a left child of f(w) in T2 
(iv) v is a right child of w in T1 if and only if f(v) is a right child of f(w) in T2. 
The function f is then called an isomorphism between binary tree T1 and T2 

 
Example: Show that the trees given below are isomorphic. 
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                  •v1                                 •w1 

 
         v2  •              and              • w2 

 
     v3 •        •v4                    •w3      •w4 

 

Solution: Define f by f(vi) = wi, i = 1, 2, 3, 4. Then f satisfies all the properties 
for isomorphism. Hence T1 and T2 are isomorphic. 
 
Example: Show that the trees given below are not isomorphic. 
 
                       v1  •                                              • w1 

 
                 v2  •                                                           • w2 

 
            v3 •                                                              • w3 

         
      v4 •         •v5                                                  w4•            • w5 

 

                           T1                                                                 T2   
 

Solution: Since the root v1 in T1 has a left child but the root w1 in T2 has no left 
child, the binary trees are not isomorphic. 
 
Definition: Let v be a branch node of a binary tree T. The left subtree of v is 
the binary tree whose root is the left child of v, whose vertices consists of the 
left child of v and all its descendents and whose edges consists of all those 
edges of T that connects the vertices of the left subtree together. 
The right subtree can be defined analogously. 

 For example, the left subtree and the right subtree of v in the tree 
(shown below) : 

 
•  
 

•                      • v 
     •          • 

• w                   • s 
      •                        • 
 •         •                       • 

        •         •        •      •                • 
are respectively 
 
 
 

root 
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                           w •                                                         • s 
                                    •                                                         • 
                               •         •               and                            •      • 
                           •        •        •                                                        • 
                  (left subtree of v)                                     (right subtree of v) 
 
3.13 Representation of Arithmetic/Algebraic Expressions  
by Binary Trees 
 
Binary trees are used in computer science to represent algebraic expressions 
involving parentheses. For example, the binary trees 
                        
 
 
                       
 
 
 
and 
       
        
 
                                                                                                            
 
 
 
 
 
represent the expressions 
 
  a + b ,    a/b  

and          

  b * (c * d)   
respectively. 
Thus, the central operator acts as root of the tree. 

Example 1: Draw a binary tree to represent 

(i)   (2 – (3 × x) + ((x – 3) – (2 + x) 

(ii)   a.b – (c/(d + e)). 

Solution: (i) In this expression + is the central operator. Therefore the root of 
tree is +. The binary tree is  
 

 a  b 

 + 

 a  b 

  / 

 * 

 b 

 c  d 

 * 
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(ii) Here the central operator is . Therefore it is the root of the tree. We have 
the following binary tree to represent this expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To derive this formula we first prove the following result : 

Theorem: If T is a full binary tree with i internal vertices, then T has i+1 
terminal vertices (leaves) and 2i+1 total vertices. 

Proof:  The vertices of T consists of the vertices that are children (of some 
parent) and the vertices that are not children (of any parent). There is nonchild 
– the root, Since there are i internal vertices, each having two children, there 
are 2i children. Thus the total number of vertices of T is 2i+1 and the number 
of terminal vertices is  

   (2i + 1) – i = i + 1 
This completes the proof. 

In the context of above example, we have  

   No. of leaves = p = i + 1 

 − 

  ⋅⋅⋅⋅   / 

 a  b  c  + 

 d  e 

 + 

 −  − 

 2  ×  −  + 

 3  x  x  3  2  x 
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Or 
 i = p – 1 

Remark: In case of full n-ary tree, if i denotes the number of branch nodes, 
then total number of vertices of T is   ni + 1 and the number of terminal 
vertices is  
  n i + 1 – i = i(n - 1) + 1 

If p is the number of terminal vertices, then 

  p = i(n – 1) + 1 
or  
  (n – 1) i = p – 1 

Example 1: Find the minimum number of extension cords, each having 4 
outlets, required to connect 22 bulbs to a single electric outlet. 

Solution: Clearly, the graph of the problem is a regular quaternary tree with 22 
leaves. 
Let i denote the internal vertices and p denote the number of leaves, then using 
 
  (n – 1) i = p – 1   ,  

we have 
  (4 – 1) i = 22 – 1 

  or         i =  
3
21

 = 7. 

Thus 7 extension cords as shown below are required.                                          
 
                                            •••• 
 
 
 
                        ••••                  ••••                    ••••                   •••• 
                                                                                                       •••• 
                                                                                                    ••••   14 
       ••••   ••••     ••••    ••••                 ••••   ••••   ••••        ••••    ••••  ••••    ••••                ••••   13  
       1     2    3   4                 5    6   7       8   9  10    11            12 
                                  ••••                                                   •••• 
 
 
                      ••••      ••••    ••••      ••••                                  ••••   ••••     ••••    •••• 
                     15     16   17    18                              19   20  21   22  
 

Example: Does there exist a full binary tree with 12 internal vertices and 15 
leaves? 
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Solution: We know that if i is the number of branch nodes in a full binary tree, 
then the number of leaves is i + 1. Therefore for a tree with 12 branch nodes, 
the number of leaves should be 13 and not 15. Hence such tree does not exist. 

Theorem: The number bn of different trees on n vertices is  

    bn = �
	



�
�



+ n
n

n
2

1
1

 

Definition: Let G be a graph, then a subgraph of G which is a tree is called 
tree of the graph. 

Definition: A spanning tree for a graph G is a subgraph of G that contains 
every vertex of G and is a tree. 

   Or 

“A spanning tree for a graph G is a spanning subgroup of G which is a 
tree”. 

Example: Determine a tree and a spanning tree for the connected graph given 
below: 
                                                             • 
 
                                           •                                • 
 
 
                                           •                                • 
     G 
Solution: The given graph G contains circuits and we know that removal of the 
circuits gives a tree. So, we note that the figure below is a tree. 
                                           •  
          •        • 
 
 
                                                                  • 
And the figure below is a spanning tree of the graph G. 
 
                                            • 
 
                                    •              • 
 
                                     •             • 
Example: Find all spanning trees for the graph G shown below: 
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                          v2  •               • v3          • v6 

 
 
                          v1  •          v4  •               • v5 

 
Solution: The given graph G has a circuit v1 v2 v3 v1. We know that removal of 
any edge of the circuit gives a tree. So the spanning trees of G are 

 
v2  •               • v3           • v6        v2  •              • v3          • v6        
 
    ,         ,   
v1  •          v4  •               • v5  ,        v1  •          v4•               • v5         
  T1            T2    
 

v2 •              • v3          • v6 

 

v1 •          v4 •              • v5 

                                                          T3 

Remark: We know that a tree with n vertices has exactly n – 1 edges. 
Therefore if G is a connected graph with n vertices and m edges, a spanning 
tree of G must have n – 1 edges. Hence the number of edges that must be 
removed before a spanning tree is obtained must be  

     m – (n – 1) = m – n + 1. 

For Illustration, in the above example, n = 6, m = 6, so, we had to remove one 
edge to obtain a spanning tree. 

Definition: A branch of a tree is an edge of the graph that is in the tree. 

Definition: A chord (or a link) of a tree is an edge of the graph that is not in 
the tree. 

It follows from the above remark that the number of chords in a tree is equal to 
m – n + 1, where n is the number of vertices and m is the number of edges in 
the graph related to the tree. 

Definition: The set of the chords of a tree is called the complement of the 
tree. 

Example: Consider the graph discussed in the above example. We note that 
the edge (v2, v3) is a branch of the tree T1, whereas (v1, v3) is a chord of the tree 
T1. 

Theorem: A graph G has a spanning tree if and only if G is connected. 

Proof: Suppose first that a graph G has a spanning tree T. If v and w are 
vertices of G, then they are also vertices in T and since T is a tree there is a 
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path from v to w in T. This path is also a path in G. Thus every two vertices are 
connected in G. Hence G is connected. 

Conversely, suppose that G is connected. If G is acyclic, then G is its own 
spanning tree and we are done. So suppose that G contains a cycle C1. If we 
remove an edge from the cycle, the subgraph of G so obtained is also 
connected. If it is acyclic, then it is a spanning tree and we are done. If not, it 
has at least one circuit, say C2 . Removing one edge from C2, we get a subgraph 
of G which is connected. Continuing in this way, we obtain a connected circuit 
free subgraph T of G. Since T contains all vertices of G, it is a spanning tree of 
G. 

Cayley’s Formula : The number of spanning trees of the complete 
graph Kn, n ≥ 2 is nn-2. 

(Proof of this formula is out of scope of this book) 

Example: Find all the spanning trees of K4. 

Solution: According to Cayley’s formula, K4 has 44-2 = 42 = 16 different 
spanning trees. 

                                    v4 •                       • v3 

 
 
                                     v1 •                       • v2 

         K4 

Here n = 4, so the number of edges in any tree should be n – 1 = 4 – 1 = 3. But 
here number of edges is equal to 6. So to get a tree, we have to remove three 
edges of K4. The 16 spanning trees so obtained are shown below: 
 
                      v4 •                       • v3       v4 •                     • v3       
 
 
                      v1 •                       • v2       v1 •                     • v2       
 
                       v4 •                      • v3      v4 •                      • v3 
 
 
                       v1 •                      • v2       v1•                      • v2 
 
 
                     v4 •                      • v            v4•                      • v3  
 
 
                     v1 •                       • v2      v1  •                      • v2  
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                        v4 •                     • v3      v4 •                    •v3  

 

 

                        v1 •                     • v2     v1 •                    • v2 

 

                   v4 •                      • v3       v4 •                      • v3  
 
 
                   v1 •                      • v2       v1 •                      • v2       
 
                    v4 •                      • v3      v4 •                      •v3  
 
 
                    v1 •                      • v2      v1 •                      • v2 
 
 
                   v4 •                       • v3       v4 •                     • v3       
 
 
                   v1 •                       • v2       v1•                      • v2       
 

 
                     v4 •                      • v3      v4 •                      • v3 

 

 

                    v1 •                      • v2      v1  •                     • v2 
 

3.14. Shortest Path Problem 
Let s and t be two vertices of a connected weighted graph G. Shortest Path 
problem is to find a path from s to t whose total edge weight is minimum. 
We now discuss Algorithm due to E. W. Dijkstra which efficiently solve the 
shortest path problem. The idea is to grow a Disjkstra tree, starting at the 
vertex s, by adding, at each iteration, a frontier edge, whose non-tree end point 
is as close as possible to s. The algorithm involves assigning labels to vertices. 
For each tree vertex x, let dist [x] denote the distance from vertex s to x and for 
each edge e in the given weighted graph G, let w(e) be its edge – weight. 
After each iteration, the vertices in the Dijkstra tree (the labeled vertices) are 
those to which the shortest paths from s have been found. 

Priority of the Frontier Edges : Let e be a frontier edge and let its P - value 
be given by 

    P(e) = dist [x] + w(e), 
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where x is the labeled end point of e and w(e) is the edge – weight of e. Then 

(i) The edge with the smallest P – value is given the highest priority. 

(ii) The P – value of this highest priority edge e gives the distant from the 
vertex s to the unlabeled endpoint of e.  

We are now in a position to describe Dijkstra shortest path algorithm. 

DIJKSTRA’S SHORTEST PATH ALGORITHM 

Input : A connected weighted graph G with non-negative edge-weights and a 
vertex s of G. 

Output : A spanning tree T of G, rooted at the vertex s, whose path from s to 
each vertex v is a shortest path from s to v in G and a vertex labeling giving the 
distance from s to each vertex. 

Initialize the Dijkstra tree T as vertex s. 

Initialize the set of frontier edges for the tree T as empty. 

    dist : [s] = 0.   

Write label 0 on vertex s. 

While Dijkstra tree T does not yet span G. 

For each frontier edge e for T, 

Let x be the labeled endpoint of edge e. 

Let y be the unlabeled endpoint of edge e. 

Set    P(e) = dist [x] + w(e) 

Let e be a frontier edge for T that has smallest P – value  

Let x be the labeled endpoint of edge e 

Let y be the unlabeled endpoint of edge e 

Add edge e (and vertex y) to tree T 

    dist [y] : P(e) 

Write label dist [y] on vertex y. 

Return Dijkstra tree T and its vertex labels. 

Example : Apply Dijkstra algorithm to find shortest path from s to each other 
vertex in the graph given below :  
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                                  s  •     
                                    13                         8 
                      v •                                             • z 
           11       
         7 
                   w  •                   6             17     16 
                                                                        • y 
                                   14                              5 
                                                       •  x 
If t is the labeled endpoint of edge e, then P – values are given by  

    P(e) = dist [t] + w(e), 

where dist [t] = distance from s to t and w(e) is the edge weight of edge e.  For 
each vertex v, dist [v] appears in the parenthesis.    Iteration tree at the end of 
each iteration is drawn in dark line 
 
 Iteration 1                  Iteration 2 
                      •    s(0)             •    s(0)  
                  13                          8             13      8  
v•                                             • z (8) v •                                           •z(8) 

 11                  11  
       7                             7  
w•                6                   w•              
                                         17    • y    6     17            • y 
  
               14                          5    14                
                                •  x           •  x 
 
 
 
dist [s] = 0     P(sw) = 13 (minimum) 
 
 
 
dist [z] = 8 P(zy) = 8 + 7 = 15  dist [s] = 0 P(zy) = 8 + 7 =15 
(minimum) 
  P(sy) = 16   dist [z] = 8 P(zx) = 8 + 17 = 25 
  P(zv) = 8 + 10 = 18  dist [w] = 13 P(zv) = 8 + 10 = 18 
  P(zw) = 8 + 11 = 19    P(sy) = 16 
  P(zx) = 8 + 17 = 25           P(wx) = 13 + 14 = 27 
 
 
 
 
 
                   

10

1010

5 

16 16 

13
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 Iteration 3                         Iteration 4 
                     •   s (0)               •    s(0)  
            13                          8      13              8  
v•                                             • z(8)       •                                            • z (8) 

  11                       11  
       7            7  
 •                 6                       •  6                     16  
                                                 •y(15)   w(13)       • y(15)
  
                  14                              5      14     5 
                                •  x              •  x 
 
dist [s] = 0 P(zv) = 18 (minimum)  Dist [s] = 0 P(yx) = 20 
(minimum) 
dist [z] = 8 P(zx) = 8 + 17 = 15  Dist [z] = 8 P(zx) = 8 + 17 = 25 
dist [w]= 13 P(wx) = 13 + 14 = 27  Dist [w] = 13 P(vx) = 18 + 6 = 
14 
dist [y] = 15 P(yx) = 15 + 5 = 20  Dist [y] = 15 P(wx) = 13 + 14 = 
27 
      Dist [v] = 18 
Iteration 5 
                                         s(0) •    
                                                              
               v(18) •                                             • z (8) 
                  
          
              w(13) •                                      
                                                                        • y (15) 
                                                                 
dist [s] = 0                                      •  x (20) 
dist [z] = 8 
dist [w] =13 
dist [y] =15 
dist [x] = 20 
which are the required shortest paths from s to any other point. The Dijkstra tree is shown 
in dark lines. 
                                        s(0) •     
                                                              
               v(18) •                                             • z (8) 
                  
          
              w(13) •                                      
                                                                        • y (15) 
                                                                 
                                                       •  x (20) 

10

16 

17 

10 

w(13) 

v(18) 

17 
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  c         1          d 

Example: Find a shortest path from s to t and its length for the graph given 
below: 
 
     

       2 •  •    2    
           s  •                        1               • t        
                 2     •                      •    2       
 
Solution: Let x be the labeled endpoint of edge e, then P-values are given by 

    P(c) = dist [x] + w(e), 

where dist [x] denotes the distance from s to x and w(e) is the weight of the 
edge e. 

For each vertex v, dist [v] appears in the bracket. Iteration tree at the end of 
each iteration is shown in dark lines. 

                  Iteration 1     Iteration 2 
 

       2 •  •    2            2      •       •    2 
       s(0) •                         1              •t s(0)•                        1               • t 
                 1     •                      •    2           1    •                      •    2    
 
dist [s] = 0 P(c d) = 2     dist [s] =0 P(a b) = 2 + 3 = 5 
dist [c] = 1 P(s a) = 2 (minimum)    dist [c] = 1 P(c d) = 1 + 1 = 2 
                 (minimum) 
  P(s b) = ∞    dist [a] = 2 P(d t) = ∞ 
  P(s t) = ∞    P(b t) = ∞ 
  P(d t) = ∞    P(a d) = 3 
  P(b t) = ∞ 
 
Iteration 3     Iteration 4 
 

 2   •        •    2        2 •  •    2 
 s(0) •                         1              • t s(0) •                           1            • t(4) 
           1    •                       •    2      1     •                      •    2    
   
 
dist [s] = 0   P(d t) = 2 (minimum) dist [s] =0 P(a b) = 5 
dist [c] = 1   P(a b) = 5  dist [c] = 1 P(b t) = ∞ 
dist [a] = 2   P(b t) = ∞  dist [a] = 2  
dist [d] = 2    dist [d] = 2  
     dist [t] =4  
 
 

  a         3          b 

 c(1)       1        d  c(1)         1       d 

  a          3          b   a          3          b 

  a(2)    3           b   a(2)    3            b 

 c(1)       1        d(2)  c(1)       1        d(2) 
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  Iteration 5 
    

       2 •  •    2    
        s(0) •                        1               • t(4)        
                 2     •                      •    2       
    
dist [s] =0  
dist [c] =1 
dist [a] = 2 
dist [d] = 2 
dist [t] = 4 
dist [b] = 5 
 
Thus, the Dijkstra tree is 

 a(2)  b(5)     
        •  •        

       s(0)  •                                         • t(4)        
                        •                      •           
  c(1)  d(2)     
Thus the shortest path is scdt and its length is 4. 
 

3.15. Shortest Path if all Edges Have Length 1 

If all edges in a connected graph G have length 1, then a shortest path v1 → vk 
is the path that has the smallest number of edges among all paths v1 → vk in 
the given graph G. 

Moore’s Breadth First Search Algorithm 

This method of finding shortest path in a connected graph G from a vertex s to 
a vertex t is used when all edges have length 1. 
 
Input : Connected graph G = (V, E), in which one vertex is denoted by s and 
one by t and each edge (vi, vj) has length 1. 

Initially all vertices are unlabeled. 

Output : A shortest path s → t in G = (V, E). 

1. Label s with 0. 
2. Set vi = 0 
3. Find all unlabeled vertices adjacent to a vertex labeled vi. 
4. Label the vertices just found with vi+1 
5. If vertex t is labeled, then “back tracking” gives the shortest path. If k is 
level of t(i.e., t = vk), then  
Output : vk, vk-1, ………v1, 0. 

Else increase i by 1. Go to step 3. 

  a(2)    3           b(5) 

 c(1)       1        d(2) 
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End Moore. 

Remark : There could be several shortest path from s to t. 

Example : Use B F S algorithm to find shortest path from s to t in the 
connected graph G given below: 
 
      b(2)    c(3) 
                                        •                    • 
 
                  a(1) • 
 
 
          s(0) •          d(2) •                       • t(3) 
                                                    •   e(2) 
 
                   f(1)   •     

Solution : Label s with 0 and then label the adjacent vertices with 1. Thus two 
vertices have been labeled by 1. Now Label the adjacent vertices of all vertices 
labeled by 1 with label 2. Thus three vertices have been labeled with 2. Label 
the vertices adjacent to these vertices (labeled by 2) with 3. Thus two vertices 
have been labeled with 3. We have reached t. Now back tracking yields the 
following shortest paths 
 

t(3), e(2), f(1), s(0), that is, s f e t  

or 

t(3), b(2), a(1), s(0), that is s a b t  

or  

t(3), e(2), a(1), s(0), that is, s a e t 

Thus there are three possible shortest paths of length 3. 
 
3.16 Minimal Spanning Tree 
Definition : Let G be a weighted graph. A spanning tree of G with minimum 
weight is called minimal spanning tree of G. 

We discuss two algorithms to find a minimal spanning tree for a weighted 
graph G. 

PRIM ALGORITHM 

Prim algorithm builds a minimal spanning tree T by expanding outward in 
connected links from some vertex. In this algorithm one edge and one vertex 
are added at each step. The edge added is the one of least weight that connects 
the vertices already in T with those not in T. 
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Input : A connected weighted graph G with n vertices 

Output : The set of edges E in a minimal spanning tree.  

1. Choose a vertex v1 of G. Let V = {v1} and E = {  }. 
2. Choose a nearest neighbour vi of V that is adjacent to vj , vj ∈ V and for 
which the edge (vi, vj) does not form a cycle with member of E. Add vi to V 
and add (vi, vj) to E. 

3. Repeat step 2 till number of edges in T is n – 1. Then V contains all n 
vertices of G and E contains the edges of a minimal spanning tree for G. 

Definition: A greedy algorithm is an algorithm that optimizes the choice at 
each iteration without regard to previous choices. 

For example, Prim algorithm is a greedy algorithm. 

Example: Find a minimal spanning tree for the graph shown below :  
 
    

•  •  
   4 7             11  

•    • d 
   1             6  
         f  •  • e 
     
Solution: We shall use Prim algorithm to find the required minimal 
spanning tree.  We note that number of vertices in this connected weighted 
graph is 6. Therefore the tree will have 5 edges.  
We start with any vertex, say c. The nearest neighbour of c is f and (c f) does 
not form a cycle. Therefore (c, f) is the first edge selected. 
Now we consider the set of vertices V = {c, f}. The vertex a is nearest 
neighbour to V = {c, f} and the edge (c, a) does not form a cycle with the 
member of set of edges selected so far. Thus 

   E = {(c, f) , (c, a)} and V = {c, f, a}. 

The vertex b is now nearest neighbour to V = {c, f, a} and the edge (a, b) do 
not form a cycle with the member of E = {(c, f), (c, a)}.  Thus 

   E = {(c, f), (c, a), (a, b)} and V = {c, f, a, b} 

Now the edge (b, c) cannot be selected because it forms a cycle with the 
members of E. We note that d is the nearest point to V = {c, f, a, b} and (c, d) 
is the edge which does not form a cycle with members of E = {(c, f), (c, a), (a, 
b)}.  Thus we get 

  E = {(c, f), (c, a), (a, b)}, (c, d)},     V = {c, f, a, b, d} 

9 

a 2 b 

c 8 
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The nearest vertex to V is now e and (d, e) in the corresponding edge. Thus 

  E = {(c, f), (c, a), (a, b), (d, e), V = {c, f, a, b, d, e} 

Since number of edges in the Prim Tree is 5, the process is complete. The 
minimal spanning tree is shown below : 
   

•  •  
   4              

•    •  
   1             6  
           •  •  

The length of the tree is 1 + 4 + 2 + 8 + 6 = 21 

Example : Using Prim algorithm, find the minimal spanning tree of the 
following graph :  
 
      •   
        3               4  
                                                        

    a  •  •     • c 
           1  
 3  2  

•  d 
 
Solution : Pick up the vertex a. Then  

  E = { }  and  V = {a}. 

The nearest neighbour of V is b or d and the corresponding edges are (a, b) or 
(a, d). We choose arbitrarily (a, b) and have 

  E = {(a, b)},  V = {a, b} 

Now d is the nearest neighbour of V = {a, b} and the corresponding edge (a, d) 
does not form cycle with (a, b). Thus we get 

  E = {(a, b), (a, d)},   V = {a, b, d}. 

Now e is the nearest neighbour of {a, b, d} and (d, e) does not form cycle with 
{(a, b), (c, d)}. Hence 

  E = {(a, b), (a, d), (d, e)},   V = {a, b, d, e} 

Now c is the nearest neighbour of V = {a, b, d, e} and the corresponding edges 
are (e, c), (d, c). Thus we have, choosing (e, c) , 
 
   E = {(a, b), (c, d), (d, e), (e, c)},   V = {a, b, d, e, c} 

   Total weight = 3 + 3 + 1 + 2  = 9 

(If we choose (d, c), then total weight is 3 + 3 + 1 + 2 = 9.) 

       2 

   3    e      2 

       8 

b 
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The minimal tree is  
 

•                                                                    • 
   3             3 
                     •             •              •  or                  •            •          • 
            1                  3       1          2 
  
                           3       •                                                                     • 

 

KRUSKAL’S ALGORITHM 
In Kruskal’s algorithm, the edges of a weighted graph are examined one by one 
in order of increasing weight. At each stage an edge with least weight out of 
edge-set remaining at that stage is added provided this additional edge does not 
create a circuit with the members of existing edge set at that stage. After n – 1 
edges have been added, these edges together with the n vertices of the 
connected weighted graph form a minimal tree. 
 

ALGORITHM 
Input : A connected weighted graph G with n vertices and the set E = {e1, 
e2,……….,ek} of weighted edges of G. 

Output : The set of edges in a minimal spanning tree T for G. 
Step 1. Initialize T to have all vertices of G and no edges. 

Step 2. Choose an edge e1 in E of least weight. Let  

   E* = {e1}, E = E − {e1} 

Step 3. Select an edge ei in E of least weight that does not form circuit with 
members of E*. Replace E* by E* ∪ {ei} and E with E − {ei}. 
 
Step 4. Repeat step 3 until number of edges in E* is equal to n – 1. 

Example : Use Kruskal’s algorithm to determine a minimal spanning tree for 
the connected weighted graph G shown below : 
 

•    
         4      5   
     3      3      
                v1  •                                                    • v3 

          2         6     2    
                        v4  •                                   •v5 

       
Solution : The given weighted graph has five vertices. The minimal spanning 
tree would have therefore 4 edges. 
Let 

v1 

7 

5 

2 
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               E = {(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v1, v3),  

                                         (v2, v4), (v4, v5), (v5, v3), (v3, v4)} 

The edges (v2, v4) and (v3, v5) have minimum weight. We choose arbitrarily 
one of these, say  
(v2, v4). Thus 
 
   E* = {(v2, v4)},  

E = E − {(v2 , v4)}. 

The edge (v3, v5) has minimum weight, so we pick it up. We have thus 

   E* = {(v2, v4), (v3, v5)},  

 E = E − {(v2, v4), (v3, v5)} 

The edges (v1, v4) and (v1, v5) have minimum weight in the remaining edge set. 
We pick (v1, v4) say, as it does not form a cycle with E*. Thus 

 
E* = {(v2, v4), (v3, v5), (v1, v4),  

  E = E − {(v2, v4), (v3, v5), (v1, v4)}   

Now the edge (v1, v5) has minimum weight in E \ {(v1, v4), (v3, v5), (v1, v4)} 
and it does not form a cycle with E*. So, we have 
 
   E* = {(v2, v4), (v3, v5), (v1, v4), (v1, v5)} 
and  
   E = E − {(v2, v4), (v3, v5), (v1, v4), (v1, v5)} 

Thus all the four edges have been selected. The minimal tree has the edges. 

   (v2, v4), (v3, v5), (v1, v4), (v1, v5) 

and is shown below : 
•••• v1 
 
 

                         v2  ••••                3                  3              •••• v3 
 
            2           2   
                                        v4••••                         ••••v5 

          (Minimal Spanning tree) 

 

Remark : In the  above example, if we had chosen (e, f) in place of (c, f) in the 
last step, then the minimal spanning tree would have been 
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                                    a ••••                       •••• b 
      2       2                   3    
                                              c  ••••                       •••• d 
             
                          e ••••               3                 

•••• f 

    (minimal spanning tree) 

3.17  Cut Sets 
Let G be a connected graph. We know that the distance between two vertices 
v1 and v2, denoted by d(v1, v2), is the length of the shortest path. 

Definition: The diameter of a connected graph G, denoted by diam (G), is the 
maximum distance between any two vertices in G. 

 For example, in graph G shown below, we have 
 
                               a  •                            • b 
 
 
                                                                 • c 
                                         d   • 
 
 
                                                                • e 
                                                            G                                                                                                                                              

d(a, e) = 3, d(a, c) = 2, d(b, e) = 2 and diam (G) = 3. 

Definition: A vertex in a connected graph G is called a cut point if G – v is 
disconnected, where          G − v is the graph obtained from G by deleting v 
and all edges containing v. 

For example, in the above graph, d is a cut point. 

Definition: An edge e of a connected graph G is called a bridge (or cut edge) 
if G – e is disconnected, where G – e is the graph obtained by deleting the edge 
e. 

For example, consider the graph G shown below : 
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                                                e1  
 
                               a  •                            • b 
                                                                     
                                                  e3               
                                                                 • c 
                                         d   • 
                                         e5 

                                                                    
                                                                • e 
                                                              G  

We observe that G – e3 is disconnected. Hence the edge e3 is a bridge. 

Definition: A minimal set C of edges in a connected graph G is said to be a cut 
set (or minimal edge – cut) if the subgraph G – C has more connected 
components than G has.  

 For example, in the above graph, if we delete the edge (b, d) = e3, the 
resulting subgraph        G – e3 is as shown below : 

                                                 e1  
 
                               a  •                            • b 
                                                            
                                                                   e4 

                                                                 • c 
                                                                                                      d   

                                                     e5 

                                                                    
                                                            • e   

Thus G – e3 has two connected components 
 
                                                 e1  
 
                               a  •                            • b                                 •  d 
                                                                                 and                            e5     
                                                                   e4 

                                                                 • c                                                  •  e  

So, in this example, the cut set consists of single edge (b, d) = e3, which is 
called edge or bridge. 

Example: Find a cut set for the graph given below: 
 
 
 

e2 e2 

e2 

e2 

e4 
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                                      •   
   e1                e5           e2 
                 
               v1  •                •                 • v3  
                 e7           

    e4                  e3  
                                      •  v4 

 
Solution : The given graph is connected. It is sufficient to reduce the graph 
into two connected components. To do so we have to remove the edges e1, e4, 
e5, e6, e7. The two connected components are 
 
  •   
      e8               e2 

            v1  •                        •  v5         and                                • v3 

                                                                   e3      
                                                     •   
But, if we remove any proper subset of {e1, e4, e5, e6, e7}, then there is no 
increase in connected components of G. 
Hence 
             {e1, e4, e5, e6, e7} 

is a cut set. 

Example: Find a cut set for the graph 
 
                                     •  b                               •  e 

   e1                         e3            e7                  e8 
                                    
               a   •                                   •                  e9             • g  
                             
    e2                 e4                 e10                     e11         
                                      • c                                •  f 

                                                    G  
Solution: The given graph is a connected graph. We note that removal of the 
edges e7 and e10 creates two connected components of G shown below:  
 
                                     •  b                               •  e 

   e1                         e3                                 e8 
                                  d  
               a   •                •                 •                  e9             • g  
                             
 e2                       e4                                            e11         
                                      •   c                              •  f 

v5     e6    
e8 

v2 

v2 

v4 

e5 

e6   d 

e5 

e6 
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Hence the set {e7, e10} is a cut set for the given graph G. 

Theorem: Let G be a connected graph with n vertices. Then G is a tree if and 
only if every edge of G is a bridge (cut edge). 
               (This theorem asserts that every edge in a tree is a bridge). 

Proof: Let G be a tree. Then it is connected and has n – 1 edges (proved 
already). Let e be an arbitrary edge of G. Since G – e has n – 2 edges, and also 
we know that a graph G with n vertices has at least n – c(G) edges, it follows 
that n – 2 ≥ n – c(G – e). Thus G – e has at least two components. Thus 
removal of the edge e created more components than in the graph G. Hence e is 
a cut edge. This proves that every edge in a tree is a bridge. 

 Conversely, suppose that G is connected and every edge of G is a 
bridge. We have to show that G is a tree. To prove it, we have only to show 
that G is circuit – free. Suppose on the contrary that there exists a cycle 
between two points x and y in G. Then any edge on this cycle is  
 
                          •                 •                •                 • 
                                            x                 y 

not a cut edge which contradicts the fact that every edge of G is a cut edge. 
Hence G has no cycle. Thus G is connected and acyclic and so is a tree. 

3.18  Relation Between Spanning Trees, Circuits and Cut Sets 
 
A spanning tree contains a unique path between any two vertices in the graph. 
Therefore, addition of a chord to the spanning tree yields a subgraph that 
contains exactly one circuit. For example, consider the graph G shown below: 
 
                                                     • v1 

 
 
                                      v2  •                  • v3 

 
 
                                      v4  •                  • v5 

                                            G 
For this graph, the figure given below is a spanning tree : 
  
                                                     • v1 

 
 
                                      v2  •                  • v3 

 
 
                                      v4  •                  • v5 

            (Spanning tree) 
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The chords of this tree are (v1, v2) and (v2, v4). If we add (v1, v2) to this 
spanning tree, we get a circuit v1 v1 v2 v3 v1. Similarly addition of (v2, v4) gives 
one more circuit v2 v3 v5 v4 v2. If there are v vertices and e edges in a graph, 
then there are e – v + 1 chords in a spanning tree. Therefore, if we add all the 
chords to the spanning tree, there will be e – v + 1 circuits in the graph. 

Definition: Let v be the number of vertices and e be the number of edges in a 
graph G. Then the set of e – v + 1 circuits obtained by adding e – v + 1 chords 
to a spanning tree of G is called the fundamental system of circuits relative 
to the spanning tree. 

A circuit in the fundamental system is called a fundamental circuit. 
For example, {v1, v2, v3, v1} is the fundamental circuit corresponding to 

the chord (v1, v2). 

On the other hand, since each branch of a tree is cut edge, removal of 
any branch from a spanning tree breaks the spanning tree into two trees. For 
example, if we remove (v1, v3) from the above figured spanning tree, the 
resulting components are shown in the figure below :  
 
                                           • v1 

 
                                      v2  •                  • v3 

 
 
                                      v4  •                  • v5 

 
Thus, to every branch in a spanning tree, there is a corresponding cut set. 
But, in a spanning tree, there are v – 1 branches. Therefore, there are v – 1 cut 
sets corresponding to v – 1 branches. 

Definition: The set of v – 1 cut sets corresponding to v – 1 branches in a 
spanning tree of a graph with v vertices is called the fundamental system of 
cut sets relative to the spanning tree. 

A cut – set in the fundamental system of cut – sets is called a 
fundamental cut set. 

For example, the fundamental cut – sets in the spanning tree (figured 
above) is  

{(v1, v2), (v1, v3)}, {(v1, v3), (v2, v3), (v3, v4)},  

                      {(v3, v5), (v4, v5)}, {v2, v4), (v4, v5)}. 

Theorem: A circuit and the complement of any spanning tree must have at 
least one edge in common. 
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Proof: We recall that the set of all chords of a tree is called the complement of 
the tree. Suppose on the contrary that a circuit has no common edge with the 
complement of a spanning tree. This means the circuit is wholly contained in 
the spanning tree. This contradicts the fact that a tree is acyclic (circuit – free). 
Hence a circuit has at least one edge in common with complement of a 
spanning tree. 

Theorem: A cut – set and any spanning tree must have at least one edge in 
common. 

Proof: Suppose on the contrary that there is a cut set which does not have a 
common edge with a spanning tree. Then removal of cut set has not effect on 
the tree, that is, the cut set will not separate the graph into two components. 
But this contradicts the definition of a cut set. Hence the result. 

Theorem: Every circuit has an even number of edges in common with every 

cut – set. 

Proof: We know that a cut – set divides the vertices of the graph into two 
subsets each being set of vertices in one of the two components. Therefore a 
path connecting two vertices in one subset must traverse the edges in the cut 
set an even number of times. Since a circuit is a path from some vertex to 
itself, it has an even number of edges in common with every cut – set. 

3.19 Tree Searching 

Let T be a binary tree of height h ≥ 1 and root v. Since h ≥ 1, v has at 
least one child : vL                     and / or vR.    Now vL and vR are the roots of 
the left and right subtrees of v called TL and TR respectively. 

 
                                                     • v Level  0 

 
 
                        vL  •                                           • vR      Level  1 
 
                    •                   •                                    Level  2 
 
             •             •                                     •       Level  3 
 
                                                           •            •    Level   4 
 
 
          Left subtree TL   Right subtree TR 

         (dotted circle)                              (dotted circle)  

Definition: Performing appropriate tasks at a vertex is called visiting the 
vertex. 
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Definition: The process of visiting each vertex of a tree in some specified 
order is called searching the tree or walking or traversing the tree. 

We now discuss methods of searching a tree. 

PREORDER SEARCH METHOD 

Input : the root v of a binary tree. 

Output : Vertices of a binary tree using pre-order traversal  

1. Visit v 
2. If vL (left child of v) exists, then apply the algorithm to (T(vL), vL) 
3. If vR (right child of v) exists, then apply this algorithm to (T(vR), vR). 

End of Algorithm preorder. 

 In other words, preorder search of a tree consists of the following steps: 

Step 1. Visit the root 
Step 2. Search the left subtree if it exists 

Step 3. Search the right subtree if it exists. 

Example 1: Find binary tree representation of the expression 

 (a – b) × (c + (d ÷ e)) 

and represent the expression in string form using pre-order traversal. 

Solution: In the given expression, × is the central operator and therefore shall 
be the root of the binary tree. Then the operator – acts as vL and the operator + 
acts as vR. Thus the tree representation of the given expression is  

                                           •  × 
 
                 – •                                         •  + 
 
          a •             • b                    •  c               •  ÷ 
 
                                                              d  •            •  e 
 
The result of the pre-order traversal to this binary tree is the string 

   ×  – a b + c ÷ d e 

This form of the expression is called prefix form or polish form of the 

expression 

   (a – b) × (c + (d ÷ e)) 
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 In a polish form, the variables a, b, c,…are called operands and –, +, ×, 
÷ are called operators. We observe that, in polish form, the operands follow 
the operator. 

PROCEDURE TO EVALUATE AN EXPRESSION GIVEN IN 
POLISH FORM 

 To find the value of a polish form, we proceed as follows: 

Move from left to right until we find a string of the form K x y, where K is 
operator and x, y are operands. 

Evaluate x K y and substitute the answer for the string K x y. Continue this 
procedure until only one number remains. 

Example: Find parenthesized form of the polish expression  

    – + A B C 

Solution: The parenthesized form of the given polish expression is derived a 
follows: 

   – (A + B) C 

   (A + B) – C  

The corresponding binary tree is 

 

 

 

 

POSTORDER SEARCH METHOD 

Algorithm 
Step 1. Search the left subtree if it exists 
Step 2. Search the right subtree if it exists 
Step 3. Visit the root 

End of algorithm 

Example: Represent the expression 

   (A + B) * (C – D) 

+ C 

– 

B A 
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as a binary tree and write the result of postorder search for that tree. 

Solution: The binary tree expression (as shown earlier) of the given algebraic 
expression is 

 

 

 

 

 

The result of postorder search of this tree is 

    A B + C D – * 
This form of the expression is called postfix form of the expression or reverse 
polish form of the expression. 

In postfix form, the operator follows its operands. 

Example: Find the parenthesized form of the postfix form  

   A B C * * C D E + / – 

Solution: We have 

1.    A B C * * C D E + / – 

2.    A (B * C) * C (D + E) / - 

3.    (A * (B * C)) (C / (D + E)) – 

4.    (A * (B * C)) – (C / (D + E)) 

The corresponding binary tree is  

 

 

 

 

 

 
 
 
 
Example:  Evaluate the postfix form 

+ – 

D C 

*  / 

+ C 

– 

* 

A B 

B 

* A 

C D E 
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   21 – 342 ÷ + × 

Solution: We have 

   21 – 342 ÷ + × 

   = (2 – 1) 342 ÷ + × 

   = 13 (4 ÷ 2) + × 

   = 132 + × 

   = 1 (3 + 2) × 

   = 15 × 

   = 1 × 5 

   = 5 . 
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Unit-4 

Computability Theory  
 

4.1. Finite State Machine  
Definition: A finite – state machine (or complete sequential machine) is an 
abstract model of a machine with a primitive internal memory. A finite state 
machine M consists of  
(1) A finite set I of input symbols 

(2) A finite set S of “internal” states 

(3) A finite set O of output symbols 

(4) An initial stage s0 in S 

(5) A next – stage function f : S × I → S 

(6) An output function g : S × I → O 

A finite state machine M is denoted by  

   M = M (I, S, O, s0, f, g). 

Example: 1. Let us take 

   I = {a, b} 

   S = {s0, s1, s2) 

   O = {x, y, z} 
Initial State is s0 

Next state function f : S × I →  S defined by 

   f (s0, a) = s1,   f (s1, a) = s2,    f (s2, a) = s0 

   f (s0, b) = s2,   f (s1, b) = s1,      f (s2, b) = s1 

Output function g : S × I → O defined by  

   g (s0, a) = x,    g(s1, a) = x,      g(s2, a) = z 

   g (s0, b) = y,    g(s1, b) = z,      g(s2, b) = y/ 

Then M = M(I, S, O, s0, f, g) in a finite state machine. 

TRANSITION (STATE) TABLE AND TRANSITION 
(STATE) DIAGRAM 
   There are two ways of representing a finite state machine M in a 
compact form: 
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(A) : Transition (State) Table : In this table the functions f and g are 
represented by a table.  
Thus, in case of the above example, the transition table is  
 
  

      f     g 
I 
S a     b a     b 

s0 

s1 

s2 

s1   s2 

s2    s1 

s0   s1 

x    y 

x    z 

z    y 

 
(B) Transition (State) diagram: A transition diagram of a finite state machine 
M is a labeled directed graph in which there is a node for each state symbol in 
S and each node is lebeled by a state symbol with which it is associated. The 
initial stage is indicated by an arrow. Moreover, if f(si, aj) = sk and g(si, aj) = 
Or, then there is an arrow (arc) from si to sk which is labeled with the pair aj, 
Or. We usually put the input symbol aj near the base of the arrow (near si) and 
the output symbol Or near the centre of the arrow. (Also, we can represent it 
by ai /Oi near the centre of the arrow) 
Thus, the transition diagram of the finite state machine in the above example is                                                                                     
a/x                b/z 
 
        x 
                           
      a          b           OR    a/z   b/y      b/y      a/x                       
        b                                 z           
                       a                              
                        y       y                                         
                                                      
          z                  b              x  
                                
             a 
 
Example:   Let I = {a, b}, O = {0, 1} and S {s0, s1}.   Let so be the initial state.  

Define f : S × I → S by 

   f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1  

and define g : S × I → O by 

   g(s0, a) = 0, g(s0, b) = 1, g(s1, a) =1, g(s1, b) = 0 

Then M = M(I, S, O, s0, f, g) is a finite state machine. Its transition table 
representation is given below: 
 

 s1  s0 

 s2 

 s1  s0 

 s2 
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      f     G 
I 
S 

a     b a     b 

s0 

s1 

s0   s1 

s1    s1 

0    1 

1    0  

The transition diagram for this finite state machine is  

                              a/0                                           a/1                                                  
                                                            
 
     
                                                                         b/0                               
                                        b/1 

Remark: We can regard the finite state machine M = M(I, S, O, s0, f, g) as a 
simple computer. We begin in state S, input a string over I, and produce a 
string of output. 

INPUT AND OUTPUT STRINGS 
Let M = M(I, S, O, s0, f, g) be a finite state machine. An input string for M is 
a string over I. 
The string 
   y1 y2 ……..yn 

is the output string for M corresponding to the input string 

   x1 x2……...xn 

if there exists states s0, s1, ……,sn ∈ S such that 

   si = f(si-1, xi) for i = 1, 2,……,n 

   yi = g(si-1, xi) fo i = 1, 2,…….,n 

Example:  In the above example, we had taken 

   I = {a, b}, O = {0, 1} and S {s0, s1} 
with 
   f(s0, a) = s0, f(s0, b) = s1, f(s1, a) = s1, f(s1, b) = s1 
   
and 
   g(s0, a) = 0, g(s0, b) = 1, g(s1, a) = 1, g(s1, b) = 0 

We had shown that M = M(I, S, O, s0, f, g) is a F S M. We want to find the 
output string to the input string 
   a a b a b b a 

for this machine. 

 s0  s1 
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Initially we are in a state s0.   The first symbol input is a.  Therefore the output 
is g(s0, a) = 0. The edge points out to S0. Next symbol input is again a. So again 
we have g(s0, a) = 0 as the output and the edge points out to s0 . Next b is the 
input symbol and so g(s0, b) = 1 as the output and there is a state of change s1.   
Next symbol is a, so g(s1, a) = 1 as the output and the state is s1. Now b is input 
and so g(s1, b) = 0 as the output. Again b is input and s1 is the state, so g(s1, b) 
= 0. The last input symbol is a and the state is s1. Therefore g(s1, a) = 1 as the 
output symbol. 
Thus the output string is  
 
   0 0 1 1 0 0 1 

Example: Consider the F S M of example …. Let the input string be  

   a b a a b. 

we begin by taking S0 as the initial stage. Using State diagram we have 
 
                   a, x              b, z           a, x a, z       b, y 
 s0              s1               s1          s2           s0              s2       

Hence the output string is  

   x z x z y 

BINARY ADDITION 
We want to describe a finite state machine M which can perform binary 
addition. Suppose that the machine is given the input 
   1 1 0 1 0 1 1       

           + 0 1 1 1 0 1 1          , 

then we want to have the output to be the binary sum 

   1 0 1 0  0 1 1 0 

Thus the input is the string of pairs of digits to be added: 

   11, 11, 00, 11, 01, 11, 10, b  , 

where b denotes blank spaces and the output should be the string 

   0, 1, 1, 0, 0, 1, 0, 1 

We also want the machine to enter a state called “stop” when the machine 
finishes the addition. 
The input symbols are 
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b b 

   I = {00, 01, 10, 11, b} 

and the output symbols are 

   O = {0, 1, b} 

The machine that we construct will have three states: 

   S = {carry(c), no carry (nc), stop(s)}. 

In this case nc is the initial state. 

In fact, given an input x y, we take one of three actions : 

(A) we add x and y if carry bit is 0 

(B) we add x, y and 1 if carry bit is 1 

(C) we stop 

Next, we consider the possible inputs at each vertex. For examples if 00 is 
input to nc, we should output 0 and remain in the state nc. Thus nc has a loop 
labeled 00/0. As another example, if 11 is input to c, we compute 1 + 1 = 11. In 
this case we output 1 and remain in the state C. Thus C has a loop labeled 11/1. 
As a final example, if we are in state NC and 11 is input, we should output 0 
and move to the state G. By considering all possibilities, we arrive at the 
transition diagram given below: 
          
          
                                                              
                                                                                 
                
     
                                                                                          
                                                                                      
 
 
 
 

Limitation of Machines: There is no finite state machine which can 
perform binary multiplication. 

Generalization of f and g in the definition of F S M: Consider a 
sequence x0 x1 …… of input symbols.  Let s0 be the initial stage. Then the next 
state s1 of the machine for the input x0 is given by s1 = f(s0, x0) = f1(s0, x0) say, 
where f = f1: S × I → S. Next consider the change in state due to second input 
symbol x1 and the next state is s2 = f(s1, x1) = f(f1(s0, x0), x1) = f2(s0, x0 x1), 
where         f2: S × I2 → S. The next state due to third input symbol x2 is s3 = 
f(s2, x2) = f(f2(s0, x0 x1), x2) =          f3(s0 x0 x1 x2), where f3 : S × I3 → S. 
Continuing in this fashion, we can define a function 

 

  nc C 

S 

 00/0 
 10/1 

 11/0 

 00/1 

 10/0 

01/0 

11/1 
 01/1 
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   fn : S × In → S such that 

   sn = f(fn-1(s0, x0 x1….xn-2), xn-1) = fn(s0, x0 x1…..xn-1) 

Similarly, the output symbol 00, 01, ….. can be described with the help of g as 

shown below : 

   o0 = g(s0, x0) = g1(s0, x0) 

   o1 = g(s1, x1) = g(f1(s0, x0), x1) = g2(s0, x0, x1) 
   ------------------ 

   on−1 = g(sn−1, xn−1) = gn(s0, x0 x1….xn−1) . 

4.2. Equivalence of Finite State Machines 

The aim of this section is to obtain an equivalent minimal machine for some 
given machine. First we treat equivalent states. Intuitively, two states are 
equivalent if and only if they produce the same output for any input sequence.   
Thus we can make the following definition: 

Definition: Let M = M{I, S, O, s0, f, g) be a finite state machine. Two states si, 
sj ∈ S are said to be equivalent, written as si ≡ sj ,  if and only if  

       g(si, x) = g(sj, x) for every word x ∈ I*,   

where I* denotes the set of words on the input alphabets.   

It can be seen that the relation ≡ is an equivalence relation. 

Theorem: Let s be any state in a finite – state machine and let x and y be any 

words. Then 

   f(s, x y) = f(f(s, x), y) 
and  

   g(s, x y) = g(f(s, x), y). 

Proof: We shall prove the theorem by induction on length of y. Let y = a.  

Then 

   f(s, x a) = f(f(s, x), a) 

Assume that the equation is true for any y of length n, that is,  

   f(s, x y) = f(f(s, x), y)  

We want to show that it is true for y having n + 1 symbols. 
From the generalized definition, we can write               

  f(s, x y a) = f(f(s, x y), a) = f(f(f(s, x), y), a) 

by the induction hypothesis. Taking s′ = f(s, x) ,we have 
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   f (f (f (S, x), y), a) = f ( f(s′, y), a) 

           = f(s′, y  a) 

           = f( f(s, x), y a) 

The result regarding g may be established similarly. 

Theorem: Let M = M(I, S, O, s0, f, g) be a finite state machine. If the states si 
and sj are equivalent, then for any input sequence x, 
   f(si, x) = f(sj, x), 

that is, if two states are equivalent, then their next states are also equivalent. 

Proof: Since si ≡ sj, it follows by definition that 

   g(si, x y) = g(sj, x y)    (1) 

for any input word x y. Then, by the above theorem, (1) reduces to  

   g(f(si, x) y) = g(f(sj, x), y) 

for any y belonging to the set of words I*, which in term of definition of 
equivalence of states implies 
   f(si, x) ≡ f(sj, x) , 

that is the next states are equivalent. 

Definition: Let M = (I, S, O, s0, f, g) be a finite state machine. Then for some 
positive integer k, si is said to be k – equivalent to sj if and only if 

   g(si, x) = g(sj, x) for all x such that | x | ≤ k. 

Obviously, equivalence of states is  a generalization of k –equivalence of states 
for all k, that is, 

     si ≡ sj � si  ≡  sj 
but not conversely. 

Definition: Let M = (I, S, O, si, f, g) and M′ =  (I, S′, O, si′, f ′, g′) be finite – 
state machines.  Then M is said to be equivalent to M′, written as M ≡ M′ if 
and only if for all si ∈ S, there exists an s′j ∈ S′ such that 

   si ≡ sj 
and for all sj ∈ S′, there exists an si ∈ S such that 
   si ≡ s′j. 

The relation ≡ is an equivalence relation. 

For example, consider two finite state machines whose transition tables are 

 
 
 

k 
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      f     g 
          I 
S 

0      1 0     1 

s0 

s1 

s2 

s3 

s4 

s5 

s5    s3 

s1      s4 

s1    s3 

s1    s2 

s5    s2 

s4    s1 

0    1 

0    0 

0    0 

0    0 

0    1 

0    1 

                            M(I, S, O, Si, f, g) 

and  

          f ′         g′ 
              I 
S′ 

0     1 0     1 

s0 

s1 

s2 

s3 

s3′   s2′ 

s1′     s0′ 

s1′   s2′ 

s0′   s1′ 

0    1 

0    0 

0    0 

0    1 

         M′(I, S′, O, S′, f ′, g′) 

Observe that s0′ in M′ is equivalent to s0 and s4 in M; s1′ in M′ is equivalent to 
s1 in M; s2′ in M′ is equivalent to s2 and s3 in M, and s3′ in M′ is equivalent to 
s5 in M. Also note that the functions g and g′ are same for the indicated 
correspondence, but this is only a necessary condition for equivalence, not a 
sufficient one. 

Definition: A finite state machine M = (I, S, O, si, f, g) is said to be reduced if 
and only if si ≡ sj implies that si = sj for all states si, sj ∈ S. 

Thus, a reduced finite state machine is one in which each state is 
equivalent to itself and to no other. The partition of S in such machine has all 
its equivalence classes consisting of a single element. 

CONSTRUCTION OF A REDUCES FINITE STATE 
MACHINE WHICH IS EQUIVALENT TO  
SOME GIVEN MACHINE 

Let M be a given machine. Let the set of states S be partitioned in a set of 
equivalence classes [s] such that partition P = U[s]. Let ϕ be the function 
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defined on the partition P such that ϕ([s]) = s′, where s′ is an arbitrary fixed 
element of [s], called a representative. Clearly s′ ≡ s in M. Let S′ in M′ be 
defined as  

                      S′ = {s′ : there exists s ∈ S such that ϕ([s]) = s′} 

and let I′ = I and O′ = O, that is, both machines will have the same input and 
output alphabets. The functions f ′ and g′ are defined as follows :  
   f ′(s′, a) = φ([f(s′, a)]) 
and 
   g′(s′, a) = g(s′, a), 

where s′ is both in S and S′. Therefore, the reduced machine is M′ = (I, S′, O, 
si′ f ′, g′). 

Remark: Applying this procedure to the machines in the last example, we see 
that M′ is equivalent reduced machine of the machine M. 

Theorem: Let M = M(I, S, O, si, f, g) be a finite – state machine. Then there 
exists an equivalent machine M′ with a set of states S′ such that S′ ⊆ S and M′ 
is reduced. 

  (Proof of this theorem is out of the scope of the course) 

Definition: Let M = (I, S, O, si, f, g) and M′ = (I, S′, O, si′, f ′, g′) be two finite 
state machines. Let ϕ be a mapping from S into S′. Then ϕ is called a finite 
state homorphism if  

Iaallfor
)a),s(('g)a,s(g

)a),S(('f)a,s(f(
∈

�
�
�

ϕ=
ϕ=ϕ

 

If ϕ is further a one - one and onto function, then M is said to be isomorphic to 
M′. 

Finite – state machines are used in compilers where they usually perform the 
task of a scanner. The machine in such a case identify variable names, 
operators, constants, etc.  A machine which performs this scanning task is 
called an acceptor. 

4.3. Finite – State Automata 

Definition: A finite state automaton (.F S A) or simply an automaton M or 
finite state acceptor consists of  

(1) a finite set I, called the input alphabet of input symbols 

(2) a finite set S of states  
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(3) a subset A of S of accepting states 

(4) an initial state s0 in S 

(5) a next state function f from S × I → S. 

Such an automaton is denoted by M = (I, S, A, s0, f) .  Thus, finite automaton 
does not have an output alphabet, instead it has a set of acceptance state. The 
plural of automaton is automata. 

Example : Let 

I = {a, b}, S = {s0, s1, s2}, A = {s2}, s0 ∈ S, the initial state and f is given by the 

table 

      f 
       I 
S 

a     b 

s0 

s1 

s2 

S0   s1 

s0    s2 

s0   s2 

The transition diagram of a finite – state automation is usually drawn with 
accepting states in double circles. Thus transition diagram for the example in 
question is  

                        a                                                                      b 
                                      
 
       
                                               
                                                        
                                                                     
Example: Let 
I = {a, b}, input symbols 

S = {s0, s1, s2}, internal states 

A = {s0, s1}, yes states (accepting states) 

s0, initial state 
Next state function f : S × I → S defined by 

   f(s0, a) = s0, f(s1, a) = s0, f(s2,a) = s2 

f(s0, b) = s1, f(s1, b) = s2, f(s2,b) = s2 

Then M = (I, S, A, s0, f) is a finite state automaton. Its transition table is  
 

  s0   s1   s2 

b b 

a 
a 
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           f 
       I 
S 

a        b 

s0 

s1 

s2 

s0      s1 

s0        s2 

s2      s2 

 
and the transition diagram is  
 
                                                                                                 
                                                    
 
                                                                                                         
                                               

If a string is input to a finite state automaton, we will end at either an accepting 
or a non-accepting state. The status of this final state determines whether the 
string is accepted by the finite state automaton. 

Definition: Let M = (I, S, A, f, s0) be a finite state automaton. Let x1…xn be a 
string over I. If there exist states s0, s1,……,sn such that  
 
   f(si-1, xi) = si for i = 1, 2, ….,n 
and  
   si ∈ A, 

then we say that the string x1…..xn is accepted by A. 

We call the directed path P (s0,…, sn) the path representing x1,….,xn in M. 
Thus M accepts x1 …. xn if and only if path P ends at an accepting state. 

Example: Design a finite state automation that accepts precisely those strings 
over {a, b} that contain no a’s. 

Solution: We want to have two states: 

   A : an a was found 

   NA : No a’s were found 

The state NA is the initial state and the only accepting state. 

                        b                                      a                                                                         
                                           
                                                                      b 
       
 

   A 

 
a 

NA 

   s1   s2 

b 

a 

b 
b 

a 

a 

 s0 
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If f is next – state function, then  

   f(NA, a) = A, f(NA, b) = NA 

   f(A, a) = A, f(A, b) = A 

Example: Design a finite – state – automaton that accepts precisely those 
strings over {a, b} that contains an odd number of a’s. 

Solution: There shall be two states: 

E : An even number of a’s was found 
O : An odd number of a’s was found 

The initial state is E and the accepting state is O.  

                                                                                                                                       
                                   a        
                                                                    b 
       
                                     a      
           b                                    
If f is next – state function, then we have 

   f(E, a) = O 

   f(E, b) = E 

   f(O, a) = E 

   f(O, b) = O                                             

Example : Let M = {I, S, A, s0, f) be a finite state automaton with 

   I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

   S = {s0, s1, s2} 

   A = {s0} 

   a ∈ {0, 3, 6, 9}, b ∈ {1, 4, 7}, c ∈ {2, 5, 8}. 

Next – state function f defined by 
   f(s0, a) = s0,  f(s0, b) = s1,  f(s0, c) = s2 

f(s1, a) = s1,  f(s1, b) = s2,  f(s1, c) = s0 

f(s2, a) = s2,  f(s2, b) = s0,  f(s2, c) = s1 

Draw transition table and transition diagram for this F.S.A. Does this 
automaton accept 258 and  142 ? 

Solution: The transition table for F.S.A. is  

  E     O 
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2 5 8 

 1  4 

 

 f 
      I 
S 

a        b      c 

   s0 

   s1 

   s2 

s0      s1     s2 

s1        s2       s0 

s2      s0        s1 

 
The transition diagram for this F.S.A. is  
 
            0,3,6,9                                                   
                                        1,4,7                               0,3,6,9 
 
                                  
                                        2,5,8       
 
                                     1,4,7          1,4,7  2,5,8               
                 2,5,8 
 
 
                                                        
 
                       0,3,6,9 

Here A = {s0} is the initial stage and also is an acceptor. Further, we note that  

   f(s0, 258) = f ( f (s0, 25), 8) 
         = f ( f ( f(s0, 2), 5), 8) 
        = f (f (s2,5), 8) 

        = f (s1, 8) = s0 ∈ A 

Thus,  the string 258 determines the path 
 
   s0 →  s2  → s1 → s0 ∈ A  
Hence 258 is accepted by the given Finite State Automation.  
On the other hand, 
   f(s0, 142) = f ( f (s0, 14), 2) 
         = f ( f ( f(s0, 1), 4), 2) 
        = f (f (s1,  4), 2) 
        = f (s2, 2) 

    = s1 ∉ A 
Thus,  the string 142 determines the path 

  s0 
s1 

s2 
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 2    s0 →→→→ s1 →→→→ s2 →→→→ s1 ∉∉∉∉ A . 

Hence 142 is not accepted by the given Finite State Automaton. 

Example:  Construct F S A which will accept precisely those strings from I = 
{a, b} which end in two b’s. 

Solution: As per our requirement b b should be accepted by M but ∈ or b 
should not be accepted. Thus we need three states:   s0 (the initial state) , s1 and 
s2  as shown below: 
 
                                      b                                   b 

 
The state s2 should be the accepting state. Further f(s0, a) should not be equal to 
s1, because then a b may be the last letters. f(s2, a) should not be equal to s2, 
otherwise ba would be last letters. However, f(s2, b) may be equal to s2 because 
in that case we have last two letters as b’s. Thus the automaton is as shown 
below :  
 
 
                        a 
                                       b                                   b                            b         

                                               a                      a 

 Example: Let I = {a,b}. Construct an automaton M such that L(M) consists of 
those strings where the number of b’s is divisible by 3. 

Solution: We take s0 as the initial state. If we define the next state function  f  
by  

   f(s0, b) = s1 
   f(s1, b) = s2 

   f(s2, b) = s0 
and take s0 as the accepting state, then M shall be  
 
                                                               a 
 
 
                                                                              
 
 
                                                                                         
        a                                                                             a 
                                            b 
 

 S0  S1  S2 

 s0  s1  s2 

s0 

s1 s2 

b b 
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Example: Let I = {a, b}.  Construct an automaton M such that L(M) consists 
of those words which begin with a and end with b. 

Solution: Let s0 be the initial state. If we define f as 

   f(s0, a) = s1, f(s1,b) = s2  (accepting state)     

Then, we have three states as  
                                      a                                   b 

 
Now we cannot take f(s0, b) = s0 or f(s0, b) = s1, because then b will be starting 
letter. So, we have to take f(s0, b) = s3. We cannot take f(s3,a) = s0, s1, s2 
because in that case the string would end in a. We cannot have f(s2, a) = s2, 
because then a will be last letter. Thus The automaton M will be  
 
                                                    a,b  
 
 
                          b 
                                                                         b                               b     
                                      b                                    
                                                                                               
                                                                          a 
 
In this automaton, any string shall begin with a and end in b. 

4.4. Non – Deterministic Finite State Automaton 

Definition: A non – deterministic finite – state automaton is a 5 – tuple M = 
(I, S, A, s0, f) consisting of  
(1) A finite set I of input symbols 
(2) A finite set S of states 
(3) A subset A of S of accepting states 
(4) An initial state function s0 ∈ S 
(5) A next state function f from S × I into P(S) 

Thus, in a non – deterministic finite state automaton, the next state 
function leads us to a set of states, whereas in a finite state automaton, the 
next state function takes us to a uniquely defined state. 
 

Example: Find the transition diagram for N D F S A 

   M = (I, S, A, s0, f), 
where 
   I = {0, 1}, S = {s0, s1, s2, s3}, A = {s2, s3} 

and the next state function f is given by 

 s1  s1  s2 

 s0  s1  s2 

 s3 
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 f 
              I 
S 

0                 1 

s0 

s1 

s2 

s3 

   {s0, s1}         {s3} 

{s0}                 {s1,s3} 

φ {s0,s2} 

  {s1, s2,s3}     {s1} 

Solution:  Here the initial state is s0 and the accepting states are s2 and s3. The 
transitional diagram of this N D F S A is  
 
                                            
                                                                                     
                                                          
                                              
                                                                    
                                                                               
 
 
                                                     
                                                                             
                                                   
 

Definition: Let M = (I, S, A, s0, f) be a non – deterministic finite state 
automaton. The null string is accepted by M if and only if s0 ∈ A. If w = a1 
a2…..an is a non – null string over I and there exists states s0, s1, ….., sn 
such that  
 
(1) s0 is the initial state 

(2) si = f(si−−−−1, ai) 

(3) sn ∈∈∈∈ A  , 

then we say that w is accepted by M. 

We denote by AC(M), the set of strings accepted by M and say that M accept 
AC(M). 

Definition: Two non – deterministic finite state automata M and M′ are said to 

be equivalent if 

   AC(M) = AC(M′) . 

Example: Let 

  s0   s1 

  s2   s3 

0 

0 

1 

0 
0 

1 

1 
1 1 1 0 

0 
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 0 

   M = (I, S, A, s0, f) 

be a N D F S A with 
   I = {0, 1}, S = {s0, s1, s2, s3, s4}, A = {s2, s4}, 

so as the initial state and the next state function defined by the transition 
table given below:   
 

             f 
      I 
S 

 0                  1 

s0 

s1 

s2 

s3 

s4 

{s0, s3}       {s0,s1} 

   ϕ                   {s2} 

{s2}            {s2} 

{s4}              φ 

{s4}            {s4}        

 

Determine whether M accept the words  (i) w = 010  and  (ii) w = 01001. 

Solution: (i) The word w = 010 determines the path s0          {s0, s3}         f(s0, 
1) ∪ f(s3, 1) = {s0, s1}  

∪ ϕ = {s0, s1}         f(s0, 0) ∪ f(s1, 0) = {s0, s3} ∪ ϕ = {s0, s3} 

But A ∩ {s0, s3} = {s2, s4} ∩ {s0, s3} = φ . Hence the word w  = 010 is not 
acceptable to the given non – deterministic finite state automaton. 

(ii) We have seen above that 

   s0       {s0, s3}             {s0, s1}          {s0, s3} 

Therefore the word w = 01001 determines the path 

s0       {s0, s3}             {s0, s1}          {s0, s3}              f(s0, 0) ∪ f(s3, 0)  

      = {s0, s3} ∪ {sn} 

      = {s0, s3, s4}     f(s0, 1) ∪ f(s3, 1} ∪ f(s4, 1} 

      = {s0, s1} ∪ ϕ ∪ {s4} 

      = {s0, s1, s4} 

so that  

 0   1 

 0  1  0 

 0  1  0  0 

 1 
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   A ∩ {s0, s1, s4} = {s2, s4} ∩ {s0, s1, s4} = {s4} ≠ ϕ. 

Hence the string 01001 is acceptable to the given N D F S A. 

4.5  The Equivalence of  D F S A  and   N D F S A 

We have seen that in the definition of finite state automaton, the next state 
function is from S × I into S, whereas in the definition of N D F S A, the next 
state function is from S × I into P(S). Thus, every D F S A is an N D F S A, 
that is, the class of languages accepted by N D F S A includes the languages 
accepted by D F S A. However, these are the only languages accepted by N D 
F S A. In other words, for every N D F S A, we can construct an equivalent 
D F S A. In this direction, we have the following : 

Theorem: Let L be a set accepted by a non – deterministic finite automaton. 
Then there exists a deterministic finite automaton that accepts L. 

Proof: Let M = (I, S, A, s0, f) be an N D F S A accepting L. Define a D F S A, 

   M′ = (I, S′, A′, s0′, f′) 

as follows: 

The states of M′ are all the subsets of the set of all states of M , that is, S′ = 2S. 
Also s0′ = {s0} and  A′ is the set of all states in S′ containing a final state of M, 
that is, A′ = {s ∈ S′ : s ∩ A ≠ φ}. 

Further, for s ∈ S′ and a ∈ I, let 

   f ′(s, a) = 
s∈σ

∪  f(σ, a) 

To prove that M′ accept the same language as M, it is sufficient to show that 
for any string x ∈ I* (the set of strings formed by I),  

   f ′*(s0′, x) = f* (s0, x)    (1) 

We shall prove (1) by using induction on the length of the input string x. 

If x = ∧, then 
   f ′*(s0, x) = f ′*(s0′, ∧) 

       = s0′ (by definition of f ′*) 

       = {s0} by the definition of s0′ 

       = f*(s0, ∧) (by the definition of f*) 

       = f*(s0, x) 
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Thus (1) holds for | x | = 0 (i.e. for x = ∧). 
The induction hypothesis is that x is a string satisfying 

   f ′*(s0′, x) = f*(s0, x) 

and we want to show that 

   f ′*(s0′, x a) = f*(s0, x a) for a ∈I. 

To show it, we have 
  f ′*(s0′, x a) = f ′ (f ′* (s0′, x), a) (by the definition of f ′*) 

           = f ′(f*(s0, x), a) (by induction hypothesis) 

           = 
)x,s(*f 0∈σ

∪ f(σ, a) (by the definition of f ′ ) 

          = f*(s0, x a) (by the definition of f*) 

We know that a string x is accepted by M′ if f ′*(s0′, x) ∈ A′ that is, if f* (s0, x) 
∈ A′ and using the definition of A′, it follows that this is true if and only if 
 
   f*(s0, x) ∩ A ≠ ϕ,  

that is, if f*(s0, x) ∈ A, that is, if x is accepted by M. Thus x is accepted by M′ 
if and only if x is accepted by M. This completes the proof of the theorem. 

Example: Construct deterministic finite state automaton equivalent to the 
following non – deterministic finite state automaton : 

   M = ({0, 1}, {s0, s1}, s0, {s1}, f) ,  

where f is given by the table 
 

 f 
I 
S 

0                 1 

s0 

s1 

{s0, s1}      {s1} 

      ϕ         {s0, s1} 

 

Solution: Let  

   M′ = {{0, 1}, {ϕ, {s0}, {s1}, {s0, s1}, s0′ = {s0}, A′, f′} 
be the D F S A, where 
   A′ = {s ∈{ϕ, (s0, {s1}, {s0, s1} : s ∩ {s1} ≠ ϕ 

and         = {s1} and {s0, s1} (Accepting states) 

        f ′(s, a) = 
s∈σ

∪  f(σ, a) for s∈ {ϕ, {s0}, {s1}, {s0, s1}} 



COMUTABILITY THEORY 221

We have 

{s0} as the initial state  

The finite set of states is {ϕ, {s0}, {s1}, {s0, s1}} 
The finite set of inputs is {0, 1} 
The accepting states are [s1] and [s0, s1]. 
Now 
   f ′(ϕ, 0) = φ and f ′(ϕ, 1) = ϕ 

   f ′([s0], 0) = f(s0, 0) = [s0, s1] 

   f ′([s0], 1) = f(s0, 1) = [s1] 

   f ′([s1], 0) = f(s1, 0) = φ 

   f ′([s1], 1) = f(s1, 1) = [s0, s1] 

   f ′([s0, s1], 0) = f(s0, 0) ∪ f{s1, 0} 

            = {s0, s1} ∪ {s1} 

            = [s0, s1] 

   f ′({s0, s1}, 1) = f(s0, 1) ∪ f(s1, 1) 

              = {s1} ∪ {s0, s1} 

              = [s0, s1] 

Hence the next state function and the transition diagram for D F S A are as 
given below :  
 
  

 f ′ 
      I 
S 

0                 1 

ϕ 

[s0] 

[s1] 

[s0, s1] 

ϕ ϕ 

[s0, s1]         [s1] 

        φ           [s0, s1] 

  [s0, s1]        [s0, s1] 
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It may be mentioned here that a state which is never entered may be deleted 
from the transition diagram.   In view of this, the above transition diagram 
becomes  
 
 
 
 
 
 
 
                     
 
 
Thus, we note that if  N D F S A has n states, then D F S A will have 2n 
states. 
 

Example: Draw transition diagram of the N D F S A  

M′ = ({a, b}, {s0, s1, s2}, {s0}, s0, f), 

where f is given by  
 

             f 
              I 
S 

   a                b 

s0 

s1 

s2 

 

   ϕ                 {s1,s2} 

{s2}           {s0,s1} 

{s0}              φ 

 
Also find equivalent D F S A. 

Solution: Here 
Initial stage is s0 

    φ  [ s0]   [s1] [s0 s1] 

0 

1 

1 

1 

0 

0 

1 

    φ   [s1] [s0 s1] 

0 

1 

0 
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Set of Accepting state is {s0} 
Finite set of states is {s0, s1, s2} 
Finite set of inputs is {a, b} 
Hence the transition diagram is 

 
                                                                              
                                                                               
                                                                           
                                                                           
 
                                                               
Let 

M′ = ({0, 1}, {ϕ, {s0}, {s1}, {s2}, {s0, s1},  

{s0, s2}, {s1, s2} {s0, s1, s2}} s0′, A′, f ′) 

be the equivalent D F S A, where 

   s0′ = [s0] 
and set of accepting states  is 

A′ = {s ∈ {φ, {s0},...., {s0, s1, s2} : s ∩ {s0} ≠ ϕ} 

     = {s0}, {s0, s1}, {s0, s2}, {s0, s1, s2} 

Further 

f ′(ϕ , a) = ϕ , f ′(ϕ , b) = ϕ 

f ′([s0] , a) = f(s0 , a) = ϕ  ,   f ′([s0] ,b) = f(s0 , b) = [s1 s2] 

f ′([s1] , a) = f(s1 , a) = [s2]  ,   f ′([s1] , b) = f(s1 , b) = [s0 s1] 

f ′([s2] , a) = f(s2 , a) = [s0]  ,   f ′([s2] , b) = f(s2 , b) = ϕ 

f ′([s0 s1] , a) = f(s0, a) ∪ f(s1 , a) = [s2]   ,   f ′([s0 s1] , b) = [s0 s1 s2] 

f ′([s0 s2] , a) = f(s0 , a) ∪ f(s2 , a) = [s0] ,  

f ′([s0 s2] , b) = f(s0 , b) ∪ f(s2 , b) = [s1 s2] 

f ′([s1 s2] , a) = f(s1 , a) ∪ f(s2 , a) = [s0 s2] ,  

f ′([s1 s2] , b) = f(s1 , b) ∪ f(s2 , b) = [s0 s1]  

f ′([s0 s1 s2] , a) = f(s0 , a) ∪ f(s1 , a) ∪ f(s2 , a) = [s0 s2] ,  

f ′([s0 s1 s2] , b) = f(s0 , b) ∪ f(s1 , b) ∪ f(s2 , b) 

 = [s0 s1 s2] 

Thus, the transition table of D F S A is 
 
 

 s0  s1  s2 

b 

b 
a 

b 

a 

b 
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             F 
       I 
S 

 a                 b 

ϕ 
[s0] 
[s1] 
[s2] 
[s0 s1] 
[s0 s2] 
[s1 s2] 
[s0 s1 s2] 
 

φ                ϕ 
ϕ             [s1 s2]                 
[s2]          [s0 s1] 

 [s0]             ϕ 
 [s2]           [s0 s1 s2] 
 [s0]           [s1 s2] 
[s0, s2]       [s0, s1] 
[s0 s2]        [s0 s1 s2] 

 
 
 
The transition diagram of deterministic finite state automaton is therefore as 
shown in the diagram below: 
                                              b 
 
 
                a                              b                                   b           
          
       a   
   
 
         a          b      
  
                             a                       a                                     
          
                                             b      
b    
      a          
            b 
           
                                                                        a 
                     a       b                                 
 
Since the state [s1] is never entered, it may be removed . 

4.6 Moore Machine and Mealy Machine 

We have seen that in case of finite automaton, the output is limited to a binary 
signal “accept” or “don′t accept”. However, some models in which the output 
is chosen from some other alphabet have also been considered. There are two 
different approaches. 

 s0  [s0 s2] [s1 s2]  [s0 s1] 

[s2] [s1] 

 ϕ 

 [s0 s1 s2] 
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(1) If the output function depends only on the present state and is independent 
of the current input, the model is called a Moore Machine. 

(2) If the output function is a function of transition, i.e. a function of present 
state and the present input, the model is called a Mealy Machine. 

MOORE MACHINE 
A Moore machine is a six – tuple 

   (I, S, O, s0, f, g), 
where  

(1) I is a finite set of input symbols 

(2) S is a finite set of internal states 

(3) O is a finite set of output symbols 

(4) s0 is the initial state 

(5) f is the transition (next – state) function from S × I into S  

(6) g is the output function mapping S into O. 

The output in response to input a1 a2……….an, n ≥ 0 is g(s0) g(s1)……g(sn), 
where s0, s1,……..sn is the sequence of states such that 

   f(si-1, ai) = si , 1 ≤ i ≤ n. 

Moore Machine gives output g(s0) in response to input ∈ (empty string). 

Obviously, D F S A is a special case of a Moore Machine, where the output 
alphabet is  {0, 1} and the state s is “accepting” if and only if g(s) = 1. 

Example: Let 

   M = (I, S, O, s0, f, g) 

be a Moore Machine, where 

   I = {0, 1}, S = {s0, s1, s2, s3} 

   O = {0, 1}, s0 is initial state , 

f is transition function such that 

   f(s0, 0) = s3,  f(s0, 1) = s1 

   f(s1, 0) = s1,  f(s1, 1) = s2 

   f(s2, 0) = s2,  f(s2, 1) = s3 

   f(s3, 0) = s3,  f(s3, 1) = s0  ,  
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and g is the output function such that 

 g(s0) = 0, g(s1) = 1,  g(s2) = 0,  g(s3) = 0 

Determine the transition table for M and the output string for the input string 
0111. 

Solution: The transition table for this Moore machine is 

        f                              G 
              I 
S 

0            1    

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                s0 

         0 

         1 

         0 

         0 

 
The input string is 0111. We note that 
For empty string ∈, the output is g(s0) = 0 

   f(s0, 0) = s3 and g(s3) = 0 

   f(s3, 1) = s0 and g(s0) = 0 

   f(s0, 1) = s1 and g(s1) = 1 

   f(s1, 1) = s2 and g(s2) = 0 

Thus the output string is  

   0 0 0 1 0. 

MEALY MACHINE 
A Mealy Machine M is a six – tuple 

   (I, S, O, s0, f, g), 

where  

(1) I is a finite set of input symbols 

(2) S is a finite set of internal states 

(3) O is a finite set of output symbols 

(4) s0 is the initial state 

(5) f is the transition (next – state) function from S × I into S  

(6) g is the output function mapping S × I  into O. 
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The output given by M in response to input a1 a2….an  is g(s0, a1) g(s1, a2) g(s2, 
a3)……g(sn-1, an), where s0, s1,…..sn is the sequence of states such that g(si-1, ai) 
= si, 1 ≤ i ≤ n. 

Note that the output sequence in case of Mealy Machine has length n, 
whereas the length of output sequence in case of Moore Machine is n + 1. 
Further, Mealy Machine gives output ∈ for the input string ∈. 

4.7 Equivalence of Moore and Mealy Machines 

We know that the output string length in case of Mealy machine is one less 
than the output string length in case of Moore machine. 

Neglecting the response of a Moore machine to input ∈, we say that Moore 
Machine M and Mealy machine M′ are equivalent if for all input string v 

   k ∆M′ (v) = ∆M (v), 

where ∆M′ (v) and ∆M (v) are output produced by M′ and M on input v and k is 
output of M for its initial state. 

Theorem: Let M1 = (I, S, O, s0, f, g) be a Moore machine. Then there is a 
Mealy machine M2 =          (I, S, O, s0, f, g′) which is equivalent to M1. 

Proof: Define g′ : S × I → O by  

   g′(s, a) = g(f(s, a) , for all s ∈ S and a ∈ I. 

Then M1 and M2 enter the same sequence of states on the same input and with 
each transition M2 emits the output that M1 associates with the state entered. 

Example: Let the transition table of a Moore machine M1 = ({0, 1}, {s0, s1, s2, 
s3}, {0, 1}, s0, f, g) be as given below: 
 
 
 

        f                              g 
           I 
S 

0            1    

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                s0 

         0 

         1 

         0 

         0 

 
Construct a Mealy machine M2 equivalent to M. 
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Solution: Let 

       M2 = ({0, 1}, {s0, s1, s2, s3}, {0, 1}, f, g′, s0) 

be the equivalent Mealy machine, where 

  g′(s, a) = g(f(s, a) , s ∈ S, a ∈ I. 

Thus 
   g′(s0, 0) = g(f(s0, 0) = g(s3) = 0 

   g′(s0, 1) = g(f(s0, 1) = g(s1) = 1 

   g′(s1, 0) = g(f(s1, 0) = g(s1) = 1 

   g′(s1, 1) = g(f(s1, 1) = g(s2) = 0 

   g′(s2, 0) = g(f(s2, 0) = g(s2) = 0 

   g′(s2, 1) = g(f(s2, 1) = g(s3) = 0 

   g′(s3, 0) = g(f(s3, 0) = g(s3) = 0 

   g′(s3, 1) = g(f(s3, 1) = g(s0) = 0 

Thus the transition table for Mealy machine is  
 

        f                              g′ 
              I 
S 

0            1   0             1 

 → s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                s0 

 0             1 

 1             0 

 0             0 

 0             0 

  
Theorem: Let M1 = (I, S, O, s0, f, g) be a Mealy machine. Then there is a 
Moore machine M2 =  (I, S′, O, s0′, f ′, g′) which is equivalent to M1. 

Proof: Let b0 be arbitrary member of finite set O of output symbols.   Set 

   M2 = (I, S × O, O, [s0, b0], f ′, g′) 

Thus the states of M2 consists of pairs [q, b], where q ∈ S, b ∈ O. 
Define f′ by 
   f′([q, b], a) = [f(q, a), g(q, a)] 
and g′ by 
   g′([q, b]) = b. 

The component b in a state [q, b] is the output made by M1 on some transition 
into state q. Only the first component of M2’s states determine the moves made 
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by the machine M2. Induction on n shows that M1 enters states q0, q1, …..,qn on 
input a1 a2…….an and emits outputs b1, b2….,bn, then M2 enters states [q0, b0], 
[q1, b1],……,[qn, bn] and emits outputs b0, b1, b2…..,bn. 

Example: Let M1 be a Mealy machine whose transition table is  
 

        f                              g 

           I 
S 

0            1   0             1 

      s0 

      s1 

      s2 

      s3 

s3                s1 

s1                s2 

s2                s3 

s3                s0 

 0             1 

 1             0 

 0             0 

 0             0 

 
Find equivalent Moore Machine M2. 

Solution: The states M2 are  

[s0, 0], [s1, 0], [s1, 0], [s1, 1], [s2, 0], [s2, 1], [s3, 0], [s3, 1]. 

We select b0 = 0 making [s0, 0] as start state for M2. 

The transitions and outputs of M2 are as follows: 

  f ′([s0, 0], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g′([s0, 0]) = 0 

  f ′([s0, 0], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g′([s0, 0]) = 0 

  f ′([s0, 1], 0) = [f(s0, 0), g(s0, 0)] = [s3, 0]; g′([s0, 1]) = 1 

  f ′([s0, 1], 1) = [f(s0, 1), g(s0, 1)] = [s1, 1]; g′([s0, 1]) = 1 

  f ′([s1, 0], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g′([s1, 0]) = 0 

  f ′([s1, 0], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g′([s1, 0]) = 0 

  f ′([s1, 1], 0) = [f(s1, 0), g(s1, 0)] = [s1, 0]; g′([s1, 1] ) = 1 

  f ′([s1, 1], 1) = [f(s1, 1), g(s1, 1)] = [s2, 0]; g′([s1, 1]) = 1 

  f ′([s2, 0], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g′([s2, 0]) = 0 
  f ′([s2, 0], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g′([s2, 0]) = 0 

  f ′([s2, 1], 0) = [f(s2, 0), g(s2, 0)] = [s2, 0]; g′([s2, 1]) = 1 

  f ′([s2, 1], 1) = [f(s2, 1), g(s2, 1)] = [s3, 0]; g′([s2, 1]) = 1 

  f ′([s3, 0], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g′([s3, 0]) = 0 
  f ′([s3, 0], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g′([s3, 0]) = 0 
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  f ′([s3, 1], 0) = [f(s3, 0), g(s3, 0)] = [s3, 0]; g′([s3, 1]) = 1 

  f ′([s3, 1], 1) = [f(s3, 1), g(s3, 1)] = [s0, 0]; g′([s3, 1]) = 1 

Thus the transition table and transition diagram of Moore machine M2 which is 
equivalent to given Mealy machine M1 are : 

        f ′                          g′ 
           I 
S 

0               1                   

→ [s0, 0] 
  * [s0, 1] 

     [s1, 0] 
     [s1, 1] 
     [s2, 0] 
  * [s2, 1] 
       [s3, 0] 
  * [s3, 1] 

[s3, 0]    [s1, 1] 
[s3, 0]    [s1, 1] 
[s1, 0]    [s2, 0] 
[s1, 0]    [s2, 0] 
[s2, 0]    [s3, 0] 
[s2, 0]    [s3, 0] 
[s3, 0]    [s0, 0] 
[s3, 0]    [s0, 0] 

     0             
     1   *          
     0              
     1             
     0 
     1   * 
     0 
     1   * 

and 

         

                                              
     

 

                          

                                                                              

       

The states [s0, 1] , [s2, 1], [s3, 1] can never be entered and so have been 
removed from the diagram. 

Leaving aside the outputs corresponding to the removed states which have 
been marked by * in the transition table, the outputs are 0, 0, 1, 0, 0 .  

 

[s0, 0] [s1, 0] [s3, 0] 

[s1, 1] 

1 

0 0 

[s2, 0] 

1 
0 0 1 

1 1 

0 
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Unit-5  

Languages and Grammars 
 
Formal languages are used to model nature languages and to communicate with 
computers. Before giving definition to formal language, we define some 
elementary notions.  

5.1 Basic Concepts  

Definition: Let A be a non – empty set of symbols. Then a finite sequence of 
the elements of A is called a word or string w on the set A. For example, 

   w = a b b a a a b 

is a string on A = {a, b}. 

The set A is called alphabet and its elements are called letters. The empty 
sequence of letters is also considered as a string and is denoted by ∈, λ or 1. 
This is called empty word. 

The set of all words on the set A is denoted by A*. 

The length of the string (word) w is the number of elements in the string and 
is denoted by l(w) or   |w|. The length of ∈ is 0. 

For example, thus the length of the word w cited above is 7. 

Definition: Let u and v be two strings on alphabet A. The concatenation of u 
and v is the word obtained by writing down the letters of u followed by the 
letters of v.  It is denoted by uv. 

For example, if u = a b c a b and v = c c a b b a, then concatenation of u and v 
is  

   u v = a b c a b c c a b b a = a4 b4 c3 

We observe that 

   l(u v) = l(u) + l(v). 

Also, we note that for any words u, v, w, we have 

   (u v) w = u(v w) 
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Thus, the concatenation operation on an alphabet A is associative, but not 
commutative because  u v ≠ v u. 

Definition: Let u = x1 x2………xn be a word on an alphabet A. Then any 
sequence v = xi xi+1……….xj is called a subword of  u. 

The subword which begins with the first letter of u is called an initial segment 
of u. 

For example, x1, x2, x3 is an initial segment of u. 

Let F denote the set of all non – empty words from an alphabet A with the 
operation of concatenation. We know that F is a semi – group, called Free 
semigroup over A or the free semigroup generated by A. 

Further, since ∈ is an identity element for the operation of concatenation, A* 
becomes a monoid and is called Free monoid over A.  

5.2. Language, Regular Expressions and Language Defined  
Regular Expressions 

Definition: Let A be a finite set of symbols. A (formal) language L over A is a 
subset of A*, the set of all string over A. 

For example, let A = {a, b}. Then the set L of all strings over A containing an 
odd number of a’s is a language over A. 

Similarly, {a, ab, ab2, …….} is a language over A. This consists of all words 
beginning with a and followed by zero or more b’s. 

Let L1 and L2 be languages over an alphabet A. Then the concatenation of L1 
and L2, denoted by L1L2 , is the language defined by 

   L1 L2 = {u v : u ∈ L1, v ∈ L2} 

Thus L1 L2 is the set of all words formed by the concatenation of a word from 
L1 with a word from L2. For example, let 

   L1 = { a, b3}, L2 = {a3, a b2, b} 

Then 

   L1 L2 = {a4, a2 b2, a b, b3 a3, b3 a b2, b4} 

is a language. 

Since concatenation of words is associative, it follows that concatenation of 
languages is associative. 
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Definition: The Power of a language L are defined as  

   L0 = { ∈ }, L1 = L, L2 = LL, ……., Lm+1 = Lm L, m > 1. 

Definition: The unary operation L* of a language L, called the Kleene closure 
of L is defined as the infinite union 

  L* = L0 ∪ L1 ∪ L2 ∪ …… = Υ
∞

=1k

kL  

If we leave apart L0 = { ∈ }, then we write  

       L+ = L1 ∪ L2 ∪ ……….= Υ
∞

=1k

kL . 

Definition: The regular expressions over an alphabet A and the sets they 
denote are defined recursively as follows: 

(1) The empty string ∈ is a regular expression and denotes the set {∈}. 

(2) φ or ( ) is a regular expression and denote the empty set. 

(3) Each letter a in A is a regular expression and denotes the set {a}. 

(4) If r is a regular expression denoting the language R, then (r*) is a regular 
expression on and denotes the set R*. 

(5) If r and s are regular expression denoting the language R and S , then (r ∨ s) 
or (r + s) is a regular expression and denotes the set R ∪ S. 

(6) If r and s are regular expressions denoting the languages (sets) R and S, 
then (r s) is a regular expression and denotes the set R S. 

Thus, a regular expression r is a special kind of a string (word) which uses the 
letters of A and the five symbols 

  (      ) , * , .  , ∨ , ∈ (or ∧) 

For example, 

(i) the regular expression (0 + 1)* denotes all the strings of 0’s and 1’s. 

(ii) the regular expressions (1 + 10)* denotes all the strings of 0’s and 1’s and 
beginning with 1 and not having two consecutive 0’s. 

(iii) The regular expression (0 + 1)* 00 (0 + 1)* denotes all the strings of 0’s 
and 1’s with at least two consecutive 0’s. 
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(iv) (0 + 1)* 0 1 1 denotes all strings of 0’s and 1’s ending in 0 1 1 

(v) 0* 1* 2* denotes all the strings with any number of 0’s followed by any 
number of 1’s followed by any number of 2’s. 

Definition: The language L(r) over A defined by a regular expression r over 
A is as follows: 

(1) L(∈) = {∈} 

(2) L( ( ) ) = ϕ, the empty set 

(3) L(a) = {a}, where a is a letter in A. 

(4) L(r*) = (L(r))*, the Kleene closure of L(r). 

(5) L(r1 + r2) = L(r1) ∪ L(r2), the union of languages 

(6) L(r1 r2) = L(r1) L(r2), the concatenation of the languages. 

Definition: Let L be a language over A. Then L is said to be a regular 
language over A if there exists a regular expression r over A such that L = 
L(r). 

Example: Let A = {a, b}. If 

(i) r = a*, then L(r) consists of all powers of a 
(ii) r = a a*, then L(r) consists of all positive powers of a, that is all words in a 
excluding the empty word. 
(iii) r = a + b*, then L(r) consists of a or any word in b, that is  
 
   L(r) = { a, ∈, b , b2…..} 

(iv) r = (a + b)*, then L(r) consists of all strings of a and b, i.e. all words 
(strings) over A. 
(v) r = (a + b)* a a, then L(r) denoted all strings of a and b ending in a a, i.e. 
L(s) consists of the concatenation of any word in A with a a (or a2). 

Example: Let L = {am bn : m, n > 0} be a language over A = {a, b}. Find a 
regular expression r such that  

   L = L(r)                                                   

Solution: The given language L consists of strings beginning with one or more 
a’s followed by one or more b’s. Hence  

   R = a a* b b* 
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5.3 Language Determined by a Finite – State Automaton 

Let M be a finite state automaton with input set A. Then M defines a language 
over A, denoted by L(M), as follows: 

Let u = a1 a2……….an be a string on A. Then u determines a sequence of states 

   s0 → s1 → s2 → ……… →sn 

where s0 is the initial state and  

   f(si-1, ai) = si for i ≥ 1. 

In other words,  u determines the path 

   s0 → s1 →s2, ……………, → sn 

 A finite state machine M is said to accept (recognize) the word u if the final 
state sn belong to an accepting state in A (subset of internal states S). 

The language L(M) of the finite state automaton M is the collection of all 
words from the input set A which are accepted by M. 
Example: Determine the language L(M) of the finite state automaton whose 
transition diagram is given below 
                                      b                                  b   
 
                                     a                                      
 
                       a                                                a,b 

Solution: Let M = (I, S, A, s0, f) be the finite – state automaton. Then, we note 
that s0 is the initial  state, S = {s0, s1, s2} and  
   f(s0, a) = a, f(s, b) = s1 

   f(s1, a) = s0, f(s1, b) = s2 

   f(s2, a) = s2, f(s2, b) = s2. 

Also A = {s0, s1}and I = {a, b}. 

We note that 

(i) We can never leave s2 
(ii) The state s2 is the only rejecting (non – accepting) state 
(iii) a string in which there appear two successive b’s is not accepted by M. 

Thus L(M) consists of all strings (words) from I = {a, b} which do not have 
two successive b’s. 

a1 a2 an 

s0 
s1    s2 
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Example: Find the language accepted by the automaton M shown in the 
transition diagram below: 
 
   b               a 
                    a                     a                         a                                        
              b                b         
   
            b         
        
     a         b 
                    
Solution: Let  M = (I, S, A, s0, f) be the F S A. Then, we have 

   I = {a, b}, S = {s0, s1, s2, s3, s4}, s0 is the initial state, 

   A = {s4} 
and f is given by 
   f(s0, a) = s1, f(s0, b) = s0, f(s1, a) = s2, f(s2, a) = s2, f(s2, b) 

= b, 

   f(s3, b) = s4, f(s3, a) = s1, f(s4, b) = s4, f(s4, a) = s4. 

We note that  

   s0 → s1 → s2 → s3 → s4 (accepting state) 
 

  s0 → s0 → s1 → s2 → s3 → s4   (accepting state) 
 

s0 → s0 → s1 → s2 → s3 → s4 → s4 → s4 (accepting state) 
 
Hence, L(M) consists of all words which contain a a b b as a subword. 

5.4. Grammars 

Definition: A phrase – structure Grammar or simply a Grammar G 
consists of 

(1) A finite set N of non – terminal symbols (or variables) 
(2) A finite set T of terminal symbols, where N ∩ T = φ 
(3) A finite subset P of [(N ∪ T)* − T*] × (N ∪ T)*, called the set of 
productions. Thus a production is an ordered pair (A, B), written as A → B, 
where A ∈ [(N ∪ T)* − T*] must include at least one non – terminal symbol 
whereas B ∈ (N ∪ T)* can consist of any combination of non – terminals and 
terminal symbols. 

(4) A starting symbol σ ∈ N. 

a a b b 

a b b a b 

a b b b a a b 

 s0  s1  s2  s3  s4 
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A grammar G is denoted by G(N, T, P, σ). 

Terminals will be denoted by lower case letters a, b, c,… whereas non – 
terminals will be denoted by A, B, C……. 

Example: Let 

   N = {σ, A} 

   T = {a, b} 

   P = {σ → b σ, σ → b A, A → a A, A → b} , 

where σ is the starting symbol. 

Then G = ( N, T, P, σ) is a grammar. 

Since    σ → b σ, σ → b A 

and  

   A → a A, A → b , 

we can also write the productions as  

   σ → (b σ, b A), A → (a A, b) . 

Definition: Let G = (N, T, P, σ) be a grammar and let α → β be a production. 
If x α y ∈ (N ∪ T)*, then x β y is said to be directly derivable from x α y and 
we write 

   x α y � x β y. 

Further, if αi ∈ (N ∪ T)* for i = 1, 2, ……, n, and αi+1 is directly derivable 
from αi for i = 1, 2, ……, n-1, we say that ααααn is derivable from αααα1 and write 

       α1 � αn  .  

We call 

   α1 � α2 � α3 �………� αn  , 

the derivation of ααααn (from α1). 

By convention, any element of (N ∪ T)* is derivable from itself. 

Definition: The language generated by a grammar G, written L(G), consists of 
all strings over T derivable from the start symbol σ. Thus 
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   L(G) = { v ∈∈∈∈ T* : σσσσ ����…….. ���� v} 

Definition: A sentential form is any derivative of the unique non – terminal 
symbol S.  

The language L(G) generated by the grammar G is the set of all sentential 
forms whose symbols are terminals.  

Example: Let 

   G = {N, T, σ, P} 

be a grammar, where 

N = {σ}, T = {a, b}, σ is starting symbol, and the production P are 

   P = {σ → a , σ → σ a , σ → b and σ → b σ}. 

Obtain sentential form and find the language generated by G. 

Solution: We note that 

   σ � σ a 

      � σ a a 

      � b σ a a  

      �b b σ a a  

      � b b b a a 

Thus b3 a2 = b b b a a is a sentential form. Hence the language generated by G 

is 

   L(G) = {bn am : n ≥ 0, m ≥ 0}. 

Definition: Let G = (N, T, P, σ) be a grammar and let λ be the null string. If 
every production is of the form 

   α A β → α δ β,  

where α, β ∈ (N ∪ T)*, A ∈ N, δ ∈ (N ∪ T)* − {λ}. Then G is called a 
context – sensitive              (or type – 1) grammar.  

Definition: A grammar G = (N, T, P, σ) is said to be context – free                      
(or type – 2) grammar if the productions are of the form. 

           A → δ, 
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where A ∈ N, δ ∈ (N ∪T)*. 

Thus, in this case, we can replace A by δ regardless of A where A appears. 

Definition:  A grammar G = (N, T, P, σ) is said to be regular (or type – 3) 
grammar if every production is of the form 

   A → a or A → a B or A → λ , 

where A, B ∈ N, a ∈ T. 

Thus, in this case, we replace a non – terminal symbol by a terminal symbol, 
by a terminal symbol followed by a non – terminal symbol, or by the null 
string. 

We further note that a regular grammar is context free grammar and that a 
context free grammar with no productions of the form A → λ is a context – 
sensitive grammar. 

Example: Name the type of the grammar G defined by T = {a, b, c}, N =              
{σ, A, B, C, D, E}, starting symbol σ and productions 
 
σ → a A B, σ → a B, A → a A c, A → a c, B → D c, D → b, 

   C D → C E, C E → D E, D E → D C, C c → D c c. 
 
Also find its language. 

Solution: The production C E → D E says that we can replace C by D if C is 
followed by E. The production C c → D c c says that we can replace C by D C 
if C is followed by c. 

Thus the grammar is context – sensitive. 

We can derive D C from C D since 

   C D � C E � D E � D C. 

We note that  

σ � a A B � a a A c B � a a a c c B � a a a C C D c  

� a a a C D C c � a a a D C C c � a a a D C D c c  

� a a a D D C c c � a a a D D D c c c � a a a b b b c c c 

Thus a3 b3 c3 is in L(G). Proceeding in this way, we can show that 

   L(G) = {an bn cn : n ∈ N}. 
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Example: Determine, whether the given grammar is context – sensitive, 
context free, regular or none of these: 

   G = (N, T, σ, P), 

Where N = {σ, A}, T = {a, b}, starting symbol is σ and the productions are 

σ → b σ, σ → σ A, A → a σ, A →b A, A → a, σ → b. 

Solution: We note that 

(i) A → δ, A ∈ N, δ ∈ (N ∪ T)* 

Hence the grammar is context – free grammar. 

(ii) A → a or A → a B, A ∈ N, B ∈ N, a ∈ T. 

Hence the grammar is regular. 

(iii) The grammar is also context sensitive because 

   α A β → α δ β,   

where α, β ∈ (N ∪ T)*, A ∈ N, δ ∈ (N ∪ T)* − {λ}. 
 
Example :    Find a context-free grammar G which generates the language  
 
  L = { an bn :  n > 0} .  

Solution :  Here  

  T = {a, b} .  

If we consider the productions 

  σ → ab ,    σ  →  aσ b ,  

then we note that  

  σ � a σ b �  a ab b  

  σ � a σ b  a a σ b b �  a a a b b b  

  σ � a σ b � a a σ b b � a a a σ b b b � a a a a b b b b  

   ………………. 

In general  

  L(G) =  {an bn ,  n > 0 } .  

Hence the grammar with production 

  σ → ab,  σ → a σ b  
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generates L(G).  

5.5 Derivation Trees of Context – Free Grammars 

Let G be a context free grammar. An ordered rooted tree which represents any 
derivation of a word in L(G) is called a Derivation Tree or parse tree. 

Example: Consider the language 

   L = {an bn : n > 0} 

We have seen that context free grammar which generates L(G) is 

   N = {σ}, T = {a, b}, P = {σ → a σ b, σ → a b} 

The word w = a a a b b b is derived as  

   σ � a σ b � a a σ b b � a a a b b b 

The following figure will therefore be its derivation tree: 
 
•   σ 

           a •  • b 
    •   σ 
           a •  • b 
    •    σ 
           a •  • b 

Example: Find the derivation tree for the word a a b a in L(G) where G has the 
productions 

   σ → a A, A → a B, B → b B, B → a. 

Solution: The word a a b a is derived as 

   σ � a A � a(a B) � a a (b B) � a a b a 

and therefore the derivation tree of a a b a is 
 

•   σ 
                 a •            •  A 
             a •            •  B 
        b •            • B 

          • a 
 
Definition: A language is said to be context – sensitive if there is a context – 
sensitive grammar G with L = L(G). 
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Definition: A language is said to be context free if there is a context – free 
grammar G with            L = L(G). 

Definition: A language is said to be regular if there is a regular grammar G 
with L = L(G). 

Example: Is the language 

   L = {an bn, n = 1, 2, …..} 

over {a, b} context free? 

Solution: Let G be grammar defined by  

   N = {σ}, T = {a, b}, σ is staring symbol and production 
as  

   σ → a σ b , σ → a b 

Then derivation of σ are 
   σ � a σ b 
       � a a σ b b  
 
       --------------- 
       --------------- 
       � an-1 σ bn-1 
       � an-1 a b bn-1 = an bn. 

Thus the grammar G generates the language L(G). Also the grammar G is 
context free. Hence the language L = [an bn, n = 1, 2, …..] is context free 
language. 

5.6  Similarity of Regular Grammar and Finite State Automata 

We now show that regular grammar and finite state automata are 
essentially the same. After that we would be able to say that 

     “A language is a regular set (or just regular) if it is accepted by some 
finite automaton.” 

Theorem: Let M be a finite – state automaton given as a transition diagram. 
Let σ be the initial state. Let T be the set of input symbols and let N be the set 
of states. Let P be the set of productions 

    s → x s′ 

if there is an edge labeled x from the state s to the state s′,  and  
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              s → λ 

if s is an accepting state.  Let 

   G = (N, T, P, σ) 

be the regular grammar.   Then the set of strings accepted by M is equal to 
L(G). 

Proof: Let AC(M) denote the set of strings by M. We first show that AC(M) ⊆ 
L(G). So, let              α ∈ AC(M). If α is the null string, then σ is an accepting 
state. In this case G contains the production. 

   σ → λ 

The derivation 

   σ � λ     (i) 

shows that α ∈ L(G). 

Now let α ∈ AC(M) and let α is not a null string. Then 

   α = a1 a2………an, ai ∈ T. 

Since α is accepted by M, there is a path 

   (σ, s1, s2,……..,sn)  , 

where sn is an accepting state with edges successively labeled a1,……, an. It 
follows that G contains the productions 

   σ → a1 s1 
   s1 → a2 s2 
   ------------- 
   ------------- 
   sn-1 → an sn 

Since sn is an accepting state, G also contains the production 

   sn → λ. 

The derivation 

   σ � a1 s1 
       � a1 a2 s2 
       � a1 a2 a3 s3 
        --------------- 
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        ---------------  
        � a1 a2 …. an sn 
        � a1 a2……an  (Θ sn → λ)   (ii) 

shows that α = a1 a2……..an ∈ L(G). 

It remains to show that L(G) ⊆ Ac(M). Suppose that α ∈ L(G). If α is the null 
string, then α must result from the derivation 

   σ � λ 

Thus the production σ → λ is in the grammar. Hence σ is an accepting state in 
M and so α ∈ Ac(M). 

Now let α ∈ L(G) be a non – null string. Then  

   α = a1 a2……….an  ,  ai ∈ T. 

So there is a derivation of the form (ii). If in the transition diagram, we begin at 
σ and trace the path 

   (σ, s1, s2,……., sn) , 

we can generate the string α. The last production used in (ii) is sn → λ. Thus 
the last state reached is an accepting state. Therefore, α is accepted by M, that 
is, L(G) ⊆ A c(M). Hence 

   L(G) = A c(M) . 

Thus, Given a finite state automaton M, we can construct a regular 
grammar G such that the set of strings accepted by M is equal to L(G). 

Example: Let G(T, N, P, σ) be a regular grammar, where 

   T = {a, b}, N = {σ, A}, σ is starting symbol and  

   P = {σ → b σ , σ → a A , A →b A , A → b}. 

Does there exist finite state automaton corresponding to G? 

Solution: Let the inputs symbol be the terminal symbols and the states be the 
non – terminal symbols, where σ is the initial state. 

For each production of the form 

   s → x s′, 

draw an edge from state s to state s′ and label it x. Thus the productions 
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   σ → b σ , σ → a A , A → b A 
yield the graph 
 
  b   b 
   a        b 
        
 
The last production A → b is equivalent to two productions 
 
  A → bB  and B → λ  ,  

where B is  an additional and Mor – terminal symbol.  
 
 The productions  
 
  σ → b σ  ,  σ →  a A  ,  A → bA ,   A → bB  

gives us the graph  
 
  b   b 
   a        b 
        , 

and the production 

   B → λ 

indicates that B is an accepting state. 

We note that  

(i) Vertex A has no outgoing edge labeled as a 
(ii) Vertex B has no outgoing edge 
(iii) A has two outgoing edges labeled as b . 

Thus, the above graph is not finite – state automation but a non – 
deterministic finite state automation (I, S, A, σσσσ, f), where I = {a, b},  S = {σ, 
A, B}, A = {B}, initial state σ and next state function f is defined by 

              F 

S a                    b 

σ 

A 

B 

{A}             {σ} 

φ               {A, B} 

ϕ                  φ 

I 

 σ  A  B 

 σ  A 
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We further notice that 

(i) the string b b a b b is in L(G) since 

   b � b σ 

      � b b σ 

      � b b a A 

      � b b a b A 

      � b b a b b B 

      � b b a b b 

Also the string b b a b b is accepted by the non-deterministic finite state 
automation obtained above since the path 

   σ → σ → σ → A → A → B  

which ends at state B(Accepting state) represents the string b b a b b  

Theorem: Let G(T, N, P, σ) be a regular grammar and let I = T , S =                  
N ∪ {F}, where F ∉ N ∪ T, σ as initial state, A = {F} ∪ {s : s → λ ∈ P} and f 
be defined by 

   F(s, x) = {s′ : s → x s′ ∈ P} ∪ {F : s → x F ∈ P}. 

Then the non – deterministic finite state automaton M = (I, S, A, σ, f) accept 
the strings L(G).  

(The proof is same as the proof for finite state automation). 

5.7  Kleene Theorem and Pumping Lemma  

We know that a non – deterministic finite state automaton can be converted 
into an equivalent finite state automaton. 

Thus it follows that 

Theorem (Kleene) : A language L is regular if and only if there exists a finite 
– state automaton that accept strings in L. 

Theorem (Pumping Lemma) : Let M be an automaton over A such that  

(i) M has k states s0, s1…….., sk 

(ii) M accepts a word v from A where | v | > k. 

b a b b b 
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Then 

   w = x y z, 

where, for every m, vm = x ymz is accepted by M.  

Proof: Let s0, s1,……..,sk be the states of automaton M over A and let M 
accepts a word v = a1 a2….an over A such that n > k. Let the sequence of states 
determined by the word v be  

   P = (s0, s1, ……, sn) . 

Since n > k, two of the states in P must be equal.   Suppose si = sj, i < j. Letting 

   x = a1 a2…..ai, y = ai+1 ai+2……aj  , z = aj+1 aj+2….an 

We see that x y ends in si = sj and so x y2, x y3,…., xym (for all m) also end in 
si. Thus for every m, vm = x ym z ends in sn, which is an accepting state 
 
              y = ai+1,…..aj   
 
     x = a1a2…. ai 

                                                                  z = aj+1…an 

 

Example: Show that language L = {am bm : m is positive} is not regular. 

Solution: Suppose on the contrary that L is regular. Then, by Kleene Theorem, 
there exists a finite state automaton M which accept L = {am bm : m is 
positive}. Suppose M has k states. Let v = ak bk be a word. Then length of               
v is greater than k, the number of states in M. Therefore, by Pumping Lemma, 

   v = x y z , y ≠ λ. 

and x y2 z is also accepted by M. 

If y consists of only a’s or only b’s, then v2 = x y2 z will not have same number 
of a’s or b’s. If y consists of both a’s and b’s, then v2 will have a’s following 
b’s. In either case v2 does not belong to L which is a contradiction. Thus L is 
not regular. 

5.8 Ambiguous Grammar 

Definition: A context – free grammar G is called a ambiguous grammar if 
there is at least one string in L(G) which has more than one derivation trees. 

Example: Show that grammar G with productions 

   S → a S , S → S a , S → a 

 s0 si=sj  sn 
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S S 

is ambiguous. 

Solution: We note that the string a a a can be generated by four derivation 
trees 

 
• S    • S 

  a • • S              a • • S 
  a • • S ,   • S    • a 
   • a    • a    
 (S � a S � a a S � a a a)  (S � a S � a S a � a a a) 
       

•     •  
           S •        • a and   • S     • a 
           S •        • a              a •  • S 
           a  •     • a 
  (S � S a � S S a � a a a)      (S � S a � a S a � a a a) 

Hence G is ambiguous. 

Example: Show that the grammar 

   G = ({S}, {a, +}, S, P) 

with production 

   P = (S → S + S, S → a)  

is ambiguous. 

 

Solution: We note that word a + a + a can be generated in two ways : 

(i) S � S + S      •   S 
        � S + S + S            S •  •   S 
        � a + S + S � a + a + S           a •       S •  • S 
        � a + a + a          •  •  

(ii) S � S + S      •   S 
         � S + S + S          S   •  • S 
         � S + S + a           S •  • S • a 
         � a + S + a   •  • 
         � a + a + a 
Thus, the word a + a + a has two derivation tree. Hence G is ambiguous.   
  
 
 

⊕ 

⊕ 

⊕ 

⊕ 
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