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Abstract—TIn this paper, we apply five machine learning models
(Logistic Regression, Naive Bayes, LinearSVC, SVM with linear
kernel and Random Forest) and three feature selection techniques
(PCA, RFE and Heatmap) in one of the key procedures for breast
cancer diagnosis. Using the biopsy cytopathology data with 30
numerical features, we achieve a high accuracy of 97.8%. We
further compare performances of all models evaluated against
various number of features, and examine the reasons behind their
varying performances.
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I. INTRODUCTION

With an estimated 252,710 new cases each year of invasive
breast cancer diagnosed in women in the U.S., breast cancer
is by far the most commonly diagnosed cancer among women
worldwide. Much attention has been put into analyzing the
risk factors pertaining to breast cancer, and what can be done
to lower the risk. Besides widely known risk factors like age,
family history, weight and lifestyle, medical professionals look
into more specific metrics of the breast mass cells to determine
the chances of malignant tumor.

Due to varying nature of breast cancers symptoms, patients
are commonly subject to a series of tests, including but not
limited to mammography, ultrasound and biopsy, to weigh
their likelihoods of being diagnosed with breast cancer. Biopsy,
which involves extraction of sample cells or tissues for exam-
ination, is the most indicative among these procedures.

The sample of cells is obtained from a breast fine needle
aspiration (FNA) procedure and sent to a pathology laboratory
to be examined under a microscope[l]. Various numerical
features, such as radius, texture, perimeter and area, can be
measured from microscopic images. Later on, data obtained
from FNA are analyzed by physicians in combination with
various imaging data to predict probability of the patient
having malignant breast cancer tumor.

An automated system would be hugely beneficial in this
scenario. It will likely expedite the process and enhance the
accuracy of the doctor’s predictions. In addition, if supported
by abundance dataset and the automated system consistently
performs well, it will potentially eliminate the needs for pa-
tients to go through various other tests, such as mammography,
ultrasound, and MRI, which subject patients to significant
amount of pain and radiation.

In this project, the input will be 30 numerical measurements
based on the cytopathology features of the cells. Our approach
is to apply the five machine learning models separately (Lo-
gistic Regress, Naive Bayes, LinearSVC, SVM with linear

kernel and Random Forest) with or without feature selections,
to understand the advantages and disadvantages of each model,
and to select the best subset of features in our effort to generate
the best binary classification result of either malignant or
benign tumor.

II. RELATED WORK

The breast cancer cytologic dataset was originally part of the
study in 1994 “Machine learning techniques to diagnose breast
cancer from image-processed nuclear features of fine needle
aspirates”[2]. In this primary study, 30 numerical features was
extracted from digital scan of the FNA sample. A decision
tree algorithm named Multisurface MethodMSM) or MSM-
Tree was applied for binary classification. More specifically,
the MSM-Tree method places a series of separating planes in
the feature space, and aims to minimize the number of planes
and the number of features used. As a result, it successfully
filtered down to three best features (mean texture, worst area,
and worst smoothness) and achieved with a 95% confidence
level that the true accuracy lies between 95.5% and 98.5%.

Since then, numerous studies has reused this dataset with
various machine learning models and algorithms, most likely
due to the cleanliness of the data and its large number of
features to select from. Most following papers experiment
with several machine learning algorithms and examine one
or several specific metrics to compare performances. Most
popular models include decision trees, neural network, SVM
and perceptron, while the most commonly used metrics include
area under ROC curve (AUC), overall accuracy and accuracy
with confidence level.

As a continuation of these ongoing efforts, this paper
will examine several traditional machine learning models and
a more popular decision tree model, Random Forest using
different metrics.

III. DATASET FEATURES
A. Data

Our dataset is obtained from UCI database and collected
from Wisconsin hospital. There are 569 entries in total, with
212 malignant cases and 357 benign cases. Each row contains
30 different features and the diagnosis of breast cancer (0
for benign and 1 for malignant). The 30 features represent
the mean, standard deviation and the worst of 10 differ-
ent cytopathology measurements, including radius, texture,
perimeter, area, smoothness, compactness, concavity, concave
points, symmetry and fractal dimension.

Due to small size of dataset, we only have training set and
test set. 569 observations are split to 70% for training and 30%
for testing.



B. Feature Selection

1) PCA: Principle Component Analysis (PCA) is a classical
technique that rotationally transforms features of a dataset
into a lower dimensional set of uncorrelated features called
principal components (PCs). PCA is commonly used to reduce
the dimension of a dataset, since too many dimensions is
wasteful for learning algorithms and might lead to overfitting
problems. As PCA tries to find orthogonal projects of the
dataset, it makes the strong assumption that some of the
variables in our the dataset is linearly correlated.

However, PCA did not end up improving our test results but
made our performance worse for all five models. In exploring
the reasons behind the bad performance, we plotted out the
scree plot for PCA shown in Fig. 1. We can see from the
plot that a large number of principle components are needed
to explain the variances within the dataset. As expected, the
dataset is not as linearly correlated, and thus is not a good
candidate for PCA.

Fig. 1: Scree Plot For Principle Components Analysis(PCA)
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2) Recursive Feature Elimination: Recursive Feature
Elimination (RFE) starts with the initial set of features, and
recursively remove one feature that is the least important
until the desired number of features is reached. We run RFE
algorithm in sklearn to reduce number of features down to
3,5, 10, and 30 (original set). The selected features using
different models are quite different, but radius and concavity
related features appear to be more important as they are
selected more often. For example, for logistic regression,
[concavity_mean, radius_worst, concavity_worst] are selected
if the number is set to 3. RFE is not applied to Naive Bayes
because sklearn doesn’t support such model.

3) Correlation Heat Map: The correlation matrix for all
“mean” features is calculated and Fig.2 shows the correlation
heat map for the matrix. A higher correlation index means
two features are more closely related, and thus, including
one of them in our selected features is enough. From this
heat map, we notice that radius, perimeter and area can be
grouped together, and concave_points and concavity can be
grouped together. One valid feature selection strategy using
the correlation heatmap could be [radius_mean, texture_mean,
smoothness_mean, compactness_mean, concavity_mean, sym-

metry_mean, fractal_dimension_mean]. However, using the
features selected by correlation heat map performs worse than
the original feature set. So we will not include it in the later

discussions.
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Fig. 2: Correlation Heat Map of Mean Features
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IV. METHODS

Because the size of our dataset is relatively small, we
use bootstrap and bagging technology in our implementation.
Using resample in sklearn, roughly 30% of data are selected as
testing set and 70% are selected as training set. The following
four machine learning models are all implemented using the
sklearn library.

A. Logistic Regression

Logistic Regression uses the following logistic function to
make predictions:

1

ho() 1+ exp(—0Tz)
The above logistic function utilizes sigmoid function, whose
output approaches 1 as z — oo, and approaches 0 as z — —o0.
The output hg(x) ranges between 0 and 1. With a selected
threshold, for example, 0.5, the algorithm outputs 1 if hg(z) >
0.5, outputs 0 otherwise.

The sklearn logistic regression package also includes L2-
penalized regularization and minimizes the following cost
function with coordinate descent (CD) algorithm [9].
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B. Support Vector Machine
SVM has the underlying hinge loss function:

Phinge(2) = [1 — 2]+ = maz{1l — z,0}

where margin z = y267. The loss remains zero for all clases
that z > 1 (meaning y and 276 have the same signs and thus y
predicts the right class). SVM is particularly good for linearly
separable dataset that logistic regression is susceptible to.

In our analysis, we used both LinearSVC and SVM with
Linear Kernel. Both belong to the linear SVM family, while
the later uses the “’kernel trick” in its implementation.

Kernel is an efficient method to get SVM to learn in high
dimensional feature space. In feature mapping, our implemen-
tation used linear kernel function below. Linear kernel tends
to perform well with large number of features.

K(z,2) = <z,2’ >= ¢(x)"¢(2)

To improve the performance, both SVM models have L2-
regularization with customized penalty parameter C":
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C. Naive Bayes

Naive Bayes methods are a set of supervised learning algo-
rithms based on applying Bayes theorem with the assumption
that every pair of features are independent. Gaussian naive
bayes model was applied to our dataset, which assumes a
Gaussian distribution for the likelihood of the features:
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Applying the Bayes theorem, the posterior probability can be
expressed as:
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To maximize the above probability, we need to find parameters
that maximize p(y)[[;—, p(z;y). The maximum likelihood
estimation of the parameters follows the two equations below.
After fitting, we make predictions by calculating the posterior
probability of each class and choose the class with highest
probability.
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D. Random Forest

Random Forest constructs multiple decision trees based on
the subset of training examples and the subset of all given
features at random. In each decision tree, the input enters at
the root of the tree and traverses down the tree according to the
split decision at each node. Along the way, data gets bucketed
into smaller and smaller sets. In this research, we use Gini
impurity as the split function that evaluates the quality of a
split:

J
Gini(E) =1—Y _ p}
j=1

Note: J represents all possible labels (0 and 1 in our case),
and p; represents the possibility of labeled as j. Gini impurity
measures how often a randomly chosen example would be
incorrectly labeled if it was randomly labeled according to the
distribution of labels in the subset.

After the forest is trained, when a new input enters the
system, it will run down all the trees and reach the leaf nodes
of each tree. The final output is decided by the majority votes
of the leaf node.

V. RESULTS AND DISCUSSION

After fitting the above models with our training data and
testing the performances with our testing data, we have
generated the following results. We use accuracy, error rate
(1 — accuracy), confidence interval, precision, recall, speci-
ficity and F1 score to evaluate the model’s performance.

Among these evaluating metrics, accuracy, precision, recall,
specificity and F1 score can be obtained from confusion
matrices as shown in Fig. 3 below, and were used to evaluate
different aspects of the performances. F1 score, the harmonic
mean of precision and recall, can be interpreted as a weighted
average of the two.

TP+ TN
TP+ TN+ FN + FP
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Fig. 3: An Example of Confusion Matrix
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We first run five different models with all 30 available

features using bootstrap strategy. Each model is run 100 times



with random samples at each run. In the end, the average
error rate is computed. As shown in the tables below, Logistic
Regression, Random Forest Classifier and SVM with linear
kernel all perform relatively well. If we compare the difference
between train and test error, Random Forest Classifier has a
huge gap of 5%, which means that the model overfits the
training set.

TABLE I: Train and Test Error for Different Models

Model Train Error % Test Error %
Logistic Regression 3.6 5.1
LinearSVC 9.4 10.2
Random Forest Classifier 0.2 52
Naive Bayes 5.5 6.2
SVM with linear kernel 2.7 49

Surprisingly, LinearSVC performs quite bad, while Naive
Bayes performs relatively good. According to sklearn docu-
mentation, although LinearSVC and SVM with linear kernel
both belong to the SVM family, they are implemented us-
ing two different libraries. As a result, LinearSVC is more
suitable for larger dataset with smaller feature set, while
SVM with linear kernel works better for smaller data set (the
time complexity is high though). In our case, because the
dataset size is considerably small and the feature set is large,
LinearSVC doesn’t fit our system well, even for the training
set. Similarly, the unexpectedly good performance Naive Bayes
could be due to the size of our dataset. Generally, we don’t
expect Naive Bayes to perform well when there are strong
correlations between the features. According to our heat map,
many features are strongly related. Thus, we are surprised to
see the good error rate for Naive Bayes.

TABLE 1II: Confidence Interval for Test Accuracy

Model Accuracy 95% Confidence
Interval
Logistic Regression 92.3 - 96.5%
LinearSVC 73.5 - 94.0%
Random Forest Classifier 92.3 - 96.8%
Naive Bayes 91.6 - 95.8%
SVM with linear kernel 93.0 - 97.1%

Table I only shows the average error rate (1 — accuracy),
while Table II shows the range where the accuracy of 95%
iterations fall into. This gives a rough idea of how stable the
model is. The result further proves that Logistic Regression,
Random Forest Classifier and SVM with linear kernel are
comparatively better models. LinearSVC is very unstable.

We also evaluate the effect of RFE feature selection on
different models. We run RFE to select 3 to 30 features, and
plot the accuracy of test set in Fig. 4.

There are some interesting observations we can see from this
figure. First of all, we can see that Random Forest Classifier

Fig. 4: Accuracy for Different Number of Features
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and SVM with linear kernel generally do slightly better then
Logistic Regression, but all three of them should be considered
as good model.

The peak of accuracy for different models appears at
different number of features. For Random Forest Classifier,
the accuracy is the highest at around 10 features, and it is
around 16 for SVM with linear kernel. The accuracy for
both models drops after the feature size is smaller than 7,
especially for SVM with linear kernel. This shows that feature
selection successfully reduce overfitting problem slightly
for Random Forest Classifier and SVM with linear kernel.
However, if the feature size gets too small, the accuracy will
be hurt. For logistic regression, the accuracy is slightly going
down as the number of features decreases, which means the
model doesn’t suffer from overfitting. Quite abnormal for
LinearSVC, the accuracy actually rockets to almost the same
as other models when the feature size is around 5. This proves
the statement raised previously that LinearSVC works better
for relatively larger dataset and smaller feature set. When
the ratio of feature size versus dataset size becomes small,
the performance improves. However, when the feature size
is too small, like 3, the model is not good anymore due to
insufficient features (underfitting).

After running different models with feature selection, we
calculated different metrics based on the formulas for Logistic
Regression, Naive Bayes, Linear SVM w/o Kernel and Ran-
dom Forest. A comparison of these evaluation metrics before
and after feature selections can be seen in Fig.5. All models
show obvious improvements in all aspects of performance
except Naive Bayes, which makes sense because Naive Bayes
relies on the probability model where the joint likelihood can
be represented as product of observation likelihoods. Smaller
number of features will likely hurt its performance. It’s also
possible that strongly correlated features are selected in feature
selection which worsens the performance of Naive Bayes.

As discussed in the previous section, Random Forest tends
to overfit the training set with almost zero training error and



Fig. 5: Evaluation Metrics Before and After Feature Selections
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5% testing error. To reduce overfitting, there are three possible
ways: feature selection, tuning the number of trees in each
forest, and tuning the max number of features in each tree.

Fig. 6: Tuning Random Forest Classifier
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We can see from Fig. 6(a) that feature selection does
have positive effect on accuracy, but the remaining feature
set cannot be too small. If we reduce the feature set size
to 5, the accuracy decreases obviously. Although the model
isn’t stable, we can still see a increasing trend of accuracy
when the number of trees increases. When we have 100 trees,
the accuracy almost reaches 98%. However, changing the
maximum number of features in each tree doesn’t seem to
affect the accuracy a lot. There’s a slightly decreasing trend
when we increase the number of features. In general, to reduce
overfitting for Random Forest Classifier, it is better to perform
feature selection with the proper size of feature set, increase
the number of trees in each forest, and decrease the maximum
number of features in each tree.

Different penalty parameters, the coefficient of the regular-
ization term, are applied to Logistic Regression, LinearSVC
and SVM with linear kernel with 20 features to experiment the
effect of regularization term on model performance. Despite a
certain level of fluctuation, the overall trend is pretty obvious
from Fig. 7 (a) and (b) that as we increase penalty parameter,

Fig. 7: Penalty Parameter for Regularization Term
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the F1 score and accuracy of Logistic Regression and SVM
with linear kernel improve, because higher penalty parameter
decreases overfitting for them, while the performance of Lin-
earSVC decreases, meaning that LinearSVC doesn’t subject
to overfitting, and the model itself doesn’t fit well with our
dataset.

VI. CONCLUSION & FUTURE WORK

In conclusion, Random Forest Classifier and SVM with
linear kernel yield better prediction results than other models.
These two models work better for small dataset. In particular,
for Random Forest Classifier, if we have around 10 features
selected, and use more trees, and less features in each tree
to train the model, we can reduce overfitting and produce
better accuracy. The highest accuracy we can get from Random
Forest Classifier is about 98%. For SVM with linear kernel,
with higher penalty parameter for the regularization term, the
accuracy can reach 97% as well.

For future work, although we achieve relatively accurate
prediction using several models, we would like to make sure
the result is not biased due to the size of out dataset. We
would like to find a bigger dataset and perform similar analysis
and see if the results are the same. Futhermore, since our
dataset is quite outdated (collected in the 90s), measurement
of cytopathology data for breast cancer might be different
nowadays. It would also be better if we can find some latest
data and do the analysis. In addition, besides the above models
we have tried, we would also like to try deep learning to
train the data. We realize that neuron network with the right
activation function might work well in our case, because we
have a lot of correlated features.
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