
University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 1/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

INTRODUCTION
The purpose of this document is to present a quick tutorial on how to create an AVR assembler project within
Atmel Studio, how to simulate an assembly program with the software debugger built into Atmel Studio, and also
how to emulate an assembly program with the debugger/programmer built into your µPAD.

Additionally, the appendix of this document identifies how to do the aforementioned using the C programming
language. When using C and working across a network, you will need to perform additional steps also laid out in
the last page of this document.

For more information on Atmel Studio, visit the Atmel Studio User Guide.

REQUIRED MATERIALS
• GPIO_Output.asm
• µPAD v2.0 with USB A/B connector cable

SUPPLEMENTAL MATERIALS
• µPAD v2.0 Schematic

PROCEDURE
NOTE: This tutorial assumes that you already have Atmel Studio installed, and that you have set your workspace
folder to a known location. See the Atmel Studio Installation Instructions posted on our course website to learn how
to do so.

1. Open Atmel Studio, and create a new project by navigating to File New Project.
2. Under Installed, select Assembler, and then AVR Assembler Project (see Figure 1).
3. Browse to a desired location for which to save the file (using the Location textbox), and save the file with a

meaningful name (using the Name textbox). For this tutorial, we will call the project “GPIO_Output”. Leave
everything else default, and create the project by clicking the OK button.

4. In the Device Selection window that automatically opens, select the correct device and click OK. For the entirety
of this semester, we will be using the ATxmega128A1U (see Figure 2).

Figure 1: Choosing the project type Figure 2: Choosing the device type

https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-C73F1111-250E-4106-B5E5-85A512B75E8B
https://mil.ufl.edu/3744/examples/GPIO_Output.asm
https://mil.ufl.edu/3744/docs/uPAD2p0/schematics/uPAD_v2.0_schematic.pdf
https://mil.ufl.edu/3744/docs/Install_Atmel_Studio_7.0.pdf

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 2/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

You should now see a workspace similar to what is
shown in Figure 3. From this point on, we will
begin to use the code from the GPIO_Output.asm
file mentioned above. This short program utilizes a
GPIO port connected to the RGB LED package on
your µPAD. A GPIO port can be defined in many
capacities, though in the context of this tutorial, it
suffices to relate a GPIO port with a group of
physicals pins controlled by electrical signals, i.e.,
a low voltage signal corresponding to a binary ‘0’,
a higher voltage corresponding to a binary ‘1’.

5. Copy the code from the accompanying

GPIO_Output.asm file to your main program.
Save the main program by navigating to File
 Save main.asm, or by pressing Ctrl+S (i.e.,
Ctrl and then S) on your keyboard.
Alternatively, save all aspects of the project by
navigating to File Save All, or by pressing
Ctrl+Shift+S on your keyboard.

6. Build (and compile) the project solution by
navigating to Build Build Solution (or by
using the function key F7). If your code has
no errors, i.e., if it was copied correctly, the
Output window at the bottom should include
“Build succeeded.”

NOTE: If your compiler detects any errors or
warnings, you can double-click on an individual
listing of either type and your cursor should be
brought to the offending line (sometimes, your
compiler cannot associate the error or warning with
a specific line of code).

NOTE: If you would like to add line numbers in
the code editor (which is highly recommended),
navigate to Tools Options Text Editor
All Languages and select Line Numbers, under the
Settings heading.

NOTE: Within the assembly file code editor, press
Ctrl+Space on your keyboard to bring up a dialog
box consisting of a list of assembly instructions for
the currently chosen device. If any string of letters
is typed into this dialog box, the listings shown will
start with that specified string of letters. The
internal program used for this function is
sometimes known as Intellisense, Autocomplete, or
Auto Completion.

Figure 3: Atmel Studio application window, after creating
project

Figure 4: Atmel Studio application window, after
copying contents of GPIO_Output.asm

https://mil.ufl.edu/3744/examples/GPIO_Output.asm
https://mil.ufl.edu/3744/examples/GPIO_Output.asm

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 3/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

Before we can execute the program, we must select the appropriate debugging tool in Atmel Studio. For simulation,
we will select the software simulator built into Atmel Studio, and for emulation, we will select the
programmer/debugger built into your µPAD.

7. To perform a simulation of the program, we must first select the simulator debugging tool. Click the target
selector icon (listed No Tool by default), as pointed to by the red arrow in Figure 5. When you select this icon,
the project Tool window shown in Figure 6 will appear. (Alternatively, the project Tool window can be opened
by navigating to Project <Project_Name> Properties, and then selecting the Tool option.) Under Selected
debugger/programmer, use the dropdown menu to select Simulator. The target selector icon should now display
Simulator (as also shown in Figure 6). Finalize these changes by saving the project (File Save All), and then
close the project properties window.

 Figure 5: Target selector icon

Figure 6: Project Tool window

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 4/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

Before executing the program, we will place a breakpoint. Breakpoints are used to intentionally halt your program
at a specific point of execution for debugging purposes, and are optional. A given breakpoint will halt your
program immediately before executing the instruction specified at the breakpoint.

8. Place a breakpoint in your code editor on the first assembly instruction within your main program, i.e., ldi
R16, BIT456, by using your mouse to click the gray pane to the far left of the instruction. A red dot will
appear next to this specified instruction, as shown in Figure 7.

To start the program simulation, i.e., to start debugging, you can either select the Start Debugging icon (also known
as the Continue icon) specified by the green arrow near the top of the Atmel Studio window (see the topmost red
arrow in the Figure 7), or navigate to Debug Continue, or even simply press F5 on your keyboard.

9. Start debugging the main program. The program should stop execution at the breakpoint you placed, and the
specified line of code should be highlighted yellow, following a yellow arrow in the gray pane where the
breakpoint resides. (The yellow arrow, along with the yellow highlight, indicates the next instruction to be
executed.)

While debugging, you can view any of the processor’s registers, I/O ports, memory locations, etc. To do so is
extremely helpful when writing any embedded software. Since we are using the I/O port PORTD in this example
program, in addition to internal GPIO registers, we will explore the I/O and Processor Status views of the debugger.

10. Open the I/O view by navigating to Debug Windows I/O, as shown in Figure 8. Open the Processor
Status view by navigating to Debug Windows Processor Status.

Figure 7: Breakpoint at first instruction of the given program, along with
the debug Continue icon.

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 5/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

NOTE: When simulating, if you would like the simulated clock frequency to match the clock frequency of the
actual µPAD board (if it does not already match), i.e., the actual clock speed when you emulate, select the value
listed next to Frequency in the Processor Status window, and enter the oscillator frequency that you have chosen
for your device (e.g., 2.000 MHz, the default ATXMEGA128A1U clock frequency).

Now, we will utilize the I/O view to view all of registers within PORTD, starting at the point of execution specified
by our chosen breakpoint.

11. Within the I/O view, filter for and select I/O Port Configuration (PORTD). (To search for this, you may type
something as simple as “portd” in the Filter textbox, as shown in Figure 9.) After selecting the correct port
configuration, you will be able to view all of the registers associated with PORTD.

To execute the next instruction within your program, you can click the Step Into icon (as pointed to by the
leftmost red arrow in Figure 9), or press F11 on your keyboard. (You may also step through each instruction by
navigating to Debug Step Into).

12. Step through the program code, identifying changes that occur to the registers within PORTD, as well as to

the microcontroller’s internal GPIO registers.

NOTE: Two other useful debug stepping features are Step Over and Step Out, as pointed to by the second-
rightmost and rightmost red arrows in Figure 9, respectively. Step Over will always execute the next instruction in
the current procedure frame as a single unit, i.e., if the next instruction to be executed consists of a procedure call,
the entire procedure will be executed in a single step. Step Out executes the remaining lines of a function in which
the current execution point lies.

Figure 8: Selecting the I/O Debug view

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 6/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

We will now stop debugging and begin to emulate the program on the µPAD. To stop debugging, you can navigate
to Debug Stop Debugging, or click on the Stop Debugging icon, i.e., the red square, in the toolbar.

13. Connect the µPAD to your computer with your USB A/B connector cable. Select the on-board Atmel Embedded
Debugger (EDBG) as the Selected debugger/programmer, within the project Tool menu, as done in Step 7.
Also verify that the Interface is chosen to be PDI (as shown in Figure 10). Finalize these changes by saving
the project.

NOTE: The PDI clock frequency is only representative of the programmer/debugger, and need not be the same
value as the clock frequency of the processor. It is recommended to not change the default value.

Figure 9: Step Into, Step Over, and Step Out debug icons

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 7/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

14. If the EDBG device does not appear as shown in Figure 10, there are a few possiblities to correct this problem.
Try the first one below; if this does not work then try the second one.
• If you are CONVINCED that you properly followed the install directions (and the previous tweet did not

fix it), uninstall it, turn off your antivirus, reinstall it, & turn on antivirus.
• Use the Device Manager to remove some extra drivers that altered the USB function through Atmel Studio.

The procedure can be found at https://www.microchip.com/forums/m1087470.aspx.

15. Repeat steps 9-12. The code will now be executing in hardware rather than in software; once more, this is
known as emulation. Upon stepping through the program, you should see the RGB LED package at the bottom
left of your µPAD (labeled D4) reflect the changes made to PORTD within the program. These LEDs are
connected to PORTD of your processor, as shown in the µPAD v2.0 Schematic.

Figure 10: Selecting the on-board µPAD debugger

https://www.microchip.com/forums/m1087470.aspx
https://mil.ufl.edu/3744/docs/uPAD2p0/schematics/uPAD_v2.0_schematic.pdf

University of Florida EEL 3744 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Christopher Crary, Asst. Lecturer
Page 8/8 Revision 1 24-Jan-20
 CREATING, SIMULATING, AND EMULATING IN ATMEL STUDIO

APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C
Atmel Studio cannot work accoss networks without using a network drive. Below are instructions on how to create
a network drive, for Windows 10 and versions prior.

Setting Up A Network Drive For Atmel Studio
Windows 10:
1. Type Windows-E (i.e., hold down the windows key and then type E) to open and Windows Exporer
2. In Windows Explorer, select This PC
3. Select Computer Map network drive
4. Select a drive letter, e.g., Z:
5. Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\3744\labs\
6. Select Reconnect at sign-in
7. Select Finish

Pre-Windows 10:
1. Type Windows-E (i.e., hold down the windows key and then type E) to open and Windows Exporer
2. In Windows Explorer, select This PC
3. Select Map network drive
4. Select a drive letter, e.g., Z:
5. Put the path to the folder that you want to use, e.g., \\mil.ufl.edu\tebow\3744\labs\
6. Select Reconnect at logon
7. Select Finish

Procedure to Create, Simulate, and Emulate in C
1. Open Atmel Studio, and create a new project by navigating to File New Project.
2. Under Installed, under the C/C++ subheading, select GCC C Executable Project.
3. Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:),

and then the correct folder name.
4. Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only

new limitation might be that to be able to completely step through a C program, the compiler’s optimization
level may need to be changed. (Optimization allows your compiler to interpret your written C code and
attempt to generate more efficient assembly/machine code, i.e., some C statements written in your program
might be removed by the compiler if any level of optimization is enabled.)
o To turn off optimization, first navigate to Project <Project_Name> Properties. Within the project

properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain,
select Optimization. Within the Optimization window, select the drop-down box for Optimization
Level, and choose None (-O0). In newer versions of Atmel Studio, there is an Optimize debugging
experience (-Og) option.
 Don’t forget to optimization back on (Optimize (-O1), by default) when you are finished

debugging.

NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the Atmel
Studio User Guide.

https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-AFA543DE-B3DA-43FA-8154-8BB27DF1DCEB
https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-AFA543DE-B3DA-43FA-8154-8BB27DF1DCEB

	INTRODUCTION
	REQUIRED MATERIALS
	SUPPLEMENTAL MATERIALS
	PROCEDURE
	1. Open Atmel Studio, and create a new project by navigating to File (New (Project.
	2. Under Installed, select Assembler, and then AVR Assembler Project (see Figure 1).
	3. Browse to a desired location for which to save the file (using the Location textbox), and save the file with a meaningful name (using the Name textbox). For this tutorial, we will call the project “GPIO_Output”. Leave everything else default, and c...
	4. In the Device Selection window that automatically opens, select the correct device and click OK. For the entirety of this semester, we will be using the ATxmega128A1U (see Figure 2).

	APPENDIX A: SPECIAL CONSIDERATIONS FOR PROJECTS USING C
	Setting Up A Network Drive For Atmel Studio
	Procedure to Create, Simulate, and Emulate in C
	1. Open Atmel Studio, and create a new project by navigating to File (New (Project.
	2. Under Installed, under the C/C++ subheading, select GCC C Executable Project.
	3. Find the path to the proper location with the Location textbox. If necessary, put in the network drive (e.g., Z:), and then the correct folder name.
	4. Create the project by clicking OK, and perform everything else as specified in the above tutorial. The only new limitation might be that to be able to completely step through a C program, the compiler’s optimization level may need to be changed. (...
	o To turn off optimization, first navigate to Project (<Project_Name> Properties. Within the project properties window, select the Toolchain subheading. Under AVR/GNU C Compiler in the Toolchain, select Optimization. Within the Optimization window, s...
	 Don’t forget to optimization back on (Optimize (-O1), by default) when you are finished debugging.
	NOTE: Details for each optimization level specified by the AVR/GNU C Compiler can be found in the Atmel Studio User Guide.

