

1. Introduction

Region representation is important in applications such as

image processing, cartography, and computer graphics. Numerous

representations are currently being used (see [DRS] for an

overview). In this paper we focus our attention on the binary

array and quadtree [Klinger] representations. In particular,

we present an algorithm for constructing a quadtree from a

binary image in a manner that minimizes space requirements

during the quadtree construction process. In general, algo-

rithms for transforming one representation into another [DRS,

Sametl, Samet2] are important because each representation is

well suited for a specific set of operations on an image.

The quadtree is useful because it provides a hierarchical

representation as well as facilitating operations such as

search.

In the remainder of the paper we briefly review the defini-

tions of the representations. This is followed by a description

of the algorithm along with motivating considerations. We

conclude with some comments about the efficiency of the algo-

rithm. The actual algorithm is given using a variant of

ALCOL 60 INaur].

We assume that the given image is a 2n by 2n array of unit

square "pixels," each of which has value 0 or 1. The quadtree

is an approach to image representation based on successive

subdivision of the array into quadrants. In essence, we

repeatedly subdivide the array into quadrants, subquadrants,...

until we obtain blocks (possibly single pixels) which consist

entirely of either l's or O's. This process is represented

by a tree of out-degree 4 in which the root node represents

the entire array, the four sons of the root node represent

the quadrants, and the terminal nodes correspond to those

blocks of the array for which no further subdivision is neces-

sary. For example, Figure lb is a block decomposition of the

region in Figure la while Figure lc is the corresponding quad-

tree. In general, BLACK and WHITE square nodes represent

blocks consisting entirely of l's and 0's respectively. Cir-

cular nodes, also termed GRAY nodes, denote non-terminal nodes.

Each node in a quadtree is stored as a record containing

six fields. The first five fields contain pointers to the

node's father and its four sons, labeled NW, NE, SE, and SW.

Given a node P and a son I, these fields are referenced as

FATHER(P) and SON(P,I) respectively. The sixth field, named

NODETYPE, describes the contents of the block of the image

which the represents--i.e., WHITE, BLACK, or GRAY.

2. Algorithm

The quadtree construction algorithm examines each pixel

in the binary array once and only once and in a manner which

is analogous to a postorder tree traversal. For example, the

pixels in the binary array of Fig. la are labeled in the order

in which they have been examined (e.g., denoting the array by

A, we that A[1,11 is examined first, followed by A[1,2], A[2,1],A[2,21,

A[1,3],...). However, a node is only created if it is maximal--

in other words, if it cannot participate in any further merges

(a merge is said to occur when four sons of a node are either

all BLACK or all WHITE). For example, Fig. 2a shows the

partial quadtree resulting from examining pixels 1, 2, 3, and

4 of Fig. la. Note that since all the pixels are not of the

same type (i.e., pixels 1, 2, and 3 are WHITE while pixel 4 is

BLACK), their nodes cannot participate in any further mergeso

and thus the segment of the final quadtree corresponding to

their contribution can be constructed. In contrast, pixels

5, 6, 7, and 8 of Fig. la are of the same type (i.e., BLACK)

and thus they will be represented by node A in the final quad-

tree. No nodes are ever constructed corresponding to these

pixels. As a final example of a merge, we observe that

pixels 17-32 are ultimately represented by node D in the quad-

tree of Fig. lc. However, the node corresponding to these

pixels is only created once its remaining brothers have been

processed (i.e., pixels 33-48 and 49-64). This is in contrast

with the GRAY node corresponding to pixels 1-16 which was

created as soon as it was determined that its four sons are

not all WHITE or all BLACK.

The main procedure is termed QUADTREE andis invoked with

the values of the log of the image diameter (n, for a 2n by

2n image array) and the name of the image array. It controls

the construction of the quadtree and if the image is all WHITE

or all BLACK, then it creates the appropriate one-node tree.

The actual construction of the tree is performed by procedure

CONSTRUCT which recursively examines all the pixels and creates

nodes whenever all four sons are not of the same type. The

tree is built as CONSTRUCT returns from examining its sons.

CONSTRUCT makes use of a data structure termed pair, denoted

by the symbol <,>, which is a record having two fields termed

TYPE and POINTER. It is used to return more than one value

from CONSTRUCT. COLOR is a function which indicates whether

a pixel is BLACK or WHITE.

As an example of the application of the algorithm consider

the image given in Fig. la. Fig. lb is the corresponding max-

imal block decomposition while Fig. lc is its quadtree repre-

sentation. The pixels in Fig. la have been numbered according

to the order in which they are examined by the algorithm. The

blocks in Fig. lb with alphabetic labels correspond to instances

where merging has taken place. The alphabetic labels have been

assigned according to the order in which the merged nodes were

created (i.e., A, B, C,...). Figs. 2a, 2b, and 2c show the

partial quadtrees after pixels 1-4, 1-15, and 49-64 respectively

have been examined.

/* find the quadtree corresponding to a 2tLEVEL by 2tLEVEL

binary array A *

begin

integer LEVEL;

global Boolean array A[l:2fLEVEL, l:2fLEVEL]; /*A is a global ~

quadrant I;

pair P;

node 0;

P-CONSTRUCT (LEVEL, 2+LEVEL, 2tLEVEL);

if TYPE (P) =GRAY then

begin

FATHER (POINTER (P)) -NULL

return(POINTER(P));

end

else

begin /* the entire image is BLACK or WHITE *

Q-CREATENODE 0;

NODETYPE (Q) -TYPE (P);

for I in {NW,NE,SW,SE} do SON(Q,I)-NULL;

FATHER (Q) -NULL;

return ()

end;

4 end;

pair procedure CONSTRUCT (LEVEL, X ,Y);

/* construct the portion of a quadtree of size 2+LEVEL by

2+ LEVEL having its southeasternmost pixel corresponding to

j entry AEX,Y] of the image array */

begin

integer LEVEL,X,Y;

pair array P[NW...SE]; * P has entries corresponding

to NW,NE,SW, and SE */

quadrant I,J;

node Q,R;

if LEVEL-N then /* process the pixel */

return (<COLOR(A[X,Y]) ,NULL>) /*<,> creates a (POINTER,TYPE) pair */

else

begin

LEVEL+-LEVEL- 1

P[NW]4-CONSTRUCT(LEVEL, X-2+LEVEL, Y-2+LEVEL);

P[NE]4-CONSTRUCT(LEVEL, X,Y-2+LEVEL);

P[SW]4-CONSTRUCT(LEVEL, X-2+LEVEL,Z);

P(SE]-CONSTRUCT(LEVEL, XY);

if TYPE(P[NW])#GRAY and

£ TYPE(P[NW])=TYPE(P[NE])=TYPE(P[SW])=TYPE(P[SE]) then

return(P[NW]) /* all brothers are of the

same type */

*1 else

begin /* create a non-terminal GRAY node *

Q-CREATENODE 0;
for I in {NW,NE,SW,SE) do

begin

if TYPE(P[I])=GRAY then

/* link PCi] to its father node *

begin

SON(Q,I)4-POINTER (P[I]');

FATHER(POINTER(P[I1))*-Q;

end

else /* create a maximal node for P(I] *

begin

R-CREATENODE 0;

NODETYPE (R) *-TYPE (P [I]

for J in {NW,NE,SW,SE} do

SON (R,J) -NULL;

SON (0, I'-R

FATHER (R) -Q;

end;

end;

NODETYPE (Q)-GRAY;

return(<GRAY,Q>);

end;

end;

end;

3. Concluding Remarks

The running time of the quadtree construction algorithm is

equal to 4/3 the number of pixels in the image since this is

the number of times procedure CONSTRUCT is invoked (and equal

to the number of nodes in a complete quadtree for a 2n by 2n

image). The algorithm is highly recursive. However, the

maximum depth of recursion is equal to the log of the image

diameter (i.e., n for a 2n by 2n image). The algorithm is

especially attractive because only nodes with are part of the

final quadtree are created. This is in contrast with an approach

that would build a complete quadtree for the image and then

attempt to obtain maximal blocks by merging. An intermediate

approach was used in [Samet2] where a quadtree was constructed

for an image given its row-by-row (i.e., raster) description.

In that method, the number of nodes was reduced by merging as

soon as it became feasible. For example, no merging is possible

when processing the first row. However'; a merge can be attempted

as soon as the first two pixels in the second row are processed.

Notice that the method used here is optimal in the sense that a

minimum number of nodes is created. This is important when

storage is at a premium--i.e., tree nodes require considerably

more space than pixels.

.1

4. References

[DRSI C. R. Dyer, A. Rosenfeld, and H. Samet, Region repre-
sentation: boundary codes from quadtrees, Computer
Science TR-732, University of Maryland, College Park,
Maryland, February 1979.

[Klinger] A. Klinger and C. R. Dyer, Experiments in picture
representation using regular decomposition, Computer
Graphics and Image Processin 5, 1976, 68-105.

[Naur] P. Naur (Ed.), Revised report on the algorithmic
language ALGOL 60, Communications of the ACM 3, 1960,
299-314.

[Sametl] H. Samet, Region representation: quadtrees from
boundary codes, Computer Science TR-741, University
of Maryland, College Park, Maryland, March 1979.

[Samet2] H. Samet, Region representation: raster-
to-quadtree conversion, Computer Science TR-766,
University of Maryland, College Park, Maryland,
May 1979.

: i 33 34 37 38 -" /.-35 36 39 40- -

41 42 45 46al 61] 62-> '
.43144147 48 - 6 3 6,4 .-

a. Sample image b. Block decomposition of the
image in (a)

AB C F G'

c. Quadtree representation of the blocks in (b).

Figure 1. An image, its maximal blocks, and the corresponding

quadtree. Blocks in the image are shaded.

.1

.. I '

1 2 3 4 A B C
12 324

(a) (b)

F G H I
(c)

Figure 2. Intermediate trees in the process of obtaining a quadtree

corresponding to Figure la.

:1

