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Lecture 2: Binary Sources, Lossy Compression and Channel Capacity
Lecturer: Tsachy Weissman Scribe: Linda Banh, Josh Bosworth, Anthony Perez

1 Example 2: Reliable Communication: Binary Source & Channel

1. Source: U = {U1, U2, ...} where Pr[Ui = 0] = Pr[Ui = 1] = 1
2 . The Ui’s are i.i.d.

2. Channel: The channel flips each bit given to it with probability q < 1
2 . We define the channel input

to be X = {Xi}, the channel noise to be W = {Wi} and the channel output to be Y = {Yi} such that:

Wi ∼ Ber(q)
Yi = Xi ⊕2 Wi

The Wi are i.i.d. and the Xi are functions of the input source sequence U.

3. Probability of error per source bit: Pe, the probability of recovering Ui from Yi.

4. Rate: the ratio |U||X| or bits per channel use.

Encoding Scheme 1: The trivial encoding of Xi = Ui yields a probability of error per source bit of Pe = q
because we decode each Yi by assuming its value matches Ui. The rate for this scheme is 1 bit/channel use.

Encoding Scheme 2: We can repeat each source bit three times:

U = 0 1 1 0 ...

X = 0 0 0 1 1 1 1 1 1 0 0 0 ...

This yields a probability of error per source bit of Pe = 3q2(1 − q) + q3 < q where the optimal decoding is
to decode each Yi by taking a majority vote amongst its three bits. However, this yields a rate of 1

3 because
the channel input is three times the size of the source.

Encoding Scheme 3: We can repeat each source bit K times (for simplicity, assume K is odd). The
Rate becomes 1

K and the optimal decoding scheme remains to decode according to the majority bit. The
probability of error is the probability that there are more bits which are corrupted than not-corrupted. q
is our error rate, K is the total number of bits, and K+1

2 is the smallest number of corrupted bits that will
result in an error.

Pe =

K∑
i=K+1

2

(
K

i

)
(q)i(1− q)K−i

Thus, by increasing K, we can obtain a sequence of schemes for which the probability of error goes to 0
(can be shown using the law of large numbers since the number of errors converge to Kq < K/2). However,
the rate for this sequence of schemes converges to 0 as K →∞. For a long time, it was believed that Pe → 0
was possible only if rate → 0. However,
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1.1 Theorem 1

Shannon 1948: ∃ R > 0 and schemes with rate ≥ R satisfying Pe → 0.

Definition 1. Channel Capacity:

C , Largest R for which Theorem 1 holds.

C(q) = 1− h(q)

h(q) , H(Ber(q)) = q log
1

q
+ (1− q) log

1

1− q

The figure below plots h(q) for q ∈ [0, 1].

Note: Throughout the course, log will mean log2, unless otherwise specified. Also, 0 log 0 , 0.

1.2 Theorem 2

In general, if we are interested in a probability of error Pe > 0:

For any rate < C(q)
1−h(Pe) where Pe is the probability of error we are willing to tolerate, there exists a scheme

that achieves this probability of error and rate.

For any rate > C(q)
1−h(Pe) no scheme can achieve the probability of error Pe.
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The figure above shows the achievable and non-achievable pairs of rate and Pe in green and red, respec-
tively. At Pe = 0, any rate below C(q) is achievable. At Pe = 0.5, the achievable rate becomes infinite.
This is because we can achieve probability of error 0.5 without transmitting any bits at all and randomly
generating the bits at the receiver. Also, at Pe = q, the maximum rate is 1. This is because we can achieve
Pe = q by sending the source as it is without any coding (i.e., Xi = Ui). Thus, the simple scheme we did
earlier is the optimal scheme if we are interested in a probability of error of q.

2 Example 3: Lossy Compression

General Objective: We are given a sequence of continuous random variables. Clearly it is impossible to
represent them exactly with any finite number of bits. In general we want to represent them with as few bits
as possible which allow us to reconstruct the original sequence with a low RMSE between the reconstruction
and source sequence. Here, we consider the problem of representing a source with 1 bit/source symbol while
minimizing the reconstruction RMSE.

1. Source sequence: U = {U1, U2, ...} where the Ui are i.i.d ∼ N(0, σ2).

2. Rate: We have a desired compression rate K whose units are bits per source symbol.

3. Encoding: B = {Bi} is the sequence of bits used to encode the source.

4. Reconstruction: V = {Vi} is the reconstruction of the source sequence from the encoding. Mini-
mizing the RMSE yields Vi = E[Ui|Bi] as the optimal decoding.

5. Distortion: D = {Di} where Di = E[(Ui − Vi)2]

Example 1: Suppose K = 1 and Bi =

{
1 if Ui ≥ 0

0 if Ui < 0
. Then we see that the optimal reconstruction and

corresponding distortions are:
Reconstruction:

Vi = E[Ui|Bi = 1] =

∫ ∞
0

x
2√

2πσ2
e−

x2

2σ2 dx

=
2√

2πσ2

∫ ∞
0

√
u e−

u
2σ2

1

2
√
u
du

=
1√

2πσ2

∫ ∞
0

e−
u

2σ2 du

=
1√

2πσ2
(−2σ2e−

u
2σ2 )|∞0

=
1√

2πσ2
2σ2 = σ

√
2

π

For Vi = E[Ui|Bi = 0] the above proof holds with the limits reversed, yielding Vi =

σ
√

2
π if Bi = 1

−σ
√

2
π if Bi = 0

.
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Distortion:

Di = E[(Ui − Vi)2]

=
1

2
V ar(Ui|Bi = 1) +

1

2
V ar(Ui|Bi = 0)

(Ui is symmetrical for Bi = 0 and Bi =1)

= V ar(Ui|Bi = 1)

= E[U2
i |Bi = 1]− (E[Ui|Bi = 1])2

Using E[Ui|Bi] that was calculated in reconstruction:

= σ2 − (σ

√
2

π
)2

= σ2(1− 2

π
)

≈ 0.363σ2

Example 2: As with the lossless compression example from Lecture 1, we can think about representing
pairs of source symbols with pairs of bits.

Approach 1: Partitioning the plane into four quadrants

(0,0)

(B1,B2) = (1,1)

(1,0)

(0,1)

U1

U2

Observe that:

• U1 is positive iff B1 = 1

• U2 is positive iff B2 = 1

• U1 is negative iff B1 = 0

• U2 is negative iff B2 = 0

Thus, this scheme is exactly the same scheme as the symbol-by-symbol scheme discussed above. Hence, this
will not offer any improvements in the distortion.

Approach 2: Partitioning the plane into a circle centered at the origin and into 3 symmet-
ric regions
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Exercise:

V1(B1, B2) = E[U1|B1B2] =?

V2(B1, B2) = E[U2|B1B2] =?

Dρ =
1

2
E[(U1 − V1)2 + (U2 − V2)2]

min
ρ
Dρ =?

where ρ is the radius of the circular region. Although this is an interesting exercise, it cannot be easily solved
in closed form. For the circular region, the reconstruction point is the origin (by symmetry). However, for
the other regions, the integrals cannot be computed in closed form. Unfortunately, this happens quite com-
monly in higher dimensions. Therefore, it will be difficult to solve for Dρ and to find the minimum ρ that
minimizes that expression as well.

We will show later that: For any ε > 0, ∃ schemes with D ≤ σ2/4 + ε using 1 bit/symbol. Also, for any
scheme using 1 bit/symbol, D ≥ σ2/4. This gives a fundamental limit on lossy compression. Comparing
this limit of σ2/4 = 0.25σ2 to the distortion for the first scheme (0.363σ2), we see that there is some scope
for improvement.

3 Example 4: Additive White Gaussian Noise Channel

For real world communication systems (e.g., wireless), the Additive White Gaussian Noise (AWGN) Channel
is a natural model due to the central limit theorem.

1. Information Source: U = {U1, U2, ...}. The Ui’s are i.i.d. ∼ Ber( 1
2 )

2. Transmitted Signal: X = {X1, X2, ...}

3. Received Signal: Y = {Y1, Y2, ...}

Yi = Xi +Ni

Ni ∼ N(0, σ2) i.i.d
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Ni’s are also independent of X.

4. Rate: Number of source bits transmitted per channel use:

Rate = N/n

5. Channel Constraints: We seek reliable communication, defined by a vanishing rate of error.

lim
n→∞

P (Û 6= U) = 0

We can trivially achieve this if we allow arbitrary large transmitted signals, so that the noise becomes
insignificant in comparison. However, real world devices have power (P) constraints, and these power
constraints limit the achievable rate.

1

n

n∑
i=1

X2
i ≤ P

We’ll show that we can achieve

Rate <
1

2
log(1 + P/σ2)

and we cannot achieve

Rate >
1

2
log(1 + P/σ2)

The Signal to Noise ratio is recognizable in the above equation as:

SNR = P/σ2

In terms of the SNR, the expression for the capacity of the AWGN channel is 1
2 log(1 + SNR).
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