\qquad

9.5
 Solving Quadratic Equations Using the Quadratic Formula

For use with Exploration 9.5
Essential Question How can you derive a formula that can be used to write the solutions of any quadratic equation in standard form?

1 EXPLORATION: Deriving the Quadratic Formula
Work with a partner. The following steps show a method of solving $a x^{2}+b x+c=0$. Explain what was done in each step.

$$
a x^{2}+b x+c=0
$$

1. Write the equation.

$$
4 a^{2} x^{2}+4 a b x+4 a c=0
$$

2. \qquad
$4 a^{2} x^{2}+4 a b x+4 a c+b^{2}=b^{2}$
3. \qquad

$$
4 a^{2} x^{2}+4 a b x+b^{2}=b^{2}-4 a c
$$

4. \qquad

$$
(2 a x+b)^{2}=b^{2}-4 a c
$$

$$
2 a x+b= \pm \sqrt{b^{2}-4 a c}
$$

$$
2 a x=-b \pm \sqrt{b^{2}-4 a c}
$$

5. \qquad
6. \qquad
7. \qquad

$$
\text { Quadratic Formula: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

8. \qquad
\qquad

9.5 Solving Quadratic Equations Using the Quadratic Formula (continued)

2 EXPLORATION: Deriving the Quadratic Formula by Completing the Square

Work with a partner.

a. Solve $a x^{2}+b x+c=0$ by completing the square. (Hint: Subtract c from each side, divide each side by a, and then proceed by completing the square.)
b. Compare this method with the method in Exploration 1. Explain why you think $4 a$ and b^{2} were chosen in Steps 2 and 3 of Exploration 1.

Communicate Your Answer

3. How can you derive a formula that can be used to write the solutions of any quadratic equation in standard form?
4. Use the Quadratic Formula to solve each quadratic equation.
a. $x^{2}+2 x-3=0$
b. $x^{2}-4 x+4=0$
c. $x^{2}+4 x+5=0$
5. Use the Internet to research imaginary numbers. How are they related to quadratic equations?
\qquad
\qquad

9.5

In your own words, write the meaning of each vocabulary term.
Quadratic Formula
discriminant

Core Concepts

Quadratic Formula

The real solutions of the quadratic equation $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Quadratic Formula }
$$

where $a \neq 0$ and $b^{2}-4 a c \geq 0$.

Notes:

Interpreting the Discriminant

- two real solutions
- two x-intercepts
$b^{2}-4 a c=0$

- one real solution
- one x-intercept
$b^{2}-4 a c<0$

- no real solutions
- no x-intercepts

Notes:

\qquad
9.5 Notetaking with Vocabulary (continued)

Methods for Solving Quadratic Equations

Method	Advantages	Disadvantages		
$\begin{array}{l}\text { Factoring } \\ \text { (Lessons 7.5-7.8) }\end{array}$	$\begin{array}{l}\text { • Straightforward when the equation can } \\ \text { be factored easily }\end{array}$	$\begin{array}{l}\text { • Some equations are not } \\ \text { factorable. }\end{array}$		
$\begin{array}{l}\text { Graphing } \\ \text { (Lesson 9.2) }\end{array}$	$\begin{array}{l}\text { • Can easily see the number of solutions } \\ \text { • Use when approximate solutions are } \\ \text { sufficient. }\end{array}$	$\begin{array}{l}\text { • May not give exact } \\ \text { solutions }\end{array}$		
• Can use a graphing calculator			$]$	• Used to solve equations of the form
:---				
$x^{2}=d$.				

Notes:

Extra Practice

In Exercises 1-6, solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

1. $x^{2}-10 x+16=0$
2. $x^{2}+2 x-8=0$
3. $3 x^{2}-x-2=0$
4. $x^{2}+6 x=-13$
5. $-3 x^{2}+5 x-1=-7$
6. $-4 x^{2}+8 x+12=6$
\qquad

9.5 Notetaking with Vocabulary (continued)

7. A square pool has a side length of x feet. A uniform border around the pool is 1 foot wide. The total area of the pool and the border is 361 square feet. What is the area of the pool?

In Exercises 8-10, determine the number of real solutions of the equation.
8. $-x^{2}+6 x+3=0$
9. $x^{2}+6 x+9=0$
10. $x^{2}+3 x+8=0$

In Exercises 11-13 find the number of x-intercepts of the graph of the function.
11. $y=-x^{2}+4 x+3$
12. $y=x^{2}+14 x+49$
13. $y=-x^{2}-8 x-18$

In Exercises 14-16, solve the equation using any method. Explain your choice of method.
14. $x^{2}-4 x+4=16$
15. $x^{2}-8 x+7=0$
16. $3 x^{2}+x-5=0$

