\qquad
\qquad

5.7
 Systems of Linear Inequalities
 For use with Exploration 5.7

Essential Question How can you graph a system of linear inequalities?

1 EXPLORATION: Graphing Linear Inequalities

Work with a partner. Match each linear inequality with its graph. Explain your reasoning.

$$
\begin{array}{ll}
2 x+y \leq 4 & \text { Inequality } 1 \\
2 x-y \leq 0 & \text { Inequality } 2
\end{array}
$$

A.

B.

2 EXPLORATION: Graphing a System of Linear Inequalities
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Consider the linear inequalities given in Exploration 1.

$$
\begin{array}{ll}
2 x+y \leq 4 & \text { Inequality } 1 \\
2 x-y \leq 0 & \text { Inequality } 2
\end{array}
$$

a. Use two different colors to graph the inequalities in the same coordinate plane. What is the result?

\qquad
5.7 Systems of Linear Inequalities (continued)

2 EXPLORATION: Graphing a System of Linear Inequalities (continued)
b. Describe each of the shaded regions of the graph. What does the unshaded region represent?

Communicate Your Answer

3. How can you graph a system of linear inequalities?
4. When graphing a system of linear inequalities, which region represents the solution of the system?
5. Do you think all systems of linear inequalities have a solution? Explain your reasoning.
6. Write a system of linear inequalities represented by the graph.

\qquad

5.7

Practice

For use after Lesson 5.7

Core Concepts

Graphing a System of Linear Inequalities

Step 1 Graph each inequality in the same coordinate plane.

Step 2 Find the intersection of the half-planes that are solutions of the inequalities. This intersection is the graph of the system.

Notes:

Worked-Out Examples

Example \#1

Graph the system of linear inequalities.
$x+y>4$
$y \geq{ }_{2}^{3} x-9$
Graph the system.

$$
\begin{aligned}
x+y & >4 \\
x-x+y & >4-x \\
y & >-x+4 \\
y \geq \frac{3}{2} x-9 &
\end{aligned}
$$

Example \#2

Write a system of linear inequalities represented by the graph.
Inequality 1: One of the lines has a slope of 5 and a y-intercept of 1 . So, an equation of the line is $y=5 x+1$. Because the shaded region is below this solid boundary line, the inequality is $y \leq 5 x+1$.
Inequality 2 : The slope of the other boundary line is 1 , and the y-intercept is -2 . So, an equation of this line is $y=x-2$. Because the shaded region is above this dashed
 boundary line, the inequality is $y>x-2$.

So, the system of linear inequalities represented by the graph is $y \leq 5 x+1$ and $y>x-2$.
\qquad
\qquad

5.7 Practice (continued)

Practice A

In Exercises 1-4, tell whether the ordered pair is a solution of the system of linear inequalities.

1. $(0,0) ; y>2$
$y<x-2$
2. $(-1,1) ; y<3$
$y>x-4$
3. $(0,4) ; y \leq-x+4$
$y \geq 5 x-3$

In Exercises 5-8, graph the system of linear inequalities.
5. $y>-2$
$y \leq 3 x$

6. $y<3$
$x<2$

\qquad
\qquad

5.7 Practice (continued)

7. $y \geq x-2$
$y<-x+2$

8. $2 x+3 y<6$
$y-1 \geq-2 x$

In Exercises 9-12, write a system of linear inequalities represented by the graph.
9.

10.

12.

\qquad
\qquad

Practice B

In Exercises 1 and 2, tell whether the ordered pair is a solution of the system of linear inequalities.

1. $\begin{aligned}(2,0) ; & y>x-5 \\ y & \leq 2 x+1\end{aligned}$
2. $(1,4) ; y<2 x+2$
$y \geq-3 x+4$

In Exercises 3-8, graph the system of linear inequalities.
3. $x+y \leq 2$
$y \leq 1$
4. $3 x+y>4$
$y<-3 x+1$
5. $x-y<3$
$-x-y \geq-1$
6. $y \leq \frac{1}{3} x+2$
$y>-\frac{1}{2} x+5$
7. $x>-2$
$y<3$
$y \geq 2 x-1$
8. $x+y>4$
$x-y<-1$
$y>7$

In Exercises 9 and 10, write a system of linear inequalities represented by

 the graph.9.

10.

11. Describe and correct the error in graphing the system of inequalities.

$$
\begin{aligned}
& \text { X } y \geq \frac{1}{3} x-2 \\
& y<-2 x+3
\end{aligned}
$$

12. The points $(1,2),(5,5),(1,6)$ are the vertices of a shaded triangle.
a. Write a system of linear inequalities represented by the shaded triangle.
b. Find the area of the triangle.
