\qquad

Solving Quadratic Equations by Graphing

 For use with Exploration 9.2Essential Question How can you use a graph to solve a quadratic equation in one variable?

1 EXPLORATION: Solving a Quadratic Equation by Graphing
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

a. Sketch the graph of $y=x^{2}-2 x$.
b. What is the definition of an x-intercept of a graph? How many x-intercepts does this graph have? What are they?

c. What is the definition of a solution of an equation in x ? How many solutions does the equation $x^{2}-2 x=0$ have? What are they?
d. Explain how you can verify the solutions you found in part (c).

2 EXPLORATION: Solving Quadratic Equations by Graphing

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Solve each equation by graphing.
a. $x^{2}-4=0$
b. $x^{2}+3 x=0$

\qquad
9.2 Solving Quadratic Equations by Graphing (continued)

2 EXPLORATION: Solving Quadratic Equations by Graphing (continued)
c. $-x^{2}+2 x=0$

d. $x^{2}-2 x+1=0$

e. $x^{2}-3 x+5=0$

f. $-x^{2}+3 x-6=0$

Communicate Your Answer

3. How can you use a graph to solve a quadratic equation in one variable?
4. After you find a solution graphically, how can you check your result algebraically?

Check your solutions for parts (a)-(d) in Exploration 2 algebraically.
5. How can you determine graphically that a quadratic equation has no solution?
\qquad
9.2

Notetaking with Vocabulary For use after Lesson 9.2

In your own words, write the meaning of each vocabulary term. quadratic equation

Core Concepts

Solving Quadratic Equations by Graphing

Step 1 Write the equation in standard form, $a x^{2}+b x+c=0$.
Step 2 Graph the related function $y=a x^{2}+b x+c$.
Step 3 Find the x-intercepts, if any.
The solutions, or roots, of $a x^{2}+b x+c=0$ are the x-intercepts of the graph.

Notes:

Number of Solutions of a Quadratic Equation

A quadratic equation has:

- two real solutions when the graph of its related function has two x-intercepts.
- one real solution when the graph of its related function has one x-intercept.
- no real solutions when the graph of its related function has no x-intercepts.

Notes:

\qquad
9.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-9, solve the equation by graphing.

1. $x^{2}+4 x=0$

2. $x^{2}+2 x+4=0$

3. $x^{2}-5 x+4=0$

4. $x^{2}+6 x+9=0$
5. $x^{2}=2 x-6$

6. $x^{2}-x-12=0$

7. $x^{2}-10 x+25=0$
8. $x^{2}+4=0$

\qquad

9.2 Notetaking with Vocabulary (continued)

In Exercises 10-15, find the zero(s) of \boldsymbol{f}.
10. $f(x)=(x-2)\left(x^{2}-x\right)$

11. $f(x)=(x+2)\left(x^{2}-2 x+1\right)$

14. $f(x)=(x-1)\left(x^{2}-5 x+6\right)$

12. $f(x)=(x+1)\left(x^{2}-4 x+3\right)$

In Exercises 16-18, approximate the zeros of \boldsymbol{f} to the nearest tenth.
16. $f(x)=x^{2}-3 x+1$

17. $f(x)=x^{2}-x-3$

18. $f(x)=-x^{2}-8 x-13$

