1. Find is the following points lie on the given line or not:

(i) $(1,3)$ on the line $2 x+3 y=11$

Solution:-

From the question it is given that,
Point $=(1,3)$
Line $=2 x+3 y=11$
Now, put $x=1$ and $y=3$
Consider Left Hand Side (LHS) $=2 x+3 y$

$$
\begin{aligned}
& =2(1)+3(3) \\
& =2+9 \\
& =11
\end{aligned}
$$

Right Hand Side (RHS) $=11$
By comparing LHS and RHS

$$
\text { LHS }=\text { RHS }
$$

$$
11=11
$$

Therefore, point lie on the given line.
(ii) $(5,3)$ on the line $3 x-5 y+5=0$

Solution:-

From the question it is given that,
Point $=(5,3)$
Line $=3 x-5 y+5=0$
Now, put $x=5$ and $y=3$
Consider Left Hand Side (LHS) $=3 x-5 y+5$

$$
\begin{aligned}
& =3(5)-5(3)+5 \\
& =15-15+5 \\
& =5
\end{aligned}
$$

Right Hand Side (RHS) $=0$
By comparing LHS and RHS

$$
\text { LHS } \neq \text { RHS }
$$

$$
5 \neq 0
$$

Therefore, point does not lie on the given line.
(iii) $(2,4)$ on the line $y=2 x-1$

Solution:-

From the question it is given that,
Point $=(2,4)$

Line $=y=2 x-1$
Now, put $x=2$ and $y=4$
Consider Left Hand Side (LHS) $=4$
Right Hand Side (RHS) $=2 x-1$

$$
\begin{aligned}
& =2(2)-1 \\
& =4-1 \\
& =3
\end{aligned}
$$

By comparing LHS and RHS

$$
\text { LHS } \neq \text { RHS }
$$

$$
4 \neq 3
$$

Therefore, point does not lie on the given line.
(iv) $(-1,5)$ on the line $3 x=2 y-13$

Solution:-

From the question it is given that,
Point $=(-1,5)$
Line $=3 x=2 y-15$
Now, put $x=-1$ and $y=5$
Consider Left Hand Side (LHS) $=3 x$

$$
\begin{aligned}
& =3(-1) \\
& =-3
\end{aligned}
$$

Right Hand Side $($ RHS $)=2 y-13$

$$
\begin{aligned}
& =2(5)-15 \\
& =10-13 \\
& =-3
\end{aligned}
$$

By comparing LHS and RHS

$$
\begin{aligned}
& \text { LHS }=\text { RHS } \\
& -3=-3
\end{aligned}
$$

Therefore, point lie on the given line.
(v) $(7,-2)$ on the line $5 x+7 y=11$

Solution:-

From the question it is given that,
Point $=(7,-2)$
Line $=5 x+7 y=11$
Now, put $x=7$ and $y=-2$
Consider Left Hand Side (LHS) $=5 x+7 y$

$$
\begin{aligned}
& =5(7)+7(-2) \\
& =35-14 \\
& =21
\end{aligned}
$$

Right Hand Side (RHS) $=11$
By comparing LHS and RHS
LHS \neq RHS
$21 \neq 11$
Therefore, point does not lie on the given line.

2. Find the value of m if the line $2 x+5 y+12=0$ passes through the point (4, m)

Solution:-

From the question it is given that,
The line $2 x+5 y+12=0$ passes through the point $(4, m)$
We have to find the value of m,
So, put $x=4$ and $y=m$

$$
\begin{aligned}
& 2 x+5 y+12=0 \\
& 2(4)+5(m)+12=0 \\
& 8+5 m+12=0 \\
& 5 m+20=0 \\
& 5 m=-20 \\
& m=-20 / 5 \\
& m=-4
\end{aligned}
$$

Therefore, the value of m is -4 .

3. Find the value of P if the line $3 y=5 x-7$ passes through the point $(p, 6)$.

Solution:-

From the question it is given that,
The line $3 y=5 x-7$ passes through the point ($p, 6$)
We have to find the value of p,
So, put $\mathrm{x}=\mathrm{p}$ and $\mathrm{y}=6$
$3 y=5 x-7$
$3(6)=5(P)-7$
$18=5 \mathrm{P}-7$
$18+7=5 \mathrm{P}$
$25=5 \mathrm{P}$
$\mathrm{P}=25 / 5$
$\mathrm{P}=5$

Therefore, the value of P is 5 .

4. Find the value of a if the line $4 x=11-3 y$ passes through the point $(a, 5)$.

Solution:-

From the question it is given that,
The line $4 x=11-3 y$ passes through the point $(a, 5)$
We have to find the value of a,
So, put $x=a$ and $y=5$

$$
\begin{aligned}
& 4 x=11-3 y \\
& 4(a)=11-3(5) \\
& 4 a=11-15 \\
& 4 a=-4 \\
& a=-4 / 4 \\
& a=-1
\end{aligned}
$$

Therefore, the value of a is -1 .
5. The line $y=6-3 x / 2$ passes through the point ($r, 3$). Find the value of r.

Solution:-

From the question it is given that,
The line $y=6-3 x / 2$ passes through the point $(r, 3)$
We have to find the value of r,
So, put $x=r$ and $y=3$

$$
\begin{aligned}
& y=6-3 x / 2 \\
& 3=6-(3(r)) / 2 \\
& 3=(12-3 r) / 2 \\
& 6=12-3 r \\
& 3 r=12-6 \\
& 3 r=6 \\
& r=6 / 3 \\
& r=2
\end{aligned}
$$

Therefore, the value of r is 2 .
6. The line $(3+5 y) / 2=(4 x-7) / 3$ passes through the point $(1, k)$. find the value of k Solution:-
From the question it is given that,
The line $(3+5 y) / 2=(4 x-7) / 3$ passes through the point $(1, k)$
We have to find the value of k,

So, put $x=1$ and $y=k$

$$
\begin{aligned}
& (3+5 y) / 2=(4 x-7) / 3 \\
& (3+5(k)) / 2=(4(1)-7) / 3 \\
& 3(3+5 k)=2(4-7) \\
& 9+15 k=2(-3) \\
& 9+15 k=-6 \\
& 15 k=-6-9 \\
& 15 k=-15 \\
& k=-15 / 15 \\
& k=-1
\end{aligned}
$$

Therefore, the value of k is -1 .
7. The line $4 x+3 y=11$ bisects the join of $(6, m)$ and (4, 9). Find the value of m. Solution:-
Let us assume the point of intersection of $C D$ and line $4 x+4 y=11$ be the point $Q(a, b)$
From the question it is given that, line $4 x+3 y=11$ bisects the line segment $C D$,
So, $C Q: Q D=1: 1$
Then, the coordinates of Q are,
$\mathrm{Q}(\mathrm{a}, \mathrm{b})=\mathrm{Q}[((6+4) / 2),((m-9) / 2)]$

$$
=Q[5,((m-9) / 2)]
$$

Since $Q(a, b)$ lies on the line $4 x+3 y=11$,
Where, $x=5, y=(m-9) / 2$

$$
\begin{aligned}
& 4(5)+3((m-9) / 2)=11 \\
& 20+(3 m-27) / 2=11 \\
& 40+3 m-27=22 \\
& 3 m+13=22 \\
& 3 m=22-13 \\
& 3 m=9 \\
& m=9 / 3 \\
& m=3
\end{aligned}
$$

Therefore, value of m is 3 .

8. The line $2 x-5 y+31=0$ bisects the join of $(-4,5)$ and $(p, 9)$. Find the value of p.

Solution:-

Let us assume the point of intersection of $C D$ and line $4 x+4 y=11$ be the point $Q(a, b)$ From the question it is given that, line $2 x-5 y+31=0$ bisects the line segment $C D$, So, CQ: QD = 1: 1

Then, the coordinates of Q are,
$Q(a, b)=Q[((-4+P) / 2),((5+9) / 2)]$
$=Q[((-4+P) / 2), 7]$
Since $Q(a, b)$ lies on the line $2 x-5 y+31=0$,
Where, $x=(-4+P) / 2, y=7$

$$
\begin{aligned}
& 2((-4+P) / 2)-5(7)+31=0 \\
& (-8+2 P) / 2-35+31=0 \\
& (-8+2 P) / 2-4=0 \\
& -8+2 P-8=0 \\
& -16+2 P=0 \\
& 2 P=16 \\
& P=16 / 2 \\
& P=8
\end{aligned}
$$

Therefore, value of P is 8 .
9. The line segment formed by the points $(3,7)$ and $(-7, z)$ is bisected by the line $3 x+$ $4 y=18$. Find the value of z.

Solution:-

Let us assume the point of intersection of $C D$ and line $3 x+4 y=18$ be the point $Q(a, b)$
From the question it is given that, line $3 x+4 y=18$ bisects the line segment $C D$,
So, $C Q: Q D=1$: 1
Then, the coordinates of Q are,
$\mathrm{Q}(\mathrm{a}, \mathrm{b})=\mathrm{Q}[((-3+7) / 2),((7+z) / 2)]$

$$
=\mathrm{Q}[-2,((7+z) / 2)]
$$

Since $Q(a, b)$ lies on the line $3 x+4 y=18$,
Where, $x=-2, y=(7+z) / 2$

$$
\begin{aligned}
& 3 x+4 y=18 \\
& 3(-2)+4((7+z) / 2)=18 \\
& -6+(28+4 z) / 2=18 \\
& -12+28+4 z=36 \\
& 16+4 z=36 \\
& 4 z=36-16 \\
& 4 z=20 \\
& z=20 / 4 \\
& z=5
\end{aligned}
$$

Therefore, value of z is 5 .
10. The line $5 x-3 y+1=0$ divides the join of $(2, m)$ and $(7,9)$ in the ratio 2 : 3 . Find the value of m.

Solution:-

Let us assume the point of intersection of $C D$ and line $5 x-3 y+1=0$ be the point $Q(a, b)$ From the question it is given that, line $5 x-3 y+1=0$ divides the line segment CD are in the ratio 2: 3,
So, CQ: QD = 2: 3
So, Point C become 3(2, m) $=(6,3 m)$

$$
\text { D become } 2(7,9)=(14,18)
$$

Then, the coordinates of Q are,

$$
\begin{aligned}
\mathrm{Q}(\mathrm{a}, \mathrm{~b}) & =\mathrm{Q}[((14+6) / 5),((18+3 \mathrm{~m}) / 5)] \\
& =\mathrm{Q}[4,((18+3 \mathrm{~m}) / 5)]
\end{aligned}
$$

Since $Q(a, b)$ lies on the line $5 x-y+1=0$,
Where, $x=4, y=(18+3 m) / 5$

$$
\begin{aligned}
& 5 x-3 y+1=0 \\
& 5(4)-3((18+3 m) / 5)+1=0
\end{aligned}
$$

$$
20-(54+9 m) / 5+1=0
$$

$$
21-(54+9 m) / 5=0
$$

$$
105-54-9 m=0
$$

$$
51-9 m=0
$$

$$
9 m=51
$$

$$
m=51 / 9
$$

$$
m=17 / 3 \quad \text {... [because divide both by 3] }
$$

Therefore, value of m is $17 / 3$.
11. The line $7 x-8 y=4$ divides the join of $(-8,-4)$ and $(6, k)$ in the ratio 2 : 5 . Find the value of k.

Solution:-

Let us assume the point of intersection of $C D$ and line $7 x-8 y=4$ be the point $Q(a, b)$
From the question it is given that, line $7 x-8 y=4$ divides the line segment $C D$ are in the ratio 2: 5,
So, CQ: QD = 2: 5
So, Point C become $5(-8,-4)=(-40,-20)$
D become 2(6, k$)=(12,2 \mathrm{k})$
Then, the coordinates of Q are,
$Q(a, b)=Q[((12-40) / 7),((2 k-20) / 7)]$
$=Q[-4,((2 k-20) / 7)]$

Since $Q(a, b)$ lies on the line $7 x-8 y=4$,
Where, $x=-4, y=(2 k-20) / 7$

$$
\begin{aligned}
& 7(-4)-8((2 k-20) / 7)=4 \\
& -28-(16 k-160) / 7=4 \\
& -196-16 k+160=28 \\
& -36-16 k=28 \\
& 16 \mathrm{k}=-36-28 \\
& 16 \mathrm{~K}=-64 \\
& \mathrm{~K}=-64 / 16 \\
& \mathrm{~K}=-4
\end{aligned}
$$

Therefore, value of k is -4 .
12. The line $5 x+3 y=25$ divides the join of $(b, 4)$ and $(5,8)$ in the ratio $1: 3$. Find the value of b.

Solution:-

Let us assume the point of intersection of $C D$ and line $5 x+3 y=25$ be the point $Q(a, b)$
From the question it is given that, line $5 x+3 y=25$ divides the line segment $C D$ are in the ratio 1:3,
So, CQ: QD = 1: 3
So, Point C become 3(b, 4) $=(3 b, 12)$
D become $1(5,8)=(5,8)$
Then, the coordinates of Q are,

$$
\begin{aligned}
\mathrm{Q}(\mathrm{a}, \mathrm{~b}) & =\mathrm{Q}[((5+3 \mathrm{~b}) / 4),((8+12) / 4)] \\
& =\mathrm{Q}[((5+3 \mathrm{~b}) / 4), 5]
\end{aligned}
$$

Since $Q(a, b)$ lies on the line $5 x+3 y=25$,
Where, $x=(5+3 b) / 4, y=5$

$$
\begin{aligned}
& 5((5+3 b) / 4)+3(5)=25 \\
& (25+15 b) / 4+15=25 \\
& 25+15 b+60=100 \\
& 15 b+85=100 \\
& 15 b=100-85 \\
& 15 b=15 \\
& b=15 / 15 \\
& b=1
\end{aligned}
$$

Therefore, value of b is 1 .
13. P is a point on the line segment $A B$ dividing it in the ratio 2: 3. If the coordinates of
A and B are $(-2,3)$ and $(8,8)$, find if P lies on the line $7 x-2 y=4$.

Solution:-

From the question it is given that,
The coordinates of A and B are $(-2,3)$ and $(8,8)$
The line segment $A B$ dividing it in the ratio $2: 3$
So, $\mathrm{AP}: \mathrm{PB}=2: 3$
Then, $A=3(-2,3)=(-6,9)$
$B=2(8,8)=(16,16)$
Then, the coordinates of P are,

$$
\begin{aligned}
\mathrm{P}(\mathrm{a}, \mathrm{~b}) & =\mathrm{P}[((16-6) / 5),((16+9) / 5)] \\
& =P[2,5]
\end{aligned}
$$

Since $P(a, b)$ lies on the line $7 x-2 y=4$,
Where, $x=2, y=5$
Consider Left Hand Side (LHS) $=7 x-2 y$

$$
\begin{aligned}
& =7(2)-2(5) \\
& =14-10 \\
& =4
\end{aligned}
$$

Right Hand Side (RHS) $=4$
By comparing LHS and RHS

$$
\begin{aligned}
& \text { LHS }=\text { RHS } \\
& 4=4
\end{aligned}
$$

Therefore, point $P(2,5)$ lie on the given line $7 x-2 y=4$.
14. L is a point on the line segment PQ dividing it in the ratio $1: 3$. If the coordinates of P and Q are $(3,7)$ and $(11,-5)$ respectively, find if L lies on the line $2 x+5 y=20$.

Solution:-

From the question it is given that,
The coordinates of P and Q are $(3,7)$ and $(11,-5)$ respectively
The line segment PQ dividing it in the ratio $1: 3$
So, LP: LQ = 1: 3
Then, $P=3(3,7)=(9,21)$

$$
Q=1(11,-5)=(11,-5)
$$

Then, the coordinates of L are,

$$
\begin{aligned}
\mathrm{L}(\mathrm{a}, \mathrm{~b}) & =\mathrm{L}[((11+9) / 4),((-5+21) / 4)] \\
& =\mathrm{L}[5,4]
\end{aligned}
$$

Since $L(a, b)$ lies on the line $2 x+5 y=20$,
Where, $x=5, y=4$

Consider Left Hand Side (LHS) $=2 x+5 y$

$$
\begin{aligned}
& =2(5)+5(4) \\
& =10+20 \\
& =30
\end{aligned}
$$

Right Hand Side (RHS) $=20$
By comparing LHS and RHS
LHS \neq RHS

$$
30 \neq 20
$$

Therefore, point $L(a, b)$ does not lie on the given line $2 x+5 y=20$.
15. The line segment formed by two points $A(2,3)$ and $B(5,6)$ is divided by a point in the ratio 1: 2. Find, whether the point of intersection lies on the line $3 x-4 y+5=0$. Solution:-
From the question it is given that,
The coordinates of $A(2,3)$ and $B(5,6)$.
The line segment $A B$ dividing it in the ratio 1: 2
So, AL: LB = 1: 3
Then, $A=2(2,3)=(4,6)$
$B=1(5,6)=(5,6)$
Then, the coordinates of L are,

$$
\begin{aligned}
\mathrm{L}(\mathrm{a}, \mathrm{~b}) & =\mathrm{L}[((5+4) / 3),((6+6) / 3)] \\
& =\mathrm{L}[3,4]
\end{aligned}
$$

Since $L(a, b)$ lies on the line $3 x-4 y+5=0$,
Where, $x=3, y=4$
Consider Left Hand Side $($ LHS $)=3 x-4 y+5$

$$
\begin{aligned}
& =3(3)-4(4)+5 \\
& =9-16+5 \\
& =-2
\end{aligned}
$$

Right Hand Side (RHS) $=0$
By comparing LHS and RHS
LHS \neq RHS
$-2 \neq 0$
Therefore, point $L(a, b)$ does not lie on the given line $3 x-4 y+5=0$.

