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1.1 Basic concepts and ideas

 Equations

3y 2 + y - 4 = 0   y = ?

where y is an unknown.

 Functions
f(x) = 2x3 + 4x ,

where x is a variable.

 Differential equations

A differential equation is an equation contains one or several derivative 
of unknown functions (or dependent variables). For example,

x = -2 , f(x) = -24
x = -1 , f(x) = -6
x = 0 ,  f(x) = 0
x = 1 ,  f(x) = 6

:           :

 (ordinary differential equation)

 (partial differential equation)
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 There are several kinds of differential equations

 An ordinary differential equation (ODE) is an equation that contains one 
independent variable and one or several derivatives of an unknown
function (or dependent variable), which we call y(x) and we want to 
determine from the equation. For example,

where y is called dependent variable and
x is called independent variable.

 If a differential equation contains one dependent variable and two or 
more independent variables, then the equation is a partial differential 
equation (PDE).

 If differential equations contain two or more dependent variable and one 
independent variable, then the set of equations is called a system of 
differential equations.
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 Summary
A differential equation contains

(1) one dependent variable and one independent variable  
an ordinary differential equation.

(2) one dependent variable and two or more independent variable  
a partial differential equation.

(3) Two or more dependent variable and one independent variable  
a system of differential equations.

y1’(x) = 2 y1(x) - 4 y2(x)                     y1(x) = c1 4ex + c2 e -2x

y2’(x) = y1(x) - 3 y2(x)                        y2(x) = c1 ex + c2 e -2x

(4) Two or more dependent variable and two or more independent 
variable   a system of partial differential equations.
(rarely to see)
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What is the purpose of differential equations ?

Many physical laws and relations appear mathematically in the form of 
such equations. For example, electronic circuit, falling stone, vibration, etc.

Resister (R)

Inductor (L)

Electro-motive 
force (E)

(1) Current I in an RL-circuit

LI’ + RI = E.

(2) Falling stone

y “ = g = constant.

(3) Pendulum

L ” + g sin = 0.

L



I

y
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 Any physical situation involved motion or measure rates of change can be 
described by a mathematical model, the model is just a differential 
equation.

The transition from the physical problem to a corresponding mathematical 
model is called modeling.

In this course, we shall pay our attention to solve differential equations 
and don’t care of modeling.

Physical
situation

modeling
DE

solving
Solution

That is, the purposes of this course are that
given a differential equation
1. How do we know whether there is a solution ?
2. How many solutions might there be for a DE, and how are they related?
3. How do we find a solution ?
4. If we can’t find a solution, can we approximate one numerically?
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 A first-order ODE is an equation involving one dependent variable, one 
independent variable, and the first-order derivative. For example,

y’ + xy2 – 4 x3 = 0

(y’ )3/2 + x2 – cos(xy’) = 0.

 A solution of a first-order ODE is a function which satisfies the equation. 
For example, 

y(x) = e2x is a solution of  y ‘ – 2y = 0.

y(x) = x2 is a solution of  xy‘ = 2y.

 A solution which appears as an implicit function, given in the form         
H(x, y) = 0, is called an implicit solution; 
for example  x2 + y 2 -1 = 0  is an implicit solution of DE yy ‘ = -x.

In contrast to an explicit solution with the form of y = f(x); 
for example,  y = x2 is an explicit solution of  xy ’ = 2y.
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 A general solution is a solution containing one arbitrary constant;
for example,  y = sinx + c is a general solution of  y’ = cosx.  

A particular solution is a solution making a specific choice of constant on 
the general solution. Usually, the choice is made by some additional 
constraints.

For example,  y = sinx - 2  is a particular solution of  y’ = cosx with the
condition y(0) = - 2.

 A differential equation together with an initial condition is called an initial 
value problem. For example,

y’ = f(x, y),    y(x0) = y0,

where x0 and y0 are given values. 

 Problem of Section 1.1.   

 For example,  xy ’ = 3y,   y (-4) = 16   y = cx3 
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1.2 Geometrical meaning of y’ = f (x, y); Direction fields

 Purpose
To sketch many solution curves of a given DE without actually solving 
the differential equation.

Method of direction fields

The method applies to any differential equation y ’ = f (x, y).

Assume y(x) is a solution of a given DE.

y (x) has slope y’(x0) = f (x0, y0) at (x0, y0).

(i) draw the curves f(x, y) = k , k is a real constant. These curves are 
called isoclines of the original DE.

(ii) along each isocline, draw a number of short line segments (called 
lineal element) of slope k to construct the direction field of the original 
DE. (That is, the direction field is just the set of all connected lineal 
elements.)
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 Ex.1. Graph the direction field of the 1st-order DE y’ = xy.
(i) draw the curves (isoclines)  xy = …-2, -1, 0, 1, 2, …

x

y

xy = 1
xy = 2
xy = 3

xy = -3
xy = -2
xy = -1

(ii) draw lineal elements on each isocline,

x

y

xy = 1
xy = 2
xy = 3

xy = -3
xy = -2
xy = -1
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(a) By computer.                                       (b) By hand.

Direction field of y’ = xy.

 Problems of Section 1.2.

(iii) connect the related lineal elements to form the direction field.
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1.3 Separable differential equations

 A DE is called separable if it can be written in the form of

g(y) y’ = f(x) or g(y) dy = f(x) dx

To solve the equation by integrate both sides with x,

 Ex.1. Solve
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 Ex.1. Solve

 Ex. Initial value problem

y’ + 5x4y 2 = 0  with  initial condition  y(0)=1.
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 Ex.3. Solve y’ = -2xy ,  y(0) = 0.8.

 Ex.  Solve

 Ex.4. Solve  y’ = ky ,  y(0) = y0.

 Example of no separable DE (x-1)y’ = 3x2 + y.

 Note: There is no nice test to determine easily whether or not a 1st-order 
equation is separable.
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Reduction to separable forms

 Certain first-order differential equation are not separable but can be made 
separable by a simple change of variables (dependent variable)

The equation of the form                   can be made separable; and the 

form is called the R-1 formula.

step 1. Set            ,  then y = ux (change of variables).

step 2. Differential  y’ = u + xu’    (product differentiation formula).

step 3. The original DE

step 4. integrate both sides of the equation.

step 5. replace u by y/x.
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 Ex.8. Solve  2xyy’ = y 2 - x2.

Dividing by x2, we have
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 Ex. Solve initial value problem
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 Ex. Solve  (2x - 4y + 5) y’ + x - 2y + 3 = 0.

If we set u=y/x, then the equation will become no-separable.

One way by setting  x - 2y = v. Then
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R-2 formula

 Now we want to handle differential equations of the form

, where a, b, c, g, e, and h are constants.

It implies that                                             ,

which is R-1 formula when c = h = 0, and 

R-2 formula when c  0 or h  0.

 There are two ways to solve the equation:

i.  R-2 formula   R-1 formula  separable   or

ii. R-2 formula   separable  (directly).
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 Case 1. Suppose that ae – bg  0.
Change variables x = X + 

y = Y +  to eliminate the effect of c and h ,
where X and Y are two new variables;  and  are two constants.

The differential equation becomes

Now we choose  and  such that
a + b + c = 0
g + e + h = 0

Since ae – bg  0 , then exist  and  satisfying these equations

Such that 

{
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 Ex.

,   where ae – bg = 2 * 0 – 1 * 1  0.

Let x = X +  and y =Y +  to get

Solving the system of linear equations
2  +  -1 = 0
 - 2 = 0       = 2  and   = -3.

Then the equation becomes 

Let  u = Y / X   Y = Xu .
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Since u = Y / X,

Since  X = x - 2  and  Y = y + 3.
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 Case 2. Suppose that ae – bg = 0.

Set                         ……………………………………. (1)

Since ae = bg (i.e.,             )  

……………………. (2)

……….…………………. (3)
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 Ex.
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 Problems of Section 1.3.

The differential equation becomes
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1.4 Exact differential equations

 Now we want to consider a DE as

That is, M(x, y)dx + N(x, y)dy = 0.

 The solving principle can be
method 1: transform this equation to be separable or R-1;
method 2: to find a function u(x, y) such that

the total differential du is equal to Mdx + Ndy.

 In the latter strategy, if u exists, then equation Mdx + Ndy = 
0 is called exact, and u(x, y) is called a potential function for 
this differential equation.

We know that  “du = 0   u(x, y) = c” ;
it is just the general solution of the differential equation.



Advanced Engineering Mathematics                 1. First-order ODEs 27

 How to find such an u ?

since du = = Mdx + Ndy,

= M and        = N.

step1. to integrate M w.r.t. x or integrate N w.r.t. y to obtain 
u. Assume u is obtained by integrating M, then 

u(x, y) = ∫Mdx + k(y).
step2. partial differentiate u w.r.t. y (i.e.,     ), and to compare 

with N to find k function.

 How to test Mdx + Ndy = 0 is exact or not ?
Proposition (Test for exactness)

If M, N,       , and        are continuous over a rectangular

region R, then “Mdx + Ndy = 0 is exact for (x, y) in R if and

only if in R ”.

To find u, u is regarded 
as a function of two 
independent variables 
x and y. 
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 Ex. Solve (x3 + 3xy 2)dx + (3x2y + y 3)dy = 0.

1st step: (testing for exactness)

M = x3 + 3xy 2,  N = 3x2y + y 3

It implies that the equation is exact.

2nd step:

u = ∫Mdx + k(y) = ∫(x3 +3xy2)dx + k(y)  =     x4 +     x2y2 + k(y)

3rd step:
Since        = N  3x 2y + k’(y) = 3x 2y + y 3,

k ’(y) = y 3.  That is k(y)  =    y 4 + c*.

Thus u(x, y) =    (x 4 + 6x 2y 2 + y 4) + c*.

The solution is then    (x 4 + 6x 2y 2 + y 4) = c.

This is an implicit solution to the original DE. 
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4th step: (checking solution for Mdx + Ndy = 0)

 (4x 3 + 12xy2 + 12x 2yy’ + 4y 3y’) = 0

 (x 3 + 3xy2) + (3x 2y + y3)y’ = 0

 (x 3 +3xy2)dx + (3x 2y + y3)dy = 0.      QED

 Ex.2. Solve (sinx cosh y)dx – (cosx sinh y)dy = 0, y(0) = 3.

Answer.

M = sinx coshy,  N = - cosx sinhy

.  The DE is exact.

If u =∫sinx coshy dx + k(y) = - cosx coshy + k(y)

 k = constant  Solution is  cosx coshy = c.

Since y(0) = 3, cos0 cosh3 = c  cosx coshy = cosh 3.
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 Ex.3. (non-exact case)

ydx – xdy = 0

M = y,  N = -x

step 1:

If you solve the equation by the same method.

step 2:  u = ∫Mdx + k(y)  = xy + k(y)

step 3:         = x + k’(y) = N = -x

 k’(y) = -2x.

Since k(y) depends only on y; we can not find the solution.

Try u = ∫Ndy + k(x)  also gets the same contradiction.

Truly, the DE is separable.
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Integrating factors

 If a DE (or M(x, y)dx + N(x, y)dy = 0) is not

exact, then we can sometimes find a nonzero function F(x, y)
such that F(x, y)M(x, y)dx + F(x, y)N(x, y)dy = 0 is exact. 

We call F(x, y) an integrating factor for Mdx + Ndy = 0.

 Note

1. Integrating factor is not unique.

2. The integrating factor is independent of the solution.
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 Ex.4. Solve ydx – xdy = 0   (non-exact)
Assume there is an integrating factor            , then the original DE
becomes exact,

There are several differential factors:

(conclusion: Integrating factor is not unique)

 Ex. Solve  2 sin(y2) dx + xy cos(y2) dy = 0, Integrating factor F (x, y) = x 3.

FM = 2x 3 sin(y2)

FN = x 4y cos(y2)

Then we can solve the equation by the method of exact equation.
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 How to find integrating factors ?

there are no better method than inspection or “try and error”.

 How to “try and error” ?

Since (FM) dx + (FN) dy = 0  is exact,

; that is,

Let us consider three cases:

Case 1. Suppose F = F(x)  or  F = F(y)

Theorem 1. If F = F(x), then       = 0.

It implies that Eq.(1) becomes
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must be only a function of x only;

thus the DE becomes separable.           
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Theorem 2.  If F = F(y), then       = 0.

It implies that PDE (1) becomes

must be only a function of y only; thus the DE

becomes separable and

Case 2. Suppose F(x, y) = x ay b and attempt to solve coefficients a and b
by substituting F into Eq.(1).
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Case 3.  If cases 1 and 2 both fail, you may try other possibilities,

such as eax + by, xaeby, eaxyb, and so on.

 Ex. (Example for case 1) 

Solve the initial value problem

2xydx + (4y + 3x 2)dy = 0, y(0.2) = -1.5

M = 2xy, N = 4y +3x 2

(non-exact)

Testing whether                      depends only on x or not.

depends on both x and y.
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testing whether                       depends only on y or not.

depends only on y.

Thus F(y) =

The original DE becomes

2xy 3dx + (4y 3 + 3x 2y 2)dy = 0  (exact)

u =∫2xy 3dx + k(y) = x 2y 3 + k(y)

= 3x 2y 2 + k’(y) = 4y 3 + 3x 2y 2

 k’(y) = 4y3

 k(y) = y4 + c*
 u = x 2y3 + y 4 + c* = c’
 x 2y 3 + y4 = c .
Since y(0.2) = -1.5   c = 4.9275.
Solution  x 2y 3 + y4 = 4.9275.
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 Ex. (Example for case 2)

(2y 2 – 9xy)dx + (3xy – 6x 2)dy = 0   (non-exact)

 2(2+b)y b+1x a – 9(b+1)x a+1y b = 3(a+1)x ay b+1 – 6(a+2)x a+1y b

2(2+b) = 3(a+1) 
9(b+1) = 6(a+2)


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 3a – 2b – 1 = 0 
6a – 9b + 3 = 0

 a = 1
b = 1

 F(x, y) = xy.

{
{

Problems of Section 1.4.
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1.5  Linear differential equation and Bernoulli equation
 A first-order DE is said to be linear if it can be written

y’ + p(x)y = r (x).

If r (x) = 0, the linear DE is said to be homogeneous, if r (x) ≠ 0, the 
linear DE is said to be nonhomogeneous.

 Solving the DE
(a) For homogeneous equation (  separable)

y’ + p(x)y = 0

 = -p(x)y

 dy = - p(x)dx

 ln|y| =  -∫p(x)dx + c*

 y = ce -∫p(x)dx.
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(b) For nonhomogeneous equation

(py – r )dx + dy = 0

since                            is a function of x only,

we can take an integrating factor

F(x) =

such that the original DE y’ + py = r becomes

e∫pdx(y’ + py) = (e∫pdxy)’ = e∫pdxr

Integrating with respect to x,

e∫pdxy = ∫e∫pdxrdx + c
 y(x) = e -∫pdx [∫e∫pdxrdx + c] .

 The solution of the homogeneous linear DE is a special case of the 
solution of the corresponding non-homogeneous linear DE.
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 Ex. Solve the linear DE
y’ – y = e 2x

Solution.
p = -1, r = e 2x,   ∫pdx = -x
y(x) = e x [∫e –x e 2x dx + c]

= e x [∫e xdx + c]

= e 2x + ce x.

 Ex. Solve the linear DE
y’ + 2y = e x (3 sin 2x + 2 cos 2x)

Solution.
p = 2, r = e x (3 sin 2x + 2 cos 2x),  ∫pdx = 2x
y(x) = e -2x [∫e 2x e x (3 sin 2x + 2 cos 2x) dx + c]

= e -2x [e 3x sin 2x + c]

= c e -2x + e x sin 2x .
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Bernoulli equation

 The Bernoulli equation is formed of

y’ + p(x) y = r(x) y a ,  where a is a real number.

If a = 0 or a = 1, the equation is linear.

 Bernoulli equation can be reduced to a linear form by change of variables.

We set  u(x) = [y(x) ]1-a,

then differentiate the equation and substitute y’ from Bernoulli equation

u’ = (1 - a) y –a y ’ = (1 - a) y -a (r y a - py)

= (1 - a) (r - py1-a)

= (1 - a) (r - pu)

 u’ + (1 - a) pu = (1 - a) r   (This is a linear DE of u.)
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 Ex. 4.

y’ - Ay = - By 2

a = 2, u = y -1

u’ = -y -2 y ’ = -y -2 (-By 2 + Ay) = B – Ay -1 = B – Au
 u’ + Au = B

u = e -pdx [ e pdx r dx + c ]
= e -Ax [ Be Ax dx + c ]
= e -Ax [ B/A e Ax + c ]

= B/A + c e -Ax

 y = 1/u = 1/(B/A + ce -Ax)

Problems of Section 1.5.
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Riccati equation   (problem 44 on page 40)

y’ = p(x) y 2 + q (x) y + r (x)   is a Riccati equation.

 Solving strategy

If we can some how (often by observation, guessing, or trial and error) 
produce one specific solution y = s(x), then we can obtain a general 
solution as follows:

Change variables from y to z by setting

y = s(x) + 1/z
 y’= s’(x) - (1/z2) z’

Substitution into the Riccati equation given us

s’(x) - (1/z2) z’ = [ p(x) s(x)2 + q (x) s(x) + r (x) ] +

[ p(x) (1/z2) + 2p(x)s(x) (1/z) + q (x) (1/z) ]

Since s(x) is a solution of original equation.

 - (1/z2) z’ = p (1/z2) + 2 ps (1/z) + q (1/z)
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multiplying through by -z2

 z’ + (2 ps + q) z = -p ,  
which is a linear DE for z and can be found the solution.

 z = c/u(x) + [1/u(x)  -p(x)u(x)dx] ,

where u(x) = e [2ps + q] dx

 z = e -[2ps + q] dx [ -e (2ps + q) dx p dx + c ]

Then, y = s(x) + 1/z is a general solution of the Riccate equation.

 There are two difficulties for solving Riccati equations:

(1) one must first find a specific solution y = s(x).

(2) one must be able to perform the necessary integrations.

 Ex. y’ = (1/x) y 2 + (1/x) y - 2/x , s(x) = 1.

Solution. y(x) = (2x 3 + c)/(c – x 3).
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Summary for 1st order DE

1. Separable f(x) dx = g(y) dy [separated integration]

2. R-1 formula dy/dx = f(y/x)   [change variable u = y/x]

3. R-2 dy/dx = f((ax + by + c)/(gx + ey +h)), c  0 or h  0.

with two cases i. ae - bg  0   [x = X+ y =Y+   R-1  separable
ii. ae -bg = 0   [v = (ax+by)/a = (gx+ey)/g  separable]

4. Exact dy/dx = -M(x, y)/N(x, y)   [M/y = N/x  exact]

(M dx + N dy = 0)           [deriving u  du = Mdx + Ndy]

5. Integrating factor  dy/dx = -M/N [find F  (FM)dx + (FN)dy = 0 is exact]

i. (M/y - N/x)/N = F(x) or (N/x - M/y)/M = F(y)

try some factors ii. F = xayb

iii. F = eax+by, xaeby, eaxyb, …
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6. Linear 1st-order DE y’ + p(x)y = r(x)  

y = e -p(x) dx [  r(x) e p(x) dx dx + c ]

7. Bernoulli equation   y’ + p(x) y = r(x) ya

set u(x) = [y(x)] 1-a ,   u’ + (1-a) pu = (1-a) r   (linear DE)

8. Riccati equation y’ = p(x)y2 + q(x)y + r(x)

(1) guess a specific solution s(x)

(2) change variable y = s(x) + 1/z
(3) to derive a linear DE z’ + (2ps + q) z = -p .
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1.6 Orthogonal trajectories of curves

 Purpose
use differential equation to find curves that intersect given 
curves at right angles. The new curves are then called the 
orthogonal trajectories of the given curves.

Any blue line is orthogonal 
to any pink circle.

x

y
 Example
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 Principle
to represent the original curves by the general solution of a DE
y’ = f(x, y), then replace the slope y’ by its negative reciprocal, 
-1/y’ , and solve the new DE  -1/y’ = f(x, y).

 Family of curves
If for each fixed value of c the equation F(x, y, c) = 0 represents a 
curve in the xy-plane and if for variable c it represents infinitely 
many curves, then the totality of these curves is called a one-
parameter family of curves, and c is called the parameter of the 
family.

 Determination of orthogonal trajectories

step 1. Given a family of curves  F(x, y, c) = 0,

to find their DE in the form  y’ = f(x, y),

step 2. Find the orthogonal trajectories by solving their DE
y’ = -1/f(x, y).
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 Ex.
(1) The equation  F(x, y, c) = x + y + c = 0  represents a 

family of parallel straight lines.

(2) The equation  F(x, y, c) = x2 + y2 - c2 = 0  represents a 
family of concentric circles of radius c with center at the 
original.

x

y

c = 0

c = -2

c = 3

x

y

c = 2
c = 1

c = 3
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 Ex.
(1) differentiating  x + y + c = 0, gives the DE y’ = -1.

(2) differentiating  x2 + y2 - c2 = 0 ,

gives the DE   2x + 2yy’ = 0  y’ = -x/y.

(3) differentiating the family of parabolas  y = cx2 ,

gives the DE   y’ = 2cx.
since c = y/x2, y’ = 2y/x.

Another method

c = yx -2

 0 = y’x -2 - 2yx -3

 y’x = 2y
 y’ = 2y/x .
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 Ex.

Find the orthogonal trajectories of the parabolas y = cx2.

Step 1.  y’ = 2y/x
Step 2.  solve

y’ = -x/2y
 2y dy = -x dx
 y 2 = -x2/2 + c*

y = cx2
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 Ex.

Find the orthogonal trajectories of the circles   x2 + (y - c)2 = c2.

step 1. Differentiating x2 + (y - c)2 to give 2x + 2 (y – c) y’ = 0

 y’ = x/(c-y)   (error)

Problems of Section 1.6.

Correct derivation x2 + (y - c)2 = c2

 x2 + y 2 - 2cy = 0

 x2 y -1 + y = 2c
 2xy -1 - x2 y –2 y’ + y’ = 0

 2xy -1 = (x2 y -2 - 1) y’

 2xy = (x2 - y 2) y’

 y’ = 2xy/(x2 - y 2)

step 2. Solve y’ = (y 2 - x2)/2xy
 y’ = y/2x - x/2y   (R-1 formula)

Solution. (x - e)2 + y 2 = e2,
where e is a constant.
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1.7 Existence and uniqueness of solutions

 Consider an initial value problem
y’ = f(x, y) , y(x0) = y0

There are three possibilities of solution,

(i) no solution; e.g., |y’| + |y| = 0 , y(0) = 1.
0 is the only solution of the differential equation, 
the condition contradicts to the equation; 
moreover, y and y ’ are not continuous at x = 0.

(ii) unique solution; e.g., y’ = x , y(0) = 1, solution

(iii) infinitely many solution; e.g., xy’ = y – 1, y(0) = 1,

solution y = 1 + cx .
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 Problem of existence
Under what conditions does an initial value problem have at 
least one solution?

 Problem of uniqueness
Under what conditions does that problem have at most one 
solution?

 Theorem 1  (Existence theorem)
If f(x, y) is continuous at all points (x, y) in some rectangle
R : |x – x0| < a ,  |y - y0| < b and bounded in R: |f(x, y)|  k
for all (x, y) in R, then
the initial value problem
“y’ = f(x, y),  y(x0) = y0 “  
has at least one solution y(x).

R

x

y

xo

yo

aa

b

b
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 Theorem 2  (Uniqueness theorem)

If f(x, y) and f/y are continuous for all (x, y) in that rectangle R and

bounded,

(a) | f |  k ,  (b) for all (x, y) in R,  then the 

initial value problem has at most one solution y(x).  

Hence, by Theorem 1, it has precisely one solution.

 The conditions in the two theorems are sufficient conditions rather than 
necessary ones and can be lessened.

For example, condition                may be replaced by the weaker

condition                                                , where y1 and y2 are on the

boundary of the rectangle R. The later formula is known as a Lipschitz 
condition. However, continuity of f(x, y) is not enough to guarantee the 
uniqueness of the solution.

Advanced Engineering Mathematics                 1. First-order ODEs 58

 Ex. 2.  (Nonuniqueness)

The initial value problem

has the two solutions

Although                               is continuous for all y. The Lipschitz 
condition is violated in any region that include the line y = 0, because for 
y1 = 0 and positive y2, we have 

and this can be made as large as we please by choose y2 sufficiently 
small, whereas the Lipschitz condition requires that the quotient on the 
left side of the above equation should not exceed a fixed constant M.
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Picards’ iteration method
 Picards method gives approximate solutions of an initial value problem

y’ = f(x, y), y(x0) = y0

(i) The initial value problem can be written in the form

(ii) Take an approximation

(iii) Substitute the function y1(x) in the same way to get

(iv)

Under some conditions, the sequence will converge to the solution y(x)

of the original initial value problem.

unknown
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 Ex. Find approximate solutions to the initial value problem
y’ = 1 + y 2 ,  y(0) = 0 . 

Solution.
x0 = 0 ,  y0 = 0 ,  f(x, y) = 1 + y 2
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Exact solution y(x) = tan(x).

Problems of Section 1.7.
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Laparoscopic surgical simulation


