
1 Fundamentals of
open-channel flow

Open channels are natural or manmade conveyance structures that normally

have an open top, and they include rivers, streams and estuaries. An important

characteristic of open-channel flow is that it has a free surface at atmospheric

pressure. Open-channel flow can occur also in conduits with a closed top, such as

pipes and culverts, provided that the conduit is flowing partially full. For

example, the flow in most sanitary and storm sewers has a free surface, and is

therefore classified as open-channel flow.

1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS

A channel section is defined as the cross-section taken perpendicular to the main

flow direction. Referring to Figure 1.1, the geometric elements of an open

channel are defined as follows:

Flow depth, y Vertical distance from the channel bottom to the
free surface.

Depth of flow section, d Flow depth measured perpendicular to the
channel bottom. The relationship between
d and y is d¼ y cos �. For most manmade
and natural channels cos �� 1.0, and
therefore y� d. The two terms are used
interchangeably.

Top width, T Width of the channel section at free surface.
Wetted perimeter, P Length of the interface between the water

and the channel boundary.
Flow area, A Cross-sectional area of the flow.
Hydraulic depth, D Flow area divided by top width, D¼ A/T.
Hydraulic radius, R Flow area divided by wetted perimeter, R¼ A/P.
Bottom slope, S0 Longitudinal slope of the channel bottom,

S0¼ tan �� sin �.

Table 1.1 presents the relationship between various section elements. A similar,

more detailed table was previously presented by Chow (1959).



1.2 VELOCITY AND DISCHARGE

At any point in an open channel, the flow may have velocity components in

all three directions. For the most part, however, open-channel flow is assumed

to be one-dimensional, and the flow equations are written in the main flow

direction. Therefore, by velocity we usually refer to the velocity component in

the main flow direction. The velocity varies in a channel section due to the

friction forces on the boundaries and the presence of the free-surface. We use

the term point velocity to refer to the velocity at different points in a channel

section. Figure 1.2 shows a typical distribution of point velocity, v, in a

trapezoidal channel.

The volume of water passing through a channel section per unit time is called the

flow rate or discharge. Referring to Figure 1.3, the incremental discharge, dQ,

through an incremental area, dA, is

dQ ¼ vdA ð1:1Þ

where v¼ point velocity.

Then by definition,

Q ¼

Z
A

dQ ¼

Z
A

vdA ð1:2Þ

where Q¼ discharge.

In most open-channel flow applications we use the cross-sectional average velocity,

V, defined as

V ¼
Q

A
¼

1

A

Z
A

vdA ð1:3Þ

1.3 HYDROSTATIC PRESSURE

Pressure represents the force the water molecules push against other molecules

or any surface submerged in water. The molecules making up the water are in

T
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Definition sketch for

section elements
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constant motion even when a body of water is at rest in the macroscopic sense.

The pressure results from the collisions of these molecules with one another and

with any submerged surface like the walls of a container holding a water body.

Because, the molecular motion is random, the resulting pressure is the same in

every direction at any point in water.

The water surface in an open channel is exposed to the atmosphere. Millions of

collisions take place every second between the molecules making up the

atmosphere and the water surface. As a result, the atmosphere exerts some

pressure on the water surface. This pressure is called atmospheric pressure, and it

is denoted by patm.

The pressure occurring in a body of water at rest is called hydrostatic pressure.

In Figure 1.4, consider a column of water extending from the water surface

to point B at depth of YB. Let the horizontal cross-sectional area of the column

be A0. This column of water is pushed downward at the surface by a force

equal to patmA0 due to the atmospheric pressure and upward at the bottom

by a force (pabs)BA0 due to the absolute water pressure, (pabs)B at point B.

In addition, the weight of the water column, a downward force, is

W¼ �YBA0 where � ¼ specific weight of water. Because the water column is in

equilibrium,

ð pabsÞBA0 ¼ patmA0 þ �YBA0

0.2

0.4

0.6
0.8

FIGURE 1.2 Velocity
distribution in a

trapezoidal channel
section

dQ�vdA
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or

ð pabsÞB � patm ¼ �YB

Pressure is usually measured using atmospheric pressure as base. Therefore, the

difference between the absolute pressure and the atmospheric pressure is usually

referred to as gage pressure. In this text we will use the term pressure

interchangeably with gage pressure. Denoting the gage pressure or pressure by p,

pB ¼ ðpabsÞB � patm ¼ �YB ð1:4Þ

In other words, the hydrostatic pressure at any point in the water is equal to the

product of the specific weight of water and the vertical distance between the

point and the water surface. Therefore, the hydrostatic pressure distribution over

the depth of water is triangular as shown in Figure 1.4.

Let the elevation of point B be zB above a horizontal datum as shown in

Figure 1.4. Let us now consider another point D, which is a distance zD above the

datum and YD below the water surface. The pressure at this point is pD¼ �YD.

Thus, YD¼ pD/�. An inspection of Figure 1.4 reveals that

zB þ
pB

�
¼ zD þ

pD

�
¼ h ð1:5Þ

where h is the elevation of the water surface above the datum. As we will see

later, (zþ p/�) is referred to as piezometric head. Equation 1.5 indicates that the

piezometric head is the same at any point in a vertical section if the pressure

distribution is hydrostatic.

The hydrostatic pressure distribution is valid even if there is flow as long as the

flow lines are horizontal. Without any vertical acceleration, the sum of the

vertical forces acting on a water column should be zero. Then, the derivation

given above for the hydrostatic case is valid for horizontal flow as well. If the flow

lines are inclined but parallel to the channel bottom, we can show that

pB ¼ �YB cos2 � ð1:6Þ

A0

YB

W

(pabs)BAB

patmA0

pB�gYBB

pD�gYD h

zD

YDYB

zB

D

Datum

FIGURE 1.4
Hydrostatic pressure

distribution
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where �¼ angle between the horizontal and the bottom of the channel.

Therefore, strictly speaking, the pressure distribution is not hydrostatic when

the flow lines are inclined. However, for most manmade and natural open

channels � is small and cos �� 1. We can assume that the pressure distribution is

hydrostatic as long as � is small and the flow lines are parallel.

The hydrostatic forces resulting from the hydrostatic pressure act in a direction

normal to a submerged surface. Consider a submerged, inclined surface as shown

in Figure 1.5. Let C denote the centroid of the surface. The pressure force acting

on the infinitesimal area dA is dFp¼ pdA or dFp¼ �YdA. To find the total

hydrostatic force, we integrate dFp over the total area A of the surface. Thus

Fp ¼

Z
A

�YdA ð1:7Þ

Noting that � is constant, and recalling the definition of the centroid (point C in

Figure 1.5) as

YC ¼

R
A YdA

A
ð1:8Þ

we obtain

Fp ¼ �YCA ð1:9Þ

In other words, the hydrostatic pressure force acting on a submerged surface,

vertical, horizontal, or inclined, is equal to the product of the specific weight of

water, area of the surface, and the vertical distance from the free surface to the

centroid of the submerged surface. Again, the direction of the hydrostatic force is

normal to the submerged surface. The point of application of the resultant

hydrostatic force is called the center of pressure (point CP in Figure 1.5). The

location of the center of pressure can be found by equating the moment of the

resultant Fp around the centroidal horizontal axis (axis xx in Figure 1.5) to that of

dFp integrated over the area. This will result in the relationship

YCP ¼ YC þ
Ixðsin �Þ2

AYC
ð1:10Þ

YYC

C

Fp dA

dFp

Water surface

YCP

CP

x

f

x

FIGURE 1.5
Hydrostatic pressure

force
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where �¼ angle between the water surface and the plane of the submerged

surface, and Ix¼moment of inertia of the surface with respect to the centroidal

horizontal axis.

1.4 MASS, MOMENTUM AND ENERGY TRANSFER IN

OPEN-CHANNEL FLOW

1.4.1 MASS TRANSFER

The mass of an object is the quantity of matter contained in the object. The

volume of an object is the space it occupies. The density, �, is the mass per unit

volume. Water is generally assumed to be incompressible in open-channel

hydraulics, and the density is constant for incompressible fluids. The mass

transfer rate or mass flux in open-channel flow is the rate with which the mass is

transferred through a channel section. Recalling that Q¼ discharge is the volume

transfer rate, we can write

Rate of mass transfer ¼ �Q ð1:11Þ

1.4.2 MOMENTUM TRANSFER

Momentum or linear momentum is a property only moving objects have. An

object of mass M moving with velocity VM has a momentum equal to MVM. In the

absence of any external forces acting on the object in (or opposite to) the

direction of the motion, the object will continue to move with the same velocity.

From everyday life, we know that it is more difficult to stop objects that are

moving faster or that are heavier (that is objects with higher momentum). Thus

we can loosely define the momentum as a numerical measure of the tendency of a

moving object to keep moving in the same manner.

The rate of mass transfer at any point in a channel section through an

incremental area dA (as in Figure 1.3) is �dQ¼ �vdA, and therefore the

momentum transfer rate is �v2dA. Integrating this over the area A, we obtain the

momentum transfer rate through the section as

Rate of momentum transfer ¼ �

Z
A

v2dA ð1:12Þ

We often express the momentum transfer rate in terms of the average cross-

sectional velocity, V, as

Rate of momentum transfer ¼ ��V 2A ¼ ��QV ð1:13Þ

where �¼momentum coefficient (or momentum correction coefficient) introduced

to account for the non-uniform velocity distribution within the channel section.

1.4 Mass, momentum and energy transfer in open-channel flow � 7



Then, from Equations 1.12 and 1.13, we obtain

� ¼

R
A v2dA

V 2A
ð1:14Þ

For regular channels � is often set equal to 1.0 for simplicity. For compound

channels, as in Figure 1.6, it can be substantially higher. For a compound channel

as in Figure 1.6, we can evaluate � by using

� ¼
V 2

1 A1 þ V 2
2 A2 þ V 2

3 A3

V 2A
ð1:15Þ

in which A¼A1þA2þA3 and V is obtained as

V ¼
V1A1 þ V2A2 þ V3A3

A1 þ A2 þ A3
:2 ð1:16Þ

Note that if V1¼V2¼V3, Equation 1.15 yields �¼ 1.0.

1.4.3 ENERGY TRANSFER

Energy is generally defined as a measure of an object’s capability to perform

work. It can be in different forms. For open-channel flow problems, potential

energy, kinetic energy, and internal energy are of interest. We will define the total

energy as the sum of these three forms.

In the earth’s gravitational field, every object has potential energy, or capability to

perform work due to its position (elevation). The potential energy cannot be

defined as an absolute quantity; it is defined as a relative quantity. For example,

with respect to a horizontal datum (a reference elevation), the potential energy

of an object of mass M is MgzC where g¼ gravitational acceleration and

zC¼ elevation of the center of mass of the object above the datum. In open

channel flow, Q¼ rate of volume transfer, and �Q¼ rate of mass transfer.

Therefore, we can define the rate of potential energy transfer through a channel

section as

Rate of potential energy transfer ¼ �Qg zC ð1:17Þ

where zC¼ the elevation of the center of gravity or center of mass (the same as

the centroid, since � is constant) of the channel section above the datum.

A1 A3
A2

V1 V2
V3

FIGURE 1.6
Compound channel
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A moving object has the capability of performing work because of its

motion. Kinetic energy is a measure of this capability. The kinetic energy of

a mass M traveling with velocity VM is defined as M(VM)2/2. In open-

channel flow, we are concerned with the rate of kinetic energy transfer or

the kinetic energy transfer through a channel section per unit time. The mass

rate at any point in a channel section through an incremental area dA

(as in Figure 1.3) is �dQ¼ �vdA. Therefore, the kinetic energy transfer per

unit time through the incremental area is �v3dA/2. Integrating over the

section area, and assuming � is constant for an incompressible fluid like water,

we obtain

Rate of kinetic energy transfer ¼
�

2

Z
A

v3dA ð1:18Þ

Note that in the above equation v stands for the point velocity, which varies over

the channel section. In practice, we work with the average cross-sectional

velocity, V. We define the rate of kinetic energy transfer in terms of the average

cross-sectional velocity as

Rate of kinetic energy transfer ¼ �
�

2
V 3A ¼ �

�

2
QV 2 ð1:19Þ

where �¼ energy coefficient (or kinetic energy correction coefficient) to account for

the non-uniform point velocity distribution within a section. From Equations 1.18

and 1.19 we obtain

� ¼

R
A v3dA

V 3A
ð1:20Þ

For regular channels, � is usually set equal to 1.0. However, in compound

channels, like an overflooded river with a main channel and two overbank

channels, � can be substantially higher. For the case for Figure 1.6, Equation 1.20

can be approximated using

� ¼
V 3

1 A1 þ V 3
2 A2 þ V 3

3 A3

V 3A
ð1:21Þ

where A¼A1þA2þA3 and V is as defined by Equation 1.16. As expected,

Equation 1.21 yields �¼ 1.0 if V1¼V2¼V3.

Internal energy results from the random motion of the molecules making up an

object and the mutual attraction between these molecules. Denoting the internal

energy per unit mass of water by e, the rate of internal energy transfer through an

incremental area dA (as in Figure 1.3) is �evdA. Integrating this over the area,

and assuming e is distributed uniformly,

Rate of internal energy transfer ¼ �eVA ¼ �eQ ð1:22Þ

1.4 Mass, momentum and energy transfer in open-channel flow � 9



1.5 OPEN-CHANNEL FLOW CLASSIFICATION

Open-channel flow is classified in various ways. If time is used as the criterion,

open-channel flow is classified into steady and unsteady flows. If, at a given flow

section, the flow characteristics remain constant with respects to time, the flow is

said to be steady. If flow characteristics change with time, the flow is said to be

unsteady. If space is used as a criterion, flow is said to be uniform if flow

characteristics remain constant along the channel. Otherwise the flow is said to

be non-uniform. A non-uniform flow can be classified further into gradually-

varied and rapidly-varied flows, depending on whether the variations along the

channel are gradual or rapid. For example, the flow is gradually varied between

Sections 1 and 2 and 2 and 3 in Figure 1.7. It is rapidly varied between 3 and 4

and uniform between 4 and 5. Usually, the pressure distribution can be assumed

to be hydrostatic for uniform and gradually-varied flows.

Various types of forces acting on open-channel flow affect the hydraulic behavior

of the flow. The Reynolds Number, Re, defined as

Re ¼
4VR

v
ð1:23Þ

where v¼ kinematic viscosity of water, represents the ratio of inertial to viscous

forces acting on the flow. At low Reynolds numbers, say Re5500, the flow region

appears to consist of an orderly series of fluid laminae or layers conforming

generally to the boundary configuration. This type of flow is called laminar flow.

If we inject dye into a uniform laminar flow, the dye will flow along a straight

line. Any disturbance introduced to laminar flow, due to irregular boundaries for

instance, is eventually dampened by viscous forces. For Re412 500, the viscous

forces are not sufficient to dampen the disturbances introduced to the flow.

Minor disturbances are always present in moving water, and at high Reynolds

numbers such disturbances will grow and spread throughout the entire zone of

motion. Such flow is called turbulent, and water particles in turbulent flow follow

irregular paths that are not continuous. A transitional state exists between the

laminar and turbulent states. We should point out that the limits for the different

states are by no means precise. Under laboratory conditions, for instance,

laminar flow can be maintained for Reynolds numbers much higher than 500.

Q

Q

21 43 5

Sluice
gate

Hydraulic
jump

FIGURE 1.7 Various
flow types

10 � 1 Fundamentals of open-channel flow



However, under most natural and practical open-channel flow conditions, the

flow is turbulent.

The ratio of the inertial to gravitational forces acting on the flow is represented

by the dimensionless Froude number, Fr, defined as

Fr ¼
Vffiffiffiffiffiffi
gD

p ð1:24Þ

where g¼ gravitational acceleration. The flow is said to be at the critical state

when Fr¼ 1.0. The flow is subcritical when Fr51.0, and it is supercritical when

Fr41.0. The hydraulic behavior of open-channel flow varies significantly

depending on whether the flow is critical, subcritical, or supercritical.

1.6 CONSERVATION LAWS

The laws of conservation of mass, momentum, and energy are the basic laws of

physics, and they apply to open-channel flow. Rigorous treatment of the

conservation laws for open-channel flow can be found in the literature (e.g. Yen,

1973). A simplified approach is presented herein.

1.6.1 CONSERVATION OF MASS

Consider a volume element of an open channel between an upstream section U

and a downstream section D, as shown in Figure 1.8. The length of the element

along the flow direction is �x, and the average cross-sectional area is A. The mass

of water present in the volume element is then �A�x. Suppose water enters the

volume element at section U at a mass transfer rate of �QU (see Equation 1.11)

and leaves the element at section D at a rate �QD. Over a finite time increment,

�t, we can write that

Rate of change of mass of water in the element ¼
�ð�A�xÞ

�t

Net rate of mass transfer into element ¼ �QU � �QD

rQU

rQD

A

∆x

x

Water surface

Section
U

Section
D

Channel
bottom

FIGURE 1.8 Definition
sketch for conservation
of mass principle
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The principle of conservation of mass requires that

ðRate of change of mass of water in the elementÞ

¼ ðNet rate of mass transfer into elelmentÞ

therefore

�ð�A�xÞ

�t
¼ �QU � �QD ð1:25Þ

Water is considered to be an incompressible fluid, and therefore � is constant.

Equation 1.25 can then be written as

�A

�t
þ

QD �QU

�x
¼ 0 ð1:26Þ

For gradually-varied flow A and Q are continuous in space and time, and as �x

and �t approach zero Equation 1.26 becomes

@A

@t
þ
@Q

@x
¼ 0 ð1:27Þ

where t¼ time, and x¼ displacement in the main flow direction. We usually refer

to Equation 1.27 as the continuity equation.

1.6.2 CONSERVATION OF MOMENTUM

Momentum is a vector quantity, and separate equations are needed if there are

flow components in more than one direction. However, open-channel flow is

usually treated as being one-dimensional, and the momentum equation is written

in the main flow direction. Consider a volume element of an open channel

between an upstream section U and a downstream section D as shown in

Figure 1.9. Let the element have an average cross-sectional area of A, flow

U

W

FpU

bUrQ
UV

U

bDrQ
DV

D

F
f

∆x
D

q

FpD

FIGURE 1.9 Definition
sketch for conservation
of momentum principle
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velocity V, and length �x. The momentum within this element is �A�xV.

The momentum is transferred into the element at section U at a rate �U�QUVU

(see Equation 1.13) and out of the element at section D at rate �D�QDVD. The

external forces acting on this element in same direction as the flow are the

pressure force at section U, FpU¼ �YCU AU (see Equation 1.9) and the weight

component W sin �¼ �A�x sin �. The external forces acting opposite to the flow

direction are the pressure force at section D, FpD¼ �YCDAD, friction force on the

channel bed, Ff, and any other external force, Fe, opposite to the flow direction

(like a force exerted by the channel walls at a contracted section).

Therefore, we can write that

Time rate of change of the momentum accumulated within the element

¼ �ð�A�xV Þ=�t ¼ ��xð�Q=�tÞ

Net rate of momentum transfer into the element

¼ ð�U�QUVU � �D�QDVDÞ

Sum of the external forces in the flow direction

¼ �YCUAU þ �A�x sin � � �YCDAD � Ff � Fe

The law of conservation of momentum requires that

ðTime rate of change of the momentum accumulated within the elementÞ

¼ ðNet rate of momentum transfer into the elementÞ

þ ðSum of the external forces in the flow directionÞ

Thus

��xð�Q=�tÞ ¼ ð�U�QUVU � �D�QDVDÞ þ ð�YCUAU � �YCDADÞ

þ �A�x sin � � Ff � Fe ð1:28Þ

Dividing both sides of the equation by ��x, assuming Fe¼ 0, noting

S0¼ longitudinal channel bottom slope¼ sin �, and introducing Sf ¼ friction

slope¼ boundary friction force per unit weight of water as

Sf ¼
Ff

�A�x
ð1:29Þ

we obtain

�Q

�t
þ
ð�DQDVD � �UQUVUÞ

�x
þ

gðYCDAD � YCUAUÞ

�x
þ gASf � gAS0 ¼ 0 ð1:30Þ

For gradually-varied flow, all the flow variables are continuous in time and space.

Therefore, as �x and �t approach zero, Equation 1.30 becomes

@Q

@t
þ
@

@x
�QVð Þ þ gA

@y

@x
þ gASf � gAS0 ¼ 0 ð1:31Þ

1.6 Conservation laws � 13



Note that in arriving at Equation 1.31 from Equation 1.30 we have used

gðYCDAD � YCUAUÞ

�x
¼ g

@ðAYCÞ

@x
¼ gA

@y

@x
ð1:32Þ

as �x approaches zero. This equality is not obvious. However, it can be proven

mathematically using the Leibnitz rule if the changes in the channel width are

negligible (see Problem P.1.15). A more rigorous analysis presented by Chow

et al. (1988) demonstrates that Equation 1.32 is valid even if the changes in

channel width are not negligible.

Noting that Q¼AV, we can expand Equation 1.31 as

V
@A

@t
þ A

@V

@t
þ �Q

@V

@x
þ �V

@Q

@x
þQV

@�

@x
þ gA

@y

@x
þ gASf � gAS0 ¼ 0 ð1:33Þ

or

V
@A

@t
þ �

@Q

@x

� �
þ A

@V

@t
þ �Q

@V

@x
þQV

@�

@x
þ gA

@y

@x
þ gASf � gAS0 ¼ 0 ð1:34Þ

For �� 1 and @�=@x � 0, substituting Equation 1.27 into 1.34, and dividing both

sides by gA, we obtain

1

g

@V

@t
þ

V

g

@V

@x
þ
@y

@x
þ Sf � S0 ¼ 0 ð1:35Þ

1.6.3 CONSERVATION OF ENERGY

Consider a volume element of an open channel between an upstream section U

and a downstream section D as shown in Figure 1.10. Let the element have an

average cross-sectional area of A, flow velocity V, and length �x. Suppose the

elevation of the center of gravity of the element above a reference datum is zC.

rQD(eD+aVD
2/2+gzCD)

A

∆x

x

Water surface

Section
D

Channel
bottom

FpDVDSection
U

FpUVU

rQU(eU+aVU
2/2+gzCU)

FIGURE 1.10
Definition sketch for

conservation of
energy principle
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The total energy stored within this element is [gzCþ (V2/2)þ e]�A�x. The energy

is transferred into the element at section U at a rate �QU[gzCUþ �U(VU
2/2)þ eU]

(see Equations 1.17, 1.19, and 1.22) and out of the element at section D at rate

�QD[gzCDþ �D(VD
2/2)þ eD]. The rate of work (or power) the surroundings

perform on the volume element due to the hydrostatic pressure force at

section U is FpUVU. The rate of work (or power) the volume element performs

on the surroundings due the hydrostatic pressure force, which is opposing the

flow at section D, is FpDVD. Referring to Equation 1.9, and noting �¼ �g, we have

FpUVU¼ �gYCUAUVU and FpDVD¼ �gYCDADVD.

Therefore, over a time increment �t, we can write that

Time rate of change of total energy stored in the volume element

¼ �fðgzC þ ðV
2=2Þ þ eÞ�A�xg=�t

Net rate of energy transfer into the element

¼ �QUfgzCU þ �UðV
2
U=2Þ þ eUg � �QDfgzCD þ �DðV

2
D=2Þ þ eDg

Net rate of energy added due to the work performed by the surroundings on

the element ¼ �gYCUAUVU � �gYCDADVD

In the absence of energy added to the system due to external sources, the

conservation of energy principle requires that

Time rate of change of total energy stored in the volume element

¼ Net rate of energy transfer into the element

þNet rate of energy added due to the work performed by the

surroundings on the element

Therefore

�

�t
gzC þ

V 2

2
þ e

� �
�A�x

� �
¼ � QU gzCU þ �U

V 2
U

2
þ eU

� ��

�QD gzCD þ �D
V 2

D

2
þ eD

� ��

þ �gðQUYCU �QDYCDÞ ð1:36Þ

Dividing both sides by �x and rearranging gives

�

�t
gzC þ

V 2

2
þ e

� �
�A

� �

¼
� QU gzCU þ gYCU þ �UðV

2
U=2Þ þ eU

� �
�QD gzCD þ gYCD þ �DðV

2
D=2Þ þ eD

� �� 	
�x

ð1:37Þ
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Let us define zb¼ elevation of the channel bottom above the datum and recall

that y¼ flow depth. Therefore, at any flow section zCþYC¼ zbþ y. Then

�

�t
eþ

V 2

2
þ gzC

� �
�A

� �

¼
� QU gzbU þ gyU þ �U ðV

2
U=2Þ þ eU

� �
�QD gzbD þ gyD þ �DðV

2
D=2Þ þ eD

� �� 	
�x

ð1:38Þ

As �t and �x approach zero Equation 1.38 becomes

@

@t
eþ

V 2

2
þ gzC

� �
�A

� �
þ
@

@x
�Q gzb þ gyþ �

V 2

2
þ e

� �� �
¼ 0 ð1:39Þ

Now, substituting zC¼ zbþ y�YC we can write the first group of terms on the

left side of Equation 1.39 as

@

@t
eþ

V 2

2
þ gzC

� �
�A

� �

¼ � e
@A

@t
þA

@e

@t

� �
þ �

V 2

2

@A

@t
þQ

@V

@t

� �
þ �g

@ðAzbÞ

@t
þ
@ðAyÞ

@t
�
@ðAYCÞ

@t

� � ð1:40Þ

By analogy to Equation 1.32,

�
@ðAYCÞ

@t
¼ �A

@y

@t
ð1:41Þ

Substituting Equation 1.41 into 1.40, noting that @zb=@t ¼ 0, and regrouping the

terms:

@

@t
eþ

V 2

2
þ gzC

� �
�A

� �
¼ � gzb þ gyþ

V 2

2
þ e

� �
@A

@t
þ �A

@e

@t
þ �Q

@V

@t
ð1:42Þ

Likewise,

@

@x
�Q gzb þ gyþ �

V 2

2
þ e

� �� �

¼ � gzb þ gyþ �
V 2

2
þ e

� �
@Q

@x
þ �Q

@

@x
gzb þ gyþ �

V 2

2
þ e

� �
ð1:43Þ

Substituting Equations 1.42 and 1.43 into 1.39 and assuming �¼ 1,

� gzb þ gyþ
V 2

2
þ e

� �
@A

@t
þ
@Q

@x

� �

þ �A
@e

@t
þ �Q

@V

@t
þ �Q

@

@x
gzb þ gyþ

V 2

2
þ e

� �
¼ 0

ð1:44Þ

Substituting Equation 1.27 into 1.44 and dividing by �Qg, we obtain

1

g

@V

@t
þ
@

@x
zb þ yþ

V 2

2g

� �
þ

1

g

1

V

@e

@t
þ
@e

@x

� �
¼ 0 ð1:45Þ
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We will now define Se¼ energy slope as

Se ¼
1

g

1

V

@e

@t
þ
@e

@x

� �
¼

1

g

de

dx
ð1:46Þ

Substituting Equation 1.46 into 1.45 and noting that @zb=@x ¼ �S0,

1

g

@V

@t
þ

V

g

@V

@x
þ
@y

@x
þ Se � S0 ¼ 0 ð1:47Þ

If we recall that e¼ internal energy per unit mass of water, Equation 1.46

indicates that positive values of Se represent an increase in the internal energy

per unit weight of water per unit distance. However, because the total energy is

conserved, this increase in the internal energy is accompanied by a decrease in

the mechanical (potential and kinetic) energy. Because the mechanical energy is

usable energy, any conversion of mechanical energy to internal energy is

commonly viewed as ‘energy loss’, and the energy slope is defined as the energy

loss per unit weight of water per unit distance. The procedure we adopted in this

text to derive the energy equation does not explain how the mechanical energy is

converted to internal energy. Another approach, based on the integration of the

Navier-Stokes equations presented by Strelkoff (1969) and Yen (1973), clearly

demonstrates that the losses in the mechanical energy are due to the work done

by the internal stresses to overcome the velocity gradients. Turbulent exchange of

molecules between different velocity zones sets up an internal friction force

between adjacent layers since slow-moving molecules entering a higher-velocity

layer will drag the faster-moving molecules. The energy dissipated to overcome

these internal friction forces in the form of heat will increase the internal energy

while causing a reduction in the mechanical energy.

Although Equation 1.47 appears very similar to Equation 1.35, the two equations

are fundamentally different. Momentum is a vector quantity and energy is a

scalar quantity. The two equations look similar because they are both for one-

dimensional flow. If we had flow components in, say, three directions, we would

have three different momentum equations, while the energy approach would still

yield a single equation. We assumed that �¼ 1 when we derived Equation 1.35

and �¼ 1 for Equation 1.47. These two correction factors are actually different.

The friction slope, Sf, appearing in Equation 1.35 corresponds to the (external)

boundary friction forces, while the energy slope, Se, in Equation 1.47 is related

to the work done by the internal friction forces. Nevertheless, in most

applications we do not differentiate between Sf and Se and use the term friction

slope for either.

1.6.4 STEADY FLOW EQUATIONS

The flow is said to be steady if the flow conditions do not vary in time.

Therefore, the partial derivative terms with respect to time can be
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dropped from the continuity, momentum, and energy equations. As a result, we

obtain

dQ

dx
¼ 0 ð1:48Þ

V

g

dV

dx
þ

dy

dx
þ Sf � S0 ¼ 0 ð1:49Þ

and

V

g

dV

dx
þ

dy

dx
þ Se � S0 ¼ 0 ð1:50Þ

Equation 1.48 shows that, under steady state conditions, the discharge is the

same at any channel section. Also, Equations 1.49 and 1.50 can be rearranged to

obtain

dy

dx
¼

S0 � Sf

1� F2
r

ð1:51Þ

dy

dx
¼

S0 � Se

1� F2
r

ð1:52Þ

For the volume element shown in Figure 1.9, Equation 1.28 can be written for

steady state conditions as

�D
Q2

D

gAD
þ YCDAD

� �
¼ �U

Q2
U

gAU
þ YCUAU

� �
�

Ff

�
�

Fe

�
þ�xS0

AD þ AU

2
ð1:53Þ

Equation 1.53 is valid regardless of whether the flow between the sections U and

D is gradually or rapidly varied, as long as the pressure distribution is hydrostatic

at sections U and D.

Likewise, we can obtain the steady state energy equation by discretizing

Equation 1.50, reintroducing the energy coefficient �, defining hf¼ head

loss¼ energy loss per unit weight¼ (�x)Se, and rearranging the terms

zbU þ yU þ �U
V 2

U

2g

� �
¼ zbD þ yD þ �D

V 2
D

2g

� �
þ�xSe ð1:54Þ

1.6.5 STEADY SPATIALLY-VARIED FLOW EQUATIONS

Flow in an open channel is said to be spatially varied if there is lateral flow into

(or out of) the channel, as shown schematically in Figure 1.11. For steady

spatially-varied flow, the continuity equation becomes

dQ

dx
¼ qL ð1:55Þ

18 � 1 Fundamentals of open-channel flow



where qL¼ lateral inflow rate per unit length of the channel. Note that the

dimension of qL is {length}2/{time}.

As demonstrated by Yen and Wenzel (1970), for �¼ 1, the momentum equation

for steady spatially-varied flow can be written as

dy

dx
¼

S0 � Sf � ðqL=gAÞ 2V � UL cos�ð Þ

1� F2
r

ð1:56Þ

where UL¼ velocity of lateral flow, and �¼ angle between the lateral

flow and channel flow directions. If lateral flow joins (or leaves) the

channel in a direction perpendicular to the main flow direction, the equation

becomes

dy

dx
¼

S0 � Sf � ð2qLV=gAÞ

1� F2
r

ð1:57Þ

Yen and Wenzel (1970) also demonstrated that, for �¼ 1, the energy equation

can be written as

dy

dx
¼

S0 � Se þ ðqL=VAÞ ðU2
L=2gÞ � ð3V 2=2gÞ þ hLAT � h

� �
1� F2

r

ð1:58Þ

where h¼ zbþ y¼ piezometric head of the main channel flow, and hLAT¼

piezometric head of the lateral inflow. If h¼ hLAT, and V¼UL, Equation 1.58 is

simplified to obtain

dy

dx
¼

S0 � Se � ðqLV=gAÞ

1� F2
r

ð1:59Þ

Note that the third term in the numerator of the right side of Equation 1.59 is

different from that of Equation 1.57 by a factor of 2.0. This discrepancy is due to

the different assumptions involved in the two equations.

qL

Q

f

FIGURE 1.11
Definition sketch for
spatially-varied flow
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1.6.6 COMPARISON AND USE OF MOMENTUM AND
ENERGY EQUATIONS

It should be clear to the reader by now that the momentum and the energy

equations are obtained by using different laws of physics. Also, the friction

slope, Sf, and the energy slope, Se, appearing in these equations are

fundamentally different. However, it is not practical to evaluate either Sf or

Se on the basis of their strict definitions. In practice, we employ the

same empirical equations to evaluate Sf and Se. Therefore, Se in the energy

equation is often replaced by Sf. If we also assume that �¼ 1 and �¼ 1, then,

for gradually-varied flow, the momentum and energy equation become

identical (Equations 1.35 and 1.47 for unsteady flow and 1.49 and 1.50 for

steady flow).

For spatially-varied flow, however, the momentum and the energy equations

are different even if we assume Se¼ Sf and �¼ �¼ 1.0. We can use the

momentum equation, Equation 1.56, only if we know the direction of the

lateral flow. If the lateral inflow joins a channel at an angle close to 908, as

in most natural and manmade systems, the use of Equation 1.57 is

appropriate. The direction of the lateral flow is irrelevant in the energy

equation, since energy is a scalar quantity. However, where lateral flow joins

a main channel, some energy loss occurs due to the local mixing. This loss is

not accounted for in Equation 1.59, so Equation 1.59 should not be used for

lateral inflow situations. In cases involving lateral outflow, on the other hand,

the assumptions of Equation 1.59 are satisfied for the most part, and the use

of Equation 1.59 is allowed.

The open-channel flow is not always gradually varied. Rapid changes in the

flow variables can occur near channel transitions or hydraulic structures. The

momentum and energy equations given for a volume element, Equations 1.53

and 1.54, are still valid as long as the pressure distribution at sections U and D is

hydrostatic. However, the term Se�x in Equation 1.54 needs to be replaced by

hL¼ head loss, which would account for all the energy losses between the two

sections. Considering Equations 1.53 and 1.54 only the former includes an

external force term. Therefore, if the problem at hand involves calculation of an

external force (like the force exerted by a sluice gate on the flow), the momentum

equation is the only choice. The energy equation is particularly useful in

situations where the energy loss between the upstream and downstream sections

is negligible.

P R O B L E M S

P.1.1 Derive expressions for the flow area, A, wetted perimeter, P, top width, T,

hydraulic radius, R, and hydraulic depth, D, in terms of the flow depth, y, for the

channel sections shown in Figure P.1.1.
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P.1.2 A nearly horizontal channel has a bottom width of 3 ft, and it carries a

discharge of 60 cfs at a depth of 4 ft. Determine the magnitude and direction of

the hydrostatic pressure force exerted on each of the sidewalls per unit length of

the channel if

(a) the channel is rectangular with vertical sidewalls

(b) the channel is trapezoidal with each sidewall sloping outward at a slope 2

horizontal over 1 vertical, that is m¼ 2.

P.1.3 Let the point velocity in a wide rectangular channel be expressed as

v ¼ 2:5v� ln
30z

ks

� �

where v¼ point velocity, v�¼ (�o/�)1/2
¼ shear velocity, �o¼ average shear stress

on channel bed, �¼ density, z¼ distance measured from channel bed, and

ks¼ length measure of bed roughness. The flow depth in the channel is y.

Treating v� and ks as constants, derive an expression for the discharge per unit of

the width of the channel.

Hint 1: v¼ 0 at z¼ ks/30

Hint 2:
R
ðln xÞndx ¼ xðln xÞn � n

R
ðln xÞn�1dx:

P.1.4 Derive an expression for the average cross-sectional velocity, V, for the

velocity distribution given in problem P.1.3.

Hint: y� ks

P.1.5 At what z in Problem P.1.3 is the velocity maximum? Derive an expression

for vmax.

P.1.6 For the channel of Problem P.1.3, show that

vmax

V
� 1 ¼

1

ln 30y=ks � 1ð Þ

P.1.7 For the velocity distribution given in Problem P.1.3, determine at what z the

point velocity is equal to the average cross-sectional velocity. Often, a single

velocity measurement taken at distance 0.6y from the free surface is used as an

approximation to the cross-sectional velocity at a stream section. Is this a valid

approximation?

y y y
m1 m2 m m

1 1 1 1

b b

FIGURE P.1.1
Problem P.1.1
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P.1.8 Using the velocity distribution and the hints given in Problem P.1.3,

show that

� ¼ 1þ
Vmax

V
� 1

� �2

P.1.9 Considering a unit width of the channel described in Problem P.1.3,

determine the discharge, rate of momentum transfer, and rate of kinetic energy

transfer if y¼ 0.94 m, ks¼ 0.001 m, �o¼ 3.7 N/m2 and �¼ 1000 kg/m3.

P.1.10 Determine the average cross-sectional velocity V and the discharge Q for

the compound channel shown in Figure P.1.2.

P.1.11 Determine the rate of momentum transfer and the rate of kinetic energy

transfer for the compound channel shown in Figure 1.P.2.

P.1.12 A trapezoidal channel with bottom width b¼ 5 ft and side slopes m¼ 2

(that is 2.0 horizontal over 1.0 vertical) carries Q¼ 100 cfs at depth y¼ 3.15. The

water temperature is 608F, and the kinematic viscosity at this temperature is

v¼ 1.217� 10�5 ft2/s.

(a) Determine if the flow is turbulent or laminar.

(b) Determine if the flow is subcritical or supercritical.

P.1.13 Is the flow likely to be uniform or non-uniform:

(a) at a natural stream section partially blocked by a fallen tree?

(b) at a drainage channel just upstream of an undersized culvert?

(c) at a section of a long prismatic, delivery channel a far distance from

upstream and downstream ends?

(d) in a tidal river during high tide?

P.1.14 Is the flow likely to be steady or unsteady:

(a) in a street gutter during a short storm event?

(b) in a laboratory flume fed constant discharge at upstream end?

(c) in a drainage ditch after a long dry period?

1m

3m

4m

20m 22m

V1=0.5 m/s V3= 0.3 m/s

V
2
=

1.
5 

m
/s

FIGURE P.1.2
Problems P.1.10

and P.1.11
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P.1.15 Using the Leibnitz rule given below, verify Equation 1.32.

@

@x

Z bðxÞ

aðxÞ

f ð	, xÞd	 ¼

Z bðxÞ

aðxÞ

@f ð	, xÞ

@x
d	þ f ½bðxÞ, x�

@b

@x
� f ½aðxÞ, x�

@a

@x
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