
ORF 523 Lecture 2 Spring 2016, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Tuesday, February 9, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

Today, we review basic math concepts that you will need throughout the course.

• Inner products and norms

• Positive semidefinite matrices

• Basic differential calculus

1 Inner products and norms

1.1 Inner products

1.1.1 Definition

Definition 1 (Inner product). A function 〈., .〉 : Rn × Rn → R is an inner product if

1. 〈x, x〉 ≥ 0, 〈x, x〉 = 0⇔ x = 0 (positivity)

2. 〈x, y〉 = 〈y, x〉 (symmetry)

3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

4. 〈rx, y〉 = r〈x, y〉 for all r ∈ R (homogeneity)

Homogeneity in the second argument follows:

〈x, ry〉 = 〈ry, x〉 = r〈y, x〉 = r〈x, y〉

using properties (2) and (4) and again (2) respectively, and

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈x, y〉+ 〈x, z〉

using properties (2), (3) and again (2).
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1.1.2 Examples

• The standard inner product is

〈x, y〉 = xTy =
∑

xiyi, x, y ∈ Rn.

• The standard inner product between matrices is

〈X, Y 〉 = Tr(XTY ) =
∑
i

∑
j

XijYij

where X, Y ∈ Rm×n.

Notation: Here, Rm×n is the space of real m×n matrices. Tr(Z) is the trace of a real square

matrix Z, i.e., Tr(Z) =
∑

i Zii.

Note: The matrix inner product is the same as our original inner product between two vectors

of length mn obtained by stacking the columns of the two matrices.

• A less classical example in R2 is the following:

〈x, y〉 = 5x1y1 + 8x2y2 − 6x1y2 − 6x2y1

Properties (2), (3) and (4) are obvious, positivity is less obvious. It can be seen by

writing

〈x, x〉 = 5x21 + 8x22 − 12x1x2 = (x1 − 2x2)
2 + (2x1 − 2x2)

2 ≥ 0

〈x, x〉 = 0⇔ x1 − 2x2 = 0 and 2x1 − 2x2 = 0⇔ x1 = 0 and x2 = 0.

1.1.3 Properties of inner products

Definition 2 (Orthogonality). We say that x and y are orthogonal if

〈x, y〉 = 0.

Theorem 1 (Cauchy Schwarz). For x, y ∈ Rn

|〈x, y〉| ≤ ||x|| ||y||,

where ||x|| :=
√
〈x, x〉 is the length of x (it is also a norm as we will show later on).
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Proof: First, assume that ||x|| = ||y|| = 1.

||x− y||2 ≥ 0⇒ 〈x− y, x− y〉 = 〈x, x〉+ 〈y, y〉 − 2〈x, y〉 ≥ 0⇒ 〈x, y〉 ≤ 1.

Now, consider any x, y ∈ Rn. If one of the vectors is zero, the inequality is trivially verified.

If they are both nonzero, then:〈
x

||x||
,
y

||y||

〉
≤ 1⇒ 〈x, y〉 ≤ ||x|| · ||y||. (1)

Since (1) holds ∀x, y, replace y with −y:

〈x,−y〉 ≤ ||x|| · || − y||
〈x,−y〉 ≥ −||x|| · ||y||

using properties (1) and (2) respectively. �

1.2 Norms

1.2.1 Definition

Definition 3 (Norm). A function f : Rn → R is a norm if

1. f(x) ≥ 0, f(x) = 0⇔ x = 0 (positivity)

2. f(αx) = |α|f(x), ∀α ∈ R (homogeneity)

3. f(x+ y) ≤ f(x) + f(y) (triangle inequality)

Examples:

• The 2-norm: ||x|| =
√∑

i x
2
i

• The 1-norm: ||x||1 =
∑

i |xi|

• The inf-norm: ||x||∞ = maxi |xi|

• The p-norm: ||x||p = (
∑

i |xi|p)1/p, p ≥ 1

Lemma 1. Take any inner product 〈., .〉 and define f(x) =
√
〈x, x〉. Then f is a norm.
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Proof: Positivity follows from the definition.

For homogeneity,

f(αx) =
√
〈αx, αx〉 = |α|

√
〈x, x〉

We prove triangular inequality by contradiction. If it is not satisfied, then ∃x, y s.t.√
〈x+ y, x+ y〉 >

√
〈x, x〉+

√
〈y, y〉

⇒ 〈x+ y, x+ y〉 > 〈x, x〉+ 2
√
〈x, x〉〈y, y〉+ 〈y, y〉

⇒ 2〈x, y〉 > 2
√
〈x, x〉〈y, y〉

which contradicts Cauchy-Schwarz.

Note: Not every norm comes from an inner product.

1.2.2 Matrix norms

Matrix norms are functions f : Rm×n → R that satisfy the same properties as vector norms.

Let A ∈ Rm×n. Here are a few examples of matrix norms:

• The Frobenius norm: ||A||F =
√

Tr(ATA) =
√∑

i,j A
2
i,j

• The sum-absolute-value norm: ||A||sav =
∑

i,j |Xi,j|

• The max-absolute-value norm: ||A||mav = maxi,j |Ai,j|

Definition 4 (Operator norm). An operator (or induced) matrix norm is a norm

||.||a,b : Rm×n → R

defined as

||A||a,b = max
x
||Ax||a

s.t. ||x||b ≤ 1,

where ||.||a is a vector norm on Rm and ||.||b is a vector norm on Rn.

Notation: When the same vector norm is used in both spaces, we write

||A||c = max ||Ax||c
s.t. ||x||c ≤ 1.

Examples:
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• ||A||2 =
√
λmax(ATA), where λmax denotes the largest eigenvalue.

• ||A||1 = maxj
∑

i |Aij|, i.e., the maximum column sum.

• ||A||∞ = maxi
∑

j |Aij|, i.e., the maximum row sum.

Notice that not all matrix norms are induced norms. An example is the Frobenius norm

given above as ||I||∗ = 1 for any induced norm, but ||I||F =
√
n.

Lemma 2. Every induced norm is submultiplicative, i.e.,

||AB|| ≤ ||A|| ||B||.

Proof: We first show that ||Ax|| ≤ ||A|| ||x||. Suppose that this is not the case, then

||Ax|| > ||A|| |x||

⇒ 1

||x||
||Ax|| > ||A||

⇒
∣∣∣∣∣∣∣∣A x

||x||

∣∣∣∣∣∣∣∣ > ||A||
but x

||x|| is a vector of unit norm. This contradicts the definition of ||A||.

Now we proceed to prove the claim.

||AB|| = max
||x||≤1

||ABx|| ≤ max
||x||≤1

||A|| ||Bx|| = ||A|| max
||x||≤1

||Bx|| = ||A|| ||B||.

�

Remark: This is only true for induced norms that use the same vector norm in both spaces. In

the case where the vector norms are different, submultiplicativity can fail to hold. Consider

e.g., the induced norm || · ||∞,2, and the matrices

A =

[ √
2/2

√
2/2

−
√

2/2
√

2/2

]
and B =

[
1 0

1 0

]
.

In this case,

||AB||∞,2 > ||A||∞,2 · ||B||∞,2.

Indeed, the image of the unit circle by A (notice that A is a rotation matrix of angle π/4)

stays within the unit square, and so ||A||∞,2 ≤ 1. Using similar reasoning, ||B||∞,2 ≤ 1.
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This implies that ||A||∞,2||B||∞,2 ≤ 1. However, ||AB||∞,2 ≥
√

2, as ||ABx||∞ =
√

2 for

x = (1, 0)T .

Example of a norm that is not submultiplicative:

||A||mav = max
i,j
|Ai,j|

This can be seen as any submultiplicative norm satisfies

||A2|| ≤ ||A||2.

In this case,

A =

(
1 1

1 1

)
and A2 =

(
2 2

2 2

)

So ||A2||mav = 2 > 1 = ||A||2mav.

Remark: Not all submultiplicative norms are induced norms. An example is the Frobenius

norm.

1.2.3 Dual norms

Definition 5 (Dual norm). Let ||.|| be any norm. Its dual norm is defined as

||x||∗ = maxxTy

s.t. ||y|| ≤ 1.

You can think of this as the operator norm of xT .

The dual norm is indeed a norm. The first two properties are straightforward to prove. The

triangle inequality can be shown in the following way:

||x+ z||∗ = max
||y||≤1

(xTy + zTy) ≤ max
||y||≤1

xTy + max
||y||≤1

zTy = ||x||∗ + ||z||∗

�

Examples:

1. ||x||1∗ = ||x||∞
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2. ||x||2∗ = ||x||2

3. ||x||∞∗ = ||x||1.

Proofs:

• The proof of (1) is left as an exercise.

• Proof of (2): We have

||x||2∗ = max
y
xTy

s.t. ||y||2 ≤ 1.

Cauchy-Schwarz implies that

xTy ≤ ||x|| ||y|| ≤ ||x||

and y = x
||x|| achieves this bound.

• Proof of (3): We have

||x||∞∗ = max
y
xTy

s.t. ||y||∞ ≤ 1

So yopt = sign(x) and the optimal value is ||x||1.

2 Positive semidefinite matrices

We denote by Sn×n the set of all symmetric (real) n× n matrices.

2.1 Definition

Definition 6. A matrix A ∈ Sn×n is

• positive semidefinite (psd) (notation: A � 0) if

xTAx ≥ 0, ∀x ∈ Rn.

• positive definite (pd) (notation: A � 0) if

xTAx > 0, ∀x ∈ Rn, x 6= 0.
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• negative semidefinite if −A is psd. (Notation: A � 0)

• negative definite if −A is pd. (Notation: A ≺ 0.)

Notation: A � 0 means A is psd; A ≥ 0 means that Aij ≥ 0, for all i, j.

Remark: Whenever we consider a quadratic form xTAx, we can assume without loss of

generality that the matrix A is symmetric. The reason behind this is that any matrix A can

be written as

A =

(
A+ AT

2

)
+

(
A− AT

2

)
where B :=

(
A+AT

2

)
is the symmetric part of A and C :=

(
A−AT

2

)
is the anti-symmetric

part of A. Notice that xTCx = 0 for any x ∈ Rn.

Example: The matrix

M =

(
5 1

1 −2

)
is indefinite. To see this, consider x = (1, 0)T and x = (0, 1)T .

2.2 Eigenvalues of positive semidefinite matrices

Theorem 2. The eigenvalues of a symmetric real-valued matrix A are real.

Proof: Let x ∈ Cn be a nonzero eigenvector of A and let λ ∈ C be the corresponding

eigenvalue; i.e., Ax = λx. By multiplying either side of the equality by the conjugate

transpose x∗ of eigenvector x, we obtain

x∗Ax = λx∗x, (2)

We now take the conjugate of both sides, remembering that A ∈ Sn×n :

x∗ATx = λ̄x∗x⇒ x∗Ax = λ̄x∗x (3)

Combining (2) and (3), we get

λx∗x = λ̄x∗x⇒ x∗x(λ− λ̄) = 0⇒ λ = λ̄,

since x 6= 0.
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Theorem 3.

A � 0⇔ all eigenvalues of A are ≥ 0

A � 0⇔ all eigenvalues of A are > 0

Proof: We will just prove the first point here. The second one can be proved analogously.

(⇒) Suppose some eigenvalue λ is negative and let x denote its corresponding eigenvector.

Then

Ax = λx⇒xTAx = λxTx < 0⇒ A � 0.

(⇐) For any symmetric matrix, we can pick a set of eigenvectors v1, . . . , vn that form an

orthogonal basis of Rn. Pick any x ∈ Rn.

xTAx = (α1v1 + . . .+ αnvn)TA(α1v1 + . . .+ αnvn)

=
∑
i

α2
i v
T
i Avi =

∑
i

α2
iλiv

T
i vi ≥ 0

where we have used the fact that vTi vj = 0, for i 6= j.

2.3 Sylvester’s characterization

Theorem 4.

A � 0⇔ All 2n − 1 principal minors are nonnegative.

A � 0⇔ All n leading principal minors are positive.

Minors are determinants of subblocks of A. Principal minors are minors where the block

comes from the same row and column index set. Leading principal minors are minors with

index set 1, . . . , k for k = 1, . . . , n. Examples are given below.
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Figure 1: A demonstration of the Sylverster criteria in the 2× 2 and 3× 3 case.

Proof: We only prove (⇒). Principal submatrices of psd matrices should be psd (why?).

The determinant of psd matrices is nonnegative (why?).

3 Basic differential calculus

You should be comfortable with the notions of continuous functions, closed sets, boundary

and interior of sets. If you need a refresher, please refer to [1, Appendix A].

3.1 Partial derivatives, Jacobians, and Hessians

Definition 7. Let f : Rn → R.

• The partial derivative of f with respect to xi is defined as

∂f

∂xi
= lim

t→0

f(x+ tei)− f(x)

t
.

• The gradient of f is the vector of its first partial derivatives:

∇f =


∂f
∂x1
...
∂f
∂xn

 .
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• Let f : Rn → Rm, in the form f =

f1(x)
...

fm(x)

. Then the Jacobian of f is the m × n

matrix of first derivatives:

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 .

• Let f : Rn → R. Then the Hessian of f , denoted by ∇2f(x), is the n × n symmetric

matrix of second derivatives:

(∇2f)ij =
∂f

∂xi∂xj
.

3.2 Level Sets

Definition 8 (Level sets). The α-level set of a function f : Rn → R is the set

Sα = {x ∈ Rn | f(x) = α}.

Definition 9 (Sublevel sets). The α-sublevel set of a function f : Rn → R is the set

S̄α = {x ∈ Rn | f(x) ≤ α}.

Lemma 3. At any point x, the gradient is orthogonal to the level set.

Figure 2: Illustration of Lemma 3
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3.3 Common functions

We will encounter the following functions from Rn to R frequently. It is also useful to

remember their gradients and Hessians.

• Linear functions:

f(x) = cTx, c ∈ Rn, c 6= 0.

• Affine functions:

f(x) = cTx+ b, c ∈ Rn, b ∈ R
∇f(x) = c,∇2f(x) = 0.

• Quadratic functions

f(x) = xTQx+ cTx+ b

∇f(x) = 2Qx+ c

∇2f(x) = 2Q.

3.4 Differentiation rules

• Product rule. Let f, g : Rn → Rm, h(x) = fT (x)g(x) then

Jh(x) = fT (x)Jg(x) + gT (x)Jf (x) and ∇h(x) = JTh (x)

• Chain rule. Let f : R→ Rm, g : Rn → R, h(t) = g(f(t)) then

h′(t) = ∇fT (f(t))

f
′
1(t)
...

f ′n(t)

 .

Important special case: Fix x, y ∈ Rn. Consider g : Rn → R and let

h(t) = g(x+ ty).

Then,

h′(t) = yT∇g(x+ ty).
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3.5 Taylor expansion

• Let f ∈ Cm (m times continuously differentiable). The Taylor expansion of a univariate

function around a point a is given by

f(b) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + . . .+

hm

m!
f (m)(a) + o(hm)

where h := b− a. We recall the “little o” notation: we say that f = o(g(x)) if

lim
x→0

|f(x)|
|g(x)|

= 0.

In other words, f goes to zero faster than g.

• In multiple dimensions, the first and second order Taylor expansions of a function

f : Rn → R will often be useful to us:

First order: f(x) = f(x0) +∇fT (x0)(x− x0) + o(||x− x0||).

Second order: f(x) = f(x0) +∇fT (x0)(x− x0) +
1

2
(x− x0)T∇2f(x0)(x− x0) + o(||x− x0||2).

Notes

For more background material see [1, Appendix A].
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