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Intrinsic Optical Properties of Diamond  
  Richard P.     Mildren        

     Diamond comprises the lowest mass element that can form a stable covalently 
bonded crystal lattice, and this lattice is highly symmetric and tightly bound. Its 
resulting extreme properties, along with the recent developments in its synthesis, 
have led to an explosion of interest in the material for a diverse range of optical 
technologies including sensors, sources, and light manipulators. The optical prop-
erties in many respects sit well apart from those of other materials, and therefore 
offer the tantalizing prospect of greatly enhanced capability. A detailed knowledge 
base of the interaction of electromagnetic radiation with the bulk and the surface 
of diamond is of fundamental importance in assisting optical design. 

 For any material, the dataset characterizing optical performance is large and 
diamond is no exception despite its inherent lattice simplicity. The properties of 
interest extend over a large range of optical frequencies, intensities and environ-
mental parameters, and for many variants of the diamond form including defect 
and impurity levels, crystal size, and isotopic composition. Over and above the 
fascination held for this ancient material, its highly symmetric structure and pure 
natural isotopic content (98.9%  12 C) provides an outstanding example for under-
pinning solid - state theory. As a result, diamond has been extensively studied and 
its optical properties are better known than most other materials. 

 Many excellent reviews of optical properties have been reported previously (see 
e.g. Refs  [1 – 3] ). These concentrate mainly on linear optical properties, often focus 
on extrinsic phenomena, and are written from perspectives outside of the fi eld of 
optics, such as electronics and solid - state physics. Consequently, there is a need 
to consolidate the data from the perspective of optical design. Furthermore, the 
nonlinear optical properties of diamond have not to date been comprehensively 
reviewed. The aim of this chapter is to do this, with emphasis placed on the intrin-
sic properties of single - crystal diamond (i.e., pure Type IIa diamond  1)  ). The chapter 
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  1)      Type IIa represents the most pure form; 
other categories (Types Ia, Ib, and IIb) have 
substantial levels of nitrogen (Type Ia and 
Ib) and/or boron impurity (Type IIb). Note 
that the delineations between types are not 
well defi ned. Type IIa are rarely found as 

large homogeneous crystals in nature as 
nitrogen aids the formation process. It is 
thus for historical reasons that nitrogen -
 doped diamonds, which provide the major 
source of natural gemstones, are 
categorized as Type I. 
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also includes the dependence of optical properties on basic variables such as 
wavelength, temperature, and isotopic composition. Although the scope is limited 
to bulk intrinsic properties, the intention is to stimulate a further expansion of the 
knowledge base as the limits of measurement resolution and performance are 
extended, and as more detailed investigations emerge into areas such as surface 
optics, crystal variants, and nano - optical effects. 

 The chapter focuses on the optical properties spanning from  ultraviolet  ( UV ) to 
 infrared  ( IR ). It should be noted that, throughout the chapter, Syst è me Interna-
tionale (SI) units have been used, apart from some exceptions to stay with conven-
tions. The data provided refer to diamond with the naturally occurring isotopic 
ratio, unless specifi cally stated otherwise.  

   1.1  
Transmission 

 Diamond has a wide bandgap and lacks fi rst - order infrared absorption, which 
makes it one of the most broadly transmitting of all solids. As shown in Figure 
 1.1 , the transmission spectrum for a diamond window is featureless for wave-
lengths longer than approximately 225   nm (  α      <    1   cm  − 1  for   λ      >    235   nm), apart from 
a moderate absorption in the range 2.6 to 6.2    μ m and extending weakly outside 
each side. Indeed, there is no absorption in the long - wavelength limit, which is a 
characteristic of the Group IV elements (e.g., Si and Ge) that share the diamond 

     Figure 1.1     Transmission spectrum for a 
Type IIa diamond window ( “ Type IIIa, ”  
Element 6) of 1   mm thickness. The spectrum 
was measured using a Cary 5000 spectrom-
eter (UV - near IR) and Bruker Zertex 80 
( > 2    μ m; resolution 4   cm  − 1 ). The transmission 
for Fresnel loss only (dashed curve) was 

calculated using the relation described in the 
text and in Equation  (1.6) . The small 
difference between the dashed and measured 
curves in the regions away from the UV - edge 
and lattice absorption is largely attributed to 
the combination of spectrometer calibration 
error and scatter in the sample.  
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lattice symmetry. UV - edge absorption, infrared lattice absorption and Fresnel 
refl ection dominate the wavelength dependence for transmission. The Fresnel 
refl ection at each diamond – air interface is approximately 17% in the visible 
( R     =    17.1% at 632   nm), and when accounting for multiple refl ections between 
each surface this leads to a maximum transmission of (1    −     R ) 2 /(1    −     R  2 )    =    70.8%. 
Using dispersion data for the refractive index (see Section  1.4 ), the transmission 
upper limit (no absorption) is shown as a function of wavelength (dashed line in 
Figure  1.1 ).    

   1.2  
Lattice Absorption 

 The absorption in the mid - IR, which is most prominent in the range 2.6 to 6.2    μ m, 
arises due to the coupling of radiation with the movement of nuclei, and is often 
referred to as  “ lattice ”  or  “ multiphonon ”  absorption. The magnitude and shape of 
the absorption spectrum is a consequence of the vibrational properties of the 
crystal lattice, which are governed by the forces between neighboring atoms and 
the symmetry of collective vibrations. The theoretical framework that most suc-
cessfully describes the spectrum has been developed since the 1940s, stimulated 
by the pioneering work of Sir C.V. Raman on diamond ’ s optical properties and 
Max Born on the quantum theory of crystals. It is interesting to note that, although 
diamond ’ s lattice is one of the most simple, there have been substantial contro-
versies in explaining the spectrum (see e.g., Ref.  [4] ) and there are on - going chal-
lenges to thoroughly explain some of the features. 

 A brief and qualitative summary of the theory of lattice absorption is provided 
here to assist in an understanding of the IR spectrum ’ s dependence on important 
material and environmental parameters such as impurity levels, isotopic content, 
and temperature. A greatly simplifying and important aspect is that there is no 
one - phonon absorption in pure, defect - free diamond (which would appear most 
strongly near 7.5    μ m for diamond), as also for other monatomic crystals with 
inversion symmetry such as Si and Ge. The movement of nuclei in vibrational 
modes of the lattice are countered by equal and opposite movement of neighbors, 
so that no dipole moment for coupling with radiation is induced. One - phonon 
absorption may proceed by spoiling the local symmetry through, for example, 
lattice imperfections (impurities and defects) or by the application of electric 
fi eld. Dipole moments may also be induced in the crystal via interaction of the 
incident photon with more than one phonon, although with reduced oscillator 
strength; this is the origin of lattice absorption in pure diamond. From a classical 
viewpoint, the absorption mechanism can be qualitatively understood as one 
phonon inducing a net charge on atoms, and a second phonon (or more) vibrating 
the induced charge to create a dipole moment  [5] . The maximum phonon fre-
quency that can be transmitted by the lattice is 1332   cm  − 1  (which corresponds 
to the zero - momentum optical phonon and the Raman frequency), and integer 
multiples of this frequency at 3.75    μ m (2665   cm  − 1 ) and 2.50    μ m (3997   cm  − 1 ) mark 
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the short - wavelength limits for two -  and three - phonon absorption regions. The 
demarcations between two -  and three - phonon absorption are clearly evident in the 
transmission spectrum of Figure  1.1  and the logarithmic plot of lattice absorption 
in Figure  1.2   [6] . Between wavelengths 3.75 and 6    μ m, the lattice absorption at 
room temperature is strongest with a peak of approximately 10   cm  − 1  at 4.63    μ m, 
and is primarily attributable to two - phonon absorption.   

   1.2.1  
The Two - Phonon Region 

 Absorption may involve the creation and destruction of phonons, which are con-
strained to certain energies and wavevectors as a result of the symmetry and 
interatomic forces. For two - phonon creation, the absorption at a given frequency 
is proportional to the number of pairs of modes of the created phonons and a 
transition probability that takes into consideration allowed phonon combinations 
(e.g., longitudinal or transverse) and the transition oscillator strength. The number 
of allowed combinations of a given energy is usually highest for phonon wavevec-
tors along directions of high symmetry in the lattice, and with momenta that 

     Figure 1.2     Two - , three - , and four - phonon 
lattice absorption bands. The underlying 
fi gure showing the calculated  (smooth solid 
curve)  and measured absorption spectra is 

reprinted with permission from Ref.  [6] ; 
 ©  1994, SPIE. The measurements were 
collated from several sources, as detailed in 
the reference.  
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correspond to phonon wavelengths of the order of the atomic spacing in that 
direction (i.e., at the edge of the Brillouin zone). Along with the generally higher 
density of modes at the Brillouin zone edge, the transition probability is also 
higher as the largest charge deformations are induced. For diamond, there is also 
a peak in the density of modes in one symmetry direction ( < 110 > ) for momenta 
corresponding to wavevectors at approximately 70% of the Brillouin zone. These 
peaks in the density of states are the so - called  “ critical points ”  in the lattice phonon 
dispersion curves. 

 The primary directions of symmetry for the diamond lattice, along with the 
frequency of critical point phonons, are listed in Table  1.1 . Also listed are the criti-
cal points derived from the relatively recent studies of Vogelsegang  et al .  [7]  and 
Klein  et al .  [8] , for data derived using a combination of neutron - scattering data, 
second - order Raman spectra  2)    [9]  and, in the case of Ref.  [8] , by using impurity 
spectra to access single phonon information. There remains signifi cant uncer-
tainty in the frequency of many critical points, however, and as a result there is 
disagreement between some phonon assignments.   

 For temperatures below 1000   K, the populations of critical - point phonons are 
small (due to their characteristically high energies in diamond), and only phonon 
summations appear strongly in the spectrum. Momentum – energy conservation 
and symmetry impose selection rules for the type of phonons created. As the 
photon momentum is negligible compared to the Brillouin zone - edge phonons 
and to conserve crystal momentum, the wavevector of each phonon is equal in 
magnitude and opposite in direction. The character of the phonons must also 
be different; that is, they should correspond to different dispersion branches 
(either optical or acoustic phonon), or have a different polarization (longitudinal 
or transverse direction). The resulting absorption features are referred to as 
 “ combination lines. ”  Pairs of phonons of the same type (overtones) are absent 
or weak. 

 Due to the large number of possible phonon modes, the spectrum appears as a 
fairly smooth continuum extending to wavelengths that extend beyond 10    μ m. 
A joint - density - of - states calculation  [10]  was successful in reproducing the gross 
features of the two - phonon spectrum, as shown in Figure  1.3 , including the broad 
peak near 2500   cm  − 1 , the region of highest absorption from 1800 – 2300   cm  − 1 , the 
local minimum at 2100   cm  − 1 , and the tail at frequencies less than 1750   cm  − 1 . An 
improved agreement would require a better knowledge of the dispersion curves 
and transition probabilities. Unfortunately, however, there are large uncertainties 
in the phonon dispersion data obtained by neutron scattering data, due to the 
lack of test samples of suffi cient size. The more recently published critical point 
values  [7, 8] , obtained with the assistance of optical spectra of variable impurity 
and isotopic content, have enabled some features to be assigned to critical point 

  2)      The second - order Raman scattering involves 
two phonons. The second - order spectrum 
contains a peak at twice the Raman 
frequency that is more than two orders of 

magnitude weaker than the fi rst - order peak, 
and a broad feature extending to lower 
frequencies (see e.g., Ref.  [9] ). 
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  Table 1.1    Directions of high symmetry, critical point phonons, the corresponding frequencies and two -
 phonon combinations identifi ed in the IR absorption spectrum. Combinations corresponding to the major 
peaks are shown in bold. L    =    longitudinal, T    =    transverse, O    =    optical, and A    =    acoustic. Note that the use of 
L and T labels for the K symmetry points is not conventional and should not be taken as indicating branches 
of purely transverse or longitudinal character.  

  Crystal direction (as 
viewed in perspective 
through the 4    ×    4 
unit cell)  

  Crystal direction, 
K - space symmetry 
label  

   Critical point frequencies (cm  − 1 )    Observed spectrum 
features in the 
two - phonon region 
(see Figure  1.4 ) with 
assigned phonon 
combinations (cm  − 1 )  

   Ref.  [7]      Ref.  [8]   

      

   < 100 > , X    1170 (L)  a)   
 1088 (TO) 
 786 (TA)  

  1191    ±    3 (L)  a)   
 1072    ±    2 (TO) 
 829    ±    2 (TA)  

  2260    ±    6 L    +    TO (X) 
 1895    ±    6 TO    +    TA (X)  c)    

      

   < 110 > , K    1236 (LO) 
 1112 (TO1) 
 1051 (TO2)   b)    

 986 (LA) 
 982 (TA1)  b)   
 748 (TA2)  

  1239    ±    2 (LO) 
 1111    ±    1 (TO1) 
 1042    ±    2 (TO2)  b)   
 992    ±    3 (LA) 
 978    ±    1 (TA1)  b)   
 764    ±    4 (TA2)  

   1977     ±     2 LA    +    TA1 ( Σ )  
 2005.5    ±    2 LO    +    TA2 ( Σ ) 
  2029     ±     2 TO2    +    (?)   d)    ( Σ )  
 2097    ±    2 TO1    +    LA ( Σ ) 
  2160     ±     2 TO1    +    TO2 ( Σ )  
 2293    ±    8 LO    +    TO2 ( Σ )  

      

   < 111 > , L    1245 (LO) 
 1208 (TO) 
 1009 (LA) 
 572 (TA)  

  1256    ±    4 (LO) 
 1220    ±    2 (TO) 
 1033    ±    2 (LA) 
 553    ±    2 (TA)  

  1777.5    ±    4 TO    +    TA (L) 
 1816.5    ±    4 TA    +    LO (L) 
 2260    ±    6 LA    +    (?)  e)   (L) 
 2293    ±    6 LO    +    LA (L)  

      

   < 210 > , W    1164 (L)  a)   
 1012 (TO) 
 915 (TA)  

  1146    ±    1 (L)  a)   
 1019    ±    3 (TO) 
 918    ±    12 (TA)  

  2175    ±    5 L    +    TO (W)  

    a)      The LO and LA modes are degenerate.  
   b)       “ Accidental ”  critical points occur for the TO2 -  and TA1 - labeled phonons for wavevectors nearby the symmetry 

point.  
    c)       Assignment agrees with Ref.  [8]  data only.  
    d)       Ambiguous assignment    –    Ref.  [8]  suggests LA, whereas Ref.  [7]  suggests TA1.  
    e)       Ambiguous assignment    –    Ref.  [8]  suggests LO, whereas Ref.  [7]  suggests TO.   
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     Figure 1.3     Comparison of two - phonon 
absorption band with the  joint density of 
states  ( JDS ) calculation of Wehner  et al .  [10] , 
showing qualitative agreement with several 
of the main features in the measured 

spectrum. The stepped appearance of the 
calculated spectrum is a consequence of the 
digitizing procedure used to sample the 
phonon dispersion curves.  Reproduced with 
permission from Ref.  [10] ;  ©  1967, Elsevier.   
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combinations with greater confi dence. The last column in Table  1.1  lists the fre-
quencies of features that can be readily seen in the spectrum of Figure  1.4 , along 
with their suggested assignments of the likely critical point phonons. The major 
peaks at 4.63    μ m (2160   cm  − 1 ), 4.93    μ m (2030   cm  − 1 ) and 5.06    μ m (1975   cm  − 1 ) all cor-
respond to phonons in the  < 110 >  symmetry direction, for which there is an  “ acci-
dental ”  critical point in the dispersion curves for one or both of the phonons 
involved in the assigned combinations. A similar type of analysis can be per-
formed, at least in principle, for the third -  and higher - order phonon bands at 
wavelengths  < 3.75    μ m ( > 2665   cm  − 1 ); however, such a procedure is very diffi cult 
due to the greatly increased number of phonon combinations, the lack of detailed 
knowledge on transition probabilities, and the poor visibility of critical point 
locations.    

   1.2.2  
Absorption at Wavelengths Longer than 5    μ m 

 In the range 5 to 10    μ m, lattice absorption decreases approximately exponentially 
from 10   cm  − 1  to approximately 0.05   cm  − 1 . The weaker longer - wavelength absorp-
tion results primarily from combination pairs of low - energy acoustic phonons 
away from the phonon dispersion critical points. A calculation for multiphonon 
absorption using polynomial fi ts to the acoustic phonon densities of states  [6] , 
reproduces this trend satisfactorily (as seen Figure  1.2 ). At wavelengths longer 
than 8    μ m ( < 1250   cm  − 1 ), a signifi cant departure of experiment from theory is 
observed as the weaker absorption approaches the level of impurity absorption 
and the resolution of the measurement. Due to interest in diamond as a window 
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material for missile domes and high - power CO 2  lasers, absorption in the long -
 wavelength atmospheric window at 8 – 12    μ m and at 10.6    μ m has been studied in 
depth (see e.g., Refs  [6, 11, 12] ). Absorptions as low as 0.03   cm  − 1  at 10.6    μ m have 
been measured for single - crystal and polycrystalline material  [13] . Intrinsic absorp-
tion is expected to decrease monotonically at longer wavelengths  ad infi nitum  due 
to the diminishing number of phonon modes and, indeed, low - loss material has 
been observed up to and beyond 500    μ m  [13, 14] .    

   1.2.3  
Temperature Dependence 

 Temperature affects lattice absorption via changes in the phonon ambient popula-
tion density and shifts in phonon mode frequency. The effect of the thermal 
phonons in the material is to stimulate absorption events coinciding with the 
incident photon. As described by Lax  [15] , the relationship between two - phonon 
absorption coeffi cient   α   and temperature is given by

   α ∝ + +( )( )n n1 21 1     (1.1)  

  where  n  i  are the occupation numbers at thermal equilibrium of the fi nal state 
phonons (also called Bose – Einstein factors)

   n T k Ti B/( , ) (exp[ ] )ω ω= − −� 1 1     (1.2)  

     Figure 1.4     Detail of the two - phonon 
absorption region (using the data of Figure 
 1.1 ) with identifi cation of major features in 
the spectrum with suggested critical point 

phonon summations (refer to Table  1.1 ). The 
vertical line at 2665   cm  − 1  corresponds to 
twice the Raman frequency, and indicates the 
upper limit for two - phonon absorption.  
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  where  k  B  is Boltzmann ’ s constant and   ħ   is Planck ’ s constant divided by 2  π  . A 
further consideration noted by Lax was that of induced emission, which involves 
the annihilation of thermal phonons and the creation of an IR photon at the 
frequency sum. This is proportional to  n  1  n  2  for two phonons, so that the net 
absorption becomes

   α ∝ + + − = + +( )( )n n n n n n1 2 1 2 1 21 1 1     (1.3)   

 However, as  n  1  n  2  can be neglected for temperatures less than approximately 
1000   K, Equation  (1.1)  holds for most temperatures of interest. At room tempera-
ture and below, the density of thermal phonons is small so that absorption is 
essentially constant and refl ects the spontaneous component (i.e., the component 
contribution caused by quantum fl uctuations). At elevated temperatures, however, 
absorption increases notably (as shown in Figure  1.5 a  [16] ) for temperatures up 
to 800   K and for wavelengths spanning the two -  and three - phonon bands (from 
2.5    μ m to beyond 20    μ m). The temperature dependence of a given feature in the 
absorption band varies slightly according to the thermal populations of the respon-
sible phonons of the feature combination. Although the agreement with Equations 
 (1.1)  and  (1.2)  above is quite good for some spectral features  [17] , for others    –    such 
as those near the 4.9    μ m peak    –    the increase in absorption exceeds the prediction. 
A more thorough treatment would need to consider contributions from higher - 
order multiphonon processes and also two - phonon difference bands (of frequency 
  ω   i     –      ω   j , where the phonon   ω   j  is absorbed and   ω   i  phonon is emitted) which play an 
increasingly important role at higher temperatures and longer wavelengths  [18] .   

 Lattice absorption spectra between 2 and 20    μ m for several temperatures up to 
500   K are shown in Figure  1.5 c. In addition to increased absorption by thermal 
phonons, the absorption spectrum is altered via small decreases in the phonon 
frequencies, which occur as a result of the change in interatomic forces and 
average atomic spacing. The shift varies according to the branches of the phonons 
involved, and is thus a complex function of wavelength. By using measurements 
of numerous absorption features, Picarillo  et al .  [18]  determined that for the two -
 phonon region at temperatures between 14 and 825   K, the shifts of absorption 
features  Δ   ν   are within a maximum deviation of  ± 13% with the average fi t given 
by

   Δν ν ω/ e= − ×0 027. ( , )n T     (1.4)  

  (where   ω   e     =    860   cm  − 1 ) and which corresponds to approximately 0.013   cm  − 1    K  − 1  at 
room temperature near 4    μ m. The calculated temperature shift at the two - phonon 
peak (2160   cm  − 1 ) and experimental measurements for the nearby 2286.5   cm  − 1  
shoulder feature are shown in Figure  1.5 b.  

   1.2.4  
Isotopic Content 

 The effect of the isotopic  12 C to  13 C ratio on the spectrum on the two - phonon 
spectrum has been investigated  [7] . As the  13 C content is increased from the 
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natural ratio ( 12 C   :    13 C    =    1    −     x    :    x , where  x     =    0.011), to the almost pure  13 C ( x     =    
0.987), the spectrum shifts towards longer wavelengths (see Figure  1.6 ) in good 
agreement with the expected  M   − 0.5  frequency dependence on the reduced mass 
 M . For an approximately equal mix of the two isotopes, the authors reported that 
the features seen in the above two - phonon spectra were either broadened or 
unresolvable.     

     Figure 1.5     (a) Temperature dependence of 
absorption at selected IR wavelengths  [11, 
16 – 18] ; (b) Shift of the 2286.5   cm  − 1  shoulder 
as a function of temperature in the 
two - phonon spectrum (data points  [18] ). The 

solid line is the calculated shift using 
Equation  (1.4) ; (c) Lattice absorption 
spectrum as a function of temperature. 
 Reproduced with permission from Ref.  [11] ; 
 ©  2003, Institute of Physics.   
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   1.3  
 UV  Edge Absorption 

 The UV absorption edge begins for wavelengths slightly longer than the lowest 
energy bandgap at 227   nm (5.47   eV). The gap is indirect, and requires the excited 
electron to gain momentum in one of the  < 100 >  crystal directions. As a result, 
absorption near the UV edge is a three - body interaction, involving either the 
absorption or emission of a lattice phonon, and is weaker than would be the case 
for a direct bandgap. Close to the gap absorption is also infl uenced by interaction 
of the created electron and hole, which are weakly attractive (forming an exciton 
of binding energy  E  x     =    0.07   eV at room temperature), and which acts to slightly 
reduce the energy required to otherwise span the bandgap. A schematic diagram 
(Figure  1.7 a) shows the indirect and direct bandgaps of diamond, along with the 
transitions involved in the near bandgap absorption.   

 A detailed description of the absorption edge (as shown in detail in Figure  1.7 b) 
is given by Clark  et al .  [20] . At room temperature, the main onset of absorption 
occurs at 236   nm (labeled  E  2  at 5.26   eV, 0.21   eV below the indirect bandgap energy 
 E  g ), and coincides with the excitation of an outer electron from the top of the 
valence band to the excitonic state just below the conduction band minimum and 
assisted by the absorption of a highest energy phonon. The conduction band 
minimum resides at a momentum value 76% of the Brillouin zone  [21] , where the 
highest energy phonon has energy of approximately 0.15   eV. For shorter wave-
lengths, absorption increases due to the increased density of states (which scales 
with [  ħ  c/  λ      –     E  th ] 1/2 , where  E  th  is the threshold energy for the phonon - assisted transi-
tion), and due to added contributions from the lower - energy transverse optical and 

     Figure 1.6     Two - phonon absorption spectra for enriched  13 C and natural isotopic fractions. 
 Reproduced with permission from Ref.  [7] ;  ©  1998, American Physical Society.   
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acoustic phonon modes as the incident photon energy increases above their 
respective thresholds at 235.5   nm (5.27   eV) and 233.5   nm ( E  4 ; 5.31   eV). For wave-
lengths shorter than 230.8   nm, the photon and phonon have suffi cient energy to 
create an unbound electron – hole pair, and for such bound – unbound transitions 
the absorption increases according to (  ħ  c/  λ      –     E  th ) 3/2 . Due to the low ambient density 
of high - energy phonons in diamond at room temperature, the absorption remains 
moderate until the photon energy exceeds the threshold for phonon emission. 
Evidence for phonon emission thresholds appears at 226   nm for the TA phonon 
( E  7 ; 5.482   eV), and at 224   nm for the closely spaced TO and longitudinal phonons 
( E  9 ; 5.531   eV and  E  10 ; 5.544   eV, respectively). Transmission may be readily meas-
ured through thin samples up to the fi rst direct band gap at  E  d     =    7.3   eV (170   nm), 
although at shorter wavelengths the absorption depth falls sharply and is limited 
to only a few microns of material. Absorption at wavelengths shorter than 200   nm 
has also been studied extensively (see e.g., Refs  [19, 22] ). 

 With increasing temperature, the absorption edge is infl uenced by the increased 
role of thermally excited phonons and the downshift in the phonon energy due to 
lattice expansion. The absorption spectra for a range of temperatures between 126 
and 661   K are shown in Figure  1.8   [20] . The frequency downshift is small com-
pared to the photon energy, and corresponds to less than 0.1   eV over the entire 
temperature range. The increasing absorption at wavelengths longer than 236   nm 
( < 5.26   eV) for temperatures above 300   K is attributed to the increased density 

     Figure 1.7     (a) Electronic band diagram 
highlighting the absorption mechanism for 
photon energies just below the bandgap.  E  d  
and  E  g  are the direct and indirect band gaps, 
and  E  x  is the exciton binding energy; (b) The 
UV absorption edge at 295   K (solid lines, solid 
circles)  [20] . The labels  E n  , which retain the 

system of Ref.  [20] , show the features in the 
spectrum described in the text. The data of 
Philipp and Taft  [19]  (open circles) were 
determined from refl ectance measurements. 
The dotted trace indicates the absorption 
coeffi cient determined from the transmission 
data for the Type IIa CVD sample of Figure  1.1 .  
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of thermal phonons and the onset of absorption events involving two or more 
phonons. Below room temperature, absorption relying on single - phonon absorp-
tion diminishes so that the absorption edge retreats progressively towards the 
226   nm threshold ( E  7 ; 5.482   eV) corresponding to phonon emission.   

 To date, the effect of isotopic composition on UV absorption edge does not 
appear to have been studied in great detail. For higher concentrations of  13 C, the 
lower phonon frequencies shift the  E  i  thresholds towards shorter wavelengths in 
the case of phonon absorption, and towards longer wavelengths in the case of 
phonon emission. In addition, the bandgap wavelength shifts due to the change 
in electron – phonon coupling for the heavier atomic constituents and a minor 
contribution (of approximately one - fourth) from the change in molar volume. For 
pure  13 C, the indirect bandgap increases by 13.6   meV, corresponding to a blue - shift 
of 0.56   nm  [23] .  

   1.4  
Refractive Index 

 The refractive index values of Peter  [24]  and Edwards and Ochea  [25]  are plotted 
in Figure  1.9 a (for an extended list of values, see Ref.  [3]  and page 670 in Ref.  [2] ).   

     Figure 1.8     UV absorption edge as a function of temperature. The top wavelength scale has 
been added for convenience.  Reproduced with permission from Ref.  [20] ;  ©  1964, Royal 
Society Publishing.   
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     Figure 1.9     (a) Refractive index as a function of wavelength (hollow    –     [24] , fi lled    –     [25]  and 
references therein). The inset table contains Equation  (1.6)  values for several key wavelengths 
listed; (b) The departure of measured index values from the index formula.  
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  where  A     =    2.378   37,  B     =    1.188   97,  C     =     − 1.0083    ×    10  − 4 ,  D     =     − 2.3676    ×    10  − 5 ,  E     =    
3.242   63    ×    10  − 8 , and where   λ   is in nanometers. Note that the coeffi cients for the 
Herzberger formula published earlier in Ref.  [25]  are in error. The two formulae 
provide slightly different fi ts to the data, with improved agreement for the visible 
and IR data respectively, as shown in Figure  1.9 b. The shift in index with isotopic 
ratio has been estimated to be  + 0.0004 for  13 C in the long - wavelength limit ( [26] ; 
see also Refs  [19]  and  [20] ). 

   1.4.1  
Temperature Dependence of the Refractive Index 

 The temperature dependence of  n  has been obtained using a number of methods, 
including electronic measurements of the dielectric coeffi cient and from the inter-
ference fringes in Fourier transform spectra for thin heated windows. Some 
results are summarized for measurements at several wavelengths in Figure  1.10 a. 
By using the latter method, Ruf  et al .  [26]  have measured the dependence at 
long wavelengths (100    μ m), and have shown a good agreement with the empirical 
relationship
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   n T n K n T( ) ( , )= + +⎡
⎣⎢

⎤
⎦⎥0

1

2
BE eff�ω     (1.7)  

  where  n  BE (  ħ    ω  , T ) is the Bose – Einstein factor of Equation  (1.2)  for an effective 
phonon frequency   ħ    ω   eff     =    711   cm  − 1 , and where  K     =    0.019    ±    0.007. The index is 
found to remain constant at temperatures up to approximately 200   K, and increases 
linearly at temperatures above 450   K. The unusually high Debye temperature for 
diamond extends the range of constant index to notably higher temperatures 
compared to other materials. As a further consequence, the room temperature 
thermo - optic coeffi cient (1/ n )    ×    d n /d T  is a steep function of temperature for 
diamond. Equation  (1.7)  describes the increase in vibrational degrees of freedom 
with temperature. An analysis of how the quantum and thermal motion affects 
the temperature dependence is presented in Refs  [26, 30] , although as with many 
other materials a comprehensive theory is yet to be developed.   

 The thermo - optic coeffi cient is also dependent on wavelength. The coeffi cient 
in the long - wavelength limit was determined from capacitive measurements 
for  T     =    5.5 – 340   K by Fontanella  et al .  [27]  (open circles in Figure  1.10 a), and at 
100    μ m by Ruf  et al . (solid symbols), both of which are in good agreement. Fon-
tanella  et al . reported a slightly higher room - temperature value (4.04    ×    10  − 6    K  − 1 ; cf. 
3.2    ×    10  − 6    K  − 1  for Ruf  et al .). Tropf  et al .  [28]  have also reported a value of 6.7    ×    10  − 6    K  − 1  

     Figure 1.10     (a) Refractive index and 
thermo - optic coeffi cient versus temperature. 
Index data includes   λ      =    100    μ m (solid circles 
 [26] ),   λ   →  ∞  (open circles  [27] ) and   λ      =    2.5, 5, 
and 10    μ m  [28] . The solid black curves for  n  
and 1/ n     ×    d n /d T  are obtained using Equation 
 (1.7) . The colored curves correspond to 
Equation  (1.7)  using values   ω   eff  and  K  

obtained for polycrystalline material at 
wavelengths 1.03, 0.62, 0.41, and 0.28    μ m 
(brown, orange, light green, and dark green) 
 [29] ; (b) Values of 1/ n     ×    d n /d T  at 300   K as a 
function of wavelength  [26 – 28] . The solid 
circles correspond to polycrystalline material 
 [29] .  For a color version of this fi gure, please 
see the color plate at the end of this book.   

Temperature (K)

0 200 400 600 800 1000

n

2.380

2.385

2.390

2.395

2.400

X

X

X

X

1/
n.

dn
/d

 T
 (

x1
0-6

 K
-1

)

10-2

10-1

100

101

102

1.03 μm         0.28 μm

2.5 μm
5 μm
10 μm

Wavelength (nm)

500 1000 5000 10000
2

3

4

5

6

7

Tropf et al

T = 300 K

Fontanella et al

Ruf et al

Polycrystalline

(a) (b)



 16  1 Intrinsic Optical Properties of Diamond

near 10    μ m, although this was likely to be overvalued as it most likely presumed 
a linear dependence near room temperature  [26] . 

 Knowledge of the thermo - optic coeffi cient at shorter wavelengths is relatively 
poor, especially for single - crystal materials. Hu and Hess  [29]  used ellipsometry 
to study the refractive index at wavelengths spanning the near - IR to UV for 
nanocrystalline fi lms grown by chemical vapor deposition. The results in Figure 
 1.10 b show that the coeffi cient (1/ n )    ×    d n /d T  decreases by as much as half of the 
long wavelength value for wavelengths approaching the bandgap. Comparisons 
of the Hu and Hess data with the aforementioned long - wavelength results of 
Ruf  et al . and Fontanella  et al . suggest that the Hu and Hess data are systemati-
cally overvalued; however, if the trend can be applied to bulk single crystal, then 
(1/ n )    ×    d n /d T  values less than 2    ×    10  − 6    K  − 1  would be expected at wavelengths less 
than 400   nm.   

   1.5  
Verdet Constant 

 The Faraday rotation of polarization was investigated for diamond by Ramaswasan 
 [31] . The Verdet constant  V , which is a function of material dispersion and thus 
wavelength, is related to the magnetic anomaly   γ   via the relationship:

   V
e

m c

dn

de

= γ λ
λ2 2     (1.8)  

  where  m e   and  e  are the electron mass and charge, respectively. Ramaswasan found 
that   γ   was constant at 27.8% in the visible, giving, for example, a value of  V  of 
approximately 6.8   rad   T  − 1    m  − 1  at 589   nm.  

   1.6  
First - Order Raman Scattering 

 First - order Raman scattering results from the interaction of an incident electro-
magnetic photon with a near zero - wavevector optical phonon, which is the vibra-
tional mode involving the relative movement of the two face - centered cubic lattices 
that comprise the diamond lattice in the direction of the linking carbon – carbon 
bond (see Figure  1.11 a). At this point in the phonon dispersion curves, the longi-
tudinal and two transverse vibrational branches converge and the Raman mode is 
triply degenerate. The Raman frequency   ω   r  is 1332.3   cm  − 1  (or 39.99 THz) at room 
temperature.   

 The quantum mechanical theory of spontaneous Raman scattering in crystals 
has been reviewed by Loudon  [32] , in which diamond is used as a main example. 
The coupling between incident and output photons is mediated by a photon –
 electron interaction in which the incident photon deforms the periodic electron 
potential and induces a lattice phonon. For a polarized beam entering a crystal of 
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length  L , the fraction of photons scattered perpendicular to the incident beam into 
a detector of collection solid angle  Ω  is given by (see e.g., Refs  [33, 34] )

   S
N n L

M
R

s r
j

j

=
+ ∑�( ) ( )2π

λ ω

4
BE

4

21
2

W
e es i     (1.9)  

  where  n  BE  is the Bose – Einstein occupation number at   ω  r  ,  N     =    4/ a  0  3  is the number 
of unit cells,  a  0  the lattice constant (8.81    ×    10 28  cells m  − 3  and 3.567    Å  respectively 
at room temperature),  M     =      ρ  /4 N  is the reduced mass of the carbon – carbon scat-
tering center, and   ρ   is the crystal density (3.52   g   cm  − 3 ). Diamond ’ s combination of 
high density, small mass and large deformation potential is respon sible for a high 
scattering effi ciency compared to other crystals. The effi ciency for anti - Stokes scat-
tering can be obtained using the same relation by replacing ( n  BE     +    1) with  n  BE , and 
is typically 600 times weaker at room temperature. The Raman tensor  R j   describes 
the strength of the interaction as a function of the incident and Stokes scattered 
polarizations  e  i  and  e  s  and with respect to each of the three degenerate Raman 
modes,  j     =    1,   2, and 3. The symmetry of the zone - center optical phonon ( Γ  25  +  in 
the notation of Birman, or equivalently  F  2g ) imposes the following form of  R j   in 
the frame of the cubic axes  x     =    [100],  y     =    [010], and  z     =    [001]:
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  where  d     =    d  α  /d q  is the change in crystal polarizability   α   with movement of 
the two sub - lattices along  q , a characteristic of the material related to the lattice 

     Figure 1.11     (a) The diamond lattice showing 
the two interpenetrating face - centered cubic 
lattices and the direction of relative 
movement for the zero wave - vector optical 
phonon involved in fi rst - order Raman 

scattering; (b) Confi guration for perpendicu-
lar Raman scattering.  For a color version of 
this fi gure, please see the color plate at the 
end of this book.   
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deformation potentials. The Raman tensors for the common crystal orientations 
of  x  ′     =    [110],   ′ =y [ ]110 , and  z  ′     =    [001], obtained by rotation of the coordinate 
system about 45 °  around the  z  - axis, are:
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 The Raman tensors for the common crystal orientation of  x  ″     =    [110],   ′′ =y [ ]112 , 
and   ′′ =z [ ]111 , obtained by a rotation of arcos   [ ]( . )1 54 73/ ≈ °  around the  x  ′  - axis, are
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 (1.12)   

 It should be noted that the symmetric nature of  R  is only strictly valid for photon 
frequencies much larger than   ω  r  . 

 The absolute value of  d , which is a function of wavelength, has been determined 
using a variety of methods, and ranges from 3.4 to 5.8    ×    10  − 16    cm 2   [35, 36]  in the 
visible range. Owing again to the fact that diamond is often used as a simple and 
representative example for developing theory, the knowledge of the absolute value 
of the Raman tensor is better known compared to other materials, and often 
represents a reference for scattering intensity. Perhaps the most certain value is 
| d |    =    4.4    ±    0.3    ×    10  − 16    cm 2  at 514.5   nm of Grimsditch and Ramdas  [37] , who devel-
oped a method based on the ratio of the Brillouin and Raman scattered intensities 
that avoids uncertainties introduced by absolute photometric measurements. 
Using this value of  d ,  S     =    6.1    ×    10  − 7  for the case of  y  - polarized incident light for a 
cubic cut crystal in the confi guration of Figure  1.11 b (i.e., polarized along [010], 
in the plane including the incident beam and detector) and with  L     =    1   cm and 
 Ω     =    1   srad. The scattered light is unpolarized, whereas for a  z  - polarized incident 
beam the scattering effi ciency is half this value and polarized in the  x  - direction. 
The scattering effi ciency as a function of incident polarization has been calculated 
using Equation  (1.9)  for the standard cases of perpendicular and axially directed 
scattering for a linearly polarized incident beam for input beams directed along 
the major crystallographic axes  < 100 > ,  < 110 > , and  < 111 > . The results, which rep-
resent the scattering behavior of any material with an F 2g  Raman mode, are plotted 
in Figure  1.12  as functions of the incident and scattered polarization directions. 
The two scattering geometries discussed above correspond to Figure  1.12 b with 
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input polarizations [010] and [001]. The highest value for the scattering matrix 
element is 4 d  2 /3, which is obtained for light directed along the  < 110 >  direction for 
incident and scattered light polarized along the  < 111 >  direction (see Figure  1.12 d). 
Polarized scattering data can be a useful aid for orienting diamond samples  [38] . 
The effects of the surface, sample size and crystal imperfections have been 
reviewed in Ref.  [39] .   

     Figure 1.12     Scattering effi ciency 
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and Stokes beam polarizations for several 
beam directions. (a – c) For an incident beam 
along a  < 100 >  axis for axially directed 
scattering, perpendicular scattering in 
direction  < 100 > , and perpendicular scattering 
in the direction  < 110 > , respectively; (d – f) For 
an incident beam along a  < 110 >  axis for 
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tively.  For a color version of this fi gure, 
please see the color plate at the end of 
this book.   
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   1.6.1  
Wavelength Dependence 

 Effi ciency increases at shorter wavelengths due to the characteristic   λ    − 4  depend-
ence for scattering, but is also enhanced by resonances between the sum and 
difference combinations of the pump, Stokes and Raman frequencies with transi-
tions across the electronic bandgap. Figure  1.13 a shows a comparison of | d | as a 
function of the pump wavelength with other materials. The increase in | d | at 
shorter wavelengths is attributed to resonance with the fi rst direct bandgap  [33] . 
By calculating the resonant contribution using a parabolic two - band model  [33, 
36] ,  3)   a relation for the dispersion of gain was derived as:

   d g= × −6 5 10 16. ( )λ λg/     (1.13)  

  where  d  is in units of cm 2  and where

   g x x x x( ) [ ( ) ( ) ]/ /= − − − +− − −2 1 2 1 22 1 1     (1.14)  

  takes into account the increase in density of states at shorter wavelengths. Here, 
  λ   is the pump wavelength and   λ  g   is taken as 207   nm (6   eV). Although measure-
ments at short wavelengths are scarce, theoretical predictions suggest that the 

     Figure 1.13     (a) | d | and (b)  g s   as a function of 
pump wavelength. Conversion between | d | 
and  g s   was performed where needed using 
Equation  (1.20)  with the Raman linewidth 

taken to be 1.5   cm  − 1  and   e R es j i

j

2∑ = d2. 

The data points are obtained from Refs  [40]  

(closed squares),  [36, 41]  (solid triangles), 
 [33]  (solid and open circles),  [42]  (open 
triangle; see Section  8.2.1 , open square),  [43]  
(solid diamond), and  [44]  (open diamond). 
The curve in (a) was obtained using 
Equations  (1.13)  and  (1.14) , and in (b) using 
Equations  (1.13) ,  (1.14) , and  (1.20) .  
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  3)      See the note added in proof in Ref.  [33] . 
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resonance for wavelengths approaching the bandgap is not as strong as for the 
Group IV analogs Si and Ge  [35, 45] .    

   1.6.2  
Raman Linewidth 

 The fi nite linewidth of the Stokes shift, which is observed in the broadened fre-
quency spectrum of the scattered light, results from anharmonic forces on the 
zone - center phonon oscillator and its resultant damping (with rate   Γ   )  [46] . The 
full - width at half - maximum of the Lorentzian line shape  Δ   ν      =      Γ  /  π c  (in units of 
cm  − 1 ) has been measured by several groups, with values ranging from 1 to 4   cm  − 1  
at room temperature (see the recent study in Ref.  [47]  and references therein), 
most of which are based on direct measurements of the Raman spectrum. Deter-
mining accurate widths is not straightforward due to the compounding effects 
of instrument resolution and sample purity. The linewidth is of the order of the 
resolution of most conventional spectroscopic instruments (i.e., diffraction grating 
and Fourier transform IR spectrometers); thus, accurate measurements require 
detailed consideration of the instrument function. Liu  et al .  [48]  aimed at carefully 
considering the spectrometer resolution and reported a room temperature value 
of approximately 1.2   cm  − 1 . By using a Fabry – Perot interferometer to analyze the 
broadened lineshape, McQuillan  et al .  [43]  measured widths between 2.04 and 
2.22   cm  − 1  for three Type IIa samples, with a quoted uncertainty of 0.04   cm  − 1 . Solin 
and Ramdas measured 1.65    ±    0.02   cm  − 1   [9] . Alternative methods based on ultrafast 
coherent phonon spectroscopy  [47, 49] , which measure the phonon damping rate 
using a pair of ultrafast pulses, yielded 1.5    ±    0.07   cm  − 1  and 1.54    ±    0.39   cm  − 1 . Lev-
enson  et al .  [50]  used a value of 1.02   cm  − 1  in order to fi t the observed wavelength 
dependence of intensity of the coherent anti - Stokes Raman signal. As the damping 
rate measurements by ultrafast phonon spectroscopy are less affected by instru-
ment functions, these values are expected to be more accurate. It is presently 
unclear how sample impurities and lattice defects may affect the Raman linewidth, 
however. Highly nitrogen - doped samples have been shown to introduce a small 
amount of broadening (from 1.54 to 1.81   cm  − 1  with up to 100   ppm of nitrogen) 
 [49] , variations in the nitrogen content may be responsible for the inconsistencies 
seen in measured values. 

 A linewidth of 1.5   cm  − 1  corresponds to a phonon dephasing time ( T  2     =    1/  Γ  ) of 
7.1   ps and an oscillator quality factor ( T  2   ω   r ) of 1800. The main damping mecha-
nism has been proposed to result from a resonant coupling with pairs of acoustic 
phonons of opposite momentum at the Raman frequency  [51] . The dephasing time 
is shorter compared to the other Group IV crystals sharing a diamond lattice sym-
metry (Si, Ge, and Sn), and refl ects a slightly higher density of states for the 
allowed two - phonon decay products  [52] . It is also notably shorter than the strong 
1047   cm  − 1  Raman mode of barium nitrate ( T  2     =    20   ps at room temperature  [53] ), 
which is an outstanding example of a molecular crystal containing a phonon oscil-
lator with very small anharmonic forces.  
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   1.6.3  
Temperature Dependence 

 Temperature infl uences the scattering effi ciency, linewidth, and center frequency 
of Raman scattering. Observed ratios of the Stokes and anti - Stokes signals are 
consistent with the predicted temperature dependence resulting from  n  BE  in Equa-
tion  (1.9)   [54] . It is also found that as temperature is raised, the center frequency 
decreases and the linewidth broadens. The temperature dependence of the center 
frequency has been investigated by numerous groups, including a study conducted 
more than 60 years ago by Krishnan at temperatures up to 1000   K  [55] . Data 
obtained from several of the more recent studies are shown in Figure  1.14 a. Accu-
rate determinations have been problematic due to diffi culties in accurately record-
ing the sample temperature and deconvolving the instrument function  [58] , and 
the absence of satisfactory  ab initio  theory to underpin the data  [59] . The decrease 
in center frequency with temperature, which occurs primarily due to the change 
in force constants as the lattice expands, is described well by the semi - empirical 
relationship  [58] :

   ω ω ωr r BE rT A n B T( ) = ( ) − ⋅ ⋅ =0 ( ( ))0     (1.15)  

  where the Raman frequency at absolute zero is taken as   ω  r  (0)    =    1332.7    ±    0.2  [48] , 
and  A     =    56    ±    2 and  B     =    0.75    ±    0.02 are determined by fi tting to data in Figure 
 1.14 a. The results of the study in Ref.  [48]  suggest that  B  should be equal to 0.5, 
in accordance with a damped oscillator model based on two acoustic phonons of 
opposite momentum from the same branch (the Klemens model  [51] ); however, 
the agreement with experiment is less satisfactory when using this value.   

     Figure 1.14     (a) Dependence of the fi rst - order 
Stokes center frequency on temperature; 
(b) Dependence of Raman linewidth on 
temperature. The data are from Refs  [56]  
(fi lled circles),  [54]  (open circles),  [48]  (fi lled 
triangles), and  [57]  (open triangles). In (b), 
the solid line corresponds to Equation  (1.16)  

with  A  ′     =    2 and  B  ′     =    0.5 (Klemens model) 
and with  Γ (0)    =    1.103   cm  − 1 . The dashed lines 
show how the parameters  A  ′  and  B  ′  may be 
varied in order to fi t the data. The lower and 
upper curves  A ′      =    2 and 3 respectively, both 
with  B ′      =    0.5.  
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 The linewidth is known with much less certainty, as highlighted by the spread 
of the selected data compiled in Figure  1.14 b. The Klemens model has been pro-
posed in many studies  [48, 51, 56]  as a good approximation in which the linewidth 
dependence is given by

   Δ Δn T n A n B w Tr( ) ( ) ( ( [ ])= ⋅ + ′ ⋅ ′ =0 1 0BE     (1.16)  

  where  A  ′     =    2 and  B  ′     =    0.5. Good agreement was obtained by Liu  et al .  [48] , Borer 
 et al .  [57] , and Herchen and Capelli  [54]  for  T  less than 1000   K. In order to fi t 
the higher - temperature data of Zouboulis and Grimsditch  [56]  and Herchen and 
Capelli  [54] , a value of  A  ′     ≈    3.0 is required. The dashed curves in Figure  1.14 b 
show Equation  (1.16)  for these two choices of  A  ′ . It is clear that accurate deter-
minations of linewidth temperature dependence are challenging, and further 
investigations on this topic are required to fully test the validity of the Klemens 
model.  

   1.6.4  
Isotopic Content 

 The dependence of the center frequency and lineshape with isotopic content has 
been investigated in several studies  [60 – 63] . The Raman spectrum for extreme 
and intermediate concentrations of  12 C and  13 C is shown in Figure  1.15 a. From 
  ω  r      =    1332.4   cm  − 1  for natural diamond ( 13 C fraction  x     =    0.011), the measured room -
 temperature center frequency increases to 1332.7   cm  − 1  for  x     =    0.001, and decreases 
to 1282   cm  − 1  for a highly enriched  13 C ( x     =    0.99)  [63] . Based on these measure-

     Figure 1.15     (a) The Raman line shape for 
several alloy fractions.  Figure reproduced 
with permission from Ref.  [60] ;  ©  2001, 
Elsevier;  (b) The full - width half - maximum as 
a function of the isotopic fraction.  Figure 
reproduced with permission from Ref.  [62] ; 

 ©  1993, Elsevier.  As detailed in the 
reference, the symbols correspond to data 
compiled from several studies, and the two 
curves show model results obtained using 
differing assumptions for the density of 
states.  
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ments and those of Ref.  [61] , the following polynomial was used to fi t the room -
 temperature data:

   ωr x x x( ) . . .= − −1332 82 34 77 16 98 2     (1.17)     

 The frequency shift is explained by two contributions affecting the Raman fre-
quency: one involving the change in average mass proportional to  M av  

 −     0.5  where 
 M av      =    (1    –     x ) M  12     +     xM  13 ; and the other involving the random distribution of iso-
topes in the bulk referred to as  “ isotopic disorder, ”  which is responsible for a small 
frequency increase. A thorough theoretical treatment involves consideration of the 
disorder - induced anharmonic terms, as well as contributions arising from a relaxa-
tion in the requirement for wavevector conservation due to breakdown in the 
lattice translational invariance  [60 – 63] . 

 The shape and width are also found to vary signifi cantly with  x . The width as a 
function of isotopic ratio is shown in Figure  1.15 b  [62] . The notably larger values 
for the natural isotope ratio compared to the measurements of others (see Figure 
 1.14 b) is not explained by the authors, but may be a result of a lower instrument 
resolution or by sample impurities. The ratio of  12 C and  13 C widths is slightly 
greater than unity consistent with the expected ratio of  M  13 / M  12     =    1.08  [60] . For 
alloys, the width increases notably and the shape is no longer purely Lorentzian. 
This is highlighted by the spectrum for  x     =    0.47 in Figure  1.15 a, which shows an 
extended shoulder on the low mass side and a linewidth of approximately 6   cm  − 1 . 
Explanation of the observed change in shape requires consideration of disorder -
 induced additional damping of the zone center phonon (which is sensitive to the 
precise form of the phonon dispersion curves near the Raman frequency) and the 
relaxation of wave - vector conservation  [60 – 62] . The maximum width of approxi-
mately 8   cm  − 1  is otained near  x     =    0.7.   

   1.7  
Stimulated Raman Scattering 

 Stimulated Raman scattering, in which growth in a Stokes fi eld results from para-
metric coupling with the pump and phonon fi elds, was fi rst observed in solids in 
a study involving diamond  [64] . For the simple case of a plane wave pump pulse 
of duration much longer than  T  2  and intensity  I  p , the growth in the Stokes intensity 
in the  z -direction is (refer also to Section  8.1.1.1 )

   d / ds s pI I g I z zs= ⋅( )     (1.18)   

 The gain coeffi cient  g s   factors in the accumulated density of phonons (which decay 
on the order of  T  2 ), and can be derived from the spontaneous Raman scattering 
values of  d  and  Γ  described above, using the relationship for the steady - state gain 
coeffi cient  [65] 

   g
N

n n c M
Rs s

s

s l r s l r
j

j

ω ω
ω ω ω ω

( ) =
− +( ) + ∑4 2

2 2 2

2π Γ
Γ

e es i     (1.19)  
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  which, at the Stokes frequency line center, reduces to

   g
N

n n c M
Rs

s

s l r
j

j

= ∑4 2

2

2π ω
ω Γ

e es i     (1.20)  

  where   ω  l   and   ω  s   are the pump and Stokes frequencies, respectively, and  n  l  and  n  s  
are the corresponding refractive indices. The gain coeffi cient is related to the 
imaginary part of the Raman susceptibility   χ   R  through

   χ μ ωR /= −n n gs l s s2 0     (1.21)   

 Direct measurements of  g s   have been made from the threshold for stimulated 
Raman scattering or by using pump – probe measurements. For single - pass stimu-
lated Raman scattering of an intense pump beam, the pump intensity  I  th  threshold 
is conventionally obtained using the relationship

   g L Is = ⋅25/ th     (1.22)  

  where it is assumed that the pump intensity is maintained over  L  and that a gain 
factor of e 25  marks the onset of observable stimulated Raman scattering. In the 
presence of a Stokes resonator, the gain can be determined by equating the steady -
 state gain with the resonator losses at threshold. Since gain depends on intensity, 
a good knowledge of the beam diameters and beam shape is required. A more 
detailed review of  g s   values is given in the context diamond Raman lasers in 
Chapter  8 . 

 Gain coeffi cient values have been determined for pump wavelengths between 
266   nm and 1064   nm, as shown in Figure  1.13 b. For pumping at 1064   nm, the 
gain varies from more than 12.5   cm   GW  − 1  for propagation along a  < 100 >  axis as 
determined from a measurement of SRS threshold  [42] , to 8.5   cm   GW  − 1  using 
pump - probe techniques (see Section  8.2.1 ). The theoretical curve shows the 
expected wavelength dependence using Equation  (1.20)  and the semi - empirical 
expression for  d  (Equations  1.13  and  1.14 ) under the assumption that the linew-
idth is 1.5   cm  − 1  ( T  2     =    7.1   ps). It is also assumed that a confi guration is used in 
which   e R es j i

j

2∑ = d2, which is the case, for example, for co - propagating pump 

and Stokes beams along the  < 100 >  direction. Thus, a 33% enhancement may 
be obtained for the pump and Stokes polarization parallel to  < 111 >  axes (refer 
to Section  1.6 ). At long wavelengths, the gain is linear with Stokes frequency. It 
should be noted, however, that the above theory is only valid for Stokes frequen-
cies much greater than   ω  r   which, for diamond, corresponds to   λ  s    <<  7.5    μ m.  

   1.8  
Brillouin Scattering 

 The wavelength shift and intensity of Brillouin scattering is determined by the 
elastic strain and photoelastic tensors, which for the cubic symmetry of diamond 
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is characterized by the three pairs of parameters  c  11 ,  c  12 , and  c  44 , and  p  11 ,  p  12 , and 
 p  44 . Experimentally derived values for these are listed in Table  1.2 .   

 The frequency shift is given by

   Δω ω θ= ±2 2ln v c( )sin( )s/ /     (1.23)  

  where   θ   is the angle between the incident and scattered radiation from the 
acoustic wave directed at the intermediate angle and  n  is the refractive index at 
  ω  . The speed of the longitudinal or transverse acoustic phonon  v s      =    ( X q  /  ρ  ) 0.5  can 
be determined from the appropriate combination of elastic strain tensor elements 
 X q  . For phonons propagating along a cubic axis, for example,  X q      =     c  11  or  c  44  for 
longitudinal or transverse polarization respectively, giving  v s      =    1.8    ×    10 4    ms  − 1  and 
1.3    ×    10 4    ms  − 1 . For Brillouin scattering at visible wavelengths, the typical shift for 
perpendicular scattering from longitudinal acoustic phonons is 3.5 – 4.5   cm  − 1  and 
2 – 3   cm  − 1  for transverse phonons. 

 The scattering effi ciency at the Stokes wavelength can be calculated using  [37, 70] 

   S
k T n L
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π
W e es i

    (1.24)  

  where the sum is over the longitudinal and transverse acoustic waves and the  T j   
are the scattering tensors. For  k  B  T  much greater than acoustic phonon energy   ħ   Δ   ω  , 
which is the case at room temperature, the intensity of Stokes and anti - Stokes are 
equal. For incident and scattered beams directed along perpendicular  < 110 >  axes, 
the relevant scattering tensors for the  < 100 >  directed longitudinal phonon and two 
degenerate transverse phonons are
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    (1.25)   

 Further, if the light beams are polarized normal to the scattering plane, 

  e es iT pj

j

( ) =∑ 2
4 12

2  and  X q      =     c  11  so that the Brillouin scattering effi ciency per unit 

solid angle S/ Ω  is approximately 10  − 8    srad  − 1  at 500   nm for  L     =    1   cm. In this case, 
generated phonons are longitudinally polarized in the  < 100 >  direction. Scattering 
tensors and  X q   values are listed in Ref.  [37]  for phonons directed along the sym-
metry directions  < 110 >  and  < 111 > . 

  Table 1.2    Elastic strain  c ij   and photoelastic tensor  p ij   elements  [37] . For a discussion on the 
accuracy of the  p ij  , see values in Ref.  [66] . For reference, the dispersion of the  p ij   has been 
considered in Ref.  [67]  (see also Ref.  [3] ), and the temperature and isotopic variation in the 
elastic strain is considered in Refs  [68]  and  [69] . 

    c  11  (10 11  Pa)      c  12  (10 11  Pa)      c  44  (10 11  Pa)      p  11       p  12       p  44   

  10.764    1.252    5.744     − 0.249    0.043     − 0.172  
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 For stimulated Brillouin scattering, the steady - state gain coeffi cient at line center  
is given by  [71] 

   g n p vsB
2

s B/ c= 7 2 3ω ρ Γ     (1.26)   

 where  p  is the appropriate photoelastic tensor component. The damping of the 
acoustic wave  Γ  B , has not been investigated in detail for diamond. According to 
Boyd  [71] , the damping rate of the scattering phonons or Brillouin scattering 
linewidth for materials is

   ΓB p v p/ / / /= + + −q k C C Cs b
2 4 3 1ρ η η[ ( ) ]     (1.27)  

  where  q  is the acoustic phonon wave - vector,   η  s   is the shear viscosity,   η  b   is the bulk 
viscosity,   κ   is the thermal conductivity and  C  p  and  C  v  are the specifi c heats at 
constant pressure and volume. The author is unaware of published   η  s   and   η  v   
values, or measurements of acoustic phonon lifetime values. If, instead, the 
damping rate for Ge of  Γ  B     =    1   ns  − 1  (from Ref.  [72]  and scaled for visible wave-
lengths   ω   s     ≈    4    ×    15   rad   s  − 1 ) is used, then  g  B     ≈    1.3   cm   GW  − 1 . Thus, pulse intensities 
of approximately 1   GW   cm  − 2  with temporal coherence longer than 1   ns are expected 
to be necessary to achieve signifi cant gain in crystals of length 1   cm long. To 
the present author ’ s knowledge, no details of stimulated Brillouin scattering in 
diamond have yet been reported.  

   1.9  
Electronic Nonlinearity 

 The third - order electronic nonlinearity   χ   (3)  results from a deformation of the lattice 
electron cloud at high incident electric fi eld intensities, and is responsible for a 
wide range of fast (10  − 16    s) optical effects in the transparent region. These include 
four - wave mixing, third - harmonic generation, self - focusing (intensity - dependent 
refractive index), DC and optical Kerr effects, and multi - photon absorption. Direct 
measurements of the   χ   (3)  have been determined from experiments in four - wave 
mixing  [41, 50] , self - focusing ( “ Z - scan technique ” )  [73] , and the DC Kerr effect 
 [74] . Values for the three independent tensor coeffi cients that characterize cubic 
crystals are listed in Table  1.3 , and plotted as a function of wavelength in Figure 
 1.16   [75] . The fact that   χ χ χ1111

3
1221
3

1122
33 3( ) ( ) ( )= =  holds approximately for diamond 

indicates that the electronic orbitals responsible for the nonlinearity are spherical 
on average, and that the electronic linearity is thus approximately directionally 
independent  [41] . The magnitude is in general agreement with theoretical calcula-
tions based on the band structure  [76] , and is approximately one - twentieth of the 
real part of the resonant Raman nonlinearity. The magnitude is similar to lead 
silicate glasses, but notably lower compared to other crystals of similar refractive 
index. The wavelength dependence has not been modeled in detail for wide indi-
rect bandgap materials such as diamond; however, general models for the nonlin-
ear absorption  [77]  combined with a Kramers – Kronig analysis  [73]  seem to be 
useful in qualitatively predicting the wavelength dependence.     



 28  1 Intrinsic Optical Properties of Diamond

  Table 1.3    The measured third - order susceptibility tensor components   χ   ijkl  and the nonlinear 
refractive index  n  2 .   χ   (3)  is related to the nonlinear polarization   Pi

( )3  through   P E E Ei j k l
( ) ( )3

0
3= ⋅ ⋅ε χijkl . 

Note that the values reported in Ref.  [41]  have been increased by a factor of 4 to conform to 
the defi nition of the susceptibility used here, and in the convention of most other studies. 
The   χ   (3)  values in italics are calculated from  n  2  measurements (and vice versa), as described in 
Section  1.9.1 . 

  Wavelength 
(nm)  

    c1111
3( )

      c1221
3( )       c1122

3( )      n  2  (10  − 20    m 2    W  − 1 )    Reference  

    (10  − 21    m 2    V  − 2 )  

  530  a)      3.2             15.6      [50]   
  545  a)      2.6    0.96    1.02     12.6      [41]   
  565  a)          0.88        12.8  b)       [41]   
  450  a)          1.22        17.8  b)         [41]   
  407  a)          1.46        21.3  b)       [41]   
  650        0.217         3.17      [74]   
  532     1.44             7.0     [73]   
  355      − 2.76              − 13.4     [73]   
  1064     0.864             4.2     [73]   
  532     1.44             7.0     [73]   
  355      − 2.47              − 12     [73]   
  266      − 6.99              − 34     [73]   

    a)      The wavelengths listed for the four - wave mixing experiments represent the pump beam 
wavelength.  

   b)      Calculated using Equation  (1.28)  and assuming   χ χ1122
3

1221
33( ) ( )= .   

 The data indicate that   χ1111
3( )  is approximately 1 – 3    ×    10  − 21    m 2    V  − 2  in the visible 

range, and increases slightly for shorter wavelengths approaching the threshold 
for two - photon absorption (  λ      <    450   nm). Values determined using  “ Z - scan ”  meas-
urements of the nonlinear refractive index (see Section  1.9.1 ) indicate a change in 
sign at a wavelength approximately 70% of the bandgap (ca. 400   nm) and a signi-
fi cant increase in magnitude as the bandgap is approached. This behavior is 
characteristic of many other semiconductors. A model including the various con-
tributions to the nonlinearity was developed in Ref.  [78] , which assumed a simple 
two - band structure (valence and conduction bands) and neglected the role of free 
carriers generated by two - photon absorption. This model was successful in repro-
ducing the behavior of a large number of semiconductors, and suggests that the 
effects of two - photon absorption dominates the   χ ijkl

( )3  wavelength dependence as the 
bandgap is approached. For photon energies much smaller than the bandgap, 
no signifi cant dispersion is expected, as is confi rmed by the data for wavelengths 
longer than 600   nm. 
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   1.9.1  
Nonlinear Refractive Index 

 The nonlinear refractive index arising from the nonresonant electronic nonlinear-
ity can be measured directly using the Z - scan technique  [73] , and is related to   χ ijkl

( )3  
by  [71] 

   n cn2 1111
3

0
2

03 4= χ ε( ) /     (1.28)  

  where  n  2  is defi ned as the index change  n  2  I  from the linearly polarized incident 
beam of intensity  I . The results are included in Table  1.3  and Figure  1.16 . In the 
visible range,  n  2  is approximately 1 – 2    ×    10  − 19    m 2    W  − 1 . As for   χ1111

3( ) ,  n  2  changes sign 
at a wavelength of approximately 400   nm.  

   1.9.2  
Two - Photon Absorption 

 Two - photon absorption coeffi cients   β   2  for materials are known to scale reasonably 
well with the inverse fourth power of the band gap  [77, 79] . Consequently, the 
two - photon absorption coeffi ecient in diamond is relatively small compared to 

     Figure 1.16     The dependence of susceptibility 
  χ1111

3( )  on wavelength. Data are from Refs  [50]  
(diamond with center cross),  [73]  (circles and 
squares),  [74]  (upward triangle), and  [75]  
(hexagons). The hollow diamonds and (x) 
correspond to   3 1221

3χ( )  and   χ1111
3( )  of Ref.  [41] . The 

right - hand axis shows the nonlinear refractive 
index  n  2  calculated from   χ1111

3( )  using Equation 
 (1.28) . The dashed line is the theoretical 
wavelength dependence for  n  2  obtained by a 
Kramers – Kronig analysis of the nonlinear 
absorption, as described in Ref.  [73] .  
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that of most other semiconductors. The   β   2  values are determined by measurement 
of the decrease in transmission as a function of the incident intensity. A summary 
of reported measurements is shown in Figure  1.17 ; also shown is the theoretical 
scaling formula of Van Stryland  et al .  [79] , which has been used with good success 
to predict   β   2  dispersion  for direct bandgap semiconductors. Clearly, the measured 
  β   2  values for indirect - bandgap diamond are notably larger than predicted by 
theory, although the general shape as a function of wavelength is in reasonable 
agreement. Although other models for two - photon absorption in diamond have 
been suggested  [75, 81] , to the present author ’ s knowledge a comprehensive 
theory for the observed magnitudes and dispersion is yet to be reported. Three -
 photon absorption measurements have been recently reported in the range of 350 
to 430   nm  [75] .     
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     Figure 1.17     The dependence of   β   2  on wavelength from solid circles  [75] , downward triangles 
 [81] , upward triangle  [80] , and squares  [73] . The dashed line is the theoretical wavelength 
dependence of Ref.  [79] , assuming a direct bandgap energy of 7.0   eV.  
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