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1 Introduction to the Matrix Completion Problem

(Notes heavily borrow from Fall 2013 notes by Kristan Temme and Yun William Yu)

This is sometimes called the Netflix problem. A motivation for the matrix completion problem
comes from user ratings of some products which are put into a matrix M . The entries Mij of the
matrix correspond to the j’th user’s rating of product i. We assume that there exists an ideal
matrix that encodes the ratings of all the products by all the users. However, it is not possible to
ask every user his opinion about every product. We are only given some ratings of some users and
we want to recover the actual ideal matrix M from this limited data. So matrix completion is the
following problem:

Problem: Suppose you are given some matrix M ∈ Rn1×n2 . Moreover, you also are given some
entries (Mij)ij∈Ω with |Ω| � n1n2.

Goal: We want to recover the missing elements in M .

This problem is impossible if we don’t make any additional assumptions on the matrix M since the
missing Mij could in principle be arbitrary. We will discuss a recovery scheme that relies on the
following three assumptions.

1. M is (approximately) low rank.

2. Both the columns space and the row space are “incoherent”. We say a space is incoherent,
when the projection of any vector onto this space has a small `2 norm.

3. If M = UΣV T then all the entries of UV T are bounded.

4. The subset Ω is chosen uniformly at random.

Note 1. There is work on adversarial recovery where the values are not randomly chosen but
carefully picked to trick us by an adversary.

Under these assumptions we show that there exists an algorithm that needs a number of entries in
M bounded by |Ω| ≤ (n1 + n2) r poly (log(n1n2)) · µ. Here µ captures to what extent properties 2
and 3 above hold. One would naturally consider the following recovery method for the matrix M :

minimize rank(X)

subject to: Xij = Mij ∀i, j ∈ Ω.
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Unfortunately this optimization problem is NP -hard. We will therefore consider the following
alternative optimization problem in trace norm, or nuclear norm.

minimize ‖X‖∗
subject to: Xij = Mij ∀i, j ∈ Ω,

where the nuclear norm of X defined as the sum of the singular values of X, i.e. ‖X‖∗ =
∑

i σi(X).
This problem is an SDP (semi- definite program), and can be solved in time polynomial in n1n2.

2 Work on Matrix Completion

Let’s now go through the history of prior work on this problem. Recall the setup and model:

• Matrix completion setup:

– Want to recover M ∈ Rn1×n2 , under the assumption that rank(M) = r, where r is small.

– Only some small subset of the entries (Mij)ij∈Ω are revealed, where Ω ⊂ [n1]× [n2], |Ω| =
m� n1, n2

• Model:

– m times we sample i, j uniformly at random + insert into Ω (so Ω is a multiset).

– Note that the same results hold if we choosem entries without replacement, but it’s easier
to analyze this way. In fact, if you can show that if recovery works with replacement,
then that implies that recovery works without replacement, which makes sense because
you’d only be seeing more information about M .

• We recover M by Nuclear Norm Minimization (NNM):

– Solve the program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij

• [Recht, Fazel, Parrilo ’10] [RFP10] was first to give some rigorous guarantees for NNM.

• [Candés, Recht, ’09] [CR09] was the first paper to show provable guarantees for NNM applied
to matrix completion.

• There were some quantitative improvements (in the parameters) in two papers: [Candés, Tao
’09] [CT10] and [Keshavan, Montanari, Oh ’09] [KMO10]

• Today we’re going to cover an analysis given in [Recht, 2011] [Rec11], which has a couple of
advantages.

– First, it has the laxest of all the conditions.

– Second, it’s also the simplest of all the analyses in the papers.

– Thus, it’s really better in every way there is.
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The approach of [Rec11] was inspired by work in quantum tomography [GLF+10]. A more general
theorem than the one proven in class today was later proven by Gross [Gross].

It is worth noting that there have been other important works on matrix completion which we will
not get to in the course. In particular, one particular paradigm is Alternating Minimization (AM).

The basic idea behind AM is as follows. It is an iterative algorithm. We try to find an approximate
rank-k factorization M ≈ X ·Y , where X has k columns and Y has k rows. We start off with initial
X0, Y0. Then we do as follows:

1. initialize X0, Y0 (somehow)

2. for ` = 1, . . . , T :

(a) X` ← argminX ‖RΩ(M −XY`−1)‖2F
(b) Y` ← argminY ‖RΩ(M −X`Y )‖2F

3. return XT , YT

Rigorous analyses of modifications of the above AM template have been carried out in [1, 2]. The
work [3] has also shown some performance guarantees when the revealed entries are adversarial
except for random (though in this case, many more entries have to be revealed).

3 Theorem Statement

We’re almost ready to formally state the main theorem, but need a couple of definitions first.

Definition 2. Let M = UΣV ∗ be the singular value decomposition. (Note that U ∈ Rn1×r and
V ∈ Rn2×r.)

Definition 3. Define the incoherence of the subspace U as µ(U) = n1
r · maxi ‖PUei‖2, where PU

is projection onto U . Similarly, the incoherence of V is µ(V ) = n2
r · maxi ‖PV ei‖2, where PV is

projection onto V .

Definition 4. µ0
def
= max{µ(U), µ(V )}.

Definition 5. µ1
def
= ‖UV ∗‖∞

√
n1n2/r, where ‖UV ‖∞ is the largest magnitude of an entry of UV .

Theorem 6. If m & max{µ2
1, µ0} ·n2r log2(n2) then with high probability M is the unique solution

to the semi-definite program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij.

Note that 1 ≤ µ0 ≤ n2
r . The way µ0 can be n2

r is if a standard basis vector appears in a column of
V , and the way µ0 can get all the way down to 1 is like the best case scenario where all the entries
of V are like 1√

n2
and all the entries of U are like 1√

n1
, so for example if you took a Fourier matrix

and cut off some of its columns. Thus, the condition on m is a good bound if the matrix has low
incoherence.

One might wonder about the necessity of all the funny terms in the condition on m. Unfortunately,
[Candes, Tao, ’09] [CT10] showed m & µ0n2r log(n2) is needed (that is, there is a family of examples
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M that need this). If you want to have any decent chance of recovering M over the random choice
of Ω using this SDP, then you need to sample at least that many entries. The condition isn’t
completely tight because of the square in the log factor and the dependence on µ2

1. However,
Cauchy-Schwarz implies µ2

1 ≤ µ2
0r.

Just like in compressed sensing, there are also some iterative algorithms to recover M , but we’re
not going to analyze them in class. For example, the SparSA algorithm given in [Wright, Nowak,
Figueiredo ’09] [WNF09] (thanks for Ben Recht for pointing this out to me). That algorithm
roughly looks as follows when one wants to minimize ‖AX −M‖2F + µ‖X‖∗:

Pick X0, and a stepsize t and iterate (a)-(d) some number of times:

(a) Z = Xk − t ·AT (AXk −M)

(b) [U,diag(s), V ] = svd(Z)

(c) r = max(s− µt, 0)

(d) Xk+1 = Udiag(r)V T

As an aside, trace-norm minimization is actually tolerant to noise, but I’m not going to cover that.

4 Analysis

The way that the analysis is going to go is we’re going to condition on lots of good events all
happening, and if those good events happen, then the minimization works. The way I’m going to
structure the proof is I’ll first state what all those events are, then I’ll show why those events make
the minimization work, and finally I’ll bound the probability of those events not happening.

4.1 Background and more notation

Before I do that, I want to say some things about the trace norm.

Definition 7. 〈A,B〉 def
= Tr(A∗B) =

∑
i,j AijBij

Claim 8. The dual of the trace norm is the operator norm:

‖A‖∗ = sup
B s.t.
‖B‖≤1

〈A,B〉

This makes sense because the dual of `1 for vectors is `∞ and this sort of looks like that because
the trace norm and operator norm are respectively like the `1 and `∞ norm of the singular value
vector. More rigorously, we can prove it by proving inequality in both directions. One direction is
not so hard, but the other requires the following lemma.

Lemma 9.

‖A‖∗︸ ︷︷ ︸
(1)

= min
X,Y s.t.
A=XY ∗

‖X‖F · ‖Y ‖F︸ ︷︷ ︸
(2)

= min
X,Y s.t.
A=XY ∗

1

2

(
‖X‖2F + ‖Y ‖2F

)
︸ ︷︷ ︸

(3)
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Proof of lemma.

(2) ≤ (3):
AM-GM inequality: xy ≤ 1

2(x2 + y2).

(3) ≤ (1):

We basically just need to exhibit an X and Y which are give something that is at most the
‖A‖∗. Set X = Y ∗ = A1/2. In general, given f : R+ 7→ R+ , then f(A) = Uf(Σ)V ∗. i.e. write
the SVD of A and apply f to each diagonal entry of Σ. You can easily check that A1/2A1/2 = A
and that the square of the Frobenius norm of A1/2 is exactly the trace norm.

(1) ≤ (2):

Let X,Y be some matrices such that A = XY ∗. Then

‖A‖∗ = ‖XY ∗‖∗

≤ sup
{ai} orthonormal basis
{bi} orthonormal basis

∑
i

〈XY ∗ai, bi〉
This can be seen to be true by letting

ai=vi and bi=ui
(from the SVD), when we get equality.

= sup
···

∑
i

〈Y ∗ai, X∗bi〉

≤ sup
···

∑
i

‖Y ∗ai‖ · ‖X∗bi‖

≤ sup
···

(
∑
i

‖Y ∗ai‖2)1/2(
∑
i

‖X∗bi‖2)1/2 (by Cauchy-Schwarz) (1)

= ‖X‖F · ‖Y ‖F
because {ai},{bi} are orthonormal bases

and the Frobenius norm is rotationally invariant

Proof of claim.

Part 1:
‖A‖∗ ≤ sup

‖B‖=1
〈A,B〉 .

We show this by writing A = UΣV ∗. Then take B =
∑

i uiv
∗
i . That will give you something on

the right that is at least the trace norm.

Part 2:
‖A‖∗ ≥ 〈A,B〉 ∀B s.t. ‖B‖ = 1.

We show this using the lemma.

• Write A = XY ∗ s.t. ‖A‖∗ = ‖X‖F · ‖Y ‖F (lemma guarantees that there exists such an X
and Y ).

• Write B =
∑

i σiaibi, ∀i, σi ≤ 1.

Then using a similar argument to (1),
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〈A,B〉 =

〈
XY ∗,

∑
i

σiaibi

〉
=
∑
i

σi 〈Y ∗ai, X∗bi〉

≤
∑
i

| 〈Y ∗ai, X∗bi〉 |

≤ ‖X‖F ‖Y ‖F = ‖A‖∗

which concludes the proof of the claim.

Recall that the set of matrices that are n1 × n2 is itself a vector space. I’m going to decompose
that vector space into T and the orthogonal complement of T by defining the following projection
operators.

• PT⊥(Z)
def
= (I − PU )Z(I − PV )

• PT (Z)
def
= Z − PT⊥(Z)

So basically, the matrices that are in the vector space T⊥ are the matrices that can be written
as the sum of rank 1 matrices aib

∗
i where the ai’s are orthogonal to all the u’s and the bi’s are

orthogonal to all the v’s. Also define RΩ(Z) as only keeping entries in Ω, multiplied by multiplicity
in Ω. If you think of the operator RΩ : Rn1n2 7→ Rn1n2 as a matrix, it is a diagonal matrix with the
multiplicity of entries in Ω on the diagonal.

4.2 Good events

We will condition on all these events happening in the analysis. It will turn out that with high
probability—probability 1 − 1

poly(n2) , and you can make the 1
poly(n2) factor decay as much as you

want by increasing the constant in from of m—all these events will occur:

1.
∥∥n1n2

m PTRΩPT − PT
∥∥ .

√
µ0r(n1+n2) log(n2)

m � 1
2

This is simple to understand from the perspective of leverage score sampling for approx-
imate matrix multiplication (AMM) with spectral norm error (as in pset 4, problem 2).
Specifically, recall that AMM we have matrices A,B with the same number n of rows and
want for some Π with m rows that ‖(ΠA)T (ΠA)−ATB‖ ≤ ε‖A‖ · ‖B‖. Now, note here that
PT = PTPT , since PT is a projection matrix. Thus the above is just an AMM condition for

A = B = PT , and Π = R
1/2
Ω . Now, typically for row sampling we had Π be a diagonal matrix

with Πi,i = ηi/
√
pi, where ηi is an indicator random variable for the event that we sampled

row i, and pi = E ηi. In class we discussed that we should set pi to be roughly proportional
to the leverage score of row i. The total number of samples is thus on the order of the
sum of leverage scores. More specifically, according to pset 4 problem 2, the total number
of rows samples will be on the order of O(q log(q/δ)/ε2) to suceed with probability 1 − δ,
where q is the sum of the leverage scores (or equivalently, the maximum rank of A,B). In our
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case, the rank of PT is the sum of leverage scores of PT , which is
∑

a,b ‖PT eae∗b‖2F , which is∑
a,b(‖PUea‖22+‖PV eb‖22−‖PUea‖22 ·‖PV eb‖22). Here PU is orthogonal projection onto U , where

M = UΣV ∗. One can verify that this sum is n1r+n2r− r2 = r(n1 +n2− r) = O((n1 +n2)r).
Thus q log(q/δ) is O(r(n1 +n2) log(n2/δ)) = O(rn2 log(n2/δ)) (note what m is above!). Now,
unfortunately RΩ samples uniformly and not according to leverage scores! This is where µ0

comes in. We need to make sure we oversample enough so that each row’s expected number
of occurrences in our sampling is at least its leverage score (show via a modification of your
pset 4 pset 2 solution that this suffices). To make this oversampling good enough, we need
to oversample by a factor related to the maximum leverage score, hence the µ0 in m.

2. ‖RΩ‖ . log(n2)

This one is actually really easy (also the shortest): it’s just balls and bins. We’ve already said
RΩ is a diagonal matrix, so the operator norm is just the largest diagonal entry. Imagine we
have m balls, and we’re throwing them independently at random into n1n2 bins, namely the
diagonal entries, and this is just how loaded is the maximum bin. In particular, m < n1n2, or
else we wouldn’t be doing matrix completion since we’d have the whole matrix. In general,
when you throw t balls into t bins, the maximum load by the Chernoff bound is at most log t.
In fact, it’s at most log t/ log log t, but who cares, since that would save us an extra log log
somewhere. Actually, I’m not even sure it would save us that since there are other log’s that
come into play.

3. ∃Y in range(RΩ) s.t.

(5a) ‖PT (Y )− UV ∗‖F ≤
√

r
2n2

(5b) ‖PT⊥(Y )‖ < 1
2

We will not justify this one in class; see the paper for the argument for the existence of
such a Y .

4.3 Recovery conditioned on good events

Now that we’ve stated all these things, let’s show that they imply trace norm minimization actually
works. We want to make sure

argmin X s.t.
RΩ(X)=RΩ(M)

‖X‖∗

is unique and equal to M .

Let Z ∈ Ker(RΩ), (Z 6= 0); we want to show ‖M + Z‖∗ > ‖M‖∗.

First we want to argue that ‖PT (Z)‖F cannot be big.

Lemma 10. ‖PT (Z)‖F <
√

n2
2r · ‖PT⊥(Z)‖F

Proof.
0 = ‖RΩ(Z)‖F ≥ ‖RΩ(PT (Z))‖F − ‖RΩ(PT⊥(Z))‖F
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Also

‖RΩ(PT (Z))‖2F = 〈RΩPTZ,RΩPTZ〉
≥ 〈PTZ,RΩPTZ〉
= 〈Z,PTRΩPTZ〉
= 〈PTZ,PTRΩPTPTZ〉

=

〈
PTZ,

m

n1n2
PTPTZ

〉
+

〈
PTZ, (PTRΩPT −

m

n1n2
)PTZ

〉
≥ m

n1n2
‖PTZ‖2F −

∥∥∥∥PTRΩPT −
m

n1n2

∥∥∥∥ · ‖PTZ‖2F
≥ m

n1n2
· ‖PTZ‖2F

Also have

‖RΩ(PT⊥(Z))‖2F ≤ ‖RΩ‖2 · ‖PT⊥(Z)‖2F
. log2(n2) · ‖PT⊥(Z)‖2F

Summarize: combining all the inequalities together, and then making use of our choice of m,

‖PT (Z)‖F <

√
n1n2 log2(n2)

m
· ‖PT⊥(Z)‖F

<

√
n2

2r
· ‖PT⊥(Z)‖F

Pick U⊥, V⊥ s.t. 〈U⊥V ∗⊥, PT⊥(Z)〉 = ‖PT (Z)‖∗ and s.t. [U,U⊥], [V, V⊥] orthogonal matrices. We
know from claim 8 that the trace norm is exactly the sup over all B matrices of the inner product.
But the B matrix that achieves the sup has all singular values equal to 1, so B = U⊥V

∗
⊥, because

PT⊥(Z) is in the orthogonal space so B should also be in the orthogonal space.

Now we have a long chain of inequalities to show that the trace of any M + Z is greater than the
trace of M :
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‖M + Z‖∗ ≥ 〈UV
∗ + U⊥V

∗
⊥,M + Z〉 by claim 8

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥, Z〉 since M ⊥ U⊥V ∗⊥

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥ − Y, Z〉

since Z∈ker(RΩ)
and Y ∈range(RΩ)

= ‖M‖∗ + 〈UV ∗ − PT (Y ), PT (Z)〉+ 〈U⊥V ∗⊥ − PT⊥(Y ), PT⊥(Z)〉 decomposition into T & T⊥

≥ ‖M‖∗ − ‖UV
∗ − PT (Y )‖F · ‖PT (Z)‖F 〈x,y〉≤‖x‖2‖y‖2

+ ‖PT⊥(Z)‖∗ by our choice of UV ∗

− ‖PT⊥(Y )‖ · ‖PT⊥(Z)‖∗ norm inequality

≥ ‖M‖∗ −
√

r

2n2
· ‖PT (Z)‖F +

1

2
· ‖PT⊥(Z)‖∗

> ‖M‖∗ −
1

2
·
∥∥∥P⊥T (Z)

∥∥∥
F

+
1

2
· ‖PT⊥(Z)‖∗ by Lemma 10

≥ ‖M‖∗ since ‖·‖∗≥‖·‖F

Hence, when all of the good conditions hold, minimizing the trace norm recovers M .

5 Concluding remarks

Why would you think of trace minimization as solving matrix completion? Analogously, why would
you use `1 minimization for compressed sensing? In some way, these two questions are very similar
in that rank is like the support size of the singular value vector, and trace norm is the `1 norm
of the singular value vector, so the two are very analogous. `1 minimization seems like a natural
choice, since it is the closest convex function to support size from all the `p norms (and being
convex allows us to solve the program in polynomial time).
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