
Design of Laterally Unrestrained Beams 

In this chapter, the resistance of members against instability phenomena caused by a bending moment will 

be presented in standard cross sectional shapes, such as I or H bent around the major axis (y axis), the 

typical instability phenomenon is lateral-torsional buckling. 

1- Lateral-Torsional Buckling 
Consider a member subject to bending about the strong axis of the cross section (y axis). Lateral-torsional 

buckling is characterized by lateral deformation of the compressed part of the cross section (the 

compressed flange in the case of I or H sections). This part behaves like a compressed member, but one 

continuously restrained by the part of the section in tension, which initially does not have any tendency 

to move laterally. As seen in the below Figures, where this phenomenon is illustrated for a cantilever 

beam, the resulting deformation of the cross section includes both lateral bending and torsion. This is why 

this phenomenon is called lateral-torsional buckling. 

 

 

 



2- Elastic critical moment 

To obtain the elastic critical moment, consider the simply supported beam of Figure 3.56, with the 

supports preventing lateral displacements and twisting but allowing warping and bending rotations around 

the cross sectional axes (y and z), submitted to a constant bending moment My. Consider the following 

assumptions: 

1- perfect beam, without any type of imperfections (geometrical or material); 

2- doubly symmetric cross section; 

3- material with linear elastic behaviour; 

4- small displacements ( sinφ=φ ; cosφ=φ= 1 ) 

 

 

 

 



The critical value of the moment denoted as 𝑴𝑴𝒄𝒄𝒄𝒄
𝑬𝑬  (critical moment of the “standard case”) is obtained: 

 

By inspection of equation (3.99), it is observed that the critical moment of a member under bending 

depends on several factors, such as: 

• loading (shape of the bending moment diagram); 

• support conditions; 

• length of the member between laterally braced cross sections; 

• lateral bending stiffness; 

• torsion stiffness; 

• warping stiffness. 

Besides these factors, the point of application of the loading also has a direct influence on the elastic 

critical moment of a beam. A gravity load applied below the shear centre C (that coincides with the 

centroid, in case of doubly symmetric I or H sections) has a stabilizing effect (Mcr,1>Mcr), whereas the 

same load applied above this point has a destabilizing effect (Mcr,2<Mcr), as illustrated in Figure 3.57. 

The calculation of the critical moment for design of a beam must also incorporate this effect. 

 

Equation (3.99) is valid for the calculation of the elastic critical moment of a simply supported beam, with 

a doubly symmetric cross section and subjected to a constant bending moment (the “standard case”). 

However, in reality, other situations often occur, such as beams with non-symmetrical cross sections, with 

other support conditions, subject to different loading patterns and, consequently, subject to different 

bending moment diagrams. The derivation of an exact expression for the critical moment for each case is 

not practical, as this implies the computation of differential equations of some complexity.  



Therefore, in practical applications approximate formulae are used, which are applicable to a wide 

set of situations. 

 

the elastic critical moment can be estimated using equation (3.107). This is applicable to members subject 

to bending about the strong axis, with cross sections mono-symmetric about the weak z axis (see Figure 

3.59), for several support conditions and types of loading. 

 

 
Where 

• C1, C2 and C3 are coefficients depending on the shape of the bending moment diagram and on 

support conditions, given in Tables 3.6 and 3.7 for some usual situations. 

• kz and kw are effective length factors that depend on the support conditions at the end sections. 

Factor kz is related to rotations at the end sections about the weak axis z, and kw refers to warping 

restriction in the same cross sections. These factors vary between 0.5 (restrained deformations) 

and 1.0 (free deformations), and are equal to 0.7 in the case of free deformations at one end and 

restrained at the other. Since in most practical situations restraint is only partial, conservatively a 

value of kz = kw = 1.0 may be adopted; 

 

• zg = (za – zs) , where za and zs are the coordinates of the point of application of the load and of 

the shear centre, relative to the centroid of the cross section; these quantities are positive if located 

in the compressed part and negative if located in the tension part; 



 

•                                                               is a parameter that reflects the degree of asymmetry of the 

cross section in relation to the y axis. It is zero for beams with doubly symmetric cross section 

(such as I or H cross sections with equal flanges) and takes positive values when the flange with 

the largest second moment of area about z is the compressed flange, at the cross section with 

maximum bending moment; 

For more details about details and application of equation 3.107, review the textbook. 

3- Effect of imperfections and plasticity 
In the previous sub-section the elastic critical moment was obtained for an ideal member with constant 

bending moment (the “standard case”), and formulae were also presented, some exact and some 

approximate, for the calculation of the elastic critical moment in members with other support and/or 

loading conditions. 

In the verification of the lateral-torsional buckling resistance, the effect of the following geometrical 

imperfections should be considered: 

• the initial lateral displacements; 

• the initial torsional rotations; 

• the eccentricity of the transverse loads relative to the shear centre of the cross sections; 

• residual stresses. 

Due to the presence of geometrical imperfections, the real behaviour of a member diverges from the 

theoretical behaviour and the elastic critical moment is never reached. 

The effect of geometrical imperfections may be introduced into the design procedure of a member under 

major axis bending in a similar way to that for design of a member under pure compression. 

As for compressed members, residual stresses and other geometrical imperfections affect the lateral-

torsional resistance of beams. In a simplified way, all these imperfections are taken into account through 

the equivalent imperfection concept. 

Based on extensive numerical, experimental and parametric simulations (Boissonnade et al, 2006) it was 

concluded that the design of the majority of steel members (including members composed by rolled and 

welded I or H sections) could be done according to the European buckling curves, previously obtained for 

the design of members under pure axial compression. 



 

 



 

 


