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1 Mathematical economics

Why describe the world with mathematical models, rather than use verbal theory and logic? After

all, this was the state of economics until not too long ago (say, 1950s).

1. Math is a concise, parsimonious language, so we can describe a lot using fewer words.

2. Math contains many tools and theorems that help making general statements.

3. Math forces us to explicitly state all assumptions, and help preventing us from failing to

acknowledge implicit assumptions.

4. Multi dimensionality is easily described.

Math has become a common language for most economists. It facilitates communication between

economists. Warning: despite its usefulness, if math is the only language for economists, then

we are restricting not only communication among us, but more importantly we are restricting our

understanding of the world.

Mathematical models make strong assumptions and use theorems to deliver insightful conclu-

sions. But, remember the A-A’C-C’Theorem:

• Let C be the set of conclusions that follow from the set of assumptions A. Let A’be a small

perturbation of A. There exists such A’ that delivers a set of conclusions C’ that is disjoint

from C.

Thus, the insightfullness of C depends critically on the plausibility of A.

The plausibility of A depends on empirical validity, which needs to be established, usually

using econometrics. On the other hand, sometimes theory informs us on how to look at existing

data, how to collect new data, and which tools to use in its analysis. Thus, there is a constant

discourse between theory and empirics. Neither can be without the other (see the inductivism vs.

deductivism debate).

Theory is an abstraction of the world. You focus on the most important relationships that

you consider important a priori to understanding some phenomenon. This may yield an economic

model.
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2 Economic models

Some useful notation: ∀ for all, ∃ exists, ∃! exists and is unique. If we cross any of these, or prefix
by ¬ or −, then it means "not": e.g., @, ¬∃ and −∃ all mean "does not exist".

2.1 Ingredients of mathematical models

1. Equations:

Definitions/Identities : π = R− C

: Y = C + I +G+X −M

: Kt+1 = (1− δ)Kt + It

: Mv = PY

Behavioral/Optimization : qd = α− βp

: MC = MR

: MC = P

Equilibrium : qd = qs

2. Parameters: e.g. α, β, δ from above.

3. Variables: exogenous, endogenous.

Parameters and functions govern relationships between variables. Thus, any complete mathematical

model can be written as

F (θ, Y,X) = 0 ,

where F is a set of functions (e.g., demand, supply and market clearing conditions), θ is a set

of parameters (e.g., elasticities), Y are endogenous variables (e.g., price and quantity) and X are

exogenous, predetermined variables (e.g., income, weather). Some models will not have explicit

X variables. Moving from a "partial equilibrium" model closer to a "general equilibrium" model

involves treating more and more exogenous variables as endogenous.

Models typically have the following ingredients: a sense of time, model population (who makes

decisions), technology and preferences.

2.2 From chapter 3: equilibrium analysis

One general definition of a model’s equilibrium is "a constellation of selected, interrelated vari-

ables so adjusted to one another that no inherent tendency to change prevails in the model
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which they constitute".

• Selected: there may be other variables. This implies a choice of what is endogenous and
what is exogenous, but also the overall set of variables that are explicitly considered in the

model. Changing the set of variables that is discussed, and the partition to exogenous and

endogenous will likely change the equilibrium.

• Interrelated: The value of each variable must be consistent with the value of all other
variables. Only the relationships within the model determine the equilibrium.

• No inherent tendency to change: all variables must be simultaneously in a state of rest,
given the exogenous variables and parameters are all fixed.

Since all variables are at rest, an equilibrium is often called a static. Comparing equilibria is called

therefore comparative statics (there is different terminology for dynamic models).

An equilibrium can be defined as Y ∗ that solves

F (θ, Y,X) = 0 ,

for given θ and X. This is one example for the usefulness of mathematics for economists: see how

much is described by so little notation.

We are interested in finding an equilibrium for F (θ, Y,X) = 0. Sometimes, there will be no

solution. Sometimes it will be unique and sometimes there will be multiple equilibria. Each of

these situations is interesting in some context. In most cases, especially when policy is involved,

we want a model to have a unique equilibrium, because it implies a function from (θ,X) to Y

(the implicit function theorem). But this does not necessarily mean that reality follows a unique

equilibrium; that is only a feature of a model. Warning: models with a unique equilibrium are

useful for many theoretical purposes, but it takes a leap of faith to go from model to reality– as if

the unique equilibrium pertains to reality.

Students should familiarize themselves with the rest of chapter 3 on their own.

2.3 Numbers

• Natural, N: 0, 1, 2... or sometimes 1, 2, 3, ...

• Integers, Z: ...− 2,−1, 0, 1, 2, ...

• Rational, Q: n/d where both n and d are integers and d is not zero. n is the numerator and
d is the denominator.

• Irrational numbers: cannot be written as rational numbers, e.g., π, e,
√

2.
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• Real, R: rational and irrational. The real line: (−∞,∞). This is a special set, because it is

dense. There are just as many real numbers between 0 and 1 (or any other two real numbers)

as on the entire real line.

• Complex: an extension of the real numbers, where there is an additional dimension in which
we add to the real numbers imaginary numbers: x+ iy, where i =

√
−1.

2.4 Sets

We already described some sets above (N, Q, R, Z). A set S contains elements e:

S = {e1, e2, e3, e4} ,

where ei may be numbers or objects (say: car, bus, bike, etc.). We can think of sets in terms of

the number of elements that they contain:

• Finite: S = {e1, e2, e3, e4}.

• Countable: there is a mapping between the set and N. Trivially, a finite set is countable.

• Infinite and countable: Q. Despite containing infinitely many elements, they are countable.

• Uncountable: R, [0, 1].

Membership and relationships between sets:

• e ∈ S means that the element e is a member of set S.

• Subset: S1 ⊂ S2: ∀e ∈ S1, e ∈ S2. Sometimes denoted as S1 ⊆ S2. Sometimes a strict subset

is defined as ∀e ∈ S1, e ∈ S2 and ∃e ∈ S2, e /∈ S1.

• Equal: S1 = S2: ∀e ∈ S1, e ∈ S2 and ∀e ∈ S2, e ∈ S1.

• The null set, ∅, is a subset of any set, including itself, because it does not contain any element
that is not in any subset (it is empty).

• Cardinality: there are 2n subsets of any set of magnitude n = |S|.

• Disjoint sets: S1 and S2 are disjoint if they do not share common elements, i.e. if @e such
that e ∈ S1 and e ∈ S2.

Operations on sets:

• Union (or): A ∪B = {e|e ∈ A or e ∈ B}.
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• Intersection (and): A ∩B = {e|e ∈ A and e ∈ B}.

• Complement: define Ω as the universe set. Then Ā or Ac = {e|e ∈ Ω and e /∈ A}.

• Minus: for B ⊂ A, A\B = {e|e ∈ A and e /∈ B}. E.g., Ā = Ω\A.

Rules:

• Commutative:

A ∪B = B ∪A

A ∩B = B ∩A

• Association:

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)

• Distributive:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Do Venn diagrams.

2.5 Relations and functions

Ordered pairs: whereas {x, y} = {y, x} because they are sets, but not ordered, (x, y) 6= (y, x)

unless x = y (think of the two dimensional plane R2). Similarly, one can define ordered triplets,

quadruples, etc.

Let X and Y be two sets. The Cartesian product of X and Y is a set S that is given by

S = X × Y = {(x, y) |x ∈ X, y ∈ Y } .

For example, Rn is a Cartesian product

Rn = R× R× ...× R = {(x1, x2, ...xn) |xi ∈ R} .

Cartesian products are relations between sets:

∀x ∈ X, ∃y ∈ Y such that (x, y) ∈ X × Y ,
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so that the set Y is related to the set X. Any subset of a Cartesian product also has this trait.

Note that each x ∈ X may have more than one y ∈ Y related to it (and vice versa). Thus the

relation may assign to any x ∈ X a set of values in Y , Sx ∈ Y . (Analysis of the shape of these sets
in the context of relations will be useful when discussing dynamic programming.)

If

∀x ∈ X, ∃!y ∈ Y such that (x, y) ∈ S ⊂ X × Y ,

then y is a function of x. We write this in shorthand notation as

y = f (x)

or

f : X → Y .

The second term is also called mapping, or transformation. Note that although for y to be a

function of x we must have ∀x ∈ X, ∃!y ∈ Y , it is not necessarily true that ∀y ∈ Y, ∃!x ∈ X. In
fact, there need not exist any such x at all. For example, y = a+ x2, a > 0.

In y = f (x), y is the value or dependent variable; x is the argument or independent

variable. The set of all permissible values of x is called domain. For y = f (x), y is the image

of x. The set of all possible images is called the range, which is a subset of Y .

2.6 Functional forms

Students should familiarize themselves with polynomials, exponents, logarithms, "rectangular hy-

perbolic" functions (unit elasticity), etc. See Chapter 2.5 in CW.

2.7 Functions of more than one variable

z = f (x, y) means that

∀ (x, y) ∈ domain ⊂ X × Y, ∃!z ∈ Z such that (x, y, z) ∈ S ⊂ X × Y × Z .

This is a function from a plane in R2 to R or a subset of it. y = f (x1, x2, ...xn) is a function from

the Rn hyperplane or hypersurface to R or a subset of it.

3 Equilibrium analysis

Students cover independently. Conceptual points are reported above in Section 2.2.
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4 Matrix algebra

4.1 Definitions

• Matrix:

Am×n =


a11 a12 . . . a1n

a21 a22 a2n
...

...
am1 am2 . . . amn

 = [aij ] i = 1, 2, ...m, j = 1, 2, ...n .

Notation: usually matrices are denoted in upper case; m and n are called the dimensions.

• Vector:

xm×1 =


x1

x2
...
xm

 .

Notation: usually lowercase. Sometimes called a column vector. A row vector is

x′ =
[
x1 x2 · · · xm

]
.

4.2 Matrix operations

• Equality: A = B iff aij = bij ∀ij. Clearly, the dimensions of A and B must be equal.

• Addition/subtraction: A±B = C iff aij ± bij = cij ∀ij.

• Scalar multiplication: B = cA iff bij = c · aij ∀ij.

• Matrix multiplication: Let Am×n and Bk×l be matrices.

— if n = k then the product Am×nBn×l exists and is equal to a matrix Cm×l of dimensions

m× l.

— if m = l then the product Bk×mAm×n exists and is equal to a matrix Ck×n of dimensions

k × n.
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— If product exists, then

Am×nBn×l =


→

a11 a12 . . . a1n

a21 a22 a2n
...

...
am1 am2 . . . amn


↓

b11 b12 . . . b1l
b21 b22 b2l
...

...
bn1 bn2 . . . bnl


=

[
cij =

n∑
k=1

aikbkj

]
i = 1, 2, ...m, j = 1, 2, ...l .

• Transpose: Let Am×n = [aij ]. Then A′n×m = [aji]. Also denoted AT . Properties:

— (A′)′ = A

— (A+B)′ = A′ +B′

— (AB)′ = B′A′

• Operation rules

—Commutative addition: A+B = B +A.

—Distributive addition: (A+B) + C = A+ (B + C).

—NON commutative multiplication: AB 6= BA, even if both exist.

—Distributive multiplication: (AB)C = A (BC).

—Association: premultiplying A (B + C) = AB+AC and postmultiplying (A+B)C =

AC +BC.

4.3 Special matrices

• Identity matrix:

I =


1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1

 .

AI = IA = A (dimensions must conform).

• Zero matrix: all elements are zero. 0 +A = A, 0A = A0 = 0 (dimensions must conform).

• Idempotent matrix: AA = A. Ak = A , k = 1, 2, ...

Example: the linear regression model is yn×1 = Xn×kβk×1 + εn×1. The estimated model

by OLS is y = Xb + e, where b = (X ′X)−1X ′y. Therefore we have predicted values
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ŷ = Xb = X (X ′X)−1X ′y and residuals e = y − ŷ = y − Xb = y − X (X ′X)−1X ′y =[
I −X (X ′X)−1X ′

]
y. We can define the projection matrix as P = X (X ′X)−1X ′ and the

residual generating matrix as R = [I − P ]. Both P and R are idempotent. What does it

mean that P is idempotent? And that R is idempotent? What is the product PR, and what

does that imply?

• Singular matrices: even if AB = 0, this does NOT imply that A = 0 or B = 0. E.g.,

A =

[
2 4
1 2

]
, B =

[
−2 4
1 −2

]
.

Likewise, CD = CE does NOT imply D = E. E.g.,

C =

[
2 3
6 9

]
, D =

[
1 1
1 2

]
, E =

[
−2 1
3 2

]
.

This is because A, B and C are singular: there is one (or more) row or column that is a linear

combination of the other rows or columns, respectively. (More on this to come).

• Nonsingular matrix: a square matrix that has an inverse. (More on this to come).

• Diagonal matrix

D =


d11 0 . . . 0
0 d22 0
...

. . .
...

0 0 . . . dnn

 .

• Upper triangular matrix. Matrix U is upper triangular if uij = 0 for all i > j, i.e. all

elements below the diagonal are zero. E.g., a b c
0 e f
0 0 i

 .

• Lower triangular matrix. Matrix W is lower triangular if wij = 0 for all i < j, i.e. all

elements above the diagonal are zero. E.g., a 0 0
d e 0
g h i

 .

• Symmetric matrix: A = A′.

• Permutation matrix: a matrix of 0s and 1s in which each row and each column contains
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exactly one 1. E.g.,  0 0 1
1 0 0
0 1 0

 .

Multiplying a conformable matrix by a permutation matrix changes the order of the rows or

the columns (unless it is the identity matrix). For example,[
0 1
1 0

] [
1 2
3 4

]
=

[
3 4
1 2

]
and [

1 2
3 4

] [
0 1
1 0

]
=

[
2 1
4 3

]
.

• Partitioned matrix: a matrix with elements that are matrices themselves, e.g.,[
Ag×h Bg×i Cg×j
Dk×h Ek×h Fk×h

]
(g+k)×(h+i+j)

.

Note that the dimensions of the sub matrices must conform.

4.4 Vector products

• Scalar multiplication: Let xm×1 be a vector. The scalar product cx is

cxm×1 =


cx1

cx2
...

cxm

 .

• Inner product: Let xm×1 and ym×1 be vectors. The inner product is a scalar

x′y =
m∑
i=1

xiyi .

This is useful for computing correlations.

• Outer product: Let xm×1 and yn×1 be vectors. The outer product is a matrix

xy′ =


x1y1 x1y2 . . . x1yn
x2y1 x2y2 x2yn
...

...
xmy1 xmy2 . . . xmyn


m×n

.

This is useful for computing the variance/covariance matrix.
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• Geometric interpretations: do in 2 dimensions. All extends to n dimensions.

— Scalar multiplication.

—Vector addition.

—Vector subtraction.

— Inner product and orthogonality (xy = 0 means x⊥y).

4.5 Linear independence

Definition 1: a set of k vectors x1, x2, ...xk are linearly independent iffneither one can be expressed

as a linear combination of all or some of the others. Otherwise, they are linearly dependent.

Definition 2: a set of k vectors x1, x2, ...xk are linearly independent iff¬∃ a set of scalars c1, c2, ...ck

such that ci 6= 0 for some or all i and
∑k

i=1 cixi = 0. Otherwise, they are linearly dependent. I.e.,

if such set of scalars exists, then the vectors are linearly dependent.

Consider R2:

• All vectors that are multiples are linearly dependent. If two vectors cannot be expressed as
multiples then they are linearly independent.

• If two vectors are linearly independent, then any third vector can be expressed as a linear
combination of the two.

• It follows that any set of k > 2 vectors in R2 must be linearly dependent.

4.6 Vector spaces and metric spaces

The complete set of vectors of n dimensions is a space, a vector space. If all elements of these

vectors are real numbers (∈ R), then this space is Rn.

• Any set of n linearly independent vectors is a base for Rn.

• A base spans the space to which it pertains. This means that any vector in Rn can be
expressed as a linear combination of the base (it is spanned by the base).

• Bases are not unique.

• Bases are minimal: they contain the smallest number of vectors that span the space.

Example: unit vectors. Consider the vector space R3. Then

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1
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is a base. Indeed, e1, e3, e3 are linearly independent.

• Distance metric: Let x, y ∈ S, some set. Define the distance between x and y by a function
d: d = d (x, y), which has the following properties:

— d (x, y) ≥ 0.

— d (x, y) = d (y, x).

— d (x, y) = 0 ⇔ x = y.

— d (x, y) > 0 ⇔ x 6= y.

— d (x, y) ≤ d (x, z) + d (z, y) ∀x, y, z (triangle inequality).

A metric space is given by a vector space + distance metric. The Euclidean space is given

by Rn + the following distance function

d (x, y) =

√√√√ n∑
i=1

(xi − yi)2 =

√
(x− y)′ (x− y) .

Other distance metrics give rise to different metric spaces.

4.7 Inverse matrix

Definition: if for some square (n× n) matrix A there exists a matrix B such that AB = I, then B

is the inverse of A, and is denoted A−1, i.e. AA−1 = I.

Properties:

• Not all square matrices have an inverse. If A−1 does not exist, then A is singular. Otherwise,

A is nonsingular.

• A is the inverse of A−1 and vice versa.

• The inverse is square.

• The inverse, if it exists, is unique. Proof: suppose not, i.e. AB = I and B 6= A−1. Then

A−1AB = A−1I, IB = B = A−1, a contradiction �

Operation rules:

•
(
A−1

)−1
= A. Proof: suppose not, i.e.

(
A−1

)−1
= B and B 6= A. Then AA−1 =

I ⇒
(
AA−1

)−1
= I−1 ⇒

(
A−1

)−1
A−1 = I ⇒ BA−1A = IA ⇒ BI = B = A,

a contradiction �
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• (AB)−1 = B−1A−1, but only if both B−1 and A−1 exist. Proof: Let (AB)−1 = C. Then

(AB)−1 (AB) = I = C (AB) = CAB ⇒ CABB−1 = CA = IB−1 = B−1 ⇒ CAA−1 =

C = B−1A−1 �
Note that in the linear regression model above P = X (X ′X)−1X ′, but unless X is square

we CANNOT write (X ′X)−1 = X−1X ′−1. (If we could, then P = I but then there are no

degrees of freedom: The model fits exactly the data, but the data are not very informative,

because they are only one sample drawn from the population).

• (A′)−1 =
(
A−1

)′. Proof: Let (A′)−1 = B. Then (A′)−1A′ = I = BA′ ⇒ (BA′)′ = AB′ =

I ′ = I ⇒ A−1AB′ = A−1I ⇒ B′ = A−1 ⇒ B =
(
A−1

)′ �
Conditions for nonsingularity:

• Necessary condition: matrix is square.

• Given square matrix, a suffi cient condition is that the rows or columns are linearly inde-
pendent. It does not matter whether we use the row or column criterion because matrix is

square.

A is square + linear independence︸ ︷︷ ︸
necessary and suffi cient conditions

⇔ A is nonsingular ⇔ ∃A−1

How do we find the inverse matrix? Soon... Why do we care? See next section.

4.8 Solving systems of linear equations

We seek a solution x to the system Ax = c

An×nxn×1 = cn×1 ⇒ x = cA−1 ,

where A is a nonsingular matrix and c is a vector. Each row of A gives coeffi cients to the elements

of x:

row 1 :

n∑
i=1

a1ixi = c1

row 2 :

n∑
i=1

a2ixi = c2

Many linear (or linearized) models can be solved this way. We will learn clever ways to compute

the solution to this system. We care about singularity of A because (given c) it tells us something

about the solution x.
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4.9 Markov chains

We introduce this through an example. Let x denote a vector of employment and unemployment

rates: x′ =
[
e u

]
, where e+u = 1 and e, u ≥ 0. Define the matrix P as a transition matrix that

gives the conditional probabilities for transition from the state today to a state next period,

P =

[
pee peu
pue puu

]
,

where pij = Pr (state j tomorrow|state i today). Each row of P sums to unity: pee + peu = 1 and

pue + puu = 1; and since these are probabilities, pij ≥ 0 ∀ij. Now add a time dimension to x:

x′t =
[
et ut

]
.

We ask: What is the employment and unemployment rates going to be in t+1 given xt? Answer:

x′t+1 = x′tP =
[
et ut

] [ pee peu
pue puu

]
=
[
etpee + utpue etpeu + utpuu

]
.

What will they be in t+ 2? Answer: x′t+2 = x′t+1P = x′tP
2. More generally, x′t0+k = x′t0P

k.

A transition matrix, sometimes called stochastic matrix, is defined as a square matrix

whose elements are non negative and all rows sum to 1. This gives you conditional transition

probabilities starting from each state, where each row is a starting state and each column is the

state in the next period.

Steady state: a situation in which the distribution over the states is not changing over time.

How do we find such a state, if it exists?

• Method 1: Start with some initial condition x0 and iterate forward x′k = x′0P
k, taking k →∞.

• Method 2: define x as the steady state value. Solve x′ = x′P . Or P ′x = x.
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5 Matrix algebra continued and linear models

5.1 Rank

Definition: The number of linearly independent rows (or, equivalently, columns) of a matrix A is

the rank of A: r = rank (A).

• If Am×n then rank (A) ≤ min {m,n}.

• If a square matrix An×n has rank n, then we say that A is full rank.

• Multiplying a matrix A by a another matrix B that is full rank does not reduce the rank of

the product relative to the rank of A.

• If rank (A) = rA and rank (B) = rB, then rank (AB) = min {rA, rB}.

Finding the rank: the echelon matrix method. First define elementary operations:

1. Multiply a row by a non zero scalar: c ·Ri , c 6= 0.

2. Adding c times of one row to another: Ri + cRj .

3. Interchanging rows: Ri ↔ Rj .

All these operations alter the matrix, but do not change its rank (in fact, they can all be

expressed by multiplying matrices, which are all full rank).

Define: echelon matrix.

1. Zero rows appear at the bottom.

2. For non zero rows, the first element on the left is 1.

3. The first element of each row on the left (which is 1) appears to the left of the row directly

below it.

The number of non zero rows in the echelon matrix is the rank.

We use the elementary operations in order to change the subject matrix into an echelon matrix,

which has as many zeros as possible. A good way to start the process is to concentrate zeros at the

bottom. Example:

A =

 0 −11 −4
2 6 2
4 1 0

 R1 ↔ R3 :

 4 1 0
2 6 2
0 −11 −4

 1

4
R1 :

 1 1
4 0

2 6 2
0 −11 −4
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R2 − 2R1 :

 1 1
4 0

0 51
2 2

0 −11 −4

 R3 + 2R2 :

 1 1
4 0

0 51
2 2

0 0 0

 2

11
R2 :

 1 1
4 0

0 1 4/11
0 0 0


There is a row of zeros: rank (A) = 2. So A is singular.

5.2 Determinants and nonsingularity

Denote the determinant of a square matrix as |An×n|. This is not absolute value. If the determinant
is zero then the matrix is singular.

1. |A1×1| = a11.

2. |A2×2| = a11a22 − a12a21.

3. Determinants for higher order matrices. Let Ak×k be a square matrix. The i-j minor |Mij |
is the determinant of the matrix given by erasing row i and column j from A. Example:

A =

 a b c
d e f
g h i

 , |M11| =
∣∣∣∣ e f
h i

∣∣∣∣ .
The Laplace Expansion of row i gives the determinant of A:

|Ak×k| =
k∑
j=1

(−1)i+j aij |Mij | =
k∑
j=1

aijCij ,

where Cij = (−1)i+j |Mij | is called the cofactor of aij (or the i-jth cofactor). Example:
expansion by row 1∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = aC11 + bC12 + cC13

= a |M11| − b |M12|+ c |M13|

= a

∣∣∣∣ e f
h i

∣∣∣∣− b ∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣
= a (ei− fh)− b (di− fg) + c (dh− eg) .

In doing this, it is useful to choose the expansion with the row that has the most zeros.

Properties of determinants

1. |A′| = |A|

2. Interchanging rows or columns flips the sign of the determinant.
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3. Multiplying a row or column by a scalar c multiplies the determinant by c.

4. Ri + cRj does not change the determinant.

5. If a row or a column are multiples of another row or column, respectively, then the determinant

is zero: linear dependence.

6. Changing the minors in the Laplace expansion by alien minors, i.e. using |Mnj | instead of
|Mij | for row i 6= n, will give zero:

k∑
j=1

aij (−1)i+j |Mnj | = 0 , i 6= n .

This is like forcing linear dependency by repeating elements.
∑k

j=1 aij (−1)i+j |Mnj | is the
determinant of some matrix. That matrix can be reverse engineered from the last expression.

If you do this, you will find that that reverse-engineered matrix has linear dependent columns

(try a 3× 3 example).

Determinants and singularity: |A| 6= 0

⇔ A is nonsingular

⇔ columns and rows are linearly independent

⇔ ∃A−1

⇔ for Ax = c , ∃!x = A−1c

⇔ the column (or row) vectors of A span the vector space.

5.3 Finding the inverse matrix

Let A be a nonsingular matrix,

An×n =


a11 a12 . . . a1n

a21 a22 a2n
...

...
an1 an2 . . . ann

 .

The cofactor matrix of A is CA:

CA =


C11 C12 . . . C1n

C21 C22 C2n
...

...
Cn1 Cn2 . . . Cnn

 ,
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where Cij = (−1)i+j |Mij |. The adjoint matrix of A is adjA = C ′A:

adjA = C ′A =


C11 C21 . . . Cn1

C12 C22 Cn2
...

...
C1n C2n . . . Cnn

 .

Consider AC ′A:

AC ′A =


∑n

j=1 a1jC1j
∑n

j=1 a1jC2j . . .
∑n

j=1 a1jCnj∑n
j=1 a2jC1j

∑n
j=1 a2jC2j

∑n
j=1 a2jCnj

...
...∑n

j=1 anjC1j
∑n

j=1 anjC2j . . .
∑n

j=1 anjCnj



=


∑n

j=1 a1jC1j 0 . . . 0

0
∑n

j=1 a2jC2j 0
...

...
0 0 . . .

∑n
j=1 anjCnj



=


|A| 0 . . . 0
0 |A| 0
...

...
0 0 . . . |A|

 = |A| I ,

where the off diagonal elements are zero due to alien cofactors. It follows that

AC ′A = |A| I

AC ′A
1

|A| = I

A−1 = C ′A
1

|A| =
adjA
|A| .

Example:

A =

[
1 2
3 4

]
, CA =

[
4 −3
−2 1

]
, C ′A =

[
4 −2
−3 1

]
, |A| = −2 , A−1 =

[
−2 1

3
2 −1

2

]
.

And you can verify this.

5.4 Cramer’s rule

For the system Ax = c and nonsingular A, we have

x = A−1c =
adjA
|A| c .
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Denote by Aj the matrix A with column j replaced by c. Then it turns out that

xj =
|Aj |
|A| .

To see why, note that each row of C ′Ac is c times row of C
′
A, i.e. each row r is

∑
j Cjrcj , which is

a Laplace Expansion by row r of some matrix. That matrix is Aj and the Laplace expansion gives

the determinant of Aj .

5.5 Homogenous equations: Ax = 0

Let the system of equations be homogenous: Ax = 0.

• If A is nonsingular, then only x = 0 is a solution. Recall: if A is nonsingular, then its columns

are linearly independent. Denote the columns of A by Ai. Then Ax =
∑n

i=1 xiAi = 0 implies

xi = 0 ∀i by linear independence of the columns.

• If A is singular, then there are infinite solutions, including x = 0.

5.6 Summary of linear equations: Ax = c

For nonsingular A:

1. c 6= 0 ⇒ ∃!x 6= 0

2. c = 0 ⇒ ∃!x = 0

For singular A:

1. c 6= 0 ⇒ ∃x, infinite solutions 6= 0.

• If there is inconsistency– linear dependency in A, the elements of c do not follow the
same linear combination– there is no solution.

2. c = 0 ⇒ ∃x, infinite solutions, including 0.

One can think of the system Ax = c as defining a relation between c and x. If A is nonsingular,

then there is a function (mapping/transformation) between c and x. In fact, when A is nonsingular,

this transformation is invertible.
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5.7 Inverse of partitioned matrix (not covered in CW)

Let A be a partitioned matrix such that

A =

[
A11 A12

A21 A22

]
,

Suffi cient conditions for nonsingularity of A are that A11 and A22 are square, nonsingular ma-

trices. In that case

A−1 =

[
B11 −B11A12A

−1
22

−A−1
22 A21B11 A−1

22 +A−1
22 A21B11A12A

−1
22

]
, (1)

where B11 =
(
A11 −A12A

−1
22 A21

)−1
, or alternatively

A−1 =

[
A−1

11 +A−1
11 A12B22A21A

−1
11 −A−1

11 A12B22

−B22A21A
−1
11 B22

]
, (2)

where B22 =
(
A22 −A21A

−1
11 A12

)−1
. (This is useful for econometrics.)

To prove the above start with AB = I and figure out what the partitions of B need to be. To

get (1) you must assume (and use) A22 nonsingular; and to get (2) you must assume (and use) A11

nonsingular.

Note that A11 and A22 being nonsingular are not necessary conditions in general. For example,

A =

[
0 1
1 0

]
is nonsingular but does not meet the suffi cient conditions. However if A is positive definite (we will

define this below; a bordered Hessian is not positive definite), then A11 and A22 being nonsingular

is also a necessary condition.

5.8 Leontief input/output model

We are interested in computing the level of output that is required from each industry in an

economy that is required to satisfy final demand. This is not a trivial question, because output of all

industries (depending on how narrowly you define an industry) are inputs for other industries, while

also being consumed in final demand. These inter-industry relationships constitute input/output

linkages.

Assume

1. Each industry produces one homogenous good.

2. Inputs are used in fixed proportions.
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3. Constant returns to scale.

This gives rise to the Leontief (fixed proportions) production function. The second assumption

can be relaxed, depending on the interpretation of the model. If you only want to use the framework

for accounting purposes, then this is not critical.

• Define aio as the unit requirement of inputs from industry i used in the production of

output o. I.e., in order to produce one unit of output o you need aio units of i. If some

industry o does not require its own output for production, then aoo = 0.

• For n industries An×n = [aio] is a technology matrix. Each column tells you how much of

each input is required to produce one unit of all outputs. Alternatively, each row tells you

the input requirements to produce one unit of the industry of that row.

• If all industries were used as inputs as well as output, then there would be no primary inputs
(i.e. time, labor, entrepreneurial talent, natural resources, land). To accommodate primary

inputs, we add an open sector. If the aio are denominated in monetary values– i.e., in

order to produce $1 in industry o you need $aio of input i– then we must have
∑n

i=1 aio ≤ 1,

because the revenue from producing output o is $1. And if there is an open sector, then we

must have
∑n

i=1 aio < 1. This means that the cost of intermediate inputs required to produce

$1 of revenue is less than $1. By CRS and competitive economy, we have the zero profit

condition, which means that all revenue is paid out to inputs. So primary inputs receive

(1−
∑n

i=1 aio) dollars from each dollar produced by industry o.

Equilibrium implies

supply = demand

= demand for intermediate inputs+ final demand .

In matrix notation

x = Ax+ d .

And so

x−Ax = (I −A)x = d .
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Let A′o be the o
th row vector of A. Then for some output o (row) we have

xo = A′ox+ do

=
n∑
i=1

aoixi + do

= ao1x1 + ao2x2 + ...+ aonxn︸ ︷︷ ︸
intermediate inputs

+ do︸︷︷︸
final

.

For example, ao2x2 is the amount of output o that is required by industry 2, because you need ao2
units of o to produce each unit of industry 2 and x2 units of industry 2 are produced. This implies

−ao1x1 − ao2x2 + ... (1− aoo)xo − ao,o+1xo+1 − ...− aonxn = do .

In matrix notation
(1− a11) −a12 −a13 · · · −a1n

−a21 (1− a22) −a23 · · · −a2n

−a31 −a32 (1− a33) · · · −a3n
...

...
...

. . .
...

−an1 −an2 −an3 · · · (1− ann)




x1

x2

x3
...
xn

 =


d1

d2

d3
...
dn

 .

Or

(I −A)x = d .

(I −A) is the Leontief matrix. This implies that you need to produce more than just final

demand because some x are used as intermediate inputs (loosely speaking, "I −A < I").

If (I −A) is nonsingular, then we can solve for x:

x = (I −A)−1 d .

But even then the solution to x may not be positive. While in reality this must be trivially

satisfied in the data, we wish to find theoretical restrictions on the technology matrix to satisfy a

non-negative solution for x.

5.8.1 Existence of non negative solution

Consider

A =

 a b c
d e f
g h i

 .

Define

• Principal minor: the determinant of the matrix that arises from deleting the i-th row and
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i-th column. E.g.

|M11| =
∣∣∣∣ e f
h i

∣∣∣∣ , |M22| =
∣∣∣∣ a c
g i

∣∣∣∣ , |M33| =
∣∣∣∣ a b
d e

∣∣∣∣ .
• k-th order principal minor: is a principal minor of dimensions k × k. If the dimensions
of the original matrix are n× n, then a k-th order principal minor is obtained after deleting
the same n− k rows and columns. E.g., the 1-st order principal minors of A are

|a| , |e| , |i| .

The 2-nd order principal minors are |M11|, |M22| and |M33| given above.

• Leading principal minors: these are the 1st, 2nd, 3rd (etc.) order principal minors, where

we keep the upper most left corner of the original matrix in each one. E.g.

|M1| = |a| , |M2| =
∣∣∣∣ a b
d e

∣∣∣∣ , |M3| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ .
Simon-Hawkins Condition (Theorem): consider the system of equations Bx = d. If

(1) all off-diagonal elements of Bn×n are non positive, i.e. bij ≤ 0, ∀i 6= j;

(2) all elements of dn×1 are non negative, i.e. di ≥ 0, ∀i;
Then ∃x ≥ 0 such that Bx = d iff

(3) all leading principal minors are strictly positive, i.e. |Mi| > 0, ∀i.
In our case, B = I −A, the Leontief matrix. Conditions (1) and (2) are satisfied. To illustrate

the economic meaning of SHC, use a 2× 2 example:

I −A =

[
1− a11 −a12

−a21 1− a22

]
.

Condition (3) requires |M1| = |1− a11| = 1− a11 > 0, i.e. a11 < 1. This means that less than the

total output of x1 is used to produce x1, i.e. viability. Next, condition (3) also requires

|M2| = |I −A|

= (1− a11) (1− a22)− a12a21

= 1− a11 − a22 + a11a22 − a12a21 > 0

Rearranging terms we have

(1− a11) a22︸ ︷︷ ︸
≥0

+ a11 + a12a21 < 1

23



and therefore

a11︸︷︷︸
direct use

+ a12a21︸ ︷︷ ︸
indirect use

< 1

This means that the total amount of x1 demanded (for production of x1 and for production of x2)

is less than the amount produced (=1), i.e. the resource constraint is kept.

5.8.2 Closed model version

The closed model version treats the primary sector as any industry. Suppose that there is only

one primary input: labor. The interpretation is that each good is consumed in fixed proportions

(Leontief preferences). In the case when aij represents value, then the interpretation is that expen-

diture on each good is in fixed proportions (these preferences can be represented by a Cobb-Douglas

utility function).

In this model final demand, as defined above, must equal zero. Since income accrues to primary

inputs (think of labor) and this income is captured in x, then it follows that the d vector must be

equal to zero. Since final demand equals income, then if final demand was positive, then we would

have to have an open sector to pay for that demand (from its income). I.e. we have a homogenous

system:

(I −A)x = 0 (1− a00) −a01 −a02

−a10 (1− a11) −a12

−a20 −a21 (1− a22)

 x0

x1

x2

 =

 0
0
0

 ,

where 0 denotes the primary sector (there could be more than one).

Each column o in the technology matrix A must sum to 1, i.e. a0o+a1o+a2o+ ...+ano = 1, ∀o,
because all of the revenue is exhausted in payments for inputs (plus consumption). Then each

column in I−A sums to zero. It follows that I−A is singular, and therefore x is not unique (albeit
not necessarily zero)! This implies that you can scale up or down the economy with no effect. In

fact, this is a general property of CRS economies with no outside sector or endowment. One way

to pin down the economy is to set some xi to some level as an endowment and, accordingly, to set

xii = 0 (you don’t need land to produce land).

6 Derivatives and limits

Teaching assistant covers. See Chapter 6 in CW.
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7 Differentiation and use in comparative statics

7.1 Differentiation rules

1. If y = f (x) = c, a constant, then dy
dx = 0

2. d
dxax

n = anxn−1

3. d
dx lnx = 1

x

4. d
dx [f (x)± g (x)] = f ′ (x)± g′ (x)

5. d
dx [f (x) g (x)] = f ′ (x) g (x) + f (x) g′ (x) = [f (x) g (x)] f

′(x)
f(x) + [f (x) g (x)] g

′(x)
g(x)

6. d
dx

[
f(x)
g(x)

]
= f ′(x)g(x)−f(x)g′(x)

[g(x)]2
= f(x)

g(x)
f ′(x)
f(x) −

f(x)
g(x)

g′(x)
g(x)

7. d
dxf [g (x)] = df

dg
dg
dx (the chain rule)

8. Inverse functions. Let y = f (x) be strictly monotone (there are no "flats"). Then an inverse

function x = f−1 (y) exists and

dx

dy
=
df−1 (y)

dy
=

1

dy/dx
=

1

df (x) /dx
,

where x and y map one into the other, i.e. y = f (x) and x = f−1 (y).

• Strictly monotone means that x1 > x2 ⇒ f (x1) > f (x2) (strictly increasing) or f (x1) <

f (x2) (strictly decreasing). It implies that there is an inverse function x = f−1 (y)

because ∀y ∈Range ∃!x ∈ domain (recall: ∀x ∈ domain ∃!y ∈Range defines f (x)).

7.2 Partial derivatives

Let y = f (x1, x2, ...xn). Define the partial derivative of f with respect to xi:

∂y

∂xi
= lim

∆xi→0

f (xi + ∆xi, x−i)− f (xi, x−i)

∆xi
.

Operationally, you derive ∂y/∂xi just as you would derive dy/dxi, while treating all other x−i as

constants.

Example. Consider the following production function

y = z [αkϕ + (1− α) lϕ]1/ϕ , ϕ ≤ 1 .

Define the elasticity of substitution as the percent change in relative factor intensity (k/l) in re-

sponse to a 1 percent change in the relative factor returns (r/w). What is the elasticity of sub-

stitution? If factors are paid their marginal product (which is a partial derivative in this case),
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then

yk =
1

ϕ
z [·]

1
ϕ
−1
ϕαkϕ−1 = r

yl =
1

ϕ
z [·]

1
ϕ
−1
ϕ (1− α) lϕ−1 = w .

Thus
r

w
=

α

1− α

(
k

l

)ϕ−1

and then
k

l
=

(
α

1− α

) 1
1−ϕ ( r

w

)− 1
1−ϕ

.

The elasticity of substitution is σ = 1
1−ϕ and it is constant. This production function exhibits

constant elasticity of substitution, denoted a CES production function. A 1 percent increase in

r/w decreases k/l by σ percent.

7.3 Gradients

y = f (x1, x2, ...xn)

The gradient is defined as

∇f = (f1, f2, ...fn) ,

where

fi =
∂f

∂xi
.

We can use this in first order approximations:

∆f |x0 ≈ ∇f (x0) ∆x

f (x)− f (x0) ≈ (f1, f2, ...fn)|x0


 x1

...
xn

−
 x0

1
...
x0
n


 .

Application to open input/output model:

(I −A)x = d

x = (I −A)−1 d = V d x1
...
xn

 =

 v11 · · · v1n
...

. . .
...

vn1 · · · vnn


 d1

...
dn

 .
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Think of x as a function of d:

∇xi =
(
vi1 vi2 · · · vin

)
vij =

∂xi
∂dj

.

And more generally,

∆x = ∇x ·∆d = V∆d .

7.4 Jacobian and functional dependence

Let there be two functions

y1 = f (x1, x2)

y2 = g (x1, x2) .

The Jacobian determinant is

|J | =
∣∣∣∣ ∂y∂x′

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂

(
y1

y2

)
∂ (x1, x2)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ ∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣ .
Theorem (functional dependence): |J | = 0 ∀x iff the functions are dependent.

Example: y1 = x1x2 and y2 = lnx1 + lnx2.

|J | =
∣∣∣∣ x2 x1

1
x1

1
x2

∣∣∣∣ = 0 .

Example: y1 = x1 + 2x2
2 and y2 = ln

(
x1 + 2x2

2

)
.

|J | =
∣∣∣∣∣ 1 4x2

1
x1+2x22

4x2
x1+2x22

∣∣∣∣∣ = 0 .

Another example: x = V d, x1
...
xn

 =

 v11 · · · v13
...

. . .
...

vn1 · · · vnn


 d1

...
dn

 =


∑
v1idi
...∑
vnidi

 .

So |J | = |V |. It follows that linear dependence is equivalent to functional dependence for a system
of linear equations. If |V | = 0 then there are ∞ solutions for x and the relationship between d and

x cannot be inverted.
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8 Total differential, total derivative and the implicit function the-
orem

8.1 Total derivative

Often we are interested in the total rate of change in some variable in response to a change in some

other variable or some parameter. If there are indirect effects, as well as direct ones, you want to

take this into account. Sometimes the indirect effects are due to general equilibrium constraints

and can be very important.

Example: consider the utility function u (x, y) and the budget constraint pxx+ pyy = I. Then

the total effect of a small change in x on utility is

du

dx
=
∂u

∂x
+
∂u

∂y
· dy
dx

.

Here dy/dx = −px/py (if you sell one unit of x you get px, which can be used to buy y at the rate
of py).

More generally: F (x1, ...xn)

dF

dxi
=

n∑
j=1

∂F

∂xj
· dxj
dxi

,

where we know that dxi/dxi = 1.

Example: z = f (x, y, u, v), where x = x (u, v) and y = y (u, v) and v = v (u).

dz

du
=
∂f

∂x

(
∂x

∂u
+
∂x

∂v

dv

du

)
+
∂f

∂y

(
∂y

∂u
+
∂y

∂v

dv

du

)
+
∂f

∂u
+
∂f

∂v

dv

du
.

If we want to impose that v is not directly affected by u, then all terms that involve dv/du are zero:

dz

du
=
∂f

∂x

dx

du
+
∂f

∂y

dy

du
+
∂f

∂u
.

Alternatively, we can impose that v is constant; in this case the derivative is denoted as dz
du

∣∣
v
and

the result is the same as above.

8.2 Total differential

Now we are interested in the change (not rate of...) in some variable or function if all its arguments

change a bit, i.e. they are all perturbed. For example, if the saving function for the economy is

S = S (y, r), then

dS =
∂S

∂y
dy +

∂S

∂r
dr .
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More generally, y = F (x1, ...xn)

dy =
n∑
j=1

∂F

∂xj
dxj .

One can view the total differential as a linearization of the function around a specific point, because

∂F/∂xj must be evaluated at some point.

The same rules that apply to derivatives apply to differentials; just simply add dx after each

partial derivative:

1. dc = 0 for constant c.

2. d (cun) = cnun−1du = ∂(cun)
∂u du.

3. d (u± v) = du± dv = ∂(u±v)
∂u du+ ∂(u±v)

∂v dv.

• d (u± v ± w) = du± dv ± dw = ∂(u±v±w)
∂u du+ ∂(u±v±w)

∂v dv + ∂(u±v±w)
∂w dw.

4. d (uv) = vdu+ udv = ∂(uv)
∂u du+ ∂(uv)

∂v dv = (uv) duu + (uv) dvv .

• d (uvw) = vwdu+ uwdv + uvdw = ∂(uvw)
∂u du+ ∂(uvw)

∂v dv + ∂(uvw)
∂w dw.

5. d (u/v) = vdu−udv
v2

= ∂(u/v)
∂u du+ ∂(u/v)

∂v dv =
(
u
v

)
du
u −

(
u
v

)
dv
v .

Example: suppose that you want to know how much utility, u (x, y), changes if x and y are

perturbed. Then

du =
∂u

∂x
dx+

∂u

∂y
dy .

Now, if you imposed that utility is not changing, i.e. you are interested in an isoquant (the

indifference curve), then this implies that du = 0 and then

du =
∂u

∂x
dx+

∂u

∂y
dy = 0

and hence
dy

dx
= −∂u/∂x

∂u/∂y
.

This should not be understood as a derivative, but rather as a ratio of perturbations. Soon we

will characterize conditions under which this is actually a derivative of an implicit function (the

implicit function theorem).

Log linearization. Suppose that you want to log-linearize z = f (x, y) around some point,

say (x∗, y∗, z∗). This means finding the percent change in z in response to a percent change in x

and y. We have

dz =
∂z

∂x
dx+

∂z

∂y
dy .
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Divide through by z∗ to get

dz

z∗
=

x∗

z∗
∂z

∂x

(
dx

x∗

)
+
y∗

z∗
∂z

∂y

(
dy

y∗

)
ẑ =

x∗

z∗
∂z

∂x
x̂+

y∗

z∗
∂z

∂y
ŷ ,

where

ẑ =
dz

z∗
≈ d ln z

is approximately the percent change.

Another example:

Y = C + I +G

dY = dC + dI + dG
dY

Y
=

C

Y

dC

C
+
I

Y

dI

I
+
G

Y

dG

G

Ŷ =
C

Y
Ĉ +

I

Y
Î +

G

Y
Ĝ .

8.3 The implicit function theorem

This is a useful tool to study the behavior of an equilibrium in response to a change in an exogenous

variable.

Consider

F (x, y) = 0 .

We are interested in characterizing the implicit function between x and y, if it exists. We already

saw one implicit function when we computed the utility isoquant (indifference curve). In that case,

we had

u (x, y) = u

for some constant level of u. This can be rewritten in the form above as

u (x, y)− u = 0 .

From this we derived a dy/dx slope. But this can be more general and constitute a function.

Another example: what is the slope of a tangent line at any point on a circle?

x2 + y2 = r2

x2 + y2 − r2 = 0

F (x, y) = 0
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Taking the total differential

Fxdx+ Fydy = 2xdx+ 2ydy = 0

dy

dx
= −x

y
, y 6= 0 .

For example, the slope at
(
r/
√

2, r/
√

2
)
is −1.

The implicit function theorem: Let the function F (x, y) ∈ C1 on some open set and

F (x, y) = 0. Then there exists a (implicit) function y = f (x) ∈ C1 that satisfies F (x, f (x)) = 0,

such that
dy

dx
= −Fx

Fy

on this open set.

More generally, if F (y, x1, x2, ...xn) ∈ C1 on some open set and F (y, x1, x2, ...xn) = 0, then

there exists a (implicit) function y = f (x1, x2, ...xn) ∈ C1 that satisfies F (f (x) , x) = 0, such that

dy =
n∑
i=1

fidxi .

This gives us the relationship between small perturbations of the x’s and perturbation of y.

If we allow only one specific xi to be perturbed, then fi = ∂y
∂xi

= −Fxi/Fy. From F (y, x1, x2, ...xn) =

0 and y = f (x1, x2, ...xn) we have

∂F

∂y
dy +

∂F

∂x1
dx1 + ...+

∂F

∂xn
dxn = 0

dy = f1dx1 + ...+ fndxn

so that

∂F

∂y
(f1dx1 + ...+ fndxn) +Fx1dx1 + ...+Fxndxn = (Fx1 + Fyf1) dx1 + ...+ (Fxn + Fyfn) dxn = 0 .

This gives us a relationship between perturbations of the x’s. If we only allow xi to be perturbed,

dx−i = 0, then (Fxi + Fyfi) = 0 and so fi = −Fxi/Fy, as above.

8.4 General version of the implicit function theorem

Implicit Function Theorem: Let F (x, y) = 0 be a set of n functions where xm×1 (exogenous)

and yn×1 (endogenous). Note that there are n equations in n unknown endogenous variables. If

1. F ∈ C1 and

2. |J | =
∣∣∣ ∂F∂y′ ∣∣∣ 6= 0 at some point (x0, y0) (no functional dependence),
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then ∃y = f (x), a set of n functions in a neighborhood of (x0, y0) such that f ∈ C1 and

F (x, f (x)) = 0 in that neighborhood of (x0, y0).

We further develop this. From F (x, y) = 0 we have[
∂F

∂y′

]
n×n

dyn×1 +

[
∂F

∂x′

]
n×m

dxm×1 = 0 ⇒
[
∂F

∂y′

]
dy = −

[
∂F

∂x′

]
dx . (3)

Since |J | = |∂F/∂y′| 6= 0, then [∂F/∂y′]−1 exists and we can write

dy = −
[
∂F

∂y′

]−1 [∂F
∂x′

]
dx . (4)

So there is a mapping from dx to dy.

From y = f (x) we have

dyn×1 =

[
∂y

∂x′

]
n×m

dxm×1

Combining into (3) we get[
∂F

∂y′

]
n×n

[
∂y

∂x′

]
n×m

dxm×1 = −
[
∂F

∂x′

]
n×m

dxm×1 .

Now suppose that only x1 is perturbed, so that dx′ =
[
dx1 0 · · · 0

]
. Then we get only the

first column in the set of equations above:

row 1 :

[
∂F 1

∂y1

∂y1

∂x1
+
∂F 1

∂y2

∂y2

∂x1
+ ...+

∂F 1

∂yn

∂yn
∂x1

]
dx1 = −∂F

1

∂x1
dx1

...

row n :

[
∂Fn

∂y1

∂y1

∂x1
+
∂Fn

∂y2

∂y2

∂x1
+ ...+

∂Fn

∂yn

∂yn
∂x1

]
dx1 = −∂F

n

∂x1
dx1

By eliminating the dx1 terms we get

row 1 :

[
∂F 1

∂y1

∂y1

∂x1
+
∂F 1

∂y2

∂y2

∂x1
+ ...+

∂F 1

∂yn

∂yn
∂x1

]
= −∂F

1

∂x1

...

row n :

[
∂Fn

∂y1

∂y1

∂x1
+
∂Fn

∂y2

∂y2

∂x1
+ ...+

∂Fn

∂yn

∂yn
∂x1

]
= −∂F

n

∂x1

and thus, stacking together [
∂F

∂y′

]
n×n

[
∂y

∂x1

]
n×1

= −
[
∂F

∂x1

]
n×1

.
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Since we required |J | =
∣∣∣ ∂F∂y′ ∣∣∣ 6= 0 it follows that the

[
∂F
∂y′

]
n×n

matrix is nonsingular, and thus

∃!
[
∂y
∂x1

]
n×1

, a solution to the system. This can be obtained by Cramer’s rule:

∂yj
∂x1

=
|Jj |
|J | ,

where |Jj | is obtained by replacing the jth column in |Jj | by
[
∂F
∂x1

]
. In fact, we could have jumped

directly to here from (4).

Why is this useful? We are often interested in how a model behaves around some point, usually

an equilibrium or a steady state. But models are typically nonlinear and the behavior is hard to

characterize without implicit functions. Think of x as exogenous and y as endogenous. So this

gives us a method for evaluating how several endogenous variables respond to a small change in

one an exogenous variable or policy —while holding all other x’s constant. This describes a lot of

what we do in economics.

A fuller description of what’s going on:
∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn
∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn
...

...
. . .

...
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn



dy1

dy2
...
dyn

+


∂F 1

∂x1
∂F 1

∂x2
· · · ∂F 1

∂xm
∂F 2

∂x1
∂F 2

∂x2
· · · ∂F 2

∂xm
...

...
...

∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xm



dx1

dx2
...

dxm

 = 0


∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn
∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn
...

...
. . .

...
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn



dy1

dy2
...
dyn

 = −


∂F 1

∂x1
∂F 1

∂x2
· · · ∂F 1

∂xm
∂F 2

∂x1
∂F 2

∂x2
· · · ∂F 2

∂xm
...

...
...

∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xm



dx1

dx2
...

dxm



dy1

dy2
...
dyn

 =


∂y1

∂x1
∂y1

∂x2
· · · ∂y1

∂xm
∂y2

∂x1
∂y2

∂x2
· · · ∂y2

∂xm
...

...
...

∂yn

∂x1
∂yn

∂x2
· · · ∂yn

∂xm



dx1

dx2
...

dxm

 = 0


∂F 1

∂y1
∂F 1

∂y2
· · · ∂F 1

∂yn
∂F 2

∂y1
∂F 2

∂y2
· · · ∂F 2

∂yn
...

...
. . .

...
∂Fn

∂y1
∂Fn

∂y2
· · · ∂Fn

∂yn




∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xm

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xm

...
...

...
∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xm



dx1

dx2
...

dxm

 = −


∂F 1

∂x1
∂F 1

∂x2
· · · ∂F 1

∂xm
∂F 2

∂x1
∂F 2

∂x2
· · · ∂F 2

∂xm
...

...
...

∂Fn

∂x1
∂Fn

∂x2
· · · ∂Fn

∂xm



dx1

dx2
...

dxm
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8.5 Example: demand-supply system

8.5.1 Using the implicit function theorem

demand : qd = d(
−
p,

+
y)

supply : qs = s(
+
p)

equilibrium : qd = qs .

Let d, s ∈ C1. By eliminating q we get

s(
+
p)− d(

−
p,

+
y) = 0 ,

which is an implicit function

F (p, y) = 0 ,

where p is endogenous and y is exogenous.

We are interested in how the endogenous price responds to income. By the implicit function

theorem ∃p = p (y) such that

dp

dy
= −Fy

Fp
= − −dy

sp − dp
=

dy
sp − dp

> 0

because dp < 0. An increase in income unambiguously increases the price.

To find how quantity changes we apply the total derivative approach to the demand function:

dq

dy
=

∂d

∂p

dp

dy︸ ︷︷ ︸
"substitution effect"<0

+
∂d

∂y︸︷︷︸
"income effect">0

so the sign here is ambiguous. The income effect is the shift outwards of the demand curve. If

supply did not respond to price (infinite elasticity), then that would be it. The substitution effect

is the shift along the (shifted) demand curve that is invoked by the increase in price. But we can

show that dq/dy is positive by using the supply side:

dq

dy
=
∂s

∂p

dp

dy
> 0 .

• Draw demand-supply system.

This example is simple, but the technique is very powerful, especially in nonlinear general

equilibrium models.
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8.5.2 Using the implicit function theorem in a system of two equations

Now consider the system by writing it as a system of two implicit functions:

F (p, q; y) = 0

F 1 (p, q, y) = d (p, y)− q = 0

F 2 (p, q, y) = s (p)− q = 0 .

Apply the general theorem. Check for functional dependence in the endogenous variables:

|J | =
∣∣∣∣ ∂F

∂ (p, q)

∣∣∣∣ =

∣∣∣∣ dp −1
sp −1

∣∣∣∣ = −dp + sp > 0 .

So there is no functional dependence. Thus ∃p = p (y) and ∃q = q (y). We now wish to compute

the derivatives with respect to the exogenous argument y. Since dF = 0 we have

∂F 1

∂p
dp+

∂F 1

∂q
dq +

∂F 1

∂y
dy = 0

∂F 2

∂p
dp+

∂F 2

∂q
dq +

∂F 2

∂y
dy = 0

Thus [
∂F 1

∂p
∂F 1

∂q
∂F 2

∂p
∂F 2

∂q

][
dp
dq

]
= −

[
∂F 1

∂y dy
∂F 2

∂y dy

]
Use the following

dp =
∂p

∂y
dy

dq =
∂q

∂y
dy

to get [
∂F 1

∂p
∂F 1

∂q
∂F 2

∂p
∂F 2

∂q

][
∂p
∂ydy
∂q
∂ydy

]
= −

[
∂F 1

∂y dy
∂F 2

∂y dy

]
[

∂F 1

∂p
∂F 1

∂q
∂F 2

∂p
∂F 2

∂q

][
∂p
∂y
∂q
∂y

]
= −

[
∂F 1

∂y
∂F 2

∂y

]
Using the expressions for F 1 and F 2 we get[

∂d
∂p −1
∂s
∂p −1

][
∂p
∂y
∂q
∂y

]
=

[
−∂d
∂y

0

]
.
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We seek a solution for ∂p∂y and
∂q
∂y . This is a system of equations, which we solve using Cramer’s

rule:

∂p

∂y
=
|J1|
|J | =

∣∣∣∣ −∂d
∂y −1

0 −1

∣∣∣∣
|J | =

∂d
∂y

|J | > 0

and

∂q

∂y
=
|J2|
|J | =

∣∣∣∣∣ ∂d
∂p −∂d

∂y
∂s
∂p 0

∣∣∣∣∣
|J | =

∂d
∂y

∂s
∂p

|J | > 0 .

• Try this with three functions for three endogenous variables, i.e. F
(
p, qs, qd; y

)
= 0.

8.5.3 Using the total derivative approach

Now we use the total derivative approach. We have

s (p)− d (p, y) = 0 .

Take the total derivative with respect to y:

∂s

∂p

dp

dy
− ∂d

∂p

dp

dy
− ∂d

∂y
= 0

Thus
dp

dy

[
∂s

∂p
− ∂d

∂p

]
=
∂d

∂y

and so
dp

dy
=

∂d
∂y

∂s
∂p −

∂d
∂p

> 0 .
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9 Optimization with one variable and Taylor expansion

A function may have many local minima and maxima. A function may have only one global

minimum and maximum, if it exists.

9.1 Local maximum, minimum

First order necessary conditions (FONC): Let f ∈ C1 on some open convex set (will be

defined properly later) around x0. If f ′ (x0) = 0, then x0 is a critical point, i.e. it could be either

a maximum or minimum– or neither.

1. x0 is a local maximum if f ′ (x0) changes from positive to negative as x increases around

x0.

2. x0 is a local minimum if f ′ (x0) changes from negative to positive as x increases around x0.

3. Otherwise, x0 is an inflection point (not max nor min).

Second order suffi cient conditions (SOC): Let f ∈ C2 on some open convex set around x0.

If f ′ (x0) = 0 (FONC satisfied) then:

1. x0 is a local maximum if f ′′ (x0) < 0 around x0.

2. x0 is a local minimum if f ′′ (x0) > 0 around x0.

3. Otherwise (f ′′ (x0) = 0) we cannot be sure.

Extrema at the boundaries: if the domain of f (x) is bounded, then the boundaries may be

extrema without satisfying any of the conditions above.

• Draw graphs for all cases.

Example:

y = x3 − 12x2 + 36x+ 8

FONC:

f ′ (x) = 3x2 − 24x+ 36 = 0

x2 − 8x+ 12 = 0

x2 − 2x− 6x+ 12 = 0

x (x− 2)− 6 (x− 2) = 0

(x− 6) (x− 2) = 0
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x1 = 6, x2 = 2 are critical points and both satisfy the FONC.

f ′′ (x) = 6x− 24

f ′′ (2) = −12 ⇒ maximum

f ′′ (6) = +12 ⇒ minimum

9.2 The N th derivative test

If f ′ (x0) = 0 and the first non zero derivative at x0 is of order n, f (n) (x0) 6= 0, then

1. If n is even and f (n) (x0) < 0 then x0 is a local maximum.

2. If n is even and f (n) (x0) > 0 then x0 is a local minimum.

3. Otherwise n is odd and x0 is an inflection point.

Example:

f (x) = (7− x)4 .

f ′ (x) = −4 (7− x)3 ,

so x = 7 is a critical point (satisfies the FONC).

f ′′ (x) = −12 (7− x)2 , f ′′ (7) = 0

f ′′′ (x) = −24 (7− x) , f ′′′ (7) = 0

f ′′′′ (x) = 24 > 0 ,

so x = 7 is a minimum: f (4) is the first non zero derivative. 4 is even. f (4) > 0.

The N th derivative test is based on Maclaurin expansion and Taylor expansion.

9.3 Maclaurin expansion

Terms of art:

• Expansion: express a function as a polynomial.

• Around x0: in a small neighborhood of x0.
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Consider the following polynomial

f (x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n

f (1) (x) = a1 + 2a2x+ 3a3x
2 + ...+ nanx

n−1

f (2) (x) = 2a2 + 2 · 3a3x+ ...+ (n− 1)nanx
n−2

...

f (n) (x) = 1 · 2 · ... (n− 1)nan .

Evaluate at x = 0:

f (0) = a0 = 0!a0

f (1) (0) = a1 = 1!a1

f (2) (0) = 2a2 = 2!a2

...

f (n) (0) = 1 · 2 · ... (n− 1)nan = n!an .

Therefore

an =
f (n)

n!
.

Using the last results gives the Maclaurin expansion around 0:

f (x)|x=0 =
f (0)

0!
+
f (1) (0)

1!
x+

f (2) (0)

2!
x2 +

f (3) (0)

3!
x+ ...

f (n) (0)

n!
xn .

9.4 Taylor expansion

Example: quadratic equation.

f (x) = a0 + a1x+ a2x
2 .

Define x = x0 + δ, where we fix x0 as an anchor and allow δ to vary. This is essentially relocating

the origin to (x0, f (x0)). Define

g (δ) ≡ a0 + a1 (x0 + δ) + a2 (x0 + δ)2 = f (x) .

Note that

g (δ) = f (x) and g (0) = f (x0) .
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Taking derivatives

g′ (δ) = a1 + 2a2 (x0 + δ) = a1 + 2a2x0 + 2a2δ

g′′ (δ) = 2a2 .

Use Maclaurin’s expansion for g (δ) around δ = 0:

g (δ)|δ=0 =
g (0)

0!
+
g(1) (0)

1!
δ +

g(2) (0)

2!
δ2 .

Using δ = x − x0 and the fact that x = x0 when δ = 0, we get a Maclaurin expansion for f (x)

around x = x0:

f (x)|x=x0
=
f (x0)

0!
+
f (1) (x0)

1!
(x− x0) +

f (2) (x0)

2!
(x− x0)2 .

More generally, we have the Taylor expansion for an arbitrary Cn function:

f (x)|x=x0
=

f (x0)

0!
+
f (1) (x0)

1!
(x− x0) +

f (2) (x0)

2!
(x− x0)2 + ...+

f (n) (x0)

n!
(x− x0)n +Rn

= Pn +Rn ,

where Rn is a remainder (Theorem):

• As we choose higher n, then Rn will be smaller and in the limit vanish.

• As x is farther away from x0 Rn may grow.

The Lagrange form of Rn: for some point p ∈ [x0, x] (if x > x0) or p ∈ [x, x0] (if x < x0) we

have

Rn =
1

(n+ 1)!
f (n+1) (p) (x− x0)n+1 .

Example: for n = 0 we have

f (x)|x=x0
=
f (x0)

0!
+Rn = f (x0) +Rn = f (x0) + f ′ (p) (x− x0) .

Rearranging this we get

f (x)− f (x0) = f ′ (p) (x− x0)

for some point p ∈ [x0, x] (if x > x0) or p ∈ [x, x0] (if x < x0). This is the Mean Value Theorem:
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9.5 Taylor expansion and the N-th derivative test

Define: x0 is a maximum (minimum) of f (x) if the change in the function, ∆f ≡ f (x)− f (x0), is

negative (positive) in a neighborhood of x0, both on the right and on the left of x0.

The Taylor expansion helps determining this.

∆f = f (1) (x0) (x− x0)+
f (2) (x0)

2
(x− x0)2+...+

f (n) (x0)

n!
(x− x0)n+

1

(n+ 1)!
f (n+1) (p) (x− x0)n+1︸ ︷︷ ︸

remainder

.

1. Consider the case that f ′ (x0) 6= 0, i.e. the first non zero derivative at x0 is of order 1. Choose

n = 0, so that the remainder will be of the same order of the first non zero derivative and

evaluate

∆f = f ′ (p) (x− x0) .

Using the fact that p is very close to x0, so close that f ′ (p) 6= 0, we have that ∆f changes

signs around x0, because (x− x0) changes sign around x0.

2. Consider the case of f ′ (x0) = 0 and f ′′ (x0) 6= 0. Choose n = 1, so that the remainder will

be of the same order of the first non zero derivative (2) and evaluate

∆f = f ′ (x0) (x− x0) +
f ′′ (p)

2
(x− x0)2 =

1

2
f ′′ (p) (x− x0)2 .

Since (x− x0)2 > 0 always and f ′′ (p) 6= 0 we get ∆f is either positive (minimum) or negative

(maximum) around x0.

3. Consider the case of f ′ (x0) = 0, f ′′ (x0) = 0 and f ′′′ (x0) 6= 0. Choose n = 2, so that the
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remainder will be of the same order of the first non zero derivative (3) and evaluate

∆f = f ′ (x0) (x− x0) +
f ′′ (p)

2
(x− x0)2 +

f ′′′ (p)

6
(x− x0)3 =

1

6
f ′′′ (p) (x− x0)3 .

Since (x− x0)3 changes signs around x0 and f ′′′ (p) 6= 0 we get ∆f is changing signs and

therefore not an extremum.

4. In the general case f ′ (x0) = 0, f ′′ (x0) = 0, ... f (n−1) (x0) = 0 and f (n) (x0) 6= 0. Choose

n− 1, so that the remainder will be of the same order of the first non zero derivative (n) and

evaluate

∆f = f (1) (x0) (x− x0) +
f (2) (x0)

2
(x− x0)2 + ...+

f (n−1) (x0)

(n− 1)!
(x− x0)n−1 +

1

n!
f (n) (p) (x− x0)n

=
1

n!
f (n) (p) (x− x0)n .

In all cases f (n) (p) 6= 0.

If n is odd, then (x− x0)n changes signs around x0 and ∆f changes signs and therefore not an

extremum.

If n is even, then (x− x0)n > 0 always and ∆f is either positive (minimum) or negative

(maximum).

• Warning: in all the above we need f ∈ Cn at x0. For example,

f (x) =

{
e−

1
2
x2 x 6= 0

0 x = 0

is not C1 at 0, and yet x = 0 is the minimum.
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10 Exponents and logs

These are used a lot in economics due to their useful properties, some of which have economic

interpretations, in particular in dynamic problems that involve time.

10.1 Exponent function

y = f (t) = bt , b > 1 .

(the case of 0 < b < 1 can be dealt with similarly.)

• f (t) ∈ C∞.

• f (t) > 0 ∀t ∈ R (since b > 1 > 0).

• f ′ (t) > 0, f ′′ (t) > 0, therefore strictly increasing and so ∃t = f−1 (y) = logb y, where

y ∈ R++.

• Any y > 0 can be expressed as an exponent of many bases. Make sure you know how to

convert bases:

logb y =
loga y

loga b
.

10.2 The constant e

The expression

y = Aert

describes constantly growing processes.

d

dt
et = et

d

dt

(
Aert

)
= rAert .

It turns out that

lim
m→∞

(
1 +

1

m

)m
= lim

n→0
(1 + n)1/n = e = 2.71828...

Think of 1/m = n as time. To see this, use a Taylor expansion of ex and evaluate it around zero:

ex = e0 +
1

1!
(ex)′

∣∣
x=0

(x− 0) +
1

2!
(ex)′′

∣∣
x=0

(x− 0)2 +
1

3!
(ex)′′′

∣∣
x=0

(x− 0)3 + ...

= 1 + x+
1

2!
x2 +

1

3!
x3 + ...
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Evaluate this at x = 1:

e1 = e = 1 + 1 +
1

2!
+

1

3!
+ ... = 2.71828...

10.3 Examples

10.3.1 Interest compounding

Suppose that you are offered an interest rate r on your savings after a year. Then the return after

one year is 1 + r. If you invested A, then at the end of the year you have

A (1 + r) .

Now suppose that an interest of
(
r
m

)
is offered for each 1/m of a year. In that case you get a

(
r
m

)
return compounded m times throughout the year. In that case an investment of A will be worth

at the end of the year

A
(

1 +
r

m

)m
= A

[(
1 +

r

m

)m/r]r
.

Now suppose that you get a instant rate of interest r for each instant (a period of length 1/m,

where m→∞), compounded m→∞ times throughout the year. In that case an investment of A

will be worth at the end of the year

lim
m→∞

A
(

1 +
r

m

)m
= lim

m→∞
A

[(
1 +

r

m

)m/r]r
= A

[
lim
m→∞

(
1 +

r

m

)m/r]r
= A

[
lim

u=r/m→0
(1 + u)1/u

]r
= Aer .

Thus, r is the instantaneous rate of return.

Suppose that we are interested in an arbitrary period of time, t, where, say t = 1 is a year (but

this is arbitrary). Then the same kind of math will lead us to find the value of an investment A

after t time to be

A
(

1 +
r

m

)mt
= A

[(
1 +

r

m

)m/r]rt
.

If m is finite, then that is it. if we get continuous compounding (m → ∞), then the value of the
investment A after t time will be

Aert .

10.3.2 Growth rates

The interest rate example tells you how much the investment is worth when it grows at a constant,

instantaneous rate:

growth rate =
dV/dt

V
=
rAert

Aert
= r per instant (dt).
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Any discrete growth rate can be described by a continuous growth rate:

A (1 + i)t = Aert ,

where

(1 + i) = er .

10.3.3 Discounting

The value today of X t periods in the future is

PV =
X

(1 + i)t
,

where 1/ (1 + i)t is the discount factor. This can also be represented by continuous discounting

PV =
X

(1 + i)t
= Xe−rt ,

where the same discount factor is 1/ (1 + i)t = (1 + i)−t = e−rt.

10.4 Logarithms

Log is the inverse function of the exponent. For b > 1, t ∈ R, y ∈ R+ +

y = bt ⇔ t = logb y .

This is very useful, e.g. for regressions analysis.

E.g.,

24 = 16 ⇔ 4 = log2 16 .

53 = 125 ⇔ 3 = log5 125 .

Also, note that

y = blogb y .

Convention:

loge x = lnx .

Rules:

• ln (uv) = lnu+ ln v

• ln (u/v) = lnu− ln v
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• ln
(
aub
)

= ln a+ b lnu

• logb x = loga x
loga b

, where a, b, x > 0

—Corollary: logb e = ln e
ln b = 1

ln b

Some useful properties of logs:

1. Log differences approximate growth rates:

lnX2 − lnX1 = ln
X2

X1
= ln

(
X2

X1
− 1 + 1

)
= ln

(
1 +

X2 −X1

X1

)
= ln (1 + x) ,

where x is the growth rate of X. Take a first order Taylor approximation of ln (1 + x) around

ln (1):

ln (1 + x) ≈ ln (1) + (ln (1))′ (1 + x− 1) = x .

So we have

lnX2 − lnX1 ≈ x .

This approximation is good for small percent changes. Beware: large log differences give

much larger percent changes (e.g., a log difference of 1=100% is 2.7=270%).

2. Logs "bend down" their image relative to the argument below the 45 degree line. Exponents

do the opposite.

3. The derivative of log is always positive, but ever diminishing: (log x)′ > 0, (log x)′′ < 0.

4. Nevertheless, lim
x→∞

logb x =∞. Also, lim
x→0

logb x = −∞. Therefore the range is R.

5. Suppose that y = Aert. Then ln y = lnA+ rt. Therefore

t =
ln y − lnA

r
.

This answers the question: how long will it take to grow from A to y, if growth is at an

instantaneous rate of r.

6. Converting y = Abct into y = Aert: bc = er, therefore c ln b = r, therefore y = Aert = y =

Ae(c ln b)t.

10.5 Derivatives of exponents and logs

d

dt
ln t =

1

t
d

dt
logb t =

d

dt

ln t

ln b
=

1

t ln b
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d

dt
et = et

Let y = et, so that t = ln y:

d

dt
et =

d

dt
y =

1

dt/dy
=

1

1/y
= y = et .

By chain rule:

d

dt
eu = eu

du

dt
d

dt
lnu =

du/dt

u

Higher derivatives:
dn

(dt)n
et = et

d

dt
ln t =

1

t
,

d2

(dt)2 ln t = − 1

t2
,

d3

(dt)3 ln t =
2

t3
...

d

dt
bt = bt ln b ,

d2

(dt)2 b
t = bt (ln b)2 ,

d3

(dt)3 b
t = bt (ln b)3 ...

10.6 Application: optimal timing

The value of k bottles of wine is given by

V (t) = ke
√
t .

Discounting: D (t) = e−rt. The present value of V (t) today is

PV = D (t)V (t) = e−rtke
√
t = ke

√
t−rt .

Choosing t to maximize PV = ke
√
t−rt is equivalent to choosing t to maximize lnPV = ln k+

√
t−rt.

FONC:

0.5t−0.5 − r = 0

0.5t−0.5 = r

Marginal benefit to wait one more instant = marginal cost of waiting one more instant. t∗ =

1/
(
4r2
)
.

SOC:

−0.25t−1.5 < 0

so t∗ is a maximum.
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10.7 Growth rates again

Denote
d

dt
x = ẋ .

So the growth rate at some point in time is

dx/dt

x
=
ẋ

x
.

So in the case x = Aert, we have
V̇

V
= r .

And since x (0) = Aer0 = A, we can write without loss of generality x (t) = x0e
rt.

Growth rates of combinations:

1. For y (t) = u (t) v (t) we have

ẏ

y
=

u̇

u
+
v̇

v
gy = gu + gv

Proof:

ln y (t) = lnu (t) + ln v (t)

d

dt
ln y (t) =

d

dt
lnu (t) +

d

dt
ln v (t)

1

y (t)

dy

dt
=

1

u (t)

du

dt
+

1

v (t)

dv

dt

2. For y (t) = u (t) /v (t) we have

ẏ

y
=

u̇

u
− v̇

v
gy = gu − gv

Proof: similar to above.

3. For y (t) = u (t)± v (t) we have

gy =
u

u± v gu ±
u

u± v gv
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10.8 Elasticities

An elasticity of y with respect to x is defined as

σy,x =
dy/y

dx/x
=
dy

dx

x

y
.

Since

d lnx =
∂ lnx

∂x
dx =

dx

x

we get

σy,x =
d ln y

d lnx
.
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11 Optimization with more than one choice variable

11.1 The differential version of optimization with one variable

This helps developing concepts for what follows. Let z = f (x) ∈ C1, x ∈ R. Then

dz = f ′ (x) dx .

• FONC: an extremum may occur when dz = 0, i.e. when f ′ (x) = 0. Think of this condition as

a situation when small arbitrary perturbations of x do not affect the value of the function;

therefore dx 6= 0 in general. No perturbation of the argument (dx = 0) will trivially not

induce perturbation of the image.

• SOC:
d2z = d [dz] = d

[
f ′ (x) dx

]
= f ′′ (x) dx2 .

A maximum occurs when f ′′ (x) < 0 or equivalently when d2z < 0.

A minimum occurs when f ′′ (x) > 0 or equivalently when d2z > 0.

11.2 Extrema of a function of two variables

Let z = f (x, y) ∈ C1, x, y ∈ R. Then

dz = fxdx+ fydy .

FONC: dz = 0 for arbitrary values of dx and dy, not both equal to zero. A necessary condition

that gives this is

fx = 0 and fy = 0 .

As before, this is not a suffi cient condition for an extremum, not only because of inflection points,

but also due to saddle points.

• Note: in matrix notation

dz =

[
∂f

∂ (x, y)

] [
dx
dy

]
= ∇fdx =

[
fx fy

] [ dx
dy

]
= fxdx+ fydy .

If x ∈ Rn then

dz =

[
∂f

∂x′

]
dx = ∇fdx =

[
f1 · · · fn

]  dx1
...

dxn

 =
n∑
i=1

fidxi .
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Define

fxx =
∂2f

∂x2

fyy =
∂2f

∂y2

fxy =
∂2f

∂x∂y

fyx =
∂2f

∂y∂x

Young’s Theorem: If both fxy and fyx are continuous, then fxy = fyx.

Now we apply this

d2z = d [dz] = d [fxdx+ fydy] = d [fxdx] + d [fydy]

= fxxdx
2 + fyxdxdy + fxydydx+ fyydy

2

= fxxdx
2 + 2fxydxdy + fyydy

2 .

(The d [dx] and d [dy] terms drop out. The reason is that we are considering arbitrarily small

arbitrary dx and dy, so the second order differential is nil.) In matrix notation

d2z =
[
dx dy

] [ fxx fxy
fxy fyy

] [
dx
dy

]
.

And more generally, if x ∈ Rn then

d2z = dx′
[
∂2f

∂x∂x′

]
︸ ︷︷ ︸
Hessian

dx .

SONC (second order necessary conditions): for arbitrary values of dx and dy

• d2z ≤ 0 gives a maximum.

• d2z ≥ 0 gives a minimum.

SOSC (second order suffi cient conditions): for arbitrary values of dx and dy

• d2z < 0 gives a maximum. In the two variable case

d2z < 0 iff fxx < 0, fyy < 0 and fxxfyy > f2
xy .

• d2z > 0 gives a minimum. In the two variable case

d2z > 0 iff fxx > 0, fyy > 0 and fxxfyy > f2
xy .
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Comments:

• SONC is necessary but not suffi cient, while SOSC are not necessary.

• If fxxfyy = f2
xy a point can be an extremum nonetheless.

• If fxxfyy < f2
xy then this is a saddle point.

• If fxxfyy − f2
xy > 0, then fxxfyy > f2

xy ≥ 0 implies sign(fxx) =sign(fyy).

11.3 Quadratic form and sign definiteness

This is a tool to help analyze SOCs. Relabel terms for convenience:

z = f (x1, x2)

d2z = q , dx1 = d1 , dx2 = d2

f11 = a , f22 = b , f12 = h

Then

d2z = f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2

q = ad2
1 + 2hd1d2 + bd2

2

=
[
d1 d2

] [ a h
h b

] [
d1

d2

]
.

This is the quadratic form.

• Note: d1 and d2 are variables, not constants, as in the FONC. We require the SOCs to hold

∀d1, d2, and in particular ∀d1, d2 6= 0.

Denote the Hessian by

H =

[
∂2f

∂x∂x′

]
The quadratic form is

q = d′Hd

Define

q is


positive definite

positive semidefinite
negative semidefinite
negative definite

 if q is invariably


> 0
≥ 0
≤ 0
< 0

 ,

regardless of values of d. Otherwise, q is indefinite.
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Consider the determinant of H, |H|, which we call here the discriminant of H:

q is
{
positive definite
negative definite

}
iff
{
|a| > 0
|a| < 0

}
and |H| > 0 .

|a| is (the determinant of) the first ordered minor of H. In the simple two variable case, |H| is (the
determinant of) the second ordered minor of H. In that case

|H| = ab− h2 .

If |H| > 0, then a and b must have the same sign, since ab > h2 > 0.

11.4 Quadratic form for n variables and sign definiteness

q = d′Hd =

n∑
i=1

n∑
j=1

hijdidj .

• q is positive definite iff all (determinants of) the principal minors are positive

|H1| = |h11| > 0, |H2| =
∣∣∣∣ h11 h12

h21 h22

∣∣∣∣ > 0, ... |Hn| = |H| > 0 .

• q is negative definite iff (determinants of) the odd principal minors are negative and the
even ones are positive:

|H1| < 0, |H2| > 0, |H3| < 0, ...

11.5 Characteristic roots test for sign definiteness

Consider some n×nmatrixHn×n. We look for a characteristic root r (scalar) and characteristic

vector xn×1 (n× 1) such that

Hx = rx .

Developing this expression:

Hx = rIx ⇒ (H − rI)x = 0 .

Define (H − rI) as the characteristic matrix:

(H − rI) =


h11 − r h12 · · · h1n

h21 h22 − r · · · h2n
...

...
. . .

...
hn1 hn2 . . . hnn − r


If (H − rI)x = 0 has a non trivial solution x 6= 0, then (H − rI) must be singular, so that

|H − rI| = 0. This is an equation that we can solve for r. The equation |H − rI| = 0 is the

53



characteristic equation, and is an n degree polynomial in r, with n non trivial solutions (some

of the solutions can be equal). Some properties:

• If H is symmetric, then we will have r ∈ R. This is useful, because many applications in
economics will deal with symmetric matrices, like Hessians and variance-covariance matrices.

• For each characteristic root that solves |H − rI| = 0 there are many characteristic vectors x

such that Hx = rx. Therefore we normalize: x′x = 1. Denote the normalized characteris-

tic vectors as v. Denote the characteristic vectors (eigenvector) of the characteristic root

(eigenvalue) as vi and ri.

• The set of eigenvectors is orthonormal, i.e. orthogonal and normalized: v′ivj = 0 ∀i 6= j and

v′ivi = 1.

11.5.1 Application to quadratic form

Let V = (v1, v2, ...vn) be the set of eigenvectors of the matrix H. Define the vector y that solves

d = V y. We use this in the quadratic form

q = d′Hd = y′V ′HV y = y′Ry ,

where V ′HV = R. It turns out that

R =


r1 0 · · · 0
0 r2 0
...

. . .
0 0 rn


Here is why:

V ′HV = V ′
[
Hv1 Hv2 · · · Hvn

]
=


v′1
v′2
...
v′n

 [ r1v1 r2v2 · · · rnvn
]

=


r1v
′
1v1 r1v

′
1v2 · · · r1v

′
1vn

r2v
′
2v1 r2v

′
2v2 · · · r2v

′
2vn

...
...

. . .
...

rnv
′
nv1 rnv

′
nv2 · · · rnv

′
nvn

 = R ,

where the last equality follows from v′ivj = 0 ∀i 6= j and v′ivi = 1. It follows that sign(q) depends

only on the characteristic roots: q = y′Ry =
∑n

i=1 riy
2
i .
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11.5.2 Characteristic roots test for sign definiteness

q is


positive definite

positive semidefinite
negative semidefinite
negative definite

 iff all ri


> 0
≥ 0
≤ 0
< 0

 ,

regardless of values of d. Otherwise, q is indefinite.

• When n is large, finding the roots can be hard, because it involves finding the roots of a
polynomial of degree n. But the computer can do it for us.

11.6 Global extrema, convexity and concavity

We seek conditions for a global maximum or minimum. If a function has a "hill shape" over its

entire domain, then we do not need to worry about boundary conditions and the local extremum

will be a global extremum. Although the global maximum can be found at the boundary of the

domain, this will not be detected by the FONC.

• If f is strictly concave: the global maximum is unique.

• If f is concave, but not strictly: this allows for flat regions, so the global maximum may not

be unique (the argument may take many values, which all have the same maximal image).

Let z = f (x) ∈ C2, x ∈ Rn.

If d2z is


positive definite

positive semidefinite
negative semidefinite
negative definite

 ∀x in the domain, then f is


strictly convex
convex
concave

strictly concave

 ,

When an objective function is general, then we must assume convexity or concavity. If a specific

functional form is used, we can check whether it is convex or concave.

11.7 Convexity and concavity defined

Definition 1: A function f is concave iff ∀f (x) , f (y) ∈ graph of f the line between f (x) and

f (y) lies on or below the graph.

• If ∀x 6= y the line lies strictly below the graph, then f is strictly concave.

• For convexity replace "below" with "above".
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Definition 2: A function f is concave iff ∀x, y ∈ domain of f , which is assumed to be a convex
set (see below), and ∀θ ∈ (0, 1) we have

θf (x) + (1− θ) f (y) ≤ f [θx+ (1− θ) y] .

• For strict concavity replace "≤" with "<" and add ∀x 6= y.

• For convexity replace "≤" with "≥" and "<" with ">".

The term θx+ (1− θ) y, θ ∈ (0, 1) is called a convex combination.

Properties:

1. If f is linear, then f is both concave and convex, but not strictly.

2. If f is (strictly) concave, then −f is (strictly) convex.

• Proof: f is concave. Therefore ∀x, y ∈ domain of f and ∀θ ∈ (0, 1) we have

θf (x) + (1− θ) f (y) ≤ f [θx+ (1− θ) y] / × (−1)

θ [−f (x)] + (1− θ) [−f (y)] ≥ −f [θx+ (1− θ) y] �

3. If f and g are concave functions, then f + g is also concave. If one of the concave functions

is strictly concave, then f + g is strictly concave.

• Proof: f and g are concave, therefore

θf (x) + (1− θ) f (y) ≤ f [θx+ (1− θ) y]

θg (x) + (1− θ) g (y) ≤ g [θx+ (1− θ) y]

θ [f (x) + g (x)] + (1− θ) [f (y) + g (y)] ≤ f [θx+ (1− θ) y] + g [θx+ (1− θ) y]

θ [(f + g) (x)] + (1− θ) [(f + g) (y)] ≤ (f + g) [θx+ (1− θ) y] �

The proof for strict concavity is identical.

11.7.1 Example

Is z = x2 + y2 concave or convex? Consider first the LHS of the definition:

(i) : θf (x1, y1) + (1− θ) f (x2, y2) = θ
(
x2

1 + y2
1

)
+ (1− θ)

(
x2

2 + y2
2

)
.
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Now consider the RHS of the definition:

(ii) : f [θx1 + (1− θ)x2, θy1 + (1− θ) y2] = [θx1 + (1− θ)x2]2 + [θy1 + (1− θ) y2]2

= θ2
(
x2

1 + y2
1

)
+ (1− θ)2 (x2

2 + y2
2

)
+ 2θ (1− θ) (x1x2 + y1y2) .

Now subtract (i)−(ii):

θ (1− θ)
(
x2

1 + y2
1 + x2

2 + y2
2

)
− 2θ (1− θ) (x1x2 + y1y2) = θ (1− θ)

[
(x1 − x2)2 + (y1 − y2)2

]
≥ 0 .

So this is a convex function. Moreover, it is strictly convex, since ∀x1 6= x2 and ∀y1 6= y2 we have

(i)−(ii)> 0.

Using similar steps, you can verify that −
(
x2 + y2

)
is strictly concave.

11.7.2 Example

Is f (x, y) = (x+ y)2 concave or convex? Use the same procedure from above.

(i) : θf (x1, y1) + (1− θ) f (x2, y2) = θ (x1 + y1)2 + (1− θ) (x2 + y2)2 .

Now consider

(ii) : f [θx1 + (1− θ)x2, θy1 + (1− θ) y2] = [θx1 + (1− θ)x2 + θy1 + (1− θ) y2]2

= [θ (x1 + y1) + (1− θ) (x2 + y2)]2

= θ2 (x1 + y1)2 + 2θ (1− θ) (x1 + y1) (x2 + y2) + (1− θ)2 (x2 + y2)2 .

Now subtract (i)−(ii):

θ (1− θ)
[
(x1 + y1)2 + (x2 + y2)2

]
− 2θ (1− θ) (x1 + y1) (x2 + y2)

= θ (1− θ) [(x1 + y1)− (x2 + y2)]2 ≥ 0 .

So convex but not strictly. Why not strict? Because when x + y = 0, i.e. when y = −x, we get
f (x, y) = 0. The shape of this function is a hammock, with the bottom at y = −x.

11.8 Differentiable functions, convexity and concavity

Let f (x) ∈ C1 and x ∈ R. Then f is concave iff ∀x1, x2 ∈ domain of f

f
(
x2
)
− f

(
x1
)
≤ f ′

(
x1
) (
x2 − x1

)
.

For convex replace "≥" with "≤".
When x2 > x1 and both x2, x1 ∈ R we can divide through by

(
x2 − x1

)
without changing the
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direction of the inequality to get

f ′
(
x1
)
≥
f
(
x2
)
− f

(
x1
)

x2 − x1
, x2 > x1 .

I.e. the slope from x1 to x2 is smaller than the derivative at x1. Think of x1 as the point of reference

and x2 as a target point. When x2 < x1 we can divide through by
(
x2 − x1

)
but must change the

direction of the inequality to get

f ′
(
x1
)
≤
f
(
x2
)
− f

(
x1
)

x2 − x1
=
f
(
x1
)
− f

(
x2
)

x1 − x2
, x2 < x1 .

I.e. the slope is larger than the derivative at x1.

Derivative Condition for Concave Function Derivative Condition for Convex Function

If x ∈ Rn, then f ∈ C1 is concave iff ∀x1, x2 ∈ domain of f

f
(
x2
)
− f

(
x1
)
≤ ∇f

(
x1
) (
x2 − x1

)
For convex replace "≤" with "≥".

Let z = f (x) ∈ C2 and x ∈ Rn. Then f is concave iff ∀x ∈ domain of f we have d2z is negative

semidefinite. If d2z is negative definite, then f is strictly concave (but not "only if"). Replace

"negative" with "positive" for convexity.

11.9 Global extrema, convexity and concavity again

Suppose a point x0 satisfies the FONC: you have found a critical point of the function f . Then

you examine the SOC: if q = d2z is negative (positive) definite, then x0 is at a local maximum
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(minimum), i.e. x0 is a local maximizer (minimizer). This implies examining the Hessian at x0.

But if you know something about the concavity/convexity properties of f , then you know

something more. If f is concave (convex), then you know that if x0 satisfies the FONC, then x0

is at a global maximum (minimum), i.e. x0 is a global maximizer (minimizer). And if f is strictly

concave (convex), then you know that x0 is at a unique global maximum (minimum), i.e. x0 is a

unique global maximizer (minimizer).

Determining concavity/convexity (strict or not) of a function f implies examining the Hessian

at all points of its domain. As noted above, sign definiteness of d2z is determined by the sign

definiteness of the Hessian. Thus

If H is


positive definite

positive semidefinite
negative semidefinite
negative definite

 ∀x in the domain, then f is


strictly convex
convex
concave

strictly concave

 .

11.10 Convex sets in Rn

This is related, but distinct from convex and concave functions.

Define: convex set in Rn. Let the set S ⊂ Rn. If ∀x, y ∈ S and ∀θ ∈ [0, 1] we have

θx+ (1− θ) y ∈ S

then S is a convex set. (This definition holds in other spaces as well.) Essentially, a set is convex

if it has no "holes" (no doughnuts) and the boundary is not "dented" (no bananas).

11.10.1 Relation to convex functions 1

The concavity condition ∀x, y ∈ domain of f and ∀θ ∈ (0, 1) we have

θf (x) + (1− θ) f (y) ≤ f [θx+ (1− θ) y]

assumes that the domain is convex: ∀x, y ∈ domain of f and ∀θ ∈ (0, 1)

θx+ (1− θ) y ∈ domain of f ,

because f [θx+ (1− θ) y] must be defined.

11.10.2 Relation to convex functions 2

Necessary condition for convex function: if f is a convex function, then ∀k ∈ R the set

S = {x : f (x) ≤ k}
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Figure 1: Convex set, but function is not convex

is a convex set.

This is NOT a suffi cient condition, i.e. the causality runs from convexity of f to convexity of

S, but not vice versa. Convexity of S does not necessarily imply convexity of f . But violation of

convexity of S implies non-convexity of f .

Convex set, convex function

If f is a concave function, then the set

S = {x : f (x) ≥ k} , k ∈ R

60



is a convex set. This is NOT a suffi cient condition, i.e. the causality runs from concavity of f to

convexity of S, but not vice versa. Convexity of S does not necessarily imply concavity of f .

Convex set, concave function

• This is why there is an intimate relationship between convex preferences and concave utility
functions.

11.11 Example: input decisions of a firm

π = R− C = pq − wl − rk .

Let p, w, r be given, i.e. the firm is a price taker in a competitive economy. To simplify, let output,

q, be the numeraire, so that p = 1 and everything is then denominated in units of output:

π = q − wl − rk .

Production function with decreasing returns to scale:

q = kαlα , α < 1/2

so that

π = kαlα − wl − rk .

Choose {k, l} to maximize π. FONC:

∂π

∂k
= αkα−1lα − r = 0

∂π

∂k
= αkαlα−1 − w = 0 .
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SOC: check properties of the Hessian

H =

 ∂2π

∂

(
k
l

)
∂
(
k l

)
 =

[
α (α− 1) kα−2lα α2kα−1lα−1

α2kα−1lα−1 α (α− 1) kαlα−2

]
.

|H1| = α (α− 1) kα−2lα < 0 ∀k, l > 0. |H2| = |H| = α2 (1− 2α) k2(α−1)l2(α−1) > 0 ∀k, l. Therefore
π is a strictly concave function and the extremum will be a maximum.

From the FONC:

αkα−1lα = α
q

k
= r

αkαlα−1 = α
q

l
= w

so that rk = wl = αq. Thus

k =
αq

r

l =
αq

w
.

Using this in the production function:

q = kαlα =
(αq
r

)α (αq
w

)α
= α2αq2α

(
1

rw

)α
= α

2α
1−2α

(
1

rw

) α
1−2α

,

so that

k = α
1

1−2α

(
1

r

) 1−α
1−2α

(
1

w

) α
1−2α

l = α
1

1−2α

(
1

r

) α
1−2α

(
1

w

) 1−α
1−2α

.
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12 Optimization under equality constraints

12.1 Example: the consumer problem

Objective : Choose {x, y} to maximize u (x, y)

Constraint(s) : s.t. (x, y) ∈ B = {(x, y) : x, y ≥ 0, xpx + ypy ≤ I}

(draw the budget set, B). Under some conditions, which we will explore soon, we will get the

result that the consumer chooses a point on the budget line, xpx + ypy = I (nonsatiation and

quasi-concavity of u). Additional conditions ensure that that x, y ≥ 0 is trivially satisfied. So we

state a simpler problem:

Objective : Choose {x, y} to maximize u (x, y)

Constraint(s) : s.t. xpx + ypy = I .

The optimum will be denoted (x∗, y∗). The value of the problem is u (x∗, y∗). Constraints can

only hurt the unconstrained value (although they may not). This will happen when the uncon-

strained optimum point is not in the constraint set. E.g.,

Choose {x, y} to maximize x− x2 + y − y2

has a maximum at (x∗, y∗) = (1/2, 1/2), but this point is not on the line x + y = 2, so applying

this constraint will move us away from the unconstrained optimum and hurt the objective.

12.2 Lagrange method: one constraint, two variables

Let f, g ∈ C1. Suppose that (x∗, y∗) is the solution to

Choose {x, y} to maximize z = f (x, y) , s.t. g (x, y) = c

and that (x∗, y∗) is not a critical point of g (x, y), i.e. not both gx 6= 0 and gy 6= 0 at (x∗, y∗).

Then there exists a number λ∗ such that (x∗, y∗, λ∗) is a critical point of

L = f (x, y) + λ [c− g (x, y)] ,
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i.e.

∂L
∂λ

= c− g (x, y) = 0

∂L
∂x

= fx − λgx = 0

∂L
∂y

= fy − λgy = 0 .

From this it follows that at (x∗, y∗, λ∗)

g (x∗, y∗) = c

λ∗ = fx/gx

λ∗ = fy/gy .

• The last equations make it clear why we must check the constraint qualifications, that not
both gx 6= 0 and gy 6= 0 at (x∗, y∗), i.e. check that (x∗, y∗) is not a critical point of g (x, y).

For linear constraints this will be automatically satisfied.

• Always write +λ [c− g (x, y)].

If the constraint qualification fails then this means that we cannot freely search for an optimum.

It implies that the theorem does not apply; it does not imply that there is no optimum. Recall that

the gradient ∇g (x, y) is a vector that tells you in which direction to move in order to increase g as

much as possible at some point (x, y). But if both gx = 0 and gy = 0 at (x∗, y∗), then this means

that we are not free to search in any direction.

Recall that for unconstrained maximum, we must have

dz = fxdx+ fydy = 0 ,

and thus
dy

dx
= −fx

fy

In the constrained problem this still holds– as we will see below– except that now dx and dy are

not arbitrary: they must satisfy the constraint, i.e.

gxdx+ gydy = 0 .

Thus
dy

dx
= −gx

gy
.
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From both of these we obtain
gx
gy

=
fx
fy

,

i.e. the objective and the constraint are tangent at the optimum. This follows from

fy
gy

= λ =
fx
gx

.

A graphic interpretation. Think of the gradient as a vector that points in a particular

direction. This direction is where to move in order to increase the function the most, and is

perpendicular to the isoquant of the function (because, by definition, movement on the isoquant

does not change the value). Notice that we have

∇f (x∗, y∗) = λ∗∇g (x∗, y∗)

(fx∗ , fy∗) = λ∗ (gx∗ , gy∗) .

This means that the constraint and the isoquant of the objective at the optimal value are parallel.

They may point in the same direction if λ > 0 or in opposite directions if λ < 0.

Gradient Condition for Optimization

In the figure above: the upper curve is given by the isoquant f (x) = f (x∗) and the lower curve

is given by g (x) = c.

12.3 λ is the shadow cost of the constraint

λ tells you how much f would increase if we relax the constraint by one unit, i.e. increase or

decrease c by 1 (for equality constraints, it will be either-or). For example, if the objective is utility
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and the constraint is your budget in euros, then λ is in terms of utils/euro. It tells you how many

more utils you would get if you had one more euro.

Write the system of equations that define the optimum as identities, evaluated at (λ∗, x∗, y∗)

F 1 (λ, x, y) = c− g (x, y) = 0

F 2 (λ, x, y) = fx − λgx = 0

F 2 (λ, x, y) = fy − λgy = 0 .

This is a system of functions of the form F (λ, x, y, c) = 0. If all these functions are C1 and |J | 6= 0

at (λ∗, x∗, y∗), where

|J | =
∣∣∣∣ ∂F

∂ (λ x y)

∣∣∣∣ =

∣∣∣∣∣∣
0 −gx −gy
−gx fxx − λgxx fxy − λgxy
−gy fxy − λgxy fyy − λgyy

∣∣∣∣∣∣ ,
then by the implicit function theorem there exits a set of functions λ∗ = λ (c), x∗ = x (c) and

y∗ = y (c) with well defined derivatives (they are differentiable). It follows that there is a sense in

which dλ∗/dc is meaningful.

Now consider the value of the Lagrangian

L∗ = L (λ∗, x∗, y∗) = f (x∗, y∗) + λ∗ [c− g (x∗, y∗)] ,

where we remember that (x∗, y∗, λ∗) is a critical point. Take the total derivative w.r.t. c:

dL∗
dc

= fx
dx∗

dc
+ fy

dy∗

dc
+
dλ∗

dc
[c− g (x∗, y∗)] + λ∗

[
1− gx

dx∗

dc
− gy

dy∗

dc

]
=

dx∗

dc
[fx − λ∗gx] +

dy∗

dc
[fy − λ∗gy] +

dλ∗

dc
[c− g (x∗, y∗)] + λ∗

= λ∗ .

Therefore
dL∗
dc

= λ∗ =
∂L∗
∂c

.

This is a manifestation of the envelope theorem (see below). But we also know that at the

optimum we have

c− g (x∗, y∗) = 0 .

So at the optimum we have

L (x∗, y∗, λ∗) = f (x∗, y∗) ,

and therefore
dL∗
dc

=
df∗

dc
= λ∗ .
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12.4 The envelope theorem

Let x∗ be a critical point of f (x, θ). Then

df (x∗, θ)

dθ
=
∂f (x∗, θ)

∂θ
.

Proof: since at x∗ we have fx (x∗, θ) = 0, we have

df (x∗, θ)

dθ
=
∂f (x∗, θ)

∂x

dx

dθ
+
∂f (x∗, θ)

∂θ
=
∂f (x∗, θ)

∂θ
�

• Drawing of an "envelope" of functions and optima for f (x∗, θ1), f (x∗, θ2), ...

12.5 Lagrange method: one constraint, many variables

Let f (x) , g (x) ∈ C1 and x ∈ Rn. Suppose that x∗ is the solution to

Choose x to maximize f (x) , s.t. g (x) = c .

and that x∗ is not a critical point of g (x) = c. Then there exists a number λ∗ such that (x∗, λ∗) is

a critical point of

L = f (x) + λ [c− g (x)] ,

i.e.

∂L
∂λ

= c− g (x, y) = 0

∂L
∂xi

= fi − λgi = 0 , i = 1, 2, ...n .

• The constraint qualification is similar to above:

∇g∗ = (g1 (x∗) , g2 (x∗) , ...gn (x∗)) 6= 0 .

12.6 Lagrange method: many constraints, many variables

Let f (x) , gj (x) ∈ C1 j = 1, 2, ...m, and x ∈ Rn. Suppose that x∗ is the solution to

Choose x to maximize f (x) , s.t. g1 (x) = c1, g
2 (x) = c2, ...g

m (x) = cm .

and that x∗ satisfies the constraint qualifications. Then there exists m numbers λ∗1, λ
∗
2, ...λ

∗
m such

that (x∗, λ∗) is a critical point of

L = f (x) +

m∑
j=1

λj
[
cj − gj (x)

]
,
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i.e.

∂L
∂λj

= cj − gj (x) = 0 , j = 1, 2, ...m

∂L
∂xi

= fi − λgi = 0 , i = 1, 2, ...n .

• The constraint qualification now requires that

rank

[
∂g

∂x′

]
m×n

= m ,

which is as large as it can possibly be. This means that we must have m ≤ n, because

otherwise the maximal rank would be n < m. This constraint qualification, as all the others,

means that there exists a n − m dimensional tangent hyperplane (a Rn−m vector space).

Loosely speaking, it ensures that we can construct tangencies freely enough.

12.7 Constraint qualifications in action

This example shows that when the constraint qualification is not met, the Lagrange method does

not work.

Choose {x, y} to maximize x, s.t. x3 + y2 = 0 .

The constraint set is given by

y2 = −x3 ⇒ y = ±x3/2 for x ≤ 0 ,

i.e.

C =
{

(x, y) : x ≤ 0 and (y = x3/2 or y = −x3/2)
}
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Notice that (0, 0) is the maximum point. Evaluate the gradient of g at the optimum:

∇g =
(

3x2 2y
)

∇g (0, 0) = (0, 0) .

This violates the constraint qualifications, since (0, 0) is a critical point of g (x, y).

Now check the Lagrangian

L = x+ λ
(
−x3 − y2

)
Lλ = −x3 − y2 = 0

Lx = 1− λ3x2 = 0 ⇒ λ = 1/3x2

Ly = −λ2y = 0 ⇒ either λ = 0 or y = 0 .

• Suppose x = 0. Then λ =∞ —not admissible.

• Suppose x 6= 0. Then λ > 0 and thus y = 0. But then from the constraint set x = 0 —a

contradiction.

Comment: This method of trial and error is general, as you will see below in other examples.

12.8 Constraint qualifications and the Fritz-John Theorem

Let f (x) , g (x) ∈ C1, x ∈ Rn. Suppose that x∗ is the solution to

Choose x to maximize f (x) , s.t. g (x) = c

Then there exists two numbers λ∗0 and λ
∗
1 such that (λ∗1, x

∗) is a critical point of

L = λ0f (x) + λ1 [c− g (x)] ,

i.e.

∂L
∂λ

= c− g (x) = 0

∂L
∂xi

= λ0fi − λ1gi = 0 , i = 1, 2, ...n

and

λ∗0 ∈ {0, 1}

{λ∗0, λ∗1} 6= (0, 0) .

This generalizes to multi constraint problems.
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12.9 Second order conditions

We want to know whether d2z is negative or positive definite on the constraint set. Using the

Lagrange method we find a critical point (x∗, λ∗) of the problem

L = f (x) + λ [c− g (x)] .

But this is not a maximum of the L problem. In fact, (x∗, λ∗) is a saddle point: perturbations

of x around x∗ will hurt the objective, while perturbations of λ around λ∗ will help the objective.

If (x∗, λ∗) is a critical point of the L problem, and we wish to maximize f (x) on the constraint

set, then: holding λ∗ constant, x∗ maximizes the value of the problem; and holding x∗ constant, λ∗

minimizes the value of the problem. This makes sense: lowering the shadow cost of the constraint

as much as possible at the point that maximizes the value. And vice versa if we wish to minimize

f (x) on the constraint set.

This complicates characterizing the second order conditions, to distinguish maxima from min-

ima. We want to know whether d2z is negative or positive definite on the constraint set.

Consider the two variables case

dz = fxdx+ fydy .

This holds for any dx and dy. From g (x, y) = c we have

gxdx+ gydy = 0 ,

i.e. dx and dy are not simultaneously arbitrary. We can treat dy as a function of x and y

dy = −gx
gy
dx

and use this when we differentiate dz the second time:

d2z = d (dz) =
∂ (dz)

∂x
dx+

∂ (dz)

∂y
dy

=
∂

∂x
[fxdx+ fydy] dx+

∂

∂y
[fxdx+ fydy] dy

=

[
fxxdx+ fyxdy + fy

∂ (dy)

∂x

]
dx+

[
fxydx+ fyydy + fy

∂ (dy)

∂y

]
dy

= fxxdx
2 + 2fxydxdy + fyydy

2 + fyd
2y ,

where we use

d2y = d (dy) =
∂ (dy)

∂x
dx+

∂ (dy)

∂y
dy .

This is not a quadratic form, but we use g (x, y) = c again to transform it into one, by eliminating
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d2y. Differentiate

dg = gxdx+ gydy = 0 ,

using dy as a function of x and y again:

d2g = d (dg) =
∂ (dg)

∂x
dx+

∂ (dg)

∂y
dy

=
∂

∂x
[gxdx+ gydy] dx+

∂

∂y
[gxdx+ gydy] dy

=

[
gxxdx+ gyxdy + gy

∂ (dy)

∂x

]
dx+

[
gxydx+ gyydy + gy

∂ (dy)

∂y

]
dy

= gxxdx
2 + 2gxydxdy + gyydy

2 + gyd
2y

= 0 .

Thus

d2y = − 1

gy

[
gxxdx

2 + 2gxydxdy + gyydy
2
]
.

Use this in the expression for d2z to get

d2z =

(
fxx − fy

gxx
gy

)
dx2 + 2

(
fxy − fy

gxy
gy

)
dxdy +

(
fyy − fy

gyy
gy

)
dy2 .

From the FONCs we have

λ =
fy
gy

and by differentiating the FONCs we get

Lxx = fxx − λgxx
Lyy = fyy − λgyy
Lxy = fxy − λgxy .

We use all this to get

d2z = Lxxdx2 + 2Lxydxdy + Lyydy2 .

This is a quadratic form, but not a standard one, because, dx and dy are not arbitrary. As

before, we want to know the sign of d2z, but unlike the unconstrained case, dx and dy must satisfy

dg = gxdx+ gydy = 0. Thus, we have second order necessary conditions (SONC):

• If d2z is negative semidefinite s.t. dg = 0, then maximum.

• If d2z is positive semidefinite s.t. dg = 0, then minimum.

The second order suffi cient conditions are (SOSC):
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• If d2z is negative definite s.t. dg = 0, then maximum.

• If d2z is positive definite s.t. dg = 0, then minimum.

These are less stringent conditions relative to unconstrained optimization, where we required con-

ditions on d2z for all values of dx and dy. Here we consider only a subset of those values, so the

requirement is less stringent, although slightly harder to characterize.

12.10 Bordered Hessian and constrained optimization

Using the notations we used before for a Hessian,

H =

[
a h
h b

]
(except that here it will be the Hessian of L, not of f) we can write

d2z = Lxxdx2 + 2Lxydxdy + Lyydy2

as

d2z = adx2 + 2hdxdy + bdy2 .

We also rewrite

gxdx+ gydy = 0

as

αdx+ βdy = 0 .

The second order conditions involve the sign of

d2z = adx2 + 2hdxdy + bdy2

s.t. 0 = αdx+ βdy .

Eliminate dy using

dy = −α
β
dx

to get

d2z =
[
aβ2 − 2hαβ + bα2

] dx2

β2 .

The sign of d2z depends on the square brackets. For a maximum we need it to be negative. It

turns out that [
aβ2 − 2hαβ + bα2

]
= −

∣∣∣∣∣∣
0 α β
α a h
β h b

∣∣∣∣∣∣ ≡ − ∣∣H∣∣ .
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Notice that H contains the Hessian, and is bordered by the gradient of the constraint. Thus, the

term "bordered Hessian".

The n-dimensional case with one constraint

Let f (x) , g (x) ∈ C2, x ∈ Rn. Suppose that x∗ is a critical point of the Lagrangian problem. Let

Hn×n =

[
∂2L
∂x∂x′

]
be the Hessian of L evaluated at (λ∗ x∗). Let ∇g be a linear constraint on dn×1 (= dxn×1),

evaluated at x∗:

∇g(x∗)d = 0 .

We want to know what is the sign of

d2z = q = d′Hd

such that

∇g(x∗)d = 0 .

The sign definiteness of the quadratic form q depends on the following bordered Hessian

H(n+1)×(n+1) =

[
0 ∇g1×n

∇g′n×1 Hn×n

]
.

Recall that sign definiteness of a matrix depends on the signs of the determinants of the leading

principal minors. Therefore

d2z is
{
positive definite (min)
negative definite (max)

}
s.t. dg = 0 iff

{ ∣∣H3

∣∣ , ∣∣H4

∣∣ , ... ∣∣Hn

∣∣ < 0∣∣H3

∣∣ > 0,
∣∣H4

∣∣ < 0,
∣∣H5

∣∣ > 0, ...

}
,

• Note that in the Chiang and Wainwright text they start from
∣∣H2

∣∣, which they define as the
third leading principal minor and is an abuse of notation. We have one consistent way to

define leading principal minors of a matrix and we should stick to that.

The general case

Let f (x) , gj (x) ∈ C2 j = 1, 2, ...m, and x ∈ Rn. Suppose that (λ∗ x∗) is a critical point of the

Lagrangian problem. Let

Hn×n =

[
∂2L
∂x∂x′

]
be the Hessian of L evaluated at (λ∗ x∗). Let

Am×n =

[
∂g

∂x′

]
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be the set of linear constraints on dn×1 (= dxn×1), evaluated at x∗:

Ad = 0 .

We want to know the sign of

d2z = q = d′Hd

such that

Ad = 0 .

The sign definiteness of the quadratic form q depends on the bordered Hessian

H(m+n)×(m+n) =

[
0m×m Am×n
A′n×m Hn×n

]
.

The sign definiteness of H depends on the signs of the determinants of the leading principal minors.

• For a maximum (d2z negative definite) we require that
∣∣H2m

∣∣ , ∣∣H2m+1

∣∣ ... ∣∣Hm+n

∣∣ alternate
signs, where sign

(∣∣H2m

∣∣) = (−1)m (Dixit). Note that we require m < n, so that 2m < m+n.

• An alternative formulation for a maximum (d2z negative definite) requires that the last n−m
leading principal minors alternate signs, where sign

(∣∣Hn+m

∣∣) = (−1)n (Simon and Blume).

• The formulation in the Chiang and Wainwright text is wrong.

• For a minimum...? We know that searching for a minimum of f is like searching for a maximum
of −f . So one could set up the problem that way and just treat it like a maximization problem.

12.11 Quasiconcavity and quasiconvexity

This is a less restrictive condition on the objective function.

• Definition: a function f is quasiconcave iff ∀x1, x2 ∈ domain of f , which is assumed to be
a convex set, and ∀θ ∈ (0, 1) we have

f
(
x2
)
≥ f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
≥ f

(
x1
)
.

For strict quasiconcavity replace the second inequality with a strict inequality, but not the

first. More simply put

f
[
θx1 + (1− θ)x2

]
≥ min

{
f
(
x2
)
, f
(
x1
)}

.

In words: the image of the convex combination is larger than the lower of the two images.
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• Definition: a function f is quasiconvex iff ∀x1, x2 ∈ domain of f , which is assumed to be
a convex set, and ∀θ ∈ (0, 1) we have

f
(
x2
)
≥ f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
≤ f

(
x2
)
.

For strict quasiconvexity replace the second inequality with a strict inequality, but not the

first. More simply put

f
[
θx1 + (1− θ)x2

]
≤ max

{
f
(
x2
)
, f
(
x1
)}

.

In words: the image of the convex combination is smaller than the higher of the two images.

• Strict quasiconcavity and strict quasiconvexity rule out flat segments.

• θ /∈ {0, 1}.

Quasiconcave Function, not Strictly Strictly Quasiconvex Function

Due to the flat segment, the function on the left is not strictly quasiconcave. Note that neither

of these functions is convex nor concave. Thus, this is a weaker restriction. The following function,

while not convex nor concave, is both quasiconcave and quasiconvex.
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Quasiconcave and Quasiconvex

• Compare definition of quasiconcavity to concavity and then compare graphically.

Properties:

1. If f is linear, then it is both quasiconcave and quasiconvex.

2. If f is (strictly) quasiconcave, then −f is (strictly) quasiconvex.

3. If f is concave (convex), then it is quasiconcave (quasiconvex)– but not only if.

• Note that unlike concave functions, the sum of two quasiconcave functions isNOT necessarily
quasiconcave. Similarly for quasiconvex functions.

Alternative "set" definitions: Let x ∈ Rn.

• f is quasiconcave iff ∀k ∈ R the set

S+
k = {x : f (x) ≥ k} , k ∈ R

is a convex set (for concavity it is "only if", not "iff").

• f is quasiconvex iff ∀k ∈ R the set

S−k = {x : f (x) ≤ k} , k ∈ R

is a convex set (for convexity it is "only if", not "iff").
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These may be easier to verify and more useful. Think of S+
k in the context of utility: S

+
k is the set

of objects that give at least as much utility as k.

Recall that for concavity and convexity the conditions above were necessary, but not suffi cient.

Here, these are "set" definitions, so they are necessary and suffi cient conditions (iff).

Consider a continuously differentiable function f (x) ∈ C1 and x ∈ Rn. Then f is

• quasiconcave iff ∀x1, x2 ∈ domain of f , which is assumed to be a convex set, we have

f
(
x2
)
≥ f

(
x1
)
⇒ ∇f

(
x1
) (
x2 − x1

)
≥ 0 .

In words: the function does not change the sign of the slope more than once.

• quasiconvex iff ∀x1, x2 ∈ domain of f , which is assumed to be a convex set, we have

f
(
x2
)
≥ f

(
x1
)
⇒ ∇f

(
x2
) (
x2 − x1

)
≥ 0 .

In words: the function does not change the sign of the slope more than once.

• For strictness, change the second inequality to a strict one, which rules out flat regions.

Consider a twice continuously differentiable function f (x) ∈ C2 and x ∈ Rn. The Hessian
of f is denoted H and the gradient as ∇f . Define

B =

[
01×1 ∇f1×n
∇f ′n×1 Hn×n

]
(n+1)×(n+1)

.

Conditions for quasiconcavity and quasiconvexity in the positive orthant, x ∈ Rn+ involve the

leading principal minors of B.

Necessary condition: f is quasiconcave on Rn+ if (but not only if) ∀x ∈ Rn+, the leading
principal minors of B follow this pattern

|B2| ≤ 0, |B3| ≥ 0, |B4| ≤ 0, ...

Suffi cient condition: f is quasiconcave on Rn+ only if ∀x ∈ Rn+, the leading principal minors
of B follow this pattern

|B2| < 0, |B3| > 0, |B4| < 0, ...

Finally, there are also explicitly quasiconcave functions.
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• Definition: a function f is explicitly quasiconcave if ∀x1, x2 ∈ domain of f , which is
assumed to be a convex set, and ∀θ ∈ (0, 1) we have

f
(
x2
)
> f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
> f

(
x1
)
.

This rules out flat segments, except at the top of the hill.

Ranking of concavity, from strongest to weakest:

1. strictly concave

2. concave

3. strictly quasiconcave

f
(
x2
)
≥ f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
> f

(
x1
)
.

(no flat regions)

4. explicitly quasiconcave

f
(
x2
)
> f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
> f

(
x1
)
.

(only one flat region allowed, at the top)

5. quasiconcave

f
(
x2
)
≥ f

(
x1
)
⇒ f

[
θx1 + (1− θ)x2

]
≥ f

(
x1
)
.

12.12 Why is quasiconcavity important? Invariance to positive monotone trans-
formation

Quasiconcavity is important because it allows arbitrary cardinality in the utility function, while

maintaining ordinality. Concavity imposes decreasing marginal utility, which is not necessary for

characterization of convex preferences, convex indifference sets and convex upper contour sets.

Only when dealing with risk do we need to impose concavity. We do not need concavity for global

extrema.

Quasiconcave functions preserve quasi concavity under any positive monotone transformation.

Suppose that some utility function u is quasiconcave, i.e. the set S = {x : u (x) ≥ k} is a convex
set ∀k ∈ R. This means that any x ∈ S is at least as good as any x /∈ S. Now consider a positive
monotone transformation of u (x), denoted t (u (x)). Then the set T = {x : t (u (x)) ≥ t (k)} is still
convex ∀k ∈ R. Moreover, T = S, i.e. the same x ∈ S that are at least as good as any x /∈ S are
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the same x ∈ T that are at least as good as any x /∈ T . A corollary is that if I find a maximizer of
u (x), it is also a maximizer of t (u (x)).

Concave functions DO NOT preserve concavity under all positive monotone transformations.

Proof: By example. −x2 is concave (make sure that you know how to prove this). But e−x
2
– a pos-

itive monotone transformation of −x2– is not concave (it has the shape of the normal distribution

function) �
Note that since concave functions are also quasiconcave, then any positive monotone transfor-

mation will keep it at least quasiconcave, like in the example above: e−x
2
is indeed quasiconcave.

12.13 Why is quasiconcavity important? Global maximum

Suppose that x∗ is the solution to

Choose x to maximize f (x) , s.t. g (x) = c .

If

1. the set {x : g (x) = c} is a convex set, and

2. f is explicitly quasiconcave,

then f (x∗) is a global (constrained) maximum.

If f is strictly quasiconcave, then this global maximum is unique.

• This doesn’t apply for a quasi-concave function (not explicitly, not strictly) because then we
can have several flat regions, not only at the top. This will not allow distinguishing local

maxima from global maximum based only on the properties of f .

12.14 Application: cost minimization

We like apples (a) and bananas (b), but want to reduce the cost of any (a, b) bundle for a given

level of utility (U(
+
a,

+
b)) (or fruit salad, if we want to use a production metaphor).

Choose {a, b} to minimize cost C = apa + bpb, s.t. U (a, b) = u

Set up the appropriate Lagrangian

L = apa + bpb + λ [u− U (a, b)] .

Here λ is in units of $/util: it tells you how much an additional util will cost. If U was a production

function for salad, then λ would be in units of $ per unit of salad, i.e. the price of one unit of salad.
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FONC:

∂L
∂λ

= u− U (a, b) = 0

∂L
∂a

= pa − λUa = 0 ⇒ pa/Ua = λ > 0

∂L
∂b

= pb − λUb = 0 ⇒ pb/Ub = λ > 0 .

Thus

MRS =
Ua
Ub

=
pa
pb

So we have tangency. Let the value of the problem be

C∗ = a∗pa + b∗pb .

Take a total differential at the optimum to get

dC = pada+ pbdb = 0 ⇒ db

da
= −pa

pb
< 0 .

We could also obtain this result from the implicit function theorem, since C (a, b) , U (a, b) ∈ C1

and |J | 6= 0. Yet another way to get this is to see that since U (a, b) = u, a constant,

dU (a, b) = Uada+ Ubdb = 0 ⇒ db

da
= −Ua

Ub
< 0 .

At this stage all we know is that the isoquant for utility slopes downward, and that it is tangent

to the isocost line at the optimum, if the optimum exists.

SOC: [
H
]

=

 0 Ua Ub
Ua −λUaa −λUab
Ub −λUab −λUbb

 .

We need positive definiteness of d2C∗ for a minimum– which requires negative definiteness ofH– so

we need
∣∣H2

∣∣ < 0 and
∣∣H3

∣∣ =
∣∣H∣∣ < 0.

∣∣H2

∣∣ =

∣∣∣∣ 0 Ua
Ua −λUaa

∣∣∣∣ = −U2
a < 0 ,

so this is good (in fact,
∣∣H2

∣∣ is always ≤ 0, just not necessarily < 0). But∣∣H3

∣∣ = 0− Ua [Ua (−λUbb)− (−λUab)Ub] + Ub [Ua (−λUab)− (−λUaa)Ub]

= U2
aλUbb − UaλUabUb − UbUaλUab + U2

b λUaa

= λ
(
U2
aUbb − 2UaUabUb + U2

b Uaa
)
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Without further conditions on U , we do not know whether the expression in the parentheses is

negative or not (λ > 0).

The curvature of the utility isoquant is given by

d

da

(
db

da

)
=

d2b

da2
=

d

da

(
−Ua
Ub

)
= − d

da

(
Ua (a, b)

Ub (a, b)

)
=

= −
(
Uaa + Uab

db
da

)
Ub − Ua

(
Ubb

db
da + Uab

)
U2
b

= −

[
Uaa + Uab

(
−Ua
Ub

)]
Ub − Ua

[
Ubb

(
−Ua
Ub

)
+ Uab

]
U2
b

= −UaaUb − UaUab + U2
aUbb/Ub − UaUab

U2
b

= −UaaU
2
b − 2UaUabUb + U2

aUbb
U3
b

= − 1

U3
b

(
UaaU

2
b − 2UaUabUb + U2

aUbb
)
.

This involves the same expression in the parentheses. If the indifference curve is convex, then
d2b
da2
≥ 0 and thus the expression in the parentheses must be negative. This coincides with the

positive semi-definiteness of d2C∗. Thus, convex isoquants and existence of a global minimum in

this case come together. This would ensure a global minimum, although not a unique one. If
d2b
da2

> 0, then the isoquant is strictly convex and the global minimum is unique, as dC∗ is positive

definite.

• If U is strictly quasiconcave, then indeed the isoquant is strictly convex and the global

minimum is unique.

12.15 Related topics

12.15.1 Expansion paths

Consider the problem described above in Section 12.14. Let a∗ (pa, pb, u) and b∗ (pa, pb, u) be the

optimal quantities of apples and bananas chosen given prices and a level of promised utility (AKA

"demand"). The expansion path is the function b (a) that is given by changes in u, when prices are

fixed.

One way to get this is to notice that the FONCs imply

Ua (a∗, b∗)

Ub (a∗, b∗)
=

pa
pb

U (a∗, b∗) = u ,
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which define a system of equations, which can be written as

F (a∗, b∗, u, pa, pb) = 0 .

Fix prices. By applying the implicit function theorem we get a∗ (u) and b∗ (u). Each level of

u defines a unique level of demand. The expansion path b (a) is the function of all the unique

combinations of a∗ (u) and b∗ (u) at all levels of u.

12.15.2 Homotheticity

This is when the expansion path b (a) is a ray (a straight line starting at the origin). Equivalently,

homotheticity implies that– and is implied by– the ratio b∗(u)
a∗(u) ≡

(
b∗

a∗
)

(u) is constant, not affected

by u.

This is useful when you wish to aggregate over different individuals that may have different

levels of utility. If all have identical and homothetic preferences (i.e., the same expansion path for

all, with the same slope), then relative demand does not depend on levels of utility, only on relative

prices. This is used a lot in international trade theory, where relative prices are what matter for the

patterns of trade, while the levels of trade flows are given in the end by market clearing conditions.

12.15.3 Elasticity of substitution

An elasticity η is defined as the percent change in y that is invoked by a percent change in x:

ηy,x =
dy/y

dx/x
=
dy

dx

x

y
=
d ln y

d lnx
.

an elasticity of substitution is usually referred to as an elasticity that does not change the level of

some function. For example, if

F (y, p) = c ,

then the elasticity of substitution is the percent change in y that is invoked by a percent change in

p. By the implicit function theorem
dy

dp
= −Fp

Fy

and

ηy,p = −Fp
Fy

p

y
.

Elasticities of substitution often arise in the context of optimization. For example, consider the

problem described above in Section 12.14. Let a∗ (pa, pb, u) and b∗ (pa, pb, u) be the optimal quan-

tities of apples and bananas chosen given prices and a level of promised utility (AKA "demand").
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The elasticity of substitution in demand (between a and b) is given by

d (a∗/b∗) / (a∗/b∗)

d (pa/pb) / (pa/pb)
.

This number tells you how much the relative intensity of consumption of a (relative to b) changes

with the relative price of a (relative to b).

12.15.4 Constant elasticity of substitution and relation to Cobb-Douglas

A general production function that exhibits constant elasticity of substitution (CES) is

q = z [αkϕ + (1− α) lϕ]1/ϕ . (5)

q is the quantity of output and k and l are inputs. α ∈ [0, 1] is called the distribution parameter. z

is a level shifter ("productivity" in the output context). The function is CES because a 1 percent

change in the marginal products implies −σ percent change in the input ratio:

d (k/l) / (k/l)

d (MPk/MPl) / (MPk/MPl)
= −σ = − 1

1− ϕ . (6)

To see this, note that

MPk =
∂q

∂k
=

1

ϕ
z [αkϕ + (1− α) lϕ]1/ϕ−1 ϕαkϕ−1

MPl =
∂q

∂l
=

1

ϕ
z [αkϕ + (1− α) lϕ]1/ϕ−1 ϕ (1− α) lϕ−1

so that
MPk
MPl

=
α

1− α

(
k

l

)ϕ−1

=
α

1− α

(
k

l

)−1/σ

.

Taking the total differential we get

d

(
MPk
MPl

)
= − 1

σ

α

1− α

(
k

l

)−1/σ−1

d

(
k

l

)
.

Dividing through by MPk/MPl and rearranging, we get (6).

This general form can be applied as a utility function as well, where q represents a level of

utility and where k and l represent quantities of different goods in consumption.

Now, it follows that when ϕ = 0 we have σ = 1. But you cannot simply plug ϕ = 0 into (5)

because

q = lim
ϕ→0

z [αkϕ + (1− α) lϕ]1/ϕ = ”0∞” .
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In order to find out the expression for q when ϕ = 0 rewrite (5) as

ln (q/z) =
ln [αkϕ + (1− α) lϕ]

ϕ
.

Now take the limit

lim
ϕ→0

ln (q/z) = lim
ϕ→0

ln [αkϕ + (1− α) lϕ]

ϕ
=

0

0
.

Now apply L’Hopital’s Rule:

lim
ϕ→0

ln [αkϕ + (1− α) lϕ]

ϕ
= lim

ϕ→0

αkϕ ln k + (1− α) lϕ ln l

1 · [αkϕ + (1− α) l1−ϕ]
= α ln k + (1− α) ln l .

So that

lim
ϕ→0

ln (q/z) = α ln k + (1− α) ln l

or

q = zkαl1−α , (7)

which is the familiar Cobb-Douglas production function. It follows that (7) is a particular case of

(5) with σ = 1.

Note: to get this result we had to have the distribution parameter α. Without it, you would

not get this result.
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13 Optimization with inequality constraints

13.1 One inequality constraint

Let f (x) , g (x) ∈ C1, x ∈ Rn. The problem is

Choose x to maximize f (x) , s.t. g (x) ≤ c .

Write the constraint in a "standard way"

g (x)− c ≤ 0 .

Suppose that x∗ is the solution to

Choose x to maximize f (x) , s.t. g (x)− c ≤ 0

and that if the g (x) − c ≤ 0 constraint binds at x∗– i.e., g(x∗) = c– then x∗ is not a critical

point of g (x), i.e., the constraint qualifications are not violated and ∇g (x∗) 6= 0. Write

L = f (x) + λ [c− g (x)] .

Then there exists a number λ∗ such that

(1) :
∂L
∂xi

= fi − λ∗gi = 0 , i = 1, 2, ...n

(2) : λ∗ [c− g (x, y)] = 0

(3) : λ∗ ≥ 0

(4) : g (x) ≤ c .

• The standard way: write g (x)−c ≤ 0 and then flip it in the Lagrangian function λ [c− g (x)].

• Conditions 2 and 3 are called complementary slackness conditions. If the constraint is
not binding, then changing c a bit will not affect the value of the problem; in that case λ = 0.

Conditions 1-4 in the Chiang and Wainwright text are written differently, although they are an

equivalent representation:

(i) :
∂L
∂xi

= fi − λgi = 0 , i = 1, 2, ...n

(ii) :
∂L
∂λ

= [c− g (x, y)] ≥ 0

(iii) : λ ≥ 0

(iv) : λ [c− g (x, y)] = 0 .
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Notice that from (ii) we get g (x) ≤ c. If g (x) < c, then Lλ > 0.

13.2 One inequality constraint and one non-negativity constraint

There is really nothing special about this problem, but it is worthwhile setting it up, for practice.

Let f (x) , g (x) ∈ C1, x ∈ Rn. The problem is

Choose x to maximize f (x) , s.t. g (x) ≤ c and x ≥ 0 .

Rewrite this as

Choose x to maximize f (x) , s.t. g (x)− c ≤ 0 and − x− 0 ≤ 0 .

Suppose that x∗ is the solution to this problem and that x∗ does not violate the constraint quali-

fications, i.e. it is not a critical point of the constraint set (to be defined below). Write down the

Lagrangian function

L = f (x) + λ [c− g (x)] + ϕ [x] .

Then there exist two numbers λ∗ and ϕ∗ such that

(1) :
∂L
∂xi

= fi − λgi + ϕ = 0 , i = 1, 2, ...n

(2) : λ [c− g (x, y)] = 0

(3) : λ ≥ 0

(4) : g (x) ≤ c

(5) : ϕ [x] = 0

(6) : ϕ ≥ 0

(7) : −x ≤ 0 ⇔ x ≥ 0 .

• The constraint qualification is that x∗ is not a critical point of the constraints that bind.
If only g (x) = c binds, then we require ∇g (x∗) 6= 0. See the general case below.

The text gives again a different– and I argue less intuitive– formulation. The Lagrangian is set

up without explicitly mentioning the non-negativity constraints

Z = f (x) + ϕ [c− g (x)] .
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In the text the FONCs are written as

(i) :
∂Z
∂xi

= fi − ϕgi ≤ 0

(ii) : xi ≥ 0

(iii) : xi
∂Z
∂xi

= 0 , i = 1, 2, ...n

(iv) :
∂Z
∂ϕ

= [c− g (x)] ≥ 0

(v) : ϕ ≥ 0

(vi) : ϕ
∂Z
∂ϕ

= 0 .

The unequal treatment of different constraints is confusing. My method treats all constraints

consistently. A non-negativity constraint is just like any other.

13.3 The general case

Let f (x) , gj (x) ∈ C1, x ∈ Rn, j = 1, 2, ...m. The problem is

Choose x to maximize f (x) , s.t. gj (x) ≤ cj , j = 1, 2, ...m .

Write the the problem in the standard way

Choose x to maximize f (x) , s.t. gj (x)− cj ≤ 0 , j = 1, 2, ...m .

Write down the Lagrangian function

L = f (x) +
m∑
j=1

λj
[
cj − gj (x)

]
.

Suppose that x∗ is the solution to the problem above and that x∗ does not violate the constraint

qualifications (see below). Then there exists m numbers λ∗j , j = 1, 2, ...m such that

(1) :
∂L
∂xi

= fi −
m∑
j=1

λjg
j
i (x) = 0 , i = 1, 2, ...n

(2) : λj
[
cj − gj (x)

]
= 0

(3) : λj ≥ 0

(4) : gj (x) ≤ cj , j = 1, 2, ...m .

• The constraint qualifications are as follows. Consider all the binding constraints. Count
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them by jb = 1, 2, ...mb. Then we must have that the rank of

[
∂gB (x∗)

∂x′

]
=


∂g1(x∗)
∂x′

∂g2(x∗)
∂x′
...

∂gmb (x∗)
∂x′


mb×n

is mb, as large as possible.

13.4 Minimization

It is worthwhile to consider minimization separately, although minimization of f is just like maxi-

mization of −f . We compare to maximization.
Let f (x) , g (x) ∈ C1, x ∈ Rn. The problem is

Choose x to maximize f (x) , s.t. g (x) ≤ c .

Rewrite as

Choose x to maximize f (x) , s.t. g (x)− c ≤ 0

Write down the Lagrangian function

L = f (x) + λ [c− g (x)] .

FONCs

(1) :
∂L
∂xi

= fi − λgi = 0 , i = 1, 2, ...n

(2) : λ [c− g (x, y)] = 0

(3) : λ ≥ 0

(4) : g (x) ≤ c .

Compare this to

Choose x to minimize h (x) , s.t. g (x) ≥ c .

Rewrite as

Choose x to minimize h (x) , s.t. g (x)− c ≥ 0

Write down the Lagrangian function

L = h (x) + λ [c− g (x)] .
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FONCs

(1) :
∂L
∂xi

= hi − λgi = 0 , i = 1, 2, ...n

(2) : λ [c− g (x, y)] = 0

(3) : λ ≥ 0

(4) : g (x) ≥ c .

Everything is the same. Just pay attention to the inequality setup correctly. This will be equivalent.

Consider the problem

Choose x to maximize − h (x) , s.t. g (x) ≥ c .

Rewrite as

Choose x to maximize − h (x) , s.t. c− g (x) ≤ 0 .

and set up the proper Lagrangian function for maximization

L = −h (x) + λ [g (x)− c] .

This will give the same FONCs as above.

13.5 Example

Choose {x, y} to maximize min {ax, by} , s.t. xpx + ypy ≤ I ,

where a, b, px, py > 0. Convert this to the following problem

Choose {x, y} to maximize ax, s.t. ax ≤ by, xpx + ypy − I ≤ 0 .

This is equivalent, because given a level of y, we will never choose ax > by, nor can the objective

exceed by by construction.

Choose {x, y} to maximize ax, s.t. ax− by ≤ 0, xpx + ypy − I ≤ 0 .

Set up the Lagrangian

L = ax+ λ [I − xpx − ypy] + ϕ [by − ax] .

89



FONC:

1 : Lx = a− λpx − aϕ = 0

2 : Ly = −λpy + bϕ = 0

3 : λ [I − xpx − ypy] = 0

4 : λ ≥ 0

5 : xpx + ypy ≤ I

6 : ϕ [by − ax] = 0

7 : ϕ ≥ 0

8 : ax ≤ by .

The solution process is a trial and error process. The best way is to start by checking which

constraints do not bind.

1. Suppose ϕ = 0. Then from 2: −λpy = 0 ⇒ λ = 0 ⇒ from 1: a− aϕ = 0 ⇒ ϕ = 1 > 0 —

a contradiction. Therefore ϕ > 0 must hold. Then from 6: ax = by ⇒ y = ax/b.

2. Suppose λ = 0 (while ϕ > 0). Then from 2: bϕ = 0 ⇒ ϕ = 0 —a contradiction (even if ϕ = 0,

we would reach another contradiction from 1: a = 0). Therefore λ > 0. Then xpx + ypy = I

⇒ xpx + axpy/b = I ⇒ x (px + apy/b) = I ⇒ x∗ = I/ (px + apy/b), y∗ = aI/ (bpx + apy).

Solving for the multipliers (which is an integral part of the solution) involves solving 1 and 2:

λpx + aϕ = a

λpy − bϕ = 0 .

This can be written in matrix notation[
px a
py −b

] [
λ
ϕ

]
=

[
a
0

]
.

The solution requires nonsingular matrix:∣∣∣∣ px a
py −b

∣∣∣∣ = −bpx − apy < 0 .
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Solving by Cramer’s Rule:

λ∗ =

∣∣∣∣ a a
0 −b

∣∣∣∣
−bpx − apy

=
ab

bpx + apy
> 0

ϕ∗ =

∣∣∣∣ px a
py 0

∣∣∣∣
−bpx − apy

=
apy

bpx + apy
> 0 .

Try to build economic interpretations for the shadow costs:

λ∗ =
ab

bpx + apy
=

a

px + a
bpy

.

λ∗ tells you how many more utils you would get if income (I) increased by one unit. What do you

do with this additional unit of income? You spend it on x and y– optimally: for each x you buy,

you also buy a/b units of y. How much does this cost you? Exactly the denominator of λ∗. So you

get 1/
(
px + a

bpy
)
additional units of x for each unit of income (at the margin). And each one gives

you an additional a utils.

Finally, we check the constraint qualifications. Since both constraints bind (λ∗ > 0, ϕ∗ > 0),

we must have a rank of two for the matrix

∂

[
xpx + ypy − I

ax− by

]
∂
[
x y

] =

[
px py
a −b

]
.

In this case we can verify that the rank is two by the determinant, since this is a square 2 × 2

matrix: ∣∣∣∣ px py
a −b

∣∣∣∣ = −bpx − apy < 0 .

It is no accident that the determinant is the same as above.

13.6 Another example

Choose {x, y} to maximize x2 + x+ 4y2, s.t. 2x+ 2y ≤ 1 , x, y ≥ 0

Rewrite as

Choose {x, y} to maximize x2 + x+ 4y2, s.t. 2x+ 2y − 1 ≤ 0 , − x ≤ 0 , − y ≤ 0
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Consider the Jacobian of the constraints

∂

 2x+ 2y
−x
−y


∂ [x y]

=

 2 2
−1 0
0 −1

 .

This has rank 2 for any submatrix ∀ (x, y) ∈ R2, and since at most two constaraints can bind, the

constraint qualifications are never violated. The constraint set is a triangle: all the constraints are

linear and independent, so the constraint qualification will not fail.

Set up the Lagrangian function

L = x2 + x+ 4y2 + λ [1− 2x− 2y] + ϕ [x] + β [y]

FONCs

Lx = 2x+ 1− 2λ+ ϕ = 0

Ly = 8y − 2λ+ β = 0

λ [1− 2x− 2y] = 0 λ ≥ 0 2x+ 2y ≤ 1
ϕx = 0 ϕ ≥ 0 x ≥ 0
βy = 0 β ≥ 0 y ≥ 0

1. From Lx = 0 we have

2x+ 1 + ϕ = 2λ > 0

with strict inequality, because x ≥ 0 and ϕ ≥ 0. Thus λ > 0 and the constraint

2x+ 2y = 1

binds, so that

y = 1/2− x or x = 1/2− y .

2. Suppose ϕ > 0. Then x = 0 ⇒ y = 1/2 ⇒ β = 0 ⇒ λ = 2 ⇒ ϕ = 3. A candidate

solution is (x∗, y∗) = (0, 1/2).

3. Suppose ϕ = 0. Then

2x+ 1 = 2λ .

From Ly = 0 we have

8y + β = 2λ .
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Combining the two we get

2x+ 1 = 8y + β

2 (1/2− y) + 1 = 8y + β

2− 2y = 8y + β

10y + β = 2 .

The last result tells us that we cannot have both β = 0 and y = 0, because we would get

0 = 2 —a contradiction (also because then we would get λ = 0 from Ly = 0). So either β = 0

or y = 0 but not both.

(a) Suppose y = 0. Then x = 1/2 ⇒ λ = 1 ⇒ β = 2. A candidate solution is

(x∗, y∗) = (1/2, 0).

(b) Suppose y > 0. Then β = 0 ⇒ y = 0.2 ⇒ x = 0.3 ⇒ λ = 0.8. A candidate solution

is (x∗, y∗) = (0.3, 0.2).

Eventually, we need to evaluate the objective function with each candidate to see which is the

global maximizer.

13.7 The Kuhn-Tucker suffi ciency theorem

Let f (x) , gj (x) ∈ C1, j = 1, 2, ...m. The problem is

Choose x ∈ Rn to maximize f (x) ,

s.t. x ≥ 0 and gj (x) ≤ cj , j = 1, 2, ...m .

Theorem: if

1. f is concave on Rn,

2. gj are convex on Rn,

3. x∗ satisfies the FONCs of the Lagrangian

then x∗ is a global maximum– not necessarily unique.

• We know: if gj (x) are convex then
{
x : gj (x) ≤ cj

}
are convex sets. One can show that

the intersection of convex sets is also a convex set, so that the constraint set is also convex.

The theorem says that trying to maximize a concave function on a convex set give a global

maximum, if it exists. Whether it exists on the border or not, the FONCs will detect it.
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• Also note that if f is concave, then the set {x : f (x) ≥ k} is convex. In particular, the set
{x : f (x) ≥ f (x∗)} is also convex: the upper contour set is convex.

But these are strong conditions on our objective and constraint functions. The next theorem

relaxes things quite a bit.

13.8 The Arrow-Enthoven suffi ciency theorem

Let f (x) , gj (x) ∈ C1, j = 1, 2, ...m. The problem is

Choose x ∈ Rn to maximize f (x) ,

s.t. x ≥ 0 and gj (x) ≤ cj , j = 1, 2, ...m .

Theorem: If

1. f is quasiconcave on Rn+,

2. gj are quasiconvex on Rn+,

3. x∗ satisfies the FONCs of the Kuhn-Tucker Lagrangian,

4. Any one of the following conditions on f holds:

(a) ∃i such that fi (x∗) < 0.

(b) ∃i such that fi (x∗) > 0 and x∗i > 0 (xi ≥ 0 does not bind in the ith dimension).

(c) ∇f (x∗) 6= 0 and f ∈ C2 around x∗.

(d) f (x) is concave.

then x∗ is a global maximum, not necessarily unique.

Arrow-Enthoven constraint qualification test for a maximization problem: If

1. gj (x) ∈ C1 are quasiconvex,

2. ∃x0 ∈ Rn+ such that all constraints are slack,

3. Any one of the following holds:

(a) gj (x) are convex.

(b) ∂g (x) /∂x′ 6= 0 ∀x in the constraint set.

then the constraint qualification is not violated.
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13.9 Envelope theorem for constrained optimization

Recall the envelope theorem for unconstrained optimization: if x∗ is a critical point of f (x, θ).

Then
df (x∗, θ)

dθ
=
∂f (x∗, θ)

∂θ
.

This was due to ∂f(x∗,θ)
∂x = 0.

Now we face a more complicated problem:

Choose x ∈ Rn to maximize f (x, θ) , s.t. g (x, θ) = c .

For a problem with inequality constraints we simply use only those constraints that bind. We will

consider small perturbations of θ, so small that they will not affect which constraint binds. Set up

the Lagrangian function

L = f (x, θ) + λ [c− g (x, θ)] .

FONCs

Lλ = c− g (x, θ) = 0

Lxi = fi (x, θ)− λgi (x, θ) = 0 , i = 1, 2, ...n

We apply the implicit function theorem to this set of equations to get ∃x∗ (θ) and λ∗ (θ) for which

there well defined derivatives around (λ∗, x∗). We know that at the optimum we have that the

value of the problem is the value of the Lagrangian function

f (x∗, θ) = L∗ = f (x∗, θ) + λ∗ [c− g (x∗, θ)]

= f (x∗ (θ) , θ) + λ∗ (θ) [c− g (x∗ (θ) , θ)] .

Define the value of the problem as

v (θ) = f (x∗, θ) = f (x∗ (θ) , θ) .

Take the derivative with respect to θ to get

dv (θ)

dθ
=

dL∗
dθ

= f∗x
dx∗

dθ
+ f∗θ +

dλ∗

dθ
[c− g (x∗ (θ) , θ)]− λ∗

[
g∗x
dx∗

dθ
+ g∗θ

]
= [f∗x − λ∗g∗x]

dx∗

dθ
+
dλ∗

dθ
[c− g (x∗ (θ) , θ)] + f∗θ − λ∗g∗θ

= f∗θ − λ∗g∗θ .
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Of course, we could have just applied this directly using the envelope theorem:

dv (θ)

dθ
=
dL∗
dθ

=
∂L∗
∂θ

= f∗θ − λg∗θ .

13.10 Duality

We will demonstrate the duality of utility maximization and cost minimization. But the principles

here are more general than consumer theory.

The primal problem is

Choose x ∈ Rn to maximize u (x) , s.t. p′x = I .

(this should be stated with ≤ but we focus on preferences with nonsatiation and strict convexity–
and therefore strict concavity of u– so the solution lies on the budget line and x > 0 is also

satisfied). The Lagrangian function is

L = u (x) + λ
[
I − p′x

]
FONCs:

Lxi = ui − λpi = 0 ⇒ λ = ui/pi , i = 1, ...n

Lλ =
[
I − p′x

]
= 0

Recall: λ tells you how many utils we get for one additional unit of income.

Apply the implicit function theorem to this set of equations to get Marshallian demand

xmi = xmi (p, I)

and

λm = λm (p, I)

for which there are well defined derivatives around (λ∗, x∗). Define the indirect utility function

v (p, I) = u [xm (p, I)] .

The dual problem is

Choose x ∈ Rn to minimize p′x s.t. u (x) = u ,

where u is a level of promised utility (this should be stated with u (x) ≥ u but we assume that u

is strictly increasing in x, and since the objective is also strictly increasing in x, the solution must
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lie at u (x) = u). The Lagrangian function is

Z = p′x+ ϕ [u− u (x)] .

FONCs:

Zxi = pi − ϕui = 0 ⇒ ϕ = pi/ui , i = 1, ...n

Zϕ = u− (x) = 0

Recall: ϕ tells you how much an additional util will cost.

Apply the implicit function theorem to this set of equations to get Hicksian demand

xhi = xhi (p, u)

and

ϕh = ϕh (p, u)

for which there are well defined derivatives around (ϕ∗, x∗). Define the expenditure function

e (p, u) = p′xh (p, u) .

Duality: all FONCs imply the same thing:

ui
uj

=
pi
pj

,

Thus, at the optimum

xmi (p, I) = xhi (p, u)

e (p, u) = I

v (p, I) = u .

Moreover,

ϕ =
1

λ

and this makes sense given the interpretation of ϕ and λ.

• Duality relies on unique global extrema. We need to have all the preconditions for that.

• Make drawing.
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13.11 Roy’s identity

v (p, I) = u (xm) + λm
(
I − p′xm

)
.

Taking the derivative with respect to a price,

∂v

∂pi
=

n∑
j=1

uj
∂xmj
∂pi

+
∂λ

∂pi

(
I − p′xm

)
− λ

 n∑
j=1

pj
∂xmj
∂pi

+ xmi


=

n∑
j=1

(uj − λpj)
∂xmj
∂pi

+
∂λ

∂pi

(
I − p′xm

)
− λxmi

= −λxmi .

An increase in pi will lower demand by xmi , which decreases the value of the problem, as if by

decreasing income by xmi times λ utils/$ per dollar of lost income. In other words, income is now

worth xmi less, and this taxes the objective by λx
m
i . Taking the derivative with respect to income,

∂v

∂I
=

n∑
j=1

uj
∂xmj
∂I

+
∂λ

∂I

(
I − p′xm

)
+ λ

1−
n∑
j=1

pj
∂xmj
∂I


=

n∑
j=1

(uj − λpj)
∂xmj
∂I

+
∂λ

∂I

(
I − p′xm

)
+ λ

= λ .

An increase in income will increase our utility by λ, which is the standard result.

• In fact, we could get these results applying the envelope theorem directly:

∂v

∂pi
= −λxmi

∂v

∂I
= λ .

Roy’s identity is thus

−∂v/∂pi
∂v/∂I

= xmi .

Why is this interesting? Because this is the amount of income needed to compensate consumers

for (that will leave them indifferent to) an increase in the price of some good xi. To see this, first

consider

v (p, I) = u ,

where u is a level of promised utility (as in the dual problem). By the implicit function theorem

∃I (pi) in a neighborhood of xm, which has a well defined derivative dI/dp. This function is
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defined at the optimal bundle xm. Now consider the total differential of v, evaluated at the optimal

bundle xm:

vpidpi + vIdI = 0 .

This differential does not involve other partial derivatives because it is evaluated at the the optimal

bundle xm (i.e. the envelope theorem once again). And we set this differential to zero, because

we are considering keeping the consumer exactly indifferent, i.e. her promised utility and optimal

bundle remain unchanged. Then we have

dI

dpi
= −vpi

vI
= −∂v/∂pi

∂v/∂I
= xmi .

This result tells you that if you are to keep the consumer indifferent to a small change in the price

of good i, i.e. not changing the optimally chosen bundle, then you must compensate the consumer

by xmi units of income. We will see this again in the dual problem, using Shephard’s lemma, where

keeping utility fixed is explicit. We will see that ∂e
∂pi

= xhi = xmi is exactly the change in expenditure

that results from keeping utility fixed, while increasing the price of good i.

To see this graphically, consider a level curve of utility. The slope of the curve at (p, I) (more

generally, the gradient) is xm.

Roy’s Identity

13.12 Shephard’s lemma

e (p, u) = p′xh + ϕh
[
u− u

(
xh
)]

.
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Taking the derivative with respect to a price,

∂e

∂pi
= xhi +

n∑
j=1

pj
∂xpj
∂pi

+
∂ϕ

∂pi

[
u− u

(
xh
)]
− ϕ

n∑
j=1

uj
∂xhj
∂pi

=
n∑
j=1

(pj − ϕuj)
∂xhj
∂pi

+
∂ϕ

∂pi

[
u− u

(
xh
)]

+ xhi

= xhi .

An increase in pi will increases cost by xhi while keeping utility fixed at u (remember that this is a

minimization problem so increasing the value of the problem is "bad"). Note that this is exactly

the result of Roy’s Identity. Taking the derivative with respect to promised utility,

∂e

∂u
=

n∑
j=1

pj
∂xhj
∂u

+
∂ϕ

∂u

[
u− u

(
xh
)]

+ ϕ

1−
n∑
j=1

uj
∂xhj
∂u


=

n∑
j=1

(pj − ϕuj)
∂xhj
∂u

+
∂ϕ

∂u

[
u− u

(
xh
)]

+ ϕ

= ϕ .

An increase in utility will increase expenditures by ϕ, which is the standard result.

• In fact, we could get these results applying the envelope theorem directly:

∂e

∂pi
= xhi

∂e

∂u
= ϕ .

This is used often with cost functions in the context of production. Let e be the lowest cost to

produce u units of output (with u (x) serving as the production function that takes the vector of

inputs x and where p are their prices). Then taking the derivative of the cost function e w.r.t. p

gives you demand for inputs. And taking the derivative of the cost function e w.r.t. the quantity

produced (u) gives you the cost (price) of producing one additional unit of output.

13.13 Mundlak (1968) REStud example

The following is based on Mundlak (1968).

Let y = f (x) ∈ C2, x ∈ Rn be the strictly concave production function of a competitive firm.
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The firm solves the cost minimization problem

choose x to minimize c = p′x ,

s.t. f (x) ≥ y .

Setting y as numeraire normalizes py = 1, so that the factor prices are interpreted as real prices,

in terms of units of output. The Lagrangian can be written as (with appropriate interpretation of

the multiplier λ):

L = p′x+
1

λ
[y − f (x)]

If (x∗, λ∗) is a critical point then it satisfies the FONCs

fi (x∗) = λ∗pi , i = 1, 2, ...n

f (x∗) = y .

The values of x and λ are optimal, so that small perturbations of prices will have no indirect effect

on the objective through them (the envelope theorem). To ease notation I will not carry on the

asterisks in what follows.

We treat the FONCs as identities and differentiate around the optimal choice∑
j

fijdxj = dλpi + λdpi

=
dλ

λ
λpi + λdpi

= λ̂fi + λdpi for i = 1, 2, ...n ,

where λ̂ = dλ/λ = d lnλ. Rearranging gives the endogenous perturbations of the optimal values

induced by perturbations of the exogenous prices∑
j

fijdxj − λ̂fi = λdpi for i = 1, 2, ...n

and in matrix notation

Hdx−∇fλ̂ = λ [dp] .

I am writing the gradient as a column vector, rather than the conventional row vector of partials.

This can be written as [
∇f H

] [ −λ̂
dx

]
= λ [dp] .

The other differential is

dy =
∑
i

fidxi = ∇f ′dx .
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Define1

dz ≡ 1

λ
dy ,

which is how tightening the constraint affects the objective (value of the problem). Stacking this

on top of the previous matrices gives[
0 ∇f ′
∇f H

] [
−λ̂
dx

]
= λ

[
dz
dp

]
.

The first matrix on the LHS is just the bordered Hessian of the problem. Given regularity conditions

(and conditions for a minimum), the bordered Hessian is invertible so we can write[
−λ̂
dx

]
= λ

[
0 ∇f ′
∇f H

]−1 [
dz
dp

]
.

Mundlak defines

K =

[
K00 K0j

Ki0 Kij

]
≡ λ

[
0 ∇f ′
∇f H

]−1

= λ

[
−
(
∇f ′H−1∇f

)−1 (
∇f ′H−1∇f

)−1
f ′if
−1
ij

H−1∇f
(
∇f ′H−1∇f

)−1
H−1 −H−1∇f

(
∇f ′H−1∇f

)−1∇f ′H−1

]
,

(see Section 5.7 for inverting partitioned matrices) so that[
−λ̂
dx

]
=

[
K00 K0j

Ki0 Kij

] [
dz
dp

]
. (8)

Furthermore,

∇f ′Ki0 = λ

∇f ′Kij = 0

Kij∇f = 0 .

I.e. Kij is a singular matrix. Finally, it is useful to write (8) without its first row:

dx = [Kij ] dp+ [Ki0] dz
dx1

dx2
...

dxn

 =


k11 k12 · · · k1n

k21 k22 k2n
...

. . .
...

kn1 · · · knn



dp1

dp2
...
dpn

+


k10

k20
...
kn0

 dz
1 In other optimization problems, e.g. constant cost and constant marginal cost, dz will take a different form.
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Along the output isoquant (dy = 0⇒ dz = 0) we have

∂xi
∂pj

= kij . (9)

Since the objective is c = x′p, the envelope theorem gives (on the output isoquant) (Shephard’s

lemma):
∂c

∂pj
= xj . (10)

Writing this as an elasticity gives

∂ ln c

∂ ln pj
=

∂c

∂pj

pj
c

=
pjxj
c

= vj , (11)

which is the cost share.

Remark 1 The cost elasticity w.r.t. the price of a particular input is the cost share of that input.

A corollary is that the sum of the elasticities of cost w.r.t. all prices is unity.

Now writing (9) as a price elasticity, we have

ηij ≡
∂ lnxi
∂ ln pj

=
∂xi
∂pj

pj
xi

= kij
pj
xi

= kij
c

xixj

pjxj
c

= σijvj , (12)

where kij is the i-j element of [Kij ], σij is the (Allen partial) elasticity of substitution and vj is

defined in (11).

Remark 2 The elasticity of input i w.r.t. the price of input j is equal to the (Allen partial)

elasticity of substitution of input i w.r.t. input j times the cost share of input j.

Note that for a particular input i∑
j

ηij =
∑
j

kij
pj
xi

=
1

λxi

∑
j

λpjkij =
1

λxi

∑
j

fjkij = 0 , (13)

since the summation is just one column of ∇f ′Kij = 0.

Remark 3 The sum of price elasticities (12) for any particular input i is zero.

From (13) we have ∑
j

ηij =
∑
j

σijvj = σiivi +
∑
j 6=i

σijvj = 0

and therefore

σii = − 1

vi

∑
j 6=i

σijvj < 0 .
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This result holds for any factor i that is actually used in production (vi > 0, i.e. no corner

solution for i) under the following conditions: there is at least one factor j 6= i that exhibits some

substitutability with i, and which is actually used in production, i.e. ∃j 6= i s.t. σij > 0 and vj > 0

(vj ≥ 0 and σij ≥ 0 for all j for concave CRS production functions). While the object σii does not

have a clear interpretation (at least not to me), it helps sign the own-price elasticity:

ηii = σiivi = −
∑
j 6=i

σijvj < 0 .

Remark 4 The own-price elasticity is negative.

For example, Allen (1938) shows (page 342) that in the case of two inputs

σ12 =
f1f2 (x1f1 + x2f2)

−x1x2

(
f11f2

2 − 2f12f1f2 + f22f2
1

) =
f1f2

−
(
f11f2

2 − 2f12f1f2 + f22f2
1

) (x1f1 + x2f2)

x1x2
.

Substituting the FONCs, we have

σ12 =
f1f2

−
(
f11f2

2 − 2f12f1f2 + f22f2
1

) (x1λp1 + x2λp2)

x1x2

= λ
f1f2

−
(
f11f2

2 − 2f12f1f2 + f22f2
1

)︸ ︷︷ ︸
k12

(x1p1 + x2p2)

x1x2
= k12

c

x1x2
.

So that

η12 = σ12v2 = k12
c

x1x2

x2p2

c
= k12

p2

x1

as above.
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14 Integration

14.1 Preliminaries

Consider a continuous differentiable function

x = x(t)

and its derivative with respect to time
dx

dt
≡ ẋ .

This is how much x changes during a very short period dt. Suppose that you know ẋ at any point

in time. We can write down how much x changed from some initial point in time, say t = 0, until

period t as follows: ∫ t

0
ẋdt .

This is the sum of all changes in x from period 0 to t. The term of art is integration, i.e. we are

integrating all the increments. But you cannot say what x (t) is, unless you have the value of x at

the initial point. This is the same as saying that you know what the growth rate of GDP is, but

you do not know the level. But given x0 = x (0) we can tell what x (t) is:

x (t) = x0 +

∫ t

0
ẋdt .

E.g.

ẋ = t2∫ t

0
ẋdt =

∫ t

0
u2du =

1

3
t3 + c .

The constant c is arbitrary and captures the fact that we do not know the level.

Suppose that the instant growth rate of y is a constant r, i.e.

ẏ

y
= r .

This can be written as

ẏ − ry = 0 ,

which is an ordinary differential equation. We know that y = ert gives ẏ/y = r. But so does

y = kert. So once again, without having additional information about the value of y at some initial

point, we cannot say what y (t) is.
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14.2 Indefinite integrals

Denote

f (x) =
dF (x)

dx
.

Therefore,

dF (x) = f (x) dx .

Summing over all small increments we get∫
dF (x) =

∫
f (x) dx = F (x) + c ,

where the constant of integration, c, denotes that the integral is correct up to an indeterminate

constant. This is so because knowing the sum of increments does not tell you the level. Another

way to see this is
d

dx
F (x) =

d

dx
[F (x) + c] .

Integration is the opposite operation of differentiation. Instead of looking at small perturbations,

or increments, we look for the sum of all increments.

Commonly used integrals

1.
∫
xndx = xn+1

n+1 + c

2.
∫
f ′ (x) ef(x)dx = ef(x) + c ,

∫
exdx = ex + c ,

∫
f ′ (x) bf(x)dx = bf(x)

ln b + c

3.
∫ f ′(x)

f(x) dx = ln [f (x)] + c ,
∫

1
xdx =

∫
dx
x = lnx+ c

Operation rules

1. Sum:
∫

[f (x) + g (x)] dx =
∫
f (x) dx+

∫
g (x) dx

2. Scalar multiplication: k
∫
f (x) dx =

∫
kf (x) dx

3. Substitution/change of variables: Let u = u (x). Then∫
f (u)u′dx =

∫
f (u)

du

dx
dx =

∫
f (u) du = F (u) + c .

E.g. ∫
2x
(
x2 + 1

)
dx = 2

∫ (
x3 + x

)
dx = 2

∫
x3dx+ 2

∫
xdx =

1

2
x4 + x2 + c
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Alternatively, define u = x2 + 1, hence u′ = 2x, and so∫
2x
(
x2 + 1

)
dx =

∫
du

dx
udx =

∫
udu =

1

2
u2 + c′

=
1

2

(
x2 + 1

)2
+ c′ =

1

2

(
x4 + 2x2 + 1

)
+ c′

=
1

2
x4 + x2 +

1

2
+ c′ =

1

2
x4 + x2 + c .

4. Integration by parts: Since

d (uv) = udv + vdu

we have ∫
d (uv) = uv =

∫
udv +

∫
vdu .

Thus the integration by part formula is∫
udv = uv −

∫
vdu .

To reduce confusion denote

V = V (x) , v (x) = dV (x) /dx

U = U (x) , u (x) = dU (x) /dx

Then we write the formula as∫
U (x) dV (x) = U (x)V (x)−

∫
V (x) dU (x)∫

U (x) v (x) dx = U (x)V (x)−
∫
u (x)V (x) dx .

E.g., let f (x) = ϕe−ϕx. Then∫
xϕe−ϕxdx = −xe−ϕx −

∫
−e−ϕxdx

In the notation above, we have∫
x︸︷︷︸
U

· ϕe−ϕx︸ ︷︷ ︸
v

dx = x︸︷︷︸
U

· −e−ϕx︸ ︷︷ ︸
V

−
∫

1︸︷︷︸
u

·
(
−e−ϕx

)︸ ︷︷ ︸
V

dx
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14.3 Definite integrals

The area under the f curve for a continuous f on [a, b], i.e. between the f curve and the horizontal

axis, from a to b is ∫ b

a
f (x) dx = F (b)− F (a) .

This is also called the fundamental theorem of calculus. Note that this area may be positive

or negative, depending on whether the area lies more above the horizontal axis or below it.

TheRiemann Integral: create n rectangles that lie under the curve, that take the minimum of

the heights: ri, i = 1, 2...n. Then create n rectangles with height the maximum of the heights: Ri,

i = 1, 2...n. As the number of these rectangles increases, the sums of the rectangles may converge.

If they do, then we say that f is Reimann-integrable. I.e. if

lim
n→∞

n∑
i=1

ri = lim
n→∞

n∑
i=1

Ri

then ∫ b

a
f (x) dx

exists and is well defined.

Properties of definite integrals:

1. Minus/switching the integration limits:
∫ b
a f (x) dx = −

∫ a
b f (x) dx = F (b)−F (a) = − [F (a)− F (b)]

2. Zero:
∫ a
a f (x) dx = F (a)− F (a) = 0

3. Partition: for all a < b < c∫ c

a
f (x) dx =

∫ b

a
f (x) dx+

∫ c

b
f (x) dx .

4. Scalar multiplication:
∫ b
a kf (x) dx = k

∫ b
a f (x) dx , ∀k ∈ R

5. Sum:
∫ b
a [f (x) + g (x)] dx =

∫ b
a f (x) dx+

∫ b
a g (x) dx

6. By parts:
∫ b
a U (x) v (x) dx = U (x)V (x) |ba −

∫ b
a u (x)V (x) dx = U (b)V (b) − U (a)V (b) −∫ b

a u (x)V (x) dx

7. Substitution/change of variables: Let u = u (x). Then∫ b

a
f (u)u′dx =

∫ b

a
f (u)

du

dx
dx =

∫ u(b)

u(a)
f (u) du = F (u) + c .
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Suppose that we wish to integrate a function from some initial point x0 until some indefinite

point x. Then ∫ x

x0

f (t) dt = F (x)− F (x0) .

and so

F (x) = F (x0) +

∫ x

x0

f (t) dx .

14.4 Leibnitz’s Rule

Let f ∈ C1 (i.e. F ∈ C2). Then

∂

∂θ

b(θ)∫
a(θ)

f (x, θ) dx = f (b (θ) , θ)
∂b (θ)

∂θ
− f (a (θ) , θ)

∂a (θ)

∂θ
+

b(θ)∫
a(θ)

∂

∂θ
f (x, θ) dx .

Proof: let f (x, θ) = dF (x, θ) /dx. Then

∂

∂θ

b(θ)∫
a(θ)

f (x, θ) dx =
∂

∂θ
[F (x, θ)|b(θ)a(θ)

=
∂

∂θ
[F (b (θ) , θ)− F (a (θ) , θ)]

= Fx (b (θ) , θ)
∂b (θ)

∂θ
+ Fθ (b (θ) , θ)− Fx (a (θ) , θ)

∂a (θ)

∂θ
− Fθ (a (θ) , θ)

= f (b (θ) , θ)
∂b (θ)

∂θ
− f (a (θ) , θ)

∂a (θ)

∂θ
+ [Fθ (b (θ) , θ)− Fθ (a (θ) , θ)]

= f (b (θ) , θ)
∂b (θ)

∂θ
− f (a (θ) , θ)

∂a (θ)

∂θ
+

b(θ)∫
a(θ)

d

dx
Fθ (x, θ) dx

= f (b (θ) , θ)
∂b (θ)

∂θ
− f (a (θ) , θ)

∂a (θ)

∂θ
+

b(θ)∫
a(θ)

∂

∂θ
f (x, θ) dx .

The last line follows from Young’s Theorem: for a continuously differentiable F ,

∂2F (x, y)

∂x∂y
=

∂

∂x

∂F (x, y)

∂y
=

∂

∂y

∂F (x, y)

∂x
=
∂2F (x, y)

∂y∂x
.

If the integration limits do not depend on θ, then

∂

∂θ

b∫
a

f (x, θ) dx =

b∫
a

∂

∂θ
f (x, θ) dx ,
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and if f does not depend on θ, then

∂

∂θ

b(θ)∫
a(θ)

f (x) dx = f (b (θ))
∂b (θ)

∂θ
− f (a (θ))

∂a (θ)

∂θ
.

14.5 Improper integrals

14.5.1 Infinite integration limits∫ ∞
a

f (x) dx = lim
b→∞

∫ b

a
f (x) dx = lim

b→∞
F (b)− F (a) .

E.g., X ∼exp(ϕ): F (x) = 1− e−ϕx, f (x) = ϕe−ϕx for x ≥ 0.∫ ∞
0

ϕe−ϕxdx = lim
b→∞

∫ b

0
ϕe−ϕxdx = lim

b→∞
− e−ϕb + e−ϕ0 = 1 .

Also

E (x) =

∫ ∞
0

xf (x)x =

∫ ∞
0

xϕe−ϕxdx =
[
−xe−ϕx

∣∣∞
0
−
∫ ∞

0
−e−ϕxdx

= ”−∞e−ϕ∞” + 0e−ϕ0 +

[
− 1

ϕ
e−ϕx

∣∣∣∣∞
0

= 0− 1

ϕ
e−ϕ∞ +

1

ϕ
e−ϕ0

=
1

ϕ
.

E.g. ∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = [ln (x)|∞1 = ln (∞)− ln (1) =∞− 0 =∞ .

14.5.2 Infinite integrand

E.g., sometimes the integral is divergent, even though the integration limits are finite:∫ 1

0

1

x
dx = lim

b→0

∫ 1

b

1

x
dx = [ln (x)|10 = ln (1)− ln (0) = 0 +∞ =∞ .

Suppose that for some p ∈ (a, b)

lim
x→p

f (x) =∞ .

Then the integral from a to b is convergent iff the partitions are also convergent:∫ b

a
f (x) dx =

∫ p

a
f (x) dx+

∫ b

p
f (x) dx .

E.g.

lim
x→0

1

x3
=∞ .
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Therefore, the integral∫ 1

−1

1

x3
dx =

∫ 0

−1

1

x3
dx+

∫ 1

0

1

x3
dx =

[
− 1

2x2

∣∣∣∣0
−1

+

[
− 1

2x2

∣∣∣∣1
0

does not exist, because neither integral converges.

14.6 Example: investment and capital formation

In discrete time we have the capital accumulation equation

Kt+1 = (1− δ)Kt + It ,

where It is gross investment at time t. Rewrite as

Kt+1 −Kt = It − δKt .

We want to rewrite this in continuous time. In this context, investment, It, is instantaneous and

capital depreciates at an instantaneous rate of δ. Consider a period of length ∆. The accumulation

equation is

Kt+∆ −Kt = ∆It −∆δKt .

Divide by ∆ to get
Kt+∆ −Kt

∆
= It − δKt .

Now take ∆→ 0 to get

K̇t = It − δKt ,

where it is understood that It is instantaneous investment at time t, and Kt is the amount of capital

available at that time. δKt is the amount of capital that vanishes due to depreciation. Write

K̇t = Int ,

where Int is net investment. Given a functional form for Int we can tell how much capital is around

at time t, given an initial amount at time 0, K0.

Let Int = ta. then

Kt −K0 =

∫ t

0
K̇dt =

∫ t

0
Inudu =

∫ t

0
uadu =

[
ua+1

a+ 1

∣∣∣∣t
0

=
ta+1

a+ 1
.

14.7 Domar’s growth model

Domar was interested in answering: what must investment be in order to satisfy the equilibrium

condition at all times.
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Structure of the model:

1. Fixed saving rate: It = sYt, s ∈ (0, 1). Therefore İ = sẎ . And so

Ẏ =
1

s
İ ,

i.e. there is a multiplier effect of investment on output.

2. Potential output is given by a CRS production function

πt = ρKt ,

therefore

π̇ = ρK̇ = ρI .

3. Long run equilibrium is given when potential output is equal to actual output

π = Y ,

therefore

π̇ = Ẏ .

We have three equations:

(i) output demand : Ẏ =
1

s
İ

(ii) potential output : π̇ = ρI

(iii) equilibrium : π̇ = Ẏ .

Use (iii) in (ii) to get

ρI = Ẏ

and then use (i) to get

ρI =
1

s
İ ,

which gives
İ

I
= ρs .

Now integrate in order to find the level of investment at any given time:∫
İ

I
dt =

∫
ρsdt

ln I = ρst+ c

It = e(ρs)t+c = e(ρs)tec = I0e
(ρs)t .
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The larger is productivity, ρ, and the higher the saving rate, s, the more investment is required.

This is the amount of investment needed for output to keep output in check with potential output.

Now suppose that output is not equal to its potential, i.e. π 6= Y . This could happen if the

investment is not growing at the correct rate of ρs. Suppose that investment is growing at rate a,

i.e.

It = I0e
at .

Define the utilization rate

u = lim
t→∞

Yt
πt

.

Compute what the capital stock is at any moment:

Kt −K0 =

∫ t

0
K̇dτ +

∫ t

0
Iτdτ =

∫ t

0
I0e

aτdτ =
1

a
I0e

at

(the constant of integration is absorbed in K0.) Now compute

u = lim
t→∞

Yt
πt

= lim
t→∞

1
sIt

ρKt
=

1

ρs
lim
t→∞

It
Kt

=
1

ρs
lim
t→∞

I0e
at

1
aI0eat +K0

=
a

ρs
lim
t→∞

I0e
at

I0eat + aK0
=

a

ρs
.

The last equality can be derived using L’Hopital’s rule, or by simply noting that I0eat

I0eat+aK0
=

1
1+aK0I0e−at

→ 1 as t → ∞. If a > ρs then u > 1 there is a shortage of capacity, excess demand.

If a < ρs then u < 1 there is a excess of capacity, excess supply. Thus, in order to keep output

demand equal to output potential we must have a = ρs and thus u = 1.

In fact, this holds at any point in time:

İ =
d

dt
I0e

at = aI0e
at .

Therefore

Ẏ =
1

s
İ =

a

s
I0e

at

π̇ = ρI = ρI0e
at .

So
Ẏ

π̇
=

a
s I0e

at

ρI0eat
=

a

sρ
= u .

If the utilization rate is too high u > 1, then demand growth outstrips supply, Ẏ > π̇. If the

utilization rate is too low u < 1, then demand growth lags behind supply, Ẏ < π̇.

Thus, the razor edge condition: only a = sρ keeps us at a sustainable equilibrium path:

• If u > 1, i.e. a > sρ, there is excess demand, investment is too high. Entrepreneurs will try

to invest even more to increase supply, but this implies an even larger gap between the two.
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• If u < 1, i.e. a < sρ, there is excess supply, investment is too low. Entrepreneurs will try to

cut investment to lower demand, but this implies an even larger gap between the two.

This model is clearly unrealistic and highly stylized.
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15 First order differential equations

We deal with equations that involve ẏ. The general form is

ẏ + u (t) y (t) = w (t)

The goal is to characterize y (t) in terms of u (t) and w (t). Note that this can be written as

ẏ = f (y, t) .

• First order means dy
dt , not

d2y
dt2
.

• No products: ẏ · y is not permitted.

In principle, we can have dny/dtn, where n is the order of the differential equation. In the next

chapter we will deal with up to d2y/dt2.

15.1 Fundamental theorem of differential equations

Consider solving for y (t) in

ẏ = f (y, t) , (14)

where y (t0) = y0 is known.

Suppose that f is a continuous function at (t0, y0). Then there exists a C1 function y : I → R
on the open interval I = (t0 − a, t0 + a) such that y (t0) = y0 and ẏ (t) = f (y (t) , t) for all t ∈ I,
i.e. y (t) solves (14). If in addition f ∈ C1 at (t0, y0), then the solution y (t) is unique; any two

solutions of (14) must be equal to each other on the intersection of their domains.

Most differential equations in economic applications will have f ∈ C1, so all solutions will be

unique. But in the following case

ẏ = 3y2/3

there are multiple solutions because 3y2/3 is not differentiable at 0 (the derivative is ∞ there).

Since 3y2/3 is nonetheless continuous at 0, a solution exists but it is not unique. For example, both

y (t) = 0 and y (t) = t3 solve the differential equation.

15.2 Constant coeffi cients

15.2.1 Homogenous case

ẏ + ay = 0
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This gives rise to
ẏ

y
= −a

which has solution

y (t) = y0e
−at .

We need an additional condition to pin down y0.

15.2.2 Non homogenous case

ẏ + ay = b ,

where b 6= 0. The solution method involves splitting the solution into two:

y (t) = yc (t) + yp (t) ,

where yp (t) is a particular solution and yc (t) is a complementary function.

• yc (t) solves the homogenous equation

ẏ + ay = 0 ,

so that

yc (t) = Ae−at .

• yp (t) solves the original equation for a stationary solution, i.e. ẏ = 0, which implies that y is

constant and thus y = b/a, where a 6= 0. The solution is thus

y = yc + yp = Ae−at +
b

a
.

Given an initial condition y (0) = y0, we have

y0 = Ae−a0 +
b

a
= A+

b

a
⇒ A = y0 −

b

a
.

The general solution is

y (t) =

(
y0 −

b

a

)
e−at +

b

a
= y0e

−at +
b

a

(
1− e−at

)
.

One way to think of the solution is a linear combination of two points: the initial condition y0 and

the particular, stationary solution b/a. (If a > 0, then for t ≥ 0 we have 0 ≤ e−at ≤ 1, which yields
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a convex combination). Verify this solution:

ẏ = −a
(
y0 −

b

a

)
e−at = −a


(
y0 −

b

a

)
e−at +

b

a︸ ︷︷ ︸
y

− b

a

 = −ay + b

⇒ ẏ + ay = b .

Yet a different way to look at the solution is

y (t) =

(
y0 −

b

a

)
e−at +

b

a

= ke−at +
b

a
,

for some arbitrary point k. In this case

ẏ = −ake−at ,

and we have

ẏ + ay = −ake−at + a

(
ke−at +

b

a

)
= b .

• When a = 0, we get

ẏ = b

so

y = y0 + bt .

This follows directly from ∫
ẏdt =

∫
bdt

y = bt+ c ,

where c = y0. We can also solve this using the same technique as above. yc solves ẏ = 0, so

that this is a constant yc = A. yp should solve 0 = b, but this does not work unless b = 0. So

try a different particular solution, yp = kt, which requires k = b, because then ẏp = k = b.

So the general solution is

y = yc + yp = A+ bt .

Together with a value for y0, we get A = y0.
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E.g.

ẏ + 2y = 6 .

yc solves ẏ + 2y = 0, so

yc = Ae−2t .

yp solves 2y = 6 (ẏ = 0), so

yp = 3 .

Thus

y = yc + yp = Ae−2t + 3 .

Together with y0 = 10 we get 10 = Ae−2·0 + 3, so that A = 7. This completes the solution:

y = 7e−2t + 3 .

Verifying this solution:

ẏ = −14e−2t

and

ẏ + 2y = −14e−2t + 2
(
7e−2t + 3

)
= 6 .

15.3 Variable coeffi cients

The general form is

ẏ + u (t) y (t) = w (t) .

15.3.1 Homogenous case

w (t) = 0:

ẏ + u (t) y (t) = 0 ⇒ ẏ

y
= −u (t) .

Integrate both sides to get ∫
ẏ

y
dt =

∫
−u (t) dt

ln y + c = −
∫
u (t) dt

y = e−c−
∫
u(t)dt = Ae−

∫
u(t)dt ,

where A = e−c. Thus, the general solution is

y = Ae−
∫
u(t)dt .
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Together with a value for y0 and a functional form for u (t) we can solve explicitly.

E.g.

ẏ + 3t2y = 0

ẏ +
(
3t2
)
y = 0 .

Thus

ẏ

y
= −3t2∫

ẏ

y
dt =

∫
−3t2dt

ln y + c = −
∫

3t2dt

y = e−c−
∫

3t2dt = Ae−t
3
.

15.3.2 Non homogenous case

w (t) 6= 0:

ẏ + u (t) y (t) = w (t) .

The solution is

y = e−
∫
u(t)dt

[
A+

∫
w (t) e

∫
u(t)dtdt

]
.

Obtaining this solution requires some footwork. But first, see that it works: e.g.,

ẏ + t2y = t2 ⇒ u (t) = t2, w (t) = t2 .∫
u (t) dt =

∫
t2dt =

1

3
t3∫

w (t) e
∫
u(t)dtdt =

∫
t2et

3/3dt = et
3/3 ,

since ∫
f ′ (y) ef(y)dy = ef(y) .

Thus

y = e−t
3/3
[
A+ et

3/3
]

= Ae−t
3/3 + 1 .

Verifying this solution:

ẏ = −t2Ae−t3/3
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so

ẏ + u (t) y (t) = −t2Ae−t3/3 +
(
t2
) [
Ae−t

3/3 + 1
]

= −t2Ae−t3/3 + t2Ae−t
3/3 + t2

= t2

= w (t) .

15.4 Solving exact differential equations

Suppose that the primitive differential equation can be written as

F (y, t) = c

so that

dF = Fydy + Ftdt = 0 .

We use the latter total differential to obtain F (y, t), from which we obtain y (t). We set F (y, t) = c

to get initial conditions.

Definition: the differential equation

Mdy +Ndt = 0

is an exact differential equation iff ∃F (y, t) such that M = Fy and N = Ft.

If such a function F (y, t) exists, then by Young’s theorem we have

∂M

∂t
=
∂2F

∂t∂y
=
∂N

∂y
.

And this relationship is what we will be checking in practice to verify that a differential equations

is indeed exact.

E.g., let F (y, t) = y2t = c. Then

dF = Fydy + Ftdt = 2ytdy + y2dt = 0 .

Set

M = 2yt , N = y2 .
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Check:

∂2F

∂t∂y
=

∂M

∂t
= 2y

∂2F

∂t∂y
=

∂N

∂y
= 2y

So this is an exact differential equation.

Solving exact differential equations:

Before solving, one must always check that the equation is indeed exact.

• Step 1: Since
dF = Fydy + Ftdt

we could integrate both sides, but this does not lead to right answer. Instead, integrate only

Fy over y and add a residual function of t alone:

F (y, t) =

∫
Fydy + ϕ (t)

=

∫
Mdy + ϕ (t) ,

where ϕ (t) is a residual function.

• Step 2: Take the derivative of F (y, t) from step 1 w.r.t. t, N , and equate it to Ft from the

original differential function. This identifies ϕ (t).

• Step 3: Solve for y (t), taking into account F (y, t) = c.

Example:

2yt︸︷︷︸
M

dy + y2︸︷︷︸
N

dt = 0 .

Step 1:

F (y, t) =

∫
Mdy + ϕ (t) =

∫
2ytdy + ϕ (t) = y2t+ ϕ (t) .

Step 2:
∂F (y, t)

∂t
=

∂

∂t

[
y2t+ ϕ (t)

]
= y2 + ϕ′ (t) .

Since N = y2 we must have ϕ′ (t) = 0, i.e. ϕ (t) is a constant function, ϕ (t) = k, for some k. Thus

F (y, t) = y2t+ k = c ,
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so we can ignore the constant k and write

F (y, t) = y2t = c .

Step 3: We can now solve for y (t):

y (t) = ±c1/2t−1/2 .

The solution for ±c will be given by an initial condition.

Example:

(t+ 2y) dy +
(
y + 3t2

)
dt = 0 .

So that

M = (t+ 2y)

N =
(
y + 3t2

)
.

Check that this equation is exact:
∂M

∂t
= 1 =

∂N

∂y
,

so this is indeed an exact differential equation.

Step 1:

F (y, t) =

∫
Mdy + ϕ (t) =

∫
(t+ 2y) dy + ϕ (t) = ty + y2 + ϕ (t) .

Step 2:
∂F (y, t)

∂t
=

∂

∂t

[
ty + y2 + ϕ (t)

]
= y + ϕ′ (t) = N = y + 3t2 ,

so that

ϕ′ (t) = 3t2

and

ϕ (t) =

∫
ϕ′ (t) dt =

∫
3t2dt = t3 .

Thus

F (y, t) = ty + y2 + ϕ (t) = ty + y2 + t3 .

Step 3: we cannot solve this analytically for y (t), but using the implicit function theorem, we

can characterize it.

Example:
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Let T ∼ F (t) be the time until some event occurs, T ≥ 0. Define the hazard rate as

h (t) =
f (t)

1− F (t)
,

which is the "probability" that the event occurs at time t, given that it has not occurred by time t.

We can write

h (t) = −R
′
(t)

R (t)
,

where R (t) = 1− F (t). We know how to solve such differential equations:

R
′
(t) + h (t)R (t) = 0 .

R (t) = Ae−
∫ t h(s)ds .

Since R (0) = 1 (the probability that the event occurs at all), then we have A = 1:

R (t) = e−
∫ t h(s)ds .

It follows that

f (t) = −R′ (t) = −e−
∫ t h(s)ds ∂

∂t

[
−
∫ t

h (s) ds

]
= −e−

∫ t h(s)ds [−h (t)] = h (t) e−
∫ t h(s)ds .

Suppose that the hazard rate is constant:

h (t) = α .

In that case

f (t) = αe−
∫ t αds = αe−αt ,

which is the p.d.f. of the exponential distribution.

Now suppose that the hazard rate is not constant, but

h (t) = αβtβ−1 .

In that case

f (t) = αβtβ−1e−
∫ t αβsβ−1ds = αβtβ−1e−αt

β
,

which is the p.d.f. of the Weibull distribution. This is useful if you want to model an increasing

hazard (β > 1) or decreasing hazard (β < 1). When β = 1 or we get the exponential distribution.
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15.5 Integrating factor and the general solution

Sometimes we can turn a non exact differential equation into an exact one. For example,

2tdy + ydt = 0

is not exact:

M = 2t

N = y

and

Mt = 2 6= Ny = 1 .

But if we multiply the equation by y, we get an exact equation:

2ytdy + y2dt = 0 ,

which we saw above is exact.

15.5.1 Integrating factor

We have the general formulation

ẏ + uy = w ,

where all variables are functions of t and we wish to solve for y (t). Write the equation above as

dy

dt
+ uy = w

dy + uydt = wdt

dy + (uy − w) dt = 0 .

The integrating factor is

e
∫ t u(s)ds .

If we multiply the equation by this factor we always get an exact equation:

e
∫ t u(s)dsdy + e

∫ t u(s)ds (uy − w) dt = 0 .

To verify this, write

M = e
∫ t u(s)ds

N = e
∫ t u(s)ds (uy − w)
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and

∂M

∂t
=

∂

∂t
e
∫ t u(s)ds = e

∫ t u(s)dsu (t)

∂N

∂y
=

∂

∂y
e
∫ t u(s)ds (uy − w) = e

∫ t u(s)dsu (t) .

So ∂M/∂t = ∂N/∂y.

This form can be recovered from the method of undetermined coeffi cients. We seek some

A such that

A︸︷︷︸
M

dy +A (uy − w)︸ ︷︷ ︸
N

dt = 0

and

∂M

∂t
=

∂A

∂t
= Ȧ

∂N

∂y
=

∂

∂y
[A (uy − w)] = Au

are equal. This means

Ȧ = Au

Ȧ/A = u

A = e
∫ t u(s)ds .

15.5.2 The general solution

We have some equation that is written as

ẏ + uy = w .

Rewrite as

dy + (uy − w) dt = 0 .

Multiply by the integrating factor to get an exact equation

e
∫ t u(s)ds︸ ︷︷ ︸
M

dy + e
∫ t u(s)ds (uy − w)︸ ︷︷ ︸

N

dt = 0 .

• Step 1:

F (y, t) =

∫
Mdy + ϕ (t) =

∫
e
∫ t u(s)dsdy + ϕ (t) = ye

∫ t u(s)ds + ϕ (t) .
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• Step 2:
∂F

∂t
=

∂

∂t

[
ye
∫ t u(s)ds + ϕ (t)

]
= ye

∫ t u(s)dsu (t) + ϕ′ (t) = N .

Using N from above we get

N = ye
∫ t u(s)dsu (t) + ϕ′ (t) = e

∫ t u(s)ds (uy − w) ,

so that

ϕ′ (t) = −e
∫ t u(s)dsw

and so

ϕ (t) =

∫
−e

∫ t u(s)dswdt .

Now we can write

F (y, t) = ye
∫ t u(s)ds −

∫
e
∫ t u(s)dswdt = c

• Step 3, solve for y:
y = e−

∫ t u(s)ds

[
c+

∫
e
∫ t u(s)dswdt

]
.

15.6 First order nonlinear differential equations of the 1st degree

In general,

ẏ = h (y, t)

will yield an equation like this

f (y, t) dy + g (y, t) dt = 0 .

In principle, y and t can appear in any degree.

• First order means ẏ, not y(n).

• First degree means ẏ, not (ẏ)n.

15.6.1 Exact differential equations

See above.

15.6.2 Separable variables

f (y) dy + g (t) dt = 0 .

Then just integrate ∫
f (y) dy = −

∫
g (t) dt
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and solve for y (t).

Example:

3y2dy − tdt = 0

∫
3y2dy =

∫
tdt

y3 =
1

2
t2 + c

y (t) =

(
1

2
t2 + c

)1/3

.

An initial condition will pin down c.

Example:

2tdy − ydt = 0

dy

y
=

dt

2t∫
dy

y
=

∫
dt

2t

ln y =
1

2
ln t+ c

y = ec+
1
2

ln t = ec+ln t1/2 = ect1/2 = At1/2 .

An initial condition will pin down A.

15.6.3 Reducible equations

Suppose that

ẏ = h (y, t)

can be written as

ẏ +Ry = Tym , (15)

where

R = R (t)

T = T (t)

are functions only of t and

m 6= 0, 1 .

• When m = 0 we get ẏ +Ry = T , which we know how to solve.

127



• When m = 1 we get ẏ +Ry = Ty, and then we solve ẏ/y = (T −R).

Equation (15) is a Bernoulli equation, which can be reduced to a linear equation by

changing variables and solved as such. Once the solution is found, we can back out the original

function y (t). Here’s how:

ẏ +Ry = Tym

ẏ

ym
+Ry1−m = T

Use a change of variables

z = y1−m

so that

ż = (1−m) y−mẏ
ẏ

ym
=

ż

1−m .

Plug this in the equation to get

ż

1−m +Rz = T

dz +

(1−m)R︸ ︷︷ ︸
u

z − (1−m)T︸ ︷︷ ︸
w

 dt = 0

dz + [uz + w] dt = 0 .

This is something we know how to solve:

z (t) = e−
∫ t u(s)ds

[
A+

∫
e
∫ t u(s)dswdt

]
.

from which we get the original

y (t) = z (t)
1

1−m .

An initial condition will pin down A.

Example:

ẏ + ty = 3ty2
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In this case

R = t

T = 3t

m = 2 .

Divide by y2 and rearrange to get

y−2ẏ + ty−1 − 3t = 0 .

Change variables

z = y−1

ż = −y−2ẏ

so that we get

−ż + tz − 3t = 0

dz + (−tz + 3t) dt = 0 .

Note that this differential equation is not exact: M = 1, N = (−tz + 3t), and ∂M∂t = 0 6= ∂N∂z =

−t. Set

u = −t

w = −3t .

Using the formula we get

z (t) = e−
∫ t u(s)ds

[
A+

∫
e
∫ t u(s)dswdt

]
= e

∫ t sds [A− 3

∫
e−

∫ t sdstdt
]

= et
2/2

[
A− 3

∫
e−t

2/2tdt

]
= et

2/2
[
A+ 3e−t

2/2
]

= Aet
2/2 + 3 .

So that

y (t) =
1

z
=
(
Aet

2/2 + 3
)−1

.
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An initial condition will pin down A.

Example:

ẏ + y/t = y3 .

In this case

R = 1/t

T = 1

m = 3 .

Divide by y3 and rearrange to get

y−3ẏ + t−1y−2 − 1 = 0 .

Change variables

z = y−2

ż = −2y−3ẏ

so that we get

− ż
2

+
z

t
− 1 = 0

ż +−2
z

t
+ 2 = 0

dz +
(
−2

z

t
+ 2
)
dt = 0 .

so that we set

u = −2/t

w = −2 .
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Using the formula we get

z (t) = e−
∫ t u(s)ds

[
A+

∫
e
∫ t u(s)dswdt

]
= e2

∫ t t−1ds [A− 2

∫
e−2

∫ t t−1dsdt
]

= e2 ln t

[
A− 2

∫
e−2 ln tdt

]
= t2

[
A− 2t−2

]
= At2 − 2 .

So that

y (t) =
1

z2
=
(
At2 − 2

)−2
.

An initial condition will pin down A.

15.7 The qualitative graphic approach

Given

ẏ = f (y) ,

we can plot ẏ on the vertical axis against y on the horizontal axis. This is called a phase diagram.

This is an autonomous differential equation, since t does not appear explicitly as an argument. We

have three cases:

1. ẏ > 0 : y is growing, so we shift to the right.

2. ẏ < 0 : y is decreasing, so we shift to the left.

3. ẏ = 0 : y is stationary, an equilibrium.
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Stable Differential Equation Unstable Differential Equation

• System A is dynamically stable: the ẏ curve is downward sloping; any movement away from

the stationary point y∗ will bring us back there.

• System B is dynamically unstable: the ẏ curve is upward sloping; any movement away from

the stationary point y∗ take farther away.

For example, consider

ẏ + ay = b

with solution

y (t) =

[
y0 −

b

a

]
e−at +

b

a

=
(
e−at

)
y0 +

(
1− e−at

) b
a
.

This is a linear combination between the initial point y0 and b/a.

• System A happens when a > 0: lim
t→∞

e−at → 0, so that lim
t→∞

y (t)→ b/a = y∗.

• System B happens when a < 0: lim
t→∞

e−at →∞, so that lim
t→∞

y (t)→ ±∞.

15.8 The Solow growth model (no long run growth version)

The model has three ingredients:
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1. Supply: CRS production function

Y = F (K,L)

y = f (k)

where y = Y/L, k = K/L. Given FK > 0 and FKK < 0 we have f ′ > 0 and f ′′ < 0.

2. Demand: Constant saving rate sY (consumption is (1− s)Y ).

3. Constant labor force growth: L̇/L = n.

Given these, we can characterize the law of motion for capital per capita, k. The law of motion

for capital is K̇ = I − δK. In a closed economy savings equal investment, so I = sY . Therefore,

K̇ = sF (K,L)− δK = sLf (k)− δK
K̇

L
= sf (k)− δk .

Since

k̇ =
d

dt

(
K

L

)
=
K̇L−KL̇

L2
=
K̇

L
− K

L

L̇

L
=
K̇

L
− kn ,

we get

k̇ = sf (k)− (n+ δ) k .

This is an autonomous differential equation in k.

Since f ′ > 0 and f ′′ < 0 we know that ∃k such that sf (k) < (n+ δ) k. And given the Inada

conditions (f ′ (0) = ∞ and f (0) = 0), then ∃k such that sf (k) > (n+ δ) k. Therefore, k̇ > 0 for

low levels of k; and k̇ < 0 for high levels of k. Given the continuity of f we know that ∃k∗ such
that k̇ = 0, i.e. the system is stable.
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Solow Model
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16 Higher order differential equations

We will discuss here only second order, since it is very rare to find higher order differential equations

in economics. The methods introduced here can be extended to higher order differential equations.

In fact the fundamental theorem of differential equations, described above in Section 15.1 ex-

tends to jth order differential equations, provided that we specify j initial conditions:

y (t0) = y0, y
′ (t0) = y1, y

′′ (t0) = y2, ... y
[j−1] (t0) = yj−1 .

16.1 Second order, constant coeffi cients

y′′ + a1y
′ + a2y = b ,

where

y = y (t)

y′ = dy/dt

y′′ = d2y/dt2 ,

and a1, a2, and b are constants. The solution will take the form

y = yp + yc ,

where the particular solution, yp, characterizes a stable point and the complementary function, yc,

characterizes dynamics/transitions.

The particular solution. We start with the simplest solution possible; if this fails, we move up

in the degree of complexity.

• If a2 6= 0, then yp = b/a2 is solution, which implies a stable point.

• If a2 = 0 and a1 6= 0, then yp = b
a1
t .

• If a2 = 0 and a1 = 0, then yp = b
2 t

2 .

In the latter solutions, the "stable point" is moving. Recall that this solution is too restrictive,

because it constrains the dynamics of y. That is why we add the complementary function.

The complementary function solves the homogenous equation

y′′ + a1y
′ + a2y = 0 .
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We "guess"

y = Aert

which implies

y′ = rAert

y′′ = r2Aert

and thus

y′′ + a1y
′ + a2y = A

(
r2 + a1r + a2

)
ert = 0 .

Unless A = 0, we must have

r2 + a1r + a2 = 0 .

This is sometimes called the characteristic equation. The roots are

r1,2 =
−a1 ±

√
a2

1 − 4a2

2
.

For each root ri there is a potentially different Ai coeffi cient. So there are two possible solutions

for the complementary function:

y1 = A1e
r1t

y2 = A2e
r2t .

We cannot just chose one of the two solutions because this would restrict the dynamics of y. Thus,

we have

yc = A1e
r1t +A2e

r2t .

Given two initial conditions on y and y′ at some point in time we can pin down A1 and A2.

There are three options for the composition of the roots:

• Two distinct real roots: r1, r2 ∈ R and r1 6= r2. This will give us values for A1 and A2,

given two conditions on y.

yc = A1e
r1t +A2e

r2t .

• Repeated real root: r1 = r2 ∈ R, r = −a1/2. It might seem that we can just add up the

solution as before, but this actually not general enough because it restricts the dynamics of

y. Moreover, if we used yc = (A1 +A2) ert, then we cannot separately identify A1 from A2.

136



We guess again:

y1 = A1e
rt

y2 = A2 · t · ert .

This turns out to work, because both solve the homogenous equation. You can check this.

Thus for repeated real root the complementary function is

yc = A1e
r1t +A2te

r2t .

• Complex roots: r1,2 = r ± bi, i =
√
−1, a2

1 < 4a2. This gives rise to oscillating dynamics

yc = ert [A1 cos (bt) +A2 sin (bt)]

We do not discuss in detail here.

Stability: does yc → 0?

• r1, r2 ∈ R: need both r1, r2 < 0.

• r1 = r2 = r ∈ R: need r < 0.

• r1,2 = r ± bi complex roots: need r < 0.

Why do we need both A1e
r1t
2 and A2e

r2t in yc = A1e
r1t + A2e

r2t when there are two distinct real

roots? Denote y1 = A1e
r1t and y2 = A2e

r2t. First, note that since both y1 and y2 solve the

homogenous equation and because the homogenous equation is linear, then y1 + y2 also solves the

homogenous equation and therefore yc = y1 + y2 is a solution. To see why the general solution

must have this form, denote y (t0) = y0 and y′ (t0) = y1 as the initial conditions for the problem

and suppose that w.o.l.g. t0 = 0. Then

y (0) = A1e
r10 +A2e

r20 = A1 +A2 = y0

y′ (0) = r1A1e
r10 + r2A2e

r20 = r1A1 + r2A2 = y1 ,

which implies [
1 1
r1 r2

]
︸ ︷︷ ︸

R

[
A1

A2

]
=

[
y0

y1

]

and since r1 6= r2, the matrix R is nonsingular so that given any values for y0 and y1 there is a

unique solution for A1 and A2. They may be equal, but we do not want to impose this ex ante.
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When there is only one real root the matrix R is singular and therefore this general form for

the solution does not work: there would be an infinite number of solutions. That is why we use

y1 = A1e
rt and y2 = A2te

rt. As before, since each one solves the homogenous equation and because

the homogenous equation is linear, then y1 + y2 also solves the homogenous equation and therefore

yc = y1 + y2 is a solution. Following the steps from above,

y (0) = A1e
r0 +A20er0 = A1 = y0

y′ (0) = rA1e
r0 +A2

[
er0 + r0er0

]
= rA1 +A2 = y1 ,

which implies [
1 0
r 1

]
︸ ︷︷ ︸

R

[
A1

A2

]
=

[
y0

y1

]
.

Now the matrix R is nonsingular so that given any values for y0 and y1 there is a unique solution

for A1 and A2.

16.2 Differential equations with moving constant

y′′ + a1y
′ + a2y = b (t) ,

where a1 and a2 are constants. We require that b (t) takes a form that combines a finite number of

"elementary functions", e.g. ktn, ekt, etc. We find yc in the same way as above, because we consider

the homogenous equation where b (t) = 0. We find yp by using some educated guess and verify

our guess by using the method of undetermined coeffi cients. There is no general solution

procedure for any type of b (t).

Example: polynomial b (t):

y′′ + 5y′ + 3y = 6t2 − t− 1 .

Guess:

yp = ϕ2t
2 + ϕ1t+ ϕ0 .

This implies

y′p = 2ϕ2t+ ϕ1

y′′p = 2ϕ2 .

Plug this into yp to get

y′′ + 5y′ + 3y = 2ϕ2 + 5 (2ϕ2t+ ϕ1) + 3
(
ϕ2t

2 + ϕ1t+ ϕ0

)
= 3ϕ2t

2 + (10ϕ2 + 3ϕ1) t+ (2ϕ2 + 5ϕ1 + 3ϕ0) .
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we need to solve

3ϕ2 = 6

10ϕ2 + 3ϕ1 = −1

2ϕ2 + 5ϕ1 + 3ϕ0 = −1 .

This gives ϕ2 = 2, ϕ1 = −7, ϕ0 = 10. Thus

yp = 2t2 − 7t+ 10 .

But this may not always work. For instance, if

y′′ + a1y
′ + a2y = t−1 .

Then no guess of the type yp = ϕt−1 or yp = ϕ ln t will work.

Example: missing y (t) and polynomial b (t)

y′′ + 5y′ = 6t2 − t− 1 .

The former type of guess,

yp = ϕ2t
2 + ϕ1t+ ϕ0 ,

will not work, because ϕ0 will never show up in the equation, so cannot be recovered. Instead, try

yp = t
(
ϕ2t

2 + ϕ1t+ ϕ0

)
.

If this fails, try

yp = t2
(
ϕ2t

2 + ϕ1t+ ϕ0

)
,

and so on.

Example: exponential b (t)

y′′ + a1y
′ + a2y = Bert .

Guess:

yp = Atert

with the same r and look for solutions for A. The guess yp = Aert will not work. E.g.

y′′ + 3y′ − 4y = 2e−4t .
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Guess:

yp = Ate−4t

y′p = Ae−4t +−4Ate−4t = Ae−4t (1− 4t)

y′′p = −4Ae−4t (1− 4t) +−4Ae−4t = Ae−4t (−8 + 16t) .

Plug in the guess

y′′ + 3y′ − 4y = Ae−4t (−8 + 16t) + 3Ae−4t (1− 4t) +−4Ate−4t

= Ae−4t (−8 + 16t+ 3− 12t− 4t)

= −5Ae−4t

We need to solve

−5Ae−4t = 2e−4t

so A = −0.4 and

yp = −0.4te−4t .
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17 First order difference equations

yt+1 + ayt = c .

As with differential equations, we wish to trace out a path for some variable y over time, i.e. we

seek y (t). But now time is discrete, which gives rise to some peculiarities. Define

∆yt ≡ yt+1 − yt ,

(not the standard notation) which is like

∆yt
∆t

=
yt+∆t − yt

∆t
,

where ∆t = 1 (ẏ is when ∆t→ 0).

17.1 Backward iteration

1. ∆yt = yt+1 − yt = c.

y1 = y0 + c

y2 = y1 + c = y0 + c+ c = y0 + 2c

y3 = y2 + c = y0 + 2c+ c = y0 + 3c
...

yt = y0 + ct .

2. ayt+1 − byt = 0, a 6= 0. Then yt+1 = kyt, where k = b/a.

y1 = ky0

y2 = ky1 = k2y0

...

yt = kty0 .

17.2 General solution

yt+1 + ayt = c ,

where a 6= 0. The solution method involves splitting the solution into two:

y (t) = yc (t) + yp (t) ,

where yp (t) is a particular solution and yc (t) is a complementary function.
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• yc (t) solves the homogenous equation

yt+1 + ayt = 0 .

Guess

yt = Abt

so that yt+1 + ayt = 0 implies

Abt+1 + aAbt = 0

b+ a = 0

b = −a .

yc (t) = A (−a)t ,

where a 6= 0.

• a 6= −1. yp (t) solves the original equation for a stationary solution, yt = k, a constant. This

implies

k + ak = c

k =
c

1 + a
.

So that

yp =
c

1 + a
, a 6= −1 .

• a = −1. Guess yp (t) = kt. This implies

k (t+ 1)− kt = c

k = c .

So that

yp = ct , a = −1 .

The general solution is

yt = yc (t) + yp (t) =

{
A (−a)t + c

1+a if a 6= −1

A+ ct if a = −1
.

Given an initial condition y (0) = y0, then

• for a 6= −1

y0 = A+
c

1 + a
⇒ A = y0 −

c

1 + a
.
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• for a = −1

y0 = A .

The general solution is

yt =

{ [
y0 − c

1+a

]
(−a)t + c

1+a if a 6= −1

y0 + ct if a = −1
.

For a 6= −1 we have

yt = y0 (−a)t +
[
1− (−a)t

] c

1 + a
,

which is a linear combination of the initial point and the stationary point c
1+a . And if a ∈ (−1, 1),

then this process is stable. Otherwise it is not. For a = −1 and c 6= −1 the process is never stable.

Example:

yt+1 − 5yt = 1 .

First, notice that a 6= −1 and a 6= 0. yc solves

yt+1 − 5yt = 0 .

Let yc (t) = Abt, so that

Abt+1 − 5Abt = 0

Abt (b− 5) = 0

b = 5 ,

so that

yc (t) = A5t .

yp = k solves

k − 5k = 1

k = −1/4 ,

so that yp = −1/4.

yt = yc (t) + yp (t) = A5t − 1/4 .

Given y0 = 7/4 we have A = 2, which completes the solution.
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17.3 Dynamic stability

Given

yt =

[
y0 −

c

1 + a

]
bt +

c

1 + a
,

the dynamics are governed by b (= −a).

1. b < 0 will give rise to oscillating dynamics.

• −1 < b < 0: oscillations diminish over time. In the limit we converge on the stationary

point c
1+a .

• b = −1: constant oscillations.

• b < −1: growing oscillations over time. The process is divergent.

2. b = 0 and b = 1: no oscillations, but this is degenerate.

• b = 0 means a = 0, so yt = c.

• b = 1 means a = −1, so yt = y0 + ct.

3. 0 < b < 1 gives convergence to the stationary point c
1+a .

4. b > 1 gives divergent dynamics.

Only |b| < 1 gives convergent dynamics.

17.4 Application: cobweb model

This is an early model of agriculture markets. Farmers determined supply last year based on the

prevailing price at that time. Consumers determine demand based on current prices. Thus, three

equations complete the description of this model

supply : qst+1 = s (pt) = −γ + δpt

demand : qdt+1 = d (pt+1) = α− βpt+1

equilibrium : qst+1 = qdt+1 ,

where α, β, γ, δ > 0. Imposing equilibrium:

−γ + δpt = α− βpt+1

pt+1 +

(
δ

β

)
︸ ︷︷ ︸
a

pt =
α+ γ

β︸ ︷︷ ︸
c

.
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The solution to this difference equation is

pt =

[
p0 −

α+ γ

β + δ

](
− δ
β

)t
+
α+ γ

β + δ
.

The process is convergent (stable) iff |δ| < |β|. Since both are positive, we need δ < β.

Interpretation: what are β and δ? These are the slopes of the demand and supply curves,

respectively. If follows that if the slope of the supply curve is lower than that of the demand curve,

then the process if convergent. I.e., as long as the farmers do not "overreact" to current prices next

year, the market will converge on a happy stable equilibrium price and quantity. Conversely, as

long as consumers are not "insensitive" to prices, then...

Stable Cobweb Dynamics Unstable Cobweb Dynamics

17.5 Nonlinear difference equations

We will use only a qualitative/graphic approach and restrict to autonomous equations, in which t

is not explicit. Let

yt+1 = ϕ (yt) .

Draw a phase diagram with yt+1 on the vertical axis and yt on the horizontal axis and the 45

degree ray starting from the origin. For simplicity, y > 0. A stationary point satisfies y = ϕ (y).

But sometimes the stationary point is not stable. If |ϕ′ (y)| < 1 at the stationary point, then the

process is stable. More generally, as long as |ϕ′ (yt)| < 1 the process is stable, i.e. it will converge

to some stationary point. When |ϕ′ (yt)| ≥ 1 the process will diverge.
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Stable Nonlinear Cobweb Difference Equation Stable Nonlinear Difference Equation

Unstable Nonlinear Difference Equation

• Example: Galor and Zeira (1993), REStud.
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18 Phase diagrams with two variables (CW 19.5)

We now analyze a system of two autonomous differential equations:

ẋ = F (x, y)

ẏ = G (x, y) .

First we find the ẋ = 0 and ẏ = 0 loci by setting

F (x, y) = 0

G (x, y) = 0 .

Apply the implicit function theorem separately to the above, which gives rise to two (separate)

functions:

ẋ = 0 : y = fẋ=0 (x)

ẏ = 0 : y = gẏ=0 (x) ,

where

f ′ = −Fx
Fy

g′ = −Gx
Gy

.

Now suppose that we have enough information about F and G to characterize f and g. And

suppose that f and g intersect, which is the interesting case, because this gives rise to a stationary

point (x∗, y∗), in which both x and y are constant:

fẋ=0 (x∗) = gẏ=0 (x∗) = y∗ .

There are two interesting cases, although you can characterize the other ones, once you do this.

18.1 Case 1: dynamic stability

ẋ : Fx < 0, Fy > 0

ẏ : Gx > 0, Gy < 0 .

Both f and g are upward sloping and f is steeper than g at the intersection: f ′ (x∗, y∗) > g′ (x∗, y∗).

Consider a point on the fẋ=0 locus. Now suppose that you move slightly above it or slightly

below it. How does this affect the ẋ? And similarly for points slightly above or below the ẏ locus.
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By looking at the partial derivatives of F and G:

• at all points to the right of the fẋ=0 locus (or above the fẋ=0 locus ) ẋ < 0 and in all points

to the left of the fẋ=0 locus ẋ > 0 (Fx < 0).

• at all points above the gẏ=0 locus ẏ < 0 and in all points below the gẏ=0 locus ẏ > 0 (Gy < 0).

Given an intersection, this gives rise to four regions in the (x, y) space:

1. Below fẋ=0 and above gẏ=0: ẋ < 0 and ẏ < 0.

2. Above fẋ=0 and above gẏ=0: ẋ > 0 and ẏ < 0.

3. Above fẋ=0 and below gẏ=0: ẋ > 0 and ẏ > 0.

4. Below fẋ=0 and below gẏ=0: ẋ < 0 and ẏ > 0.

This gives rise to a stable system. From any point in the (x, y) space we converge to (x∗, y∗).

Dynamically Stable Phase Diagram

Given the values that ẋ and ẏ take (given the direction in which the arrows point in the figure),

we can draw trajectories. In this case, all trajectories will eventually arrive at the stationary point

at the intersection of ẋ = 0 and ẏ = 0.

• Notice that at the point in which we cross the ẋ = 0 the trajectory is vertical.

Similarly, at the point in which we cross the ẏ = 0 the trajectory is horizontal.

This will become important below.
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18.2 Case 2: saddle point

ẋ : Fx > 0, Fy < 0

ẏ : Gx < 0, Gy > 0 .

Both f and g are upward sloping and g is steeper than f at the intersection: f ′ (x∗, y∗) < g′ (x∗, y∗).

Notice that

• in all points above fẋ=0 ẋ < 0 and in all points below fẋ=0 ẋ > 0.

• in all points above gẏ=0 ẏ > 0 and in all points below gẏ=0 ẏ < 0.

Given an intersection, this gives rise to four regions in the (x, y) space:

1. Below fẋ=0 and above gẏ=0: ẋ > 0 and ẏ > 0.

2. Above fẋ=0 and above gẏ=0: ẋ < 0 and ẏ > 0.

3. Above fẋ=0 and below gẏ=0: ẋ < 0 and ẏ < 0.

4. Below fẋ=0 and below gẏ=0: ẋ > 0 and ẏ < 0.

This gives rise to an unstable system. However, there is a stationary point at the intersection,

(x∗, y∗). In order to converge to (x∗, y∗) there are only two trajectories that bring us there, one

from the region above fẋ=0 and below gẏ=0, the other from the region below fẋ=0 and above gẏ=0.

These trajectories are called stable branches. If we are not on those trajectories, then we are on

unstable branches. Note that being in either region does not ensure that we are on a stable branch,

as the figure illustrates.
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Saddle Point Phase Diagram
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19 Optimal control

Like in static optimization problems, we want to maximize (or minimize) an objective function.

The difference is that the objective is the sum of a path of values at any instant in time; therefore,

we must choose an entire path as a maximizer.2

The problem is generally stated as follows:

Choose u (t) to maximize
∫ T

0
F (y, u, t) dt

s.t.

Law of motion : ẏ = g (y, u, t)

Initial condition : y (0) = y0

Transversality condition : y (T ) e−rT ≥ 0 .

where r is some average discount rate that is relevant to the problem. To this we need to sometimes

add

Terminal condition : y (T ) = yT

Constraints on control : u (t) ∈ U

The function y (t) is called the state variable. The function u (t) is called the control variable.

It is useful to think of the state as a stock (like capital) and the control as a flow (like investment or

consumption). Usually we will have F, g ∈ C1, but in principle we could do without differentiability

with respect to u. I.e., we only need that the functions F and g are continuously differentiable with

respect to y and t.

In a finite horizon problem (T <∞) e−rT > 0 so that the transversality condition immediately

implies that y (T ) ≥ 0, but also something more: If this constraint binds, then y (T ) = 0. Either

way, this tells you that the value of y at the end of the problem cannot be negative. This will

become clearer below, when we discuss the Lagrangian approach.

• If there is no law of motion for y, then we can solve the problem separately at any instant as

a static problem. The value would just be the sum of those static values.

• There is no uncertainty here. To deal with uncertainty, wait for your next course in math.

• To ease notation we will omit time subscripts when there is no confusion.
2The theory behind this relies on "calculus of variations", which was first developed to compute trajectories of

missiles (to the moon and elsewhere) in the U.S.S.R.
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Example: the saving/investment problem for individuals.

1. Output: Y = F (K,L).

2. Investment/consumption: I = Y − C = F (K,L)− C.

3. Capital accumulation: K̇ = I − δK.

We want to maximize the present value of instantaneous utility from now (at t = 0) till we die

(at some distant time T ). The problem is stated as

Choose C (t) to maximize
∫ T

0
e−ρtU [C (t)] dt

s.t.

K̇ = I − δK

K (0) = K0

K (T ) = KT .

19.1 Pontryagin’s maximum principle and the Hamiltonian function

Define the Hamiltonian function:

H (y, u, t, λ) = F (y, u, t) + λg (y, u, t) .

The function λ (t) is called the co-state function and also has a law of motion. Finding λ is part

of the solution. The FONCs of this problem ensure that we maximize H at every point in time,

and as a whole. If u∗ is a maximizing plan then

(i) : H (y, u∗, t, λ) ≥ H (y, u, t, λ) ∀u ∈ U

or :
∂H

∂u
= 0 if F, g ∈ C1

State equation (ii) :
∂H

∂λ
= ẏ ⇒ ẏ = g (y, u, t)

Costate equation (iii) :
∂H

∂y
= −λ̇ ⇒ λ̇+ Fy + λgy = 0

Transversality condition (iv) : λ (T ) = 0 or other (see below) .

Conditions (ii)+(iii) are a system of first order differential equations that can be solved explicitly

if we have functional forms and two conditions: y (0) = y0 and λ (T ) = 0. But λ (T ) = 0 is only

one way to get a transversality/terminal condition.
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• Interpretation of the Hamiltonian: u and y affect the value of the problem directly

through F . But they also affect the value of the problem indirectly, through their effect on

ẏ. This is captured by λg. So in this context λ is the cost/benefit of allowing y to grow a bit

faster. So λ has the same interpretation as the Lagrange multiplier: it is the shadow cost of

the constraint at any instant.

We adopt the convention that y (0) = y0 is always given. There are a few way to introduce

terminal conditions, which gives the following taxonomy

1. When T is fixed, i.e. the problem must end at T .

(a) λ (T ) = 0, y (T ) free.

(b) y (T ) = yT , λ (T ) free.

(c) y (T ) ≥ ymin (or y (T ) ≤ ymax), λ (T ) free. Add the following complementary slackness

conditions:

y (T ) ≥ ymin

λ (T ) ≥ 0

λ (T ) (y (T )− ymin) = 0

2. T is free and y (T ) = yT , i.e. you finish whenever y (T ) hits yT . Add H (T ) = 0.

3. T ≤ Tmax (or T ≥ Tmin) and y (T ) = yT , i.e. you finish whenever y (T ) hits yT , but this must

happen before Tmax (or after Tmin). Add the following complementary slackness conditions:

H (T ) ≥ 0

T ≤ Tmax

H (T ) (Tmax − T ) = 0

19.2 The Lagrangian approach

This is based on Barro and Sala-i-Martin (2001), Economic Growth, MIT Press, third edition.

The problem is

Choose u (t) to maximize
∫ T

0
F (y, u, t) dt

s.t.
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ẏ = g (y, u, t)

y (T ) e−rT ≥ 0

y (0) = y0 .

You can think of ẏ = g (y, u, t) as an inequality ẏ ≤ g (y, u, t); this is the correct way to think about

it when Fy > 0. We can write this up as a Lagrangian. For this we need Lagrange multipliers

for the law of motion constraint at every point in time, as well as an additional multiplier for the

transversality condition:

L =

∫ T

0
F (y, u, t) dt+

∫ T

0
λ (t) [g (y, u, t)− ẏ] dt+ θy (T ) e−rT

=

∫ T

0
[F (y, u, t) + λ (t) g (y, u, t)]︸ ︷︷ ︸

H(y,u,t,λ)

dt−
∫ T

0
λ (t) ẏ (t) dt+ θy (T ) e−rT .

In this context, both u and y are part of the "critical path" (paraphrasing critical point). The

problem here is that we do not know how to take the derivative of ẏ w.r.t. y. To avoid this, use

integration by parts to get

−
∫
λẏdt = −λy +

∫
λ̇ydt

so that

L =

∫ T

0
[F (y, u, t) + λ (t) g (y, u, t)] dt− [λ (t) y (t)|T0 +

∫ T

0
λ̇ (t) y (t) dt+ θy (T ) e−rT

=

∫ T

0
[F (y, u, t) + λ (t) g (y, u, t)] dt− λ (T ) y (T ) + λ (0) y (0) +

∫ T

0
λ̇ (t) y (t) dt+ θy (T ) e−rT .

The FONCs for the Lagrangian are

(i) : Lu = Fu + λgu = 0

(ii) : Ly = Fy + λgy + λ̇ = 0

(iii) : ẏ = g .

These are consistent with

(i) : Hu = Fu + λgu = 0

(ii) : Hy = Fy + λgy = −λ̇

(iii) : Hλ = g = ẏ ,
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which are the FONCs for the Hamiltonian

H (y, u, t, λ) = F (y, u, t) + λ (t) g (y, u, t) .

The requirement that y (0) = y0 can also be captured in the usual way, as well as y (T ) = yT , if

it is required. The transversality condition is captured by the complementary slackness conditions

y (T ) e−rT ≥ 0

θ ≥ 0

θy (T ) e−rT = 0 .

We see here that if y (T ) e−rT > 0, then its value, θ, must be zero.

19.3 Autonomous problems

In these problems t is not an explicit argument.

Choose u to maximize
∫ T

0
F (y, u) dt s.t. ẏ = g (y, u)

plus boundary conditions. The Hamiltonian is thus

H (y, u, λ) = F (y, u) + λg (y, u) .

These problems are easier to solve and are amenable to analysis by phase diagrams. This type of

problem appears more often in economic applications than problems in which t is explicit (but see

current value Hamiltonian below).

19.3.1 Example: the cake eating problem (with no discounting)

Objective: You want to eat your cake in an optimal way, maximizing your satisfaction from eating

it, starting now (t = 0) and finishing before bedtime, at T .

• The cake starts at size S0.

• When you eat cake, the size diminishes by the amount that you ate: Ṡ = −C.

• Inada conditions: You like cake, but less so when you eat more: U ′ (C) > 0, U ′′ (C) < 0. If

you are not eating cake U (0) = 0, but you really want some: U ′ (0) = ∞. Eventually, too
much cake is no longer beneficial: U ′ (∞) = 0.

The problem is

Choose C to maximize
∫ T

0
U (C) dt s.t.
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Ṡ = −C

S (0) = S0

S (T ) ≥ 0 .

This is an autonomous problem. The Hamiltonian is

H (C, S, λ) = U (C) + λ [−C] .

FONCs:

(i) :
∂H

∂C
= U ′ (C)− λ = 0

(ii) :
∂H

∂λ
= −C = Ṡ

(iii) :
∂H

∂S
= 0 = −λ̇

(iv) : S (T ) ≥ 0, λ (T ) ≥ 0, S (T )λ (T ) = 0 .

From (iii) it follows that λ is constant. From (i) we have U ′ (C) = λ > 0, and since λ is constant,

C is constant too. Then given a constant C we get from (ii) that

S = A− Ct .

And given S (0) = S0 we have

S = S0 − Ct .

But we still do not know what is C, except that it is constant. So we solve for the complementary

slackness conditions, i.e., will we leave leftovers?

Suppose λ > 0. Then S (T ) = 0. Therefore

0 = S0 − CT ,

which gives

C =
S0

T
.

Suppose λ = 0. Then it is possible to have S (T ) > 0. But then we get U ′ = 0– a contradiction.

The solution is thus

C (t) = S0/T

λ (t) = U ′ (S0/T )

S (t) = S0 − (S0/T ) t ,
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where only S (t) evolves over time and C and λ are constants.

If we allowed a flat part in the utility function after some satiation point, then we could have

a solution with leftovers S (T ) > 0. In that case we would have more than one optimal path: all

would be global because with one flat part U is still quasi concave.

• Try solving this problem with cake depreciation: Ṡ = −C − δS. In order to solve completely
you will need to make a functional form assumption on U , but even without this you can

characterize the solution very accurately.

19.3.2 Anecdote: the value of the Hamiltonian is constant in autonomous problems

We demonstrate that on the optimal path the value of the Hamiltonian function is constant.

H (y, u, t, λ) = F (y, u, t) + λg (y, u, t) .

The derivative with respect to time is

dH

dt
= Huu̇+Hyẏ +Hλλ̇+Ht .

The FONCs were

Hu = 0

Hy = −λ̇

Hλ = ẏ .

Plugging this into dH/dt gives

dH

dt
=
∂H

∂t
.

This is a consequence of the envelope theorem. If time is not explicit in the problem, then ∂H
∂t = 0,

which implies the statement above. The interpretation is that since the optimal path gives a critical

point of the Hamiltonian at every moment in time, the value does not change. This is slightly more

complicated than the Lagrangian due to the dynamics, but the reasoning is the same. If time was

explicit then this reasoning does not work, because we do not choose t optimally.

19.4 Current value Hamiltonian

Many problems in economics involve discounting, so the problem is not autonomous. However,

usually the only place that time is explicit is in the discount factor,∫ T

0
F (y, u, t) dt =

∫ T

0
e−rt ·G (y, u) dt .
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You can try to solve those problems "as-is", but an easier way (especially if the costate is of no

particular interest) is to use the current value Hamiltonian:

H̃ = ertH = G (y, u) + ϕg (y, u) ,

where

ϕ = λert .

A maximizing plan u∗ satisfies the following FONCs:

(i) : H̃ (y, u∗, ϕ) ≥ H̃ (y, u, ϕ) ∀u ∈ U

or :
∂H̃

∂u
= 0 if H̃, g ∈ C1

State equation (ii) :
∂H̃

∂ϕ
= ẏ ⇒ ẏ = g (y, u)

Costate equation (iii) :
∂H̃

∂y
= −ϕ̇+ rϕ ⇒ ϕ̇− rϕ+ Fy + λgy = 0

Transversality condition (iv) : ϕ (T ) = 0 or H̃ (T ) = 0 or other.

Since ϕ = λert we have

ϕ̇ = λ̇ert + λrert = λ̇ert + rϕ .

Therefore

−λ̇ert = −ϕ̇+ rϕ ,

which is what
∂H̃

∂y
=

∂

∂y

[
ertH

]
= ert

∂H

∂y
= −λ̇ert .

implies.

You can derive the FONCs of the current value Hamiltonian H̃ by multiplying the FONCs of

the regular Hamiltonian H by ert. Multiplying an objective function by a positive constant (in

this case, ert, or any other strictly positive monotone transformation) does not change the optimal

solution, just the value of the problem.

19.4.1 Example: the cake eating problem with discounting

We now need to choose a functional form for the instantaneous utility function. The problem is

Choose C to maximize
∫ T

0
e−rt ln (C) dt s.t.
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Ṡ = −C

S (0) = S0

S (T ) ≥ 0 .

We write the present value Hamiltonian

H̃ = lnC + ϕ [−C]

FONCs:

(i) :
∂H̃

∂C
=

1

C
− ϕ = 0

(ii) :
∂H̃

∂ϕ
= −C = Ṡ

(iii) :
∂H̃

∂S
= 0 = −ϕ̇+ rϕ

(iv) : S (T ) ≥ 0, ϕ (T ) ≥ 0, S (T )ϕ (T ) = 0 .

From (iii) we have
ϕ̇

ϕ
= r ,

hence

ϕ = Bert ,

for some B. From (i) we have

C =
1

ϕ
=

1

B
e−rt .

Consumption is falling over time, at rate r. From (ii) we have

Ṡ = −C∫ t

0
Ṡdz =

∫ t

0
−Cdz

S (t)− S (0) =

∫ t

0
−Cdz ,

which, together with S (0) = S0 implies

S (t) = S0 −
∫ t

0
Cdz ,
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which makes sense. Now, using C = B−1e−rt we get

S (t) = S0 −
∫ t

0
B−1e−rzdz

= S0 −B−1

[
−1

r
e−rz

∣∣∣∣t
0

= S0 −B−1

[
−1

r
e−rt +

1

r
e−r0

]
= S0 −

1

rB

[
1− e−rt

]
Suppose ϕ (T ) = 0. Then from (i) C (T ) = ∞, which is not possible. So ϕ (T ) > 0, which

implies S (T ) = 0. Therefore

0 = S0 −
1

rB

[
1− e−rT

]
B =

[
1− e−rT

]
rS0

Therefore

C =
rS0

[1− e−rT ]
e−rt ,

which is decreasing, and

ϕ =

[
1− e−rT

]
rS0

ert ,

which is increasing. And finally

S (t) = S0

[
1− 1− e−rt

1− e−rT

]
.

This completes the characterization of the problem.

19.5 Infinite time horizon

When the problem’s horizon is infinite, i.e. never ends, we need to modify the transversality

condition. These are

lim
T→∞

λ (T ) y (T ) = 0

for the present value Hamiltonian, and

lim
T→∞

ϕ (T ) e−rTk (T ) = 0

for the current value Hamiltonian.
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19.5.1 Example: The neoclassical growth model

1. Preferences: u (C), u′ > 0, u′′ < 0. Inada conditions: u (0) = 0, u′ (0) = ∞, u′ (C) → 0 as

C →∞.

2. Aggregate production function: Y = F (K,L), CRS, Fi > 0, Fii < 0. Given this we can write

the per-worker version y = f (k), where f ′ > 0, f ′′ < 0 and y = Y/L, k = K/L. Additional

Inada conditions: f (0) = 0, f ′ (0) =∞, f ′ (∞) = 0 (these are stability conditions).

3. Capital accumulation: K̇ = I − δK = Y − C − δK. As we saw in the Solow model, we can
write this in per worker terms k̇ = f (k)− c− (n+ δ) k, where n is the constant growth rate

of labor force.

4. There cannot be negative consumption. In addition, once output is converted into capital,

we cannot eat it. This can be summarized in 0 ≤ C ≤ F (K,L). This is an example of a

restriction on the control variable.

5. A social planner chooses a consumption plan to maximize everyone’s welfare, in equal weights.

The objective function is

V =

∫ ∞
0

L0e
nt · e−ρtu (c) dt =

∫ ∞
0

e−rtu (c) dt ,

where we normalize L0 = 1 and we set r = ρ − n > 0, which ensures integrability. Notice

that everyone gets the average level of consumption c = C/L.

The problem is

Choose c to maximize V s.t.

k̇ = f (k)− c− (n+ δ) k

0 ≤ c ≤ f (k)

k (0) = k0

Write down the current value Hamiltonian

H = u (c) + ϕ [f (k)− c− (n+ δ) k] .

FONCs:

Hc = u′ (c)− ϕ = 0

Hϕ = [f (k)− c− (n+ δ) k] = k̇

Hk = ϕ
[
f ′ (k)− (n+ δ)

]
= rϕ− ϕ̇
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lim
T→∞

ϕ (T ) e−rTk (T ) = 0

Ignore for now 0 ≤ c ≤ f (k). The transversality condition here is a suffi cient condition for a

maximum, although in general this specific condition is not necessary. If this was a present value

Hamiltonian the same transversality condition would be limT→∞ λ (T ) k (T ) = 0, which just means

that the value of an additional unit of capital in the limit is zero.

From Hc we have u′ (c) = ϕ. From Hk we have

ϕ̇

ϕ
= −

[
f ′ (k)− (n+ δ + r)

]
.

We want to characterize the solution qualitatively using a phase diagram. To do this, we need

two equations: one for the state, k, and one for the control, c. Taking derivatives w.r.t. time of

ϕ = u′ (c) we get

ϕ̇ = u′′ (c) ċ ,

so
ϕ̇

ϕ
=
u′′ (c) ċ

u′ (c)
= −

[
f ′ (k)− (n+ δ + r)

]
.

Rearrange to get
ċ

c
= − u′ (c)

cu′′ (c)

[
f ′ (k)− (n+ δ + r)

]
.

Notice that

−cu
′′ (c)

u′ (c)

is the coeffi cient of relative risk aversion. Let

u (c) =
c1−σ

1− σ .

This is a class of constant relative relative risk aversion (CRRA) utility functions, with coeffi cient

of RRA = σ.

Eventually, our two equations are

k̇ = f (k)− c− (n+ δ) k

ċ

c
=

1

σ

[
f ′ (k)− (n+ δ + r)

]
.

From this we derive

k̇ = 0 : c = f (k)− (n+ δ) k

ċ = 0 : f ′ (k) = n+ δ + r .
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The ċ = 0 locus is a vertical line in the (k, c) space. Given the Inada conditions and diminishing

returns to capital, we have that the k̇ = 0 locus is hump shaped. The peak of the hump is found

by maximizing c: Choose k to maximize f (k)− (n+ δ) k. The FONC implies

f ′ (k) = n+ δ .

Since r > 0, the peak of the hump is to the right of the vertical ċ = 0 locus (if f ′ (k) is higher, then

k is lower, because f ′′ < 0).

The phase diagram features a saddle point, with two stable branches. If k is to the right of the

ċ = 0 locus, then ċ < 0 and vice versa for k to the left of the ċ = 0 locus. For c above the k̇ = 0

locus we have k̇ < 0 and vice versa for c below the k̇ = 0 locus. See textbook for figure.

Define the stationary point as (k∗, c∗). Suppose that we start with k0 < k∗. Then the optimal

path for consumption must be on the stable branch, i.e. c0 is on the stable branch, and c (t) will

eventually go to c∗. The reason is that any other choice is not optimal. Higher consumption will

eventually lead to depletion of the capital stock, which eventually leads to no output and therefore

no consumption (U.S.A.). Too little consumption will lead first to an increase in the capital stock

and an increase in output, but eventually this is not sustainable as the plan requires more and

more consumption forgone to keep up with effective depreciation (n + δ) and eventually leads to

zero consumption as well (U.S.S.R.).

One can do more than just analyze the phase diagram. First, given functional forms we can

compute the exact paths for all dynamic variables. Second, we could linearize (a first order Taylor

expansion) the system of differential equations around the saddle point to compute dynamics around

that point (or any other point, for that matter).
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