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NOTICES
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FOREWORD

This report contains the results of the work performed on a

study of "Fabrication and Experimental Evaluation of Common
Domes Having Waffle-Like Stiffening" initiated under NASA
Contract No. NAS 8-i15_2. The work is administered under

the direction of the Propulsion and Vehicle Engineering Di-
vision with Mr. Norman C. Schlemmer (R-PVE-SS) acting as

Prlncip_l Representative.

The Douglas program was conducted under the direction of
Mr. H. H. Dixon, Chieft Structures Branch, Advance Space Tech-
nology with Mr. R. H. Christensen acting as Study Director.

Mr. R. R. Meyer was the principal investigator of the program

and was assisted in the theoretical and analytical phases of
the program by Mr. R. J. Bellinfante.

The authors wish to acknowledge the assistance of Mr. H. P.

Adam and Mr. P. A. King of the Experimental Stress Analysis
Laboratory for their work in the fabrication and testing of
the plastic models in the experimental program. Messrs. R. T.

Pfaffenberger and T. J. Murphy were responsible for the fab-
rication and test of the aluminum waffle stiffened dome.
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ii.............................) ..............
Experimental and analytical techniques were used to determine the

minimum weight shape and stiffening configuration for doubly curved

shells subjected to external buckling pressures.

Monocoque shapes considered were spherical, ellipsoidal and torispher-

ical having clamped boundary conditions.

The stiffening configurations considered were meridional, circumfer-

ential, combined meridional and circumferential, square-grid and

geodesic stiffened domes.

The theory was supported in all phases by experimental tests on plastic

models and was concluded by a large scale aluminum test on the best

stiffened configuration. It was concluded from this study that:

The minimum weight dome shape for a condition of external pressure is

a spherical cap with a half-opening angle of 8 = 60° .

The experimental data for the buckling Of monocoque spherical domes

shows excellent correlation with the theory of Huang.

The geodesic rib-stiffened dc_e is the most favorable reinforcement

arrangement for spherical domes subjected to external pressure.

The geodesic rib-stiffened dome is approximately 30 - 40% heavier than

an optimum honeycomb sandwich dome for an external loading condition.

However, Other loading conditions should be investigated before a

final strength to weight comparison can be made for common dome

applications.

_ ,__ I.. --_¸"̧ _
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CHAP_R I - PROBLEM DISCUSSION AND RESULTS OF INVESTIGATION

INTRODUCTION

The objective of this study was to determine the minimum weight shape

and rib stiffening pattern of a common bulkhead subjected to external

pressure separating two tandem cryogenic tanks of a space vehicle. The

rib stiffened reinforcement concept is a potential replacement candidate

for sandwich construction of common domes. The study was prompted by

the difficulties in fabrication and inspection techniques currently ex-
perienced with sandwich construction.

This effort was divided into four phases. In Phase I, analytical tech-

niques were used to select the least weight monocoque dome shape for

subsequent reinforcement studies. Phase II involved corroborations of

the Phase I analysis by tests on small scale plastic monocoque spher-
ical, elliPsoidal , and torisphere shapes. Phase III consisted of anal-

ysis and tests of stiffened domes under external pressure to optimize
the distribution of the reinforcing members on the shell shape selected

from Phase I and II studies. Phase IV was a test of a larger aluminum

dome fabricated in the best stiffening configuration to verify the
plastic dome results.

PHASE I - SHAPE OPTI_Uz_ATION

Mo ocOQUE

Prior dome buckling investigations were confined to monocoque construc-

tion. The first attempt was made by R. Zoelly (reference l) in a dis-

sertation at Zurich in 1915. From the prebuckled equilibrium deflections

of a complete sphere, he assumed a small axisymmetric perturbation shape

and determined the load which would maintain either of the two possible

equilibrium configurations. Later in 1932, Van der Neut (reference 2)

gave a more general solution, considering also unsyn_etrical buckling.
Unfortunately, tests of domes gave critical pressures which were far be-

low the predicted values. Various theories were advanced to explain

the discrepancy. In 1934, Donnell (reference 3) introduced the concept

of imperfection in the geometry as a possible cause for discrepancies

between test and theory of cylindrical shells. An imperfection parameter

was inserted into the equations which resulted in lowered critical pres-

sures. Unfortunately, actual physical measurements of the imperfection

parameter could not be made prior to a test.

Then in 1942 Von Kannen and Tslen (reference 4) investigated the problem

using a large deflection set of equations for a shallow spherical dome

and predicted an upper and lower equilibrium load for the dome under axi-

symmetric deformation. Little further progress was made until 1960, when
Grigolyuk (reference 5) succeeded in obtaining an unsymmetrical solution

to the large deflection shallow dome equation. His solution, however,



was theoretical only, and no actual computations were carried out. The

final step was made in 1963 by Huaug (reference 7), who obtained num_erical

results for a deformation process starting with a central dimple, fol-

lowed by a circle of circumferential dimples occurring at a pressure

roughly 80% of the value given by Zoelly for a complete sphere. These re-

sults were confirmed by Parmerter (reference 6) a year later, in 1964.

The existing experimental buckling data before the initiation of this

study, as depicted in Figure i.I shows a lack of consistency between var-

ious investigators which complicates any attempted correlation with

theoretical predictions. The reason for this large scattering of test

data ms_ be attributed to the significant influencing factors of imper-

fections, boundary conditions, residual and prebuckling bending effects
(non-linear theory). Where:

le Imperfections of geometry consist of deviations of the shell

mldsurface from that of a perfect sphere and variation in

thickness. Of these two, the most serious is midsurface

spherical deviations of the flat spot type covering regions
of dimple size or larger.

e Boundary conditions which lack rotational symmetry cause edge

disturbances which propagate deeply into the shell interior

before damping out. Regions of dimple size are stressed to

values considerably above the average pR/2t membrane stresses

assumed in theory and precipitate premature failure.

e Residual stresses can effect stability in two ways. First,

by causing a release in residual strain energy occasioned by

the buckling change of shape, and secondly by causing over-

stressed regions to become prematurely plastic.

_e Prebuckled bending effects influence the local geometric
radii of curvature of the shell in a similar fashion to that

of local flat spots with an accompanying drop in the critical

pressure. The ma_nltude of prebuckled bending is greater for

very thin shells (generally those with large _t ratios).

This aspect is incorporated in the large deformation theory,

but not in the earlier "classical" theory of Zoelly.

As an example of the effects of boundary conditions, Litle, at MIT,
(reference 26) fabricated dome specimens with hat-like brims which were

c_d to the testing fixture. Since the material was highly elastic,
the domes could be retested with the brim removed, and the edge cemented

into a ring. The second set of test pressures were 100% higher than the

first. Any efforts to correlate such tests with imperfection theory

would be misleading. It could be equally misleading, when residual
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stresses are high, to compare domes made by essentially different pro-

cesses, since the magnitude and distribution of residual stresses de-

pend upon the fabrication technique.

RESULTS OF OPTIMIZATION ANALYSIS

The shape is considered to be optimized for the least weight dome con-
figuration to support a given external pressure. Since the dome di-

vides two common tandem tanks, no cylindrical material is considered in
the weight comparison. The shapes to be investigated will consist of

constant thickness ellipsoids, spherical caps, torispheres and zero-

hoop-stress domes. The buckling criteria will2be taken as a modified
form of the Zoelly equation, i.e., p = 2CE (t) where C is an experi-
mentally determined coefficient, and R is the maximum radius of cur-

vature of the dome according to the theory of local stability developed
by Mushtari and Gellmov_ (reference 8).

The optimization analysis is effected by computing a weight index ob-
tained by factoring out the dimensions, the buckling coefficient, and
the dome density from the dome weight vs. the a/b (base radius to
height) ratio of the dome for the shapes of interest. The results of

this weight indexing are shown in Figure 1.2. From the figure, the

minimum weight is obtaineS for spherical cap with an a/b =_3, at a
half-openlng angle @ = 60 .

Although it may appear that a dome shape which frames into a cylinder

at an angle will require a large ring to accomodate the hoop thrust from
the dome at the juncture with the cylinder, a more careful analysis

matching the radial displacements of ring and dome shows that a Consi-

derable portion of the hoop load is ta/_enby the dome itself. For this
reason, a small ring is adequate. See Chapter II, Figure 2.4.

PHASE II - TESTS TO CONFIRM SHAPE OPTIMIZATION

MATEEIAL PROI:'EI_'Y TESTS

To establish basic material properties of the polyvinyl chloride plastic

material used in making experimental models, the following tests were
made at the start of the program:

(a) Elastic Modulus. Standard tensile specimens were fabricated
from sheet material supplied by the manufacturer to obtain

values in both directions of the sheet, from different areas
of the sheet, and different thickness of sheets. The results
give an average Young's Modulus of 465,000 psi with a maximum

deviation from the mean of 3.5%- Figures 5.1 and 5.2 in

Chapter V show the variation in the modulus and a typical
stress-strain curve from the experimental results.
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(b) Poisson's Ratio. Several tests established Poisson's

ratio to be 0.37 with very little scatter.

(c) Creep. Constant loads were maintained for several minutes

at stress levels below the proportional limit, with no

detectible creep.

MODEL FABRICATION

The plastic sheets were pressure formed into a metal mold at 240°F,

cooled, and finish machined in the mold. They were then cemented into

a heavy plastlc ring. The physical structure of the plastic is analo-

gous to that of a sponge saturated with water and frozen. Heating melts
the water so that the sponge may be formed. The water is then frozen

and the resulting new shape is virtually free of residual stresses.

This material and fabrication technique minimized the major factors con-

tributing to the test scatter and the reduction of the buckling co-
efficient.

TEST DESCRIPTION

A wooden block rests between the dome's inner surface and the base of

the test fixture with a gap of approximately 1/8" separating them. The

purpose of the block°is to prevent complete collapse of the specimen

so that it may be used for fUrther testing. A vacuum pump evacuates

the air beneath the dome thus subjects the dome to an equivalent external

differential pressure. The plungers of six transformer displacement

transducers are aligned normal to the surface along a dome meridian to

measure normal displacement. The output of six pressure gages are re-

corded with each corresponding transducer and plotted automatically on an

X-Y recorder to give pressure vs. displacement for each of the six posi-

tions. At the instant of buckling, as recorded on the graphs, the six

pressure readings are averaged to obtain the critical pressure.

INDIVIDUAL SHAPES AND RESULTS

Spherical shapes tested had base radil/helght ratios of 1.00,
2.00, 3.33 and 4.78with a constant base aiameter of 16 inches.

The buckling coefficients were C = 0.48; 0.50; 0.50; and 0.50

respectively. The buckling patterns on the models are shown

in Figure 1.3.

These buckling coefficients are plotted in Figure 1.4 and demon-

strate that C is independent of the R/t and of the half-opening
angle of the dome in this range. These tests also show excellent

correlation with the shallow shell, clamped edge buckling theory

of Huang (reference 7) extrapolated to include deep domes. It is

the authors opinion that the large numbe_ of dimples appearing on
the deep domes are the reason for extrapolated correlation since

a shallow shell slice from a deep dome demonstrates the typical
deformation pattern.



(b) Ellipsoida! shapestested had base radii/height ratios of 2.00
and 3.33- The buckling coefficients, based upon the maximum
radius of curvature theory of Mushtari-Galimov (reference 8),
were C = 0.54 and 0.Mg. Onthe first dome,a single dimple
appearedat the apex and was followed by a ring of sausage
shapeddimples surrounding it. Onthe seconddome, two adja-

cent, equal size, circular dimples arreared, .with their commonpoint of tangency at the apex. (Figure 1.S)

(c) A single torisphere with a spherical radius of 11.50 in. and

a knuckle radius of 1.71 in. was tested and gave a buckling

coefficient C = 0.BB, based upon the spherical radius. This

specimen, with a reduced buckling coefficient, had a single

circle of dimples girdling the Junction between the spherical

cap and the toroldal base, in the vicinity where discontinuity

stresses were high (Figure 1.3). It appears that the discon-

tinuity geometry has to be included in buckling correlation

of such domes, and that, in general, they will be less efficient

than the spherical or ellipsoidal shapes based upon the shape

optimization anaysis shown in Figure 1.2.

The zero-hoop stress dome was not tested in this program be-

cause of its apparent inefficiency based upon the analytical

investigation (Figure 1.2) and the need to reduce the scope

of experimentation in this program. The results of these tests

confirm the optimnm shape analysis, showing the lightest weight

monocoque dome shape to be the spherical cap with an a/b =_ 3.

The reduced buckling coefficient obtained for the torlsphere will

shift the curve shown in Figure 1.2 relatively higher, and make

it less competitive than anticipated. The results of the four

monocoque spherical dome tests plotted on the theoretical buck-

ling curve of Huang (Figure 1.4), together with the experimental

results of Parmerter (reference 6) shows the scatter of the

Parmerter tests compared with the consistency of the present

results. Parmerter's copper specimens had some residual stresses

and surface roughness which probably accounts for the scatter.

Table I shows the summary of the experimental results for the

monocoque domes tested in this program.

Considering the mass of conflicting data hitherto existing relat-

ing to monocoque dome buckling, it may be said that a remarkable

correlation of test and theory has finally been achieved for

spherical domes under external pressure.

PHASE IIl- STIFFENING OPTIMIZATION

Stiffening History

Since the buckling phenomena is considered as a bifurcation of equilibrium

mechanism involves a transfer of strain energy from the membrane condition

to the bending condition, it was early appreciated that a redistribution of

material to increase the bending rigidity of the shell with no increase in



weight should increase the buckling pressure.

The first analysis to include _his effect was the stiffened cylinder
dissertation of D. D. Dschouin 1935 (Reference 14). Subsequent
analysis and testing was confined to shapesof single curvature
(cylinders and cones). Themajor reason for this emphasiswas the use
of such shapesin aircraft construction.

With the comingof age of the space industry, attention has nowbeen
focused upon shapesof double curvature forming end closures of large
pressure vessels. Until very recently, the only attack on this problem
was experimental. In Germany,Ebner; Kloppel and Jungbluth; and Kloppel
and Roos, (References 16, 12, 15 respectively) tested models stiffened
by meridional and meridional-circumferential ribs. Semi-empirical
analysis was developed for flat meridian-stiffened spherical domesby
treating them as arches subjected to triangular loading. Stiffened
models of the circumferential, meridian, and waffle-type were also
tested by Krenzke at David-Taylor Model Basin. (Reference 17)

Stiffenin_ Theory

It has been the custom to stiffen spherical domes by placing ribs in

the meridian and/or circumferential direction in order to achieve an

improvement in the structural weight efficiency compared to monocoque

domes. These stiffening configurations suffer from the defect that

all directions on a sphere are principal directions and no orientation

of the pattern can be assigned. Aware of these possible drawbacks,

semi-empirical analyses are developed in this study for meridian and

circumferential stiffening, and appropriate optimization procedures

are applied. Chapter III contains the details of the analytical

investigation. Since a spherical cap, which is the minimum weight

shape for monocoque construction, has homogeneous, isotropic, geome-

trical properties, the major analysis was directed towards obtaining

a stiffening concept that is homogeneous and isotropic over the shell

mid-surface. A geodesic stiffening configuration, with equilateral

triangular grids, meets this criteria of homogeneity and asotropy if

the grid spacing is close and the elastic properties are independent

of the grid orientation. The increase in efficiency inherent in this

geodesic concept is supported by the experimental tests conducted in

this study.

A brief outline of the more important aspects of the geodesic

stiffening analyses is discussed in the proceeding paragraphs.

detailed analysis is presented in Chaoter IV.

The

Geodesic Stiffening

General Instability Pressure - In terms of non-dlmensional

ratios, the general instability pressure is expressed as

t 2



where

_L

1/2
Y --[B_(l÷ _)2÷ (1 ÷ a)(l÷ _ _2)]

bd d

th ' t

In terms of the Zoelly equation for the buckling of a monocoque

spherical shell

*2

p = c° E (_--)

where

t =t _, y >I

Panel Instability - It is assumed that there is no coupling

between panel and general instability and that the panels may be

conservatively approximated as flat with hinged edges. The panel

instability pressure is then:

t b) 2 d 2
= Cl_(d Cl+ _)[(_3 + _i]Pl

Rib Crippling - Rib crippling assumes no coupling with either

panel or general instability, ignores rib curvature and assumes the

ribs to be hinge connected to both the panels and to the rib inter-

sections. The pressure for rib crippling, on this basis is:

2

t t)



OptimumDesi_jn - If Po, PI' and P2 are continuous, strictly
increasing functions of the distributions of material to general, panel

and rib crippling modes of failure, it can be shown that the least

weight solution for a given pressure occurs when

Pcr= Po = Pl = P2

Equating these values, and successively eliminating unknowns, yields
the solution:

2(h+ _)2 (i + _) c3 c32 7jPcr + +

-E'= ('" 2[-3* /9,'(_,_) g(a) ]2

where

2
ClC Cl _I e

C3 = C2 ' Ch C2

and c is a grid size parameter given by the relation

h 2 = ¢ Rt

For the panel to be approximated -as a plate, it is necessary that

c .< h.O

By assuming values for c and a, p/E may be determined and 6, V are
then given by the relations

6 = -3 + JR + (h'+_) _(_)

Y = [3o:(1 + 6)2 + (i + a)(l + ot 62)] 1/2

I0



Theratio of stiffened weight/monocoqueweight, is:

q
{ i+ 3c,
t. _

if the same value of the general instability coefficient, Co = 2C is
assumed for both monocoque and geodesic stiffened ccastructlons. By

holding p/E constant and varying c in the previous equations, a

minimum weight construction may be found.

Evaluation of Stiffened Results - The assessment of the

quality of a monocoque dome is made by observing how closely the

general instability coefficient C comes to the upper limit value.

The larger C is, the lighter weight is the dome for a given pressure.

In stiffened domes, one may compute two coefficients of merit _ and

Ci from the equivalent weight thickness or effective buckling thick-

ness of the dome.

-2

p=2_E (_) ,

* C* t* 2
p -- 2 E (_--)

where { = t(l + _) is the smeared out thickness, which may be computed

from the above formula or from the actual weighed dome, and t* = t V_

is the effective thickness. Apparently C* should have the same upper

limit value as the monocoque C found from the previously determined

experimental results.

That is

C* 0.80= C = = 0.50

I
for_ =--

3

For equal weight of monocoque and stiffened domes, one has t = {

giving

= 2_E(_")2,

p 2 C

2 CE (t)

11
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#3-S SPHERICAL DOME

C = .50

(a/b = 3.33)

BUCKLINGPRESS.
5.30 PSi

#2-S SPHERICAL DOME

C .50:i_:ii_:: ; :,.......

BUCKLINGPRESS.
= 7.72 PSI

#4-S SPHERICAL DOME

C = .50

(a/b = 4.78)

BUCKLING PRESS.
= 3.87 PSI

FIGURE 1.3 MONOCOQUEDOMECONFIGURATIONS
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CONFIGURATION

SPHERICAL- #1-S

SPHERICAL - #24

SPHERICAL - #3-S

SPHERICAL- #44

ELLIPSOIDAL "#5-E

ELLIPSOIDAL - #6-E

TORISPHERICAL- #7-T

a= 8.0 IN. (CONSTANT)

J,

_--.a _ '/MAX

[

a/b RMAX R2 t
avg RMAX/t Pf-P.S.I. w/p

1.0 8.0 __ .0277 289 5.38 .48 11.14

2.0 10.0 .0409 245 7.72 .50 10.20

3.33 14.5 __ .0490 296 5.30 .50 10.70

4.78 20.0 __ .0580 345 3.87 .50 12.60

16.02.0

1.711

3.33

.0368

.0461

.0401Z.0

435

578

287

26.6

2.52

1.37

3.76

.54

.49

.3311.5

9.8

10.8

10.8

TABLE 1.1

SUMMARYOF EXPERIMENTAL RESULTS

FOR MONOCOQUEDOMESUNDER EXTERNAL PRESSURE
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loG GEODESICSTIFFENING

(a/b _ 4.78) _/c_ 1.50
BUCKLINGPRESSURE_5.87 P.S.I°

3-G GEODESICSTIFFENING

(a/b-- 4.78) _/c = 2.27

BUCKLING PRESSURE_3.96 P.S.I°

_::"' ::!:i:

iii:iiiii::i_........ ili:iiiiiiiii!g_!,i:,

2-G GEODESICSTIFFENING

(a/b-- 4.78) _/c-- 1.60

BUCKLINGPRESSURE--6.54 P.S.I.

il;i

1-SG SQUARE-GRIDSTIFFENING
(a/b= 4.78) _/c-- 1.58

BUCKLINGPRESSURE--9.48 P.S.I.

FIGURE 1.5 STIFFENED DO,_E CONFIGURATIOI_S
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1-C CIRCUMFERENTIALSTIFFENED
(a/b= 2°0) _/c = .92

BUCKLINGPRESSURE=4.09 P.S.I.

i-mc CIRCUMFERENTIAL& MERIDIONALSTIFFENED

(a/b = 4.78) _/c = .82

BUCKLINGPRESSURE=1.53 P.S.I

1-m MERIDIONALLY STIFFENED

(a/b=4.78) _/c= .88

BUCKLING PRESSURE= 1.41P.S.I.

FIGURE 1.5 STIFFENED DOMECONFIGURATIONS
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2-m MERIDIONALLYSTIFFENED

(a/b = 4.78 ) _/c = 1.12

BUCKLING= 2.09 P.S.I.

3-1B MERIDIONALLYSTIFFENED

(a/b= 4.78) _/c 1.38

BUCKLINGPRESSURE= 2.87 P.S.I.

4°m MERIDIONALLYSTIFFENED

(a/b = 4.78 ) _/c = 1.24

BUCKLING PRESSURE= 2.87 P.-S.I.

• ....._:::;i .......

FIGURE 1.5 STIFFENED DOMECONFIGURATIONS
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STIFFENING
CONFIGURATION

GEODESIC- 1-G

GEODESIC- 2-G

GEODESIC-3-G

CIRCUMFERENTIAL-I-cl

MERIDIONAL-1-m

MERIDIONAL- 2-m

MERIDIONAL- 3-m

MERIDIONALAND
OIRCUMFERENTIAL-I-mc

I

SQUARE-GRID- 1-SG

CONSTANTa = 8 IN.

I

R'XFa4

20 1.57 .230 .0191 .0474 5.87

/A ts 20 1.60 .226 .0239 .0479 6.54
d

b 20 1.25 .205 .0153 .0296 3.96

/ \

ts_ d

10 VARYING .0260 10 4.09

ts d 20 .25 .0191 .0349 6 1.41

b-1'_1---'1"4"'-I 20 .30 .0191 .0349 26 2.09
.30 .0191

/--

L_'_ 20 d' b' 0349 26 287
_ d' 25 .0191

b' 20 .30 .0239 .0272 38 1.69

d

ts_Ff.r.r:_j. 6 5
b--,q-I.----[20 .25 .0191.0349M c 1.53

_____a_ .,,

b_--I- I
TABLE 1.2

.0580

.0592

.0387

.0390

.0371

.0402

.0424

.0343

.0401

1.50

1.60

2.27

.92

.88

1.12

1.38

1.24

.82

REMARKS

GENERAL INSTABILITY

FAILURE

GEN'F:RALiNSTABILITY

FAILURE

GENERAL INSTABILITY
FAILURE

PRIMARYFAILURE BY

RIB INSTABILITY

PANEL INSTABILITY

FAILURE

RIB INSTABILITY
FAILURE

RIB IN'S'TABILITY

FAILURE

RIB INSTABILITY
FAILURE

I

PRIMARYFAILURE BY

CIRCUMFERENTIALRIB
INSTABILITY

PRIMARYFAILURE BY

GENERAL INSTABILITY

SUMMARY OF EXPERIMENTAL RESULTS OF STIFFENED

SPHERICAL CAPS UNDER UNIFORM EXTERNAL PRESSURE



If C is tsken as its upper limit value C = 0.50, then

for an increase of strength to weight for the stiffened dome.

Fabrication of Stiffened Domes
i

The shells of the stiffened dome configurations were fabricated using

the same technique as the mcnocoque dome configurations. The ribs
were cut from various sheet material thicknesses and bonded c_ the

concave surface of the shell. The stiffening configurations fabricated
were •

Meridional Stiffened

Circumferential Stiffened

Combined Meridional and Circumferential Stiffened

Square-Grid Stiffened

Geodesic Stiffened

Stiffened Model Test Results - Room Teml_rature

The detailed geometry and test results of the stiffened dome configu-
rations for the room temperature condition are tabulated in Table 1.2

Figure 1.5 depicts the resulting buckle patterns of stiffened plastic

domes at the failing pressures indicated in the figure.

The highest strength to weight ratio was achieved using a geodesic

stiffening pattern as shown in the sun_aa_ table of the experimental
results. It was also indicated that the circumferential and the com-

bined meridional-circumferential stiffening arrangement was less ef-

ficient than that of the meridionally stiffened dome arrangement.

The experimental values of C* for the three geodesic domes and the

square-grid dome were less than 0.50 achieved for the monocoque domes.

The reasons for not achieving the upper limit for C* are not clear.

The cause could be due to rib fabrication stresses, edge effects and

imperfect grid mapping on the spherical surface.

Stiffened Model Test Results - Thermal Gradient

A combined loading condition of thermal stress and external pressure
was used to test a geodesic and a square-grid stiffened dome to assess

the influence of thermal stresses upon the buckling pressure. In both

_ests the applied thern_l gradient produced a higher buckling pressure

than was previously recorded for the room temperature condition. This

increase in the buckling pressure was attributed to the difference be-

tween the shell and the support ring which introduced a relieving tensile
load in the shell.

2O



Phase IV - Metal Dome Fabrication and Test Results

An aluminum dome with a half-opening angle of @ = 60° and a spherical

radius of R = 27.3 inches, with a geodesic stiffening pattern, was

fabricated and tested to verify the plastic dome results.

The spherical shell was spun using 201_ - T6 aluminum material and the

geodesic rib pattern was formed by a hand routing procedure.

Test Description

The finished dome was mounted in a heavy steel base ring with a deep

trough machined in the ring. The dome was seated into this trough

and then filled with Cero-bend. Pressure was applied on the convex

surface using oil as the pressurizing medium, and continuous instru-

mentation records were taken up to failure.

Test Results

Failure of the dome occurred at 62.2 psi. The buckling coefficient

for this geodesic dome at the failing pressure was calculated to be

C = 0.26. It is suspected that this buckling coefficient was less

than that obtained for the plastic dome specimens (C = -35) because

of the high residual and pressure stresses causing plastic behavior
of the material.
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CONCLUSIONS

The experimental and analytical investigation concluded shows that.a

spherical cap with a half-opening angle e = 60°, with a geodesic waffle

arrangement, results in the minimum weight shape and rib stiffening

arrangement. However, since this study was initiated to develop a

stiffened deme that would be a possible replacement candidate for honey-

comb sandwich common domes in tandem propellant tanks of large space

vehicles, a comparison between these two dome concepts is necessary.

Figure 1.6 is an estimate of the weight of a near optimum geodesic dome

construction compared to that of monocoque and honeycomb dome construc-

tions based upon a spherical radius R = i00 inches and 2014-16 material.

The general instability coefficient C = .50 is assumed constant for this

particular example, but in general will be a variable dependent upon the

fabrication details. The honeycomb design curve includes a realistic

bond weight of S ib/ft 2, dictated by previous fabrication experience,

and a core density of h ib/ft 3.

Since a common dome in space vehicles serves the dual purpose of with-

standing the resulting differential pressure and temperature between the

propellants, the insulation requirement is included in the weight

estimation shown in the figure. This is shown by the solid line for the

monocoque and geodesic dome construction. The honeycomb core inherently

provides a good thermal barrier, therefore, no weight penalty is asso-

ciated with this design concept. An example of typical geometrics for

the three constructions is shown in the figure for an assumed external

pressure condition of P = 30 psi.

Before drawing general conclusions of comparative strength to weight

ratios between rib stiffened and alternate monocoque and composite dome

constructions, one must be aware of the other loading conditions, and

varying influence of the fabrication variables upon thegeneral insta-

bility coefficient.

For example, in honeycomb construction a large differential temperature

between the inner and outer face sheets produce high thermal stresses

that may have a significant effect upon the overall weight and geometric

proportion. On the other hand, in stiffened and monocoque construction

these thermal stresses are of minor importance and in general do not

have a significant effect upon the weight. Another example of loading

influencing the final design weight is that due to an internal pressure

condition. Often in the design of common domes the internal pressure

may be greater than the external pressure condition, thus resulting in

high tensile stress on the bulkhead. From Figure 1.6, assuming p = 30

psi, it may be shown that if Pint. _ 3P that the comparative weight
between the honeycomb and geodesic stiffened construction are approxi-

mately eRual.
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24 R= 100INCHES __'f"

MAT'L - 2014-T6 / ,h_,xx
c= .5o / _ _",,-

t= .175 MONOCOQUE
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FIGURE1.6 WEIGHTCOMPARISONOF DEEP SPHERICALDOMES
UNDEREXTERNAL PRESSURE
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CHAPTER II - MONOCOQUE SHAPE oPTIMIZATION

SPHERICAL CAP

When a hemisphere or an ellipsoid Joins a cylinder, due to continuity

of the tangents at the Juncture, no out-of-balance membrane loads

exist at the Joint. For a spherical cap, however, the discontinuity

in the tangent causes transverse shears and bending moments at the

Joining point (see Figure 2.1) which results in local bending and hoop

forces. When the dome is worked in tension, a thickening of material

around the Joint, frequently in the form of a ring, is required to

resist buckling. However, when the dome is sized for compressive

loads but local tensile edge effects occur, ring requirements will

depend upon the out-of-balance forces and compatible displacements

between the cylinder, ring and dome for the allowable tensile stress.

In bulkheads separating two tanks where both pressure loadings may
occur, this effect should be considered.

I
•-A_''_" i

"\. H

\
"\

\
\

\

\
\

\\

R

v

Figure 2.1 - EDGE FORCES ON SPHERICAL CAP
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The surface area of the spherical cap is,

¢

A = $ 2 w R sine R d

o

A - 2 _ R2 (i - cos¢)

the spherical cap weight is

w= _At =2. 0 R2 (i- cos_)t

Since the allowable ccmpressive stress is,

a = CE t-- =
R

or in terms ,of the thickness

t =.R_2- _

2t

From figure 2.1

R= a_
sine

Substituting into the weight equation gives

W = 2 _ 0 a 3_ 1 cos_

v_
sin3¢

W=2_ p a ¢

where

1 - cos_

sin3¢

25



the term @ is evaluated in table 2.1 for 0° < S .<900

Table 2.1

i___. _ toss 1 - cosS *(S)
S sins sin3 S

10 ° 5.76 190.5 .98h .016 3.05

20 ° 2.92 24.9 .941 .059 1.470

30 ° 2.00 8.0 .866 .134 1.072

40° 1.553 3.75 .766 .234 0.877

50 ° I. 30h 2.22 .643 •357 O. 831

60 ° 1.153 1.535 .50O .500 0.766

70 ° 1.062 I. 198 .342 .658 O. 789

80 ° 1.016 1.048 .1737 .8263 O. 867

90 ° 1.000 1.00 0 i.o00 1.000

From the table, the minimum value of , occurs at S = 600.

Proof that S = 60o gives a minimum value of _ is shown below.

@, sin3# (sin#) - (i cos#) 3 sin29 cos t
= .-6 --0

sin S

and since

giving

since

S # 0 , sin S @ 0

sin3S - 3 cosS (i- cosS) = 0 ,

2 cos2S - 3 cosS + i = 0 ,

cos S = _-_ , S = 60 ° ,

S:_o

26



Thrust Ring of Spherical Cap

Ring

Due to membrane loading, the spherical cap will be in compression while

the ring will be in tension. Assuming that the rotational resistance

of the ring is small compared to its hoop rigidity, the following forces

will exist at the Juncture between the shell and the ring.

\
N_

Shell

XI

H

V
Ring

27



Shen (I)

Due to the pressure,

_e --N_ --- PA2

The displacement at and in the direction of X I is, (reference 22)

(i) a (Ne v N$) = is R2 sin_ (i - v)61p = - E-_ - 2 Et

The displacement due to X I = i is:

(i) _ 2 _ R sin2_
611 Et '

R 2
_4= 3(1 - 2) (K)

Rink (2)

The horizontal ring loading due to the shell pressure is,

H = N% cos_ = _R cos2

and the ring stress is,

Ha
_e =-- =A 2A sin_ cos_

where A is the ring cross-sectional area.

The displacement at and in the direction of XI, due to p, is

°e P RB sin2_ cos_(2) = ¢8 a= _- a= 2._J_

The displacement due to XI = i is

(2) ae R2
611 = _- a = _ sin2#

28



since

a
oe -- _ , for XI = i

Relative displacements are obtained by adding absolute displacements,

+ (2) = I_ R2 sin#(l - _) _ R3 sin2# cos#

_ip 2 Et + 2 AE

(i) + (2) = 2 I R sin2# + R2 sin2#
611 = 611 611 Et AE

combining terms

= _R2 sins [i- v + R sin# cos$]_'Ip 2 E t A

R sin2# [ 2 I R611 E += -{-

The compatibility equation is:

X1 611 + = 0 XI6ip ' = - 6ii

PR

Xl = 2 sin_

1 - V R
+ -- sin_ cos#t A

2X R

t A

[ ]
P R (I- _) + _- sin# cos_

X1 = 2 sin$ 21 + t__R
A

T.



The total ring load is :

_8 A

H+Xl=-- a # _B = R sinCA (H + XI) = F t

where Ft is the allowable ring stress.

_ R sin_[ -.2A_
A [_ cos@ - 2 sins;t

tR
(i - v) + _-- sins cos¢

tR
2A + --

A

Ft = P R22 Asin¢ [cos$- t. ](i - v) + _-- sins cos¢

tR
2A sins + _- sins

%he thickness will b°e given by the critical pressure,

(t)2 t = _ P =Kp=2 CE , _ 2CE

and
KR2

(i- v) +--_- sins cos$

F-it = R2 sinA cosS -

A 2 KR2

2A sins + -_- sins

J
But

R 2 3(i - 2)
x_'=3(1- 2) (T) =

Ft R2 sin_ [

[cosS -

KR2

(i- v) +-_- sins cosS ]

1/4 MR2 J
2 sin# [3(1 - 2)] + -_-sins

3O



Nowlet

2 sins [3(1 - _)]1/_ --b sin S

R2
-- _ X

A

So that

2 Ft
_ _ X

sins P

= x

[cos¢ (1- _,) +,Kx sins toss|

]

+ K x sins ]

b_._ sin S cos¢- (I - _)

b
sin S + K x sins

Solving for x ,

X _

Ft

b__ sins toss -. (1- v) - 2K (_'--)

]_2
m

A

and the ring area is,

A

R2

2(_ t)
,E

R2[A = F---_--sins

• ]sin_ cos S - (i- v) - 2K (___t)

c°sS---'_b [(1- "v) + 2K'(_ --_t)]]

A

2
8,

sins cos¢ b
[(i- v) + 2K

3]



i.e. A = 2 % , where

i

2 si_¢(_)
[sine cos¢-_b [(l-,_)+2K (_._.t)]]

(2.2)

The ring weight is :

W =2 _p aA=2 _ p a3 _
r

= 2 lr io a3_/_'-_"_ •
Wr ,_.. K

since :

K

The spherical cap weight was shown to be

Ws = 2 w p a3 \/@ • _ , where _ =
i -- COS(_

sin3¢

and the total weight is:

+ W = 2 _ p a3 {K_ + ¢}W= Wr s
(2.3)

Which is restricted to solutions such that

(For values of _< O, the ring is in compression)

Substituting the appropriate expressions for _ and _ into the above

equation results in:
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W= _ p a3 2 V_ I- c°s#+ 1

Ft
sin3¢ sin2¢ --

%

P]J

sine cost

The importance of the ring weight may now be evaluated by only con-

sidering the magnitude of the ratio, Wr/Ws in the above equation.

Substituting the appropriate values for Wr and Us gives:

__r=

s

, , COS

Ft

s_¢ 7

1 - cos_2K

sin3¢

simplifying the above gives:

where

_zr= cos_ (I + cos_)

Ft
s --2#

P

t
K =

substituting

= cos_(i+ cos_) [ R_

WS 2 --Ft V t
P

where

2 V_ (1 - cos_)

sin3¢

=
s

(weight index of spherical cap)
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and

f

1 _ sine cos¢ - K

sin2¢ p

(weight index of ring)

1[(I-_)+2K_--] --Wr

A conservative first approximation of the ring weight would be to

neglect the second term of the above equation, thus giving

cost =
Ft r

sin__-

Letting

W = WT
_0 a3

(total weight index)

therefore:

WT +W =q (I+ -ar)= Ws r s
S

Using a conservative estimate of R/t = lO00, and reasonable values of

the ratio Ft/P for varying half angle dome openings, the equation is
plotted and shown in Figure 2.2.

It may be seen that for all practical ranges of interest that the ring

weight is a negligible portion of the total weight of the bulkhead and

need not be considered in the present optimization study.
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I
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- DEGREES

FIGURE 2.2 EFFECT OF RING WEIGHT REQUIREMENT
ON SPHERICAL CAPS
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ELLIPSOIDAL DOME

.

/

/

!
I
i
]

--.\

Figure 2.3 - SEETCH OF ELLIPSOIDAL DOME

Lk

I ....

b

The surface area of an ellipsoid of revolution from Figure 2.3 is

A-- w
b2 +V/a 2 - b2 ]

2, :2 _n a
_a2_b2 b

b
letting 8 ---

a

B2 1.Jl- B2]A="_2 I*_12B2 _ 8
(2._)

The weight of the dome may therefore be expressed as

= = 82 t

W = p V pat w p a2 i + 62 _n i + 82

The critical buckling pressure for an oblate ellipsoid of revolution,

according to Mushtari-Galimov (reference 8) is given as:
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t 2
p = 2CE (_') B2 (2.5)

or in terms of the thickness, t, is

so that

where

W = w O a3 +__ 82

W = _ 0 a3 _ C2_CE-. T

_n

I 6 An i+_ - 62

't = _ + % _ B2 6

(2.6)

The value of B which minimizes T in equation (2.6) is required for

minimum weight. The table below evaluates this parameter (T) for
various values of 8.

i

,10 .20 .30 .40 .50 .60 .70 .80 .90 1.O00

lO.301 5.468 3.923[3.18412.760 2.491 2.B07 2.174 2.075 2.000

From the table the minimum value of T occurs at 6 = 1.O, or when

a = b; ie., a hemisphere. The proof of this is as follows:

tim 6 _n 1 +V_- 62 = lira _n(_ +V_ + p2)

6+1 VF1- B2 6 _÷o

if_=_- 62 Y

, and the limit by L Hospital is

(1+ )

1
w_o 1

so that

T = 2.0

One sees that T decreases monotonically and that the minimum value

lies at the end of the range where 6 = i.

37



TORI SPHERE

Spherical Cap

Torus @

-\ \
.\

,\

Figure 2._
SEETCH OF TORISPHERICAL DOME

GL

The surface area of the Torus section from figure 2._ is:

R = (RI - R2) sine + R2 cos_ (2.7)

ds = R2 de*

d2.T = 2 _ R ds = 2 _ R2[(R I - R2) sine + R2 cosu]dct

?f

2 R2

A T = 2 _ R2 (R 1 - R2)o2 [sinO * R1 _ R2 cosa]da

_ R2

AT = 2 1, R2 (It I - R2)[_- sine - e sine ÷ R1 _ R2 cose]
(2.8)

The surface area of the spherical cap section is

= 2 _ R12 (i - cose)A c
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Total area of torispherical bulkhead is then

where

A = AT + Ac

J-I _ cose)
A = 2 _ RI2[(I - cose) + 7 (_- sine - e sine + _L_-- ]

RI
J = --

R2

(2.8)

Since in torispherical domes RI > R_ it may be assumed that the larger
radius defining the spherical cap wlll have a lower buckling state

than that of the torus portion. That is, we may substitute RI for the
radius in the stability equation for spherical domes under normal
external pressure.

Therefore:

2
4-

p = 2CE (_---)
"i

(2.9)

expressing t in terms of weight gives:

W=Ato

where

or

A = surface area

t = shell thickness

p = density of material

W
t = --

Ap (2.1o)

substituting equation (2.10) into equation (2.9) gives

_= 2CW 2

E 2 2 A2
P R I

(2.11)

substituting equation (2.8) into equation (2.11) results in

P

E
2_2p2RI6[ (i -

c

cos e)+ J-i
7 (_ sine - 0 sine +

(2.12)
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In general, it is sometimesmore advantageousto express the geometry

in terms of a and b instead of R 1 and R2. From figure 2.4 the
following relationships are developed.

or

a = R I sine - R2 sine + R2

b = RI - R I come + R2 come

By some alegbraic manipulation

El = a cose + b (sine-l)sine + cose-i
(2.13)

R2 = b(sine + cose-l)÷(cose-l)Ia come + b(sine-l)Jcome (sine + come-l)
(2.14)

R I
Since J = -- this may be expressed as

R2

J ---
come

sine + cose-i

a/b come + sin e-i + cose-I

(2.15)

equation (2.13) may be further simplified to read

a2

sine-1
a [come + _ ]

El = sine + cose-i

Letting

J-i

Q = _,6 [(i - come) + 7 (_ sine - e sine + j-ic°se_12"•

Equation (2.12) may be expressed as:

P = CW 2

E 22 p2 a6 q

(2.16)

(2.17)

Assuming a constant buckling coefficient C and constant values of

0 and a, the parameter Q is an index of the efficiency. That is,

minimum weight occurs when the parameter Q takes on a minimum value.



To evaluate the parameter Q for a minimumvalue as a function of e and
a/b, a numerical computerprogramwas used. Theseresults are plotted
in figure 1.2 From the figure, the minimum value of Q occurs at
a/b = 1.73 for an angle e = 60 ° .

For e = 60 ° , sine = _ i a
-_ , cose = _ and 1.73 = _ , so that K = 7_

Substituting these values into the expressions for a and b yield,

2 - -_+ R2 , i.e.

R 1 R2 R 1 R2

b=F--F-+ _R 2--_I-7+_-

Giving R2 = O, e = 60°

This is the same geometry as the optimized shape of the spherical cap.

_ero-Hoop Stress Bulkhead

!

\ i / ".
/ , /; i t"-'

L_....... ;':........\ / ' '

'X\ _\, , [: Z"

\,!/ j
h , ,

, !
Figure 2.5 - SKETCH OF ZERO-HOOP STRESS B_

The total surface area of the dome is

A= Asc + At (2.18)
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where A
SC,

and At

= area of spherical cap

= area of zero-hoop stress torus

The surface area of spherical cap is

Asc 2 _ RI2 (I , cose) (2.19)

The surface area of zero-hoop torus is

At -,_ (_--e) Reference 26 p. 12 (2.20)

substituting equation (2.19) and (2.20) into equation (i) gives

A = 2 _ R_ (1 - cose) + _ 2 (_- e) (2.21)

Since the zero-hoop stress bulkhead is difficult to express

analytical_y, a graphical method is employed using the constants

tabulated in Table 2.2. Expressing the spherical radius RI in

Figure a in terms of the base radius a and the coefficient C3 from

the relationship shown in Table 2.2 results in

R I = 2 a C3

Substituting the above relationship into equation (2.21) gives

C32A =,, 2 [8 (1- cose) +_- e] (2.22)

From Figure 2.5 since R I = 2 R2 and because of the lack of compressive
hoop stress in the torus portion of the dome, it may be realistically

assumed that the spherical cap will have a lower buckling allowable

than that of the zero-hoop stress torus. Substituting RI for the

radius in the stability equation for spherical domes under normal

external pressure gives
2

p = 2cs (_---) (2.23)

Expressing t in the above equation in terms of the dome weight gives

W=At0 (2.24)
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where A = total surface area

t = shell thickness

0 = density of material

Substituting equation (2.24) into equation (2.23) gives

I_ = 2CW 2

E 2 A2 2
P R 1

(2.25)

Substituting the previous expressions for A and R I into the above
equation gives

E 2 6 2
2 p a C32 [8 C32 (1 - cose) + 2- 8]2

Letting

C32 C32Q = [8 (i - cose) +_-- e] 2

(2.26)

in equation (2.26) results in

P C W 2

_" = 262
2 p a

(2.27)

Assuming a constant buckling coefficient C and constant values of

p and a, the parameter Q is an index of the weight efficiency. That

is minimum weight occurs where the parameter Q takes on a minimum
value.

Equation (2.27) may also be expressed in terms of the weight efficiency

index w, by simple algebraic manipulation.

Rewriting equation (2.27) in the form

W2 = Q p2 a6 _2 213
CE

2"-p-

W : /'Q p a3 w_/_

Letting _ =
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Since it is desirable to compare the results of this configuration

with that of the other configurations investigated, it is necessary.

to express the geometry in terms of the base to height ratio a/b.

From Figure 2. 5 where

b = y + h and h = RI (I - cose)

and from Table 2.2 where

RI = 2aC 3 and y = aC2

substituting the relationships for y, h, and R I results in the

following expression for a/b as a function of 8, C2 and C3.

a 1

b C2 + 2C 3 (i- cose)

The final results are plotted in Fibre 1.2.
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CHAPTER III - STIFFENED SPHERICAL DOMES UNDER EXTERNAL PRESSURE

MERIDIONAL STIFFENING

Introduction

The state-of-the-art for predicting the buckling pressure for meridio-

nally stiffened spherical caps is essentially based upon a few experi-

mental investigations. Little effort has been expended to develop a

stability analysis for this type of stiffened configuration. Basically,

the experimental investigations have been limited to exploratory tests

in an effort to determine the possible improvement of the buckling

pressure of meridionally stiffened domes compared to monocoque domes

having the same weight.

Kloppel and Jungbluth's experimental investigations (Reference 12) of

meridionally stiffened domes were unsuccessful in their attempt to show

an increase in the structural efficiency over that of unstiffened domes.

Ebner's experimental program (Reference 16) resulted in an apparent

inconsistency for the structural efficiency of the two d_nes tested in

his investigation of meridionally stiffened domes. Recently Krenzke

(Reference 17) tested machined meridional stiffened hemispherical

domes of small diameter and concluded from his results that the struc-

tural efficiency of this reinforcement design is less than that for

monocoque domes.

Rib Instability

The variation of the rib spacing along the shell surface results in a

load distribution of varying intensity along a meridional rib as shown

in Figure 3-i below:

_ --Si?........-! ,
/

• //

Figure 3.1 - LOAD DISTRIBUTION FOR MERIDIONALLY STIFFENED DOME
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Lacking a sufficiently simple analytical method of predicting the

stability of the meridional ribs in such a reinforced dome configura-

tion, an approximation of the expected rib stability will be based

upon the analysis of a fixed end arch under a uniformly distributed
pressure as given by Timoshenko (Reference 20 )

Since with the non-uniform loading condition the buckling load will

support greater loading than the uniformly loaded arch, a correction

coefficient B will be applied to the stability equation of an arch as

given by (Reference 20) to reflect the increased failing pressure.

That is

B' E I' [k2 - I] (3.1)
qR = R 3

where q = Loading intensity
!

B = Correction coefficient

!
I = Effective moment of inertia of rib and skin

R = Radius of arch

k = Buckling coefficient evaluated by trial frcm the

equation k tane cot k e = i.

If it is assumed that failure will initiate at the point of the

maximum inscribed radius considered for panel instability, then

equation (3.1) may be expressed as

B ! !

PR -- E I [k2 - 1]
2rR 3

(3.2)

If a simplifying assumption is made that local panel failure occurs

Just prior to rib instability, the resulting post buckling strength

of the rib need not consider an effective skin acting with the rib.

That is, I' may be replaced with IR in equation (3.2)

Therefore

B E I [k2 _ i] (3.3)
PR = rR3

where B'
B =

2

Frcm experiment the correction factor B may be determined.
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The experimental result from the first meridionally stiffened dome

(#1-M) using equation (3.3) showed that B had a value of 5.0.

Although primary failure was due to panel instability _here was no

secondary rib failure. Therefore, B = 5.0 describes a lower bound

of the correction factor. IIigher values of B are to be expected in

subsequent tests when rib failure occurs. A value of B = 5.0 will

be assumed adequate in a preliminary evaluation of rib stability in

the proceeding analysis

Panel Stabi lit_

The allowable panel buckling of the skin between the radial stiffeners

will be based upon the theory of Huang (Reference 7) in the region

where the nondimenslonal parameter X is > 4, and for the region of

X < 4 plate stability will be based upon flat plate theory, since the

effects of curvature become small. The validity of these assumptions

will be Justified later in the analysis by experimental data.

The non-dimensional parameter _ is defined as

(3.h)

where R = Spherical radius of curvature

t = Thickness of dome

v = Poisson's ratio

a = Base radius of dome

To make the above non-dimensional parameter X applicable to local

panel instability it is necessary to substitute for s_ the radius of
the largest inscribed panel between the meridional ribs. This radius

is depicted in the sketch.

Therefore, for panel instability

i/_
= [12 (1- 2)] r

(3.5)

where the variable @ may be shown to be

sin a sinc l
= arc sin ( s_n_ '"
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where

a _

arc cos

2
(cos2e + sin2e cos 2 T)

c = arc sin (sin 2 r sine )
sin 2 a

d =.arc cos (sin c cos a)

!

(_ versus N is plotted in Figure 3.2 for 8 = 23 ° 35 and e = 60° .)

2 = 2w

0

From (Reference 20) the stability of a flat circular plate is

expressed as

2

= K E (t_)
Ocr

(i - v2)
r

(3.6)

where K is the edge fixity coefficient.

Equating c
cr

P R

cr_j__ with equation (3.6) results in
= 2t

2KEt 3
i_ = ,

cr C1- R
(3.7)

to express the above equation in non-dimensional form using the

parameters of X and Pcr/Pclass the following manipulations are

ne ces sary.

Dividing both sides of equation (3.7) by Pclass where

48



.32

.28
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- _ = 23° 35'
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10 14 18 22 26 30 34 38 42 46 50

N= NUMBEROF RIBS

FIGURE 3.2 PANEL RADIUS VERSUS NUMBER OF RIBS



results in

= i.I_6 E (_)2
Pclass __ _2

P
cr 2KtR

: (3.8)
P

class 1.156 r2v_ - v2

Substituting equation (3.5) into equation (3.8) and simplifying gives

Pcr2..._. : 6.0 K (3.9)

Pclass X2

whe re K : 1.22 for clamped edge support

K : 0.35 for simply supported edges

Since the actual condition of edge restraint for the circular inscribed

panels between the meridional ribs is unknown, equation (3.9) will be

plotted in figure (3.3) using both conditions of edge restraint. To

test the validity of this predicted panel buckling equation, Ebner's

experimental results on meridionally stiffened spherical caps (Reference

16) are plotted in the same figure. It is not clear from the experi-

ments as to the primary mode of failure, but from the agreement with the

predicted panel instability equation, it seems that panel failure was

incipient. Since the test points fit more closely to the condition of

clamped edge, this condition will be assumed in the prediction of the

local panel stability. That is substituting K = 1.22 into equation

(3.7) results in

2.44 E t3
p = (3.10)

(1- R 2

It was previously stated that the theory for the stability of spherical

caps rigidly supported at the base as developed by Huang in Reference

7, was also applicable to the prediction of local panel stability of an

inscribed circular plate between the meridional stiffeners. This

assumption is substantiated when a canparison between Huang's theory

and the experimental tests conducted by Krenzke (Reference 17) and this

paper. The results are shown in Figure 3.3. The experimental domes

show clearly that primary failure occurred by panel instability between
the rib supports.
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It maybe concluded from the figure that, for plate geometry's result-
ing in _ < 3 that panel stability is the limiting mode of failure sad

cannot exceed the ratio of P/Pclass _ 0.80. This implies that all

reinforced domes falling into this region of _, the structural

efficiency will be less than a monocoque dome of equivalent weight.

The region of interest for reinforced domes is therefore confined in

< 3 where panel stability is greater than the limit imposed by Huang's

theory. This region may be obtained by introducing a sufficient number

of stiffeners such that the radius of the unsupported plate is small.

Therefore, the proceeding analysis will be c_cerned with the arrange-
ment of stiffeners that allow _ < 3.

Optimum Desi6n

In general, failure of reinforced meridional domes may be attributed to

two distinct modes of failure; Panel instability of the unsupported

skin between the ribs, and general instability of the meridional ribs.
For an optimal arrangement of reinforcement the two modes of failure

occurs simultaneously. Although coupling or interaction between the

failing modes normally exist, for an approximate analysis the two

failure modes will be considered to be independent of each other.

Using the equations previously developed it is now possible to arrive

at an optimum design for the meridional stiffened domes.

The total weight of the dome may be expressed as

Wt = Ws + WR (3.11)

where
Wt = total weight of dome

W = weight of shell
s

WR = weight of ribs

the weight of the shell and ribs are given as

Ws = 0 s 2 w R2 t (i - cos0)

and

WR = 0R N R 8 AR

(3.1_)

(3.13)
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where

ps,pR = Density of material of shell and ribs respectively

8 -- Half opening angle of dome

N --Number of meridional ribs

AR = Area of rib

t - Shell thickness

Substituting equations (3.12) and (3.13) into equation (3.11) and

ass_ning 0s = 0R results in

Wt = 0[2 _ R2 t (i - cose) + N R 8 AR] (3.14)

From equation (3.7) the critical buckling pressure of the panel was
given as

2KEt 3

=
(i - 2) R r2

(3.15)

or this may be expressed in terms of the shell thickness as _

t =pp 1/3 RI/3 r2/3 (i - 2)1/3

KI/3 El/3 21/3 (3.16)

and fran equation (3.3) the stability of the meridional rib was given
as

B E IR (k2 - i)
PR =

r R3

since

IR = F2 A R

where F = radius of gyration of rib.

Substituting into the above equation and solving in terms of the rib
area results in

PR R3 r

AR = _ (3.17)B E F2 (k2 i)
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Substituting equations (3.16) and (3.17)

in

2 . R2(I- cosS)p_ll3Rll3r 2/3

wT = Ki/3 E_/321/3(l_2)1/3 *

into equation (3.14) results

N R 0 R3 r PR

B E r2(k2 - 1)
(3.18)

Since optimum design assumes that both panel and rib failure occur

simultaneously,

Pp= PR = ]_

by proper substitution, equation (3.18) may be expressed as

p 11312. ]WT (_) [ R2(1- cos0)_113_13 . N 0 K'213t2R1°13B'- = 'K 'I13 B r 2 (k 2 - l)r I/3
(3.19)

where

K' K
2

i -Vo

r

letting _ = _ and simplifying the above equation results in

WT i13R3 213[ ' ]_--- (_) K,I/3 2_ (i- cose) * N 0 t2 K
B r2(k 2 - i)

It is desired to express the total weight WT in terms of an average
weight thickness t. Where

WT

R2p 2 _ (i- cosS)

Substituting the above relationship into equation (3.19) and

simplifying gives

 lj3[ < NoKt2)]% (_) 1.
R'= K 'I13 B 2 =(i- cose)(k 2 - 1 )r'2
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r

where the expression inside the brackets |
inverse of the efficiency n L

is defined as the

That is"

1

+ N e K-- t2

B 2 _ (1- cose)(k 2 - 1) r 2/

(3.20)

therefore

~ _ _/3
= l (_)

R n E (3.21)

For optimum design it is necessary that the efficiency term n be

maximized in equation (3.21).

!

Substituting the empirically determined coefficients of K end B of
2.44/1 - v 2 end 5.00 respectively into equation (3.20) results in

 2, 2J3/ N02.  t2/1.3)46 1 + 10_(1 - cos0)(k 2 - 1)(1 - v2)r 2

The- equation above is solved for half-dome opening angles of e = 23 °

35' and e = 60 ° for various ratios of (t/r) 2. The results are plotted

in Figure 3.4.
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CIRCUMFERE T A'STIFFENING

Introduction

In the present study, a semi-empirical optimization analysis will be

applied to a special case of dome reinforcement; that of circumfer-

ential ring stiffeners. This semi-empirical formulation assumes that

the stability of a spherical dome maybe approximated by short cone

elements bounded by circumferential frames subjected to external

pressures. The boundary condition will be sufficient to provide a

simply supported cone element whose buckling mode consists of one-half

wave in longitudinal direction and many waves in the circumferential

direction. With sufficient bending rigidity in the closure frames to

prevent frame instability, the problem is reduced to the study of

local panel failure between the frames. Basically the optimization

study then consists of selecting the frame areas and spacing so that

all panels fail simultaneously under a given pressure with a minimum

amount of weight.

Shell Segment Instability

To idealize a spherical dome subjected to external pressure by short

cone elements, a necessary condition that must be satisfied is that

the membrane loads are compatible.

The membrane loads in a spherical cap under uniform pressure are

pR

N_ = Ne = _-

where

N¢ = Meridional Load lb/in

Ne = Hoop Load lb/in

R = Radius of Curvature in

P = Pressure - lb/in 2

(3.22)

The membrane loads in a conical shell under uniform hydrostatic

pressure are expressed as

Pc R

N¢ = _ ; Ne = Pc R (3.23)
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where the radius (R) is assumed to be the average radius of curvature
of the conical shell.

Since the membrane loads are not compatible with equatic_ (3.22), an
axial load will be applied such that

Pc R

N¢ --_ ; Ne - 0 (3.24)

Summing the total membrane loads as given by equations (3.23) and
(3.24) results in

N¢ : Ne : Pc R (3.25)

Equating equations (3.22) and (3.25) and solving for P results in

P = 2 Pc (3.26)

From reference 25 the allowable buckling pressure for a cone under

uniform external pressure msy be expressed as

c
£

avg

(3.27)

where

£ = slant length of cone

R = average radius of cone
avg

substituting p = 2 P fron equation (3.26) into equation (3.27) gives
C

512 R
1.84 E (_t) avgp_-

H • £
avg

(3.28)



The approximation of a spherical cap by small cone elements neglects

the important effect of the increased stability due to the curvature.

of the shell. An estimate of this effect may be studied empirically

by evaluating the experimental results from reference 17 for hemi-

spherical domes under uniform external pressure, reinforced by

circumferentialrings. The increase in the buckling stability due

to the curvature effect will be based upon the following empirical

relationship.

P

= f (_) (3.29)P

where

Pexp = Experimental Buckling Pressure

p = Buckling Pressure From Equation (3.28)

h = Curvature Index

£ = Slant Length of Cone

A plot of this functional relationship is shown in figure 3.5 using the

selected experimental data resulting in Pexp/P > 1. A solid line is
drawn through the test data and extrapolated for values of h/£ < .03.

For the purpose of evaluating the curvature effect, the empirical curve

in figure 3_ will be expressed analytically. A parabolic function of

the form y = a + bx n seems to adequately describe the curve within the

region of primary interest and is indicated by the dotted line in figure

3.5. Determining the constants yields the following _quation

2

= P [i.0 + 9h (_) ] (3.30)Pexp

for the limit h/£ < .05.

Since the empirical data is probably conservature, because the failures

indicated the the circumferential rings did not provide the necessary

condition of edge restraint as assumed by the cone analysis, the

equation is a more optimistic estimate of the curvature effect.

Substituting equation (3.28) into the above equation gives

512

1.84E Rt h 2Pexp = £/-7" ( ) [i.0 + 9h ( ) ] (3.31)
avg avg

59



0

1.5

1.3

1.2

i.i

1.0-
0

I

,_._,,t..k...II.....ii ,,,

× Test Data (Reference l?)

FExp _ l. a -/-<7"____0__ .._._ "P

•01 .02 .03 .04 .05 .05 .07
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Ootimization of First Cone Element

The total weight of the first cone element is composed of the weight

of the skin panel and the weight of the circumferential ring. The

total weight is expressed as

WI = Wp +
I WRI

(3.32)

where

W I = Total weight of first
cone element

Wp = Panel weight of first
i cone element

WRI = Ring weight of firstcone element

ARI = Ring cross sectionalarea associated with

"first cone"

0 = Density of material
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Fromthe sketch

wp
i

= 2_R2tl (cosu I - cos8) (3.33)

WRl = 2_R1 AR1 (3.3h)

Rin_ Instability

Since there is no rigorous analytical method of determining the area

of the rings necessary to prevent general instability failure of the

cone, an approximate analyses developed by Shanley (reference 18) for

approximation. From the reference the cross sectional area of the

frame necessary to prevent general instability buckling is given as

CF 112 _12
D

AR = (K-') 112 EFI/2 (3.35)

where

CF = Dimensionless empirical coefficient

K = Shape coefficient for frame

EF = Modulus of Elasticity of frame

D = Diameter

M = Bending moment

£ = Distance between frames

Expressing M in terms of the equivalent loading index N gives

PR
where N may be expressed as a function of pressure by N = _U ' sub-
stituting the above equations into equation (3.35) results in

2 "," CF 1/2 R5/2 Pl/2

AR = (_) £1/2 'EFI/2

(3.36)
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Neglecting the effect of curvature, the critical buckling pressure of
the cone element as given by equation (3.28) is

)512 RP = 1.84 E ( t avg
M £
avg

substituting the above equation in equation (3.36) (assuming EF = E)
and simplifying results in

t R2

AR =
' R 114

N

where

N' = ¢ K (3.37)
3.68w CF

since _ _./(R/t)l.4 is relatively insensitive over a wide range of values

it will be treated as a constant

that is
R 1/h

N = (_) N'

therefore

2

t RI

AR = _ (3.38)

Since the development of the constant in equation (3.37) is very

approximate, it will be evaluated experimentally.
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Design Optimization

Substituting equation (3.38) into equation (3.34) and evaluating

equation (3.32) results in

WI = 2 _ R2 t I p(cos_ I - cos%) +

2 _ El3 tI p

N £i
(3.39)

since

RI = R sina I

e-_l)
£I = 2 R sin ( 2

substituting and simplifying

W 1 = 2 _ R2 t I P Icos_ 1 - cose +

L
sin3al ]

e - (*i

2 N sin(--V---)

(3.40)

solving for tI gives

W1

tl= .......

2 _ R20 cosa I - cose + sin3C_l ]
8 - _i

2 N sin(_)

(3.41)

substituting equation (3.41) into the stability equation (3.31) for

the dome gives

E1

2 512

1.8_[Lo + 9_ (_) ]wI
ii, i , i

1 R 5/2 _ IR2p os_ I- cos8 +

Ravg avg 8 - _I
2 N sin(-_)

(3.42)
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where from the figure for the first coneelement

e " _i
h - R[l - cos (--.7--) ]

e - _i

9.z = 2 R sin (-T--)

+ RI [ sine + sin(,IRe = R .,

Ravg = 2" cos 8 2 Loo t --I+
2

substituting into equation (3.42) end simplifying gives

E_ = 2 ,,5/2 R5 (_)

where the terms inside the brackets I I is

| J
2

e - aI

i + 94 [_i_ c°s(_)e- _i
sin(_)

el+_ I | COSaI - cose + e-_I I 2 sin(-_--)

cos[_ _ ]J 2 N sin(-_--)J

(3.43)

In the above equation substituting XI, QI end J where

2

I- cos(---_ --_)

I+ 94 ...... e -_'i

2 sin (-V---)

XI = ..... e - _i r sine + sina I ]3/2

I
1

]2 sin(_) Lcos[ e+2 _i.]

QI = c°s_l - cose +

sin3_ I

8 - _i
2 N sin( 2 )



1.8_

512 R5 (R p)5/2

results in

(3._U)

The weight of the first cone element (WI) from equation (3._0) was
shown to be

W I = 2 _ R2 t I p cosa - cos8 + e - _i

2 N s_(--_----)

_nis may be simplified by substituting QI
ship, therefore

W I = 2 _ R2 tI p QI

from the previous relation-

(3._5)

For the succeeding cone elements

p j w2512 A2

E2

or

P. J W. 5/2
:3.= i

E. 5/2
Qi



and also the weights of the succeeding cone element may be expressed as

= R2
W2 2 _ t2 pQ 2

R2
W3 = 2 _ t3 P Q3

or

R2
W. = 2wl t" PQil

The total weight of the stiffened dome may be expressed as

WT = WI + W2 + ... W. +i Wi+l (3. h6)

Using the previously developed equations, it may be shown that the

total weight, as given by equation (3.46),may be expressed as

p 2/5 215 215 2/5
= ( i _ QI P2 _ Pi Qi +(Pi+l ) Qi+lwT

+" i 2/5E1J,

Since optimum design requires that all cone elements fail simultaneously

then, Pl = Pi

Assuming that E1 = Ei, the above equation is further simplified to read

),22/5 "'" _ 2/5i _i+l

(3.47)

By proper substitution it may be shown that

5/2

p = J(2 _ R2 tI p)

5/2
= R2

_i J(2 w t2 O)

5/2

_2 = J(2 _ R2 ti 0) _.l
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Assumingthat the thickness of the shell (t) is constant.

That is

t I - t 2 = t i

therefore

AI = 12 = Ai

Substituting these relationships into equation (3.47) results in

2/5

WT = (_J-_1) [QI+ ½ + "'"Qi + Qi+1] (3._8)

or this may be expressed as

J WTS/2 _I
P = ,

[ql + o_ ÷ ... Qi + Qi+I]5/2
(3.h9)

where

QI = [cos_ I - cos e +

sin 3_1 ]

8 - (*i ]
2 _Tsin(_)

= [COSe 2 - COSCt I

sin3u I + sin3a 2 ]

÷ _i - _2)]
2 N sin( ....2

2 N sin( i-I 2 i)

Qi+l = [ 1 - cosu i + sin3Siel ]

2 N sin _-
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lett in g
i

[QI+ Q2 + "'" Qi + Qi+z]5/2

Equation (3.49) may be expressed as

2
J n WT5/2E (3.50)

where n is the efficiency of the circumferentially stiffened dome. For
optimum design n is to be maximum.

The efficiency n is evaluated for a specific case of a dome half opening
angle e = 60 °. The results are shown in figure 3.6 for assumed values

of N = 200, 300 and h00. It may be seen that for increasing values of

N that the efficiency does not increase linearily. At N = 400 the

maximum efficiency is shown to be at aI = 55° .

An interesting result develops in the selection of the succeeding frame

spacings for optimum design requirements. As a consequence of equating
_i = _i in the previous equations, a unique solution exists that shows

for optimum design the frame spacings are equal. That is equating

_i = _i results in

2

1 + 94 - cos (2)
- - e -, a_

sin (--7---)

e - aI [sin8 + sina I2 sin(_) _ e - aI

cos 2 2

3/2

1+9b

2

-- 2---
2

2 sin( ,_'i-I-
2

ai) [sinai_ I + sina.l ]3/2
[cos i_ ai-i + ai

2 2

69



It maybe shownthat the equality mayonly exist if

14

13

12

I

Ii

lO

e - _i = ai-i - ai

i

t4 = _/oo , / 1 i

....... --./ t i

/ / ),,,=300 ) .

..... f
i _/ / l

// i,N=_oo/
// / /

9__i ' ,I

_ ,I i

1
' i

I !
846 1,8 ' t _ '50 52 54 56

- Degrees

Figure 3.6 - EFFICZENCY OF CIRCUMFERENTr.ALLY
STX_ SF,CERICAL DOME - 0 = 600
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CHAPTER IV - GEC_ESIC RIB-STIFFENED SPHERICAL DOMES

Introduction

For spherical domes, it has been the custom to orient the ribs in the meridian

and circumfereDtial directions. This arrangement suffers from the defect that

all directions on a spherical surface are directions of principal curvature,

so that no particular directions of the grid stiffening should be assignable.

In other words, the grid elastic properties should be invarient with respect

to rotation. In addition, the elastic properties should be homogeneous over
the surface.

Basic Relations - Approximate solutions to the uniform grid problem are

provided by the "geodesic dome" concept by which a mesh of small triangles

which are approximately ofconstant equilateral size are mapped upon the
spherical surface. The term "geodesic" refers to the fact that the mesh of

lines on the spherical surface consist of arcs of great circles which are

geodesic lines, i.e., lines of minimal length between specified points. An

exact solution is provided for equilateral triangles in only three particular

cases, the regular tetrahedron, the regular octahedron and the regular icosa-
hedron. Of these three, the icosahedronwith 20 faces has the maximum number

of faces. Since the mesh size must be much smaller than this, an approximation

may be made by further triangular subdivision of a face of the icosahedron.

An approximately uniform pattern is thus obtained on the sphere circumscribing
the basic icosahedron by a ray from the center of the sphere which traverses

the triangulation of each face of the icosahedron.

A slight variant of this procedure will be employed and is described in the
following.

I
.°

©

Figure _.i - ICOSAHEDRON INSCRIBED IN SPHERE
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Figure _.1 shows a typical face of the icosahedron inscribed in the

sphere with north pole, N and center O. The face of the lcosahedron

is given by its vertics A, B, and N. The midpoints of the edges at
C', D', and E' are projected onto the sphere to C, D, and E. Then the

spherical triangle ABN is subdivided into four spherical triangles

ACE, EDB, NDC, and DCE. The first three of these are congruent isos-
celes spherical triangles and the fourth is equilateral.

The plane triangles ACE, EIX;, NDC, and DCE associated with the spheri-

cal triangles are now subdivided along their edges and these points are

projected onto the edges of the spherical triangles may be connected

by great circle arcs in pairs from each vertex to obtain the grid sub-

division on the sphere.

This is equivalent to subdividing the plane faces and projecting the

triangle subdivision onto the sphere.

E

/ |.'_/

I

_C

I

A
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A

6

C _J

N

-/ I

A

r = e csc 36° ;-

From the half-face of the
icosahedron AE'N, it is ap-

parent that the distance of
the vertex A from the axis is

r = e csc 36° where 2 e is the

length of an edge of the Icosa-

hedron. For the angle 0 , one
has:

cos e --i/2csc36 °
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By spherical trigonometry, the central angle for the great circle arc

CD is given by:

oo.,o _o.2_+._..__oo.7_°

m

Where : _ = arc CD

Thua: cos_= l/4cscz36 °+(l-z/4csc 236°) cosTz°

= 1/4 (l - cos72°) cac2 36° + cos72°

= _2 sin 2 36° csc 2 36o + cos 72°

ao,@ = 1/2+ corn72° = co-,36O

I_ = 36 °

The half-chordal distance e will be:

e = Rsin _

e = _ /1-l/4csc 236° 4.1

* Since: cos 72° = _ -_ , cos 36° =

74



The half-chordal distance f is:

f = R sin

f = R sin 36o (4.2)

Designate the chordal distance CN by 2g.
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From the sketch the distance g is:

g

R I
36°/ 2 - cscg = _-_

(4.3)

The chords 2f and 2g are now subdivided into equal segmennts respec-

tively, to be projected onto the spherical arcs NC and CD. These
points will define the grid pattern.

Due to symmtry, it suffices to consider the half-chords f and g.
For od_ and even subdivisions the first interval will be a half or
a full interval.
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Thus:

C
o

= It/2' n oddc , n even

Where n is the number of division of the full chord.

Co
_o = _o = tan "I _-

Co+ iC

-(_i = tan'l F , i = 1,2,..

i = _Di - -Oi -i

I ai = R4> i

ai is the required arc subdivision of NC and CD.

Obviously one has:

AC = AE = BD = BE = NU

and

EC = ED = CD

Thus, all control points may be laid out. Values are computed for unit

radius and added cumulatively to facilitate layout from a vertex.
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Rigidity Properties of E_uilateral Triangular Rib Grids

The extensional - compressive and bending rigidities of equilateral

triangular rib grids attached integrally to plate elements will be

computed by obtaining the Hooke's law relation for each construction

separately and then combining the plate and rib elements. In obtain-

ing the grid properties, the assumptions are that the grid spacing

is close enough that the construction may be approximated as a two

dimensional continua and that depth-wise shear deformation (Love-

Kirchhoff hypothesis) through the ribs may be neglected.

Hooke's law, which expresses the elastic properties of the material

at a point, will be developed by considering homogeneous stresses and

strains in the gridwork.

A symmetric grid orientation will be chosen for simplicity and it will

then be shown that the elastic properties are equivalent to that of an

isotropic plate, and hence, independent of direction.

Figure 4.1 shows such a symmetric grid layout.

I

ivory

V

Figure 4.2 - SYMMETRIC GRID LAYOUT
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The grid consists of pin connected bars in three directions which, due

to the homogeneous stress condition, are typical for any triangle,

i mn. Periodic (repeated) distances 2 5 and __ are shown at the
edges of the grid. These edges are loaded by l_ne loads T and T

per unit of length along the 2_x'S and T and T per uni_Xof _

length along the _y'S. yy yx

The bar loads are designated as PI' P2' and PS"

The displacements of the points m and n relative to the point i are

shown in Figure 4.3 M goes to m' through displacements urn, vm and

n goes to n' through displacements Un, vn.

/

O

\

!

\

\

\ \

Figure 4.3 - DISPLACEMENTS OF TRAINGULAR GRID PATTERN
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The original bar lengths Li, (i = 1,2,3) are equal to the grid spacing,
a. The deformedbar lengths L_ are obtained by projection of u and v
onto the original lengths using the custQmaryinfinitesimal deformation
approximations.

The changesin bar lengths are:

-- !(urn+ALl 2 _)

i
AL2 = _(_+_v) n

s_3 = Um+U n

(h.h)

These are related to bar loads, Pi'

ALl al P1 1 (urn+ _-
el = L_ = E-" = _" = _'a Vm)

AL2 a2 P2 1 (u + Iv)

_3 P3 i (u + u )

e3 = L 3 E AE _ m n

Where A is the bar cross-sectional area.

One obtains the load-displacement relation for the bars,

PI = AEAE2a(urn+ _ Vm) 1

P2 _ (Un + _ Vn)

PS AEa (urn+ u)

(h.5)

From Figure (4.6), the periodic distances 2_ and _ are:
x y

2_ = 2 a cos 30° = _ a, _ = a
x y
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Edgeloads TaB, _, 8 = x,y are related to bar loads by the equilibrium
relat ions :

_rJ_ = (PI+P2 ) co_30° _ (P1+---_ P21--T aYY

= = 1 (-PI + P2 ) = TyxaTyxXy (-PI + P2 ) cos 60 ° 2

2T
xx x

1
-- 2P3 +(PI + P2 ) cos 60 ° -- 2P 3 + _ (PI + P2 ) --Txx _ a

2TxyXx = (-PI + P2 ) sin 60 ° = ---_(-PI + P2 ) = T _ a
2 xy

i.e.

T = I"-!---(PI+ P2 + h P3)
xx 2 /3a

(PI +Ty = 2-_ P21

1
T = T = -- (-PI + P2 )yx xy 2a

(4.6)

One observes that the stress symnetry relations are a natural conse-

quence of the internal bar loads as related to boundary stresses.

A symnetric set of loads Txx, Tyy # 0, Txy
the grid.

= 0, will now be applied to

Equation (h.6) shows that for this loading, P_ = P_, which implies that
the displacements in equation (_.5 l) may be given f2rom:

P1 = P2 = _2a (u+ _g v)

2AE
P3 a

(h.7)
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Where

U = U = U I V = V = V
m n m n

The strains cub along the x and y axes are: (See Figure _.3)

m' n' - m n 2u

xx m n a

!

£o - £o v 2v

yy £o a cos 30° _ a

(_.8)

Eliminating u and v from equation (4.7) and (4.8),

h Cyy iCxx = AE ' = 3A-'-E(4 P1 " P3 ) (4.9)

From equation (4.6) for PI = P2'

T= = Z____(P1÷ 2 PB),T = _ P1
_a

(4.1o)

and eliminating PI and P3 from (4.9) and (4.10)

= -- (T ---%)Cxx 2AE xx 3 y

aJ_ 1
: __ (% --%)Eyy 2AE Y 3 x

(4.11)

These arethe extensional stress-strain relations for the grid network'

Next a skew-symmetric set of loads T = T =
applied to the grid. xx yy ' Txy

0 # 0 will be
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Fr_n equation (4.6) ane sees that this loading gives the bar loads:

PI + P2 = 0 P3= 0

Thesebar loads substituted into equation (h.5) gives:

u + u = 0 , v + v -- 0 , i.e.
m n m n

U = U =-- U I V = V = -- V
n m n m

The distorted triangle is shown in Figure h.4

\

r" / '_'_ / O' 1

!

j\ 2\J
/

f

/

Figure _.4 - DISTORTION _F TRIANGULAR GRID



The local origin 0 moves to O' with displacement u. The angular strain

2 ¢ * is defined as the decrease in the right angle between the x and y
axe_Ywhen they are deformed into the x' y', axes under the load.

From Figure (4.4) one obtains the angular relation,

2 ¢xy 81 + 82

For the customary small angle linear strains,

2v 2u
81 = _a ' 82 =

av_

while

- ¢ -- 0
Cxx yy

thus

2 u 2
2 c =-(v+--) = _ (u+ v_ v)

xy a _ a /_

From equation (4.5) for P2 = - PI'

P2 = - PI = AE2a (u + v_" v) = _2 AE £xy (4.12)

Equation (h.6) gives

-PI + P2 = 2a Txy
(h.13)

*This is a tensor strain and is related to engineering shearing strain

e by the relation,
xy

2 £ = e

xy xy
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Eliminating PI and P2 from (4.12) and (4.13) gives:

4a2 E = -- T
xy ,/3 AE xy

e = c = 0
xx yy

(4.14)

These are the shear stress-strain relations fo_ the grid network.

Consider now a grid net of unit thickness and width b. The bar cross-

sectional area becomes:

A = b

and the line loads TaB become:

TaB = TaB

When TaB are unit stresses along the edges of the grid.

If, in addition, one replaces the grid distance a by the height of the
triangle, h

\

6o 'X

The stress-strain relation (4.11) and (4.14) become;
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h 1
Cxx bE x 3

= h ( 1
Cyy b-'E" Tyy . _" Txx j

8h
m

2 Cxy 3bE Txy

by superposition.

Comparing equation (4.15) for the bar grid with the Hooke's law rela-

tions for an isotropic plate of unit thickness with Young's modulus

E° and Poisson's ration v ,

= i__ (Txx Tyyexx E - v )
O

= 1 (_yy xx)Eyy _- - v _ (4.16)
O

T
= xy= ?,(l+v)

2 exy G E Txy
O

One sees that the equations are equivalent if one sets:

b
E = -- E
o h

J1

3

Now since equations (4.16) by virtue of their isotropic property are

independent of the choice of x,y axes directions, it follows that the

equivalent relations, (4.15) also possesses this property. The internal

bar loads, however, may depend upon the choice of axes although the

overall grid elasticity does not. Since the grid is imagined to be

infinitesimal in size, the }Iooke's law relations developed for homogen-

eous stress and strain conditions in the large may be shrunk to a point
to express local properties.
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A composite structure consisting of a plate with ribs integrally attached
maynowbe considered.

Assign elastic constants: Eo, v°
_i - i/3 to the grid.

= i/3 to the plate, and E1 = b/h Eo,

/

1
Plate (Eo, _ = _ )

i

Ribs (El, 9 =_ )

Since both materials are isotropic and have equal Poisson's ratios,

loads may be applied in any planar direction without transverse stress

coupling between the materials.

Designating the arbitrary axes as _i and _2, one may solve equations
(4.15) and (4.16) for the stresses to obtain:

(o) _ Eo 1

2 (Ell + c22)
____i i - v

(o1 _ Eo (c22 + )_22 2 Ell '
i - V

(o) Eo
TI2 - i + _ ¢12

(h.17)

in the plate.
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And,

(I) _ E1
TII 2 (ell + _ c22 )

1 -

E1 ( + _ )(i)

_22 = 2 e22 ell
1 -

(i) _ _i
x12 I + v el2

(_.18)

in the ribs.

The flat plate relations (h.17) and (h.18) m_z now be extended to a

thin curved shell using the Love-Kirchhoff approximation as is done

in Reference 8 , p. h0, hl.

ell + _ e22 ÷ ell + v e22 + z (XII + _ X22)

e22 + v ¢ii -_g22 + v ell + z (×22 + _ ×Ii ) (h.19)

el2 _ el2 + z X12

Substituting the stresses into the stress resultant integrals;

Tik = I Tik dz
h

M_k = I Xik zdz
h

i,k = 1,2 (4.20)

Where h is the total height and z is measured from a shell surface

such that axial loads produce no resultant moment (neutral surface).*

By such a device one obtains the uncoupled stress-resultant defor-
mation relations :

I Ej zdz = O, J = 0,i
h
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TII - K(¢II+V¢22), TI2 = T21= K(I-v)¢I2 , T22= K(c22+v¢II )

Mll = D(Xll+VX22 )' M12 -- _1 = D(1-v)X12' M22 - D(X22+VXll )

(h.21)

The quantities K and D are,

I dz = dz
1-v h

D= i Ej _ h/ EjI zdz = zdz
l-v h

(4.22)

where J = O, when the integration is in region 0 and J = i, when the

integration is in the region i.

These integrals may be evaulated very simply if one observes that

b
E 1 = _ Eo

gives an equivalent tee-shaped cross-section of dimensions:

l__. i.0o

-_t

In

Figure 4.5 - EQUIVALENT TEE-SHAPED CROSS SECTION
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The integrals (4.22) becomesimply:

K = 8_ EoA, D = 8_Eo Igg

where A is the cross-sectional area shown in figure _._ and I
gg

the second moment of area of A about the centroidal axis gg.

is

Due to the finite size of the grid, certain small errors will occur.

These are due to the following:

(a) Curvature of the shell between the rib Joints.

(b) Non-homogeneous stress-strain conditions will result

in increments of bar loads P., P_, P_ being trBns-
ferred in shear from the platel bet_ween" _he rib Joints.

(c) Differential bar loads will result in complex stress

distribution at the Joints where principal stresses•

change direction.

(d) Neglect qf fillet radii.

In addition, the Poisson ratio for the plate may differ from 1/3

and cause coupled stress effects in the transverse direction. For

most metals, however, Poisson's ratio is very close to 1/3.

Bending Rigidity

The equival_nt elastic cross-section for computation of D is shown

in figure 4.6 , assuming constant rib width, b.

t

dl '
i

• /

....... f-" ,

1,00

Figure 4.6 - EQUIVALENT BENDING RIGIDITY
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Area

b_
m

h

i .

i i

bd

x

! (t+d)
2

n i

0

Ax

t
(t+a)

I I i i

0

n

n

t (t,d)
2

_2

(t*d) 2

n n n

0

n •

nu

2

(t.a)

i i

I
o

i

i t3
12

i

i n n n

n

i b
(t3+ E d3)

n I I u Ill

Define

bd d
_= th = 6= t

= _ Ax = tlt + d I _ t + d
_"T" 2t_ _)i+ 2(1 + _)'

t3 )2 t3 62
Ixx = T.Ax2 + T. Io = _-- (I + _ + _-_(i + _ )

I = I - A_2 = I - t(l + a) t2(l + 6)2

gg xx XX 4(I + _)2

= _ t3 t 3
Igg 1 +--'-_11- (i + 6) 2 + _- (i + _ 62 )

Then
t3

I = {3e (i + 6)2 + (i + c¢) (i + _ 62)}
gg 12(1 + _)

And

D=_ E Io gg

the bending rigidity, D, is:

t3

D = _ Eo 12(1 + _)
{3_ (i + 6)2+ (i + e)(l + _ 62)}

,



Extensional Ri6idit_

The extensional rigidity, K is obtained from:

K=8_ EoA

K = 8_ E O t(l + a) (t_.25)

Wei6ht of Construction

Figure 4.7 - DIVISION OF PATTERN FOR WEIGHT CONSIDERATION

Figure _.7 shows the rib configuration divided into typical rectangles

each with sides of length a and h.

A section through pq is shown in Figure _.8

P

L
t

Figure _.8 - TYPICAL SECTION THROUGH PANEL
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The stresses become:

T11 . = l pRT22 I +--'"_2t (_.27)

in the plate, and

P

bd '
i pR

°l = a2 = °3 = I +-"-'_3t (_.28)

in the ribs.

These quantities are to be set equal to the allowable stresses for

local panel stability and rib crippling stability.
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are proportional to the equivalent area of plate and ribs in the

composite construction.

(l) (1) _ A1 pR = c(1)
TII = T22 A I + A2 2

(2) (2) _ A2 pR = c(2)
Tll = T22 A 1 + A2 2

Where AI is thebsquivalent plate area, AI = t and is the equivalent
rib area, A 2 = _ for ribs of constant 9idth. A2

From equation (4.6) for the rib stress resultants,

(2) (2) 1 _ = c(2)

TII = T22 ' _ a (Pl + 2P3) = --a Pl

i.e. PI + 2P3 --3PI ' P3 = PI

and using equation (4.6)

a c (2) 2
= -- h c (2)

P1= P2= P3= ._ B

in the ribs

(I) (l) c(1)
TII = T22 =

in the plate.

_[ow,

and

c(l) =

c(2) =

A I

AI + A 2

A2
AI+A 2

P_

2

2

t

t(l + _)

te
t(l :*' _')

pR
2

pR
2
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The length of the ribs in spqr is 3a, and the volume of rib material

is:

V = 3abd
r

The volume of skin material is:

V = aht
s

This gives a total volume of:

V = aCSbd + th)

The equivalent weight thickness (i.e. smeared out thickness) is equal

to this volume divided by the rectangular area.

V a(Sb d + th)
A ah

= t(l + 3a) (h.26)

bd
Where, as in previous calculation, _ = _-_ . This slightly over-
estimates the weight where the rib areas overlap at the Joints where

they cross each other but ignores fillet weight.

Rib and Plate Stresses for Pressure Loadin6 of Sphere

For membrane pressure stress conditions,

ell = E22 = Co ' ¢12 = 0 , Xik = 0

= =pR TI2= 0 =0TII T22 2 ' ' Mik

Frc_ the ext#_sional rigidity, K = _ EA one sees that the line loads

Tll = T22 = 22-9-consisting of components

(i) (1)
TII = T22

(2) 2)
TII = T22 (

in the plate composite

in the rib composite



Direction of Rib and Plate Stresses

It is a compatibility requirement for composite rib and plate shell

construction that strains in the shell surface coordinate directions

be continuous at the attached surfaces as one traverses a normal to

the shell. In particular, the Love-Kirckhoff assumption is that the

strains are linear functions of the normal coordinate while membrane

requirements are that they are constant along the normal coordinate.

Since the plate is subjected, however, to biaxial stresses while the

ribs are stressed uniaxially, a local transition in the strains occur

and the stresses, in general, are different in the two elements away

from the attached surfaces.

Consider a typical segment shown in figure 4.9 where a set of surface

coordinates are arbitrarily assigned parallel to and transverse to a

rib.

I

Figure 4.9 - TYPICAL SEGMENT SHOWING RIB AND PLATE

Assume, for example, a homogeneous isotropic condition such as would

exist in a sphere subjected to internal pressure.

In the plate, the strains will be:

_i = c2 = c

96



and Hooke's law for stresses in terms of strain is:

= E (c I + v ¢2) ,°1 2 (c2 )a2 = 2 +_ ¢i
i-

giving:

E E

%=%=

In the ribs, however, one has the strains,

¢i = ¢, ¢2 = - 9 ¢i = - _ ¢

since the transverse faces of the ribs are stress free (according to

the usual approximations).

Thus, in the ribs, one obtains stresses of magnitude:

aI = E ¢

02 = 0

The plate and rib stresses in the rib direction will then be in the

ratio:

O_1 (plate) i 3 i
= -- = -- for _ = --

(Yl(rib) i - v 2 ' 3

(This is exactly the ratio of the values previously obtained in

equation 4.27 and 4.28).

One sees that a fundamental difference exists for stresses in ribbed

plates or shells when the composite construction is stressed uni-

axiall_ or biaxiall_.

It is a consequence of this result that the ribs for i:i biaxial

loading, regardless of the rib pattern, can be stressed to only 2/3

of the plate stresses. An optimum construction must then have a
small value of _ since
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bd rib area
_ _ _ _ , ,

th skin area

Such ribs will be thin and deep.

The rib and plate are shown separated in Figure 4.10 to illustrate the

local character of the deformation transition between the plate and
rib.

T--V

I I

I ,I

I
I

i i _ i-_ i
L

Figure _.i0 - LOCAL DEFORMATION BETWEEN RIB AND PLATE

Under load, the points m n move to m' n'. Symmetric shear stresses

exist across the attached edge of the rib having zero resultant force.

By St. Venant's principle, the transition stress is of consequence

only in a local region extending approximately one rib thickness into
the rib.*

rib area is proportioned toAs a final con_nent, note that a _ skin area

but does not represent the ratio of rib weight to skin weight in the
dome. This quantity is given by:

rib weight _ - t t(l+B_)-t
skin weight = _ = t = S__

,,t i , t t t

*For St. Venant's principle_ see "Theory of Elasticity", Timoshenko

and Goodier P. 33 and "Theory of Elasticity", Novozhilov, Dept. of

Comm. Trans. 1961, p. 208.
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Thermal Stresses

The thermal stresses in the composite plate-rib shell may easily be

computed from the composite elastic properties.

I i

E 1 = E, Ul =

_, Plate aI = ao, tI = tTI=T p

t

i

/

Ribs _ o_ = a o , t 2 = d

l

As a consequence of the I:I strain field, the solution of reference

may be applied. This solution is:

t. E. a.
i i I

Z T.

i i - vi z Ej (E° - _j Tj)
co = ti Ei , oj = i - vj

Z

i i- vi

Where _j is positive for tensile stresses.

When v. and u. are constant,
i 1

Zt. E. T.
1 1 I

i

o so I_ t. E.
1 1

i



For the values indicated,

0 0

(t E T + b__d E T )
.... p h r

tE+h b-_d E

(T +aT)

o l+ a

The plate stresses are,

TII = = oT22 P

E1

= I - Vl (e° - a° Tp)

T +aT

=3 E_ (P r -T)
2 o l+a p

Op = l E a a__q__ AT2 o i+_
(h.29)

where

AT = T - T
r p

The composite rib stresses are,

E2

Or = i - _2 (eO - sO %)

T + _ Tr

=S b Ea (PI -Tr)2 h 0 + e

_ 3 b Ea AT
2 h o l+a



As a check, equilibrium requires that,

Thus

_tio i =0 ,
i

t o
P

bd
3 E a° AT (t a-_-) - 0+d°r=2 l+a

As required.

The bar loads are related to edge stress resultants by the relation,

Txx = Tyy = ard = _ (PI + P2 )

As a consequence of sy_netry, PI = P2 end one obtains,

_d= ---_ P
r a

The ba___rstresses are now,

a o
__ = ___E

°b = °1 = °2 = °3 = bd

Substituting the value for Or,

3 b AT
ob = - -- -- E Uo2 h l+a

AT
ob = - E a° i +------_

IC



The plate and bar stresses are in the ratio,
o

3 bd
ob -2"_ = - 2 t"_ '

ice.

2
-- _p" th + %. bd = 0

General Instability

Since testing of the plastic specimens has demonatrated that satis-

factory correlation exists between modified classical theory for a

complete sphere and for spherical caps with half-opening angles in

the range 33 1/2 ° .< ¢ .<90 ° , this theory will be employed for calcu-

lation of general instability.

Further, as a consequence of the fact that geodesic stiffening is

described by only three elastic constants, _ = 1/3, D and K, a

simple extension of the theory suffices to predict general stability•

In reference 20, p. 492, the equations of equilibrium (c) are un-

changed. The Hooke's law relations, however, are replaced by their

new values. Thus_

N = Et (ell + u e22) ÷ K (Ell + u e22)
x 1 - 2

Ny = 1 -Etv2 (e22 + u Ell) ÷ K (E22 + v ell)

while the expression for Mx and My are already given in terms of D.
This results in a redefinition of the quantities described as _' and

@, *

p(l-2) ÷ o__
R2 Et R2K

¢' = 2R(1
2Et ÷ pR2K

*Primes are used with the Timoshenko notation to avoid confusion with

previous quantities.
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All subsequent calculation of the eigenvalues of $' remain unchanged,
and one obtains:

_'min = 2J (l - v2) _'

neglecting the higher order term 6 v _'.

Thus:

R J 2 D_P_n _ =2 (Z- ) R2K

4 J v2Pmin= 7 (l - ) DK

2 t 4
DK=(_) E2Y_{B_(1.6) 2.(1._)(l._62)}

Denoting the critical general instability pressure as Po and substi-
tuting the given values for D and K, one obtains the cl&ssical value,

Po = E ( ) {3_(1* 6) 2 * (l. _)(l, _ 62 )

1
for v = --

3

(4.31)

where

bd d

a =M 6= tth '

In terms of the equivalent weight _ = t(l+3_), one has

_2po = 3 E (_)
(i+3_)2

62y = {3_(1 + 6) 2 + (1 + _)(1 + _ )
1/2

(_..32)

10:



The above formula reduces to that for monocoque construction when the

rib area approaches zero. In such a case, one has the limiting values

a ÷0, 6 ÷0, Y ÷ 1

÷t=t
o

2 2

÷;23- i_t t' c°l --2 cPo I-1

1
c = 0.612 for _ =-

3

According to Huang, (reference 7 )

2
t

where the buckling coefficient is approximately

1
= 0.80 c -- 0.490 for u =-

3

In order to compare the stiffened weight with monocoque weight for

equal pressure, Po = Po' one has,

2
t 2 = (_) Y t =_ _

0 (i+3a)2 ' o l+3a

Since the weights are proportioned to the thickness,

Stiffened weight __= l+3a = weight = n

Monocoque weight = to /_y ratio

l+3a
(4.33)
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Rib Crippling - Ignoring the slight curvature of the rib,

the allowable elastic crippling stress for a rectangular plate will

be obtained under the conservative assumption that it is free on one

edge and hinged on the other three edges. (See Figure 4.11)

According to reference 31 the critical allowable stress is:

2 b 2 d 2= ._ E, [C)
acr 12(I - v2)d 2

+ o._,25]

.=====_. _ I

I I T_lr £ d _t

Figure 4.11 = LOADED RECTANGULAR PLATE

Substituting

2 =A
a = _ h ) %)

3

= b 2 d 2
Oer 0.693 E (_) [(_) + 0.567]

Equating the actual stress (eq. 4.28) to the allowable stress, one
obtains :

b2PlR = 0.693 E (_) [( ) + 0.567]
1

l+a 3t
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and solving for the critical pressure,

2 2

(_.3_)

Panel Bucklin_ - To obtain local panel buckling it will be

assumed that the panels are small enough that they may be treated as

equilateral triangular plates subjected to uniform compressive edge

loads. This assumption will be Justified and amplified. The edges

are assumed free to rotate as a consequence of checkerboard (in-and-

out) panel buckling. The critical allowable stress from reference

31 is:

2 2

= _ E (_)
°cr 3(1 - 2)

Figure 4.12 - LOADED TRIANGULAR PANEL

Equating this to the actual from eq. (4.27)

2 2

i P2R = ?r E (t)
I + a 2t 3(i - 2)

O6



and solving for the critical pressure: (u = i/3)

2

P2--_._0E (R)(t) (1÷ _) (_.3_)

Justification of Plate Bucklin 5 ADproximation - In an
examination of the experimental results of Krenzke and Kiernan

(reference iT) plotted against theoretical curves obtained by

Budiansky, Weinitschke and Thurston (reference 30 ) for shallow

spherical shells with clamped edges depicted in figure 4.13 below,

it appears that any plate regime must begin in the steeply rising

portion of the curve to the left.

Po
_, 0

-0, _B

O,r_

0,?.

I r./

/

%; / '

Figure h.13 PLATE BUCKLING CURVE

1/h L L

e = [_ (l - 2)] a-A-= 0.905 a l
d_ e_g' _=_

La is the chordal diameter of the spherical cap.
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In order to put this conjecture on a more rational basis consider a

dimple inscribed in an equilateral triangular grid as a smaller

spherical cap.

i //

_L_ /

I L = a tan 30° a_ h

2
L = -- h
a 3

Then :

e = 0.905 2 h = A h , A = 0.603

3 _

Suppose the equation of the curve in the "plate instability" region

to be given by the quadratic hyperbola:

= B = constant

This equation appears to be a reasonable approximation in the steeply

rising portion of the curve where e < h.

Substituting for:

h
8 = A --,

2

Po = 2 c E (t)

one obtains:

But :

B t
p = po V = 2 C E ( )

(_ pR = D
2t

2 B Rt t3
= D

A2 h2 Rh 2

t3 R D (t 2
Rh2 2t _ _ K)



Which is precisely the form of the plate buckling equation.

The conclusion of Krenzke and Kiernan is that stiffening systems

installed at spacings of e greater than 2.2 - 2.5, will not increase

the local buckling strength of the shell and may possibly weaken it

(due to the dip in the curve at e = 4).

Thermal and Residual Stress Considerations

Thermal stresses and residual stresses are both initial stresses in

internal equilibrium having like effects on dome stability. These

effects are twofold: first, by introducing stresses which cause

local yielding at reduced pressures and seccad, by introducing internal

strain energy which might be relieved by the buckling deformation and

thus reduce the buckling capacity.

Local buckling of the ribs and skin are governed by stress differences

between the ribs and the skin. General instability of the dome is

affected by local regions of compression extending over areas comparable
in size to the dimple area.

Thermal gradients or residual stresses which vary through the dome

thickness, but are otherwise uniform over the dome mid-surface are

associated with a condition of pure moment stress resultants of the

shell. The internal energy due to these moments will not be effected

by primary instability modes of the type where positive changes of

curvature integrated over the shell balance out negative changes of

curvature. The variation in strain energy _w, is given as:

6w = f Z (Tij 6
A iJ ciJ

+ Mij 6 Xij)dA

i,J = 1,2

where

Tij = 0 , Mij = MO ,

and A is the shell mid-surface.

Thus_

6w = M
o

f Z _ dA=O
A iJ xij



if

as asserted.

f _" 6 dA=O
A iJ ×iJ

A large number of uniform dimples such as are displayed by the tested

domes should approximately satisfy this condition, so that general

instability should not be affected, provided that the thermal gradients
are fairly uniform over the dome surface.

Common bulkheads which are used on the Saturn S-IV are colder on the

outside convex surface. A waffle design for this dome would have

compressive stress in the relatively warmer ribs and tensile stress in

the colder panels. Due to the high coefficient of conductivity of an

integral metal dome, the temperature difference between the ribs and

the panels will be small in the steady state condition. As a conse-

quence, a design where rib thickness is dictated by fabrication

tolerances will usually have a sufficient margin of rib strength to

accommodate the small additional temperature stresses.

Another factor which enters into off-optimum design where either panels

or ribs become non-critical is the support condition for the critical

element. If the panels do not buckle, edge conditions for the ribs

will become less severe than the assumed "free to rotate" edges.

Similar consideration apply to edge condition for panels when the ribs

do not fail. This fact provides an additional margin to prevent pre-

mature buckling of common dcmes in the presence of uniform thermal

gradients. Insulation will also provide support to resist general

instability or panel buckling.

Stresses Due to Hot Spot

Assume that over an angular region B from the apex a uniform temper-

ature rise AT has occurred. A spherical cap of this size may be cut

as a free body from the remainder of the dome and provided with a

set of edge shears and mcments which replace the internal stresses

across the cut faces. These edge loads may be obtained by the method

of compatible displacements. (See Figure _.14)



J

,- T. _ ® _Q.

x
L

)A
I

For part ,I,

Figure _.14 - FREE BODY OF SPHERICAL CAP

AT = TI - T2 = T > 0

(i) (i)= o
61p = - _ R sin 8 AT , _2p

(i) 2 I R sin 2 8 612(1) _ 2 A2 sin 8_ii = Et ' Et

(i) ;4_3
_22 = EE--'_ j R2= 3(i-_2) (_)



Where the notation and influence coefficients have been obtained from

reference 22 assuming that the angle is sufficiently large that the

first Geckeler approximation may be used.

For part 2 similarly,

(2) (2) = 0
61p = 62p

(2) 2 _ R sin 2 8 $12(2) _ 2 _2 sin p_ii = Et ' Et

(2) 4 x3
a22 : m-T-

By summation, the differential displacements are now,

61p : - e R sin 8 AT , 62p = 0

4 A R sin 2 8

611 = Et ' 612 = 0

The compatibility conditions are:

Xl _ii + x2 612 + 8Ip : 0

x I 621 + x2 622 + 62p = 0

Since

612 : _21 : 0 , 62p : 0 ,
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one obtains

1p Eat
x2 = 0 , xI h _ sin 8 • AT

611
(h.35)

The thermal stresses are seen to be a simple edge shear effect

localized in the vicinity of the thermal Jump across the two sections.

For small values of 8, however, the Geckeler solution does not hold

and the edge loads may propagate throughout the entire cap. This may

be expected for values of 8 _ 8° • Since such angles are within the

range of the dimple size, local hot spots should be avoided.

Thus, one may distinguish between local hot spots which enclose small

8 angles and have severe effects on general instability, and large

hot regions enclosing large 8 angles which have a lesser effect on

general instability. In the latter case, the edge effect may cause

a drop of buckling load similar to that experienced by the torisphere

at the Juncture between the spherical cap and the torus.

Optimization

General Principles of Gr%d Optimization

Two basic principles of grid optimization will be proven under

ass_nptions of continuity and monotonicity which should be satisfied

for the type of construction proposed here.

The first principle is the equivalence of the following statements:

I. For a given dc_e shape and size, the optimum distribution of

material between ribs and skin is that which maximizes the pressure
for a specified weight of material.

II. For a given dome shape and size, the optimum distribution of
material between the ribs and skin is that which minimizes the

weight of material for a specified pressure.

It will be assumed that the collapse pressure p is a continuous

function of the material distribution 6 between ribs and skin, and

the dome weight w and that it is strictly increasing in w for a

specified 6. Due to the continuity of p, for some distribution 6,

p will reach a maximum in the closed interval _a _ _ _ 6b where

_a represents all the material concentrated in ribs and 6b represents
all the material concentrated in skin.

Consider hypothesis I. and plot collapse pressure p vs. material

distribution 6 for a specified weight w = w .
o



P
t

I
I

I l
I I

O

C
_b

&

For distribution 60, p reaches its maximum Po"

Now consider hypothesis II and assume that the specified pressure is Po"

At 6 _ 60, p < Po for a weight w .<wo.

Hence: w • w° to give a pressure Po for a distribution of material
other than 6

o"

The second statement to be proved is the "one horse shay" concept of

failure. In essence, the principle states that the optimum construction

is reached when all components collapse simultaneously. For the con-

struction proposed, one considers failure due to general instability,

rib crippling and panel instability between ribs.

For a given dome weight, _, assign a weight distribution to the

components :

114



6o to general instability

to rib crippling

to panel instability

6 may be assumed normalized such that

60 + 61 + 62 = I

Consider the collapse pressures Pi, (i = 0, i, 2) for general
instability, rib crippling and panel instability to be continuous

monotonically increasing functions of 6i and that Pi is not decreased

by changes in 6j, J # i.

dPi

Pi = Pi (6i) ' d6-_ > 0

Designate the least of the three values of Pi as (Pi)min .

If (Pi)min. -- Po < Pl or P2' the collapse pressure of the structure

is increased by taking increments of 6 from 61 and 62 and adding them

to 6 , thus increasing p_ at the expense of Pl and I>2 . This processO 9
may continue in a continuous manner due to the assumed continuity of

p until all three pressures are equal. At this point (Pi)min. will
have reached its maximum value.

Optimum Dimensions

The optimum dimensions are thus obtained from conditions that

i.e

Pcr = Po = Pl = P2

2

Pcr = Co E (_) [3_(i + 6)2+(1 + _)(i + _ 62)]

b 2 d 2

= 2.08 E (_) (_) (I + a) [(_) + 0.567]

2

i/2

c =2_
0

(4.36)
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where
l

bd d i
i a=th ' _=t i

For a given design, p, E, and R are determined by design requirements

and optimum shape conditions.

The remaining four parameters b, d, t, h, are apparently restricted

by only the three equations above, which presumably should leave one

free parameter. This arbitrariness, however, disappears when one

considers that the equation for obtaining panel instability was

obtained under the assumption that the panel was small enough to be

treated as a plate. In order for this to be true, h must be con-

siderably smaller than the dimple diameter observed in the tests.

Solution Of The Optimization E_uations

In terms of a non-dimensional pressure,

_=_
E

the optimization equations in non-dimensional form are the following•:

2

= Co (t) Y

t (b)2_ d 2= cl_- (l+-_) [(_) +_i ]

2
t t

= c2_(_) (l+_)

.

• I
J
(

(4.37 a,b,c)

Where

y : [3c,(l + a)2 + (i + a)(l + a 62)] l/2

bd
a t"_'

a:a_.
t

(h.38 a,b ,c)
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and

co = 0.8 x 1.22474 cI = 2.08187

c2 = 7.h0220 E 1 = 0.566667

C° is the upper limit value 0.8 x 2 x 0.612_7 and may be lowered by
replacement by some reduced coefficient, c .

O

w
C < C
0 0

These equations are restricted by the plate approximation requirement
that

h.<2 _

In order to see the effect of this parsmeter, set

h2 = c Rt , c _ 4

and consider the solution for various values of ¢.

c will exist due to fabrication limitations.

(h.39)

Lower bounds of

Now for a fixed c, equations (4.37 a,b,c,) and (4.39) represent four

non-linear equations in four unknowns b, d, t, and h. A unique

non-dimensional positive real solution for these variables will be

obtained by elimination in terms of p and c.

Thus:

Substitute eq. (4.38c) and (4.39) into (4.37b)

b2
(1 + e) ( 62tt

E-W-+ _1)
= Cl R 62 t2

(2.ho)

Substitute (2.39) into (4.37c)

c2 _ 2_=.( ) (i+ a) (2.41)



Equate (_._o) :a (_._z)

Cl _ cR + : ¢R

Multiply by (_) aria use eq. (4.38b)

a2t c2_ a22 +_1) = _ __
(oR cI ¢ R h2

Use (h.38c) aria (_.39)

c2 64 t 22
_----_--+ _z) = (_)

c 1 ¢

t
The quagratic in _ is:

(t)2= %e 2 (t)+ cl,_l2 _2
c2 _2 c2 7

Define the quantities:

ci¢ Cl SI e2

c3 =c-_ ' c4 = c2
(_._)

The quadratic in t becomes:
R

t 2 2 (t) + c4 2

t
Solving eq. (4.41) for _ ,

(_._3)

//_E_ _ = f¢_,_)t

_= V 1+_ c2
(_._)
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Substitute (4.4h) into _4.43)

2

. 2 62 2f2 64 c3 a - c4 =0

i,e,

Solving the quadratic in 62 ,

2 J62=c¢ 2
2-'f[c3 + c3 + ]

(x

, since 62 > 0

Substituting back for f(p, _) ,

J J c32 4 c42 c 2 1 + a [c3 + ÷-'_
62 = _ ; _ _,

Again from eq. (4.37a) and (4.41)

l+a c2 7 ,

2

•y = (z. _) (___.f)2

(4.45)

Expanding eq. (4.38a) for 72

c2 2
(1 . Q,)2 (_.;f)

0

= i + 4 a + a[6 6 + 62 (4 + a)]

i.e.

62 (4 + a) + 6 6 - g(o_) = 0

where

c2 2
g(o.) = (1 + e)2 ( ) 1 + 4e

_ _ --
(4.46)



Again solving the quadratic in 6.

h+e
(_.47)

since 6 > 0 as before.

Eliminating _ from (4.45) and (4. h7)

i + a c3 + c32 + -'7 ' = )2_""_ c _ _ _ (h._

and solving for p,

_2

, jo !" J I _c_ _!,,,2(_,+_)2 _(1+ _) c:s + 2 + t

, 2[-3 + j9 + (15 + e.) g(e.) 12
J

I

where

c2 2
g(_) = (_) (,1+_)2 1+_ _,_

0

(L._8)



Off-Optimum Desisn

Due to constructional limitations, the theoretical optimum often

cannot be realized and off-optimum designs must be obtained. The set

of equations,

2 l/2
_- Co (t) [3_(l + _)2+ (1 + _)(l + _ _2)]

b 2 d 2 _

_- Cl (t) (_) (i+_) [(W) +c I]

t 2
_- c2 (t) (_) (l÷_)

with

h2 = c Rt , c .< 4 (h.50)

bd d
= t'-h' 6 --_- (h.51)

represent the solution for b, d, t, h, for choosen values of ¢.

Any additional geometric requirements must be obtained at the

expense of satisfying these relations. For each such constraint

relation, one of the equations must be discarded. The IS or h

associated with the discarded equation must be not less than the

design _ or h.

Generally one wishes to retain equation (4.49a) for general

instability in the interesCof efficiency. At the same time,

eq. (4.50) is usually necessary to hold the panel size from

becoming too small. Thus, one may wish to dispense with eq.
(4.49b) or (4.49c).

Solution for Ribs of Non-Critical Width

If the dome is to be of integral construction, the panels must be

milled or etched out. This usually results in a minimum rib width

which is in excess of optimum requirements so that _ obtained from

eq. (4.49b) will exceed the design pressure.
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Combining eq. (4.49a) and (4.50),

c2 (t) t2 c2 (t)2= (i+ ,,)_(l+ ,,1=T

t 2
(_)

£_
=_V_ 1+ ,,

Substituting (4.4i) into eq. (4.49a)

C $

i ÷ ,,

1/2
[3_(1 + _)2+ (1 + ,,)(1 + ,, _2)]

(4.52)

Squaring and rearranging,

c2 2
3,,(]. + a)2 + (l + ,,)(l + ,, a2) = (_-_.)

0

(i + e)2

Expan ding,

c2 2
] + 4,,. 6,,_+ 4,,a2 + 2 a2 = (_) (1*2,,+ 2)

=o,
(4.53)

This is a quadratic requirement relating ,,and 6. It is the sam__.__e
relation between a and 6 which has been previously developed

(eq. 4.47).

Frmn eq. (4.39) and (4.51),

b 2 b2 62
,, : h 6 , ,, : _Rt

t I (b6_2
W : _" "_'_'- (4.54)

Substitute (4.54) into (4.52),

(ha)4 3=&--

R,, c2
#

i+ _ ai (1 + ,,)1/4 = Rb (_2'_)

ll_
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Define

iI_
- _:3

(_.55)

then,

From eq. (4.47)

= a_ (h.56)
(1 + a) x/_

R - ¢3
B - _.(.L._.)

c2

i14

= (l+ _)114 r3 + _ + I_ + _) _(_)
a h + a

(4.57)

Eq. (4.57) establishes the relation between 8 and a to provide the
solution.

One uses (4.57) to find 8 from R, b, and p, then finds _ from

(4.57), 6 from (4.56). Thus, all quantities may be determined.

Of course, one must check to assure that the critical pressure for

rib crippling associated with the discarded equation is at least

equal to the design pressure. The easiest way to do this is to

compare the p/E value of the design with that given in the table.
One should have:

(E
design table

Other Boundary Conditions for Plate Buckling

For off-optimum designs with non-critical ribs, it appears reasonable

to assume a clamped boundary condition for the panels if all panels

buckle inward. This condition requires less distortion of the panel

mid-surface for snap-through.

Both hinged and clamped boundaries are treated in the plate buckling

summaries of Gerard and Becker (reference 19 ). Their allowable

stresses are given in the form:

t 2
= k 2 E (a)

°cr 12(1 - v2)



Since:
2

a =-- h ,

this may be written,

= t 2k 2 _, (K)
acr 16(1 - v2)

For hinged and clamped edges, their values of k are:

k (hinged) = 5.00

k(clamped) = 12.2 (from curve)

Their hinged values differ slightly from that of Timoshenko and Gere

(reference 20 ) and Pfluger (reference 31 ) who both give

.2 E (_)2
_cr = 12(1 - 2)

The ratio between the hinged values is:

Ocr(G. & B.) l_ 12 ll_
acr(T. & G.) = --_ =

Assuming the clamped values of Gerard and Becket as either correct

or conservative, one obtains:

12.2
_cr (clamped) =

2 E (t 22 _)
1 - V

2
,,11.

= 8._5 E (_)

1
for v =-

3

Equating the actual panel stress to the allowable,

2

1 pR = 8.45 E t)
1 +-'--_2t (_
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one obtains the critical pressure

t t
P2(clamped = 16.90 g (_)

2

(i +

and the constant c2 is

1C2 = 16.90

16.90

which is an increase of _ = 2.29 over the hinged value.

The effect of the increase in po on the design will be to give
thinner panels and heavier ribs-for a given grid size, thus

increasing general stability and resulting in lower values of n,

the weight ratio.

The Jump in P2 associated with the Jump in c2 from 7.4 to 16.9
violates the continuity assumption in the proof of the "one-horse

shay" concept of failure associating _o' 61' and _2 with Po, _htPl'
and P2' This discontinuous increase in P2 may result in align _r
weight dome for the condition:

Po --P2 (clamped) = Pcr ' Pl > p

than for the condition

Po = Pl = P2 (hinged) = Pcr



CHAPTER V - EXPERIMENTAL DATA

Plastic Model Testing

Model Material

The plastic material used for the fabrication of the models tested in this

program was "rigid-vinyl" manufactured by Union Carbide Company under the

trademark "Bakelite ." The material was purchased from Cadillac Plastic

and Chemical Company in the form of planished sheets. The 21 x 51 sheets

came in 13 standard thicknesses from O.OlO to 0.125 inches. They can be

obtained in transparent, translucent, and opaque in various colors or clear.

The surface finishes are pressed, polished, or matte, or any desired combina-

tion thereof. This plasticized poly-vinyl chloride material can be formed

at 160°F (versus 275OF for umplasticized PVC). It is a mixture of 86% vinyl

chloride and 14% vinyl acetate. The vinyl acetate is used as an internal

plasticizer and acts on the monomer to soften it, to reduce its forming

temperature, and in general, provide a more useful material.

Material Property Tests -To establish basic material properties of

the polyvinyl chloride plastic material, the following tests were conducted

at the start of the program:

Modulus of Elasticity - _ne modulus of elasticity of the material

was determined in the direction of rolling and perpendicular to the direction

of rolling by standard tensile coupons, 6 inches in length and 1/2inch in

width, cut from sheets of different thickness. The coupons were tested using

a Baldwin Universal testing machine with a 2-inch gage length extensometer

clamped to the specimen. Continuous load-deflection data was autographically

recorde_ to fracture. The variation in Young's Modulus versus thickness is

shown in Figure 5.1. The results show that the average modulus is 465,000 psi

with a maximtnn deviation from the mean of 3.5%, that the material has nearly

isotropic properties and the modulus of elasticity is somewhat dependent

upon the thickness variation. A typical stress-strain curve is shown in

Figure 5.2.

Strain Rate and Creep - Tests were conducted to measure the

effect of strain rate and sensitivity to creep. Strain rates varying from

.02 to .lO in/in/min, showed no discernable difference in the modulus of

elasticity. Reference 22, however, showed that for loading rates L .20

in/in/min, that the material is rate dependent. There were no detectable

creep effects on the material when constant loads below the proportional
limit were maintained for several minutes.
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Poisson's Ratio - Several tests were conducted to establish

Poisson's ratio in the elastic region. The results showed this value to

be 0.37 with a minimum of scatter.

The Poisson's ratio and the high ratio of elastic limit stress to modulus

of elasticity are two explicit advantages. The Poisson's ratio approaches

that of many metals. We, therefore, can achieve the same stress and

strain distribution in the model and prototype. The high ratio of elas-

tic limit stress to modulus of elasticity allows buckling to occur in the

elastic range which makes possible the repeatability of testing one model.

Another advantage in the use of the rigid vinyl material is the ease in

cementing it to itself. Tetrahydrofuran, methyl ethlketone (MEK) were

reasonably satisfactory solvent cements for this material, forming bonds

up to 50 per cent of the strength of the original material. It has been

recommended that when many joints are made that sufficient time should

be allowed before testing in order to let the cement cure adequately.

The softening process of the solvent type cement locally lowers the mo-

dulus of elasticity.

Fabricatlon of Domes

The shells of the basic monocoque dome configurations and the stiffened

dome configurations were fabricated using the same technique. For the

stiffened dome configurations, the appropriate ribs were bonded on the
concave surface of the shell.

The seven dome shapes fabricated in this study had a constant base dia-

meter of 16 inches. The configurations are shown in Table 5.1.

Table 5.1

Dome Configuration

Spherical

Ellipsiodal

Torispherical

a/b-Base Radius To Dome Height Ratio

4.78; 3.33; 2.0; 1.0

3.3;2.0

2.0

The individual molds were designed to fit a standard base plate mounted

on a 14 in. diameter lathe faceplate. The base plate served as the hold-

ing fixture when turning the mold and dome, and the mold's vacuum mani-

fold cover. The formed shell was held in contact with the mold's
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concave surface with vacuum during the machining of the inside radius
of the plastic dome shell. All the aluminum dome molds and domes were

machined on the same lathe and base plate, thus eliminating most of the

concentricity problems and reducing the cost of multiple tooling. The

female molds were machined from 6061-T651 aluminum plate. Each 20 in.

diameter mold was turned on an 18 in. Monarch Lathe using a True-Trace

hydraulic tracing attachment. The tracing attachment follows a template

which duplicates the desired mold cavity contour. The spherical contour

template (a/b) = 3.33 can be seen in the machining setup in Figure 5.3.

(Note template in horizontal plane at right of center in the photograph. )

Figure 5.4 shows a completed spherical mold and plastic dome with a

radius to height, a/b of 3.33. The final step in the preparation of the

mold is the through-drilling of many small holes (#70 to #80) normal

to the contoured surface, but which are not visible in the photograph.

These holes are part of the vacuum manifold for drawing the plastic into

the cavity during vacuum forming and during machining the plastic dome

to the required wall thickness. In the forming of the shallow domes

air would become trapped under the plastic between the holes. This was

eliminated by scribing rings and cross hatches on the surface of the

mold. As mentioned before, the only tooling necessary to make plastic

domes of one particular shape was the female mold and its corresponding

tracing template. By changing the diameter of the tracing stylus to

compensate for the dome thickness, it was possible to machine the inside

surface of the plastic dome using the same template that was used for

the mold surface. If two templates were used, the shell wall thickness

variations would have been compounded by template differences, temperature

changes, and cutting tool wear. This would also mean that for every shell

shape with a different wall thickness, an internal surface template would

also have been required.

The forming method used was vacuum forming, or negative pressure forming,

with an additional amount of external pressure. The external pressure
was added to minimize the dimensional difference between the mold and

plastic dome caused by the difference of their coefficients of expansion

during the transition temperature and to help form the rigid vinyl over
the sharp radii.

A sheet of rigid-vinyl was clamped on the mold with a clamping ring

(Figure 5.5). The external pressure plate was then bolted to the clamp-

ing ring (an 0 ring is used for the pressure seal). The whole assembly

was placed in an oven mechanically connected to pressure and vacuum.

After connecting the vacuum and external pressure lines, the temperature

in the oven was raised to 2_OOF. The mold assembly was soaked at this

temperature for a minimum of six hours. After soaking, the vacuum pump

was turned on and the rigid-vinyl sheet was pulled down to conform to the

mold cavity. When the plastic sheet pulled down, the space above it drew

in oven air at 240OF into the space above the plastic sheet. This was

done to eliminate coldspots while forming. While the negative pressure

caused by the vacuum was holding down the plastic sheet, the additional

external pressure was applied with factory air regulated to 15 psig. The

oven bmat was turned off, and the door opened so that the whole mold as-

sembly could cool down to room temperature.
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After the assembly had cooled to room temperature, the base plate was

removed from the back of the mold and the mold was installed on the

lathe base plate. The plastic dome was held tight to the mold cavity

by vacuum while turning the internal surface of the vacuum formed dome.

A Shrader rotating pressure Joint was used between the rotating lathe

spindle and the vacuum pump line.

The contraction of the plastic away from the aluminum mold was slight,

but when the vacuum had been applied under the plastic dome, it was

stretched slightly to conform to the mold cavity. In order to eliminate

this stretching while machining, the plastic dora@ was parted from the

excess clamping material. After parting, the edge was taped with a

plastic coated fabric tape (Tuck) to restore the full 28-inch of vacuum

used while turning the plastic dome to the required wall thickness.

Soluable oil collant was used while turning the rigid vinyl (PVC). This

material turns well, but it should not be heated excessively. Tungsten

carbid cutting tools were used to reduce wear since the accuracy of the

dome wall was dependent upon the relationship of the radius of the cut-

ting tool to the radius of the tracing stylus. The duplication of the

hydraulic tracing attachment depends upon the conformity of the radius

of the cutting tool and stylus.

When machining the plastic dome using the same template which was used

to machine the aluminum mold cavity, the thickness dimension of the

plastic dome had to be added to the radius of the stylus used to cut the

mold cavity. The finished dome was then inspected for wall thickness
variations. A dial indicator was mounted above a 1-inch diameter steel

ball on an arm long enough to provide room for the indicator to reach

the center of the 16-inch diameter plastic dome. For the stiffened

domes, the ribs were routed from the same sheet material as the dome and

cemented to the shell using Cadco No. 201 Solvent Cement. Figure 5.6

shows the small rectangular blocks that were used to position the ribs

while cementing.

Test Set-Up

The testing fixture for the finished plastic dome models is shown in

Figure 5-7- The dome shells were cemented to a stiff plexiglass ring.

A i/4 inch deep groove was cut into the ring, the shell placed into the

groove, and this g_oove filled with Hysol 2039 epoxy cement with Hardner

"C". The epoxy cement cured at room temperature. All of the shells made

with an extra i/4 inch for the epoxy cementing. This stiff ring, 1-inch

thick by 2 inches wide, provided the fixed edge support for the dome

model. The dome ring assembly is then clamped to a heavy Plexiglas base

with provisions for pumping a vacuum from beneath the dome. For the

monocoque and stiffened domes, a wooden block rests between the dome's

inner surface and the base plate of the Plexiglas test fixture. The

back up block protects the specimen from complete collapse so that tests

can be repeated.
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Test Procedure - Room Temperature

The test setup for the monocoque dome is shown in Figure 5.7a. The pressuri-
zation of t_e dome was accomplished by producing a negative pressure under
the dome with a vacuum pump. The vacuum pressure was regulated with a Cono-

flow Type JH-20 vacuum regulator. The pressure was monitored and recorded

from a 0 to 15 psia Statham pressure transducer. The output of the pressure
transducer was conducted to the balance bridge and then to the X-axis of the
four Mosely X-Y recorders (two double pen).

The deflection of the dome was monitored with six differential transformer

displacement transducers held in place using a magnetic stand on the steel

surface plate used to assemble the complete test setup. With this method,
simultaneous plots were made of the test pressure versus deflections during
a dome test.

The deflection transducers were calibrated before each test using a depth
micrometer and reading the output on the X-Y recorders. This record was put
on the same sheet of graph paper that was used during the test. The pressure

channels were calibrated by shutting a known resistance across one leg of
the transducer balance bridge. After calibrating the vacuum pump was turned

on and the vacuum surge tank was evacuated to approximately 13 psia.

Test Procedure - Thermal Gradient

For the thermal gradient test ice was used as the cooling agent and water as

the pressure medium. _le test setup is shown schematically in Figure 5.8
and a photograph of it is Figure 5.9- Copper-Constantan Thermocouples were
cemented to the model _-lth "Eastman 910" cement. The standard thermocouple

circuit was used with a switch introduced so only one reference thermocouple
and only one voltmeter was used. Ice was first put into the lower cylinder
and then the large upper ring holding the test specimen was bolted over the
cylinder. Tap water was fed into the cylinder from the bottom and air bled

from the top. During the soak period of two hours, the deflection trans-

ducers were put in place and periodic readings taken from the thermocouples.
The pressure and deflection transducers were calibrated in the same manner

as explained for the room temperature test procedure. Immediately before
testing, a final temperature was recorded.

Monocoque Test Results

A total of seven monocoque domes were fabricated and tested in the experi-
mental phase. The sunm_ry of test results are shown in Table i.I and a

photograph of the buckling patterns are dipicted in Figure l.B.

Spherical Domes - Four spherical shapes were tested that had base
radii to height ratios of i:00, 2:00, B-B3 and 4.78 with a constant base
radius of sixteen inches. Table 5.2 shows the measured thickness normal to

the dome surface at the various locations. The buckling coefficient C is
computed from the equation:

2E t
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where

E = 465,000 psi

Figure 5.10 shows the location of the displacement transducers on the

appropriate shells. Figures 5.11 and 5.12are plots of the radial deflec-

tion at failure transcribed from the autographic records.

Two effects of the test results deserve special mention. The first is the

consistently high buckling coefficient for the range of R/t values of

245 to 345. These high buckling coefficients are a consequence of the

minimization of imperfections and residual stresses and uniformity of

theboundary conditions. The second effect is the remarkably complete

buckle patterns over the spherical surfaces. In all tests, the fgrmation

of the pattern appeared to be instantaneous and occurred with a loud

"bang." However, the backup block may have forced this condition. On

the subsequent tests performed On the specimens, the initial collapse

pressures were duplicated after a short relaxation time.

_soidal Domes - Two elliosoidal domes were fabricated and
tested wit_ a/_t_ of 2.00 and 3.33. Table 5.3 shows the recorded
thicknesses normal to the dome surface at the indicated locations. The

buckling coefficients were computed using the theory of Mushtari-Galimov

(Reference 8) where the maximum radius of curvature is substituted for

(R) in equation (5.1). These coefficients are plotted in Figure 5.16 and

compared with previous experimental data. The high buckling coefficients

attained are indicative of the excellent fabrication and testing techniques

employed in the study. FiguresS.13 and5.1_are plots of the radial

deflection at the buckling pressure.

Torispherical Domes - A single torispherical d_ne was tested

with a spherical radius of ll.50 inches and a knuckle radius of 1.71

inches with an a/b = 2.00. The buckling coefficient for the torispherical

dome was initially based upon the substitution of the spherical radius

into equation (5.1). This assumption was shown to be incorrect by the

visual observation of the buckle pattern at failure. A number of circum-

ferential buckles occurred at the junction of the spherical cap and the

torus, in the region of maximum discontinuity stress. This high discon-

tinuity stress is thought to be the prime reason forthe low experimental

buckling coefficient. Figure 5.15 is a plot of the radial deflection

at the failing pressure.
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FIGURE 5.6 TYPICAL HOLDING BLOCK ARRANGEMENT
FOR STIFFENED DOMES

13"7



i.I_-;

FIGURE 5.7 PLASTIC DOME TESTING FIXTURE
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FIGURE 5.7a TYPICAL EXPERIMENTAL ARRANGEMENT
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Table 5.2

POIRT

_iICIfl_ESS_ la0RMOI_OCOQUE SPHERICAL DOMES

/i tX
II

.,

,t'l' "

/
i _ '_

TRI_S - I_C_ES

_Oe

2

3
4
5
6
7
8
9

i0
11

12

13
14
z5
16
17
18
19
20

21
22

23
24
25

9.*25
9.25
9.25
9.25

0

2.0
2.0

2.0
2.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
8.0
8.0
8.0
8.0

12.6
12.6
12.6
12.6

_-S

a_ =2.0

.o_o5

.0_5

.o_o5

.o_05

.o_05

.o4o_

.o_o_

.o_05

.o_o5

.oho5

.o405

.oh05

.o4o6

.o_5

.0418
z0.5 ._15
lo.5 ._14
_.5 .0_5
zo.5 .o_18

.0500

.o_9o
.059o
.o_
.o_80
.o482
.o_92
.o_9o
.05oo
.05oo
.okgo
.o_9o
.0_
.o_8_
.o_
.o_9o
.05oo

.0288

.0285

.0285

.0285
•0282
.0280
.0280
.0280
.0280
.O283
.0282
.0282
.0275
.0275
.0275
.0272
.o273
.0270
.0269
.o27o
.o27o
.0268
.0269
.0269
.0268

.0560

.0559

.0559

.0560

.0560

.0560

.056z

.0563

.056z

.0560

.o56z

.o561

.0560

.0563
.0565
.0566
.0565
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_c 1-s 2-s 3-s 4-s 4-E 5-E 6-T

a 1.5 1.50 2.0 2.0 2.0 2.0 2.0

b 1.5 1.50 2.0 1.0 2.0 2.0 2.0

C 1.5 1.50 2.0 1.0 2.0 2.0 2.0

d 1.5 1.50 2.0 1.0 2.0 1.0 2.0

e 1.5 1.50 2.0 1.0 1.0 1.0 1.0

FIGURE 5.10

UnATZ0W OF DXSPLAm_amT Tmam)ucm_s FOR M0_0C0QUE D(mm #14, #2-s, #3-s,

#6--,
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Stiffened Spherical Domes - Room Tem_rature

A total of ten stiffened spherical dome configuration were fabricated
and tested to arrive at an optimum stiffened dome arrangement. Stif-
fening configurations tested were:

Feridional Stiffened

Circumferential Stiffened

Combined Meridlonal and Circumferential Stiffened

Square-Grid Stiffened
Geodesic Stiffened

Table 5.4 shows the measured thicknesses of the shell normal to the dome

surface. Fi6_-_es 5.17 - 5.20 show the location of the displacement trans-
ducers and Figures 5.21 - 5.24 are plots of the resulting deformation of
the domes at the failing pressure. The summma7 of the experimental re-
sults are shown in Table 1.2 and Figure 1.5.

Meridional Stiffened Domes - Four meridionally stiffened domes
(#l-M, #2-M, #3-M, #4-M) _;i%h 6, 26, 26, and 38 ribs respectively were

fabricated therefore with modifications, It was used for the number 3 Meri-
dional dome. The modification was the changing of the rectangular rib to a
tee rib. The geometry and experimental results are shown in the table
below.

R d

t s d l M 20 .25

"_=U==- 2 i 20 .30
b--J_--

b' .30
J_-_= 3 M 20 d'

-_--_j_---'=_L'--- d' .25
4 M 20 .30

b

.0191

.0191

.0191

b'
.0191

.0239

t

.0349

.0349

.0349

.0272

No of

Ribs PS t

6 1.41 .0371

26 2.09 .0402

26 2.87 .0424

38 1.69 .0343

.88

1.12

1.38

1.24

,.....

Merldionml Dome - #l-M - The intent of this arrangement

was to verify a theory predicting that the radius of the largest inscribed
circular plate within the bounds of the radial stiffeners define the

allowable pressure for panel instability. Tolreclude that primary failure

occurs by panel instability, rather than by rib instability, only six
meridional ribs were used in this configuration. The axisymmetric buckle

pattern at failure, clearly demonstrates that the buckling mode is by
panel instability.

two fold:

i.

Merldional Dome - #2-M- The objective of testing #2-M was

To determine the allowable buckling stability of the rlb.
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To showan improvement of the buckling pressure of a

meridlonally stiffened dome compared to a monocoque
_cme having the same weight.

accomplish the first objective it was necessary to select an off-
opti,_m condition where rib failure occurred prior to panel instability.

To achieve the second objective, the non-dimensional parameter A was
selected such that A > 3. From the theory in Chapter III the stiffening
pattern is determined as follows:

Let R = 20 inches

$ = 2303_ t

a_ _ 4.'r8
v = 0.37
E 465 x 103
t = .035 inches

assume _ = 1.5

from equation 3.5 where A is shown to be

substituting into the above equation for A ,v, R, t, and solving for
the inscribed panel radius r gives

r = O.TO

or _= g = = .035

from Figure 3.1 the number of the ribs required to provide this ratio is
selected as 26.

The predicted l_Luel allowable from equation 3.10 is given as

2._ Et3

(1- v2) _

Substituting the proper values into the above equation results in

pp = 5.75 psi

_.quat_ p_ = Pr where from equation 3.15

P_
_- Bz_ = (k2-1)

rR 3



where

B = 5.0 and k2 = 131 for e = 23°35 '

Solving for Ir results in

I = 106 x 10 -6
r

To assure that rib failure occurs prior to panel instability the moment

of inertia of the rib will be made considerably less than that required
for simultaneous failure.

Arbitrarily the moment of inertia for the rib is selected as 0.4 Ir

that is

Ir = .4 x 106 x i0 "6 = 43.0 x I0 -6

To satisfy this requirement for

Let d = .30 ; b = .0191

therefore from the previous

equation Pr = 2.3 psi (pre-

dicted failure of rib)

Meridional Dome #3-M - The objective of testing #3-M was to

increase the buckling stability of the ribs such that panel and rib fail-

ure occur simultaneously.

S_ecimen - Meridional Dome #2 was used as the test

specimen to meet this objective. The ribs were reinforced by the addi-

tion of a cap extending from thebase to approximately 5/8 of thecrigi-
nal rib length. This is shown in the sketch below.

where d'= .0191

b'= .250

is computed to be llO x lO "b
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C.

5.4

_HI_ MEAS_ FOR SItELLS USED FOR M STIFFEF_G CONFI_a, TIONS

1
2
3

5
6
7
8
9

10

11

12

13

15
16
17
18
19
20
21

0

2.0

2.0
2.0

2.0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
8.0
8.0
8.0
8.0
9.25
9.25
9.25
9.25

_/b = _.re=_ = _.Z8 _/_ = _._ • = _.r8
.o469
.0472
.0470
.0470
.0471
.0473
.o_74
.0474
.047_
.0475
.o475
.0477
.0477
.0477
.0474
.0477
.0477

.o485

.0482

.o_4

.0482

.0483

.o475

.0477

.0474

.0475

.0477

.0477

.0475

.0475

.0480

.0480

.0480

.0480

.0297

.o_98

.0298

.0298

.0298

.0295

.0295

.0294

.0294

.029?

.O29?

.0296

.O29?

.0294

.0293

.0292

.0293

._56

.0352

._52

._52

._52

.039

._

._

._

._50

._

._

._

._

._

._45

._45

4.78

.o_

.0352

.0352

.0352

.0352

.o349

.o3_

.o349

.o349

.0350

.0350

.0349

.0349

.0347

.0346

.0345

.o345

_-M

.0270

.0273

.0273

.0273

.0274

.0272

.0271

.0273

.0273

.02T2

.0271

.0273

.0275

.0269

.0267

.0271

.0273

I-C
a/_b = 2.0

.0266

.0262

.o261

.o261

.o261

.o263

.o_63

.o_6_

.0264

.0257

.0257

.0257

.0257

.0256

.0256

.0256

.0256

._8

.02_8

.0247

.0249

.O579

.0581

.o581

.o581

.0580

.0577

.0577

.0577

.o576

.o574

.o575

.o574

.0574

.0571

.0573

.0573
•0571



#I-G, #2-G GE_ISIC DOMES

.,=

#3-G GEODISIC DOME

_s

F_GU_ 5.17

LOCATION OF DISPIAC_ENT TRANSDUCERS ON #I-G, #2-G AND #3-G

GEODESIC DOMES



_I-C CIRCUMFERENTIAL DOME

#I-MC MERDIONAL-CIRCUMFERENTIAL DOME

FIGURE 5-18

LOCATION OF DISPLAC_24ENT TRANSDUCERS ON #I-C aria#I-MC CIRCt_L AND
MERIDIONAL- CIRCUMFERENTIAL D(_KES
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#1-M MERIDIOHAL DOME

3.0. " _" //

#e-M, #3-M MERIDIONAL DOMES

.... 3,o __-_.o_ . -

"" _ _.o i =3-M

E_ _ o7 / /

FIGURE 5-19

iO(I%TIONOF DISPIACEMENT TRANSDUCERS ON #I-M, _2-M AND #3-M MERIDIONAL DOMES
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_-M MERIDIONAL DOME

r

#l-SG SQUARE STIFFENED DOME

----_-.oo_J�

-_

I

FIGURE 5.20

LOCATION OF DISPIAC___T _I_I)_8 ON _-M AND #1-S G - I_I_DIONA_ AND

SQUARE STIFFENED DOMES
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The above moment of inertia satisfies the requirement of sufficient rib

stiffness such that panel and rib failure occur simultaneously as calcu-
lated for meridional dome #l.

The predicted failing pressure is therefore

p = 5.75 psi

Meridional Dome #4 - The objective of testing#4-M was to

optimize the dome configuration for a given ratio of (_)2 = .10

From Figure 3.3 for a value of (_)2--= .lO the optimum number of ribs

required is given as 38 ribs, for an efficiency parameter of _ = ll.05.

From Figure 3.1 for N = 38,(/2 = .024

the inscribed radius is therefore computed as

r = R_ = 20 x .024 = .48 inches

From equation 3.46 where the allowable panel stability is given as

2.44 E tB

Letting t = .0273 and substituting appropriate values of E# R and r
into the above equation results in

p = 5.88 psi

From equation the necessary rib moment of inertia is expressed as

IR =pR r R 3
B E( 2,1) where B 5.0

Letting pp = PR and solving for IR gives

= 75 x 10 -6

Because of fabrication limitations it was not nossible to meet this condi-

tion of IR and still satisfy the condition of /th2 = .i0.

The IR obtained for this configuration is

z2 = 54 x l0-6

For this value of IR

PR = 4.25 psi
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Circumferential Stiffened Domes - A circ_nferentially stiffened

spherical cap with an a/b = 2.0 was tested to a buckling pressure of

4.09 psi. This is approximately 92% of the failing pressure that would

be expected for a monocoque dome having the same equivalent weight.

While the result was considerably higher than the previous experimental

values# it clearly demonstrates that a circumferential stiffening arrange-
ment is not expected to be a structurally efficient bulkhead design.

The buckle pattern at failure, shows the buckles are aligned in the

circumferential direction thus indicating that the primary failure was

attributed to panel instability between the circumferential stiffeners.

Although extensive rib failures occurred when the specimen collapsed
against the restraining block, a secondary test of the failed shell resulted

in a monocoque buckling coefficient that was within 3% of the previously

reported unstiffened shell results. The geometry and test result is

shown in the proceeding table.

R

1
ts d !

VARYING

t
S

.0260

No of
Ribs PsFail

10 4.09

t

.0390 .92

S_ecimen Design - The following analysis is based uponthe

work developed in Chapter III. Assume that the results shown in

Figure 3.8 for @ = 60 ° is sufficiently close to e = 53o10 ' so that the

data is applicable.

Letting
e = 53° io,
R = i0.0 inches

a = 8.0 inches

E =465 x 103psi

e .05ib/inj
From Figure 3-5 assuming N = 400 results in _ = 13 withc_,

Substituting the values into equation 3.50 results in

= 55°.

I) = 2.17 X I0 "8/T&Th 5/_
E

A comparison of the efficiency of the stiffened dome to that of a mono'

coque dome was based upon equivalent weight. From the previous experimen-

tal monocoque dome result, it was reported that W = 10.2 for a failing

pressure of Pm = 4.45 psi. e
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\

_b Cross

Sectional

Area

6

--12b R

NO.

l , .00821 .316

2 .OO692 .288

3 .OO565 .257

4 .00_41 .232

7*

8*

,,,, ,

.00328

.OO228

•oo142

•00100

•OOloo

, .OOlOO !

h ,.

io_

•219

.163

•142

.i00

.ioo

.IOO

bR

.026

•O24

•O22

.o19

.o15

.o14

•OlO

•010

•010

.OlO

_8

43

38

33

28

23

18

13

*Note - Limitation of theory and consideration of minimum gage

of plastic matezlal available dictates design in this region.
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Substitutimg W

or

= 10.2 into the above equation results in p = 3.39 psi

_. _5

Assuming that the developed optimum stiffening arrangement is realistic

and that the value of N = 400 is indicative of the rib area required to

prevent premature rib failure, the predicted efficiency of circumferen-

tially stiffened domes was expected to less than that of a monocoque

shell. Since a negative result is sometimes as good as a positive result,

an experimental test was conducted to substantiate the validity of the

theory. The dome thickness was calculated from the following relationships.

5/z
= (2 2te)

where _i = 4.12

Substituting the values into the above equation and solving for t gives

t = .0259 inches

The rib areas required for the design were calculated using the relation-

ships developed in Chapter III. The resulting geometry is depicted in

Table5-5.

Combined Meridional and Circumferential Stiffened Dome #l-MC
MeridionalDome #l-Mwith the addition of five equally space circumferential

stiffeners of the same rib cross sectional area was tested to a failing

pressure of 1.53 psi. A comparison with a monocoque dome of the same

weight showed this pressure to 82% of the expected monocoque buckling pres-

sure. The primary mode of failure was in rib instability of the largest

circumferential stiffener. Failure of this rib resulted in a secondary

mode of panel instability. The geometry and failing pressure is shown

in the proceeding table.

ts d

120 .25 .0191 .0349

--No of I

Ribs _ PsFail t"

S%uare-Grld Stiffened Dome - The Square -Grid stiffening arrange-

ment with an a/b = 4.78 was designed to a near optimum condition of effi-

ciency. The geometric proportions and failing pressure is shown in



the proceeding table.

R a PsFail

I
1.58 I

Specimen - The geometry selected for test was based upon the

analysis by Crawford and Schwartz _eference 23). Due to the constraints

imposed by fabrication and the available buckling pressure due to the

vacuum method of test, the design of the specimen will be off-optimum.

From the appropriate equations and figures in Reference 23 the selected

parameters are:

N =2.05

b
K- = 0.5o
S

d 0.26
a

This results in the off-optimum equation

_- .3/5
(} /

The optimum equation (without restraints) is given as

_tR=1.88(_)_./3/5

It maybe seen that the off-optimum design is _9%heavler than the
optimum design.

Performing the necessary calculation using the dame geometry having a

spherical radius of R = 20 inches and an a/b ratio = 4.78 at a limiting
pressure of p = 12 psi results in:

a = 1.16

ts = .o574
b = .ea87

d = .302

t = .0723
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As was previously shown, the predicted buckling pressure for a

monocoque dome of the same geometry and weight may be expressed as

~2

= 2 E C (R)PM

where the buckling coefficient C as determined from experiment is

C = 0.50. Substituting E = 465 x i0 B and _ = .0723 into the above

equation gives :

P = 6.1 Psi
m

The predicted buckling pressure ratio for the square grid stiffened

dome and the monocoque dome results in:

p
---=1.97Pm

Geodesic Stiffened Domes

Due to constructional limitations, the theoretical optimum shape

having a half-opening angle e = 60 ° was not modeled for the stiffened

configuration. Instead, a spherical cap with an a/b = 4.78 was used

to test the validity of this stiffening theory. This larger spherical
radius (R=20 in.) increased the grid pattern within tolerable fabri-

cation techniques. The first two geodesic (#I-G, #2-G) domes are

shown to have achieved pressures of 1.50 and 1.60 times the values
which would be obtained for the same weight of ma'----terialin monocoque

construction. The general instability coefficient assumed in the

design analysis of these domes was not achieved due to greater

deviation of the stiffened specimens from membrane conditions in the

prebuckled configuration. A redesign of the third specimen taking

this into cognizance resulted in a pressure 2.27 times the monocoque

pressure. The achieved pressure was within I--T_2% of the redesign

predicted value. When the No. i Geodesic dome was first tested, the

resulting failing pressure was much less than predicted by theory.

Cadco No. 202 bodied cement used at the rib intersections had softened

the rib material enough to allow these rib intersections to act as

vertical hinges instead of uniformly elastic ribs. Therefore, small
1/2 inch diameter by 0.015 inch thick PVC disks were cemented with

"Eastman 910" cement at every rib intersection. This provided a more

rigid Joint to carry the rib compression through the intersections.

The buckling pressure on retesting of this dome had increased to a
more reasonable value.

On #2-G and #3-G domes 1/4 inch diameter by .020 inch thick disks were

cemented with "Eastman 910" rather than "Cadco" No. 202. The chief

reason for using disks on these domes was to provide an adhesive sur-

face to hold a portion of the cement at the edge of the rib inter-



Secti_ opposite the shell. The Eastman 910 cement has a low

viscoelasticity and before setting up, would flow away from the area

where the disk was placed. The geometry and test results shown in

the proceeding table.

CONSTANT a = 8 IN.

,,__ ts d

R

20

20

20

h

1.57

1.60

1.25

d

.230

.226

.205

b

.0191

.0239

.0153

t$

.0474

.0479

.0296

- PsFail

5.86

6.54

3.96

T

.0580

1.0592

i

.0387

1.50 I

1.60 I

2.27 I

Geodesic Dome #1-G - The specimen was sized using optimum

design considerations. Since this was the first specimen tested, the

classical buckling coefficient for monocoque domes was used for the

general instability coefficient (c o -- 1.225). The value of the

buckling coefficient by test was calculated to be c o -- .696.

Specimen Design - The plastic model specimen geometry and

pressure was choosen as to give model sizes which are capable of

being constructed and tested.

R = 20.0" E = 465000 psi

e = 2.00 P = 9.80 psi

Thus

P'-x 106 = p.8 x 106

E 0.h65 x 106
= 21.05

From Tables in Part II, one obtains the values:

a = 0.0746, _ = 4.85, y = 3.11, n = 0.672

169



One sees that this design indicates a "classical weight ratio" of

67.2% for the weight of the stiffened dome vs. a monocoque dome.

The ratio of rib weight to skin weight is 3 , i.e.
3 x .0746 x 100% : 22.4%

Since the classical co is used for general instability, while the

actual value will be somewhat smaller, the specimen should fail in

general instability and give an indication of the reduction factor

for co .

So_ing the general inst_ility equation for
R'

I /  8ox o-6
=V 1.225EY = %/ 1.225 x 0.465 x 3.23 = 2.37 x 10 -3

t = 0.00237 x 20 = 0.0474"

d = _t = 4.85 x 0.0474 = 0.230"

h = _ = v'2 x 20 x 0.0_7_ = 1.38"

2
a- --- h = 1,59"

o..o47_x 1.38th = 0.0746 x = 0.0212"
b = _ d 0.230 ....

Although these calculated dimensions do not exactly correspond to

the measured dimensions little variation is expected in the pre-
dicted failing pressure.

Geodesic Dome #2-G - Attempts to machine sheets of polyvinyl
chloride to orbitrary thickness were unsuccessful due to extreme

deviations from flatness of the machined sheet. As a consequence,

the choosen rib thickness for this specimen was obtained by measurement
of rolled sheet 0.0239 in. as supplied by the manufacturer. In this

case on off-optimum design for non-critical ribs is obtained by the
analysis technique described in Chapter IV.



obtain ed:
Specimen Design - From the Tables the following values are

a 6

.08 4.66

n 8

3.26 .686 59._

From the formula:

___ bB 4 .023£ x _p.h)h
= (_.-) -- ( = 0.254x lo -4

c2 20.0

c2
= -- x 0.254 x 10 -4

¢3

For c2 = 7.4 and ¢ = 2.0

= _ x 0.254 x 10-4 = 0.234 x 10-4

Since this is less than the value p = .365 x 10 -4 for an optimum design,

rib crippling will not be critical.

For E = 4.65 x 105 psi.,

p = 0.234 x 10-4 x 4.65 x 105 = 10.9 psi.

t /0234x lO-4
= V CoY = Vl.225 x 3.26 = 2.42 x lO -3

t = 20 x 2.42 x 10-3 = 0.0484 in.

d = 6t = 4.66 x 0.0484 = 0.226 in.

h2 = E Rt = 2 x 20 x 0.0484 = 1.94

2
h = 1.39 in. , a =- h = 1...60in.

17



Calculation of GeodesicStiffened Configuration No. 3 - Since
the generai instability coefficients C = 0.348 and 0.377 obtained for
tests #1-G and #2-G lie considerably below the "classical" value
CN = c_/2 = 0.6125 the tables for a, 6, y, n, p and 8 were reworked

assuming Co/2 = 0.4 These values are shown in the table in Part II.

Specimen Desi6u -

i

.i0
i

6 y n _ x lo6
i i i i ii i i

7.03 5.09 .576 i1.38
, ,, , , i

72.02
ii

Selecting the rib thickness b = .0153 in. and substituting in the

previously developed formula:

_ (_)4 _-(O.Ol;_3x 72.02)2
c2 20.0

= 0.0925 x 10-4

For C2 = 7.4, a = 2.0,

= _ X 0.0925 x 10-4 = 8.67 x 10-6 < 11.38 X 10-6

= = 0.8 X 5.09 = 1.46 x 10 -3

t = 20 x 1.46 x 10-3 = _ in.

d

h 2 -

6t = 7.03 x 0.0292 = 0.20____5in.

c Rt --2 x 20 x 0.0292 = 1.170

h = 1.082 in.,
2

a = m h = 1.2__._5in.

p = 8.67 x i0-6 x 0.465 x 106 = 4.03 psi.



Stiffened Domes - Thermal Gradient Tests
i i i l

The objective of the thermal gradient test plan was to apply a known

temperature differential through the thickness of a geodesic and

square-grid stiffened dome and test to failure by a uniform external

pressure. This would assess the influence of thermal stresses upon

the critical buckling pressure.

The two stiffened domes selected for test were the #2-G (geodesic

dome) and the #1-SG (square-grid dome). The table below shows the

recorded temperatures and their locatic_s prior to failure.

LOC.

1

2

3

4

5

6

7

8

9

10

Temp - OF

#2-G
• I i

+ 59.5

+ 58.5

+ 54.5

+ 54.5

+ h5.0

Temp- OF

#1-SG
i

+ 63.5

+ 63.5

+ 63.5

+ 58.0

+ 58.0

+ 58.0

+ 43.5

+ h5.5

+ 45.5

+ 46.0

Under the maximum thermal gradient of lh.5°F for the Geodesic dome,

the buckling pressure recorded was 8.29 psi. For the square stiffened

dome the maximum thermal gradient recorded was 17.5°F, and failure

occurred at a pressure of 10.83 psi. In both teats the applied thermal

gradient produced a higher buckling pressure than was previously

recorded under the room temperature condition. Since the back up

blocks for these tests were removed, the resulting large deformatiens

at failure caused damage to the domes. When the domes beceme unstable

and buckled, the material fractured and blew out leaving a hole. The

holes occurred in areas that had buckled in the previous tests. The
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holes can be seen in Eigure 5.25. The thermocouple locations are shown

schematically in Figure 5.26. The external pressure versus radial

deflection data Just prior to buckling, for the two domes are found in

Figure 5.28 and the location of the displacement transducers are

illustrated in Figure 5.27. There was a definite change in the

deflection mode frc_ the room temperature tests reported previously.

The buckling pressures previously recorded for the #2 C_odesic dome and

the #i Square-Grid Stiffened dome for the room temperature condition

were 6.5h psi and 9.48 psi respectively. This corresponds with the

experimental buckling pressures of 8.29 pai and 10.83 psi with the

additional condition of a thermal gradient. This apparent increase in

the buckling pressure may be attributed to the difference between the

coefficient of thermal expansion and soak temperature between the shell

and the support ring which introduced a relieving tensile load in the
shell.

Metal Dome Testin_

?_brication of Dome

The gecmetric shape of the monocoque aluminum dome selected for test

was a spherical cap with a half-opening angle 8 = 60 ° with a radius

R = 27.3 inches. The basic material selected for fabrication of the

spherically shaped dome was 2014-T6, in sheet size of 70 x 70 inches

with a thickness of 3/4 inch. By a hot spinning process, the material

was formed over steel mandrels in four successive passes at temperatures

estimated to be between 500°F - 600°F. This hot forming process had an

annealing effect such that coupons cut from the formed dome material

had yield properties much less than that of the initial 2014-T6 material.

The compressive and tensile stress strain curves in both the hoop and

meridional direction is shown in Figure 5.29.

The dome was not heat treated after forming because of the possible

detrimental effect of shape variation. While the dome was on the

mandrel, the dome was machined to the required overall thickness of
.200 inches. Measurements taken at random locations showed the toler-

ance to be within + .002 of the desired thickness. It was estimated

that some of the residual stresses caused by the forming technique were

removed during this machining process. The layout of the geodesic

pattern was accomplished be dividing the pattern into five equal segments

as shown in the working drawing in Figure 5.30. A fiberglass layup was

formed on the concave surface of the metal dome and templates of both

odd and even patterns were scribed on the fiberglass surface. This

fiberglass liner was used to guide the hand router both in depth and

contour. (Figure 5.31)

Based upon the geometry of the stiffening pattern and the quantity of

only one dome, hand routing was selected as the fabrication method

instead of numerically controlled machining or chemical milling which

necessitates leaving large corner radii. To prevent the dome specimen

from "popping out" into the router during machining, the dome was held

in a handling fixture that was vacuum chucked to the dome. Figure 5.36

shows the machining setup.
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FAILURE OF GEODESIC DOME(NO. 2-6) -
THERMAL GRADIENT TEST

FIGURE 5.25 FAILURE OF SQUARE-GRID DOME(NO. 1-SG)-
THERMAL GRADIENT TEST
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As a result of machining difficulties encountered in the program to

maintain the committed close tolerances and schedule, accurate machining

was restricted to a circular area of approximately 20 inches in diameter.

The remaining surface area was machined but not brought down to the

specified tolerances. This overstrength region served as a support for

the representative region.

Test Set-Up

The aluminum dome was mounted in a heavy steel base ring 4 inches thick

with a 2 inch deep circular trough machined in the ring. The test

specimen was seated into this trough and then filled with Cero-bend

(low temperature melting alloy). This clamped boundary condition

duplicated the edge fixity arrangement used for the plastic dome

specimens. The base ring was then mounted on the pressure vessel

fixture that allowed a maximum clearance between the test dome and the

fixture of approximately 2 inches at the apex. This volume was filled

with oil and the entrapped air was bled out. With the machined concave

surface of the dome in the exposed position, the entire assembly was

mounted on a supporting ground stand. This experimental arrangement

is shown in Figure 5.32.

Test Procedure

The pressurization of the dome was accomplished by applying pressure on

the convex surface of the dome slowly until a failure occurred. Pressure

was accurately monitored by two pressure transducers that were auto-

graphically recorded with the other instrumentation on a continuous

oscillograph recording. As a visual aid in estimating pressure, a

calibrated hydraulic gage was mounted on the dome base ring. Single

strain gages were located at 7 points within the predicted failure

region on the stiffening ribs on the concave surface. Rosette strain

gages were applied to a typical panel back to back so that bending
effects could be recorded. Six deflectometers were bonded normal to

the concave surface of the rib Junctures to record the shapes of the

surface under the appliedpressure. The location of the instrumenta-

tion is shown in Figure 5.33.

Specimen Design

The rib dimensions of the small scale metal test dome is considerably

off-optimum due to limitations of rib thickness and allowable yield

stress in the metal. The method of fabrication requires two alternate

templates to guide the routing tool which removes the material between

the ribs. Template tolerances of 1/64" result in ribs not thinner than

I/i0" in width for reasonable dimensional control.

Larger domes fabricated from sectors stretch formed, welded and program

machined could be made closer to optimum dimensions with improved

material properties. Efficiencies of such domes would more closely
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approach ideal values.

With a choice of rib width, b a 0.i0" and a 8 value of 15.30 corre-

sponding to _ = 0.31 and assuming that the general instability buckling

coefficient is that obtained by the geodesic plastic domes (co = .80),
one obtains from the tables in part II for c = 2.0

i

0.31

6 y n 8
i i I i

4.43 6.06 0.782 15.30
ii i I

4 _.lOx z_.3 4
(R) " ) = o.o99oxlO -4 _-

• 27.3 -- C2

= _x 0.0990 x 10-4 = 0.916 x 10-5

p = 9.16 x 10 -6 x 10.3 x 106 = 9.4.3 psi.

t _i. 9.16x 1o-6
= c 7 = 0.8 x 6.06 = 1.375 x 10 -6

o

t = 27.3 x 1.375 x 10-3 = _.

d = 6t = 4.43 x 0.0375 = 0.166 in.

h2 = c Rt = 2 x 27.3 x 0.0375 = 2.045

h = 1.43 in. ,
2

a = -- h = 1.65 in .

The predicted buckling stress in the plate is:

_ 1 pR = _ 94.3 x 27.3 26m200 psi.
p i + _ 2t 1.31 2 x 0.0375 =
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Test Results
i

Failure of the dome occurred within the predicted region at a pressure

of 62.2 psi. The failed dome shown in Figure 5._, depicts a buckle

that is approximately 12 inches in diameter and 4 to 5 inches in depth.

Upon inversion of the dome for inspection purposes, a series of dimples

had formed between many of the equilateral triangles at the failing

pressure (Figure 5.34). The instrumentation data recorded is reduced

and is shown for pressures of 20.6, 40.6, and 62.2 wsi (Just prior to
failure) in the table below.

Strain Gage Readings Stress - Psi

P s-i s-2 s-3 s-4 s-5

_o. 6 4460 517o 4o9o 3890 3880

40.6 916o 10220 7700 7670 754o

62.2 1566o 16360 12 15o 11680 lO550

Max. Norm,

Outer I InnerS-14 S-17

4875 4405

9035 8544
i,

13850 11950

Deflection Readings - Inches

P D-21 D-22 D-23 D-24 D-25 D-26

20.6 .013 .013 .013 .013 .013 .013

40.6 .025 .025 .024 .025 .026 .025

62.2 .042 .041 .038 .041 .043 .041

The buckling coefficient for this dome at the failing pressure was

calculated to be co = 0.52. This was much less than the cl_ssical

buckling coefficient of co = 1.225, and less than the results obtained

for the plastic dome specimens where co = .70. It is suspected that

the lower buckling coefficient is attributed to the high stresses

developed in the plate prior to failure as shown in the table of the

strain gage readings. A comparison of the maximum recorded stresses,

to that of Figure 5.29, indicates that failure occurred very close to

the proportional limit of the material, thus introducing a plastic

reduction factor in the stability equation. It is also suspected that

the residual stresses inherently built into the dome during fabricati_

coupled with the high induced pressure stresses, combine to produce

higher plastic stresses than indicated in the recorded stresses.
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FIGURE5.32EXPERIMENTALARRANGEMENTFOR
ALUMINUMGEODESICDOME
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FIGURE 5.33 - LOCATION OF INSTRUMENTATION
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FAILURE OF ALUMINUM GEODESIC DOME

FIGURE 5.34 FAILURE OF ALUMINUM GEODESIC DOME

(REVERSE SIDE)
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