
1. Overview of Microsoft .NET Programming

1.1 The .NET Framework

What is .Net Platform?

Microsoft .NET is a software development platform based on virtual machine

architecture. Dot Net Platform is:

 Language Independent – dot net application can be developed different

languages (such as C#, VB, C++, etc.)

 Platform Independent – dot net application can be run on any operating system

which has .net framework installed.

 Hardware Independent – dot net application can run on any hardware

configuration

It allows us to build windows based application, web based application, web

service, mobile application, etc.

How .Net Address Today’s Challenges

Clearly, business users today are faced with a lot of technology, but a limited

ability to get at their to get at their data in meaningful, productive way.

http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-platform.html
http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-platform.html
http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-platform.html
http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-platform.html

What are the benefits of .Net?

1. Simplify Application Development

2. Simplify Application Development

3. XML everywhere

4. Universal Data Access

5. Web Service: Collaboration over the internet

The Building Blocks of .Net are:

 The .Net Framework

 .Net Enterprise Servers

 .Net Building Block Services

 Visual Studio .Net

What is .Net Framework?

.Net framework provided rich set of functionality classes, Assemblies, Data

types and services and also simplified application development & deployment.

OR
.Net Framework provides a foundation upon which .net application and xml

web services are built and executed.

For developers, Microsoft provides the new .Net Framework, which is a set of

system secure class and data type that enhance developer productivity and give

easier access to the deep set up of functionality provided by windows. The .Net

Framework is shown in the figure bellows:

http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-framework.html
http://dng-dotnetframework.blogspot.com/2007/05/what-is-net-framework.html

The .Net Framework is a layered system of classes and service that starts with

the operating system service, and moves up through a set of system class (the

Base Class Library) and abstracted classes(For example ASP.NET).

 Common Language Runtime: A rich runtime environment that handles

important runtime tasks for the developer, including memory

management and garbage collection. Built around the common Type

System and defines a common type system for all language.

 Base Class Library: A rich set of functional base class that may be

inherited and extended by other classes in Framework. For example,

System.Object provides base object functionality that all classes in the

Framework inherit. System.IO provides serialization in end from

different Input/Output devices, such as files and stream.

 Extended Class Libraries: class libraries that are focused on one aspect

of development. These classes are extended from the Base Class Library,

and are design to make it easier and faster to developed a specific type of

application. For example, ASP.NET include classes that are focused on

developing Web Services. Other example, include ADO.NET(for data

access), XML.NET in braces to parse and manipulate DOCs) and

Windows Forms (the successor to VB forms).

 Common Language Specification: define requirements for .Net

Languages, by specifying a set of rules that .Net compliant Languages

must follow. One of these rules in that the language must ad here to

common type system.

 Multiple Programming Language: VB.NET, C#.NET and C++.NET

are just some of the many languages that are available for coding in .Net.

The .Net Framework provides one platform and unified programming

model for several languages. Java is conspicuously absent from the .Net

family of language, probably due to the licensing dispute between Sun

Microsystems and Microsoft.

 Visual Studio .Net: an integrated development environment for coding

with the .Net Framework. The diagram shows VS.NET spanning the

entire .Net Framework because it provides tools that access each part of

the Framework.

 Windows and COM+ Service: There are technically not part of the

.NET Framework, but they are a requirement for today’s .NET

Framework SDK.

To summarize, the important concept behind the .NET Framework are:

 Built on a common set of Framework classes

 Provides a Common Type System, that is the cornerstone of unified

programming model for all .NET compliant languages

 Provides a Common Language Runtime that provides runtime service

for components and applications

 Provides extended class libraries for ASP.NET, ADO.NET, XML.NET

and Windows Forms

 Visual Studio.NET is an integrated development environment for the

NET Framework

The .NET Enterprise Servers:

Microsoft is orienting all of their recent and upcoming technology around

.NET. To this end they have identified a suite of products called .NET

Enterprise Servers, which are server-based application that web enable

enterprise systems. These include applications that you may already be using

but did not realize were part of .NET initiative. Example of .NET Enterprise

Servers include:

 Windows 2000 Advance Server

 Application Center 2000/2008

 SQL Server 2000/2005/2008

 Exchange Server 2000

 Host Integration Server 2000

 Internet Security and Acceleration Server 2000/2008

 Commerce Server 2000

 BizTalk Server

.NET Building Block Services

The .NET building block services will include:

 Authentication

 Notification and Messaging

 Directory and Search

 Calendar

 XML Store

Visual Studio .NET

Visual Studio .Net is newest version of Microsoft’s development toolkit for

creating .NET solutions. It is designed to promote Rapid Application

Development (RAD). The .NET Framework SDK actually provides everything

that you need. However, you will miss out on many of the benefits that Visual

Studio.NET provides: an integrated development environment and tight

integration with the .NET Framework.

The key features of Visual Studio.NET are:

 Full integration with the .NET Framework

 Integrated development environment

 Mixed Language development including cross language debugging

 RAD features for application development

 Visual Designers for XML, HTML and Data

 Expanded debugging across projects, including store procedures

Overview of .NET Applications

There are several types of applications that you can build with .NET:

 Windows Forms Applications: Windows Form Applications are the

newest generation of the traditional windows-based applications that

provide a form-based user interface and n-Tier, partitioned architecture.

Windows Forms are object that are derived from the .NET Framework.

 Windows Forms provide the following useful feature:

 A new Forms Architecture: an object oriented set of classes

including the base Forms class

 The Control object Model: a set of Windows Controls for the user

interface

 A new Event Model: A set of events based on delegate which are

similar to callbacks

 Windows Forms Controls: Windows Form Controls are the successors

to ActiveX controls. They are reusable components that provide a user

interface and responsive to user events

 Windows Service Application: Windows Service applications were

formerly known as NT services. They are executables that run in

independent windows sessions with no user interaction. Microsoft

developers will be most familiar with the following services:

 Distributed Transaction Coordinator

 IIS Admin Service

 Simple Mail Transport Protocol (SMTP)

 Task Scheduler

 Windows Installer

 World Wide Web publishing Service

 ASP.Net Web Applications: ASP.NET is the next generation platform

for developing web application.

ASP.NET provides the following two programming models:

 Web Forms: these are analogous to Windows Forms, and even

provide Web Controls that can be dropped on to the form to

provide a user interface, and to automate common functions the

functionality of client – side script.

 Web Services: these are remote application components that

receive and respond to requests using open standard protocols,

RPC calls over HTTP using XML (combined into SOAP

envelopes).

 Web Services: ASP.NET and the .NET Framework together provide

classes and services for building web services components.

 Web Simple Description Language (WSDL) allows outside consumers

to gather the information they need to communicate with your web

service.

 Simple Object Access Protocol (SOAP): The SOAP specification

defines how to send XML over HTTP. Requests and response to and

from Web Services are formatted and Passed via SOAP envelops.

 U

1.2 The Common Language Runtime (CLR):

Definition:
Common Language Runtime (CLR) is execution engine of .Net Framework

based application.Code that runs under the control of the CLR is called

managed code, because the CLR defines the rules that code’s development

language must conform to specifically, the CLR works with two other

Framework services to define the rules for .NET languages. These are:

 Common Type System (CTS): defines standard reference and value

types that are supported in the .NET Framework

 Common Language Specification (CLS): defines rules that a

development must comply with in order to be managed by the .NET

Framework

The Specific benefits of the .NET Framework are:

 DLL “Heaven” not “DLL Hell”

 Component integration replaces interface

 Simplified deployment

 Improved resource management

 Multiple language integration

 Unified, extensible Class Library

 Structured exception handling

The Common Language Runtime will manage code for any language that

conforms to the CLS and the CTS. .NET code is compiled in a two-step process

whereby the code is first converted into a language neutral generalized

instruction set called Microsoft Intermediate Language (IL). Next, the Just-In-

Time executed by the CLR. .NET code is compiled into assemblies, which are

similar to dynamic link libraries (DLLs) except that they hold Meta data and

self-describing.

The CLR provides a number of runtime support service using Virtual

Execution System (VES). The VES is responsible for implementing and

enforcing the Common Type System. The execution engine uses Meta data

information to understand the structure of the components.

The specific components of the VES are:

 Class Loader (Load managed Code)

 Microsoft Intermediate Language (MSIL)

 MSIL-to-Native code conversion

 Verification of Type safety, according to CTS

 Stack Walker

 Memory Management and Garbage Collection

 Profiling and Debugging

 Co-Instance Execution

 Unmanaged Code

1.3 The .NET Framework Class Library:
The .Net Class Framework provides developers with object-oriented, extensible

classes, interfaces and types for accessing system functionality. The Class

Framework is organized into hierarchical libraries of classes that may be used

consistently across any .Net compliant language.

The .Net Class Framework overcomes these limitations in the following ways:

 Namespaces: Classes, Interfaces and Types are organized into

hierarchical structures called namespaces which group related classes

and keep groups of classes distinct.

 Unified Programming Framework: .Net provides a Common Type

System that standardizes data types across the Framework, Which puts

all languages on an equal footing in terms of what data types they can

communicate with. There are some differences between languages but in

general they are all able to access the same classes.

 Object-Oriented: The Class Framework provides extensible classes

that may be manipulated using standard object oriented operations

including inheritance, method overriding and polymorphism.

The figure below shows the organization of the .Net Framework Class

Library at high level:

The System namespace is the root namespace for all other namespaces in the

.NET Framework.

The important classes in the System namespace are:

 System.Object: All classes in the .NET Framework inheri this class.

This class ensures that every Framework class implements a basic

standard interface.

 System.Exception: Contains classes that standardize Exception

handling

The features in the figure above translate to namespaces in the class library:

 ADO.NET provides the System.Data namespace for data access classes

 ASP.NET provides the System.Web namespace for ASP.NET code,

including control and classes that support Web Services

 XML.NET provides the System.Xml namespace for XML classes. It

contains other namespaces such as XPath, XSLT and Serialization

namespaces

 Windows Forms provides the System.Windows.Forms namespace for

classes that support windows forms control and functionality

The .NET Class Framework provides object-oriented access to a broad

range of functionality, including direct system functionality.

What is the Global.asax used for?

The Global.asax (including the Global.asax.cs file) is used to implement application and

session level events.

What is Web.Config File?

It is an optional XML File which stores configuration details for a specific asp.net web

application.

Note: When you modify the settings in the Web.Config file, you do not need to restart the

Web service for the modifications to take effect.. By default, the Web.Config file applies

to all the pages in the current directory and its subdirectories.

Extra: You can use the tag to lock configuration settings in the Web.Config file so that

they cannot be overridden by a Web.Config file located below it. You can use the

allowOverride attribute to lock configuration settings. This attribute is especially valuable

if you are hosting untrusted applications on your server.

What is Machine.config File?

http://dng-config.blogspot.com/2007/05/what-is-globalasax-used-for.html
http://dng-config.blogspot.com/2007/05/what-is-webconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-webconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-webconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-webconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-webconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-machineconfig-file.html

The Machine.Config file, which specifies the settings that are global to a particular

machine. This file is located at the following path:

\WINNT\Microsoft.NET\Framework\[Framework Version]\CONFIG\machine.config

As web.config file is used to configure one asp .net web application, same way

Machine.config file is used to configure the application according to a particular

machine. That is, configuration done in machine.config file is affected on any application

that runs on a particular machine. Usually, this file is not altered and only web.config is

used which configuring applications.

You can override settings in the Machine.Config file for all the applications in a

particular Web site by placing a Web.Config file in the root directory of the Web site as

follows:

\InetPub\wwwroot\Web.Config

Difference between Web.Config and Machine.Config File

Machine.Config:
i) This is automatically installed when you install Visual Studio. Net.

ii) This is also called machine level configuration file.

iii) Only one machine.config file exists on a server.

iv) This file is at the highest level in the configuration hierarchy.

Web.Config:
i) This is automatically created when you create an ASP.Net web application project.

ii) This is also called application level configuration file.

iii) This file inherits setting from the machine.config

2. Visual Basic .NET Programming

2.1 Working with toolbox Controls

Label, LinkLabel

Label

Labels are those controls that are used to display text in other parts of the application.

They are based on the Control class.

Notable property of the label control is the text property which is used to set the text for

the label.

Label Event
The default event of Label is the Click event which looks like this in code:

Private Sub Label1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Label1.Click

End Sub

Creating a Label in Code

http://dng-config.blogspot.com/2007/05/what-is-machineconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-machineconfig-file.html
http://dng-config.blogspot.com/2007/05/what-is-machineconfig-file.html
http://dng-config.blogspot.com/2007/05/difference-between-webconfig-and.html
http://dng-config.blogspot.com/2007/05/difference-between-webconfig-and.html
http://dng-config.blogspot.com/2007/05/difference-between-webconfig-and.html
http://dng-config.blogspot.com/2007/05/difference-between-webconfig-and.html

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load Dim Label1 As New Label()

 Label1.Text = "Label"

 Label1.Location = New Point(135, 70)

 Label1.Size = New Size(30, 30)

 Me.Controls.Add(Label1)

End Sub

LinkLabel

LinkLabel is similar to a Label but they display a hyperlink. Even multiple hyperlinks

can be specified in the text of the control and each hyperlink can perform a different task

within the application. They are based on the Label class which is based on the Control

class.

Notable properties of the LinkLabel control are the ActiveLinkColor, LinkColor and

LinkVisited which are used to set the link color.

LinkLabel Event

The default event of LinkLabel is the LinkClicked event which looks like this in code:

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, _

ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs)_

Handles LinkLabel1.LinkClicked

End Sub

Working with LinkLabel

Drag a LinkLabel (LinkLabel1) onto the form. When we click this LinkLabel it will take

us to "www.startvbdotnet.com". The code for that looks like this:

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, ByVal_

e As System.Windows.Forms.LinkLabelLinkClickedEventArgs)_

Handles LinkLabel1.LinkClicked

 System.Diagnostics.Process.Start("www.startvbdotnet.com")

 'using the start method of system.diagnostics.process class

 'process class gives access to local and remote processes

End Sub

Creating a LinkLabel in Code

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Dim LinkLabel1 As New LinkLabel()

 LinkLabel1.Text = "Label"

 LinkLabel1.Location = New Point(135, 70)

 LinkLabel1.Size = New Size(30, 30)

 Me.Controls.Add(LinkLabel1)

End Sub

TextBox Control

Windows users should be familiar with textboxes. This control looks like a box and

accepts input from the user. The TextBox is based on the TextBoxBase class which is

based on the Control class. TextBoxes are used to accept input from the user or used to

display text. By default we can enter up to 2048 characters in a TextBox but if the

Multiline property is set to True we can enter up to 32KB of text. The image below

displays a Textbox.

Some Notable Properties:
Some important properties in the Behavior section of the Properties Window for

TextBoxes.

Enabled: Default value is True. To disable, set the property to False.

Multiline: Setting this property to True makes the TextBox multiline which allows to

accept multiple lines of text. Default value is False.

PasswordChar: Used to set the password character. The text displayed in the TextBox

will be the character set by the user. Say, if you enter *, the text that is entered in the

TextBox is displayed as *.

ReadOnly: Makes this TextBox readonly. It doesn't allow to enter any text.

Visible: Default value is True. To hide it set the property to False.

Important properties in the Appearance section

TextAlign: Allows to align the text from three possible options. The default value is left

and you can set the alignment of text to right or center.

Scrollbars: Allows to add a scrollbar to a Textbox. Very useful when the TextBox is

multiline. You have four options with this property. Options are are None, Horizontal,

Vertical and Both. Depending on the size of the TextBox anyone of those can be used.

TextBox Event

The default event of the TextBox is the TextChanged Event which looks like this in code:

Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TextBox1.TextChanged

End Sub

Working With TextBoxes

Lets work with some examples to understand TextBoxes.

Drag two TextBoxes (TextBox1, TextBox2) and a Button (Button1) from the toolbox.

Code to Display some text in the TextBox

We want to display some text, say, "Welcome to TextBoxes", in TextBox1 when the

Button is clicked. The code looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

 TextBox1.Text = "Welcome to TextBoxes"

End Sub

Code to Work with PassWord Character

Set the PasswordChar property of TextBox2 to *. Setting that will make the text entered

in TextBox2 to be displayed as *. We want to display what is entered in TextBox2 in

TextBox1. The code for that looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

 TextBox1.Text = TextBox2.Text

End Sub

When you run the program and enter some text in TextBox2, text will be displayed as *.

When you click the Button, the text you entered in TextBox2 will be displayed as plain

text in TextBox1.

Code to Validate User Input

We can make sure that a TextBox can accept only characters or numbers which can

restrict accidental operations. For example, adding two numbers of the form 27+2J

cannot return anything. To avoid such kind of operations we use the KeyPress event of

the TextBox.

Code that allows you to enter only double digits in a TextBox looks like this:

Private Sub TextBox1_KeyPress(ByVal sender As Object,ByVal e As_

System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress

 If(e.KeyChar < "10" Or e.KeyChar > "100") Then

 MessageBox.Show("Enter Double Digits")

 End If

End Sub

Creating a TextBox in Code

Public Class Form1 Inherits System.Windows.Forms.Form

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As_

 System.EventArgs) Handles MyBase.Load

 Dim TextBox1 as New TextBox()

 TextBox1.Text="Hello Mate"

 TextBox1.Location=New Point(100,50)

 TextBox1.Size=New Size(75,23)

 Me.Controls.Add(TextBox1)

 End Sub

End Class

Button Control

One of the most popular control in Visual Basic is the Button Control (previously

Command Control). They are the controls which we click and release to perform some

action. Buttons are used mostly for handling events in code, say, for sending data entered

in the form to the database and so on. The default event of the Button is the Click event

and the Button class is based on the ButtonBase class which is based on the Control class.

Button Event

The default event of the Button is the Click event. When a Button is clicked it responds

with the Click Event. The Click event of Button looks like this in code:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

 'You place the code here to perform action when Button is clicked

End Sub

Working with Buttons

Well, it's time to work with Buttons. Drag a Button from the toolbox onto the Form. The

default text on the Button is Button1. Click on Button1 and select it's properties by

pressing F4 on the keyboard or by selecting

View->Properties Window from the main menu. That displays the Properties for Button1.

Important Properties of Button1 from Properties Window:

Appearance

Appearance section of the properties window allows us to make changes to the

appearance of the Button. With the help of BackColor and Background Image properties

we can set a background color and a background image to the button. We set the font

color and font style for the text that appears on button with ForeColor and the Font

property. We change the appearance style of the button with the FlatStyle property. We

can change the text that appears on button with the Text property and with the TextAlign

property we can set where on the button the text should appear from a predefined set of

options.

Behavior

Notable Behavior properties of the Button are the Enabled and Visible properties. The

Enabled property is set to True by default which makes the button enabled and setting it's

property to False makes the button Disabled. With the Visible property we can make the

Button Visible or Invisible. The default value is set to True and to make the button

Invisible set it's property to False.

Layout

Layout properties are about the look of the Button. Note the Dock property here. A

control can be docked to one edge of its parent container or can be docked to all edges

and fill the parent container. The default value is set to none. If you want to dock the

control towards the left, right, top, bottom and center you can do that by selecting from

the button like image this property displays. With the Location property you can change

the location of the button. With the Size property you can set the size of the button. Apart

from the Dock property you can set it's size and location by moving and stretching the

Button on the form itself.

Below is the image of a Button.

Creating a Button in Code

Below is the code to create a button.

Public Class Form1 Inherits System.Windows.Forms.Form

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e_

 As System.EventArgs) Handles_ MyBase.Load

 Dim Button1 as New Button() 'declaring the button, Button1

 Button1.Text="Creating a Button" 'setting the text to be displayed on the Button

 Button1.Location=New Point(100,50)

 'setting the location for the Button where it should be created

 Button1.Size=New Size(75,23) 'setting the size of the Button

 Me.Controls.Add(Button1) 'adding the Button that is created to the form

 'the Me keyword is used to refer to the current object, in this case the Form

 End Sub

End Class

CheckBox

CheckBoxes are those controls which gives us an option to select, say, Yes/No or

True/False. A checkbox is clicked to select and clicked again to deselect some option.

When a checkbox is selected a check (a tick mark) appears indicating a selection. The

CheckBox control is based on the TextBoxBase class which is based on the Control class.

Below is the image of a Checkbox.

Notable Properties

Important properties of the CheckBox in the Appearance section of the properties

window are:

Appearance: Default value is Normal. Set the value to Button if you want the CheckBox

to be displayed as a Button.

BackgroundImage: Used to set a background image for the checkbox.

CheckAlign: Used to set the alignment for the CheckBox from a predefined list.

Checked: Default value is False, set it to True if you want the CheckBox to be displayed

as checked.

CheckState: Default value is Unchecked. Set it to True if you want a check to appear.

When set to Indeterminate it displays a check in gray background.

FlatStyle: Default value is Standard. Select the value from a predefined list to set the style

of the checkbox.

Important property in the Behavior section of the properties window is the ThreeState

property which is set to False by default. Set it to True to specify if the Checkbox can

allow three check states than two.

CheckBox Event
The default event of the CheckBox is the CheckedChange event which looks like this in

code:

Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged

End Sub

Working with CheckBoxes

Lets work with an example. Drag a CheckBox (CheckBox1), TextBox (TextBox1) and a

Button (Button1) from the Toolbox.

Code to display some text when the Checkbox is checked

Private Sub CheckBox1_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged

 TextBox1.Text = "CheckBox Checked"

End Sub

Code to check a CheckBox's state

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Button1.Click

 If CheckBox1.Checked = True Then

 TextBox1.Text = "Checked"

 Else

 TextBox1.Text = "UnChecked"

 End If

End Sub

Creating a CheckBox in Code

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles_ MyBase.Load

 Dim CheckBox1 As New CheckBox()

 CheckBox1.Text = "Checkbox1"

 CheckBox1.Location = New Point(100, 50)

 CheckBox1.Size = New Size(95, 45)

 Me.Controls.Add(CheckBox1)

End Sub

RadioButton

RadioButtons are similar to CheckBoxes but RadioButtons are displayed as rounded

instead of boxed as with a checkbox. Like CheckBoxes, RadioButtons are used to select

and deselect options but they allow us to choose from mutually exclusive options. The

RadioButton control is based on the ButtonBase class which is based on the Control

class. A major difference between CheckBoxes and RadioButtons is, RadioButtons are

mostly used together in a group. Below is the image of a RadioButton.

Important properties of the RadioButton in the Appearance section of the properties

window are:

Appearance: Default value is Normal. Set the value to Button if you want the

RadioButton to be displayed as a Button.

BackgroundImage: Used to set a background image for the RadioButton.

CheckAlign: Used to set the alignment for the RadioButton from a predefined list.

Checked: Default value is False, set it to True if you want the RadioButton to be

displayed as checked.

FlatStyle: Default value is Standard. Select the value from a predefined list to set the style

of the RadioButton.

RadioButton Event

The default event of the RadioButton is the CheckedChange event which looks like this

in code:

Private Sub RadioButton1_CheckedChanged(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles RadioButton1.CheckedChanged

End Sub

Working with Examples

Drag a RadioButton (RadioButton1), TextBox (TextBox1) and a Button (Button1) from

the Toolbox.

Code to display some text when the RadioButton is selected

Private Sub RadioButton1_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles RadioButton1.CheckedChanged

 TextBox1.Text = "RadioButton Selected"

End Sub

Code to check a RadioButton's state

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As_

System.EventArgs) Handles Button1.Click

If RadioButton1.Checked = True Then

TextBox1.Text = "Selected"

Else

TextBox1.Text = "Not Selected"

End If

End Sub

Creating a RadioButton in Code

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e

As_

System.EventArgs) Handles_ MyBase.Load

Dim RadioButton1 As New RadioButton()

RadioButton1.Text = "RadioButton1"

RadioButton1.Location = New Point(120,60)

RadioButton1.Size = New Size(100, 50)

Me.Controls.Add(RadioButton1)

End Sub

Date TimePicker, Month Calendar, Splitter

Date TimePicker

Date TimePicker allows us to select date and time. Date TimePicker is based on the

control class. When we click on the drop-down arrow on this control it displays a month

calendar from which we can make selections. When we make a selection that selection

appears in the textbox part of the Date TimePicker. The image below displays the Date

TimePicker.

Notable Properties of Date TimePicker

The Format property in the Appearance section is used to select the format of the date

and time selected. Default value is long which displays the date in long format. Other

values include short, time and custom

Behavior Section

The CustomFormat property allows us to set the format for date and time depending on

what we like. To use the CustomFormat property we need to set the Format property to

Custom.

The MaxDate Property allows us to set the maximum date we want the Date TimePicker

to hold. Default MaxDate value set by the software is 12/31/9998.

The MinDate Property allows us to set the minimum date we want the Date TimePicker

to hold. Default MinDate value set by the software is 1/1/1753.

MonthCalendar

The MonthCalendar control allows us to select date. The difference between a Date

TimePicker and MonthCalendar is, in MonthCalendar we select the date visually and in

Date TimePicker when we want to make a selection we click on the drop-down arrow

and select the date from the MonthCalendar which is displayed. The image below

displays a MonthCalendar control.

Notable Behavior properties of MonthCalendar

FirstDayOfWeek: Default value is Default which means that the week starts with

Sunday as the first day and Saturday as last. You can set the first day of the week

depending upon your choice by selecting from the predefined list with this property.

ShowToday: Default value is set to True which displays the current date at the bottom of

the Calendar. Setting it to False will hide it.

ShowTodayCircle: Default value is set to True which displays a red circle on the current

date. Setting it to False will make the circle disappear.

ShowWeekNumber: Default is False. Setting it to True will display the week number of

the current week in the 52 week year. That will be displayed towards the left side of the

control.

Splitter

The Splitter control is used to resize other controls. The main purpose of Splitter control

is to save space on the form. Once when we finish working with a particular control we

can move it away from it's position or resize them with Splitter control. The Splitter

control is invisible when we run the application but when the mouse is over it, the mouse

cursor changes indicating that it's a Splitter control and it can be resized. This control can

be very useful when we are working with controls both at design time and run time

(which are not visible at design time). The Splitter control is based on the Control class.

Working with Splitter Control

To work with a Splitter Control we need to make sure that the other control with which

this control works is docked towards the same side of the container. Let's do that with an

example. Assume that we have a TextBox on the form. Drag a Splitter control onto the

form. Set the TextBox's dock property to left. If we want to resize the TextBox once we

finish using it set the Splitter's dock property to left (both the controls should be docked

towards the same end). When the program is executed and when you pass the mouse over

the Splitter control it allows us to resize the TextBox allowing us to move it away from

it's current position.

ListBox

The ListBox control displays a list of items from which we can make a selection. We can

select one or more than one of the items from the list. The ListBox control is based on the

ListControl class which is based on the Control class. The image below displays a

ListBox.

Notable Properties of the ListBox

In the Behavior Section

HorizontalScrollbar: Displays a horizontal scrollbar to the ListBox. Works when the

ListBox has MultipleColumns.

MultiColumn: The default value is set to False. Set it to True if you want the list box to

display multiple columns.

ScrollAlwaysVisible: Default value is set to False. Setting it to True will display both

Vertical and Horizontal scrollbar always.

SelectionMode: Default value is set to one. Select option None if you do not any item to

be selected. Select it to MultiSimple if you want multiple items to be selected. Setting it

to MultiExtended allows you to select multiple items with the help of Shift, Control and

arrow keys on the keyboard.

Sorted: Default value is set to False. Set it to True if you want the items displayed in the

ListBox to be sorted by alphabetical order.

In the Data Section

Notable property in the Data section of the Properties window is the Items property. The

Items property allows us to add the items we want to be displayed in the list box. Doing

so is simple, click on the ellipses to open the String Collection Editor window and start

entering what you want to be displayed in the ListBox. After entering the items click OK

and doing that adds all the items to the ListBox.

ListBox Event

The default event of ListBox is the SelectedIndexChanged which looks like this in code:

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As

System.Object, _

ByVal e As System.EventArgs) Handles

ListBox1.SelectedIndexChanged

End Sub

Working with ListBoxes

Drag a TextBox and a ListBox control to the form and add some items to the ListBox

with it's items property.

Referring to Items in the ListBox

Items in a ListBox are referred by index. When items are added to the ListBox they are

assigned an index. The first item in the ListBox always has an index of 0 the next 1 and

so on.

Code to display the index of an item

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As

System.Object, _

ByVal e As System.EventArgs) Handles

ListBox1.SelectedIndexChanged

TextBox1.Text = ListBox1.SelectedIndex

'using the selected index property of the list box to select the index

End Sub

When you run the code and select an item from the ListBox, it's index is displayed in the

textbox.

Counting the number of Items in a ListBox

Add a Button to the form and place the following code in it's click event.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e _

As System.EventArgs) Handles Button1.Click

TextBox1.Text = ListBox1.Items.Count

'counting the number of items in the ListBox with the Items.Count

End Sub

When you run the code and click the Button it will display the number of items available

in the ListBox.

Code to display the item selected from ListBox in a TextBox

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As

System.Object,_

ByVal e As System.EventArgs) Handles

ListBox1.SelectedIndexChanged

TextBox1.Text = ListBox1.SelectedItem

'using the selected item property

End Sub

When you run the code and click an item in the ListBox that item will be displayed in the

TextBox.

Code to Remove items from a ListBox

You can remove all items or one particular item from the list box.

Code to remove a particular item

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e _

As System.EventArgs) Handles Button1.Click

ListBox1.Items.RemoveAt(4)

'removing an item by specifying it's index

End Sub

Code to Remove all items

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

ListBox1.Items.Clear()

'using the clear method to clear the list box

End Sub

ComboBox

ComboBox is a combination of a TextBox and a ListBox. The ComboBox displays an

editing field (TextBox) combined with a ListBox allowing us to select from the list or to

enter new text. ComboBox displays data in a drop-down style format. The ComboBox

class is derived from the ListBox class. Below is the Image of a ComboBox.

Notable properties of the ComboBox

The DropDownStyle property in the Appearance section of the properties window allows

us to set the look of the ComboBox. The default value is set to DropDown which means

that the ComboBox displays the Text set by it's Text property in the Textbox and displays

it's items in the DropDownListBox below. Setting it to simple makes the ComboBox to

be displayed with a TextBox and the list box which doesn't drop down. Setting it to

DropDownList makes the ComboBox to make selection only from the drop down list and

restricts you from entering any text in the textbox.

We can sort the ComboBox with it's Sorted property which is set to False by Default.

We can add items to the ComboBox with it's Items property.

ComboBox Event

The default event of ComboBox is SelectedIndexChanged which looks like this in code:

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As

System.Object,_

ByVal e As System.EventArgs) Handles

ComboBox1.SelectedIndexChanged

End Sub

Working with ComboBoxes

Drag a ComboBox and a TextBox control onto the form. To display the selection made in

the ComboBox in the Textbox the code looks like this:

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As

System.Object,_

ByVal e As System.EventArgs) Handles

ComboBox1.SelectedIndexChanged

TextBox1.Text = ComboBox1.SelectedItem

'selecting the item from the ComboBox with selected item property

End Sub

Removing items from a ComboBox

You can remove all items or one particular item from the list box part of the

ComboxBox. Code to remove a particular item by it's Index number looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As_

System.EventArgs) Handles Button1.Click

ComboBox1.Items.RemoveAt(4)

'removing an item by specifying it's index

End Sub

Code to remove all items from the ComboBox

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As_

System.EventArgs) Handles Button1.Click

ComboBox1.Items.Clear()

'using the clear method to clear the list box

End Sub

Panel, GroupBox, PictureBox

Panel

Panels are those controls which contain other controls, for example, a set of radio

buttons, checkboxes, etc. Panels are similar to Groupboxes but the difference, Panels

cannot display captions where as GroupBoxes can and Panels can have scrollbars where

as GroupBoxes can't. If the Panel's Enabled property is set to False then the controls

which the Panel contains are also disabled. Panels are based on the ScrollableControl

class.

Notable property of the Panel control in the appearance section is the BorderStyle

property. The default value of the BorderStyle property is set to None. You can select

from the predefined list to change a Panels BorderStyle.

Notable property in the layout section is the AutoScroll property. Default value is set to

False. Set it to True if you want a scrollbar with the Panel.

Adding Controls to a Panel

On a from drag a Panel (Panel1) from the toolbox. We want to place some controls, say,

checkboxes on this Panel. Drag three checkboxes from the toolbox and place them on the

Panel. When that is done all the checkboxes in the Panel are together as in a group but

they can function independently.

Creating a Panel and adding a Label and a CheckBox to it in Code

Private Sub Form3_Load(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles MyBase.Load

Dim Panel1 As New Panel()

Dim CheckBox1 As New CheckBox()

Dim Label1 As New Label()

Panel1.Location = New Point(30, 60)

Panel1.Size = New Size(200, 264)

Panel1.BorderStyle = BorderStyle.Fixed3D

'setting the borderstyle of the panel

Me.Controls.Add(Panel1)

CheckBox1.Size = New Size(95, 45)

CheckBox1.Location = New Point(20, 30)

CheckBox1.Text = "Checkbox1"

Label1.Size = New Size(100, 50)

Label1.Location = New Point(20, 40)

Label1.Text = "CheckMe"

Panel1.Controls.Add(CheckBox1)

Panel1.Controls.Add(Label1)

'adding the label and checkbox to the panel

End Sub

The image below displays a panel.

GroupBox Control

As said above, Groupboxes are used to Group controls. GroupBoxes display a frame

around them and also allows to display captions to them which is not possible with the

Panel control. The GroupBox class is based on the Control class.

Creating a GroupBox and adding a Label and a CheckBox to it in Code

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles MyBase.Load

Dim GroupBox1 As New GroupBox()

Dim CheckBox1 As New CheckBox()

Dim Label1 As New Label()

GroupBox1.Location = New Point(30, 60)

GroupBox1.Size = New Size(200, 264)

GroupBox1.Text = "InGroupBox"

'setting the caption to the groupbox

Me.Controls.Add(GroupBox1)

CheckBox1.Size = New Size(95, 45)

CheckBox1.Location = New Point(20, 30)

CheckBox1.Text = "Checkbox1"

label1.Size = New Size(100, 50)

Label1.Location = New Point(20, 40)

Label1.Text = "CheckMe"

GroupBox1.Controls.Add(CheckBox1)

GroupBox1.Controls.Add(Label1)

'adding the label and checkbox to the groupbox

End Sub

PictureBox Control

PictureBoxes are used to display images on them. The images displayed can be anything

varying from Bitmap, JPEG, GIF, PNG or any other image format files. The PictureBox

control is based on the Control class.

Notable property of the PictureBox Control in the Appearance section of the properties

window is the Image property which allows to add the image to be displayed on the

PictureBox.

Adding Images to PictureBox

Images can be added to the PictureBox with the Image property from the Properties

window or by following lines of code.

Private Sub Button1_Click(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles Button1.Click

PictureBox1.Image = Image.FromFile("C:\sample.gif")

'loading the image into the picturebox using the FromFile method of

the image class

'assuming a GIF image named sample in C: drive

End Sub

RichTextBox

RichTextBoxes are similar to TextBoxes but they provide some advanced features over

the standard TextBox. RichTextBox allows formatting the text, say adding colors,

displaying particular font types and so on. The RichTextBox, like the TextBox is based

on the TextBoxBase class which is based on the Control class. These RichTextBoxes

came into existence because many word processors these days allow us to save text in a

rich text format. With RichTextBoxes we can also create our own word processors. We

have two options when accessing text in a RichTextBox, text and rtf (rich text format).

Text holds text in normal text and rtf holds text in rich text format. Image of a

RichTextBox is shown below.

RichTextBox Event

The default event of RichtextBox is the TextChanged event which looks like this in code:

Private Sub RichTextBox1_TextChanged(ByVal sender As

System.Object, _

ByVal e As System.EventArgs) Handles RichTextBox1.TextChanged

End Sub

Code Samples

Code for creating bold and italic text in a RichTextBox

Drag a RichTextBox (RichTextBox1) and a Button (Button1) onto the form. Enter some

text in RichTextBox1, say, "We are working with RichTextBoxes". Paste the following

code in the click event of Button1. The following code will search for text we mention in

code and sets it to be displayed as Bold or Italic based on what text is searched for.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

RichTextBox1.SelectionStart = RichTextBox1.Find("are")

'using the Find method to find the text "are" and setting it's

'return property to SelectionStart which selects the text to format

Dim ifont As New Font(RichTextBox1.Font, FontStyle.Italic)

'creating a new font object to set the font style

RichTextBox1.SelectionFont = ifont

'assigning the value selected from the RichTextBox the font style

RichTextBox1.SelectionStart = RichTextBox1.Find("working")

Dim bfont As New Font(RichTextBox1.Font, FontStyle.Bold)

RichTextBox1.SelectionFont = bfont

End Sub

When you run the above code and click Button1, the text "are" is displayed in Italic and

the text "working" is displayed in Bold font. The image below displays the output.

Code for Setting the Color of Text

Lets work with previous example. Code for setting the color for particular text looks like

this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As _

System.EventArgs) Handles Button1.Click

RichTextBox1.SelectionStart = RichTextBox1.Find("are")

'using the Find method to find the text "are" and setting it's return

'property to SelectionStart which selects the text

RichTextBox1.SelectionColor = Color.Blue

'setting the color for the selected text with SelectionColor property

RichTextBox1.SelectionStart = RichTextBox1.Find("working")

RichTextBox1.SelectionColor = Color.Yellow

End Sub

The output when the Button is Clicked is the text "are" being displayed in Blue and the

text "working" in yellow as shown in the image below.

Code for Saving Files to RTF

Drag two RichTextBoxes and two Buttons (Save, Load) onto the form. When you enter

some text in RichTextBox1 and click on Save button, the text from RichTextBox1 is

saved into a rtf (rich text format) file. When you click on Load button the text from the rtf

file is displayed into RichTextBox2. The code for that looks like this:

Private Sub Save_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Save.Click

RichTextBox1.SaveFile("hello.rtf")

'using SaveFile method to save text in a rich text box to hard disk

End Sub

Private Sub Load_Click(ByVal sender As System.Object, ByVal e As_

System.EventArgs) Handles Load.Click

RichTextBox2.LoadFile("hello.rtf")

'using LoadFile method to read the saved file

End Sub

The files which we create using the SaveFile method are saved in the bin directory of the

Windows Application. You can view output of the above said code in the image above.

TreeView

The tree view control is used to display a hierarchy of nodes (both parent, child). You can

expand and collpase these nodes by clicking them. This control is similar to Windows

Explorer which displays a tree view in it's left pane to list all the folders on the hard disk.

Below is the image of a Tree View control.

Notable Properties of TreeView

Bounds: Gets the actual bound of the tree node

Checked: Gets/Sets whether the tree node is checked

FirstNode: Gets the first child tree node

FullPath: Gets the path from the root node to the current node

ImageIndex: Gets/Sets the image list index of the image displayed for a node

Index: Gets the location of the node in the node collection

IsEditing: Gets whether the node can be edited

IsExpaned: Gets whether the node is expaned

IsSelected: Gets whether the node is selected

LastNode: Gets the last child node

NextNode: Gets the next sibling node

NextVisibleNode: Gets the next visible node

NodeFont: Gets/Sets the font for nodes

Nodes: Gets the collection of nodes in the current node

Parent: Gets the parent node of the current node

PrevNode: Gets the previous sibling node

PrevVisibleNode: Gets the previous visible node

TreeView: Gets the node's parent tree view

TreeView Event

Default event of the Tree View control is the AfterSelect event which looks like this in

code:

Private Sub TreeView1_AfterSelect(ByVal sender As System.Object,

ByVal e As_

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterSelect

End Sub

Working with Tree Views

Drag a Tree View control on to a form and to add nodes to it select the nodes property in

the properties window, which displays the TreeNode editor as shown below.

To start adding nodes, you should click the Add Root button, which adds a top-level

node. To add child nodes to that node, you should select that node and use the Add Child

button. To set text for a node, select the node and set it's text in the textbox as shown in

the image above.

Assuming you added some nodes to the tree view, drag two Labels (Label1, Label2) from

the toolbox on to the form. The following code displays the node you select on Label2

and the path to that node on Label1. The code looks like this:

Public Class Form12 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

#End Region

Private Sub TreeView1_AfterSelect(ByVal sender As System.Object,

ByVal e As_

System.Windows.Forms.TreeViewEventArgs) Handles

TreeView1.AfterSelect

Label1.Text = "You are here->" & " " & e.Node.FullPath

'displaying the path of the selected node

Label2.Text = "Current node selected:" & " " & e.Node.Text

'displaying the selected node

End Sub

End Class

The image below displays sample output from above code.

ToolTip, ErrorProvider

ToolTip

ToolTips are those small windows which display some text when the mouse is over a

control giving a hint about what should be done with that control. ToolTip is not a control

but a component which means that when we drag a ToolTip from the toolbox onto a form

it will be displayed on the component tray. Tooltip is an Extender provider component

which means that when you place an instance of a ToolTipProvider on a form, every

control on that form receives a new property. This property can be viewed and set in the

properties window where it appears as Tooltip on n, where n is the name of the

ToolTipProvider.

To assign ToolTip's with controls we use it's SetToolTip method.

Notable property of the ToolTip is the Active property which is set to True by default and

which allows the tool tip to be displayed.

Setting a ToolTip

Assume that we have a TextBox on the form and we want to display some text when your

mouse is over the TextBox. Say the text that should appear is "Do not leave this blank".

The code for that looks like this:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles MyBase.Load

ToolTip1.SetToolTip(TextBox1, "Do not leave this blank")

End Sub

The image below displays output from above code.

ErrorProvider Component

The ErrorProvider component provides an easy way to set validation errors. It allows us

to set an error message for any control on the form when the input is not valid. When an

error message is set, an icon indicating the error will appear next to the control and the

error message is displayed as Tool Tip when the mouse is over the control.

Notable property of ErrorProvider in the Appearance section is the Icon property which

allows us to set an icon that should be displayed. Notable property in Behavior section is

the BlinkRate property which allows to set the rate in milliseconds at which the icon

blinks.

Displaying an Error

Let's work with an example. Assume we have a TextBox and a Button on a form. If the

TextBox on the form is left blank and if the Button is clicked, an icon will be displayed

next to the TextBox and the specified text will appear in the Tool Tip box when the

mouse is over the control. The code for that looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e_

As System.EventArgs) Handles Button1.Click

If TextBox1.Text = "" Then

ErrorProvider1.SetError(TextBox1, "Cannot leave textbox blank")

Else

ErrorProvider1.SetError(TextBox1, "")

End If

End Sub

The image below displays output from above code.

Progress Bar

Create a New Project in VB.net. Drag a Progress bar control from tool box and place on form and
now drag and drop four buttons on form having text l< << >> >l. this is simple interface for this
purpose.Now write code on form load even of the form

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 ProgressBar1.Minimum = 0
 ProgressBar1.Maximum = 100

 ProgressBar1.Value = 0

End Sub

 Now write code on button click events.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 If ProgressBar1.Value < 100 Then
 ProgressBar1.Value += 5
 End If
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 If ProgressBar1.Value > 0 Then
 ProgressBar1.Value -= 5
 End If
End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

 ProgressBar1.Value = 100
End Sub

Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button4.Click

 ProgressBar1.Value = 0
End Sub
This is code for buttons now we will see how we can work with progress bar with mouse wheel
scrolling. Select MouseWheel event from form1 events.Now write simple code in this event:

Private Sub Form1_MouseWheel(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles MyBase.MouseWheel

 If e.Delta > -1 Then
 If ProgressBar1.Value < 100 Then
 ProgressBar1.Value += 5

 End If
 Else
 If ProgressBar1.Value > 0 Then
 ProgressBar1.Value -= 5

 End If
 End If

End Sub

Now in if condition you see that e.delta > -1 this is important for us when we scroll

mouse one time control comes in this event and if we scroll wheel up side e.delta

value will < 0 and if we scroll down side e.delta value > 0. Only remember these

things in mind. Now see this condition ProgressBar1.Value < 100 we are handling the

exception and also in ProgressBar1.Value > 0 because progressbar value should be
in range of progressbar1.minimum and progressbar1.maximum.

Masked Text Box

The TextBox control is the most used control in window program. It also cause a lot

of problems either from QA or user, because the invalid data that were entered.

Using masked control will solve these problems and save a lot of time for developer.

This masked intelligent user control enhances the function of TextBox control, which

can mask the Date, IP Address, SSN, Phone number, digit, decimal and check the
validation, automatically set delimit location.

The property Masked is set to None by default and the control works like a normal
TextBox control.

If setting the property to DateOnly, the control is masked to Date format.

Ex. When DateOnly is true

When user enter Display

12 12/

124 12/04/

13 01/3

3 03/

34 03/04/

14 01/04/

1/ 01/

Using the ErroProvider to handle the invalidate input:

Creating Control:

1. Start the Visual Studio.NET Windows Forms designer.

2. Select a new VB.net project by clicking New from the File menu.

3. Click Windows control library template on the templates.

4. Set the Name MaskedTextBox

NotifyIcon

Notify Icons display an icon in Windows System Tray. This is really useful for processes

that run in the background and don't have their own interface. Since VB allows us to

create Windows Services (services that run in the background and display control panels)

now, we can use these notify icon's to associate funtionality to windows services. You

can also use this icon to associate help with your application, launch another application

or anything else which you think can be appropriate.

Notable properties of Notify Icon:

ContextMenu: Gets/Sets Context menu for the tray icon

Icon: Gets/Sets current icon

Text: Gets/Sets tooltip text that is displayed when the mouse hovers over the system tray

Visible: Gets/Sets if the icon is visible in the windows system tray

Notify Icon Event

The default event associated with Notify Icon is the MouseDown event which looks like

this in code:

Private Sub NotifyIcon2_MouseDown(ByVal sender As

System.Object, ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles

NotifyIcon2.MouseDown

End Sub

You can also handle click and double-click events for notify icon. The code sample

below works with the click event of the Notify Icon to display a help file.

To create a Notify Icon component you need an icon (.ico) file to assign to it's Icon

property. If you have an icon then you can use it else you might need to create an icon.

You can create new icons with Visual Studio's icon designer. To open the icon designer

select Project->Add New Item and from the Add New Item dialog select Icon File and

click open. You can use the toolbars that are visible to design your icon. The Icon

Designer Window is displayed below.

Sample Code

Drag a Notify Icon component and a Label control from the toolbar onto the form. Open

the properties window for the Notify Icon and set the Icon property to the path of the icon

and the text property to "Help with this Form". This is the icon that will be displayed

when you run the application. The Label control is needed to set the help file. Set the text

for label as "I have Help". The form in design view should look like the image below.

This sample code launches a help file when you click the Icon in System Tray. This

sample code assumes that you have a help file, "Help.htm" in the C: drive of your

machine.

Private Sub NotifyIcon1_click(ByVal sender As System.Object, ByVal

e As _

System.EventArgs) Handles NotifyIcon1.Click

'handling click event of the NotifyIcon

Help.ShowHelp(Label1, "c:\help.htm")

'using the Help class and it's ShowHelp method to display a help file

End Sub

When you run the application, an icon will be visible in the System Tray and when you

click the icon the help file named "Help.htm" will be launched. The image below displays

the output from above code.

CheckedListBox

As the name says, CheckedListBox is a combination of a ListBox and a CheckBox. It

displays a ListBox with a CheckBox towards it's left. The CheckedListBox class is

derived from the ListBox class and is based on that class. Since the CheckedListBox is

derived from the ListBox it shares all the members of ListBox. Below is the Image of a

CheckedListBox.

Notable Properties of CheckedListBox

The notable property in the appearance section of the properties window is the

ThreeDCheckBoxes property which is set to False by default. Setting it to True makes the

CheckedListBox to be displayed in Flat or Normal style.

Notable property in the behavior section is the CheckOnClick property which is set to

False by default. When set to False it means that to check or uncheck an item in the

CheckedListBox we need to double-click the item. Setting it to True makes an item in the

CheckedListBox to be checked or unchecked with a single click.

Notable property in the Data section is the Items property with which we add items to the

CheckedListBox.

Private Sub CheckedListBox1_SelectedIndexChanged(ByVal sender

As System.Object,_

ByVal e As System.EventArgs) Handles

CheckedListBox1.SelectedIndexChanged

End Sub

Working with CheckedListBoxes is similar to working with ListBoxes.

2.1.2 Container

Building a container control for WinForms was easier than I first imagined. Why did I

build one? Because I needed a custom solution for viewing controls that were created, but

could not be placed into any other third-party control.

It appears that Microsoft left out the Data Repeater that was in VB 6 for Windows, so

now we have to make our own.

Making the Container

The container is just a UserControl. Some of the particulars are to set the

AutoScroll=True and add some events for handling which control is selected as well as

the count.

Reference Link For container control is below:
http://www.codeproject.com/KB/cpp/CustomContainerControl.aspx

Container Control Demo

Imports System

Imports System.Drawing

Imports System.Windows.Forms

public class MainClass

 Shared Sub Main()

 Dim form1 As Form = New Form1

 Application.Run(form1)

 End Sub

End Class

Public Class Form1

 Inherits System.Windows.Forms.Form

http://www.codeproject.com/KB/cpp/CustomContainerControl.aspx

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolea

n)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

 Friend WithEvents ctl1 As System.Windows.Forms.ContainerControl

 Friend WithEvents textBox2 As System.Windows.Forms.TextBox

 Friend WithEvents textBox1 As System.Windows.Forms.TextBox

 Friend WithEvents textBox3 As System.Windows.Forms.TextBox

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Desi

gner

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThroughAttribute()> Private Sub Ini

tializeComponent()

 Me.textBox1 = New System.Windows.Forms.TextBox()

 Me.ctl1 = New System.Windows.Forms.ContainerControl()

 Me.textBox2 = New System.Windows.Forms.TextBox()

 Me.textBox3 = New System.Windows.Forms.TextBox()

 Me.ctl1.SuspendLayout()

 Me.SuspendLayout()

 '

 'textBox1

 '

 Me.textBox1.Location = New System.Drawing.Point(128, 24)

 Me.textBox1.Name = "textBox1"

 Me.textBox1.Size = New System.Drawing.Size(136, 20)

 Me.textBox1.TabIndex = 0

 Me.textBox1.Text = "textBox1"

 '

 'ctl1

 '

 Me.ctl1.AutoScroll = True

 Me.ctl1.BackColor = System.Drawing.Color.DarkBlue

 Me.ctl1.Controls.AddRange(New System.Windows.Forms.Control() {M

e.textBox2, Me.textBox1})

 Me.ctl1.Location = New System.Drawing.Point(24, 32)

 Me.ctl1.Name = "ctl1"

 Me.ctl1.Size = New System.Drawing.Size(216, 104)

 Me.ctl1.TabIndex = 0

 '

 'textBox2

 '

 Me.textBox2.Location = New System.Drawing.Point(32, 24)

 Me.textBox2.Name = "textBox2"

 Me.textBox2.Size = New System.Drawing.Size(64, 20)

 Me.textBox2.TabIndex = 1

 Me.textBox2.Text = "textBox2"

 '

 'textBox3

 '

 Me.textBox3.Location = New System.Drawing.Point(176, 168)

 Me.textBox3.Name = "textBox3"

 Me.textBox3.Size = New System.Drawing.Size(72, 20)

 Me.textBox3.TabIndex = 1

 Me.textBox3.Text = "textBox3"

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(292, 273)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.tex

tBox3, Me.ctl1})

 Me.Name = "Form1"

 Me.Text = "Form1"

 Me.ctl1.ResumeLayout(False)

 Me.ResumeLayout(False)

 End Sub

#End Region

End Class

What is ADO.NET Dataset

The ADO.NET DataSet contains DataTableCollection and their DataRelationCollection .

It represents a collection of data retrieved from the Data Source. We can use Dataset in

combination with DataAdapter class. The DataSet object offers a disconnected data

source architecture. The Dataset can work with the data it contain, without knowing the

source of the data coming from. That is , the Dataset can work with a disconnected mode

from its Data Source . It gives a better advantage over DataReader , because the

DataReader is working only with the connection oriented Data Sources.

http://vb.net-informations.com/ado.net/ado.net-architecture.htm
http://vb.net-informations.com/ado.net-dataproviders/ado.net-dataadapter.htm
http://vb.net-informations.com/ado.net-dataproviders/ado.net-datareader.htm

The Dataset contains the copy of the data we requested. The Dataset contains more than

one Table at a time. We can set up Data Relations between these tables within the

DataSet. The data set may comprise data for one or more members, corresponding to the

number of rows.

The DataAdapter object allows us to populate DataTables in a DataSet. We can use Fill

method of the DataAdapter for populating data in a Dataset. The DataSet can be filled

either from a data source or dynamically. A DataSet can be saved to an XML file and

then loaded back into memory very easily.

DataGrid

The datagrid webserver control is power tool displaying information from datasource.It is

a full-featured data-bound control that displays data in tabular format, and provides the

ability to sort, select, edit, and delete records from its associated data source.

http://vb.net-informations.com/dataset/dataset-relations.htm

ImageList

The ImageList component has been in Visual Basic since VB6 days. Like everything in

.NET, it's changed a bit, however.

The main advantage of using the ImageList is that you can treat the images as a

collection. The major design-time alternative is to use Resources instead. Doing this

way, you would add all of your graphics into the Resources tab of the project properties.

You would have to work with them individually, however, using code that looks like this:

PictureBox.Image = My.Resources.Image0

Another advantage of the ImageList is that the images are added into your project

assembly for easy distribution and fast execution. ImageList also works seamlessly with

other VB.NET controls such as TreeView, ListView, TabStrip, and ImageCombo. And

TabControl. To demonstrate how that works, let's add a series of images from an

ImageList to a TabControl.

Timer Control

A Timer control raises an event at a given interval of time without using a secondary

thread. If you need to execute some code after certain interval of time continuously, you

can use a timer control.

Timer Properties

Enabled property of timer represents if the timer is running. We can set this property to

true to start a timer and false to stop a timer.

Interval property represents time on in milliseconds, before the Tick event is raised

relative to the last occurrence of the Tick event. One second equals to 1000 milliseconds.

So if you want a timer event to be fired every 5 seconds, you need to set Interval property

to 5000.

Dim Timer1 As New Timer()
Timer1.Interval = 2000
Timer1.Enabled = True

Creating a Timer
A Timer control does not have a visual representation and works as a component in the

background.

Design-time

You can create a timer at design-time by dragging and dropping a Timer component from

Toolbox to a Form. After that, you can use F4 or right click Properties menu to set a

Timer properties as shown in Figure 1. As you can see in Figure 1, the Enabled property

is false and Interval is set to 1000 milliseconds (1 second).

Figure 1

First thing you want to do is, change Enabled to true so the timer will start when your

application starts.

Now next step is to add an event handler. If you go to the Events window by clicking

little lightning icon, you will see only one Tick event as you can see from Figure 2.

Double click on it will add the Tick event handler.

Figure 2

Now whatever code you write on this event handler, it will be executed every 1 second.
For example, if you have a ListBox control on a Form and you want to add some items to
it, the following code will do so.

Private Sub Timer1_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Timer1.Tick
 ListBox1.Items.Add(DateTime.Now.ToLongTimeString() + "," + _
 DateTime.Now.ToLongDateString())
End Sub

Run-time

Timer class represents a Timer control and used to create a Timer at run-time. The
following code snippet creates a Timer at run-time, sets its property and event handler.

Dim t As New Timer()
t.Interval = 2000
t.Enabled = True
AddHandler t.Tick, AddressOf TimerEventHandler

The event handler code looks like following.

Private Sub TimerEventHandler(ByVal obj As Object, ByVal ergs As EventArgs)
 ListBox1.Items.Add(DateTime.Now.ToLongTimeString() + "," + _
 DateTime.Now.ToLongDateString())
End Sub

Summary

In this article, we discussed discuss how to create a Timer control in Windows Forms and set its
various properties and events.

Menus

Everyone should be familiar with Menus. Menus (File, Edit, Format etc in all windows

applications) are those that allow us to make a selection when we want to perform some

action with the application, for example, to format the text, open a new file, print and so

on. In VB .NET MainMenu is the container for the Menu structure of the form. Menus

are made of MenuItem objects that represent individual parts of a menu (like File->New,

Open, Save, Save As etc). The two main classes involved in menu handling are,

MainMenu and MenuItem. The MainMenu class let's us assign objects to a form's menu

class and MenuItem is the class which supports the items in a menu system. Menus like

File, Edit, Format etc and the items in those Menus are supported by this MenuItem class.

It's this MenuItem's click event that makes these Menus work. For a MenuItem to be

displayed, we need to add it to a MainMenu object.

Event of the MenuItem

The default event of the MenuItem is the Click event which looks like this in code:

Private Sub MenuItem1_Click(ByVal sender As System.Object, ByVal

e As_

System.EventArgs) Handles MenuItem1.Click

End Sub

Notable properties of the MenuItem class are summarized below.

Under the Miscellaneous Section of the properties window:

Checked: Default value is set to False. Changing it to True makes a checkmark appear

towards the left of the Menu.

DefaultItem: Default value is set to False. Changing it to True makes this menu item

default menu item.

RadioCheck: Changing it to True makes a menu item display a radio button instead of a

checkmark.

Shortcut: Enables to set a short cut key from a list of available shortcuts for the menu

item.

Working with Menus

Creating Menus is simple. Drag a MainMenu component from the toolbar onto the form.

When you add a MaiuMenu component to the form it appears in the component tray

below the form. Windows form designer will add the MenuItem's for this by default, you

need not add this. Once when you finish adding a MainMenu component to the form you

will notice a "TypeHere" box towards the top-left corner of the form. To create a menu

all you have to do is click on the "TypeHere" text which opens up a small textbox

allowing you to enter text for the menu. You can view that in the image below. You can

use the arrow keys on the keyboard to create a submenu or add other items to that menu

or click on the first menu item and use the left/right arrow keys on the keyboard to create

a new menu item. That's all it takes to add a menu to the form.

Working with an example

Let's work with an example to understand Menus. Drag a MainMenu and a TextBox onto

the form. In the "Type Here" part, type File and under file type "New" and "Exit". Our

intention here is to display "Welcome to Menus" in the TextBox when "New" is clicked

and close the form when "Exit" is clicked. The Menu which we will create should look

like this File->New, Exit (New and Exit below File). The code for that looks like this:

Public Class Form3 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal

e_

As System.EventArgs)_ Handles MenuItem2.Click

TextBox1.Text = "Welcome to Menus"

End Sub

Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs)_ Handles MenuItem3.Click

Me.Close()

'Me refers to the current object (form)

End Sub

End Class

Common Dialogs

Visual Basic .NET comes with built-in dialog boxes which allow us to create our own

File Open, File Save, Font, Color dialogs much like what we see in all other windows

applications. To make a dialog box visible at run time we use the dialog box's

ShowDialog method. The Dialog Boxes which come with Visual Basic .NET are:

OpenFileDialog, SaveFileDialog, FontDialog, ColorDialog, PrintDialog,

PrintPreviewDialog and PageSetupDialog. We will be working with OpenFile, SaveFile,

Font and Color Dialog's in this section. The return values of all the above said dialog

boxes which will determine which selection a user makes are: Abort, Cancel, Ignore, No,

None, OK, Return, Retry and Yes.

OpenFileDialog

Open File Dialog's are supported by the OpenFileDialog class and they allow us to select

a file to be opened. Below is the image of an OpenFileDialog.

Properties of the OpenFileDialog are as follows:

AddExtension: Gets/Sets if the dialog box adds extension to file names if the user doesn't

supply the extension.

CheckFileEixsts: Checks whether the specified file exists before returning from the

dialog.

CheckPathExists: Checks whether the specified path exists before returning from the

dialog.

DefaultExt: Allows you to set the default file extension.

FileName: Gets/Sets file name selected in the file dialog box.

FileNames: Gets the file names of all selected files.

Filter: Gets/Sets the current file name filter string, which sets the choices that appear in

the "Files of Type" box.

FilterIndex: Gets/Sets the index of the filter selected in the file dialog box.

InitialDirectory: This property allows to set the initial directory which should open when

you use the OpenFileDialog.

MultiSelect: This property when set to True allows to select multiple file extensions.

ReadOnlyChecked: Gets/Sets whether the read-only checkbox is checked.

RestoreDirectory: If True, this property restores the original directory before closing.

ShowHelp: Gets/Sets whether the help button should be displayed.

ShowReadOnly: Gets/Sets whether the dialog displays a read-only check box.

Title: This property allows to set a title for the file dialog box.

ValidateNames: This property is used to specify whether the dialog box accepts only

valid file names.

SaveFileDialog

Save File Dialog's are supported by the SaveFileDialog class and they allow us to

save the file in a specified location. Below is the image of a SaveFileDialog.

Properties of the Save File Dialog are the same as that of the Open File Dialog. Please

refer above. Notable property of Save File dialog is the OverwritePromopt

property which displays a warning if we choose to save to a name that already exists.

FontDialog

Font Dialog's are supported by the FontDialog Class and they allow us to select a font

size, face, style, etc. Below is the image of a FontDialog.

Properties of the FontDialog are as follows:

AllowSimulations: Gets/Sets whether the dialog box allows graphics device interface font

simulations.

AllowVectorFonts: Gets/Sets whether the dialog box allows vector fonts.

AllowVerticalFonts: Gets/Sets whether the dialog box displays both vertical and

horizontal fonts or only horizontal fonts.

Color: Gets/Sets selected font color.

FixedPitchOnly: Gets/Sets whether the dialog box allows only the selection of fixed-pitch

fonts.

Font: Gets/Sets the selected font.

FontMustExist: Gets/Sets whether the dialog box specifies an error condition if the user

attempts to select a font or size that doesn't exist.

MaxSize: Gets/Sets the maximum point size the user can select.

MinSize: Gets/Sets the mainimum point size the user can select.

ShowApply: Gets/Sets whether the dialog box contains an apply button.

ShowColors: Gets/Sets whether the dialog box displays the color choice.

ShowEffects: Gets/Sets whether the dialog box contains controls that allow the user to

specify to specify strikethrough, underline and text color options.

ShowHelp: Gets/Sets whether the dialog box displays a help button.

ColorDialogs

Color Dialog's are supported by the ColorDialog Class and they allow us to select a color.

The image below displays a color dialog.

Properties of ColorDialog are as follows:

AllowFullOpen: Gets/Sets whether the user can use the dialog box to define custom

colors.

AnyColor: Gets/Sets whether thedialog box displays all the available colors in the set of

basic colons.

Color: Gets/Sets the color selected by the user.

CustomColors: Gets/Sets the set of custom colors shown in the dialog box.

FullOpen: Gets/Sets whether the controls used to create custom colors are visible when

the dialog box is opened.

ShowHelp: Gets/Sets whether the dialog box displays a help button.

SolidColorOnly: Gets/Sets whether the dialog box will restrict users to selecting solid

colors only.

Dialog Boxes

Putting Dialog Boxes to Work

We will work with OpenFile, SaveFile, Font and Color Dialog's in this section. From the

toolbox drag a MainMenu component, RichTextBox control, Button Control,

OpenFileDialog, SaveFileDialog, FontDialog and ColorDialog onto the form. The sample

code demonstrated below allows you to select a file to be opened and displays it in the

RichTextBox with OpenFileDialog, allows you to save the text you enter in

the RichTextBox to a location using the SaveFileDialog, allows you to select a font and

applies the selected font to text in the RTB using FontDialog and allows you to select

a color and applies the color to text in the RTB using the ColorDialog. Select the

MainMenu component and in the "Type Here" part of the MainMenu type File and using

the down arrow keys on the keyboard start typing Open, Save, SelectFont and

SelectColor under the File menu. It should look like this: File-> Open, Save, SelectFont,

SelectColor. We will assign OpenFileDialog to Open, SaveFileDialog to Save,

FontDialog to SelectFont and ColorDialog to SelectColor under File Menu. The form in

design view should look similar to the image below.

Before proceeding further you need to set properties for these dialogs in their properties

window. They are listed below.

For OpenFileDialog1, set the DefaultExt property to txt so that it opens text files,

InitialDirectory property to C:, RestoreDirectory propery to True and the Text property to

Open File From.

For SaveFileDialog1, set the DefaultExt property to txt so that it saves files in text

format, InitialDirectory property to C: so that when you save a file, it first provides C:

drive as the choice of location, OverwritePrompt property to False, RestoreDirectory

propery to True and the Text property to Save File In.

For FontDialog1, set the AllowSimulations, AllowVectorFonts, AllowverticalFonts

properties to false, MaxSize to 50, MinSize to 5 and ShowApply and ShowColor

properties to True.

For ColorDialog1, set AnyColor and SolidColorOnly properties to True.

Code

Imports System.IO

Public Class Form1 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

#End Region

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As_

System.EventArgs) Handles Button1.Click

RichTextBox1.Text = " "

'clears the text in richtextbox

End Sub

Private FileName As String

'declaring filename that will be selected

Dim sr As StreamReader

'streamreader is used to read text

Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal

e As_

System.EventArgs) Handles MenuItem2.Click

Try

With OpenFileDialog1

'With statement is used to execute statements using a particular object,

here,_

'OpenFileDialog1

.Filter = "Text files (*.txt)|*.txt|" & "All files|*.*"

'setting filters so that Text files and All Files choice appears in the Files

of Type box

'in the dialog

If .ShowDialog() = DialogResult.OK Then

'showDialog method makes the dialog box visible at run time

FileName = .FileName

sr = New StreamReader(.OpenFile)

'using streamreader to read the opened text file

RichTextBox1.Text = sr.ReadToEnd()

'displaying text from streamreader in richtextbox

End If

End With

Catch es As Exception

MessageBox.Show(es.Message)

Finally

If Not (sr Is Nothing) Then

sr.Close()

End If

End Try

End Sub

Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal

e As_

System.EventArgs) Handles MenuItem3.Click

Dim sw As StreamWriter

'streamwriter is used to write text

Try

With SaveFileDialog1

.FileName = FileName

.Filter = "Text files (*.txt)|*.txt|" & "All files|*.*"

If .ShowDialog() = DialogResult.OK Then

FileName = .FileName

sw = New StreamWriter(FileName)

'using streamwriter to write text from richtextbox and saving it

sw.Write(RichTextBox1.Text)

End If

End With

Catch es As Exception

MessageBox.Show(es.Message)

Finally

If Not (sw Is Nothing) Then

sw.Close()

End If

End Try

End Sub

Private Sub MenuItem4_Click(ByVal sender As System.Object, ByVal

e As_

System.EventArgs) Handles MenuItem4.Click

Try

With FontDialog1

.Font = RichTextBox1.Font

'initializing the dialog box to match the font used in the richtextbox

.Color = RichTextBox1.ForeColor

'default color is Black

If .ShowDialog = DialogResult.OK Then

setFont()

'calling a method setFont() to set the selected font and color

End If

End With

Catch es As Exception

MessageBox.Show(es.Message)

End Try

End Sub

Private Sub setFont()

Try

With FontDialog1

RichTextBox1.Font = .Font

If .ShowColor Then

RichTextBox1.ForeColor = .Color

'setting the color

End If

End With

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End Sub

Private Sub MenuItem5_Click(ByVal sender As System.Object, ByVal

e As _

System.EventArgs) Handles MenuItem5.Click

Static CustomColors() As Integer = {RGB(255, 0, 0), RGB(0, 255, 0),

RGB(0, 0, 255)}

'initializing CustomColors with an array of integers and putting Red,

Green,

'and Blue in the custom colors section

Try

With ColorDialog1

.Color = RichTextBox1.ForeColor

'initializing the selected color to match the color currently used

'by the richtextbox's foreground color

.CustomColors = CustomColors

'filling custom colors on the dialog box with the array declared above

If .ShowDialog() = DialogResult.OK Then

RichTextBox1.ForeColor = .Color

CustomColors = .CustomColors

'Storing the custom colors to use again

End If

ColorDialog1.Reset()

'resetting all colors in the dialog box

End With

Catch es As Exception

MessageBox.Show(es.Message)

End Try

End Sub

End Class

2.3 Exception Handling

Exception handling is an in built mechanism in .NET framework to detect and handle

run time errors. The .NET framework contains lots of standard exceptions. The

exceptions are anomalies that occur during the execution of a program. They can be

because of user, logic or system errors. If a user (programmer) do not provide a

mechanism to handle these anomalies, the .NET run time environment provide a

default mechanism, which terminates the program execution.

VB.NET provides three keywords try, catch and finally to do exception handling. The

try encloses the statements that might throw an exception whereas catch handles an

exception if one exists. The finally can be used for doing any clean up process.

The general form try-catch-finally in VB.NET is shown below.

Try

' Statement which can cause an exception.

Catch x As Type

' Statements for handling the exception

Finally

End Try 'Any cleanup code

If any exception occurs inside the try block, the control transfers to the appropriate

catch block and later to the finally block.

But in VB.NET, both catch and finally blocks are optional. The try block can exist

either with one or more catch blocks or a finally block or with both catch and finally

blocks.

If there is no exception occurred inside the try block, the control directly transfers to

finally block. We can say that the statements inside the finally block is executed

always. Note that it is an error to transfer control out of a finally block by using

break, continue, return or goto.

In VB.NET, exceptions are nothing but objects of the type Exception. The Exception

is the ultimate base class for any exceptions in VB.NET. The VB.NET itself provides

couple of standard exceptions. Or even the user can create their own exception

classes, provided that this should inherit from either Exception class or one of the

standard derived classes of Exception class like DivideByZeroExcpetion ot

ArgumentException etc.

Uncaught Exceptions

The following program will compile but will show an error during execution. The

division by zero is a runtime anomaly and program terminates with an error

message. Any uncaught exceptions in the current context propagate to a higher

context and looks for an appropriate catch block to handle it. If it can't find any

suitable catch blocks, the default mechanism of the .NET runtime will terminate the

execution of the entire program.

//VB.NET: Exception Handling

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 100 / x

Console.WriteLine(div)

End Sub 'Main

End Class 'MyClient

The modified form of the above program with exception handling mechanism is as

follows. Here we are using the object of the standard exception class

DivideByZeroException to handle the exception caused by division by zero.

//VB.NET: Exception Handling

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("This line in not executed")

Catch de As DivideByZeroException

onsole.WriteLine("Exception occured")

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

In the above case the program do not terminate unexpectedly. Instead the program

control passes from the point where exception occurred inside the try block to the

catch blocks. If it finds any suitable catch block, executes the statements inside that

catch and continues with the normal execution of the program statements.

If a finally block is present, the code inside the finally block will get also be executed.

//VB.NET: Exception Handling

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("Not executed line")

Catch de As DivideByZeroException

Console.WriteLine("Exception occured")

Finally

Console.WriteLine("Finally Block")

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

Remember that in VB.NET, the catch block is optional. The following program is

perfectly legal in VB.NET.

//VB.NET: Exception Handling

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("Not executed line")

Finally

Console.WriteLine("Finally Block")

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

But in this case, since there is no exception handling catch block, the execution will

get terminated. But before the termination of the program statements inside the

finally block will get executed. In VB.NET, a try block must be followed by either a

catch or finally block.

Multiple Catch Blocks

A try block can throw multiple exceptions, which can handle by using multiple catch

blocks. Remember that more specialized catch block should come before a

generalized one. Otherwise the compiler will show a compilation error.

//VB.NET: Exception Handling: Multiple catch

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("Not executed line")

Catch de As DivideByZeroException

Console.WriteLine("DivideByZeroException")

Catch ee As Exception

Console.WriteLine("Exception")

Finally

Console.WriteLine("Finally Block")

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

Catching all Exceptions

By providing a catch block without a brackets or arguments, we can catch all

exceptions occurred inside a try block. Even we can use a catch block with an

Exception type parameter to catch all exceptions happened inside the try block since

in VB.NET, all exceptions are directly or indirectly inherited from the Exception class.

//VB.NET: Exception Handling: Handling all exceptions

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("Not executed line")

Catch

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

The following program handles all exception with Exception object.

//VB.NET: Exception Handling: Handling all exceptions

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try

div = 100 / x

Console.WriteLine("Not executed line")

Catch e As Exception

Console.WriteLine("oException")

End Try

Console.WriteLine("Result is {0}", div)

End Sub 'Main

End Class 'MyClient

Throwing an Exception

In VB.NET, it is possible to throw an exception programmatically. The 'throw'

keyword is used for this purpose. The general form of throwing an exception is as

follows.

Throw exception_obj

For example the following statement throw an ArgumentException explicitly.

Throw New ArgumentException("Exception")

//VB.NET: Exception Handling:

Imports System

Class MyClient

Public Shared Sub Main()

Try

Throw New DivideByZeroException("Invalid Division")

Catch e As DivideByZeroException

Console.WriteLine("Exception")

End Try

Console.WriteLine("LAST STATEMENT")

End Sub 'Main

End Class 'MyClient

Re-throwing an Exception

The exceptions, which we caught inside a catch block, can re-throw to a higher

context by using the keyword throw inside the catch block. The following program

shows how to do this.

//VB.NET: Exception Handling: Handling all exceptions

Imports System

Class [MyClass]

Public Sub Method()

Try

Dim x As Integer = 0

Dim sum As Integer = 100 / x

Catch e As DivideByZeroException

Throw

End Try

End Sub 'Method

End Class '[MyClass]

Class MyClient

Public Shared Sub Main()

Dim mc As New [MyClass]

Try

mc.Method()

Catch e As Exception

Console.WriteLine("Exception caught here")

End Try

Console.WriteLine("LAST STATEMENT")

End Sub 'Main

End Class 'MyClient

Standard Exceptions

There are two types of exceptions: exceptions generated by an executing program

and exceptions generated by the common language runtime. System.Exception is

the base class for all exceptions in VB.NET. Several exception classes inherit from

this class including ApplicationException and SystemException. These two classes

form the basis for most other runtime exceptions. Other exceptions that derive

directly from System.Exception include IOException, WebException etc.

The common language runtime throws SystemException. A user program rather than

the runtime throws the ApplicationException. The SystemException includes the

ExecutionEngineException, StaclOverFlowException etc. It is not recommended that

we catch SystemExceptions nor is it good programming practice to throw

SystemExceptions in our applications.

System.OutOfMemoryException

System.NullReferenceException

Syste.InvalidCastException

Syste.ArrayTypeMismatchException

System.IndexOutOfRangeException

System.ArithmeticException

System.DevideByZeroException

System.OverFlowException

User-defined Exceptions

In VB.NET, it is possible to create our own exception class. But Exception must be

the ultimate base class for all exceptions in VB.NET. So the user-defined exception

classes must inherit from either Exception class or one of its standard derived

classes.

//VB.NET: Exception Handling: User defined exceptions

Imports System

Class MyException

Inherits Exception

Public Sub New(ByVal str As String)

Console.WriteLine("User defined exception")

End Sub 'New

End Class 'MyException

Class MyClient

Public Shared Sub Main()

Try

Throw New MyException("RAJESH")

Catch e As Exception

Console.WriteLine(("Exception caught here" + e.ToString()))

End Try

Console.WriteLine("LAST STATEMENT")

End Sub 'Main
End Class 'MyClient

Structured Exception Handling

VB.NET utilizes the .NET Framework's standard mechanism for error reporting, called

Structured Exception Handling; it relies on exceptions to report errors that arise in

applications. Exceptions are classes that trap the error information. To utilize .NET's

Structured Exception Handling mechanisms properly, developers need to write smart

code that watches out for exceptions and implement code to deal with these exceptions.

 Post a comment

 Email Article

 Print Article

 Share Articles

Structured exception handling provides the following components in the code:

 Try section: The block of code that may result in an exception and always gets

executed

 Catch section: The block of code that attempts to act on an exception and is only

executed when an exception takes place

 Finally section: The block of code intended to perform any kind of clean up

operation and always gets executed

The Exception Class

Each exception class in .NET is derived from a System.Exception class. The most often

used members of the Exception class are listed below:

 Message: Specifies details of an error

 Source: Name of the object or application that caused the exception

 TargetSite: Name of the method that threw the exception

The Try...Catch Block

The purpose of the Try...Catch block is to allow catching errors and specifying a

resolution for them. The sample code looks like this:

Try

 'Code to be executed

Catch

 'Error resolution code

End Catch

Use the Try section to write the code that should be executed and the Catch section to

catch and act on any errors that may have been generated while executing the code in the

Try section. The protected code appearing in the Try section always gets executed;

however, the code in the Catch section is executed only if an error occurs. The Try

section of the code always gets executed; however, the Catch section of the code will be

executed only if an error occurred.

The Try...Catch...Finally Block

http://www.developer.com/net/article.php/3694031/Structured-Exception-Handling-in-VBNET.htm#comment_form
http://www.developer.com/email.php/3694031
http://www.developer.com/print.php/3694031
http://www.developer.com/net/article.php/3694031/Structured-Exception-Handling-in-VBNET.htm

The purpose of the Try...Catch...Finally block is to allow executing the protected code

under the Try section, acting on any errors that may arise in the Catch block, and

following up with the cleanup code in the Finally block. Code under the Finally block

will be executed regardless of whether an error occurred in the Try code block or not.

This provides a very convenient way of ensuring that allocated resources are being

cleaned and performing any kind of functionality that needs to take place regardless of

the error handling details. The sample code looks like this:

Try

 'Code to be executed

Catch

 'Error resolution code

Finally

 'Cleanup code

End Catch

The Try and Finally sections of the code always get executed. However, the Catch

section of the code will be executed only if an error occurred.

Catching All Exceptions vs. Specific Classes of Exceptions

The structured exception handling in .NET is flexible and allows catching a specific type

of an exception or any exception, depending on how you utilize it.

Example: Catching any exception that may occur

Try

 Dim i As Integer = 0

 Dim iresult As Integer

 iresult = 1 / i

Catch ex As Exception

 MessageBox.Show(ex.ToString())

Finally

 MessageBox.Show("finally block executed")

End Try

How this works

In the code example above, you purposefully create a run-time error to demonstrate

catching any exception. You catch any error and respond to it regardless of what kind of

error occurred. The error takes place in the Try code block, so when the exception is

raised it follows to the Catch code block and then to the Finally code block. You catch

the exception by declaring a variable, ex, of the Exception type.

Example: Catching a specific Exception

Try

 Dim i As Integer = 0

 Dim iresult As Integer

 iresult = 1 / i

Catch ex As OverflowException

 MessageBox.Show(ex.ToString())

Finally

 MessageBox.Show("finally block executed")

End Try

Unstructured Error Handling

Unstructured error handling is implemented with the On Error statement, which is

placed at the beginning of a code block to handle all possible exceptions that occur

during the execution of the code. All Visual Basic 6.0 error handlers in .NET are objects

that can be accessed by using the Microsoft.VisualBasic.Information.Err namespace.

The handler is set to Nothing each time the procedure is called. You should place only

one On Error statement in each procedure, because additional statements disable all

previous handlers that are defined in that procedure.

On Error Statement

The On Error statement is used to enable an error-handling routine, disable an error

handling routine, or specify where to branch the code in the event of an error.
 On Error { GoTo [line | 0 | -1] | Resume Next }

GoTo line

Used to enable the error-handling routine, starting at the location that is specified by the

line argument. The line argument can be either a line label or a line number that is

located within the closing procedure. A run-time error activates the error handler and

branches the control to the specified line. If the specified line is not located within the

same procedure as the On Error statement, a compile error occurs.

To avoid unexpected behavior, place an Exit Sub statement, an Exit Function statement,

or an Exit Property statement just before the line label or line number. This prevents the

error-handling code from running when no error has occurred.

GoTo 0

Disables the enabled error handler that is defined within the current procedure and resets

it to Nothing.

GoTo -1

Disables the enabled exception that is defined within the current procedure and resets it to

Nothing.

Resume Next

Moves the control of execution to the statement that follows immediately after the

statement that caused the run-time error to occur, and continues the execution from this

point forward. This is the preferred form to use to access objects, rather than using the

On Error GoTo statement.

Example

In the following example code, the error handler is enabled on the first line of the routine

with the On Error GoTo Unstructured statement. The location of the error handling

routine is identified with the Unstructured line label. The error routine implements a

simple Select Case statement that executes the corresponding block of code, depending

on the error that occurred.

The Resume Next statement at the end of the error handling procedure returns control of

the execution back to the line that follows the line that caused the error to occur.

The error handler is then disabled with the On Error GoTo 0 statement, followed by the

On Error Resume Next statement, which reactivates the error handler. If a run-time

error occurs, the statement causes the execution to branch to the line that immediately

follows the line that caused the error to occur, the same way that the Resume Next

statement does in the error handling routine. In this case, that line is the If statement that

evaluates the error number and displays it to the user, as well as clearing the error object.
 Public Sub fnErrors()

 On Error GoTo Unstructured ' Enable error handler

 Dim Result As Integer

 Dim Value1 As Integer = 9

 Dim Value2 As Integer = 0

 On Error GoTo 0 ' Disables the error handler

 'Moves execution to the line following the line that caused the

error.

 On Error Resume Next

 Result = Value1 / Value2 ' Division by zero, cause an overflow

error.

 ' Catch the overflow error caused by dividing by zero.

 If Err.Number = 6 Then

 MessageBox.Show("Error Number: " & Err.Number.ToString)

 Err.Clear() ' Clear Errors

 End If

 Exit Sub

 Unstructured: ' Location of error handler

 Select Case Err.Number

 Case 6

 ' Display the error number.

 MessageBox.Show("Divided by zero")

 Case Else

 ' Catch all other type of errors.

 MessageBox.Show(Err.Description)

 End Select

 'Resume execution to the line following the line that caused the

error.

 Resume Next

 End Sub

Arrays and Collections

The .NET Framework provides many different collection classes, from the generic Array

to the very specialized NameValueCollection. These classes include:

Array is a fixed-capacity construct that can have one or more dimensions. The .NET

Framework supports multi-dimensional arrays similar to Pascal arrays, and jagged arrays

such as you find in C.

ArrayList is a one-dimensional, expandable list that provides some advanced capabilities

like the ability to add, insert, or remove multiple items in a single operation.

Hashtable is a collection in which each entry consists of a name/value pair. Hashtable

allows for quick retrieval of an item based on its hash key.

SortedList is something of a cross between a Hashtable and an ArrayList. The items in

a SortedList can be accessed by index, by key, or by value.

Queue and Stack implement the common queue and stack data structures. A Queue is a

first-in-first-out construct that implements three primary operations: Enqueue, Dequeue,

and Peek. Stack, like the stack in a processor, implements Push, Pop, and Peek. These

two collections are very useful for temporary storage, and for implementing common

algorithms that use those data structures.

Bit collections provide efficient storage of and access to collections of single-bit flags.

Methods allow you to apply Boolean filters to ranges of flags.

In addition to these and other built-in collection types, the .NET Framework provides

base classes (CollectionBase and NameValueCollectionBase, for example) that allow

you to define your own generic or strongly-typed collections.

An Array is a .NET Framework object that implements the IList interface. Arrays in

.NET can have any number of dimensions, and can be rectangular like arrays in Pascal

and Basic, or jagged as in C and C++. However, jagged arrays are not compliant with the

Common Language Specification, so if you're writing CLS-compliant code you can't use

jagged arrays as method parameters or return types.

The .NET Framework does not require that an array's lower bound be zero. However, the

C# and Visual Basic language definitions do impose this restriction. In C# and Visual

Basic, the lower bound of an Array is zero. Other .NET languages (Pascal, for example)

do not have this restriction.

The Array class is abstract, but user programs are not allowed to create subclasses of

Array. Only the system and compilers are allowed to inherit directly from the Array

class. To create an array in your language, you use the language-defined array construct.

For example, the code below shows how to create, initialize, and access an array in C#

and in Visual Basic.

C#

static void Main(string[] args)

{

 int[] a = new int[] {1, 2, 3, 4, 5};

 for (int i = 0; i < a.Length; i++)

 {

 Console.WriteLine(a[i]);

 }

}

Visual Basic

Sub DoArray()

 Dim a() As Integer = {1, 2, 3, 4, 5}

 Dim i As Integer

 For i = 0 To a.Length - 1

 Console.WriteLine(a(i))

 Next

End Sub

There are several different ways to create and initialize an array, depending on the

language you're using. The example above declares an open-ended array and then

initializes it with five values. This results in an array with a single row of five items

As I pointed out, arrays in Visual Basic and C# have a lower bound of zero. An array

with five items, then, has index values 0 through 4. An attempt to access an item outside

the bounds of the array will result in an IndexOutOfRangeException.

If you want to declare an array with a specific number of items, but not initialize it, you

place the number of elements in the parentheses (Visual Basic) or braces (C#), like this:

C#

int[] a = new int[5];

Visual Basic

Dim a as Int(5)

In C#, you can also write:

int[] a = new int[5] {1, 2, 3, 4, 5};

In C#, the number you supply in brackets is the number of items in the array. In this case,

you are creating an array that has five items, numbered 0 through four. In Visual Basic,

however, the number in parentheses specifies the upper bound of the array. So the array

defined above actually holds 6 items, numbered 0 through 5. Be very careful about this

distinction when you're trying to translate examples between Visual Basic and C#.

You can determine how many elements are in a one-dimensional array by querying the

array's Length property, as shown in the example code. Again, Length returns the

number of items in the array. In a one-dimensional array, the upper bound is always one

less than the length.

Multi-dimensional Arrays

Multi-dimensional arrays come in two flavors: jagged arrays, as found in C and C++, and

rectangular arrays, as found in Pascal and Visual Basic. The .NET Framework supports

both types, but only rectangular arrays are CLS compliant. If you're writing code that

must be used by other .NET languages, any multi-dimensional arrays in the public or

protected interfaces of your classes must be of the rectangular variety. You will find, as

you get more familiar with .NET programming, that although multi-dimensional arrays

are useful, it's rarely necessary to use them in your class interfaces. The other collection

types are much more flexible and usually provide the functionality that you need.

You create, initialize, and access a rectangular array in much the same way as you do a

one-dimensional array, as shown here.

C#

static void DoRectangularArray()

{

 int[,] a = new int[3,3] {{1,2,3},{4,5,6,},{7,8,9},{10,11,12}};

 Console.WriteLine("Rank = {0}", a.Rank);

 Console.WriteLine("Length = {0}", a.Length);

 Console.WriteLine("Upper bound(0) = {0}", a.GetUpperBound(0));

 Console.WriteLine("Upper bound(1) = {0}", a.GetUpperBound(1));

 for (int i = 0; i <= a.GetUpperBound(0); i++)

 {

 for (int j = 0; j <= a.GetUpperBound(1); j++)

 {

 Console.Write(string.Format("{0} ", a[i,j]));

 }

 Console.WriteLine();

 }

}

Visual Basic

Sub DoRectangularArray()

 Dim a(,) As Integer = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10,11,12}}

 Console.WriteLine("Rank = {0}", a.Rank)

 Console.WriteLine("Length = {0}", a.Length)

 Console.WriteLine("Upper bound(0) = {0}", a.GetUpperBound(0))

 Console.WriteLine("Upper bound(1) = {0}", a.GetUpperBound(1))

 Dim i As Integer

 Dim j As Integer

 For i = 0 To a.GetUpperBound(0)

 For j = 0 To a.GetUpperBound(1)

 Console.Write(String.Format("{0} ", a(i, j)))

 Next

 Console.WriteLine()

 Next

End Sub

To declare a rectangular array with explicit dimensions, you just supply the numbers in

braces (or parentheses), like this:

C#

int[,] a = new int[4,3];

Visual Basic

Dim a(4,3) as Integer

Again, you can provide explicit initialization of such an array in C#, but not in Visual

Basic.

The rank of an array is the number of dimensions. A one-dimensional array has a Rank

value of 1. Each dimension can have a different upper and lower bound. In order to go

through the entire array in a nested loop, you must test your loop index variable against

the array's upper bound. The GetUpperBound method returns the upper bound for a

particular rank in the array.

Jagged Arrays

A jagged array is an "array of arrays" that you're familiar with if you've done any C or

C++ programming. A two-dimensional jagged array, for example, is a one-dimensional

array of one-dimensional arrays. It's not really a multi-dimensional array. The Rank

property, for example, is always 1 for a jagged array.

Jagged arrays have certain advantages over rectangular arrays. They can be more space

efficient, because not all rows (in a two-dimensional array) must have the same number

of columns. In addition, since each row is its own one-dimensional array, you can easily

pass an individual row to a method that requires a one-dimensional array parameter.

Finally, early versions of the .NET Framework implement jagged arrays in a much more

efficient manner than rectangular arrays.

You'll find working with jagged arrays much easier if you keep in mind that a jagged

array is really an array of arrays. The code below shows how to create, initialize, and

access a jagged array.

C#

static void DoJaggedArray()

{

 int[][] a = new int[][] {

 new int[]{1,2},

 new int[]{3,4,5},

 new int[]{6,7,8,9},

 new int[]{10,11,12}

 };

 Console.WriteLine("Rank = {0}", a.Rank);

 Console.WriteLine("Length = {0}", a.Length);

 Console.WriteLine("Upper bound(0) = {0}", a.GetUpperBound(0));

 for (int i = 0; i < a.Length; i++)

 {

 for (int j = 0; j < a[i].Length; j++)

 {

 Console.Write(string.Format("{0} ", a[i][j]));

 }

 Console.WriteLine();

 }

}

Visual Basic

Sub DoJaggedArray()

 Dim a1() As Integer = {1, 2}

 Dim a2() As Integer = {3, 4, 5}

 Dim a3() As Integer = {6, 7, 8, 9}

 Dim a4() As Integer = {10, 11, 12}

 Dim a()() As Integer = {a1, a2, a3, a4}

 Console.WriteLine("Rank = {0}", a.Rank)

 Console.WriteLine("Length = {0}", a.Length)

 Console.WriteLine("Upper bound(0) = {0}", a.GetUpperBound(0))

 Dim i, j As Integer

 For i = 0 To a.Length - 1

 For j = 0 To a(i).Length - 1

 Console.Write(String.Format("{0} ", a(i)(j)))

 Next

 Console.WriteLine()

 Next

End Sub

I was unable to construct syntax that would initialize a jagged array in Visual Basic as I

did in C#. I'm not saying that such syntax doesn't exist. I was just unable to figure it out.

Instead, I wrote code that creates four arrays and then creates a fifth array that has those

four arrays as elements. More than anything, this illustrates the jagged array's "array of

arrays" nature.

It is possible, by the way, to construct an array that combines both types of dimensions.

That is, you can have a two-dimensional array of one-dimensional arrays, like this:

int[,][] a;

An array of two-dimensional arrays:

int[][,] b;

Or even a jagged array of two-dimensional rectangular arrays:

int[][][,] c;

I'll leave the initialization and access of such beasts as an exercise for the reader.

Enumerating Items in an Array

In the preceding examples, I used for loops to access each item in the array. There is

another way to do it that doesn't require you to know the specific bounds of the array.

The foreach (for each in Visual Basic) statement will determine the array bounds and

allow you to process each item in the array. For example, to obtain all of the items in a

one-dimensional array, you could write:

C#

foreach (int item in a)

{

 Console.WriteLine(item);

}

Visual Basic

Dim item as Integer

For Each item in a

 Console.WriteLine(item)

Next

This is handy for one-dimensional arrays (and can be extended for jagged arrays), and if

you want to perform the same operation on all items in a rectangular array. However,

foreach doesn't really "understand" dimensions—it just processes each element in the

array in turn—so it's kind of difficult to do a line break, for example, after each row in a

rectangular array.

There is one other caution. foreach provides a reference to the item in the array or

collection that it's enumerating. If the array contains objects, then this isn't a problem,

because when you act on an object reference you're acting on the object itself. But if the

array contains value types, the item that foreach provides is a copy of the original item. If

you change the copy, that change isn't propagated in the item stored in the array.

For example, the Visual Basic code below uses a For loop to initialize an array, displays

the array's contents, and then attempts to set each element to 0 using a For Each loop. It

is somewhat surprising, then, to find that subsequently displaying the array's contents

shows that the items in the array have not changed.

Sub ForEachSample()

 Dim a(5)

 Dim i As Integer

 ' initialize the array

 For i = 0 To 5

 a(i) = i

 Next

 ' show its contents

 For Each i In a

 Console.WriteLine(i)

 Next

 ' set each item to 0

 For Each i In a

 i = 0

 Next

 ' and display the contents again

 For Each i In a

 Console.WriteLine(i)

 Next

 End Sub

Arrays Miscellanea

Static methods of the Array class provide the ability to sort and reverse arrays, to perform

a binary search on a sorted array, and to sequentially search for items in an unsorted

array. The CreateInstance static method allows you to create arrays of any type with

arbitrary lower bounds. If you need such arrays, you should study the sample provided in

the MSDN documentation for the CreateInstance method. However, be aware that the

Common Language Specification requires that all arrays in CLS-compliant code have a

zero lower bound.

The Array class implements the ICloneable, IList, ICollection, and IEnumerable

interfaces, which provide some other capabilities. Note that Array "implements" some of

the IList methods by throwing a NotImplementedException. See the documentation for

the Array class for more information.

Resizing an Array

Last updated Nov 14, 2003.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemarrayclasscreateinstancetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemarraymemberstopic.asp

To save memory in programs that deal with variable-sized lists, one common technique is

to create a small array and then "grow" the array as it fills. Typically, the array is "grown"

in chunks rather than one item at a time. This technique gives you a very good tradeoff

between performance and memory usage. But an Array in .NET is a fixed-capacity

construct: once you create it, you can't change its size. What to do?

The trick is to create a new array with the larger capacity, copy the contents of the

original array to the new array, and then assign the variable that holds the original array

reference to the new array. Remember that, since Array is an object, the array variable is

really just a reference to the array itself. The following code creates and fills an array,

then resizes the array and adds a few more elements.

C#

static void DoArrayResize()

{

 // the original array has 10 items

 int[] a = new int[10] {0,1,2,3,4,5,6,7,8,9};

 // we want to resize it to 20 items

 // create the new array

 int[] b = new int[20];

 // copy the contents of the original array to the new array

 a.CopyTo(b, 0);

 // and then assign the new array to the old variable

 a = b;

 // add the new items

 for (int i = 10; i < 20; i++)

 {

 a[i] = i;

 }

 // output array contents

 for (int i = 0; i < a.Length; i++)

 Console.WriteLine(a[i]);

}

Visual Basic

Sub DoArrayResize()

 ' the original array has 10 items

 Dim a() As Integer = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 ' we want it to have 20

 ' create the new array

 Dim b(19) As Integer

 ' Copy the contents of the original array to the new array

 a.CopyTo(b, 0)

 ' and then assign the new array to the old variable

 a = b

 ' add new items to the array

 Dim i As Integer

 For i = 10 To 19

 a(i) = i

 Next

 ' output array contents

 For i = 0 To 19

 Console.WriteLine(a(i))

 Next

End Sub

The amount by which you decide to grow the array is quite dependent on your

application. Some applications grow by doubling; others grow by adding 50% to the size

of the array. Still others use more complicated growth schemes that are optimized for

particular situations.

You can use the same technique to shrink an array after deleting items from it.

ArrayList

Last updated Nov 14, 2003.

Think of an ArrayList as a resizable one-dimensional array of objects. In addition to

automatic resizing, ArrayList has a few other advantages over Array. ArrayList has

methods that will add, insert, and remove a range of elements, and it's very easy to create

a thread-safe ArrayList using the Synchronized method.

ArrayList isn't without its disadvantages, the primary one being that ArrayList is

restricted to a single dimension with a lower bound of zero. Also, because ArrayList is

limited to storing only Objects, a one-dimensional Array of a specific type will perform

better than an ArrayList, especially if the items you're storing are value types that have

to be boxed and unboxed.

You'll find ArrayList very convenient to use, and it performs well enough for all but the

most performance-sensitive applications. Unless you must have multiple dimensions,

you're probably better off using an ArrayList in the initial development of your program.

If you then determine that ArrayList is causing performance problems, it's a relatively

simple matter to modify the code to replace the ArrayList with an Array.

The Capacity property tells you how many items the list can hold before it is resized.

You can set the Capacity explicitly if you know how many items you need to add to the

list. This will increase performance by eliminating the need to resize the list

incrementally as items are added.

Count is a read-only property that tells you how many items are currently in the list.

Count will always be less than or equal to Capacity. If Count exceeds Capacity when

you're adding an item to the list, the list is resized. If you try to set Capacity to a value

that's less than Count, ArrayList will throw an ArgumentOutOfRangeException. The

TrimToSize method will set Capacity equal to Count, resizing the list and minimizing

memory use.

Using an ArrayList

ArrayList has three constructors. The default, parameterless, constructor creates an

empty ArrayList that has a default initial capacity of 16 items. There also is a

constructor that allows you to specify the list's initial capacity. The final constructor takes

an ICollection interface reference, and copies all the items from the collection into the

new ArrayList. The Count and Capacity properties of the new list are set to reflect the

number of items copied. Here are some examples:

C#

static void DoArrayList()

{

 // create an ArrayList and set its Capacity to 100

 ArrayList al1 = new ArrayList();

 al1.Capacity = 100;

 // create an ArrayList with the initial Capacity of 100

 ArrayList al2 = new ArrayList(100);

 // create an ArrayList from the passed Array

 int[] a = new int[] {0,1,2,3,4,5,6,7,8,9};

 ArrayList al3 = new ArrayList(a);

 foreach (object o in al3)

 {

 Console.WriteLine(o.ToString());

 }

}

Visual Basic

Sub DoArrayList()

 ' create an ArrayList and set its Capacity to 100

 Dim al1 As ArrayList = New ArrayList

 al1.Capacity = 100

 ' create an ArrayList with an initial Capacity of 100

 Dim al2 As ArrayList = New ArrayList(100)

 ' create an Arraylist from the passed Array

 Dim a() As Integer = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

 Dim al3 As ArrayList = New ArrayList(a)

 Dim o As Object

 For Each o In al3

 Console.WriteLine(o.ToString())

 Next

End Sub

The Add method adds an item to the end of the ArrayList. Insert will insert an item into

the list at the specified index, moving all items beyond it "down" one place in the list.

AddRange and InsertRange will add or insert multiple items from an ICollection into

the list.

Two methods can remove a single item from an ArrayList. Remove removes the first

object in the list (searched in sequential order) that is equal to the object passed. Equality

is determined by calling Object.Equals. RemoveAt removes the item at the specified

index in the list. In both cases, the item is removed from the list and all subsequent items

are moved up one place in the list.

The RemoveRange method removes a range of items from the list, starting at the

supplied index and removing the specified count of items. All subsequent items in the list

are moved up count places in the list.

I suspect an example will help clarify things. The code below shows how to manipulate

the ArrayList using the Add, Insert, and Remove methods and some variants.

C#

static void OutputList(ArrayList al)

{

 Console.WriteLine("-----");

 foreach (Object o in al)

 Console.WriteLine(o.ToString());

}

static void DoArrayList()

{

 // create an ArrayList

 ArrayList al = new ArrayList();

 // add a couple of items

 al.Add (1);

 al.Add (2);

 // insert an item between the two

 al.Insert(1, 191);

 OutputList(al);

 // insert a range of items into the list

 int[] a = new int[] {-1, -2, -3, -4, -5, -6};

 al.InsertRange(2, a);

 OutputList(al);

 // remove an item from the list

 al.Remove(-4);

 // remove an item from a specific place in the list

 al.RemoveAt(5);

 // remove items 2, 3, and 4 (start at index 2 and delete 3 items)

 al.RemoveRange(2, 3);

 OutputList(al);

}

Visual Basic

Sub DoArrayList()

 ' create an ArrayList

 Dim al As ArrayList = New ArrayList

 ' Add some items

 al.Add(1)

 al.Add(2)

 ' insert an item between the two

 al.Insert(1, 191)

 OutputList(al)

 ' insert a range of items into the list

 Dim a() As Integer = {-1, -2, -3, -4, -5, -6}

 al.InsertRange(2, a)

 OutputList(al)

 ' remove an item from the list

 al.Remove(-4)

 ' remove an item from a specific place in the list

 al.RemoveAt(5)

 ' remove items 2, 3, and 4 (start at index 2 and delete 3 items)

 al.RemoveRange(2, 3)

 OutputList(al)

End Sub

You access individual items in the ArrayList through the Item property. For example:

C#

Object o = al.Item[3];

Visual Basic

Dim o as Object = al.Item(3)

Item is the indexer for the ArrayList class, so in C# and Visual Basic (and any other

.NET language that supports indexers), you can access items in the ArrayList using

array-like syntax. For example, the code below sets the fourth item in the list:

C#

al[3] = new Object();

Visual Basic

al(3) = new Object()

Like Array, ArrayList implements a number of interfaces that are common to all

collection types, allowing you to in many circumstances treat an ArrayList like a generic

list or collection. The interfaces that ArrayList implements are IList, ICollection,

ICloneable, and IEnumerable. Check the online reference for each of those interfaces

for more information on their capabilities.

Array and ArrayList are the workhorses of .NET collections. Most of the advanced

collection types (HashTable, SortedList, Queue, etc.) use one or the other of these base

collection types as their underlying data structure. Understanding how Array and

ArrayList work will get you a long way towards understanding all of the .NET

collection types.

Searching for Items in Collections

Last updated Nov 21, 2003.

Both Array and ArrayList provide methods that allow you to search the collection

sequentially for items. Both classes implement the IndexOf and LastIndexOf methods.

IndexOf returns the zero-based index of the first item in the list (searched sequentially)

that matches the passed argument. If the item is not found in the collection, IndexOf

returns –1. For example, the following code shows how to use IndexOf to search in an

Array and in an ArrayList.

C#

static void DoIndexOf()

{

 // build and search an array

 string[] a = new string[] {"the", "hand", "is",

 "quicker", "than", "the", "eye"};

 int i = Array.IndexOf(a, "hand");

 Console.WriteLine("index of 'hand' = {0}", i);

 i = Array.IndexOf(a, "ear");

 Console.WriteLine("index of 'ear' = {0}", i);

 // now search an ArrayList

 ArrayList al = new ArrayList(a);

 Console.WriteLine("index of 'hand' = {0}",

 al.IndexOf("hand"));

 Console.WriteLine("index of 'ear' = {0}",

 al.IndexOf("ear"));

}

Visual Basic

Sub DoIndexOf()

 ' build and search an array

 Dim a() As String = New String() {"the", "hand", "is", _

 "quicker", "than", "the", "eye"}

 Dim i As Integer = Array.IndexOf(a, "hand")

 Console.WriteLine("index of 'hand' = {0}", i)

 i = Array.IndexOf(a, "ear")

 Console.WriteLine("index of 'ear' = {0}", i)

 ' now search an ArrayList

 Dim al As ArrayList = New ArrayList(a)

 Console.WriteLine("index of 'hand' = {0}", _

 al.IndexOf("hand"))

 Console.WriteLine("index of 'ear' = {0}", _

 al.IndexOf("ear"))

End Sub

Notice that IndexOf is a static (Shared in Visual Basic) method of the Array class, but

an instance method of the ArrayList class. Other than that detail, the methods work

exactly the same for both classes.

There are two overloaded versions of IndexOf that will search sections of the list rather

than the entire list. One overloaded method searches from the specified index to the end

of the list, and the other searches a subset of the list that is identified by a starting index

and a number of items. These two overloads can be quite useful. For example, suppose

you wanted to find all occurrences of "the" in the list of words shown above:

C#

// search for all occurrences of "the"

i = Array.IndexOf(a, "the");

while (i != -1)

{

 Console.WriteLine("index of 'the' = {0}", i);

 // search for next occurrence

 i = Array.IndexOf(a, "the", i + 1);

}

Visual Basic

' search for all occurrences of "the"

i = Array.IndexOf(a, "the")

While i <> -1

 Console.WriteLine("index of 'the' = {0}", i)

 ' search for next occurrence

 i = Array.IndexOf(a, "the", i + 1)

End While

The LastIndexOf method works in much the same way as IndexOf, but searches the list

backwards.

Comparing Items

Last updated Nov 21, 2003.

IndexOf and LastIndexOf use the Object.Equals method to determine whether two

items are equal. For non-intrinsic (that is, user-defined) types, the Equals implementation

for that type is used. If you'll be searching a collection for items of your user-defined

types, be sure to override the Equals method in the type. Otherwise, the collection will

use the default Object.Equals method, which simply compares the addresses of the

items. For example, consider this simple class:

public class Person

{

 private string firstName;

 private string lastName;

 public Person(string fname, string lname)

 {

 firstName = fname;

 lastName = lname;

 }

 // code that implements properties...

}

If you create two "identical" objects and compare them as in the code below, you might

be surprised to find that they don't compare as equal.

static void DoCompare()

{

 Person jim1 = new Person("Jim", "Mischel");

 Person jim2 = new Person("Jim", "Mischel");

 if (jim1 == jim2)

 Console.WriteLine("equal");

 else

 Console.WriteLine("not equal");

}

Since you didn't tell .NET how to compare the items, it used the default Object.Equals

method, which simply compares the addresses. Obviously, two different objects can't

share the same address, so the result is "not equal."

To make this work correctly, you need to override Equals for user-defined types. In C#,

you'll also need to overload the equality operator (==) and the corresponding inequality

operator (!=). The code below shows how that's done.

C#

public class Person

{

 private string firstName;

 private string lastName;

 public Person(string fname, string lname)

 {

 firstName = fname;

 lastName = lname;

 }

 public static bool operator ==(Person p1, Person p2)

 {

 return (p1.firstName == p2.firstName) &&

 (p1.lastName == p2.lastName);

 }

 public static bool operator !=(Person p1, Person p2)

 {

 return !(p1 == p2);

 }

 // provide an Equals method

 public override bool Equals(Object obj)

 {

 // Check for null values and compare run-time types.

 if (obj == null || GetType() != obj.GetType())

 return false;

 return this == (Person)obj;

 }

 // provide a GetHashCode method

 public override int GetHashCode()

 {

 string s = firstName + lastName;

 return s.GetHashCode();

 }

 // code that implements properties...

}

Visual Basic

Public Class Person

 Dim firstName As String

 Dim lastName As String

 Public Sub New(ByVal fname As String, ByVal lname As String)

 firstName = fname

 lastName = lname

 End Sub

 Public Overloads Overrides Function Equals(ByVal obj As Object) As

Boolean

 If obj Is Nothing Or Not Me.GetType() Is obj.GetType() Then

 Return False

 End If

 Dim p As Person = CType(obj, Person)

 Return Me.firstName = p.firstName And Me.lastName = p.lastName

 End Function

 Public Overrides Function GetHashCode() As Integer

 Dim s As String = firstName + lastName

 Return s.GetHashCode()

 End Function

End Class

Sub DoCompare()

 Dim jim1 As Person = New Person("jim", "mischel")

 Dim jim2 As Person = New Person("jim", "mischel")

 If jim1.Equals(jim2) Then

 Console.WriteLine("equal")

 Else

 Console.WriteLine("not equal")

 End If

End Sub

In accordance with the Guidelines for Implementing Equals and the Equality Operator

(==), I also implemented the GetHashCode method. GetHashCode is used by the

HashTable and other advanced collection types. Also in accordance with the guidelines,

I created an overloaded equality operator and implemented Equals such that Equals uses

== to do the comparison. It's not possible to override the equality operator in Visual

Basic.

ArrayList has an additional method, Contains, which simply tells you whether a

particular item exists in the list. It, too, depends on the object's Equals method to

determine equality.

Sorting and Binary Search

Last updated Jan 1, 2004.

Although the .NET Framework provides some ordered collection classes (HashTable

and SortedList, for example), it's often useful to sort an Array or ArrayList, and use a

binary search to locate items. Considering that a sequential search takes, on the average,

N/2 comparisons to find an record in a list of N items, and a binary search takes only

about log2(N) comparisons, it makes a lot of sense to use a binary search whenever

possible. In a list of a million items, a sequential search will take an average of 500,000

comparisons to find a particular item. A binary search will take a maximum of 20. If you

have a large list that doesn't change very often, or that changes infrequently in

http://msdn.microsoft.com/library/?url=/library/en-us/cpgenref/html/cpconImplementingEqualsOperator.asp
http://msdn.microsoft.com/library/?url=/library/en-us/cpgenref/html/cpconImplementingEqualsOperator.asp

comparison to searches, then it's a good idea to keep it sorted so that you can enjoy the

performance advantages of the binary search.

Both Array and ArrayList implement Sort and BinarySearch methods that you can use

to sort and search lists. As with the IndexOf method, the Array versions of these

methods are static (Shared in Visual Basic).

Simple Sorting

Last updated Jan 1, 2004.

There are several ways to sort the items in Array and ArrayList objects. The most basic

sort compares objects directly using the IComparable interface that's implemented by

the individual objects. For example, the code below sorts an Array of strings, and an

ArrayList that contains the same strings.

C#

static void DoSorts()

{

 string[] ituPhonetics =

 new string[] {

 "Bravo",

 "Foxtrot",

 "Echo",

 "Alpha",

 "Delta",

 "Charlie"

 };

 ArrayList al = new ArrayList(ituPhonetics);

 // sort the array

 Console.WriteLine("----------");

 Array.Sort(ituPhonetics);

 foreach (string s in ituPhonetics)

 Console.WriteLine(s);

 // sort the ArrayList

 Console.WriteLine("----------");

 al.Sort();

 foreach (string s in al)

 Console.WriteLine(s);

}

Visual Basic

Sub DoSorts()

 Dim ituPhonetics() As String = New String() { _

 "Bravo", "Foxtrot", "Echo", _

 "Alpha", "Delta", "Charlie"}

 Dim al As ArrayList = New ArrayList(ituPhonetics)

 ' sort the array

 Console.WriteLine("----------")

 Array.Sort(ituPhonetics)

 Dim s As String

 For Each s In ituPhonetics

 Console.WriteLine(s)

 Next

 ' sort the ArrayList

 Console.WriteLine("----------")

 al.Sort()

 For Each s In al

 Console.WriteLine(s)

 Next

End Sub

This version of Sort calls the individual list items' CompareTo method (the only

member of the IComparable interface). CompareTo compares two objects and returns

an integer that is:

 Less than zero if the instance item is less than the item it's being compared to;

 Zero if the instance item is equal to the item it's being compared to;

 Greater than zero if the instance item is greater than the item it's being compared

to.

In Visual Basic, you can compare two String objects using the comparison operators.

The semantics of the Visual Basic language "overloads" those operators for String

objects. For example, the code below will write the message "hello" to the screen:

If "abc" < "def" Then Console.WriteLine("hello")

That has the same effect as this code that calls the CompareTo method:

If "abc".CompareTo("def") Then Console.WriteLine("hello")

C# doesn't automatically "overload" the comparison objects for Strings, and those

operators aren't overloaded by the implementation of the String object. As a result, you

can't use them to compare strings. That is, the following won't compile in C#:

if ("abc" < "def") Console.WriteLine("hello");

In C#, you must use the CompareTo method to compare objects unless there are explicit

overloads of the comparison operators. The C# code to compare two strings, then, is:

if ("abc".CompareTo("def") < 0) Console.WriteLine("hello");

The IComparable interface is implemented by all of the .NET objects and value types

that it makes sense to compare. That includes intrinsic types like Integer and Double,

enumerations, DateTime, and many different objects. But if you create your own classes

to maintain in a sorted collection, that class must implement the IComparable interface

(that is, the CompareTo method). The MSDN Library entry for the

IComparable.CompareTo method has a good example of implementing this interface for

an object.

Using a Different Comparison Method

Last updated Jan 1, 2004.

There will come a time when the objects that you're putting in the list either don't

implement IComparable, or the objects you're putting in the list are of different types

and their CompareTo methods don't know how to work together. In that case, you have

to create an object that has a method which knows how to compare the different kinds of

objects that you're putting into the list.

Or, suppose you want to do a custom sort of a list of String objects. For example, you

know that all the strings in the list are part numbers with a three-letter prefix and a 4-digit

part number; you want to sort them by the 4-digit part number.

The String object's CompareTo method is no help here. You have to create an object

that implements the IComparer interface, and pass a reference to that object to the Sort

method. The code below shows how that's done with an Array. The ArrayList code is

identical, except of course that Sort is an instance method rather than a static method.

C#

// defines the class that knows how to compare

// two part number strings

public class PartNumberComparer: IComparer

{

 int IComparer.Compare(object x, object y)

 {

 string s1 = (string)x;

 string s2 = (string)y;

 return s1.Substring(3, 4).CompareTo(s2.Substring(3, 4));

 }

}

static void DoComparer()

{

 string[] Parts = new string[]

 {"qed0234", "abc9927", "zzz0015", "xyz6874"};

 // create an instance of the comparer class

 PartNumberComparer myComparer = new PartNumberComparer();

 // sort the array of part numbers using the comparer

 Array.Sort(Parts, myComparer);

 foreach (string s in Parts)

 Console.WriteLine(s);

}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemicomparableclasscomparetotopic.asp

Visual Basic

' defines the class that knows how to compare

' two part number strings

Public Class PartNumberComparer

 Implements IComparer

 Public Function Compare(ByVal x As Object, ByVal y As Object)

 As Integer Implements System.Collections.IComparer.Compare

 Dim s1 As String = x

 Dim s2 As String = y

 Return s1.Substring(3, 4).CompareTo(s2.Substring(3, 4))

 End Function

End Class

Sub DoComparer()

 Dim Parts() As String = _

 {"qed0234", "abc9927", "zzz0015", "xyz6874"}

 ' create an instance of the comparer class

 Dim myComparer As PartNumberComparer = New PartNumberComparer

 ' sort the array of part numbers using the comparer

 Array.Sort(Parts, myComparer)

 Dim s As String

 For Each s In Parts

 Console.WriteLine(s)

 Next

End Sub

If you run that code, you'll see that the part numbers are output in numerical order,

ignoring the 3-letter prefix.

Array and ArrayList share one other version of Sort: a method that will sort a specified

section of the list. The C# method declarations for the functions are shown below, the

static function being for Array, and the other for ArrayList.

public static void Sort(

 Array array,

 int index,

 int length,

 IComparer comparer

);

public virtual void Sort(

 int index,

 int count,

 IComparer comparer

);

So, to sort the first 10 items in an array (assuming you knew that there were at least 10

items), the C# code would be:

Array.Sort(myArray, 0, 10, myComparer);

The Visual Basic code would be the same -- minus the semicolon, of course.

Key-sorting an Array

Last updated Nov 26, 2003.

Array has more sorting options than ArrayList. Array can sort a subset of the list

without having to specify a comparer, and Array can perform a key sort using two

arrays.

It works this way. Assume you have two arrays. One array contains repair parts objects

that are available—sort of a catalog from the original manufacturer. The second array is

just a list of part numbers. Not the manufacturer's part numbers, but the part numbers that

you list in your catalog. You're a reseller of the original manufacturer's parts, but your

inventory system requires that part numbers have your own special format. (Don't think

this is just a contrived example. This kind of thing goes on all the time!)

Now, you want to sort the parts by your part number and keep the two arrays in sync.

Enter the keyed sort method. The code below shows how it's done.

C#

// the class that defines the manufacturer's part information

public class MfgPart: IComparable

{

 private string partNo;

 // other stuff in part: description, price, etc.

 public MfgPart(string pn)

 {

 partNo = pn;

 }

 public string PartNo

 {

 get { return partNo; }

 }

 public int CompareTo (object obj)

 {

 MfgPart p = (MfgPart)obj;

 return this.partNo.CompareTo(p.partNo);

 }

}

// outputs the parts cross reference

static void OutputParts(MfgPart[] rp, string[] mp)

{

 Console.WriteLine("--------");

 for (int i = 0; i < rp.Length; i++)

 Console.WriteLine("{0} - {1}", rp[i].PartNo, mp[i]);

}

static void DoKeySort()

{

 // manufacturer part information

 MfgPart[] repairParts = new MfgPart[]

 {

 new MfgPart("xqj57"),

 new MfgPart("widget36"),

 new MfgPart("DooDad1"),

 new MfgPart("xyzzy")

 };

 // in-house part numbers match manufacturer parts

 string[] myParts = new string[]

 {"qed0234", "abc9927", "zzz0015", "xyz6874"};

 // output the unsorted cross-reference

 OutputParts(repairParts, myParts);

 // now sort in order by mfg part number

 Array.Sort(repairParts, myParts);

 // output cross-reference sorted by mfg part number

 OutputParts(repairParts, myParts);

 // sort in order by our part number

 PartNumberComparer myComparer = new PartNumberComparer();

 Array.Sort(myParts, repairParts, myComparer);

 // and output cross-reference sorted by internal part number

 OutputParts(repairParts, myParts);

}

Visual Basic

' the class that defines the manufacturer's part information

Public Class MfgPart

 Implements IComparable

 Dim pNo As String

 Public Sub New(ByVal pn As String)

 pNo = pn

 End Sub

 ReadOnly Property PartNo()

 Get

 Return pNo

 End Get

 End Property

 Public Function CompareTo(ByVal obj As Object) As Integer

 Implements System.IComparable.CompareTo

 Dim p As MfgPart = obj

 Return Me.pNo.CompareTo(p.pNo)

 End Function

End Class

' outputs the parts cross reference

Sub OutputParts(ByVal rp() As MfgPart, ByVal mp() As String)

 Console.WriteLine("----------")

 Dim i As Integer

 For i = 0 To rp.Length - 1

 Console.WriteLine("{0} - {1}", rp(i).PartNo, mp(i))

 Next

End Sub

Sub DoKeySort()

 ' manufacturer part information

 Dim repairParts() As MfgPart = _

 { _

 New MfgPart("xqj57"), _

 New MfgPart("widget36"), _

 New MfgPart("DooDad1"), _

 New MfgPart("xyzzy") _

 }

 ' in-house part numbers match manufacturer parts

 Dim myParts() As String = _

 {"qed0234", "abc9927", "zzz0015", "xyz6874"}

 ' output unsorted cross-reference

 OutputParts(repairParts, myParts)

 ' sort by mfg part number

 Array.Sort(repairParts, myParts)

 ' output cross-reference sorted by mfg part number

 OutputParts(repairParts, myParts)

 ' sort by our part number

 Dim myComparer As PartNumberComparer = New PartNumberComparer

 Array.Sort(myParts, repairParts, myComparer)

 ' output cross-reference sorted by internal part number

 OutputParts(repairParts, myParts)

End Sub

Here's the output from the program:

xqj57 - qed0234

widget36 - abc9927

DooDad1 - zzz0015

xyzzy - xyz6874

DooDad1 - zzz0015

widget36 - abc9927

xqj57 - qed0234

xyzzy - xyz6874

DooDad1 - zzz0015

xqj57 - qed0234

xyzzy - xyz6874

widget36 - abc9927

The first four lines just output the list as it was originally built, showing the

correspondence between the manufacturer's part numbers on the left and our part

numbers on the right. The second group of lines shows the list sorted alphabetically by

manufacturer's part number. Note that the corresponding internal part numbers (our

numbers) remain. A DooDad1 is still internal part number zzz0015. The last group shows

the same parts, but this time sorted by internal part number using the

PartNumberComparer class.

Key-sorting an Array

Last updated Nov 26, 2003.

Array has more sorting options than ArrayList. Array can sort a subset of the list

without having to specify a comparer, and Array can perform a key sort using two

arrays.

It works this way. Assume you have two arrays. One array contains repair parts objects

that are available—sort of a catalog from the original manufacturer. The second array is

just a list of part numbers. Not the manufacturer's part numbers, but the part numbers that

you list in your catalog. You're a reseller of the original manufacturer's parts, but your

inventory system requires that part numbers have your own special format. (Don't think

this is just a contrived example. This kind of thing goes on all the time!)

Now, you want to sort the parts by your part number and keep the two arrays in sync.

Enter the keyed sort method. The code below shows how it's done.

C#

// the class that defines the manufacturer's part information

public class MfgPart: IComparable

{

 private string partNo;

 // other stuff in part: description, price, etc.

 public MfgPart(string pn)

 {

 partNo = pn;

 }

 public string PartNo

 {

 get { return partNo; }

 }

 public int CompareTo (object obj)

 {

 MfgPart p = (MfgPart)obj;

 return this.partNo.CompareTo(p.partNo);

 }

}

// outputs the parts cross reference

static void OutputParts(MfgPart[] rp, string[] mp)

{

 Console.WriteLine("--------");

 for (int i = 0; i < rp.Length; i++)

 Console.WriteLine("{0} - {1}", rp[i].PartNo, mp[i]);

}

static void DoKeySort()

{

 // manufacturer part information

 MfgPart[] repairParts = new MfgPart[]

 {

 new MfgPart("xqj57"),

 new MfgPart("widget36"),

 new MfgPart("DooDad1"),

 new MfgPart("xyzzy")

 };

 // in-house part numbers match manufacturer parts

 string[] myParts = new string[]

 {"qed0234", "abc9927", "zzz0015", "xyz6874"};

 // output the unsorted cross-reference

 OutputParts(repairParts, myParts);

 // now sort in order by mfg part number

 Array.Sort(repairParts, myParts);

 // output cross-reference sorted by mfg part number

 OutputParts(repairParts, myParts);

 // sort in order by our part number

 PartNumberComparer myComparer = new PartNumberComparer();

 Array.Sort(myParts, repairParts, myComparer);

 // and output cross-reference sorted by internal part number

 OutputParts(repairParts, myParts);

}

Visual Basic

' the class that defines the manufacturer's part information

Public Class MfgPart

 Implements IComparable

 Dim pNo As String

 Public Sub New(ByVal pn As String)

 pNo = pn

 End Sub

 ReadOnly Property PartNo()

 Get

 Return pNo

 End Get

 End Property

 Public Function CompareTo(ByVal obj As Object) As Integer

 Implements System.IComparable.CompareTo

 Dim p As MfgPart = obj

 Return Me.pNo.CompareTo(p.pNo)

 End Function

End Class

' outputs the parts cross reference

Sub OutputParts(ByVal rp() As MfgPart, ByVal mp() As String)

 Console.WriteLine("----------")

 Dim i As Integer

 For i = 0 To rp.Length - 1

 Console.WriteLine("{0} - {1}", rp(i).PartNo, mp(i))

 Next

End Sub

Sub DoKeySort()

 ' manufacturer part information

 Dim repairParts() As MfgPart = _

 { _

 New MfgPart("xqj57"), _

 New MfgPart("widget36"), _

 New MfgPart("DooDad1"), _

 New MfgPart("xyzzy") _

 }

 ' in-house part numbers match manufacturer parts

 Dim myParts() As String = _

 {"qed0234", "abc9927", "zzz0015", "xyz6874"}

 ' output unsorted cross-reference

 OutputParts(repairParts, myParts)

 ' sort by mfg part number

 Array.Sort(repairParts, myParts)

 ' output cross-reference sorted by mfg part number

 OutputParts(repairParts, myParts)

 ' sort by our part number

 Dim myComparer As PartNumberComparer = New PartNumberComparer

 Array.Sort(myParts, repairParts, myComparer)

 ' output cross-reference sorted by internal part number

 OutputParts(repairParts, myParts)

End Sub

Here's the output from the program:

xqj57 - qed0234

widget36 - abc9927

DooDad1 - zzz0015

xyzzy - xyz6874

DooDad1 - zzz0015

widget36 - abc9927

xqj57 - qed0234

xyzzy - xyz6874

DooDad1 - zzz0015

xqj57 - qed0234

xyzzy - xyz6874

widget36 - abc9927

The first four lines just output the list as it was originally built, showing the

correspondence between the manufacturer's part numbers on the left and our part

numbers on the right. The second group of lines shows the list sorted alphabetically by

manufacturer's part number. Note that the corresponding internal part numbers (our

numbers) remain. A DooDad1 is still internal part number zzz0015. The last group shows

the same parts, but this time sorted by internal part number using the

PartNumberComparer class.

Dictionary Collection Types

Last updated Dec 5, 2003.

Simple lists like Array and ArrayList are fine for many purposes, but become difficult

to use, or slow, when the program is continually modifying the list and searching for

items. Simple collections must be maintained in sorted order, or searched sequentially.

Both options are computationally expensive.

A more efficient and easier-to-use option is a dictionary-based approach, in which items

in the collection consist of a key and value pair. The collection machinery maintains an

efficient data structure that allows rapid insertion, deletion, and searching of keys. One

such data structure is called a hash table.

A hash table uses a hash function to generate a numeric value based on the value of the

key that you provide to it. The result returned by the hash function is called the hash or

hash code of the passed record. This value is then stored and used to quickly locate a

particular item in the collection.

A hash function might not return a unique number for every record. That is, it's possible

that the result of the hash function for two different strings would be the same. When this

occurs, it is called a hash clash. The code that uses the hashing function must detect and

properly handle this condition. A hash table will be much more efficient, though, if you

carefully select a hash function that will minimize clashes.

The .NET Framework provides two dictionary-based collection types, both based on the

IDictionary interface. Those collections are Hashtable and SortedList.

Hashtable

Last updated Dec 5, 2003.

The Hashtable collection type stores key-value pairs and allows you to locate items in

the collection based on the key. For example, suppose you want to store the names and

titles of people in the U.S. Government's Executive Branch. You could represent such

information in a table like this (abbreviated for obvious reasons):

Title Name

President George W. Bush

Vice President Dick Cheney

Secretary of State Colin Powell

If you want to know who the Secretary of State is, you just read down the left column to

find that title, and read across to get the name. A Hashtable works in much the same

way. When you add an item, you supply the key and the value. You can then reference

items by value. The code below shows how it's done.

C#

static void DoHashtable()

{

 // create the hash table

 Hashtable execBranch = new Hashtable();

 // add items

 execBranch.Add("President", "George W. Bush");

 execBranch.Add("Vice President", "Dick Cheny");

 execBranch.Add("Secretary of State", "Colin Powell");

 // retrieve vice president's name based on title

 string VP = (string)execBranch["Vice President"];

 Console.WriteLine("Vice President is: {0}", VP);

}

Visual Basic

Sub DoHashtable()

 ' create the hash table

 Dim execBranch As Hashtable = New Hashtable

 ' add items

 execBranch.Add("President", "George W. Bush")

 execBranch.Add("Vice President", "Dick Cheny")

 execBranch.Add("Secretary of State", "Colin Powell")

 ' retrieve vice president's name based on title

 Dim VP As String = execBranch("Vice President")

 Console.WriteLine("Vice President is {0}", VP)

End Sub

The Add method, by the way, will throw an exception if an item with the specified key

value already exists in the collection. You can't use Hashtable to store multiple items

with the same key.

When you're looking up items by key, if there is no matching key in the Hashtable, the

accessor method will return null (Nothing in Visual Basic). For example, if the code that

was looking for the Vice President's name was written like this:

string VP = execBranch["VicePres"];

then the VP variable would be set to null.

You can remove an item from the Hashtable by passing the key of the item to remove to

the Remove method.

You can enumerate all of the items in the Hashtable by obtaining the list's enumerator

object and iterating through it, like this:

C#

// output all keys and values

IDictionaryEnumerator myEnumerator = execBranch.GetEnumerator();

while (myEnumerator.MoveNext())

{

 Console.WriteLine("{0}, {1}", myEnumerator.Key, myEnumerator.Value);

}

Visual Basic

' output all keys and values

Dim myEnumerator As IDictionaryEnumerator = execBranch.GetEnumerator()

While myEnumerator.MoveNext()

 Console.WriteLine("{0}, {1}", myEnumerator.Key, myEnumerator.Value)

End While

You can also obtain all of the keys by examining the Hashtable's Keys property, and all

of the values by examining the Values property. Both of these properties are ICollection

types.

Hashtable Construction Options

Last updated Dec 5, 2003.

The easiest way to create a Hashtable is by calling the default constructor, as shown in

the code sample above. This call creates a Hashtable collection with default options that

make the best balance between speed, size, and functionality. However, in special

circumstances you might want to change the way that the collection is created. The

various overloaded Hashtable constructors let you specify several parameters, as

outlined below.

 Specifying an initial capacity initializes the Hashtable to hold a certain number

of items. This saves some time in resizing the collection as items are added. This

is very beneficial if you have a general idea how many items will go into the

collection.

 The load factor specifies a ratio between elements and buckets in the Hashtable.

Without going into the detail of buckets (see the official documentation for

details), a lower number here gives faster performance at the expense of increased

memory consumption. The number you supply here can be between 0.1 and 1.0.

A value of 1.0 gives the best balance between speed and memory consumption.

 The default constructor has the Hashtable use the individual keys' GetHash

function to obtain hash codes for keys. To override that behavior, you can pass a

reference to an object that implements the IHashCodeProvider interface. The

Hashtable will then use this interface to obtain hash codes for keys. In collections

derived from Hashtable, you can also change the hash code provider by setting

the protected hcp property.

 By default, Hashtable compares keys by calling individual key objects' Equals

method. You can override this by passing an IComparer reference to the

constructor. In addition, derived objects can change the comparison function by

setting the protected comparer property.

The Hashtable is a very powerful collection type that is used in many places throughout

the .NET Framework. If you find that you need to store and access objects based on a

key, the Hashtable is the first place you should turn. This collection type has other

methods and properties that I did not discuss here. You should refer to the official

documentation for more details.

SortedList

Last updated Jan 1, 2004.

The SortedList collection type is something of a hybrid of Hashtable and Arraylist.

Like Hashtable, SortedList is based on the IDictionary interface, so every element is a

key-and-value pair and can be accessed by the key. SortedList is like ArrayList in that it

is a sequence of elements that can be accessed by the value or by the index. The list is

maintained in sorted order based on a specified comparer.

Use SortedList when you want a collection that stores key-and-value pairs, and you also

want the flexibility of an indexed list.

You access items in the SortedList using the same techniques that were described for

Hashtable and ArrayList. Like Hashtable, the default sorting method is to use the

IComparable interface defined by each key object. You can change that behavior by

calling the overloaded SortedList constructor that takes a reference to an IComparer

interface. Unlike Hashtable, however, there is no way to change the comparison method

after you create the list, and you cannot change the way that hash codes are generated. In

fact, the documentation doesn't specify that SortedList even uses hash codes for the

keys.

You can add items to the SortedList by calling the Add method as with Hashtable, or

by setting the value of a non-existent key. For example, this C# code will create a new

entry in the SortedList.

mySortedList["NewKey"] = myObject;

If no element with the key value "NewKey" exists in the list, then a new element is added

to the list. If such an element already exists, then myObject will overwrite the previous

value for that entry.

The Add method, on the other hand, throws an exception if you attempt to add an

element with a key that already exists in the list. Keys must be unique within the list, but

values don't have to be. It's perfectly okay to write:

mySortedList.Add("NewKey1", myObject);

mySortedList.Add("NewKey2", myObject);

Although you probably should have a very good reason for adding a single object twice

to the same list.

Queue and Stack

Last updated Jan 1, 2004.

The Queue and Stack collection types implement the common data structures of the

same name. A queue is a first-in, first-out data structure, like a line at a grocery store.

Items go in at the tail of the queue, and are removed from the head. The Enqueue method

adds an item to the queue, and Dequeue removes the oldest element (that is, the one

that's been in the queue the longest). Peek is a little cheat that lets you examine the item

at the front of the queue without removing it.

A stack is a first in, last out data structure, like the pile on my desk or the call stack in a

microprocessor. Items are added to the top of the stack, pushing all the other items down.

Items are removed from the top of the stack in reverse order. The Push method places an

item on the stack and Pop removes an item. Like Queue, Stack implements Peek so that

you can look at the top-of-stack item without having to remove it from the collection.

As with the other collection types, Queue and Stack implement the Count property, so

you can tell how many items they contain. They also have various methods to copy the

contents of the collection to an Array. Overloaded methods allow you to initialize the

collection with a specific capacity or with the items from another collection.

Using Collections

When deciding which collection type to use in your application, you need to consider

many factors. Choosing the wrong collection type will hamper your ability to access data,

and can cause severe performance problems. Using an Array, for example, when you

need to access items by key or maintain items in sorted order, will cause you to write a

lot of extraneous code that searches or sorts the items. The Grouping Data in Collections

topic in MSDN has some good guidelines for selecting a collection class. In this section, I

will provide examples of using some of the Framework-supplied collection classes.

Collections and Thread Safety

Last updated Jan 1, 2004.

The default behavior of all the collection classes is not generally thread safe. Although

any number of threads can read a collection simultaneously, a single thread modifying

the collection can cause undefined behavior for any other threads that are accessing it.

The Hashtable class guarantees thread safety for a single writer and multiple readers, but

if multiple writers are required, the same rules apply as for all the other collection types.

The .NET Framework SDK documentation identifies three primary ways to make

collections thread safe:

 Create a thread-safe wrapper using the Synchronized method, and access the

collection exclusively through that wrapper.

 If the class does not have a Synchronized method, derive from the class and

implement a Synchronized method using the SyncRoot property.

 Use a locking mechanism, such as the lock statement in C# (SyncLock in Visual

Basic), on the SyncRoot property when accessing the collection.

lock (SyncLock in Visual Basic) is the easiest and most effective way to guarantee

thread safety. Lock is most useful when enumerating a collection. Enumerating through a

collection is inherently not thread-safe, and will throw an exception if the collection is

modified at any point during the enumeration. To prevent any other thread from

modifying the collection, you lock the collection first, like this:

C#

SortedList myCollection = new SortedList();

// code that adds items to the collection

// lock the collection and enumerate it

lock (myCollection.SyncRoot)

http://msdn.microsoft.com/library/?url=/library/en-us/cpguide/html/cpcongroupingdataincollections.asp
http://msdn.microsoft.com/library/?url=/library/en-us/cpguide/html/cpconselectingcollectionclass.asp

{

 foreach (Object item in myCollection)

 {

 // insert your enumeration code here

 }

}

Visual Basic

Dim myCollection as New SortedList()

' code that adds items to the collection

' lock the collection and enumerate it

Dim item as Object

SyncLock myCollection.SyncRoot

 For Each item In myCollection

 ' insert your enumeration code here

 Next item

End SyncLock

As effective as it is, lock isn't very friendly. When a thread acquires a lock in this

manner, no other thread can access the collection. You should use lock only when

performing an operation that must have exclusive access to the collection, and you should

release the lock as soon as possible.

Synchronize is a much friendlier way to allow multiple threads access to a collection. It

is a cooperative technique that requires each thread to follow the rules. Fortunately, those

rules are very simple: rather than access the shared collection object, each thread obtains

a reference to a synchronized collection object and performs all access through that

reference. All it takes is a single call to the static Synchronized method, as shown below.

C#

Hashtable myHt = new Hashtable();

// code that adds items to the Hashtable

// obtain a synchronized wrapper around the Hashtable

Hashtable mySyncHt = Hashtable.Synchronize(myHt);

// all access to mySyncHt is synchronized

Console.WriteLine("myHt is {0}" ?

 myHt.IsSynchronized ? "synchronized" : "not synchronized");

Console.WriteLine("mySyncHt is {0}" ?

 mySyncHt.IsSynchronized ? "synchronized" : "not synchronized");

Visual Basic

Dim myHt as New Hashtable()

' code that adds items to the Hashtable

' obtain a synchronized wrapper around the Hashtable

Dim mySyncHt as Hashtable = Hashtable.Synchronize(myHt)

' all access to mySyncHt is synchronized

Dim msg As String

If myHt.IsSynchronized then

 msg = "synchronized"

Else

 msg = "not synchronized"

End If

Console.WriteLine("myHt is {0}", msg)

If mySyncHt.IsSynchronized then

 msg = "synchronized"

Else

 msg = "not synchronized"

End If

Console.WriteLine("mySyncHt is {0}", msg)

The IsSynchronized property returns true if the collection is synchronized.

It's worth repeating that using synchronized lists is cooperative. Nothing prevents a

thread from accessing the list through the non-synchronized reference. But if you're

careful to code the classes that use the list so all access it through the Synchronized

reference, all will be fine.

In practice, you will use a combination of Synchronize and lock to provide thread-safe

access to your collections. Most often, you'll use Synchronize during updates to prevent

multiple threads from trying to modify the collection at the same time, and lock when

you have a longer operation that requires exclusive access.

The other technique for providing thread-safe access involves creating a derived class and

implementing your own Synchronize method. That is covered in the next section (next

week), when we take a look at creating your own collection classes.

Type-Safe Collections

Last updated Jan 1, 2004.

The .NET generic collection types are very useful for all manner of data handling tasks.

It's incredibly easy to create a collection, add and remove items, and enumerate or find

items. The only real drawback is that, with the exception of language-specific array

constructs, .NET arrays are inherently not type safe. If you're not careful, that can cause

problems, especially when you work on a large program with many different

programmers involved, or if you come back to a program a few months after you wrote it.

The problem is that collections store items of type Object. Since everything in a .NET

program is an Object, you can put anything into a collection. You can also mix object

types in a collection. It's perfectly legal, for example, to write:

ArrayList Cars = new ArrayList();

Car myCar = new Car();

Driver theDriver = new Driver();

Cars.Add(myCar);

Cars.Add(theDriver);

Now, normally you wouldn't want to mix object types in a collection. The whole idea of

a collection is to group like objects. But since collections take Objects, the compiler can't

prevent you from putting a Driver in the Cars collection. You'll run into trouble at

runtime, though, when your enumeration code tries to cast a Driver to type Car. For

example:

for (int i = 0; i < Cars.Count; i++)

{

 Car theCar = (Car)Cars[i];

 // do something with the Car

}

The cast is the giveaway here that things aren't entirely safe. The Framework will throw

an invalid cast exception when this code tries to cast the Driver object that's in the

collection to type Car.

The basic problem is that there's no built-in way to restrict the type of object that goes

into a collection. If you want to do that, you have to create your own collection class.

The .NET Framework provides an abstract base class called CollectionBase

(MustInherit in Visual Basic) that you can use as the basis for your custom collections.

CollectionBase implements the IList, IEnumerable, and ICollection interfaces, and an

inner ArrayList into which you can store items. The custom collection class becomes a

type-safe wrapper around ArrayList. To create a custom collection in this manner, you

have to implement the following:

From ICollection:

 Count property (implemented by CollectionBase)

 IsSynchronized property

 SynchRoot property

 CopyTo method

From IList:

 IsFixedSize property

 IsReadOnly property

 Item property

 Add method

 Clear method (implemented by CollectionBase)

 Contains method

 IndexOf method

 Insert method

 Remove method

 RemoveAt method (implemented by CollectionBase)

In short, you have to create type-safe versions of any method that takes a parameter of

type Object or that returns an Object. This turns out to be reasonably straightforward, as

you can see from the code below, which implements the EmployeesCollection type. The

definition of the Employee class is shown after the collection code.

C#

class EmployeesCollection: CollectionBase

{

 // ICollection.IsSynchronized

 public virtual bool IsSynchronized

 {

 get { return false; }

 }

 // ICollection.SyncRoot

 public virtual EmployeesCollection SyncRoot

 {

 get { return this; }

 }

 // ICollection.CopyTo

 public virtual void CopyTo (Employee[] emps, int index)

 {

 InnerList.CopyTo (emps, index);

 }

 // IList.IsFixedSize property

 public virtual bool IsFixedSize

 {

 get { return InnerList.IsFixedSize; }

 }

 // IList.IsReadOnly property

 public virtual bool IsReadOnly

 {

 get { return InnerList.IsReadOnly; }

 }

 // IList.Item property

 public virtual Employee this[int index]

 {

 get { return (Employee)(InnerList[index]); }

 set { InnerList[index] = value; }

 }

 // IList.Add

 public virtual int Add (Employee emp)

 {

 return InnerList.Add (emp);

 }

 // IList.Contains

 public virtual bool Contains (Employee emp)

 {

 return InnerList.Contains (emp);

 }

 // IList.IndexOf

 public virtual int IndexOf (Employee emp)

 {

 return InnerList.IndexOf (emp);

 }

 // IList.Insert

 public virtual void Insert (int index, Employee emp)

 {

 InnerList.Insert (index, emp);

 }

 // IList.Remove

 public virtual void Remove (Employee emp)

 {

 InnerList.Remove (emp);

 }

}

Visual Basic

Public Class EmployeesCollection

 Inherits CollectionBase

 ' ICollection.IsSynchronized

 Public Overridable ReadOnly Property IsSynchronized() As Boolean

 Get

 Return False

 End Get

 End Property

 ' ICollection.SyncRoot

 Public Overridable ReadOnly Property SyncRoot() As

EmployeesCollection

 Get

 Return Me

 End Get

 End Property

 ' ICollection.CopyTo

 Public Overridable Sub CopyTo(ByVal emps() As Employee, ByVal index

As Integer)

 InnerList.CopyTo(emps, index)

 End Sub

 ' IList.IsFixedSize property

 Public Overridable ReadOnly Property IsFixedSize() As Boolean

 Get

 Return InnerList.IsFixedSize

 End Get

 End Property

 ' IList.IsReadOnly property

 Public Overridable ReadOnly Property IsReadOnly() As Boolean

 Get

 Return InnerList.IsReadOnly

 End Get

 End Property

 ' IList.Item property

 Default Public Overridable Property Item(ByVal index As Integer)

 Get

 Return DirectCast(InnerList(index), Employee)

 End Get

 Set(ByVal Value)

 InnerList(index) = Value

 End Set

 End Property

 ' IList.Add

 Public Overridable Function Add(ByVal emp As Employee) As Integer

 Return InnerList.Add(emp)

 End Function

 ' IList.Contains

 Public Overridable Function Contains(ByVal emp As Employee) As

Boolean

 Return InnerList.Contains(emp)

 End Function

 ' IList.IndexOf

 Public Overridable Function IndexOf(ByVal emp As Employee) As

Integer

 Return InnerList.IndexOf(emp)

 End Function

 ' IList.Insert

 Public Overridable Sub Insert(ByVal index As Integer, ByVal emp As

Employee)

 InnerList.Insert(index, emp)

 End Sub

 ' IList.Remove

 Public Overridable Sub Remove(ByVal emp As Employee)

 InnerList.Remove(emp)

 End Sub

End Class

The methods and properties are virtual (Overridable in Visual Basic) so that you can

make collections for derived classes. No heavy lifting required, just a lot of typing.

That "lot of typing" can get tedious, though, if you're creating more than one or two

custom collection classes. With a little study, you can create a program that uses the Code

DOM to generate the collection classes for you, as described in the documentation article,

Generating and Compiling Source Code Dynamically in Multiple Languages, and in the

MSDN Magazine article, Bring the Power of Templates to Your .NET Applications with

the CodeDOM Namespace, by Adam J. Steinert.

http://msdn.microsoft.com/library/?url=/library/en-us/cpguide/html/cpcongeneratingcompilingsourcecodedynamicallyinmultiplelanguages.asp
http://msdn.microsoft.com/library/?url=/msdnmag/issues/03/02/codedom/TOC.ASP?frame=true
http://msdn.microsoft.com/library/?url=/msdnmag/issues/03/02/codedom/TOC.ASP?frame=true

Most of the typing associated with creating type-safe collection classes will be eliminated

with the next version of the .NET Framework. That version will implement generic types,

which are similar to C++ templates and allow you to create type-safe collection classes

(and other things) quickly and easily with a minimal amount of typing.

The Employee class on which the code above depends is shown here:

C#

class Employee

{

 private string firstName;

 private string lastName;

 public Employee (string fName, string lName)

 {

 firstName = fName;

 lastName = lName;

 }

 public string FirstName

 {

 get { return firstName; }

 set { firstName = value; }

 }

 public string LastName

 {

 get { return lastName; }

 set { lastName = value; }

 }

}

Visual Basic

Public Class Employee

 Private fName As String

 Private lName As String

 Public Sub New(ByVal first As String, ByVal last As String)

 fName = first

 lName = last

 End Sub

 Public Property FirstName() As String

 Get

 Return fName

 End Get

 Set(ByVal Value As String)

 fName = Value

 End Set

 End Property

 Public Property LastName() As String

 Get

 Return lName

 End Get

 Set(ByVal Value As String)

 lName = Value

 End Set

 End Property

End Class

You use this collection type just as you would any other, except that you can only put

Employee objects (or objects that are derived from Employee) into it. If you try to put a

Car object into the EmployeesCollection, the compiler will issue an error message.

Synchronization

Last updated Jan 1, 2004.

The type-safe collection code shown above implements the SyncRoot property, which

allows the collection to be used in a thread-safe manner. As discussed in the previous

section, though, SyncRoot isn't the friendliest interface ever invented. It requires that

clients explicitly lock (SyncLock) the collection at each call, and release the lock when

they're finished using the collection. This can work, but it's all too easy for a client to

hold the lock for too long, or to forget to obtain the lock in the first place. The

Synchronized method is a much nicer interface, but requires a bit more work to

implement.

The idea behind implementing a Synchronized method is to provide a wrapper that

performs the required lock operations as required. This ensures that the client won't

forget to obtain the locks and that locks are held only as long as required. What you do is

create a derived class that wraps the critical operations, and a static (Shared in Visual

Basic) method in the collection class that returns a reference to the real collection. The

code below shows how it's done in the EmployeesCollection class, although it doesn't

implement all of the methods.

C#

// EmployeesCollection.Synchronized

// returns a reference to a thread-safe collection wrapper

public static EmployeesCollection Synchronized(

 EmployeesCollection emps)

{

 return new SynchronizedEmployeesCollection(emps);

}

// SynchronizedEmployeesCollection is a thread-safe wrapper

// around EmployeesCollection

// Not all methods are implemented.

class SynchronizedEmployeesCollection: EmployeesCollection

{

 EmployeesCollection emps;

 public SynchronizedEmployeesCollection(EmployeesCollection ec)

 {

 emps = ec;

 }

 public override int Add (Employee emp)

 {

 lock (emps.SyncRoot)

 {

 return emps.Add(emp);

 }

 }

}

Visual Basic

' EmployeesCollection.Synchronized

' returns a reference to a thread-safe collection wrapper

Public Shared Function Synchronized(_

ByVal emps As EmployeesCollection) As EmployeesCollection

 Return New SynchronizedEmployeesCollection(emps)

End Function

' SynchronizedEmployeesCollection is a thread-safe wrapper

' around EmployeesCollection

' Not all methods are implemented.

Public Class SynchronizedEmployeesCollection

 Inherits EmployeesCollection

 Dim emps As EmployeesCollection

 Public Sub New(ByVal ec As EmployeesCollection)

 emps = ec

 End Sub

 Public Overrides Function Add(ByVal emp As Employee) As Integer

 SyncLock emps.SyncRoot

 Return emps.Add(emp)

 End SyncLock

 End Function

End Class

You would have to provide overrides for all of the EmployeesCollection methods. Then,

your main program should keep the original EmployeesCollection instance private, and

publish only the reference to the synchronized collection: the

SynchronizedEmployeesCollection. This ensures that all threads that access the

collection do it through the thread-safe wrapper.

Difference Between String and StringBuilder

String Class StringBuilder

Once the string object is created, its length Even after object is created, it can be able

http://dng-collections.blogspot.com/2007/05/difference-between-string-and.html

and content cannot be modified. to modify length and content.

Slower Faster

Limitation of Arrays

 The size of an array is always fixed and must be defined at the time of

instantiation of an array.
 Secondly, an array can only contain objects of the same data type,

which we need to define at the time of its instantiation.

ArrayList Concept in .Net

Provides a collection similar to an array, but that grows dynamically

as

the number of elements change.

Example

static void Main()

{

 ArrayList list = new ArrayList();

 list.Add(11);

 list.Add(22);

 list.Add(33);

 foreach(int num in list)

 {

 Console.WriteLine(num);

 }

}

Output

11

22

33

Stack Concept in .Net

A collection that works on the Last In First Out (LIFO) principle,

i.e., the last item inserted is the first item removed from the

collection.

Push - To add element and

Pop – To Remove element

Example

using System;

using System.Collections;

class Test

{

 static void Main()

 {

 Stack stack = new Stack();

http://dng-collections.blogspot.com/2007/05/limitation-of-arrays.html
http://dng-collections.blogspot.com/2007/05/arraylist-concept-in-net.html
http://dng-collections.blogspot.com/2007/05/stack-concept-in-net.html

 stack.Push(2);

 stack.Push(4);

 stack.Push(6);

 while(stack.Count != 0)

 {

 Console.WriteLine(stack.Pop());

 }

 }

}

Output

6
4

2

Queue Concept in .Net

A collection that works on the First In First Out (FIFO) principle,

i.e.,

the first item inserted is the first item removed from the collection.

Enqueue - To add element and Dequeue – To Remove element

Example:

static void Main()

{

 Queue queue = new Queue();

 queue.Enqueue(2);

 queue.Enqueue(4);

 queue.Enqueue(6);

 while(queue.Count != 0)

 {

 Console.WriteLine(queue.Dequeue());

 }

}

Output

2
4

6

Dictionaries Concept in .Net

Dictionaries are a kind of collection that store items in a key-value pair fashion.

System.Collections namespace

Hashtable Concept in .Net

Provides a collection of key-value pairs that are organized

based on the hash code of the key.

http://dng-collections.blogspot.com/2007/05/queue-concept-in-net.html
http://dng-collections.blogspot.com/2007/05/dictionaries.html
http://dng-collections.blogspot.com/2007/05/hashtable-concept-in-net.html

Example:

static void Main()

{

 Hashtable ht = new Hashtable(20);

 ht.Add("ht01", "DotNetGuts");

 ht.Add("ht02", "EasyTutor.2ya.com");

 ht.Add("ht03", "DailyFreeCode.com");

 Console.WriteLine("Printing Keys...");

 foreach(string key in ht.Keys)

 {

 Console.WriteLine(key);

 }

 Console.WriteLine("\nPrinting Values...");

 foreach(string Value in ht.Values)

 {

 Console.WriteLine(Value);

 }

 Console.WriteLine("Size of Hashtable is {0}", ht.Count);

 Console.WriteLine(ht.ContainsKey("ht01"));

 Console.WriteLine(ht.ContainsValue("DailyFreeCode.com"));

 Console.WriteLine("\nRemoving element with key = ht02");

 ht.Remove("ht02");

 Console.WriteLine("Size of Hashtable is {0}", ht.Count);

}

Output

Printing Keys...

ht01

ht02

ht03

Printing Values...

DotNetGuts

EasyTutor.2ya.com
DailyFreeCode.com

Size of Hashtable is 3

True

True

Removing element with key = ht02

Size of Hashtable is 2

