

International and U.S. Nuclear Construction Challenges and Developments

> Nuclear Construction Summit Washington, D.C. October 26-27, 2009

> > Jeffrey S. Merrifield Senior Vice President Shaw Power Group

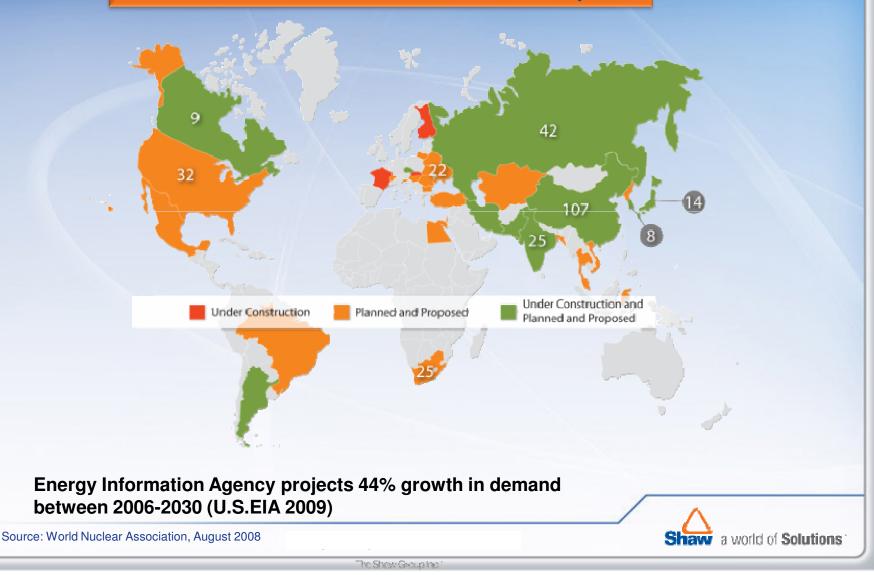
> > > The Shew Group In

a world of Solutions

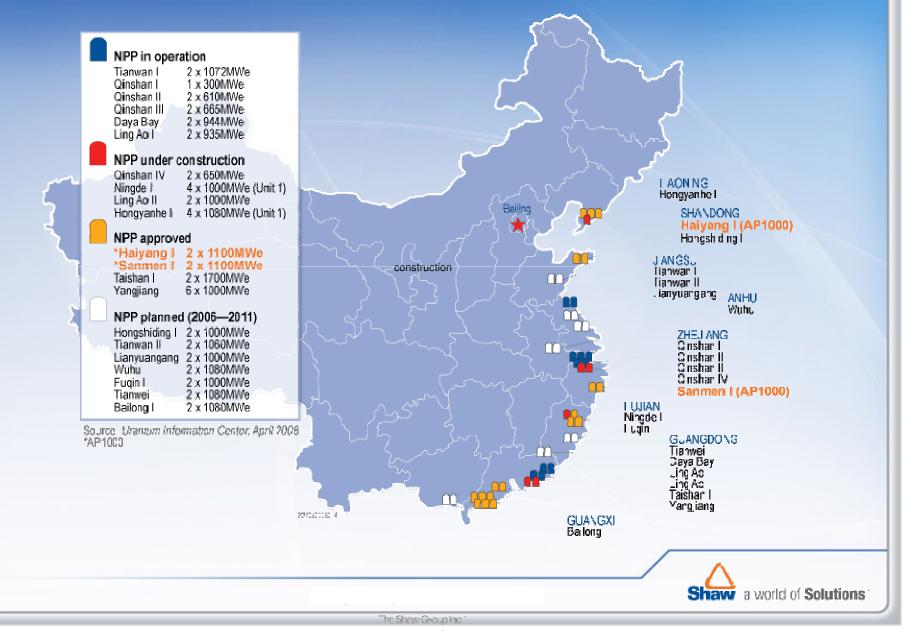
Shaw's Power Group

- Power Group comprised of three divisions
 - Nuclear Division
 - Fossil & Renewables Division
 - Maintenance Division
- Shaw ranked #1 in Power on ENR's list of Top 500 Design Firms for 2008 and 2009
- Approximately 5,000 professional employees
 - Charlotte
 - Philadelphia
 - Denver
 - Boston
 - Baton Rouge

5	ERR O9 TOP 500 FIRM DESIGN FIRM THE SHAW GROUP INC*#6 AT IN POWER
	Top 25 Power
	1. The Shaw Group Inc. 2. UBS
09	3. Black & Veatch 4. Sargent & Lundy
	5. Bechtel
ees	Top 25 Fossil Fuel*
	1. The Shaw Group Inc.
	2. URS Corp. 3. Black & Veatch
	3. Diaux & veaucii
	Top 10 Nuclear Plants*
	1. The Shaw Group Inc.
	2. Bechtel
	3. Tetra Tech
	Shaw a world of Solutions

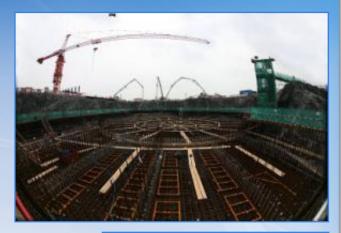

2

Shaw Today – Major Nuclear Activities



Nuclear Power Expansion Worldwide

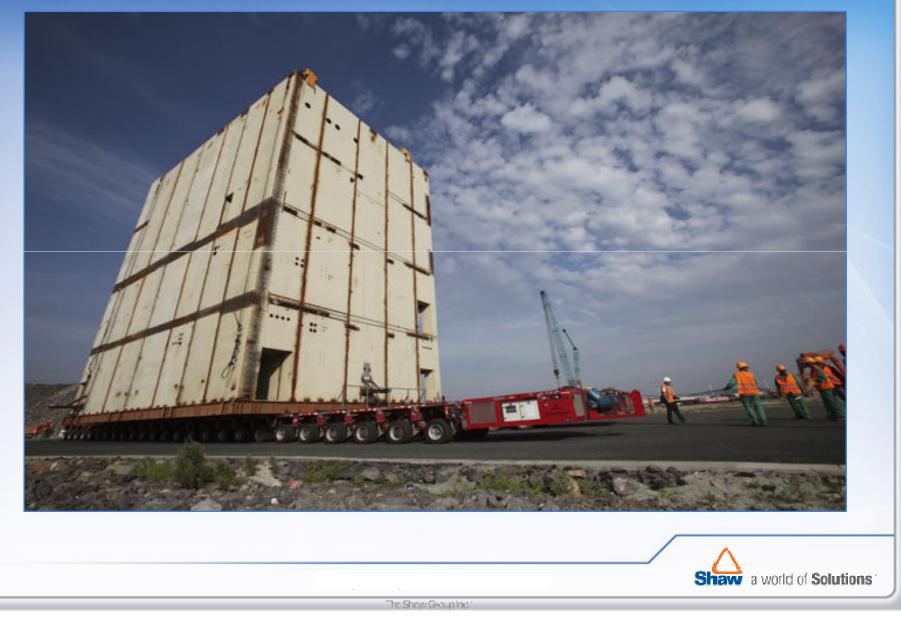
36 Under Construction · 93 Planned · 219 Proposed

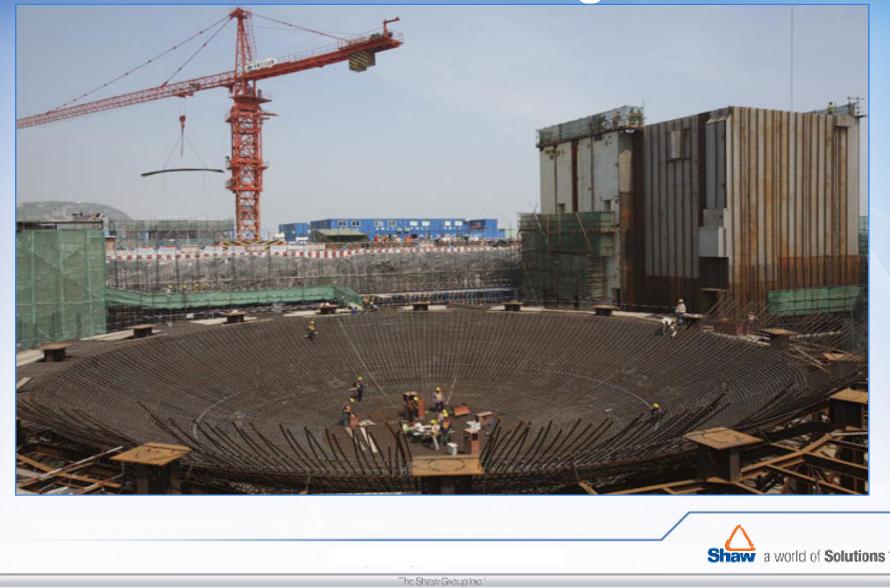


China Nuclear Industry

Sanmen & Haiyang Projects

- Two Westinghouse AP1000 units per site
- Sanmen
 - Excavation began Feb. 26, 2008
 - First nuclear concrete placement completed March 31, 2009
 - Auxiliary Building Module CA-20 set June 29, 2009
 - Start of commercial operation: 2013
- Haiyang
 - Excavation began July 29, 2008
 - First nuclear concrete placement completed September 24, 2009
 - Start of commercial operation: 2013


Sanmen Nuclear Island Base Mat Completed March 31, 2009


Sanmen CA-20 Module Ready for Transport

Transporting the Sanmen CA-20 Module

Sanmen Unit 1 CR-10 Rebar Installation with CA-20 in Background

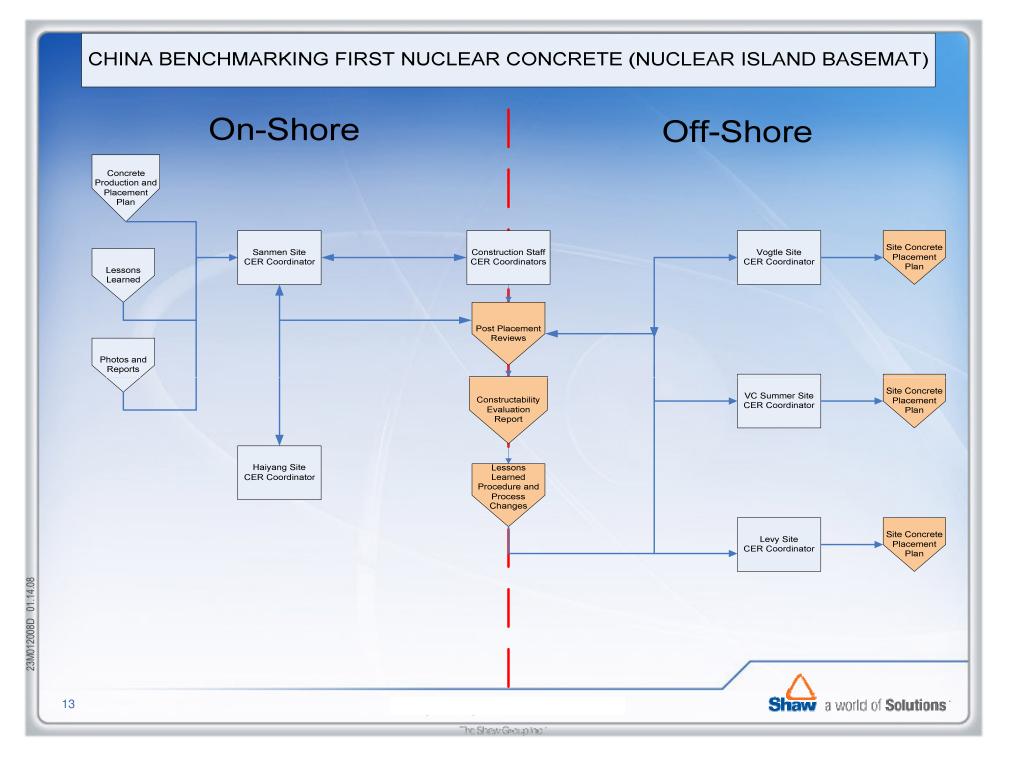
Additional Progress at Sanmen and Haiyang

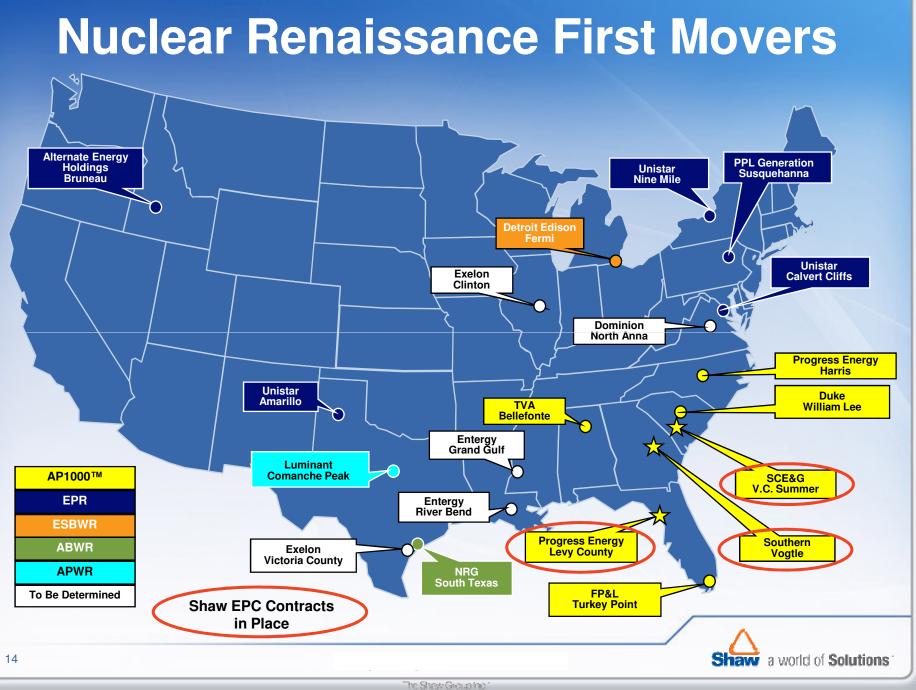
The Shows Gu

Sanmen - Bottom Mat and Drain Piping

Haiyang – CA20 Subassembly 1 Moved into Integrated Assembly Platform

Sanmen - Auxiliary Building Battery Rooms


Haiyang – Assembly of CA20 Subassembly 3



Shaw Construction China Lessons Learned and Benchmarking Program

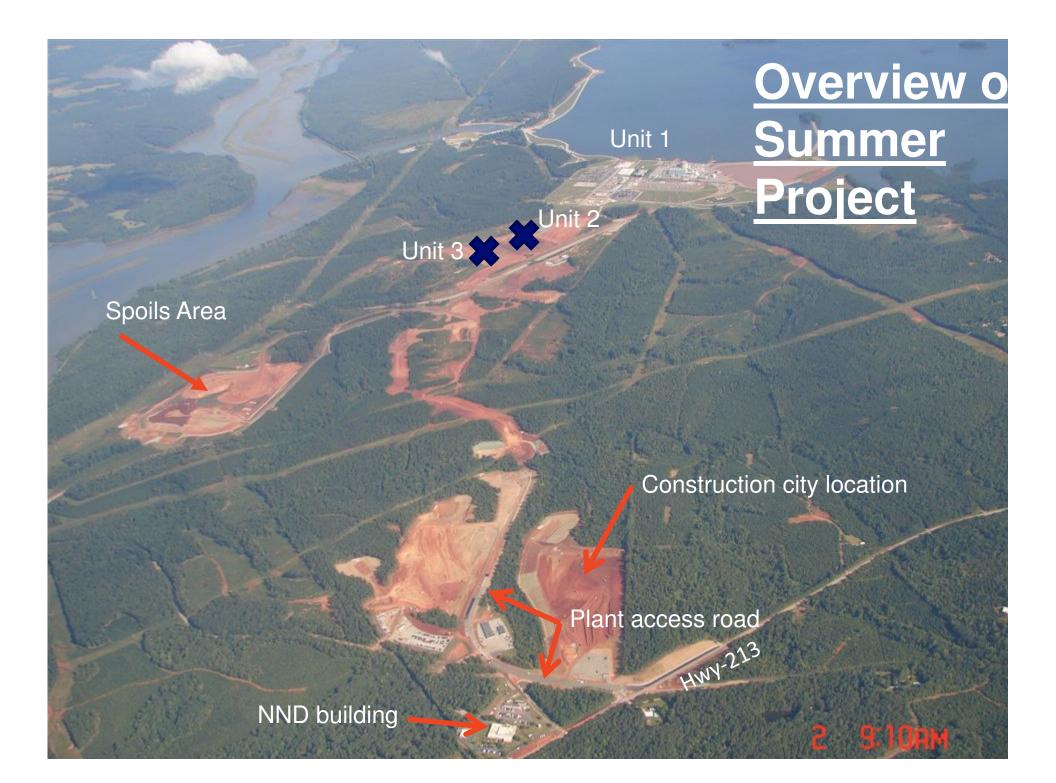
- China will have performed all standard plant construction installation activities four times before activities are performed domestically
 - Establish benchmarking management team with China and U.S. participants
 - Select benchmarking activities

- Assign U.S. subject matter expert to coordinate
- Assign on- and off-shore teams by activity for China and domestic projects
- Establish China construction management E-Room
- Conduct Internet-based team meetings to review and share lessons learned

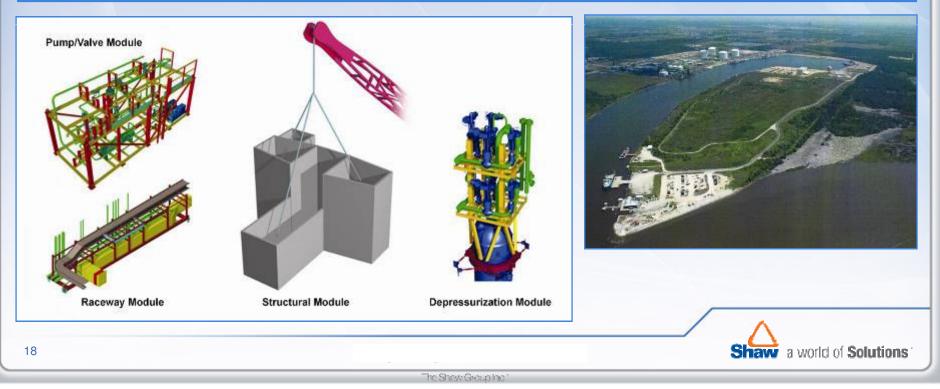
Vogtle & V.C. Summer Projects

- Shaw responsibilities:
 - Engineering
 - Procurement
 - Turbine island/balance of plant
 - Site-specific systems
 - Yard work
 - Construction

- Current status:
 - Both projects have received state PSC certification to build two units
 - Vogtle has received full notice to proceed from client
 - Site-specific detailed design and excavation started
 - On-site craft deployed at both projects



Summer Project View From the South


New Plant Access Road

Laydown Areas

Shaw Modular Solutions (SMS) - Module Fabrication and Assembly Facility

- Work continues on the \$100 million/410,000 square foot facility located in Lake Charles, LA
- Will produce structural, piping and equipment modules for new nuclear power plants
- Shaw's three existing nuclear EPC contracts are expected to generate approximately \$1B in revenues for this facility

Shaw Modular Solutions (SMS), cont.

- 410,000 square feet under roof for fabrication, assembly and inspection
- 7 production bays
- 8,200 square foot administrative building
- 10,000 square foot training facility
- Truck, barge and rail access
- NQA-1 program

23M012008D 01.14.08

 Located on 120 acres of land with an option for 180 more acres

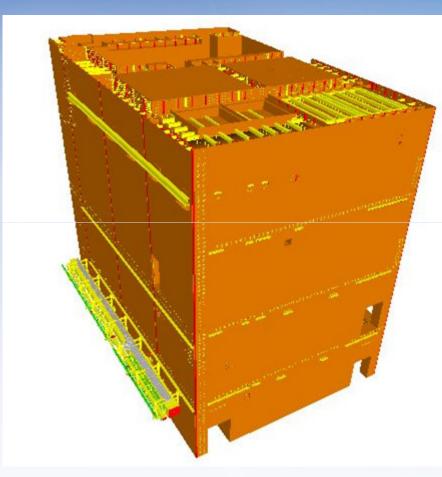
SMS Site Layout

SMS Overhead View

AP1000™ Structural Modules

148 structural modules

- CA Type (25): steel formwork modules with concrete filled in place; consists of walls (CA01, CA20) and floors (CA34)
- CB Type (35): remain-in-place steel formwork modules with concrete poured around them.
- CG Type (5): modules that are set into place to form part of a building structure and that are not outfitted with mechanical commodities (such as platforms and grating)
- CH Type (46): modules that are set into place to form part of a building structure and that are outfitted with commodities
- CS Type (37): modules that comprise steel stairways



AP1000[™] Mechanical Modules

202 mechanical modules

- Equipment modules (51): consisting of equipment, valves and piping on a structural steel framework
- Piping and valve modules (22): consisting of piping, valves and in-line piping components on a structural steel framework
- Commodity modules (53): consisting of piping, cable tray and HVAC ductwork on a structural steel frame
- Standard service modules (76): as assembly of service utility connections in a frame to provide standard configuration

CA20 Aux Bldg Areas 5&6

23M012008D 01.14.08

CA20 comprises 72 submodules:

Size (N x E x Height): 44'-0" x 68'-9" x68'-0"

Dry Weight: 1,700,454 lbs.

Room (Area): N/A

Plant Elevation: 66'-6"

Classification: Seismic Category I

CA20 Sub-Module Configurations

L-Shapes Flat Panels T-Shapes CA20 CA20_01 CA20_02 CA20_04 CA20_03 CA20_32/33 CA20_3/33 CA20_3/3/34 CA20_3/3/34 CA20_3/3/34 CA20_3/3/34 CA20_3/3/34 CA20_3/3/34 CA20_3/3/34 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_4/3/44 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_2/3/3 CA20_5/3/3 CA20_2/3 CA20_2/2/3 CA20_2/3/3 <	
CA20_01 CA20_02 CA20_04 CA20_03 CA20_32/33 CA20_05 CA20_06 CA20_07 CA20_12 CA20_36/37 CA20_10 CA20_08 CA20_11 CA20_20 CA20_43/44 CA20_14 CA20_13 CA20_15 CA20_47-50 CA20_18 CA20_16 CA20_21 CA20_56/57 CA20_22 CA20_19 CA20_21 CA20_56/57 CA20_26 (mod.) CA20_27 CA20_28 CA20_29 CA20_29 CA20_29 CA20_26 CA20_25 CA20_72 CA20_66 CA20_72	or Plates
CA20_74 CA20_76	64 CA20_65 66 CA20_71 72 CA20_73 74 CA20_75

Installation Sequence

High Level Lessons Learned

Fully Integrated Schedule

 Key to identifying long-lead items and critical interdependencies that could hinder timely project completion

Subcontractor Qualification

Subcontractor's skills must match project scope

Quality Assurance

- EPC contractor must have robust program for ensuring components' quality (especially critical in a nuclear environment)
- ASME certification does NOT relieve the supplier of a need to have a robust NQA-1 program

3-D Computer-Aided Engineering (CAE)

 Vendor and EPC contractor must commit to use of 3-D CAE to plan work and identify potential plant construction conflicts

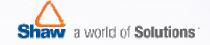
Shaw a world of Solutions

Lessons Learned (cont.)

Workforce Planning

- EPC contractor must have systems and experience to attract, identify and retain appropriate sources of highly skilled tradesmen (welders, pipe fitters, etc.)
- Programs are needed to train workers where there are shortages

Problem Identification & Resolution


 EPC contractor must have ability to proactively identify, categorize and resolve arising issues

Regulatory Interface

23M012008D 01.14.08

 EPC contractor must have healthy and productive interaction with regulatory bodies

Challenges Unique to Nuclear Environment

Timing

- New nuclear unit delivery schedule approximately nine years (vs. seven for coal), with threeto four-year fabrication times for steam generators and vessels
- Early decision-making is necessary

Public Scrutiny

Shaw a world of Solutions

Because nuclear power is such a high-profile technology, potential problems at any site become widely known

Uniqueness of Nuclear

 Nuclear power is among the most highly regulated activities in the world, so regulations are robust and closely followed

Collaboration between Regulators

 Nuclear regulators make up a very small community and are far more connected than in any other arena

Challenges Unique to Nuclear Environment (cont.)

Robust QA/QC is Vital

• Components emplaced in nuclear units require much higher pedigree than those in fossil units

"Safety Culture"

Shaw a world of Solutions

 Companies involved in nuclear unit construction must not only foster safe working environments for employees, but also must create a culture at the worksite that prioritizes safety above scheduling and cost concerns

Specialization of Contractors & Subcontractors (C&S)

 Not all C&Ss have the programs, processes, procedures and people --"The Four Ps" -- needed to successfully build nuclear operating units

Conclusion

Takeaway Comment:

23M012008D 01.14.08

- When constructing a major infrastructure addition such as a nuclear power plant, the selection of the "best fit" EPC contractor is not merely a function of who gives you the lowest price
- Instead, the key question a utility needs to ask itself is: Does this EPC contractor have the programs, processes, procedures, and people I can trust to successfully execute the project on time and within the agreed pricing framework?

a world of Solutions.