
 
 

1. PROBLEM STATEMENT 

Problem Scenario: 

The traditional way of booking the ticket for the movie is the customer need to go to the 

specific theatre where the desired movie was playing and need to stand in queue and buy the 

ticket for the movie this will become more difficult for a person in order to overcome this 

problem  

 The project gives real life understanding of online movie ticket booking system and activities 

performed by various roles in the supply chain. Here we provide automation for movie ticket 

booking system through internet. Online movie ticket booking system project captures 

activities performed by different roles in real life ticket booking which provides enhanced 

techniques for maintaining the required information up to date, which results in efficiency. 

The project gives real life understanding of online movie ticket booking system and activities 

performed by various roles in the supply chain.  

Proposed Solution: 

The main purpose that theatres have been serving since their inception is to provide the 

tickets for the audience for the specified movie of specified show. While providing tickets, 

they also let us earn a certain amount of  money based on the type of ticket we are booking. 

Traditionally the theatres will be on rush which wastes the time of the common man and 

hence by this system we can save the time and energy of the customer . The services offered 

by online movie ticket booking systems are  

 1. View the list of movies present  

 2. View the trailer of the movie 

 3. View the list of theatres based on the show 

 4. Book the ticket for the specified show 

 

 

 

 

 

 

 

 



 
 

 

ANALYSIS 

2. Requirements Elicitation: 

The following table represents the categorization of requirements captured for online movie 

ticket booking 

SNO                                REQUIRMENTS           TYPE PRIORITY 

 

R1 

 

Log in:  A customer uses online movie ticket booking 

system in which he/she has to enter username and 

password. 

 

Functional 

 

Must have 

 

R2 

 

VIEW ACCOUNT: It allows a customer to view the list of 

movies that are available in all the theatres 

 

Functional 

 

Must have 

 

R3 

 

Display images related to the movie and its details 

 

Functional 

 

Must have 

 

R4 

 

Display timings of the movie 

 

Functional 

 

Must have 

 

R5 

 

SETTINGS: It allows the user to change their password & 

reset the password.  

 

Functional 

 

Must have 

 

R6 

 

OPEN PAYMENT:  This allows all types of credit cards 

and debit cards during the booking  

 

Functional 

 

Must have 



 
 

 

R7 

 

Shall validate payments with the credit card processing 

company 

 

Payment  

Functional 

 

Should 

have 

 

R8 

 

Should automatically calculate the ticket cost and 

automatically add/deduct the all types of taxes and charges 

for booking the ticket. 

 

Payment 

Functional 

 

Should 

have 

 

R9 

 

System should allow the customer to select the specified 

seat in the theatre and also can remove the seat from 

booking . 

 

User Interface 

Functional 

 

Must have 

 

R10 

 

User interface shall support the insertion of adverts  

 

User Interface 

Functional 

 

Must have 

 

R11 

 

Shall send the copy of Booking details of the respective 

users mobile or as an email about the payment details 

 

Payment 

Functional 

 

Should 

have 

 

 

R12 

 

Shall allow the user to view the payment history  

 

Orders 

Functional 

 

Could have 

 

R13 

 

Shall refund the amount if the transaction or payment has 

failed 

 

 

Functional 

 

Could have 

 

R14 

 

Shall allow the customer to register with the site. 

 

Registration 

Functional 

 

Functional 



 
 

 

R15 

 

Shall use the customer’s email address as user name for 

login purpose. 

 

Registration 

Functional 

 

Must have 

 

R16 

 

Shall require the customer to set a password 

 

Registration 

Functional 

 

Must have 

 

R17 

 

Shall collect customer information containing name, 

address, email, phone number, credit card number and 

specific information 

 

Registration 

Functional 

 

Must have 

 

R18 

 

Shall allow customer to view and edit their profile 

 

Registration 

Functional 

 

Must have 

 

 

R19 

 

Shall authenticate all customers prior to make payment, 

booking tickets 

 

NON-Functional 

 

Could have 

 

R20 

 

Shall be available 24 hours per day and 360 days per year 

 

Availability non 

Functional 

 

Must have 

 

 

R21 

 

Shall store booking details of each and every customers 

 

Available non 

functional 

 

Should 

have 

 

R22  

 

Shall support the latest versions of  internet explorer and 

also easily acessable in android mobiles 

 

 

Compliance to 

standards 

Non-Functional 

 

Must have 

 



 
 

 

R23 

 

Shall also support previous versions of the internet 

explorer and mobiles 

 

Compliance to 

standards 

Non-Functional 

 

Must have 

 

 

R24 

 

Shall be written in python and run on linux and windows  

 

Compliance to 

standards 

Non-Functional 

 

Must have 

 

 

R25 

 

Shall be run on the same system and software as the 

existing clear view training website  

 

Compliance to 

standards 

Non-Functional 

 

Must have 

 

 

R26 

 

Shall support and provide security and a adult trail 

  

Security and 

Functional 

 

Must have 

 



 
 

 

3. System Requirement specification 

Software Requirements: 

   Operating System : windows 10 

   Coding language : Django 

   Data Base : SQLite3 

   Interface: Pycharm 

   Front end: html (jinja templating )  

 

Hardware Requirements: 

Personal computer with keyboard and mouse maintained with uninterrupted power supply. 

    Processor : Intel® core™ i5 

    Installed Memory (RAM) : 2.00 GB 

    Hard Disc : 2 TB 

    floppy :1.44Mb 

 

 

 



 
 

 

Use-case view 

4. IDENTIFICATION OF ACTORS: 

Actors represent system users. They are NOT part of the system .They represent anyone or 

anything that interacts with the system. 

An actor is someone or something that: 

• Interacts with or uses the system 

• Provides input to and receives information from the system 

• Is external to the system and has no control over the use cases 

Actors are discovered by examining: 

• Who directly uses the system 

• Who is responsible for maintaining the system 

• External hardware used by the system 

• Other systems that need  to interact with the system 

The needs of the actor are used to develop use cases. This insures that the system will be 

what the user expected. 

Graphical depiction: 

An actor is a stereotype of a class and is depicted as a “stickman” on a use-case diagram. For 

example, 

 User

 

Actors identified are: 

1) user 

2) Administrator 

 
1) User: User has to login into his/her account to view profile, to view list of movies, 

to view trailer, to book the movie and he/she has to logout the account after 

his/her booking. 

 

 



 
 

 User

 

 

2) Administrator: All the transactions that affect an account should be allowed only 

after authentication of the mobile number .He has the powers to create or delete 

users and their access to the system. 

    Functions of database administrator include: 

• Defining database structure 

• Ensuring data availability 

• Ensuring security over access to data 

 

Administrator

 

5. IDENTIFICATION OF USE-CASES OR SUB USE-CASES 

 

Use-case diagrams graphically represent system behaviour .These  diagrams present a high 

level view of how the system is used as viewed from an outsider’s perspective. A use-case 

diagram may contain all or some of the use cases of a system. 

A use-case diagram can contain: 

➢ Actors 

➢ Use cases 

➢ Relationships between actors and use cases in the system 

Use-case diagrams can be used during analysis to capture the system requirements and to 

understand how the system should work. During the design phase, you can use use-case 

diagrams to specify the behaviour of the system as implemented. 

   In its simplest form, a use case can be described as a specific way of using the system from 

a user’s perspective. A  more  detailed description might characterize a use case as: 

➢ A  pattern of behaviour the system exhibits 

➢ A  sequence of related transactions performed by an actor and the system 

The UML notation for use case is:  



 
 

    

Login

 

 

PURPOSE OF USE CASES:  

➢ Well structured use cases denote essential system or subsystem behaviours only, 

and are neither overly general nor too specific. 

➢ A use case represents a functional requirement of the system as a whole 

➢ Use cases represent an external view of the system 

➢ A use case describes a set of sequences, in which each sequence represents the 

interaction of the things outside the system with the system itself. 

Use-cases identified for online banking system are: 

1 .Use-case name: Login  

This is a use case which is used by actor to log on to the system and view the 

available set of operations that he can perform 

Login

 
 

    2. Use-case name: view Trailer  

    System allows customer to view the trailer of the specified movie. 

 

 ViewTrailer

 

 

  3. Use-case name: Update records 

     This use case allows only the administrator to update the records of the movie 

 

                                                     

 UpdateRecords

 



 
 

4. Use-case name: Register 

    This use case allows the an anonymous user to register on to the site 

 Register

 

                                           

5 .Use-case name: Book tickets  

     This use case allows the user to book the specified movie in specified theatre and can 

select the seat 

 BookTicket

 

6. Use-case name:  Delete Records 

     This use case allows only the administrator to delete the records of the movie 

. 

 DeleteRecords

  

 

7. Use-case name: select movie 

This allows the user to select the required movie from the system 

 SelectMovie

          

  

 

 



 
 

6. BUILDING REQUIREMENTS MODELTHROUGH USE-CASE 

DIAGRAM 

Definition: 

Use-case diagrams graphically represent system behaviour. These diagrams present a high 

level view of how the system is used as viewed from an outsider’s perspective. 

          Use-case diagrams can be used during analysis to capture the system requirements and 

to understand how the system should work. During the design phase, you can use use-case 

diagrams to specify the behaviour of the system as implemented. 

RELATIONS: 

Association Relationship: 

An association provides a pathway for communication. The communication can be between 

use cases, actors, classes or interfaces. If two objects are usually considered independently, 

the relationship is an association. 

 

Customer  login

 

    Dependency Relationship: 

A dependency is a relationship between two model elements in which a change to one model 

element will affect the other model element. Use a dependency  relationship to connect model 

elements with the same level of meaning. 

We can provide here 

1. Include relationship: 
It is a stereotyped  relationship that connects a base use case to an inclusion use case .An 

include relationship specifies how the behaviour in the inclusion use case is used by the 

base use case. 

 

                            <<includes>> 

 Login  AddMovie

 



 
 

 

2. Extend relationship: 
It is a stereotyped  relationship that specifies how the functionality of one use case can be 

inserted into the functionality of another use case. 

<<extend>> is used when you wish to show that a use case provides additional 

functionality that may be required in another use case. 

                                 

<<extends>> 

 UseCase1  UseCase2

 

 

 

USE CASE DIAGRAM FOR LOGIN TO THE SITE: 

 registered_user

 select_movie

 view_trailer

 book_movie

 change_pwd

 select_show_timing

 select_seatings

 make_payment

 view_profile

 login

 book_the_show

 

 

 

 

 



 
 

 

 

 

 

USE CASE FOR REGISTERING TO THE SITE: 

 other
 register

 

USECASE FOR ADMIN OF THE SITE: 

 login
 admin

 add_record

 update_records

 delete_records

 

 

 

 

 

ADVANCED USECASE DIAGRAM FOR ENTIRE SYSTEM: 



 
 

 login

 reset_pwd

select_movie

 select_timings

 view_trailer

 select_theatre

 user

 movie_booking

 others

<<extends>>

 register
 change_pwd

 view_profile

<<extends>>

<<extends>>

 make_payment

 confirm_payment

<<extends>>

<<includes>>

 add_records

 delete_records

 update_records

 administrator

 validate_records

<<includes>>

 

 



 
 

 

 

7. FLOW OF EVENTS 

       A flow of events is a sequence of transactions performed by the system. They typically 

contain very detailed information .Flow of events document is typically created in the 

elaboration phase. 

Each use case is documented with flow of events 

➢ A description of events needed to accomplish required behaviour 

➢ Written in terms of what the system should do, NOT how it should do it 

➢ Written in the domain language , not in terms of the implementation 

A flow of events should include 

➢ When and how the use case starts and ends 

➢ What interaction the use case has with the actors 

➢ What data is needed by the use case 

➢ The description of any alternate or exceptional flows 

  The flow of events for a use case is contained in a document called the use case 

specification. Each project should use a standard template for the creation of the use case 

specification. Includes the following 

1. Use case name – Brief Description 

2. Flow of events –  

                          1. Basic flow 

                          2. Alternate flow 

                          3. Special requirements 

                          4. Pre conditions 

                          5. Post conditions 

                          6. Extension points 

 

 

 

Use case specification for Book The Show: 
1. Use case name: Booking  

Brief description: This Use case allows the customer/user to book the movie. 

2. Flow of events: 

2.1. Basic  flow 

1) This use case begins when customer logs onto online movie ticket booking site 

and enters his/her password. The system verifies that the password is valid. 

( if the password is invalid , alternate flow 3.1 is executed ) 

2) System displays the list of movies available in every theatre 

2.1) If customer need to book the movie then he/she should select the movie 

image displayed on the home screen 

 2.1.1) Customer should select any one of the shows (i.e) first, second, third  

 2.1.2) Customer should select one of the theatres displayed on the system 



 
 

  ( if there is no theatre displayed  then alternate flow 3.2 is executed) 

 2.1.3) Customer should enter the seat number for booking 

  ( if entered seat is already booked, alternate flow 3.3 is executed ) 

           3. Alternate flow: 

3.1)Invalid password: An invalid password is entered. The customer can re-enter 

password or terminate use case. 

3.2) If there is no theatres in that show the user should select another show or 

terminate the use case  

 3.3) If the seat was already booked then user need to select another seat. 

4 .Special requirements: There are no special requirements 

5. Pre conditions:  

                    Login use case must execute before this use case begins and customer must be a 

valid customer. 

6. Post conditions: 

                    After completing the use case the status or result of this use case must be sent to 

user email and mobile. 

7. Extension points: There are no extension points. 

Use case specification for View Trailer: 

1. Use case name: Request for Trailer 

Brief description: This use case allows customer to view the trailer of the specified 

movie  

2. Flow of events: 

2.1.  Basic flow: 

1) On selecting the movie the use case will display the following options. 

View trailer, first show, second show, third show. 

2)  On selecting the trailer the use case begins 

3) It displays the trailer of the specified movie 

 2.2.Alternate flows: 

              2.2.1) The trailer will not be played or displayed. 

3. Special requirements: There are no special requirements. 

4. Pre conditions: The user must logon to the site and select the movie. 

5. Post conditions: There is no post conditions 

6. Extension points: There are no Extension points. 

 

 

 

 



 
 

8. SAMPLE PROTOTYPES FOR APPLICATION: 

As the requirements for a system emerge in the form of use cases, it is sometimes helpful to 

build simple prototypes of how some of the use cases will work. A prototype is a working 

model of part of the system usually a program with limited functionality that is built to test 

out some aspect of how the system will work.Prototypes can be used to help elicit 

requirements. Showing users how the system might provide some of the use cases often 

produces a stronger reaction than showing them a series of abstract diagrams. Their reaction 

may contain useful information about requirements. 

The following prototype is for Book The Show: 

url: localhost:8000/accounts 

Movie Booking                      Login                   Register 

Welcome to online movie ticket bookings!! 

You can login here 

UserName: 

 

Password:  

 

 

Login 

 

 

url: localhost:8000/accounts/home 

Movie Booking    home     profile     change password      reset password        logout 

         Movie1                               Movie2                                          movie3 

 

 

 



 
 

url: localhost:8000/home/movieview/{{ movie_id }}  

Movie Bookings        home         profile           change password               reset password            logout 

Movie 

Name : 

 

Video File 

 

First Show 

Second Show 

Third Show 
 

 

url: localhost:8000/home/movieview/{{ movie_id }} /{{show_number}} 

Movie Bookings        home         profile           change password               reset password            logout 

Display List of Theatres 

Theatre1 

Thratre2 

Theatre3 

   . 

   . 

   . 

 

 

 

 

 

 

 

http://localhost:8000/home/movieview/2/first/
http://localhost:8000/home/movieview/2/second/
http://localhost:8000/home/movieview/2/third/


 
 

url: localhost:8000/home/movieview/{{ movie_id }} /{{show_number}}/book/{{theatre_name}} 

Movie Bookings        home         profile           change password               reset password            logout 

A s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

B s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

C s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

D s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

E s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

F s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

G s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

H s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

movie: 

Show: 

Theatre: 

• This field is required. 

Row:  

• This field is required. 

Column:  

submit 

 

 

url: localhhost:8000/accounts/register 

Movie Bookings        home         profile           change password               reset password            logout 

logged out!! 
 

 



 
 

 

 

 

The following is prototype for REGISTERING: 

 

url: localhhost:8000/accounts/register 

Movie Bookings        home         profile           change password               reset password            logout 

you can register here 

Username:  Required. 150 characters or fewer. Letters, digits and @/./+/-/_ 

only. 

First name:  

Last name:  

Email:  

Phone:  

City:  

Password:  

• Your password can't be too similar to your other personal information. 

• Your password must contain at least 8 characters. 

• Your password can't be a commonly used password. 

• Your password can't be entirely numeric. 

Password confirmation:  Enter the same password as before, for verification. 

Submit 
 

 

 



 
 

 

 

 

 

 

 

 

The following is prototype for CHANGE PASSWORD 

url: localhost:8000/accounts/change_pwd 

Movie Bookings        home    profile    change password    reset password      logout 

Old password: 

 

 

New password: 

 

• Your password can't be too similar to your other personal 

information. 

• Your password must contain at least 8 characters. 

• Your password can't be a commonly used password. 

• Your password can't be entirely numeric. 

Re-enter password: 

 

 

submit 

 

 

 



 
 

 

The following is prototype for RESET PASSWORD 

url: localhost:8000/accounts/reset_pwd 

Movie Bookings     home    profile    change password    reset password     logout 

Welcome to online movie ticket bookings!! 

reset!! 

forgot password!! 

Email: 

 

 

submit 

 

 

url: localhost:8000/accounts/reset_pwd/done 

Movie Bookings    home     profile     change password    reset password    logout 

Thank you for your response!! 

We've emailed you instructions for setting your password. You should 

receive the email shortly! 

 

 

 

 

 

 

 



 
 

 

The following is prototype for View Profile 

url: localhhost:8000/accounts/profile 

Movie Bookings   home    profile     change password     reset password     logout 

Profile 

UserName: 

First Name: 

Last Name: 

Email: 

City: 

Phn: 

 

 

 

 

 

9. ACTIVITY DIAGRAM 

An Activity diagram is a variation of a special case of a state machine, in which the states are 

activities representing the performance of operations and the transitions are triggered by the 

completion of the operations. The purpose of Activity diagram is to provide a view of flows 

and what is going on inside a use case or among several classes. You can also use activity 

diagrams to model code-specific information such as a class operation. 

 Activity diagrams are very similar to a flowchart because you can model a workflow from 

activity to activity. An activity diagram is basically a special case of a state machine in which 

most of the states are activities and most of the transitions are implicitly triggered by 

completion of the actions in the source activities.  

• ACTIVITY DIAGRAMS also may be created at this stage in the life cycle. These 

diagrams represent the dynamics of the system. They are flow charts that are used 

to show the workflow of a system; that is, they show the flow of control from 

activity to activity in the system, what activities can be done in parallel, and any 

alternate paths through the flow. 



 
 

•  At this point in the life cycle, activity diagrams may be created to represent the 

flow across use cases or they may be created to represent the flow within a 

particular use case.  

• Later in the life cycle, activity diagrams may be created to show the workflow for 

an operation. 

 

The following tools are used on the activity diagram toolbox to model activity diagrams: 

Activities: 

       An activity represents the performance of some behavior in the workflow.  

NewActivity

 

Transitions: 

          Transitions are used to show the passing of the flow of control from activity to activity. 

They are typically triggered by the completion of the behavior in the originating activity. 

 

 

 

 

 

 

Decision Points: 

          When modeling the workflow of a system it is often necessary to show where the flow 

of control branches based on a decision point. The transitions from a decision point contain a 

guard condition, which is used to determine which path from the decision point is taken. 

Decisions along with their guard conditions allow you to show alternate paths through a work 

flow.  

 

                                         Decision point 

 

Start state: 



 
 

      A start state explicitly shows the beginning of a workflow on an activity diagram or the 

beginning of the execution of a state machine on a state chart diagram. 

 

End state: 

         An End state represents a final or terminal state on an activity diagram or state chart 

diagram. Place an end state when you want to explicitly show the end of a workflow on an 

activity diagram or the end of a state chart diagram. Transitions can only occur into an end 

state; however, there can be any number of end states per context. 

                             End state:  

 

 

Swim Lanes: 

           Swim lanes may be used to partition an activity diagram. This typically is done to 

show what person or organization is responsible for the activities contained in the swim lane.  

• Horizontal synchronization                                

• Vertical synchronization 

 

 

 

 

 

 

 

 

 

 



 
 

Logical View 

10. IDENTIFICATION OF ANALYSIS CLASSES 

The class diagram is fundamental to object-oriented analysis. Through successive iterations, 

it provides both a high level basis for systems architecture, and a low-level basis for the 

allocation of data and behavior to individual classes and object instances, and ultimately for 

the design of the program code that implements the system. So, it is important to identify 

classes correctly. However, given the iterative nature of the object-oriented approach, it is not 

essential to get this right on the first attempt itself. 

Approaches for identifying classes:  

We have four alternative approaches for identifying classes:  

1. The noun phrase approach; 

2. The common class patterns approach; 

3. The use- case driven TO  sequence/collaboration modeling approach;  

4. Class Responsibility collaboration cards (CRC) approach.  

1. NOUN PHRASE APPROACH:  

 In this method, analyst read through the requirements or use cases looking for noun 

phrases. Nouns in the textual description are considered to be classes and verbs to be methods 

of the classes All plurals are changed to singular, the nouns are listed, and the list divided into 

three categories relevant classes, fuzzy classes (the "fuzzy area," classes we are not sure 

about), and irrelevant classes . 

It is safe to scrap the irrelevant classes, which either have no purpose or will be unnecessary. 

Candidate classes then are selected from the other two categories. Here identifying classes 

and developing a UML class diagram just like other activities is an iterative process.  

1 Identifying Tentative Classes: 

The following are guidelines for selecting classes in an application: 

• Look for nouns and noun phrases in the use cases.  

• Some classes are implicit or taken from general knowledge.  

• All classes must make sense in the application domain; avoid computer 

implementation classes-defer them to the design stage.  

• Carefully choose and define class names.  

 

2 Selecting Classes from the Relevant and Fuzzy Categories: 

 The following guidelines help in selecting candidate classes from the relevant and 

fuzzy categories of classes in the problem domain.  



 
 

a) Redundant classes. Do not keep two classes that express the same information. If 

more than one word is being used to describe the same idea, select the one that is the 

most meaningful in the context of the system. This is part of building a common 

vocabulary for the system as a whole. Choose your vocabulary carefully; use the word 

that is being used by the user of the system.  

b)  Adjectives classes: "Be wary of the use of adjectives. Adjectives can be used in 

many ways. An adjective can suggest a different kind of object, different use of the 

same object, or it could be utterly irrelevant. Does the object represented by the noun 

behave differently when the adjective is applied to it? If the use of the adjective 

signals that the behavior of the object is different, then make a new class".  

 For example : Single account holders  behave differently than Joint account holders, 

so the two should be classified as different classes.  

c) Attribute classes: Tentative objects that are used only as values should be defined or 

restated as attributes and not as a class. For example, ClientStatus and Details of 

Client are not classes but attributes of the Client class.  

2) COMMON CLASS PATTERNS APPROACH  

 The second method for identifying classes is using common class patterns, which is 

based on a knowledge base of the common classes. 

The following patterns are used for finding the candidate class and object:  

a) Concept class: 

 A concept is a particular idea or understanding that we have of our world. The 

concept class encompasses principles that are not tangible but used to organize or keep track 

of business activities or communications.  

Example: Performance is an example of concept class object. 

b) Events class: 

 Events classes are points in time that must be recorded. Things happen, usually to 

something else at a given date and time or as a step in an ordered sequence. Associated with 

things remembered are attributes (after all, the things to remember are objects) such as who, 

what, when, where, how, or why.  

Example: Landing, interrupt, request, and order are possible events. 

 

c) Organization class: 

 An organization class is a collection of people, resources, facilities, or groups to which the 

users belong; their capabilities have a defined mission, whose existence is largely 

independent of the individuals.  

Example: An accounting department might be considered a potential class.  

d) People class (also known as person, roles, and roles played class):  



 
 

 The people class represents the different roles users play in interacting with the 

application. 

Example: Employee, client, teacher, and manager are examples of people.  

 

 3) USE-CASE DRIVEN APPROACH:  

IDENTIFYING CLASSES AND THEIR BEHAVIORS THROUGH 

SEQUENCE/COLLABORATION MODELING  

 One of the first steps in creating a class diagram is to derive from a use case, via a 

collaboration (or collaboration diagram), those classes that participate in realizing the use 

case. Through further analysis, a class diagram isdeveloped for each use case and the various 

use case class diagrams are then usually assembled into a larger analysisclass diagram. 

This can be drawn first for a single subsystem or increment, but class diagrams can be drawn 

at any scale that is appropriate, from a single use case instance to a large, complex system.  

 Identifying the objects involved in a collaboration can be difficult at first, and takes 

some practice before the analyst can feel really comfortable with the process. Here a 

collaboration (i.e. the set of classes that it comprises) can be identified directly for a use case, 

and that, once the classes are known, the next step is to consider the interaction among the 

classes and so build a collaboration diagram.  

 

From collaboration diagram to class diagram  

 The next step in the development of a requirements model is usually to produce a 

class diagram that corresponds to each of the collaboration diagrams. 

 Collaboration diagrams are obtained by  result of reasonably careful analysis, the 

transition is not usually too difficult.  

The similarities & differences B/W Collaboration and class diagrams are : 

 First, consider the similarities: 

 Both show class or object symbols joined by connecting lines. In general, a class diagram 

has more or less the same structure as the corresponding collaboration diagram. In particular, 

both should show classes or objects of the same types.  

Any of the three analysis stereotype notations for a class can be used on either diagram, and 

stereotype labels  can also be omitted from individual classes, or from an entire diagram.  

 Next, the differences are: 

1. The difference is that an actor is almost always shown on a collaboration diagram, but 

not usually shown on a class diagram. This is because the collaboration diagram 

represents a particular interaction and the actor is an important part of this interaction. 

However, a class diagram shows the more enduring structure of associations among 



 
 

the classes, and frequently supports a number of different interactions that 

may represent several different use cases.  
2.  A collaboration diagram usually contains only object instances, while a class diagram 

usually contains only classes.  

3. The connections between the object symbols on a collaboration diagram symbolize 

links between objects, while on a class diagram the corresponding connections stand 

for associations between classes.  

4.  A collaboration diagram shows the dynamic interaction of a group of objects and thus 

every link needed for message passing is shown. The labelled arrows alongside the 

links represent messages between objects. On a class diagram, the associations 

themselves are usually labelled, but messages are not shown.  

5.  Finally, any of the three stereotype symbols can be used on either diagram , there are 

also differences in this notation.  

4) Class Responsibility collaboration Cards ( CRC Cards)  

 At the starting , for the identification of classes we need to concentrate completely on 

uses cases. A further examination of the use cases also helps in identifying operations and the 

messages that classes need to exchange. However, it is easy to think first in terms of the 

overall responsibilities of a class rather than its individual operations. A responsibility is a 

high level description of something a class can do.  

11. IDENTIFICATION OF RESPONSIBILITIES OF CLASSESS 

 

Class Responsibility Collaboration (CRC) cards provide an effective technique for exploring 

the possible ways of allocating responsibilities to classes and the collaborations that are 

necessary to fulfill the responsibilities. 

CRC cards can be used at several different stages of a project for different purposes.  

1. They can be used early in a project to help the production of an initial class diagram . 

2. To develop a shared understanding of user requirements among the members of the team.  

3. CRCs are helpful in modeling object interaction.  

The format of a typical CRC card is shown below: 

Class Name:  

Responsibilities  Collaborations  

Responsibilities of a 

class are listed in this 

section  

Collaborations with other  

classes are listed here, together  

with a brief description of the  

purpose of the collaboration  

 



 
 

 CRC cards are an aid to a group role-playing activity . Index cards are used in 

preference to pieces of paper due to their robustness and to the limitations that their size 

(approx. 15cm x 8cm) imposes on the number of responsibilities and collaborations that can 

be effectively allocated to each class. 

A class name is entered at the top of each card and responsibilities and collaborations are 

listed underneath as they become apparent. For the sake of clarity, each collaboration is 

normally listed next to the corresponding responsibility.  

  From a UML perspective, use of CRC cards is in analyzing the object interaction that 

is triggered by a particular use case scenario. The process of using CRC cards is usually 

structured as follows.  

1. Conduct a session to identify which objects are involved in the use case.  

2. Allocate each object to a team member who will play the role of that object.  

3. Act out the use case.  

 This involves a series of negotiations among the objects to explore how responsibility 

can be allocated and to identify how the objects can collaborate with each other.  

4. Identify and record any missing or redundant objects.  

 Before beginning a CRC session it is important that all team members are briefed on 

the organization of the session and a CRC session should be preceded by a separate exercise 

that identifies all the classes for that part of the application to be analyzed. The team 

members to whom these classes are allocated can then prepare for the role playing exercise 

by considering in advance a first-cut allocation of responsibilities and identification of 

collaborations. Here , it is important to ensure that the environment in which the sessions take 

place is free from interruptions and  free for the flow of ideas among team members. 

 During a CRC card session, there must be an explicit strategy that helps to achieve an 

appropriate distribution of responsibilities among the classes. One simple but effective 

approach is to apply the rule that each object should be as lazy as possible, refusing to take on 

any additional responsibility unless instructed to do so by its fellow objects.  

 

 

12. USE CASE REALIZATIONS  

 THE USE CASE diagram presents an outside view of the system. The functionality of 

the use case is captured in the flow of events. Scenarios are used to describe how use cases 

are realized as interactions among group of objects. 

  A scenario is an instance of a use case  it is one path through the flow of events for 

the use case. Scenarios are developed to help identify the objects, the classes, and the object 

interactions needed to carry out a piece of the functionality specified by the use case. They 

also provide an excellent communication medium to be used in the discussion of the system 

requirements with customers.  



 
 

         In the UML, use case realizations are drawn as dashed ovals and  relation ship symbols 

are as shown below. 

symbol for use case 
realization

 

                                                                       Realization relationship 

A use case realization is a graphic sequence of events, also referred as a scenario or an 

instance of a use case. These realizations or scenarios are represented using either a sequence 

or collaboration diagrams. 

The following are the use case realizations in our project: 

  

  

 

( from use case view)                       Requests for cheque book 

 

 

 

 

 

 

 

 

Use case Realization for entire system: 

---------------- 



 
 

 

 Add_records  add_records

delete_records

 update_records

 validate_payments

 Register

 Login/Logout

 Delete_records

 Update_records

 validatePayments

 register

 login_logout

 Change_pwd
 change_pwd

 view_list_of_movies  View_list_of_movies

 view_trailer  View_trailer

 select_show_timing
 Select_show_timing

select_theatre
 select_Theatre

 select_seating
select_Seatings

 Book_movie  book_movie

 make_payment
 Make_payment

 View_profile
 view_profile



 
 

select_theatre
 select_Theatre

 select_seating
select_Seatings

 

 Book_movie  book_movie

 make_payment
 Make_payment

 View_profile
 view_profile

 

 

 

 

 

 

13. SEQUENCE DIAGRAMS 

A sequence diagram is a graphical view of a scenario that shows object interaction in a time 

based sequence--what happens first, what happens next…  

       Sequence diagrams establish the roles of objects and help provide essential information 

to determine class responsibilities and interfaces.  

 A sequence diagram has two dimensions: the vertical dimension represents time; the 

horizontal dimension represents different objects. The vertical line is called the object’s 

lifeline. The lifelinerepresents the object’s existence during the interaction. 



 
 

Steps: 

1. An object is shown as a box at the top of a dashed vertical line. Object names can be 

specific (e.g., Algebra 101, Section 1) or they can be general (e.g., a course offering). Often, 

an anonymous object (class name may be used to represent any object in the class.)  

2. Each message is represented by an Arrow between the lifelines of two objects. The order in 

which these messages occur is shown top to bottom on the page. Each message is labeled 

with the message name.  

       There are two main differences between sequence and collaboration diagrams: sequence 

diagrams show time-based object interaction while collaboration diagrams show how objects 

associate with each other. A sequence diagram has two dimensions: typically, vertical 

placement represents time and horizontal placement represents different objects.   

ELEMENTS OF SEQUENCE DIAGRAM: 

• Objects 

• Links 

• Messages 

• Focus of control 

• Object life line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence Diagram for Book the Show: 



 
 

 : User : User  : SysteUI : SysteUI  : SystemCC : SystemCC  : Login_details : Login_details  : movie_details : movie_details  : Booking_details : Booking_details  : catalog : catalog

1: display_interface()

2: enter_login_details()

3: get_login_details()

4: get_login_details()

5: validate_login()

6: get_list_of_movies()

7: display_list_of_movies()

8: select_movie()

9: get_movie_name()

10: get_movie()

11: display_show_timings()

12: select_show()

13: get_show_number()

14: get_show_number()

15: display_seatings()

16: select_seat()

17: get_seat_number()

18: get_seat_number()

19: validate_seat()

20: update_catalog()

 



 
 

 

Sequence Diagram for Registering the site 

 : User : User  : RegisterUI : RegisterUI  : RegisterCC : RegisterCC  : UserDetails : UserDetails

1: displayInterface()

2: enterFirstName()

3: setFirstName()

4: setFirstName()

5: enterLastName()

6: setLastName()

7: setLastName()

8: enterLocation()

9: setLocation()

10: setLocation()

11: enterEmail()

12: setEmail()

13: setEmail()

14: entrerPWD()

15: setPWD()

16: setPWD()

17: reenterPWD()

18: setRPWD()

20: updateNewUser()

19: validatePWD()

 



 
 

Sequence Diagram for Login the site:  

 : User : User  : LoginUI : LoginUI  : LoginCC : LoginCC  : UserDetails : UserDetails

1: displayInterface()

2: enterUserName

3: getUserName()

4: getUserName()

5: enterPWD()

6: getPWD()

7: getPWD()

9: displayHomePage()

8: validatePWD()

 

 

 

 

 

 

 

 

 

 

Sequence Diagram for View the trailer: 



 
 

 : user : user  : SystemUI : SystemUI  : SystemCC : SystemCC  : LoginDetails : LoginDetails  : 

movieDetails

 : 

movieDetails

 : Trailer : Trailer

1: display_interface()

2: enterLogin_details()

3: get_login_details()

4: get_login_details()

5: validate_login()

6: get_movie_details()

7: display_list_of_movies()

8: select_movie()

9: get_movie_name()

10: get_movie_name()

11: display_trailer()

12: view_trailer()

 

 

 

 

 

 

 

 

 

 



 
 

14. COLLABORATION DIAGRAM 

Collaboration diagrams are the second kind of interaction diagram in the UML diagrams. 

They are used to represent the collaboration that realizes a use case.The most significant 

difference between the two types of interaction diagram is that a collaboration diagram 

explicitly shows the links between the objects that participate in a collaboration , as in 

sequence diagrams, there is no explicit time dimension. 

Message labels in collaboration diagrams: 

 Messages on a collaboration diagram are represented by a set of symbols that are the 

same as those used in a sequence diagram, but with some additional elements to show 

sequencing and recurrence as these cannot be inferred from the structure of the diagram. Each 

message label includes the message signature and also a sequence number that reflects call 

nesting, iteration, branching, concurrency and synchronization within the interaction.  

The formal message label syntax is as follows:  

[predecessor] [guard-condition] sequence-expression [return-value ':='] message-name' (' 

[argument-list] ')'  

 A predecessoris a list of sequence numbers of the messages that must occur before the 

current message can be enabled. This permits the detailed specification of branching 

pathways. The message with the immediately preceding sequence number is assumed to be 

the predecessor by default, so if an interaction has no alternative pathways the predecessor 

list may be omitted without any ambiguity. The syntax for a predecessor is as follows:  

 sequence-number { ',' sequence-number} 'I'   

The 'I' at the end of this expression indicates the end of the list and is only included when an 

explicit predecessor is shown.  

Guard conditionsare written in Object Constraint Language (OCL) ,and are only shown 

where the enabling of a message is subject to the defined condition. A guard condition may 

be used to represent the synchronization of different threads of control.  

A sequence-expressionis a list of integers separated by dots ('.') optionally followed by a 

name (a single letter), optionally followed by a recurrence term and terminated by a colon. A 

sequence-expression has the following syntax:  

 integer { '.' integer } [name] [recurrence] ':'  

 In this expression integer represents the sequential order of the message. This may be 

nested within a loop or a branch construct, so that, for example, message 5.1 occurs after 

message 5.2 and both are contained within the activation of message 5.  

  The name of a sequence-expression is used to differentiate two concurrent messages 

since these are given the same sequence number. For example, messages 3.2.1a and 3.2.1b 

are concurrent within the activation of message 3.2.  

 Recurrence reflects either iterative or conditional execution and its syntax is as 

follows:  

Branching:    '[ 'condition-clause‘ ] ,  



 
 

Iteration:  ‘ * ‘ ‘ [ ‘ iteration-clause ‘ ] '  

Elements: 

• Objects 

• Links 

• Messages 

• Path 

• Sequence number 

 

Collaboration Diagram for Book the show: 

 

 : User

 : SysteUI

 : SystemCC

 : Login_details

 : movie_details

 : Booking_details
 : catalog

1: display_interface()

2: enter_login_details()
3: get_login_details()

4: get_login_details()

5: validate_login()

6: get_list_of_movies()

7: display_list_of_movies()

8: select_movie()
9: get_movie_name()

10: get_movie()

11: display_show_timings()

12: select_show()
13: get_show_number()

14: get_show_number()

15: display_seatings()

16: select_seat()
17: get_seat_number()

18: get_seat_number()

19: validate_seat()

20: update_catalog()

 

 

 

 

 

 

 

 



 
 

Collaboration Diagram for Registration: 

 : User
 : RegisterUI

 : RegisterCC

 : UserDetails

1: displayInterface()

2: enterFirstName()

3: setFirstName()

4: setFirstName()

5: enterLastName()

6: setLastName()

7: setLastName()

8: enterLocation()

9: setLocation()

10: setLocation()

11: enterEmail()

12: setEmail()

13: setEmail()

14: entrerPWD()

15: setPWD()

16: setPWD()

17: reenterPWD()

18: setRPWD()

19: validatePWD()

20: updateNewUser()

 

Collaboration Diagram for Login: 

 

 : User
 : LoginUI

 : LoginCC

 : UserDetails

1: displayInterface()

2: enterUserName

3: getUserName()

4: getUserName()

5: enterPWD()

6: getPWD()

7: getPWD()

8: validatePWD()

9: displayHomePage()

 

 

 



 
 

Collaboration Diagram for View trailer: 

  

 : user  : SystemUI  : SystemCC

 : LoginDetails

 : movieDetails
 : Trailer

1: display_interface()

2: enterLogin_details()
3: get_login_details()

4: get_login_details()

5: validate_login()

6: get_movie_details()

7: display_list_of_movies()

8: select_movie()
9: get_movie_name()

10: get_movie_name()

11: display_trailer()

12: view_trailer()

 

 

 

15. IDENTIFICATION OF METHODS AND ATTRIBUTES OF 

CLASSES 

Attributes 

Attributes are part of the essential description of a class. They belong to the class, unlike 

objects, which instantiate the class. Attributes are the common structure of what a member of 

the class can 'know'. Each object will have its own, possibly unique, value for each attribute. 

Guidelines for identifying attributes of classes are as follows: 

➢ Attributes usually correspond to nouns followed by prepositional phrases 

➢ Keep the class simple; state only enough attribute to defineobject state. 

➢ Attributes are less likely to be fully described in the problem statement. 

➢ Omit derived attributes. 

➢ Do not carry discovery attributes to excess. 

The attributes identified in our system are: 

• Attributes for User _details class: user _name, password 

• Attributes for movie _details class: movie _name, first, second, third 

• Attributes for trailer class: trailer 

 

 



 
 

The responsibilities identified in our system are: 

• Methods for User class: Successful login/failure, display user details 

• Methods for admin  class: Add records , delete records , update records 

• Methods for Booking class: get movie name, get theatre name, get seat number. 

16. IDENTIFICATION OF RELATIONSHIPS AMONG CLASSES 

NEED FOR RELATIONSHIPS AMONG CLASSES: 

     All systems are made up of many classes and objects. System behaviour is achieved 

through the collaborations of the objects in the system. 

Two types of relationships in CLASS diagram are: 

1. Association Relationship 

2. Aggregation Relationship 

1. Association Relationship:   

An association is a bidirectional semantic connection between classes. It is not a data flow as 

defined in structured analysis and design data may flow in either direction across the 

association. An association between classes means that there is a link between objects in the 

associated classes. 

 

2. Aggregation Relationship:  

       An aggregation relationship is a specialized form of association in which a whole is 

related to its part(s). Aggregation is known as a “part-of” or containment relationship. The 

UML notation for an aggregation relationship is an association with a diamond next to the 

class denoting the aggregate(whole). 

3. Super-sub structure (Generalization Hierarchy): 

         These allow objects to be build from other objects. The super-sub class hierarchy is a 

relationship between classes, where one class is the parent class of another class. 

NAMING RELATIONSHIP:  

 An association may be named. Usually the name is an active verb or verb phrase that 

communicates the meaning of the relationship. Since the verb phrase typically implies a 

reading direction, it is desirable to name the association so it reads correctly from left to right 

or top to bottom. The words may have to be changed to read the association in the other 

direction (e.g., Buses are allotted to Routes). It is important to note that the name of the 

association is optional.   

ROLE NAMES: 

The end of an association where it connects to a class is called an association role. 

Role names can be used instead of association names.  



 
 

A role name is a noun that denotes how one class associates with another. The role 

name is placed on the association near the class that it modifies, and may be placed on one or 

both ends of an association line.  

 

➢ It is not necessary to have both a role name and an association name. 

➢ Associations are named or role names are used only when the names are needed for 

clarity. 

 

MULTIPLICITY INDICATORS: 

➢ Although multiplicity is specified for classes, it defines the number of objects that 

participate in a relationship. Multiplicity defines the number of objects that are linked 

to one another. There are two multiplicity indicators for each association or 

aggregation one at each end of the line. Some common multiplicity indicators are  

➢  1   Exactly one  

➢  0... *   Zero or more  

➢  1... *   One or more  

➢  0... 1   Zero or one  

➢  5... 8   Specific range (5, 6, 7, or 8)  

➢  4... 7, 9  Combination (4, 5, 6, 7, or 9)  

 

 

 

17. UML CLASS DIAGRAM 

• Class diagrams are created to provide a picture or view of some or all of the classes in 

the model. 

• The main class diagram in the logical view of the model is typically a picture of the 

packages in the system. Each package also has its own main class diagram, which 

typically displays the “public” classes of the package. 

A class diagram is a picture for describing generic descriptions of possible systems. Class 

diagrams and collaboration diagrams are alternate representations of object models. 

Class diagrams contain icons representing classes, packages, interfaces, and their 

relationships, You can create one or more class diagrams to depict the classes at the top level 

of the current model; such diagrams are themselves contained by the top level of the current 

model. 

OBJECT: 

• An object is a representation of an entity, either real-world or conceptual. 

• An object is a concept, abstraction, or thing with well defined boundaries and 

meaning for an application. 

• Each object in a system has three characteristics: state, behavior , identity 

STATE: 



 
 

    The state of an object is one of the possible conditions in which it may exist. The state of 

an object typically changes over time, and is defined by a set of properties, with the values of 

the properties, plus the relationships the object may have with other objects. 

Behaviour : 

• Behaviour determines how an object responds to request from other objects. 

• Behaviour is implemented by the set of operations for the object. 

Identity: 

• Identity means that each object is unique even if its state is identical to that of another 

object. 

CLASS: 

     A class is a description of a group of objects with common properties common behaviour, 

common relationships to other objects, and common semantics. Thus, a class is a template to 

create objects. Each object is an instance of some class and objects cannot be instances of 

more than one class. 

 

In the UML, classes are represented as compartmentalizedrectangles: 

➢ The top compartment contains the name of the class. 

➢ The middle compartment contains the structure of the class. 

➢ The bottom compartment contains the behaviour of the class. 

STEREOTYPES AND CLASSES: 

    As like stereotypes for relationships in use case diagrams. Classes can also have 

stereotypes. Here a stereotype provides the capability to create a new kind of modelling 

element. Some common stereotypes for a class are entity, boundary and control class. 

 Notations of these stereotypes: 

entity class control class boundary class

 

Entity classes: 

       Entity classes are used to model 'information and associated behavior of some 

phenomenon or concept such as an individual, a real-life object, or a real-life event'.  As a 

general rule, entity classes represent something within the application domain, but external to 

the software system, about which the system must store some information. 

       Instances of an entity class will often require persistent storage of information about the 

things that they represent. This can sometimes help to decide whether an entity class is the 

appropriate modeling construct.   



 
 

 

 

Boundary classes: 

      Boundary classes, it is a   'model interaction between the system and its actors'. Since they 

are part of the requirements model, boundary classes are relatively abstract. They do not 

directly represent all the different sorts of interface that will be used in the implementation 

language. The design model may well do this later, but from an analysis perspective we are 

interested only in identifying the main logical interfaces with users and other systems. 

Control classes:  

       Control classes 'represent coordination, sequencing, transactions and control of other 

objects' .In the USDP, as in the earlier methodology objectory, it is generally recommended 

that there should be a control class for each use case. 

 In a sense, then, the control class represents the calculation and scheduling aspects of 

the logic of the use case at any rate, those parts that are not specific to the behavior of a 

particular entity class, and that are specific to the use case. Meanwhile the boundary class 

represents interaction with the user and the entity classes represent the behavior of things in 

the application domain and storage of information that is directly associated with those 

things. 

The following is the UML diagram for Entity class 

catalog

 

 

The following is the UML diagram for Boundary class: 

systemUI

 

 

 

 

 



 
 

The following is the UML diagram for Control class: 

systemCC

 

                                                

CLASS DIAGRAM FOR BOOK THE SHOW: 

 

 

 

 

CLASS DIAGRAM FOR REGISTERING THE SITE: 

 



 
 

 

 

 

 

 

CLASS DIAGRAM FOR LOGIN THE SITE:  

 

CLASS DIAGRAM FOR VIEW TRAILER: 

 

18. UML STATE CHART DIAGRAM 

Use cases and scenarios provide a way to describe system behavior; in the form of interaction 

between objects in the system. Sometimes it is necessary to consider inside behavior of an 

object. 

 A state chart diagram shows the states of a single object, the events or messages that 

cause a transition from one state to another, and the actions that result from a state change. 

As in Activity diagram , state chart diagram also contains special symbols for start state and 

stop state. 



 
 

 State chart diagram cannot be created for every class in the system , it is only for 

those class objects with significant behavior. 

State chart diagrams are closely related to activity diagrams.  The main difference between 

the two diagrams is state chart diagrams are state centric, while activity diagrams are activity 

centric.  A state chart diagram is typically used to model the discrete stages of an object’s 

lifetime, whereas an activity diagram is better suited to model the sequence of activities in a 

process. 

 

STATE: 

 A state represents a condition or situation during the life of an object during which it 

satisfies some condition, performs some action or waits for some event.  

 UML notation for STATE is  

 

 To identify the states for an object its better to concentrate on sequence diagram.In an 

ESU the object for CourseOffering may have in the following states, initialization, open and 

closed state. These states are obtained from the attribute and links defined for the object. 

Each state also contains a compartment for actions.  

Actions: 

Actions on states can occur at one of four times:  

• on entry 

• on exit 

• do 

• on event.   

on entry :What type of action that object has to perform after entering into the state. 

on exit  : What type of action that object has to perform after exiting from the state. 

Do :The task to be performed when object is in this state, and must to continue until it leaves 

the state. 

on event : An on event action is similar to a state transition label with the following  

 syntax:  event(args)[condition] : the Action 

State Transition: 

 A state transition indicates that an object in the source state will perform certain 

specified actions and enter the destination state when a specified event occurs or when certain 

conditions are satisfied.  A state transition is a relationship between two states, two activities, 

or between an activity and a state. You can show one or more state transitions from a state as 

long as each transition is unique.  Transitions originating from a state cannot have the same 

event, unless there are conditions on the event. 



 
 

Transitions are labeled with the following syntax: 

event (arguments) [condition] / action ^ target. send Event (arguments) 

Only one event is allowed per transition, and one action per event. 

  State Details : 

 Actions that accompany all state transitions into a state may be placed as an entry 

action within the state. Like wise that accompany all state transitions out of a state may be 

placed as exit actions within the state. Behavior that occurs within the state is called an 

activity. 

 An activity starts when the state is entered and either completes or is interrupted by an 

outgoing state transition. The behavior may be a simple action or it may be an event sent to 

another object. 

  

UML notation for State Details: 

StateName

entry/ simple action

entry/ ĉlass name.eventname

do/ simple action

do/ ĉlass name.event name

exit/ ĉlass name.event name

 

Purpose of State chart diagram: 

• State chart diagrams are used to model dynamic view of  a system. 

• State chart diagrams are used to modelling lifetime of an object. 

• State chart diagrams are used to focus on the changing state of a system driven by 

events. 

• It will also be used when showing the behaviour of a class over several use cases. 

ELEMENTS OF STATE CHART DIAGRAMS:  

 

State: It is a condition or situation during the life of an object during which it satisfies 

some conditions, performs some activity, or waits for some event 

Event: It is the specification of significant occurrence that has a location in time and 

space. 

Transition: It is a relation between two states indicating that an object in the first state 

will perform certain actions and enter the second state when a specified event occurs 

and conditions are satisfied. 

      Action state: An action state is shorthand for a state with an entry action and at least 

one  outgoing transition involving the implicit event of completing the entry action. 

Initial state: A pseudo state to establish the start of the event into an actual state. 

Final state: The final state symbol represents the completion of the activity 



 
 

Concurrent sub state: A concurrent state is divided into two or more sub states. It is a state 

that contains other state vertices. Any state enclosed with in a composite state is called a sub 

state of that concurrent state. 

Guard conditions: Activity and state diagrams express a decision when conditions are used 

to indicate different possible transitions that depend on Boolean conditions of container 

object. UML calls those conditions as guard conditions. 

Forks and joins: A fork construct is used to model a single flow of control that divides into 

two or more separate, but simultaneous flows. A join consists of two or more flows of 

control that unite into a single flow of control. 

 

1. State chart diagram for Book the ticket: 



 
 

2. 

 register

entry/ get_registered

 login

login( user )

 movie

entry/ select_movie

exit/ get_movie_name

 theatre

entry/ select_theatre

exit/ get_theatre_name

seat

entry/ select_seat

exit/ get_seat_number

 paid

 update_catalog

entry/ update_catalog

do/ display_info_in_profile

exit/ send_msg_to_user

selectTheatre()

selectSeat()[ Booked=True ]

selectSeat()[ Booked=False ]

selectMovie()

TheatreSelected( theatre )[ count>zero ]

theatreSelected( theatre )[ count=zero ]

PayBill()[ Payment=True ]

PayBill()[ Payment=False ]

 



 
 

 

 

 

 

 

 

DESIGN 

 

19. DESIGNING CLASSES BY APPLYING DESIGN AXIOMS 

Coupling and cohesion  

The factors coupling and cohesion are important factors for good design.  

                   Coupling describes the degree of interconnectedness between design components 

and is reflected by the number of links an object has and by the degree of interaction the 

object has with other objects.  

 Cohesion is a measure of the degree to which an element contributes to a single 

purpose. The concepts of coupling and cohesion are not mutually exclusive but actually 

support each other. This criterion can be used within object-orientation as described below.  

 Interaction Coupling is a measure of the number of message types an object sends to 

other objects and the number of parameters passed with these message types. Interaction 

coupling should be kept to a minimum to reduce the possibility of changes rippling through 

the interfaces and to make reuse easier. When an object is reused in another application it will 

still need to send these messages and hence needs objects in the new application that provide 

these services. This complicates the reuse process as it requires groups of classes to be reused 

rather than individual classes.  

 Inheritance Coupling describes the degree to which a subclass actually needs the 

features it inherits from its base class.  

Operation Cohesion 

                    It measures the degree to which an operation focuses on a single functional 

requirement. Good design produces highly cohesive operations, each of which deals with a 

single functional requirement. For example in the following figure, the operation  

genarateBills() is highly cohesive. 

 



 
 

 

Class Cohesion  

 It reflects the degree to which a class is focused on a single requirement. The class 

Lecturer in the figure below exhibits low levels of cohesion as it has three attributes 

(roomNumber, roomLength and roomWidth and one operation calculate RoomSpace () ) that 

would be more appropriate in a class Room. The class Lecturer should only have attributes 

that describe a Lecturer object (e.g. lecturerName and lecturerAddress) and operations that 

use them. 

 

Specialization Cohesion  

 It addresses the semantic cohesion of inheritance hierarchies. For example in the 

following figure all the attributes and operations of the Address base class are used by the m 

derived classes - this hierarchy has high inheritance coupling. However, it is neither true that 

a person is a kind of address nor that a company is a kind of address. The example is only 

using inheritance as a syntactic structure for sharing attributes and operations. This structure 

has low specialization cohesion and is poor design. It does not reflect meaningful inheritance 

in the problem domain.  

 

 



 
 

 

20. REFINING ATTRIBUTES, METHODS AND RELATIONSHIPS 

AMONG CLASSES: 

 

Attributes: 

During analysis Stage we need to consider in detail the data types of the attributes also. 

Common primitive data types include Boolean (true or false), Character (any alphanumeric or 

special character), Integer (whole numbers) and Floating-Point (decimal numbers). In most 

object-oriented languages more complex data types, such as Money, String, Date, or Name 

can be constructed from the primitive data types or may be available in standard libraries. An 

attribute's data type is declared in UML using the following syntax:  

 name ':' type-expression '=' initial-value '{'property-string'}'  

 The name is the attribute name, the type-expression is its data type, the initial value is 

the value the attribute is set to when the object is first created and the property-string 

describes a property of the attribute, such as constant or fixed. The characters in single quotes 

are literals.  

Attribute declarations can also include arrays also. For example, an Employee class 

might include an attribute to hold a list of qualifications that would be declared using the 

syntax:              Qualification [O  ... 10]: String  

Operations: 

          Each operation also has to be specified in terms of the parameters that it passes and 

returns. The syntax used for an operation is:  

 Operation name' ('parameter-list ') “: “return-type-expression  

 An operation's signature is determined by the operation's name, the number and type 

of its parameters and the type of the return value if any.  

Object visibility: 

 The concept of encapsulation is one of the fundamental principles of object-

orientation. During analysis various assumptions have been made regarding the encapsulation 

boundary for an object and the way that objects interact with each other.  

 For example, it is assumed that the attributes of an object cannot be accessed directly 

by other objects but only via 'get' and 'set' operations (primary operations) that are assumed to 

be available for each attribute. Moving to design involves making decisions regarding which 

operations (and possibly attributes) are publicly accessible. In other words we must define the 

encapsulation boundary.  

  



 
 

 

The following are the different kinds of visibilities, their symbols and their meaning. 

 

Visibility 

symbol 

Visibility Meaning 

   + Public The feature (an operation or an attribute) is directly 

accessible by an instance of any class.  

    - Private The feature may only be used by an instance of the 

class that includes it.  

    # Protected The feature may be used either by instances of the class 

that includes it or of a subclass or descendant of that 

class.  

~ Package The feature is directly accessible only by instances of a 

class in the same package.  

 

 

 

 

 

 

 

 

 

 

 

21. REFINED CLASS DIAGRAMS FOR OVERALL SYSTEM: 



 
 

 



 
 

 

22. IMPLEMENTATION  DIAGRAMS 

 22.a. Component diagrams: 

          In a large project there will be many files that make up the system. These files 

will have dependencies on one another. The nature of these dependencies will depend 

on the language or languages used for the development and may exist at compile-time, 

at link-time or at run-time. There are also dependencies between source code files and 

the executable files or byte code files that are derived from them by compilation. 

Component diagrams are one of the two types of implementation diagram in UML. 

Component diagrams show these dependencies between software components in the 

system. Stereotypes can be used to show dependencies that are specific to particular 

languages also.  

      A component diagram shows the allocation of classes and objects to components 

in the physical design of a system. A component diagram may represent all or part of 

the component architecture of a system along with dependency relationships. 

     The dependency relationship indicates that one entity in a component diagram uses 

the services or facilities of another.  

➢ Dependencies in the component diagram represent compilation dependencies.  

➢ The dependency relationship may also be used to show calling dependencies among 

components, using dependency arrows from components to interfaces on other 

components. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Component diagram for Ticket booking:  

movie ticket booking

select 

seats

login select 

movie

select 

shows

bill the 

payment

select 

theatre

 

 22.b. Deployment diagrams:  

 

The second type of implementation diagram provided by UML is the deployment 

diagram. Deployment diagrams are used to show the configuration of run-time 

processing elements and the software components and processes that are located on 

them.  

   Deployment diagrams are made up of nodes and communication associations. Nodes 

are typically used to show computers and the communication associations show the 

network and protocols that are used to communicate between nodes. Nodes can be used 

to show other processing resources such as people or mechanical resources. 

    Nodes are drawn as 3D views of cubes or rectangular prisms, and the following 

figure shows a simplest deployment diagram where the nodes connected by 

communication associations. 

 

 

 

 

 

 

 

 

 



 
 

 

Deployment Diagram for movie booking 

database application system

local area network

client1

client n

client2

<<ftp>>

<<http>>

<<http>>

<<http>><<http>>

 
23. Test cases for Registration : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Test Case 

id 

Test case 

name 

Test case 

description 

Test Steps Test 

Status 

(P/F) 

Steps   Expected Actual 

Registration Validate 

Registration 

To verify the 

registration 

the user must 

give the 

password 

more than 8 

characters 

Enter user 

name 

characters 

and 

Set 

password 

less than 8 

characters, 

enter  

email and 

personal 

details 

click 

submit 

button 

The system 

should not 

accept the 

user to 

give 

password 

less than 8 

characters 

and 

database 

should not 

update 

registration 

Failed 

P 

Registration Validate 

Registration 

To verify 

password 

should not 

match the 

personal 

details of the 

registering 

user 

Enter user 

name and 

personal 

details of 

the user 

and then 

type the 

password 

that is 

same as 

username  

The system 

should not 

accept the 

user to 

give 

password 

which 

matches 

username 

and should 

not update  

registration 

Failed 

P 



 
 

Registration Validate 

Registration 

The password 

should not 

entirely 

numeric 

Enter the 

username 

and 

password 

(which is 

entirely 

numeric) 

And enter 

the 

personal 

details 

and click 

on submit 

button  

The 

Database 

should not 

be updated 

and prompt 

re register 

message 

registration 

failed 

P 

Registration Validate 

Registration 

The user 

should fill the 

entire text 

areas  

Enter user 

name and 

leave 

email field 

as blank 

and fill 

the 

remaining 

fields and 

press 

submit 

button  

The system 

should not 

accept that 

type of 

forms and 

should 

prompt a 

dialog box 

to enter the 

missing 

field  

System 

prompts 

the dialog 

box to 

enter the 

email field 

which is 

required 

P 

 

 

 

 



 
 

 

 

 

 

 

 

 

24 . Implementaion screen shots 

 

1. Login screen for online banking 

 

 

 

2.Displaying Home page 



 
 

 

 

Displaying list of shows and trailer: 

 

 

 

 

 



 
 

 

Displaying  list of shows  present in respective shows: 

 

Displaying The Seating arrangements: 

 

Displaying the message of booking status: 

If perticular seat is not booked: 



 
 

 

If the seat was already booked then: 

 

Displaying of logout : 

  



 
 

25. CONCLUSION  

ONLINE MOVIE TICKET BOOKING is the ticket booking service that allows the 

customers to book the movie tickets on the computerized networks such as internet through 

secure website with a particular movie booking system, which has resulted from the 

blossoming Internet technology, obviously has many benefits for the user by getting the 

entertainment without wasting the time by standing in queue for hours and hours.  

REFERENCES 

   1. Simon Benett, SteeveMc Robb, Ray Farmer, “Object Oriented Analysis and Design 

using UML”, Tata Mc Hill Publishers, 2008. 

   2. Terryy Quatrani, “Visual Modelling with Rational Rose 2002”, Prentice Hall Publishers,  

        1998. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


