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Abstract-As the scope and scale of Internet traffic continue 
to increase the task of maintaining cyber situational awareness 
about this traffic becomes ever more difficult. There is strong 
need for real-time on-line algorithms that characterize high-speed 
I high-volume data to support relevant situational awareness. 
Recently, much work has been done to create and improve 
analysis algorithms that operate in a streaming fashion (minimal 
CPU and memory utilization) in order to calculate important 
summary statistics (moments) of this network data for the pur
pose of characterization. While the research literature contains 
improvements to streaming algorithms in terms of efficiency and 
accuracy (i.e. approximation with error bounds), the literature 
lacks research results that demonstrate streaming algorithms in 
operational sitnatioos. 

The focus of our work is the development of a live network sit· 
national awareness system that relies upon streaming algorithms 
for the determination of important stream characterizations and 
also for the detection of anomalous behavior. We present our 
system and discuss its applicability to situational awareness of 
high-speed networks. We present refinements and enhancements 
that we have made to a well-known streaming algorithm and 
improve its performance as applied within our system. We also 
present performance and detection results of the system when it 
is applied to a live high-speed mid-scale enterprise network. 

I. INTRODUCTION 

Situational awareness refers to the ability to observe, as
similate and make predictions about relevant elements and 
attributes of one's environment for the purpose of robust 
survival [4}. Within the domain of cyber security, effective 
situational awareness requires knowledge of historical and 
current cyber (i.e. network or host) activity in order to rec
ognize and respond to threatening behaviors. As the variety 
of systems and networks increases and available bandwidth 
and data usage rates on enterprise networks continue to rise, 
security analysts and administrators striving to create and 
maintain cyber situational awareness face unique challenges 
of scope, scale and speed.[S], [10], [11] Traditional network 
situational awareness systems that rely upon standard analysis 
techniques have difficulty scaling to meet the increase. 

To address this challenge, we have developed a real-time 
characterization and analysis system that uses stream pro
cessing algorithms to provide relevant situational awareness 
and anomaly detection. We have implemented our system 
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using an existing stre ovides 
dynamic instantiation of lightweight processing elements on 
a set of distributed computation nodes. Our system has been 
deployed on an operational network, and stands as an end-to
end characterization environment, that passively monitors and 
characterizes high-speed I high-volume network traffic in order 
to provide indications of anomalous behavior for network and 
system analysts and administrators. 

Our system consists of three main stages: a filtering stage, 
which finds and selects the Top-k producers of traffic on the 
network; a trending and anomaly detection stage, which tracks 
and monitors selected traffic for anomalous behavior; and a 
correlation stage, which correlates the individual anomalies 
from the second stage by time and source address in order 
to both reduce false alarms and to recognize truly anomalous 
behavior that is indicative of cyber attacks. Our system makes 
use of two specific data sources from network traffic: raw 
packet data and NetFlow connection summary records (de
scribed below). Our feature extraction and anomaly detection 
algorithms have been designed to be general-purpose and can 
be readily applied to other data sources. 

The contributions of our paper are the following. First, we 
present an architecture for an on-line cyber situational aware
ness system that can handle high-speed I high-volume traffic 
environments. Second, we present enhanced versions of well
known streaming algorithms that have been improved based 
upon our operational experience. Finally, we demonstrate that 
our system performs well in operational environments and 
under heavy traffic load to provide situational awareness. Our 
work is unique in that it is aimed at applying streaming 
algorithms from academic research to real-world environments 
of an enterprise network. 

Our paper presents the results of our research in the follow
ing way. Section ll presents an overview of our situational 
awareness system with details about its architecture, data 
sources and various traffic processing pipelines. Section III 
presents the modified stream characterization algorithm that 
we use to filter and process the data in the operational 
environment. We present results from the application of our 
characterization and anomaly detection system using a labeled 
data set in Section V and we discuss the system's performance 
in a live operational environment. Section VI presents a 
summary of our cyber situational awareness research and 
discusses future directions for investigation. 



II. SYSTEM DESCRIPTION 

We have implemented our system as an application within 
an existing stream processing platform that provides an in
terface for importing and processing high-speed data streams. 
The core building block within the platform is the processing 
element (PE), which serially reads from incoming streams of 
data tuples, performs some amount of processing, and gener
ates outgoing tuple streams. The existing streams processing 
environment allows users to compose processing pipelines of 
arbitrary length and complexity by chaining individual PEs 
together. 

Our general approach to developing analysis applications 
that provide cyber situational awareness for network traffic 
places PEs that perform lightweight tasks dedicated to sum
mary and aggregation early in the chain where the highest rate 
of tuples are received. PEs that perform more CPU-intensive 
tasks such as statistical modeling and anomaly detection are 
placed later in the processing chain where the rate of incoming 
tuples is lower because of filtering. 

A. High-Level Architecture 

Figure 1 presents a block diagram for a typical chain of 
PEs in our system. As stated above, each data stream imported 
by the system is processed so that the high rate of incoming 
data is gradually filtered and aggregated into usable situational 
awareness data that is presented to the network operator. Each 
PE in the system can be classified into one of the following 
categories: 

Filters, described in Section ill, create meaningful and 
accurate characteristics of the data stream. Anomaly detectors, 
described in Section IV, use statistical techniques to generate 
historical models of data streams, predict future trends, and 
identify anomalies in data streams. Anomaly correlators, also 
described in Section IV, coalesce anomalies from various 
detectors, filter potential false positives, and present alert 
messages to an network operator. Each processing pipeline 
contains at least one of each of these types of PEs, and may 
contain more, depending on the nature of the processing and 
the needs of the network operator. 

B. Data Sources 

Although our PEs are configurable and designed to be de
ployed on various network data sources, we have implemented 
an operational prototype system using the following two data 
feeds. 

a) NetFlow Data: Our system processes the NetFlow 
records of all Internet gateway traffic for a large enterprise 
network. It uses the standard Cisco NetFlow version 5 proto
col, which defines a flow as a unidirectional network trans
action identified by a five-tuple: source and destination host 
addresses, source and destination ports, and transport layer 
protocol. Each flow record also includes meta-data such as 
byte and packet counts, tcp session length, and tcp flags. Raw 
packet content is not included in the data feed. 
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Fig. 1. System block diagram. 

b) Raw packet content: In addition to NetFlow data, our 
system also processes raw network packet data for situational 
awareness. This data is not sessionized or. reassembled into a 
higher level protocol and depending on traffic rates and system 
load this traffic may be sampled. 

C. Processing Pipeline 

Figure 1 illustrates the processing pipeline. Once the Net
Flow records are imported into the stream processing platform, 
they are passed to a filtering PE, which uses techniques 
described in section III to detect "heavy hitter" hosts based 
on various network features such as byte count, flow count 
and session length. This PE filters the incoming data stream to 
find the k heavy hitters for further processing; k is determined 
by available system resources within the stream processing 
environment. 

The resulting stream is received by the feature extraction 
PE, which extracts the features enumerated in Table I and 
produces a stream of these features for each time interval 
monitored (e.g. 10 minutes). Some features, such as raw byte 
and packet counts are aggregated over the time window being 
monitored while others, such as unique host count, utilize a 
bloom-filter-based counter to record their value. In the latter 
case, a hash function is applied to each arriving key-value 
pair to determine the correct bit location to set in a storage 
hash to record unique occurrences. The feature extraction PE is 
extensible and allows for the addition of new feature extraction 
analytics as they are developed. 

The host IP profiling and trending PE receives the stream of 
extracted features and constructs statistical models to charac
terize host behavior during the time interval monitored. These 
statistical models and the original feature stream are sent to 
the anomaly detection PE which generates internal anomaly 
messages when real-time values deviate from expected values. 
The anomaly detector is described in greater detail in section 
IV 

Due to the noisy nature of network traffic, a number of 
uncorrelated (e.g. random) anomalies are expected to be seen 
during each time interval. These anomalies do not represent 
truly anomalous activity and should be removed from the 
processing stream. To remove this noise, individual feature 
anomalies are sent to the anomaly correlator PE which uses 
historical context to correlate internal anomaly messages over 



Inbound/outbound 
Byte count Unique destination country count 
Packet count Avg. bytes/packet 
flow count Avg. packets/flow 
Unique host count Avg. bytes/flow 
Unique source port count Avg. TCP session length 
Unique destination port count Bytes in/out ratio 
Unique destination AS count flows in/out ratio 
Packets in/out ratio 

TABLE I 
FEATURES MONITORED BY HOST PROFIL.ER 

the observation time windows. When correlated anomaly ac
tivity exceeds a predetermined threshold, an alert containing 
the address of the anomalous host and associated historical 
data is sent to an external visualization tool for review by an 
operator. The anomaly correlator PE is described in greater 
detail in section IV. 

III. STREAM CHARACTERIZATION ALGORITHMS 

In this section, we describe the customization necessary 
for stream algorithms to perform data characterization. While 
the PE is derived from algorithms found in literature, our 
system constraints do not match those considered important 
in the literature. We have therefore designed our PE's al
gorithm to take advantage of available resources to better 
address the needs of the operational environment. We have 
developed the Top-k algorithm, instead of the frequent-item 
algorithm predominant in the literature, because it requires no 
prior knowledge of the network deployment environment in 
order to specify operational parameters. Below we describe 
our customized Top-k algorithm, which exemplifies our data 
characterization algorithms. 

A. Top-k ()perator 

The Top-k algorithm identifies from a stream of 
(key, value) pairs the k pairs with the highest value over an 
interval of time. The keys of these pairs are often used to filter 
traffic downstream. During a time interval, when a series of 
pairs with the same key, k, (k, v1 ), · · · , (k, vn) occurs, the set 
of values V = { v1, · · · , Vn} are aggregated according to an 
aggregation function, ag. In our system, we use two common 
aggregation functions: summation, ag(V) = l:vev v, and 
average, ag(V) = By9f 11

• 

1) Solutions within the Literature: The Top-k algorithm 
solves a variant of the frequent item identification problem[8]. 
This problem is often stated as one of the two following 
problems: the frequent item detection problem, or the k most 
frequent item detection problem. 

Definition 1 (Frequent item detection): Given a set X of 
aggregated (key, value) pairs and a frequency threshold ¢ E 
[0, 1], find all pairs such that value> ¢A where A is the sum 
of all the values. 

Definition 2 (k most frequent item detection): Given a set 
X of aggregated (key, value) pairs and k E z+, find the 
k pairs with the largest values. 

Solutions that solve either of these problems also deal 
with the problem of creating the aggregated set X. The key 
characteristic of each problem is the type of data found; as 

such, solutions can be classified by the type of data they can 
provide from a stream (e.g., Top-k solves the second problem). 

Originating from a data mining and database background, 
prior solutions have mainly focused on the frequent item 
detection problem. The large number of possible keys and the 
larg(( number of total pairs within streams from this domain 
have lead to the development of algorithms that have tight 
bounds in terms of writable memory and the number of 
passes through the data stream. These bounds have lead to the 
development of approximation algorithms for both problems. 
When available memory is greater than the number of unique 
keys both problems are considered to be trivially solved by 
sorting the aggregate key-value pairs. 

In our environment, the number of unique keys is large 
but within the bounds of available memory. For example, 
when finding the top twenty IP addresses by the number 
of bytes received, the number of keys may be large; yet, it 
is feasible to have enough memory to store a counter for 
each observed IP address. Thus, when the necessary amount 
memory is available, the trivial solution is unsatisfactory 
within our environment. 

To illustrate this point, we examine the behavior of the space 
saving algorithm [9], which acts as an efficient implementation 
of the trivial solution when given a sufficiently large memory 
supply, and is the base algorithm for our customization. 

B. The Space Saving Algorithm 

The space saving algorithm is a deterministic algorithm that 
may be use to find approximate solutions for both the frequent 
item detection problem and the k most frequent item detection 
problem. 

let m be a map of Key--+ Value ; 
for each pair ( k, v) in the stream do 

if v' is m[k] then 

end 

I let m = (m- (k,v)) + (k, aggregate(v',v)) 
else 

if lml < memorybound then 
I let m = m + (k,v) 

else 
let k' be the key associate with the minimum 
value within m ; 
let m = (m - (k, v)) + (k', aggregate(v', v)) 

let r be the list of m pairs sorted in descending order of 
value; 
return the first k elements of r ; 

Algorithm 1: The space saving algorithm 

Algorithm 1 shows an abstracted algorithm for space saving 
that solves the k most frequent item detection problem. Key
value pairs are adding to a map with aggregation until the 
map reaches a pre-specified size. At which point, the smallest 
valued key is replaced with the new value, and the smallest 
value is aggregated with the new key's value. While the key 



replacement policy of space saving is important for approxi
mating an answer, with sufficient memory it acts as the trivial 
solution. Therefore, a Top-k PE that is implemented as space 
saving would have the same performance characteristics as the 
trivial solution until it reaches its memory bound. 

In our environment, the PE receives pairs continuously, 
and generates results after each time interval elapses. With 
the trivial implementation, storing each pair received has an 
efficient implementation, the maps can be implemented as 
either a hash table or a tree data structure, and the minimum 
valued key value can be maintained with a heap. However, 
once a time interval elapses, sorting the key-value pairs and 
clearing the maps are time expensive operations, and have 
experimentally resulted in the overflow of PE buffers when 
the number of unique keys is large and the rate of traffic is 
high. 

let m be a map of Key -t Value; 
let topk be a min-max heap ; 
for each pair (k, v) in the stream do 

if v' is m[k] then 
if v' is old then 
I let m = (m- (k ,v)) + (k,v') 

else 
I let m = (m - (k, v)) + (k, aggregate(v' , v)) 

end 
else 

end 

if lml < m emorybound then 
I let m = m + (k, v) 

else 
let k' be the key associate with the minimum 
value within m ; 
let m - (m- (k ,v)) + (k' ,aggregate(v',v)) 

let (k ,v") = m[k] ; 
if (k, v") is in topk then 
I update (k , v")'s position in topk 

else if ltopkl < k then 
I add (k , v") to topk 

else if v" > min topk then 

I rep~a~e topk's root with (k, v") and adjust the root's 
pOSl tlOn 

return the pairs in topk ; 
Algorithm 2: The stream oriented space saving algorithm 

C. Stream Oriented Space Saving Algorithm 

In Algorithm 2, we customize the space saving algorithm 
with two modifications: we add a time stamp to map entries, 
and we add a min-max heap to keep track of the current 
highest valued k pairs. These modifications enable the quick 
production of the Top-k pairs on each time interval since we 
only need to output the pairs within the min-max heap and 
then clear the min-max heap. The timestamp eliminates the 
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need to reinitialize the map because the timestamp allows stale 
map entries to be detected and replaced. 

1) Implementa!ion specifics: Adding a timestamp is a 
straightforward modification to the map. Since our operator 
must keep track of time, we add the timestamp of the last 
update to each map element. The algorithm can detect a stale 
map element by checking if its timestamp occurred during a 
time that is not within the current time interval. By using this 
technique, we can eliminate the need to clear the map when 
each time interval elapses. 

Maintaining efficient heap operations can be achieved by 
using a binary heap. Each heap stores a pointer to the map 
element, and each map element stores a pointer back to it's 
respective heap element. This optimization ~nables the value 
for each key to be updated at a central location and minimizes 
the amount of copying required for each heap adjustment 
operation. 

2) Performance characteristics: With regards to perfor
mance, it would appear that performing more work on each 
pair update would decrease the total throughput of the system. 
However, in practice the heap operations are very efficient 
because heap items rarely percolate more than one position in 
the heap per update. For example, when using the summation 
aggregation function and the stream values are fixed to the 
value of one (i.e., we are counting stream frequency), each 
heap operation cannot percolate more than one position on 
each update. 

IV. ANOMALY DETECTION AND CORRELATION 

A. Anomaly Detection 

The overall goal of our situational awareness system is the 
characterization of network traffic such that it supports the 
recognition and identification of anomalous behavior, which 
is often indicative of malicious activity. 'The ability to detect 
anomalous or abnormal behavior therefore begins with the 
ability to model normal network behavior. Although aggregate 
network traffic on the Internet is often modeled with long
tailed distributions, such as the Pareto [2], [3], it has also 
been found that when traffic is nonnalized for variations due 
to the time of day and day of week, a Gaussian probability 
distribution is an appropriate model for the traffic[l]. With 
this in mind, our anomaly detection mechanism calculates 
summary statistics for the nonnal probability distribution 
(Equation 1) for relevant network features while accounting 
for time of day and day of week. To account for time of day 
variations, network features are sampled at small increments of 
time (e.g. 10 minutes) throughout the day, as shown in Figure 2 
a depiction of the windowed sampling scheme used by our 
time baseline anomaly detector. Models of network behavior 
are further separated into those corresponding to workdays 
(Monday-Friday) and weekend days (Saturday and Sunday). 

The time baseline anomaly detector records historical data 
for various features described in Section ll and uses this data to 
create a statistical profile for each host being monitored. This 
profile is then used to recognize deviations from expected be
havior. Thus, our time baseline anomaly detection mechanism 
consists of a two-phase process. In the first phase, models 



are trained in an on-line fashion; descriptive statistics for an 
assumed Gaussian distribution are calculated from observed 
network variables. 

Window 

j]f-fJ~l ... 
.\"i c {x I • J." 2 ' X 3 • ... , 

Time 
Fig. 2. illustration of the windowing scheme used by the time baseline 
anomaly detector used to monitor different intervals of network variables 

Xi-+ N(!J-,u) (1) 

During the second phase, variables observed during oper
ation are compared to stored model parameters to determine 
the likelihood of occurrence. If the likelihood is below the ex
perimentally determined threshold r an indication of anomaly 
is issued within the system. 

(2) 

B. Anomaly Correlation 

Due to the bursty nature of network traffic, we expect the 
behavior of each host to generate some number of false pos
itive across many time intervals. However, we have observed 
in our experimental results (described in detail in section V 
and illustrated in Figure 3), that a true positive anomaly is 
more likely to be detected when either there are multiple 
independent anomalies across various features or there is 
sustained anomalous activite within a single feature. 

l.'!"~.'X'· • . 
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Fig. 3. Example of anomaly correlation. 

FLOW COUNT 

In the anomaly correlation phase individual anomalies are 
correlated across source IP addresses and time intervals. The 

correlator receives anomaly messages with associated confi
dence intervals from anomaly detectors for each feature. The 
correlator does not have prior knowledge of the relationship 
between anomaly detectors, and therefore, each anomaly is 
considered to be an independent event. Thus, the overall 
likelihood of the occurrence of multiple individual anomalies 
is determined by calculating the product of the individual 
anomaly confidence scores. 

L(8fX,) = 1 - II(l- f(xi)) (3) 

(4) 

In equation 3 L(9/ X i) represents the likelihood of the 
model 9 , represented by the various Gaussian distributions 
occurring given the data samples Xi . This likelihood is 
calculated as 1 minus the product of the individual anomaly 
scores for each Xi above threshold r. 

This likelihood value is used as the anomaly score, and 
is compared against a tunable threshold to determine if an 
alert message should be issued. This score is aged over time, 
to allow for detection of both a spike in high-confidence 
anomalies, and a low intensity, sustained anomaly over time. 
Figure 4 illustrates the anomaly score of a sample "victim" 
host during the attack from the DARPA dataset iiJustrated in 
Figure 3. Note that the anomaly score is determined by unique 
anomaly detector alerts received by the anomaly correlator, 
and is compared against a tunable parameter in order to decide 
when to generate an alert message. 

Alert message: 
attacks confirmed in 
DARPA truth data 
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Fig. 4. Example of anomaly score over time for attack in DARPA dataset. 

V. EXPERIMENTAL RESULTS 

A. Accuracy 

We evaluated the detection accuracy of our system using 
the MIT Lincoln Laboratory 1999 DARPA Intrusion Detection 
Dataset.[?], [6] The DARPA dataset was designed to support 
the evaluation of various intrusion detection systems. It con
sists of a number of different known cyber attacks, on top 



of continual background traffic. To begin our evaluation we 
trained our system on one week's (week 1) of clean network 
traffic. This allowed the system to create internal baseline 
models of network behavior. Next, we presented the system 
with a different week (week 2) of network traffic known to 
contain attacks. During this second phase of evaluation we 
monitored the systems output to determine true and false 
positives. 

We structured our evaluation by first classifying each attack 
as either "flow detectable" or "not flow detectable" and only 
concern ourselves with flow detectable attacks since our host 
profiler pipeline receives only NetFlow records, and not the 
packet capture data. Therefore, attacks that require the detec
tion of a signature within packet data, such as the byte code of 
a known piece of malware, are out of scope for our detection 
system. 

To determine the rate of true and false positives, we began 
by dividing each day of the attack set into 1 0 minute intervals 
to match the sampling length of our host profiler. The total 
number of potential alerts that the system can generate is 
calculated as the total nwnber of intervals in a week times 
the total nwnber of hosts being monitored or 2880. The 
pathological case occurs if every host generates an alert for 
every interval. We define a true positive to be an alert generated 
for a host in an interval in which there is a labeled attack, and 
a false positive to be an alert generated for a host in which 
there is no labeled attack. Similarly, we define a true negative 
as each host-interval in which there is neither an alert or an 
attack, and a false negative as each host-interval for which 
there is a labeled attack but no alert. 

We replayed the week of labeled attack data through our 
trained system multiple times while varying the anomaly 
detector's threshold, u, and recorded the detection rate of true 
and false positives. We use this data to produce the ROC curve 
shown in figure 5. Our system detected 8 of the 9 relevant 
attacks from the dataset for a probability of detection (PD) 
of 88% with a probability of false alarms (PFA) of 0.01 %. 
Our system demonstrates comparable performance to other 
intrusion detection systems evaluated over the 1999 DARPA 
dataset for the detection of flow detectable attacks.[6] 

:I 
I 

, L,------~----~------~------~----~ 

Fig. 5. A receiver operating characteristic curve showing detection perfor
mance on the DARPA 1999 data set. 
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B. Throughput 

In addition to evaluating our system for accuracy using truth 
data from the DARPA dataset, we evaluated the throughput 
of our system by running it operationally on a very large 
enterprise network. Our system was able to handle data rates 
of up to 500,000 raw packets and 2.5 million flow records per 
second. Although we did not have truth data on this network 
to calculate accuracy values, we were able to demonstrate that 
our algorithms perform at very high data rates. 

VI. CONCLUSION 

We have presented a stream processing based system which 
performs characterization and analysis of high-speed I high
volume data for the purpose of cyber situational awareness. 
Our system makes use of an existing streams processing 
environment that enables the creation of data analysis pipelines 
which are composed of individual processing elements. We 
have employed analysis algorithms for stream characterization 
and shown how their deployment in an operational envi
ronments has led to several improvements in performance. 
Our system performs well on a labeled data set and in an 
operational environment where high speed network data is 
encountered. Future research directions include the exploration 
of additional data sources and features that can be used for 
cyber situational awareness, such as server and proxy logs, 
and the investigation of other mechanisms for the detection of 
anomalies and anomaly correlation. 

REFERENCES 

[1] K. M. Carter, S. W. Boyer, R. P. Lippmann, and R. K. Cunningham, 
"Baselineing the niprnet through tl.ow analysis:' Centaurffriclder Tech
nical Exchange Meeting, Tech. Rep., November 2009. 

[2] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. ThorJp, "Algorithms 
and e.~timators for accurate summarization of internet traffic," 
in Proceedings of the 7th ACM S!GCOMM conference on Internet 
measurement, ser. IMC '07. New York, NY, USA: ACM, 2007, pp. 265-
278. [Online]. Available: http:l/doi.acm.org/10.1145/1298306.1298344 

[3] A. B. Downey, ''Evidence for long-tailed distributions in the internet," 
in In Proceedings of ACM SIGCOMM Internet Measurment Workshop. 
ACM Press, 2001, pp. 229-241. 

[4] M. R. Endsley, "Thward a theory of situation awareness in dynamic 
systems," Hwnan Factors: The Journal of the Hrmum Factors and 
Ergonomics Society, vol. 37, pp. 32-64(33), March 1995. 

[5] C. Labovitz, D. McPherson, S. Jekel Johnson, and M. Hollyman. (2008, 
June) Internet ITaffic trends- a view from 67 ISPs. [Online]. Available: 
www.nanog.org/meetings/nanog43/abstracts.php?pt=NjgmbmFub2c0Mw
==&nm=nanog43 

[6] R. Lippman, J. W. Haines, D. J. Fried, J. Korba, and K. Das, "Analysis 
and results of the 1999 DARPA off-line intrusion detection evaluation," 
in RAID, 2000, pp. 162-182. 

[7) R. P. Lippmann, R. K. Cunningham, D. J. Fried, 1. Graf, K. R., Kendall, 
S. W. Webster, and M. Zissman, "Results of the 1999 dalpa off-line 
intrusion detection evaluation," in Second International Workshop on 
Recent Advances in Intrusion Detection, West Lafayette, Indiana, 1999. 

[8] N. Manerikar and T. Palpanas, "Frequent items in streaming data: An 
experimental evaluation of the state-of-the-art," Data & Knowledge 
Engineering, vol. 68, no. 4, pp. 415- 430, 2009. 

[9] A. Metwally, D. Agrawal, and A. E. Abbadi, "Efficient computation 
of frequent and top-k elements in data streams," in In International 
Conference on Database Theory, 2005, pp. 398-412. 

[1 0] K. Mittal, "Internet ITaffic growth analysis 
of trends and predictions." [Online]. Available: 
www.kunalmittal.cornlincludes!Papers/PredictinglnternetTrafficGrowth.pdf 

[11) L. G. Roberts. (1999, December) In-
ternet growth trends. {Online]. Available: 
www.nanog.org/meetings/nanog43/abstracts.php?pt=NjgmbmFub2cOMw
=&nm=nanog43 




