

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

07-04-2011 Technical Paper MAR 2011 - APR 2011

Cyber Situational Awareness through Operational Streaming Analysis FA8720-05-C-0002

William W. Streilein, John Truelove, Chad R. Meiners, Gregory Eakman

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420

NSA
9800 Savage Rd
Ft. Meade, MD 20755

NSA

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

As the scope and scale of Internet traffic continue to increase the task of maintaining cyber situational awareness about this traffic
becomes ever more difficult. There is strong need for real-time on-line algorithms that characterize high-speed / high-volume data to
support relevant situational awareness. Recently, much work has been done to create and improve analysis algorithms that operate
in a streaming fashion (minimal CPU and memory utilization) in order to calculate important summary statistics (moments) of this
network data for the purpose of characterization. While the research literature contains improvements to streaming algorithms in
terms of efficiency and accuracy (i.e. approximation with error bounds), the literature lacks research results that demonstrate
streaming algorithms in operational situations. The focus of our work is the development of a live network situational awareness
system that relies upon streaming algorithms for the determination of important stream characterizations and also for the detection of
anomalous behavior. We present our system and discuss its applicability to situational awareness of high-speed networks. We
present refinements and enhancements that we have made to a well-known streaming algorithm and improve its performance as
applied within our system. We also present performance and detection results of the system when it is applied to a live high-speed
mid-scale enterprise network.

U

U U U
SAR 6

Zach Sweet

781-981-5997

Cyber Situational Awareness through Operational
Streaming Analysist

William W. Streilein John Truelove Chad R. Meiners
MIT Lincoln Laboratory

THIS MATERIAL. HAS BEEN CLI!ARE!O
FO~ PUBLIC RELEASE BY 66 ABW!PA

't.edu
244 Wood Street, Lexington, MA 02420

{ wws, jtruelove, chad.meiners, greg.eakman}@ll.

DATE: 7~ If

Abstract-As the scope and scale of Internet traffic continue
to increase the task of maintaining cyber situational awareness
about this traffic becomes ever more difficult. There is strong
need for real-time on-line algorithms that characterize high-speed
I high-volume data to support relevant situational awareness.
Recently, much work has been done to create and improve
analysis algorithms that operate in a streaming fashion (minimal
CPU and memory utilization) in order to calculate important
summary statistics (moments) of this network data for the pur
pose of characterization. While the research literature contains
improvements to streaming algorithms in terms of efficiency and
accuracy (i.e. approximation with error bounds), the literature
lacks research results that demonstrate streaming algorithms in
operational sitnatioos.

The focus of our work is the development of a live network sit·
national awareness system that relies upon streaming algorithms
for the determination of important stream characterizations and
also for the detection of anomalous behavior. We present our
system and discuss its applicability to situational awareness of
high-speed networks. We present refinements and enhancements
that we have made to a well-known streaming algorithm and
improve its performance as applied within our system. We also
present performance and detection results of the system when it
is applied to a live high-speed mid-scale enterprise network.

I. INTRODUCTION

Situational awareness refers to the ability to observe, as
similate and make predictions about relevant elements and
attributes of one's environment for the purpose of robust
survival [4}. Within the domain of cyber security, effective
situational awareness requires knowledge of historical and
current cyber (i.e. network or host) activity in order to rec
ognize and respond to threatening behaviors. As the variety
of systems and networks increases and available bandwidth
and data usage rates on enterprise networks continue to rise,
security analysts and administrators striving to create and
maintain cyber situational awareness face unique challenges
of scope, scale and speed.[S], [10], [11] Traditional network
situational awareness systems that rely upon standard analysis
techniques have difficulty scaling to meet the increase.

To address this challenge, we have developed a real-time
characterization and analysis system that uses stream pro
cessing algorithms to provide relevant situational awareness
and anomaly detection. We have implemented our system

tTbis work is sponsored by the Department of Defense under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and rec
ommendations are those of the author and are not necessa:ily endorsed by
the United States Government

CASE# 66AaJ-~OI!-0'115
using an existing stre ovides
dynamic instantiation of lightweight processing elements on
a set of distributed computation nodes. Our system has been
deployed on an operational network, and stands as an end-to
end characterization environment, that passively monitors and
characterizes high-speed I high-volume network traffic in order
to provide indications of anomalous behavior for network and
system analysts and administrators.

Our system consists of three main stages: a filtering stage,
which finds and selects the Top-k producers of traffic on the
network; a trending and anomaly detection stage, which tracks
and monitors selected traffic for anomalous behavior; and a
correlation stage, which correlates the individual anomalies
from the second stage by time and source address in order
to both reduce false alarms and to recognize truly anomalous
behavior that is indicative of cyber attacks. Our system makes
use of two specific data sources from network traffic: raw
packet data and NetFlow connection summary records (de
scribed below). Our feature extraction and anomaly detection
algorithms have been designed to be general-purpose and can
be readily applied to other data sources.

The contributions of our paper are the following. First, we
present an architecture for an on-line cyber situational aware
ness system that can handle high-speed I high-volume traffic
environments. Second, we present enhanced versions of well
known streaming algorithms that have been improved based
upon our operational experience. Finally, we demonstrate that
our system performs well in operational environments and
under heavy traffic load to provide situational awareness. Our
work is unique in that it is aimed at applying streaming
algorithms from academic research to real-world environments
of an enterprise network.

Our paper presents the results of our research in the follow
ing way. Section ll presents an overview of our situational
awareness system with details about its architecture, data
sources and various traffic processing pipelines. Section III
presents the modified stream characterization algorithm that
we use to filter and process the data in the operational
environment. We present results from the application of our
characterization and anomaly detection system using a labeled
data set in Section V and we discuss the system's performance
in a live operational environment. Section VI presents a
summary of our cyber situational awareness research and
discusses future directions for investigation.

II. SYSTEM DESCRIPTION

We have implemented our system as an application within
an existing stream processing platform that provides an in
terface for importing and processing high-speed data streams.
The core building block within the platform is the processing
element (PE), which serially reads from incoming streams of
data tuples, performs some amount of processing, and gener
ates outgoing tuple streams. The existing streams processing
environment allows users to compose processing pipelines of
arbitrary length and complexity by chaining individual PEs
together.

Our general approach to developing analysis applications
that provide cyber situational awareness for network traffic
places PEs that perform lightweight tasks dedicated to sum
mary and aggregation early in the chain where the highest rate
of tuples are received. PEs that perform more CPU-intensive
tasks such as statistical modeling and anomaly detection are
placed later in the processing chain where the rate of incoming
tuples is lower because of filtering.

A. High-Level Architecture

Figure 1 presents a block diagram for a typical chain of
PEs in our system. As stated above, each data stream imported
by the system is processed so that the high rate of incoming
data is gradually filtered and aggregated into usable situational
awareness data that is presented to the network operator. Each
PE in the system can be classified into one of the following
categories:

Filters, described in Section ill, create meaningful and
accurate characteristics of the data stream. Anomaly detectors,
described in Section IV, use statistical techniques to generate
historical models of data streams, predict future trends, and
identify anomalies in data streams. Anomaly correlators, also
described in Section IV, coalesce anomalies from various
detectors, filter potential false positives, and present alert
messages to an network operator. Each processing pipeline
contains at least one of each of these types of PEs, and may
contain more, depending on the nature of the processing and
the needs of the network operator.

B. Data Sources

Although our PEs are configurable and designed to be de
ployed on various network data sources, we have implemented
an operational prototype system using the following two data
feeds.

a) NetFlow Data: Our system processes the NetFlow
records of all Internet gateway traffic for a large enterprise
network. It uses the standard Cisco NetFlow version 5 proto
col, which defines a flow as a unidirectional network trans
action identified by a five-tuple: source and destination host
addresses, source and destination ports, and transport layer
protocol. Each flow record also includes meta-data such as
byte and packet counts, tcp session length, and tcp flags. Raw
packet content is not included in the data feed.

2

Nett/ow
stream ToPK FEATURE

~ -FILTER EXTRACTION

Output to
HOSTIP ANOMALY situational

4 PROFILING -----+ DETECTION/ awareness
AND TRENDING CORRELATION visualization

Fig. 1. System block diagram.

b) Raw packet content: In addition to NetFlow data, our
system also processes raw network packet data for situational
awareness. This data is not sessionized or. reassembled into a
higher level protocol and depending on traffic rates and system
load this traffic may be sampled.

C. Processing Pipeline

Figure 1 illustrates the processing pipeline. Once the Net
Flow records are imported into the stream processing platform,
they are passed to a filtering PE, which uses techniques
described in section III to detect "heavy hitter" hosts based
on various network features such as byte count, flow count
and session length. This PE filters the incoming data stream to
find the k heavy hitters for further processing; k is determined
by available system resources within the stream processing
environment.

The resulting stream is received by the feature extraction
PE, which extracts the features enumerated in Table I and
produces a stream of these features for each time interval
monitored (e.g. 10 minutes). Some features, such as raw byte
and packet counts are aggregated over the time window being
monitored while others, such as unique host count, utilize a
bloom-filter-based counter to record their value. In the latter
case, a hash function is applied to each arriving key-value
pair to determine the correct bit location to set in a storage
hash to record unique occurrences. The feature extraction PE is
extensible and allows for the addition of new feature extraction
analytics as they are developed.

The host IP profiling and trending PE receives the stream of
extracted features and constructs statistical models to charac
terize host behavior during the time interval monitored. These
statistical models and the original feature stream are sent to
the anomaly detection PE which generates internal anomaly
messages when real-time values deviate from expected values.
The anomaly detector is described in greater detail in section
IV

Due to the noisy nature of network traffic, a number of
uncorrelated (e.g. random) anomalies are expected to be seen
during each time interval. These anomalies do not represent
truly anomalous activity and should be removed from the
processing stream. To remove this noise, individual feature
anomalies are sent to the anomaly correlator PE which uses
historical context to correlate internal anomaly messages over

Inbound/outbound
Byte count Unique destination country count
Packet count Avg. bytes/packet
flow count Avg. packets/flow
Unique host count Avg. bytes/flow
Unique source port count Avg. TCP session length
Unique destination port count Bytes in/out ratio
Unique destination AS count flows in/out ratio
Packets in/out ratio

TABLE I
FEATURES MONITORED BY HOST PROFIL.ER

the observation time windows. When correlated anomaly ac
tivity exceeds a predetermined threshold, an alert containing
the address of the anomalous host and associated historical
data is sent to an external visualization tool for review by an
operator. The anomaly correlator PE is described in greater
detail in section IV.

III. STREAM CHARACTERIZATION ALGORITHMS

In this section, we describe the customization necessary
for stream algorithms to perform data characterization. While
the PE is derived from algorithms found in literature, our
system constraints do not match those considered important
in the literature. We have therefore designed our PE's al
gorithm to take advantage of available resources to better
address the needs of the operational environment. We have
developed the Top-k algorithm, instead of the frequent-item
algorithm predominant in the literature, because it requires no
prior knowledge of the network deployment environment in
order to specify operational parameters. Below we describe
our customized Top-k algorithm, which exemplifies our data
characterization algorithms.

A. Top-k ()perator

The Top-k algorithm identifies from a stream of
(key, value) pairs the k pairs with the highest value over an
interval of time. The keys of these pairs are often used to filter
traffic downstream. During a time interval, when a series of
pairs with the same key, k, (k, v1), · · · , (k, vn) occurs, the set
of values V = { v1, · · · , Vn} are aggregated according to an
aggregation function, ag. In our system, we use two common
aggregation functions: summation, ag(V) = l:vev v, and
average, ag(V) = By9f 11

•

1) Solutions within the Literature: The Top-k algorithm
solves a variant of the frequent item identification problem[8].
This problem is often stated as one of the two following
problems: the frequent item detection problem, or the k most
frequent item detection problem.

Definition 1 (Frequent item detection): Given a set X of
aggregated (key, value) pairs and a frequency threshold ¢ E
[0, 1], find all pairs such that value> ¢A where A is the sum
of all the values.

Definition 2 (k most frequent item detection): Given a set
X of aggregated (key, value) pairs and k E z+, find the
k pairs with the largest values.

Solutions that solve either of these problems also deal
with the problem of creating the aggregated set X. The key
characteristic of each problem is the type of data found; as

such, solutions can be classified by the type of data they can
provide from a stream (e.g., Top-k solves the second problem).

Originating from a data mining and database background,
prior solutions have mainly focused on the frequent item
detection problem. The large number of possible keys and the
larg((number of total pairs within streams from this domain
have lead to the development of algorithms that have tight
bounds in terms of writable memory and the number of
passes through the data stream. These bounds have lead to the
development of approximation algorithms for both problems.
When available memory is greater than the number of unique
keys both problems are considered to be trivially solved by
sorting the aggregate key-value pairs.

In our environment, the number of unique keys is large
but within the bounds of available memory. For example,
when finding the top twenty IP addresses by the number
of bytes received, the number of keys may be large; yet, it
is feasible to have enough memory to store a counter for
each observed IP address. Thus, when the necessary amount
memory is available, the trivial solution is unsatisfactory
within our environment.

To illustrate this point, we examine the behavior of the space
saving algorithm [9], which acts as an efficient implementation
of the trivial solution when given a sufficiently large memory
supply, and is the base algorithm for our customization.

B. The Space Saving Algorithm

The space saving algorithm is a deterministic algorithm that
may be use to find approximate solutions for both the frequent
item detection problem and the k most frequent item detection
problem.

let m be a map of Key--+ Value ;
for each pair (k, v) in the stream do

if v' is m[k] then

end

I let m = (m- (k,v)) + (k, aggregate(v',v))
else

if lml < memorybound then
I let m = m + (k,v)

else
let k' be the key associate with the minimum
value within m ;
let m = (m - (k, v)) + (k', aggregate(v', v))

let r be the list of m pairs sorted in descending order of
value;
return the first k elements of r ;

Algorithm 1: The space saving algorithm

Algorithm 1 shows an abstracted algorithm for space saving
that solves the k most frequent item detection problem. Key
value pairs are adding to a map with aggregation until the
map reaches a pre-specified size. At which point, the smallest
valued key is replaced with the new value, and the smallest
value is aggregated with the new key's value. While the key

replacement policy of space saving is important for approxi
mating an answer, with sufficient memory it acts as the trivial
solution. Therefore, a Top-k PE that is implemented as space
saving would have the same performance characteristics as the
trivial solution until it reaches its memory bound.

In our environment, the PE receives pairs continuously,
and generates results after each time interval elapses. With
the trivial implementation, storing each pair received has an
efficient implementation, the maps can be implemented as
either a hash table or a tree data structure, and the minimum
valued key value can be maintained with a heap. However,
once a time interval elapses, sorting the key-value pairs and
clearing the maps are time expensive operations, and have
experimentally resulted in the overflow of PE buffers when
the number of unique keys is large and the rate of traffic is
high.

let m be a map of Key -t Value;
let topk be a min-max heap ;
for each pair (k, v) in the stream do

if v' is m[k] then
if v' is old then
I let m = (m- (k ,v)) + (k,v')

else
I let m = (m - (k, v)) + (k, aggregate(v' , v))

end
else

end

if lml < m emorybound then
I let m = m + (k, v)

else
let k' be the key associate with the minimum
value within m ;
let m - (m- (k ,v)) + (k' ,aggregate(v',v))

let (k ,v") = m[k] ;
if (k, v") is in topk then
I update (k , v")'s position in topk

else if ltopkl < k then
I add (k , v") to topk

else if v" > min topk then

I rep~a~e topk's root with (k, v") and adjust the root's
pOSl tlOn

return the pairs in topk ;
Algorithm 2: The stream oriented space saving algorithm

C. Stream Oriented Space Saving Algorithm

In Algorithm 2, we customize the space saving algorithm
with two modifications: we add a time stamp to map entries,
and we add a min-max heap to keep track of the current
highest valued k pairs. These modifications enable the quick
production of the Top-k pairs on each time interval since we
only need to output the pairs within the min-max heap and
then clear the min-max heap. The timestamp eliminates the

4

need to reinitialize the map because the timestamp allows stale
map entries to be detected and replaced.

1) Implementa!ion specifics: Adding a timestamp is a
straightforward modification to the map. Since our operator
must keep track of time, we add the timestamp of the last
update to each map element. The algorithm can detect a stale
map element by checking if its timestamp occurred during a
time that is not within the current time interval. By using this
technique, we can eliminate the need to clear the map when
each time interval elapses.

Maintaining efficient heap operations can be achieved by
using a binary heap. Each heap stores a pointer to the map
element, and each map element stores a pointer back to it's
respective heap element. This optimization ~nables the value
for each key to be updated at a central location and minimizes
the amount of copying required for each heap adjustment
operation.

2) Performance characteristics: With regards to perfor
mance, it would appear that performing more work on each
pair update would decrease the total throughput of the system.
However, in practice the heap operations are very efficient
because heap items rarely percolate more than one position in
the heap per update. For example, when using the summation
aggregation function and the stream values are fixed to the
value of one (i.e., we are counting stream frequency), each
heap operation cannot percolate more than one position on
each update.

IV. ANOMALY DETECTION AND CORRELATION

A. Anomaly Detection

The overall goal of our situational awareness system is the
characterization of network traffic such that it supports the
recognition and identification of anomalous behavior, which
is often indicative of malicious activity. 'The ability to detect
anomalous or abnormal behavior therefore begins with the
ability to model normal network behavior. Although aggregate
network traffic on the Internet is often modeled with long
tailed distributions, such as the Pareto [2], [3], it has also
been found that when traffic is nonnalized for variations due
to the time of day and day of week, a Gaussian probability
distribution is an appropriate model for the traffic[l]. With
this in mind, our anomaly detection mechanism calculates
summary statistics for the nonnal probability distribution
(Equation 1) for relevant network features while accounting
for time of day and day of week. To account for time of day
variations, network features are sampled at small increments of
time (e.g. 10 minutes) throughout the day, as shown in Figure 2
a depiction of the windowed sampling scheme used by our
time baseline anomaly detector. Models of network behavior
are further separated into those corresponding to workdays
(Monday-Friday) and weekend days (Saturday and Sunday).

The time baseline anomaly detector records historical data
for various features described in Section ll and uses this data to
create a statistical profile for each host being monitored. This
profile is then used to recognize deviations from expected be
havior. Thus, our time baseline anomaly detection mechanism
consists of a two-phase process. In the first phase, models

are trained in an on-line fashion; descriptive statistics for an
assumed Gaussian distribution are calculated from observed
network variables.

Window

j]f-fJ~l ...
.\"i c {x I • J." 2 ' X 3 • ... ,

Time
Fig. 2. illustration of the windowing scheme used by the time baseline
anomaly detector used to monitor different intervals of network variables

Xi-+ N(!J-,u) (1)

During the second phase, variables observed during oper
ation are compared to stored model parameters to determine
the likelihood of occurrence. If the likelihood is below the ex
perimentally determined threshold r an indication of anomaly
is issued within the system.

(2)

B. Anomaly Correlation

Due to the bursty nature of network traffic, we expect the
behavior of each host to generate some number of false pos
itive across many time intervals. However, we have observed
in our experimental results (described in detail in section V
and illustrated in Figure 3), that a true positive anomaly is
more likely to be detected when either there are multiple
independent anomalies across various features or there is
sustained anomalous activite within a single feature.

l.'!"~.'X'· • .

7!:6,600.

51JO.WO •

~50,0.00 •

UNIQUE PORT

.----...I£..----. COUNT
Small spike In byte

count correlated with
massive spike in flows

and port count

Fig. 3. Example of anomaly correlation.

FLOW COUNT

In the anomaly correlation phase individual anomalies are
correlated across source IP addresses and time intervals. The

correlator receives anomaly messages with associated confi
dence intervals from anomaly detectors for each feature. The
correlator does not have prior knowledge of the relationship
between anomaly detectors, and therefore, each anomaly is
considered to be an independent event. Thus, the overall
likelihood of the occurrence of multiple individual anomalies
is determined by calculating the product of the individual
anomaly confidence scores.

L(8fX,) = 1 - II(l- f(xi)) (3)

(4)

In equation 3 L(9/ X i) represents the likelihood of the
model 9 , represented by the various Gaussian distributions
occurring given the data samples Xi . This likelihood is
calculated as 1 minus the product of the individual anomaly
scores for each Xi above threshold r.

This likelihood value is used as the anomaly score, and
is compared against a tunable threshold to determine if an
alert message should be issued. This score is aged over time,
to allow for detection of both a spike in high-confidence
anomalies, and a low intensity, sustained anomaly over time.
Figure 4 illustrates the anomaly score of a sample "victim"
host during the attack from the DARPA dataset iiJustrated in
Figure 3. Note that the anomaly score is determined by unique
anomaly detector alerts received by the anomaly correlator,
and is compared against a tunable parameter in order to decide
when to generate an alert message.

Alert message:
attacks confirmed in
DARPA truth data

o.•Lo _ _,..___~-~.~~.-~,....-~---' -·-

High
confidence

- anomaly
threshold

LON
confidence

- anO!Tlaly
threshold

Fig. 4. Example of anomaly score over time for attack in DARPA dataset.

V. EXPERIMENTAL RESULTS

A. Accuracy

We evaluated the detection accuracy of our system using
the MIT Lincoln Laboratory 1999 DARPA Intrusion Detection
Dataset.[?], [6] The DARPA dataset was designed to support
the evaluation of various intrusion detection systems. It con
sists of a number of different known cyber attacks, on top

of continual background traffic. To begin our evaluation we
trained our system on one week's (week 1) of clean network
traffic. This allowed the system to create internal baseline
models of network behavior. Next, we presented the system
with a different week (week 2) of network traffic known to
contain attacks. During this second phase of evaluation we
monitored the systems output to determine true and false
positives.

We structured our evaluation by first classifying each attack
as either "flow detectable" or "not flow detectable" and only
concern ourselves with flow detectable attacks since our host
profiler pipeline receives only NetFlow records, and not the
packet capture data. Therefore, attacks that require the detec
tion of a signature within packet data, such as the byte code of
a known piece of malware, are out of scope for our detection
system.

To determine the rate of true and false positives, we began
by dividing each day of the attack set into 1 0 minute intervals
to match the sampling length of our host profiler. The total
number of potential alerts that the system can generate is
calculated as the total nwnber of intervals in a week times
the total nwnber of hosts being monitored or 2880. The
pathological case occurs if every host generates an alert for
every interval. We define a true positive to be an alert generated
for a host in an interval in which there is a labeled attack, and
a false positive to be an alert generated for a host in which
there is no labeled attack. Similarly, we define a true negative
as each host-interval in which there is neither an alert or an
attack, and a false negative as each host-interval for which
there is a labeled attack but no alert.

We replayed the week of labeled attack data through our
trained system multiple times while varying the anomaly
detector's threshold, u, and recorded the detection rate of true
and false positives. We use this data to produce the ROC curve
shown in figure 5. Our system detected 8 of the 9 relevant
attacks from the dataset for a probability of detection (PD)
of 88% with a probability of false alarms (PFA) of 0.01 %.
Our system demonstrates comparable performance to other
intrusion detection systems evaluated over the 1999 DARPA
dataset for the detection of flow detectable attacks.[6]

:I
I

, L,------~----~------~------~----~

Fig. 5. A receiver operating characteristic curve showing detection perfor
mance on the DARPA 1999 data set.

6

B. Throughput

In addition to evaluating our system for accuracy using truth
data from the DARPA dataset, we evaluated the throughput
of our system by running it operationally on a very large
enterprise network. Our system was able to handle data rates
of up to 500,000 raw packets and 2.5 million flow records per
second. Although we did not have truth data on this network
to calculate accuracy values, we were able to demonstrate that
our algorithms perform at very high data rates.

VI. CONCLUSION

We have presented a stream processing based system which
performs characterization and analysis of high-speed I high
volume data for the purpose of cyber situational awareness.
Our system makes use of an existing streams processing
environment that enables the creation of data analysis pipelines
which are composed of individual processing elements. We
have employed analysis algorithms for stream characterization
and shown how their deployment in an operational envi
ronments has led to several improvements in performance.
Our system performs well on a labeled data set and in an
operational environment where high speed network data is
encountered. Future research directions include the exploration
of additional data sources and features that can be used for
cyber situational awareness, such as server and proxy logs,
and the investigation of other mechanisms for the detection of
anomalies and anomaly correlation.

REFERENCES

[1] K. M. Carter, S. W. Boyer, R. P. Lippmann, and R. K. Cunningham,
"Baselineing the niprnet through tl.ow analysis:' Centaurffriclder Tech
nical Exchange Meeting, Tech. Rep., November 2009.

[2] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. ThorJp, "Algorithms
and e.~timators for accurate summarization of internet traffic,"
in Proceedings of the 7th ACM S!GCOMM conference on Internet
measurement, ser. IMC '07. New York, NY, USA: ACM, 2007, pp. 265-
278. [Online]. Available: http:l/doi.acm.org/10.1145/1298306.1298344

[3] A. B. Downey, ''Evidence for long-tailed distributions in the internet,"
in In Proceedings of ACM SIGCOMM Internet Measurment Workshop.
ACM Press, 2001, pp. 229-241.

[4] M. R. Endsley, "Thward a theory of situation awareness in dynamic
systems," Hwnan Factors: The Journal of the Hrmum Factors and
Ergonomics Society, vol. 37, pp. 32-64(33), March 1995.

[5] C. Labovitz, D. McPherson, S. Jekel Johnson, and M. Hollyman. (2008,
June) Internet ITaffic trends- a view from 67 ISPs. [Online]. Available:
www.nanog.org/meetings/nanog43/abstracts.php?pt=NjgmbmFub2c0Mw
==&nm=nanog43

[6] R. Lippman, J. W. Haines, D. J. Fried, J. Korba, and K. Das, "Analysis
and results of the 1999 DARPA off-line intrusion detection evaluation,"
in RAID, 2000, pp. 162-182.

[7) R. P. Lippmann, R. K. Cunningham, D. J. Fried, 1. Graf, K. R., Kendall,
S. W. Webster, and M. Zissman, "Results of the 1999 dalpa off-line
intrusion detection evaluation," in Second International Workshop on
Recent Advances in Intrusion Detection, West Lafayette, Indiana, 1999.

[8] N. Manerikar and T. Palpanas, "Frequent items in streaming data: An
experimental evaluation of the state-of-the-art," Data & Knowledge
Engineering, vol. 68, no. 4, pp. 415- 430, 2009.

[9] A. Metwally, D. Agrawal, and A. E. Abbadi, "Efficient computation
of frequent and top-k elements in data streams," in In International
Conference on Database Theory, 2005, pp. 398-412.

[1 0] K. Mittal, "Internet ITaffic growth analysis
of trends and predictions." [Online]. Available:
www.kunalmittal.cornlincludes!Papers/PredictinglnternetTrafficGrowth.pdf

[11) L. G. Roberts. (1999, December) In-
ternet growth trends. {Online]. Available:
www.nanog.org/meetings/nanog43/abstracts.php?pt=NjgmbmFub2cOMw
=&nm=nanog43

